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Abstract

We present a comparative study of four physical dust models and two single-temperature modified blackbody
models by fitting them to the resolved WISE, Spitzer, and Herschel photometry of M101 (NGC 5457). Using
identical data and a grid-based fitting technique, we compare the resulting dust and radiation field properties
derived from the models. We find that the dust mass yielded by the different models can vary by up to a factor of 3
(factor of 1.4 between physical models only), although the fits have similar quality. Despite differences in their
definition of the carriers of the mid-IR aromatic features, all physical models show the same spatial variations for
the abundance of that grain population. Using the well-determined metallicity gradient in M101 and resolved gas
maps, we calculate an approximate upper limit on the dust mass as a function of radius. All physical dust models
are found to exceed this maximum estimate over some range of galactocentric radii. We show that renormalizing
the models to match the same Milky Way high-latitude cirrus spectrum and abundance constraints can reduce the
dust mass differences between models and bring the total dust mass below the maximum estimate at all radii.

Unified Astronomy Thesaurus concepts: Spectral energy distribution (2129); Interstellar dust (836); Dust
continuum emission (412); Gas-to-dust ratio (638); Metallicity (1031)

1. Introduction

Dust grains play key roles in processes that shape the
interstellar medium (ISM) and galaxy evolution. They release
photoelectrons that participate in heating gas (e.g., Wolfire
et al. 1995; Weingartner & Draine 2001a; Croxall et al. 2012),
they shield dense molecular clouds from stellar UV radiation
and aid their collapse (e.g., Fumagalli et al. 2010; Byrne et al.
2019), they catalyze a number of chemical reactions, and they
offer a surface area for the production of H2 (e.g., Bron et al.
2014; Castellanos et al. 2018; Thi et al. 2020, see also a review
by Wakelam et al. 2017). It is therefore critically important to
understand dust properties and abundance, and how dust affects
these processes.

One main way to infer dust properties in external galaxies is
to interpret infrared (IR) spectral energy distributions (SEDs)
with the aid of dust models. The near-to-mid-IR part of the
spectrum is dominated by the emission of stochastically heated
grains that do not achieve a steady-state equilibrium with the
incident radiation field. At longer wavelengths, the emission is
almost entirely due to grains in thermal equilibrium, with a
large enough radius to be constantly receiving and emitting
photons. In this regime, the steady-state grain temperature is set
by the strength of the incident radiation field.

Modified blackbody models are a convenient parametric
representation of the emission from large grains in thermal
equilibrium. As such, they provide good fits to the far-IR SED
and yield satisfactory dust masses if correctly calibrated (e.g.,
Bianchi 2013), because these grains contain most of the dust
mass. Large grains in thermal equilibrium are reasonably well
described by a single temperature, in which case their emission

can be represented by a blackbody radiation, Bν, modified by
an effective grain opacity, κν(λ), so that the grain emission
Iν∝ κν(λ) Bν(λ, T). The opacity as a function of wavelength is
often described with a power law with spectral index β, such
that ( )k k n n=n

b
0 0 . Several variations to the modified

blackbody model have been used to fit the far-IR SED, for
example, multiple dust populations having different tempera-
tures and β, or a different functional form for κν such as a
broken power law.
Physical dust models aim to reproduce the IR emission,

extinction, and depletions, among other observations, with a
self-consistent description of dust properties. Building these
models requires specifying grain sizes, shapes, and chemical
composition, which lead to optical properties and heat
capacities. These grain populations are then illuminated by a
radiation field with a specified intensity and spectrum. Once the
radiation field is modeled, one can compare the predicted and
observed dust emission. Dust extinction measured toward
specific lines of sight (not high AV) helps constrain the size
distribution of grains, their composition, and total mass relative
to H (e.g., Weingartner & Draine 2001b). Depletion measure-
ments provide important limits on the elemental abundance
locked in dust grains (e.g., Jenkins 2009; Tchernyshyov et al.
2015). Experimentally, many studies rely on material thought
to be ISM dust analogs to provide laboratory constraints on
optical properties and heat capacities (e.g., Richey et al. 2013;
Demyk et al. 2017; Mutschke & Mohr 2019).
Both physical and modified blackbody models are almost

always calibrated in the Milky Way (MW), where the relevant
observables of dust are well constrained. This includes
measurements of the diffuse emission and extinction per H
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column of the ISM at high Galactic latitudes also referred to as
the Milky Way cirrus (e.g., Compiègne et al. 2011; Guillet
et al. 2018). The cirrus is also a unique place where the
interstellar radiation field that heats dust grains, a necessary
component to constrain models, can be estimated. The radiation
field measured by Mathis et al. (1983) at the galactocentric
distance DG= 10 kpc is generally used to describe the starlight
heating dust grains.

The stringency with which each model follows the elemental
abundances locked in dust grains from depletion studies varies.
Some models use them as strict constraints (e.g., Gordon et al.
2014). On the other hand, most physical models allow more
flexibility in the mass of metals locked up in dust grains, to
more closely match other, better-constrained observables. For
example, the Zubko et al. (2004) dust models follow the
depletion constraints strictly, while the Weingartner & Draine
(2001b) ones can require up to ∼30% (assuming Si/H=
36 ppm in the model) more silicon than observed in the cold
neutral medium. However, the latter models reproduce the
observed extinction to a better degree than the former.

With the increasing number of observational constraints on
dust models, the complexity of physical dust models has
grown. One of the earliest dust models described grains as a
single mixture with a power-law size distribution (Mathis et al.
1977). Later on, very small grains known as polycyclic
aromatic hydrocarbons (PAHs) were suggested to be respon-
sible for the mid-IR emission features (Leger & Puget 1984;
Allamandola et al. 1985) and included in dust models. While
some dust models consider them to be defined by their size (in
the model description; e.g., Draine & Li 2007; Compiègne
et al. 2011; Galliano et al. 2011), other models identify the mid-
IR feature carriers in the form of aromatic-rich mantles onto
amorphous grains (e.g., Jones et al. 2013 and their hydro-
genated amorphous hydrocarbon (HAC) component).

The precise nature of large grains is also uncertain. The
presence of amorphous silicate material in grains was
demonstrated early on by conspicuous absorption features
(Mathis et al. 1977; Kemper et al. 2004) and included in dust
models. But their exact composition remains an active research
topic (e.g., Zeegers et al. 2019). While some models have a
strong focus toward reproducing the observations (e.g., Draine
& Li 2007, “astrosilicates”), other models are closely tied to
new laboratory data (e.g., Jones et al. 2013, olivine and
pyroxene). Finally, with the growing amount of far-IR
polarization data, new models have emerged and take into
account this important grain property (e.g Guillet et al. 2018;
B. S. Hensley & B. T. Draine 2021, in preparation, hereafter
HD21). Future missions and instruments are being developed
to focus on polarization and will bring new constraints to dust
properties (e.g., SOFIA/HAWC+: Harper et al. 2018).

There are now several physical dust models available, which
are all different in some—sometimes small—ways. However,
these small differences in modeling can lead to significant
differences in the derived dust properties, as many studies have
shown in nearby galaxies. For instance, Gordon et al. (2014)
and Chiang et al. (2018) have used a number of blackbody
variations (e.g., simple power-law emissivity, two tempera-
tures, broken-emissivity) to model the far-IR SEDs of the
Magellanic Clouds and M101, respectively. They both found
that the dust mass derived by several blackbody variations
(namely, simple power-law emissivity, two temperature)
violates the available elemental content, making these

approaches unlikely to be valid descriptions of dust grain
emission. In the Magellanic Clouds, Chastenet et al. (2017)
found that dust masses can vary by almost an order of
magnitude depending on the physical model chosen. In the
Large Magellanic Cloud, Paradis et al. (2019) found that not all
models require both neutral and ionized PAHs for a good fit at
short wavelengths.
Other discrepancies may arise from simply using a different

fitting approach, where uncertainties are treated differently, or
with a different data set. For instance, Sandstrom et al. (2010)
found an increased abundance of PAHs in dense gas regions of
the Small Magellanic Clouds. This behavior was confirmed,
but with different PAH fractions in Chastenet et al. (2019), by
using the same model with a different wavelength sampling.
Most of the uncertainties in comparing the results of the studies
mentioned above arise from the wavelength coverage of their
data set, the definition of radiation field(s) they use, or simply
the dust model they choose.
To reach coherent results on dust properties (dust-to-gas

ratio, dust-to-metal ratio, fraction of PAHs, etc.), we need to be
able to compare between model results. In this paper, we carry
out a rigorous comparison among some of the widely used dust
models available in the literature by fitting the IR emission of
M101 (NGC 5457) in a strictly identical way for all models.
We therefore reduce the differences to those due to the physical
modeling choices only. We compare the models from
Compiègne et al. (2011), Draine & Li (2007), and The
Heterogeneous dust Evolution Model for Interstellar Solids
(THEMIS; overview in Jones et al. 2017), as well as HD21. We
also include two modified blackbody models previously used in
the literature: a simple-emissivity and a broken-emissivity
modified blackbody.
We perform our analysis on the galaxy M101 (NGC 5457),

which has multiple advantages. First, its distance (∼6.7 Mpc;
Tully et al. 2009) and low inclination allow for well-resolved
photometry, even in the far-IR. Second, the available IR
photometry and spectroscopy from recent space telescopes with
high sensitivity are ideal to constrain the dust models. Finally,
the metallicity gradients of M101 also offer an independent
route to put an upper limit on its dust content. The galaxy has
detailed measurements of metallicity from auroral lines (e.g.,
Croxall et al. 2016; Berg et al. 2020), which put good
constraints on the gas-phase metal abundance. It has also been
extensively targeted for deep H I and CO observations (Walter
et al. 2008; Leroy et al. 2009), allowing us to account for all the
gas (modulo any limitations in the ability of the CO and 21 cm
lines to trace the gas). Combining these, we can evaluate the
impact of model choice on derived dust properties across a
wide range of environments with well-understood metal and
gas content.
In Section 2, we present the photometry used to sample the

IR emission of M101. Section 3 describes the physical and
modified blackbody dust models and Section 3.3.4 the
technical aspects of the emission fitting technique. The results
of these fits are presented in Section 5 with discussions of the
differences in dust properties yielded by the dust models.
Finally, in Section 6, we analyze the calibration differences in
the dust models themselves.

2. Data

We present our adopted distance and orientation parameters
for M101 in Table 1.
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In order to derive the dust properties in M101, we perform
fits to its IR SED, composed of measurements at 16 different
photometric bands:

1. 3.4, 4.6, 12, and 22 μm from the Wide-field Infrared
Survey Explorer (WISE; Wright et al. 2010). We use the
maps delivered by Leroy et al. (2019) in the z= 0
Multiwavelength Galaxy Survey, already convolved to a
15″ FWHM Gaussian resolution;

2. 3.6, 4.5, 5.8, and 8.0 μm from the Infrared Array Camera
instrument (IRAC; Fazio et al. 2004), and 24 and 70 μm
from the Multiband Imaging Photometer for Spitzer
instrument (MIPS; Rieke et al. 2004),8 both on board the
Spitzer Space Telescope (Werner et al. 2004). We used
the product delivery DR59 from the Local Volume
Legacy survey for the IRAC and MIPS maps (Dale et al.
2009);

3. 70, 100, and 160 μm from the Photoconductor Array
Camera and Spectrometer instrument (PACS; Poglitsch
et al. 2010) and 250, 350, and 500 μm from the Spectral
and Photometric Imaging Receiver instrument (SPIRE;
Griffin et al. 2010), both on board the Herschel Space
Observatory (Pilbratt et al. 2010). We downloaded the
scans from the KINGFISH program (Kennicutt et al.
2011) in the Herschel Science Archive and processed
them from L0 to L1 with HIPE (v. 15; PACS
Calibration v. 77; SPIRE Calibration v. 14.3; Ott 2010)
and Scanamorphos (v. 25; Roussel 2013).

2.1. Data Processing

We correct the images for extended-source calibration
appropriately and convert them to the same units in the
following way. We apply extended-source correction factors
for the IRAC images. These are multiplicative corrections of
0.91, 0.94, 0.695, and 0.74 at 3.6, 4.5, 5.8, and 8.0 μm,
respectively, as suggested by the IRAC Instrument Hand-
book.10 For SPIRE, we adopt calibration factors of 90.646,
51.181, and 23.580MJy/sr/(Jy/beam) at 250, 350, and
500 μm, respectively, as suggested by the SPIRE Handbook.11

These factors convert the data to MJy sr−1 from Jy/beam and
also correct from point-source to extended-source calibration.
The PACS data in units of Jy/pixel are converted to units of
MJy sr−1 using the image pixel size (contained in the headers).
We then process all of the maps following the same steps, as

described below. We remove a background in each image at
their native resolution by fitting a 2D plane using regions
identified not to have significant galaxy emission. We find
these regions with the following procedure: (1) we use the
r25 radius ( ~ ¢r 1225 ) to first mask the galaxy (this covers
the visible SPIRE 500 emission completely); (2) we measure
the median of the remaining pixels and the standard deviation,
and clip all of those that are three standard deviations above
that median; (3) we iterate that clipping until the medians at
iterations i and i+ 1 differ by less than 1%. This clipping is
only done for the purpose of measuring a background level,
and we do not keep this mask applied to the data for the
following steps. Table 2 lists the final standard deviations of the
background pixels in each band.
Each map is then convolved to the SPIRE 500 PSF

(FWHM∼ 36″) using convolution kernels from Aniano et al.
(2011). Finally, all of the maps are aligned and projected onto
the astrometric grid of the SPIRE 500 image. In Figure 1, we
show the 16 bands that we use to model the dust emission from
3.4 to 500 μm.
The final pixel size (9″) oversamples the SPIRE 500 beam

size, to which all data are convolved. We take this into account

Table 1
M101 (NGC 5457) Properties

Property Value Reference

R.A. 14:03:12.6 Makarov et al. (2014)a

Decl. +54:20:57 Makarov et al. (2014)a

Inclination 30° de Blok et al. (2008)b

Position angle 38° Sofue et al. (1999)
r25 11 4 Makarov et al. (2014)a

Distance 6.7 Mpc Tully et al. (2009)

Notes.
a From the HyperLEDA database, http://leda.univ-lyon1.fr/.
b Note the difference from the HyperLEDA database value (16°).

Table 2
Band-related Details

Band σbkg
a mcal

b msta
c

10−1 MJy sr−1 % %

WISE 3.4 0.170 2.4 10.0
IRAC 3.6 0.149 9.0 1.5
IRAC 4.5 0.107 6.0 1.5
WISE 4.6 0.095 2.8 10.0
IRAC 5.8 0.109 30 1.5
IRAC 8.0 0.085 26 1.5
WISE 12 0.114 4.5 10.0
WISE 22 0.055 5.7 10.0
MIPS 24 0.049 4.0 0.4
MIPS 70 5.24 10.0 4.5
PACS 70 10.7 10.0 2.0
PACS 100 10.1 10.0 2.0
PACS 160 7.95 10.0 2.0
SPIRE 250 3.96 8.0 1.5
SPIRE 350 2.73 8.0 1.5
SPIRE 500 1.82 8.0 1.5

Notes. References to the σcal and σsta Coefficients—WISE: http://wise2.
ipac.caltech.edu/docs/release/prelim/expsup/sec4_3g.html; IRAC: Reach
et al. (2005) and https://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/
iracinstrumenthandbook/29/; MIPS: Engelbracht et al. (2007) and Gordon
et al. (2007); PACS: Müller et al. (2011) and Balog et al. (2013); SPIRE:
Griffin et al. (2010) and Bendo et al. (2013).
a The background standard deviation in the pixels considered to measure the
background covariance matrix, once the maps are background-removed,
convolved, and projected.
b mcal is the error on the calibration used in each instrument. The large errors of
the IRAC bands are from the extended-source corrections, which we consider
to be correlated calibration errors.
c msta measures the stability of an instrument, i.e., the scatter when measuring
the same signal.

8 We do not use MIPS 160 (e.g., as opposed to Aniano et al. 2020) to gain
back some resolution (MIPS 160 PSF is ∼39″) without losing wavelength
coverage. This does not lead to major differences.
9 https://irsa.ipac.caltech.edu/data/SPITZER/LVL/LVL_DR5_v5.pdf
10 https://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/
iracinstrumenthandbook/29/
11 http://herschel.esac.esa.int/Docs/SPIRE/spire_handbook.pdf
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by correcting by N Npix beam when calculating uncertainties on
quantities that use the values of multiple pixels.

2.2. Ancillary Data: Neutral and Molecular Gas

In Section 6, we use gas surface density and metallicity
measurements in addition to IR SEDs. We use the same data as
Chiang et al. (2018) to get the total gas surface density, Σgas,
combining gas surface density maps from H I 21 cm and
CO(2→ 1) emission converted to H2. The H I 21 cm line data
is from the THINGS collaboration (The H I Nearby Galaxy
Survey; Walter et al. 2008). The map is converted from
integrated intensity to surface density assuming optically thin
21 cm emission, following Walter et al. (2008, Equations 1 and
5, and multiplying by the atomic mass of hydrogen).

We use CO (2→ 1) emission from HERACLES (Leroy et al.
2009) and convert it to H2 surface density, assuming a line ratio
R21= 0.7 and a αCO conversion factor, in units of

( )
- -M pc K km s2 1 1, following two prescriptions (both

including helium): the first one is representative of the MW
CO-to-H2 conversion,

12

( )a = 4.35, 1CO
MW

and the second one follows Bolatto et al. (2013),

⎧
⎨⎩

( )
( )

( )a

g
g

= S

= S
=

g¢ -



e2.9

with
0.5 if 1
0 otherwise

,
2

Z
CO
BWL13 0.4

Total
100

Total
100

where ¢Z is the metallicity relative to solar metallicity,13 STotal
100

is the total surface density map in units of 100Me pc−2. The
gas maps are convolved to a 41″ Gaussian PSF (Chiang et al.
2021); because we plot the radial profile of the gas maps by
averaging in growing annuli, we find that the minor differences
between the dust and gas maps resolutions are negligible.
We measure an uncertainty of∼ 0.3 Kkm s−1 for the
CO(2→ 1) map and an uncertainty of ∼0.4Me pc−2 for the
H I 21 cmmap.14 We build a radial profile by averaging Σgas in
growing annuli from the center out to r25.

2.3. Ancillary Data: Metallicity

Metallicity measurements ( )+12 log O H10 are taken
from the CHAOS survey (Berg et al. 2020), derived from
72 H II regions of M101. In particular, we use their

Figure 1. Emission of M101 (NGC 5457) from 3.4 to 500 μm, in all of the bands used in this study. The maps show the final version of each map: after extended-
source correction (IRAC and SPIRE bands), unit conversion (PACS and SPIRE bands), background removal, convolution to SPIRE 500 PSF (∼36″), and regridding.
On the MIPS 70 panel, we also show the location of the pixel for the fit example (white cross; Figure 4), the region used for the IRS measurement (white rectangle;
Section 5.6), and the contours for the 3σ detection threshold.

12 A standard ( )= ´ - -X 2 10 K km sCO
20 1 1 is assumed for the column

density conversion factor. The mass of helium and heavier elements have been
accounted for in αCO .

13 (( ( )) ( ( ) ))¢ = + - +Z 10 12 log O H 12 log O H with ( )+ =12 log O H 8.69.
14 The rms per channel is ∼0.46 mJy/beam. Assuming σz, gas = 11 km s−1

(Leroy et al. 2008), the uncertainty is 0.96 Me pc−2. The 5% calibration error
(Walter et al. 2008) becomes significant in the dense regions.
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fitted metallicity gradient

( ) ( ) ( )+ =  -  r r12 log O H 8.78 0.04 0.75 0.07 310 25

to convert it to a radial profile of metal surface density (see
Section 6.1). We adjusted the slope given by Berg et al. (2020,
0.90) to account for the different r25 used here. Berg et al.
(2020) find that the scatter in individual region metallicities
around the measured gradient is ∼10%.

Tracing the total metal mass from nebular emission lines of
oxygen is subject to systematic uncertainties. As pointed out by
Jenkins (2009), oxygen shows unexplained depletion patterns,
compared to how much is expected to be locked in the solid
phase. However, Peimbert & Peimbert (2010) measured the
depletions of heavy elements in Galactic and extragalactic H II
regions and found minimal depletion of oxygen (0.1 dex).
Other elements may be of use for tracing metallicity (as is the
case in Berg et al. 2020), but given the widespread use of O/H
for extragalactic studies, we use the typical ( )+12 log O H
tracer.

3. Dust Emission Models

The goal of this study is to investigate the differences in dust
properties derived using physical and modified blackbody
models. In this section, we present the characteristics of each
model. The parameters we use to fit the IR SEDs are presented
in Table 3. A summary table of the following information is
presented in Appendix A.

3.1. Modified Blackbodies

We use single-temperature modified blackbody models. For
these two models, we only fit photometry from 100 to 500 μm.
At λ< 100 μm, stochastically heated grains contribute to the
emission and are not well modeled by a modified blackbody.
Assuming the optically thin case, the dust emission Iν is

described as

( ) ( ) ( ) ( )l k l l= Sn n nI B T, , 4dust dust

where Bν(λ, Tdust) is the Planck function at wavelength λ (in
MJy sr−1), Tdust the dust temperature, Σdust the dust surface
density, and κν the opacity. We use the simple power-law
opacity (Equation (5)) and a broken power-law opacity
(Equation (6)), which we normalize at λ= 160 μm. The
broken power-law model presented the best results in terms
of quality of fits in the study by Chiang et al. (2018) and
yielded physically reasonable Σdust and Tdust values in their
study.
We follow Gordon et al. (2014) and Chiang et al. (2018) and

calibrate the opacity values for each model. We fit the modified
blackbody model to the dust emission per H column of the MW
high-latitude cirrus described in Chiang et al. (2018) to derive
the opacity. The abundance constraints are based on a depletion
strength factor typical for lines of sight with NH similar to that
of the MW cirrus, e.g., F* = 0.36 (Jenkins 2009). This sets the
allowed dust mass per H atom. By fitting the temperature for
the MW cirrus, we can then derive the opacity for each
modified blackbody model. More details on the opacity and
comparison to the physical models can be found in Section 3.2.

3.1.1. Simple Emissivity

In this case, the opacity is described as a single power law:
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where β is the spectral index. For all blackbody models, we fix
λ0= 160 μm and ν0= c/λ0. The free parameters for this model
are then the dust surface density Σdust, the dust temperature
Tdust, and the dust spectral index β. In this model, the calibrated
k = n

-10.10 1.42 cm g2 1
0 (Chiang et al. 2018) from fitting

the high-latitude cirrus as described above.

3.1.2. Broken Emissivity

The broken-emissivity model stemmed from the identifica-
tion of the submillimeter excess (Gordon et al. 2014). It allows
a change of the dust spectral index with wavelength, meant to
better reproduce the far-IR slope than does a simple modified
blackbody. In this model, the value of the opacity is
wavelength dependent, such that
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where λc is the wavelength at which the opacity changes and νc
its equivalent frequency. Following Chiang et al. (2018), we fix
β= 2 and λc= 300 μm. The free parameters are then the dust
surface density Σdust, the dust temperature Tdust, and the second
dust spectral index β2. The calibrated opacity, kn0, for this
model is 20.73± 0.97 cm2 g−1 (Chiang et al. 2018), as
described above.

Table 3
Fitting Parameters

Parameter Range Step Unit

All physical models

log10 (Σdust) [−2.2, 0.1] 0.035 Me pc−2

Umin [0.1, 50] Irra L
log10 (γ) [−4, 0] 0.15 L
log10 (Ω*) [−1, 2.5] 0.075 L

Model-specific

DL07, HD21: qPAH [0, 6.1] 0.25 %
THEMIS: fsCM20

b [0, 0.5] 0.03 L
MC11: fPAHs

b [0, 0.5] 0.03 L

Modified blackbody models

log10 (Σdust) [−2.2, 0.1] 0.035 Me pc−2

Tdust [12, 35] 0.3 K
SE: β, BE: β2 [−1,4] 0.05 L

Notes.
a ÎUmin {0.1, 0.12, 0.15, 0.17, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0,
1.2, 1.5, 1.7, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0, 8.0, 10.0, 12.0, 15.0, 17.0,
20.0, 25.0, 30.0, 35.0, 40.0, 50.0}.
b We use a “fraction” parameter so that ΣX = fX × Σd, where X =
{sCM20THEMIS, PAHsMC11}.
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3.2. Opacity Calibrations

The physical dust models used in our study have opacities
that are set by each individual model calibration procedure. All
models use similar constraints from the MW high-latitude
cirrus (described in more detail in Appendix A). For ease of
comparison to the opacities we have derived for the modified
blackbody models (10.1 cm2 g−1 for the simple-emissivity and
20.7 cm2 g−1 for the broken-emissivity model at 160 μm), we
list the opacity in the physical models below all scaled to
160 μm for comparison:

1. Draine & Li (2007): from the Weingartner & Draine
(2001b) model updated in DL07, we report κ160=
10.2 cm2 g−1 (see also Bianchi 2013);

2. Compiègne et al. (2011): from the work of Bianchi
(2013), we report κ160= 12.0 cm2 g−1;

3. Jones et al. (2017, THEMIS): from the work of Galliano
et al. (2018), we report κ160= 14.2 cm2 g−1;

4. HD21: the models use κ160 ∼ 9.95 cm2 g−1 (B. Hensley
2021, private communication).

For all models, we use the listed opacity regardless of the
specific environment in M101 we are studying. Few of the
currently available physical dust models have been calibrated
in any environment other than the MW cirrus (although the
Draine & Li 2007 model does have Small and Large
Magellanic Cloud–like calibrations, though they are not widely
used even for these very galaxies; Sandstrom et al. 2010;
Chastenet et al. 2019). Indeed, it is standard in current
extragalactic applications to apply MW cirrus RV= 3.1 dust
calibrations across all environments (e.g., Davies et al. 2017;
Aniano et al. 2020). In detail, this is unlikely to be correct
because the opacity can and probably should evolve as a
function of the environment, and it is clear that a single
F* = 0.36 value does not describe the depletion in the ISM
over the full range of column densities probed in galaxies.
However, for the purposes of our comparative study of widely
used dust models, we proceed by using the RV= 3.1 MW cirrus
calibrations from each model. Even if there were a potential
way to adjust opacity with the H column in M101, work by
Ysard et al. (2015) using THEMIS suggests that this is
insufficient to predict changes in dust properties.

3.3. Physical Dust Models

Physical dust models assume a composition, density, and
shape for the dust grains and adopt heat capacities and optical
properties from laboratory and theoretical studies that are
appropriate for such materials. For simplicity, most models
assume spherical grains or planar molecules for PAHs. In the
case of PAHs, the grains/molecules are additionally described
by an ionization state, which changes the absorption cross-
sections as a function of wavelength. The temperature and
emission of a grain of a given size, shape, and composition in a
radiation field with a specified intensity and spectrum can then
be calculated analytically (e.g., Draine & Lee 1984; Desert
et al. 1986).

The full dust population is represented by a grain size
distribution and abundance relative to H for the specified
compositions. Physical dust models are calibrated by adjusting
the grain size distributions and dust mass per H to
simultaneously match observations of extinction, emission,
and abundances (and more recently, polarization) in a location

where the underlying radiation field that is heating the dust is
well known. This has generally been taken to be the high-
latitude MW cirrus, where the radiation field intensity and
spectrum are approximately given by the Mathis et al. (1983)
model for the solar neighborhood. The degree to which the
models must adhere to the somewhat uncertain abundance
constraints varies from model to model. For example, the
modified blackbody models from Gordon et al. (2014) use the
depletion measurements in the MW as a strict limit. However,
most physical models allow the final element abundances to
vary from depletions, using them only as a loose guide.
In the following, we use four physical dust models: Draine &

Li (2007), Compiègne et al. (2011), THEMIS (Jones et al.
2017), and HD21. Here we briefly describe these models, the
key differences between them. Details on their respective
calibration methodologies can be found in Appendix A.

3.3.1. Draine & Li (2007)

In the Draine & Li (2007, hereafter DL07) model, dust is
composed of PAHs, graphite grains, and amorphous silicate
grains. It stems from the original models presented in Li &
Draine (2001). The carbonaceous dust optical properties are
adopted from Li & Draine (2001) with updates to the PAH
cross sections and form of the grain size distribution. A balance
between ionized and neutral PAHs is assumed, following
Li & Draine (2001). The optical properties of silicate material
are adopted from the “astrosilicates” in the original model.
We do not make use of the mass renormalization in Draine
et al. (2014).
The mass fraction of PAHs, qPAH, is described as the mass of

carbonaceous grains with less than 103 carbon atoms with
respect to total dust mass. We effectively obtain qPAH in
percent by converting the parts-per-million carbon abundance
bC to a PAH fraction, using the reference qPAH= 4.7%≡
bC= 55 ppm.
The calibration of the model is described in several papers

(Draine & Li 2001; Li & Draine 2001; Weingartner &
Draine 2001b). We use the DL07 MW model, with RV= 3.1,
which has a fixed ratio of silicate to carbonaceous grains.
Details on the calibration can be found in Appendix A.1.

3.3.2. Compiègne et al. (2011)

The Compiègne et al. (2011, hereafter MC11) model is
composed of PAHs, hydrogenated amorphous carbon grains,
and amorphous silicate grains. The size distribution of the
carbonaceous components includes PAHs, small amorphous
carbon grains (SamC), and large amorphous carbon grains
(LamC). The PAH cross sections and ionization as a function
of size adopted in the model are based on Draine & Li (2007)
with slight modifications to the cross sections of several bands.
Amorphous carbonaceous grains have optical properties from
Zubko et al. (2004) and heat capacities from Draine & Li
(2001). The amorphous silicates (aSil) have optical properties
from Draine (2003) and heat capacities from Draine & Li
(2001). Details on the calibration can be found in
Appendix A.2.
The DustEM 15 tool allows both ionized and neutral PAHs

to be fit independently. Because not all models allow that

15 DustEM is a tool that outputs extinction, emission, and polarization of dust
grains heated by a given radiation field. See details at https://www.ias.u-psud.
fr/DUSTEM/.
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separation, we tie their emission spectra together by summing
them, hence keeping their ratio constant at roughly 60% neutral
and 40% ionized.16 Additionally, we fix the mass fractions
of the large-carbonaceous-to-silicate grains such as
( ) ( ) =M M M M 0.22dust

LamC
H dust

aSil
H .17 Because these share a

very similar far-IR spectral index, their respective emission
cannot be properly determined independently with our
wavelength coverage and would lead to degenerate abundances
if fit separately.

3.3.3. THEMIS

THEMIS (Jones et al. 2013; Köhler et al. 2014; Ysard et al.
2015; Jones et al. 2017) is a core/mantle dust model, consisting
of large silicate and hydrocarbons, both coated with aromatic-
rich particles (HACs). This model defines its dust components
by focusing strongly on laboratory data, slightly adjusted to
better match observations. We use the diffuse ISM version of
the model, described in Jones et al. (2013). The amorphous
carbon grain properties are size dependent, and there is no
strictly independent population of grains responsible for the
mid-IR features, carried by aromatic clusters in the form of
mantles and very small grains (sCM20). As they grow to larger
grains (lCM20) in size, their core becomes aliphatic rich,
coated with an aromatic mantle. The silicate grains (aSilM5) in
particular are discussed in Köhler et al. (2014). They are a
mixture of olivine and pyroxene-type material, with nanoinclu-
sions of Fe and FeS. Their mass ratio is kept constant due to
their extreme resemblance in emission in the considered
wavelength range. The dust evolution models (from diffuse
to denser medium) are discussed in Ysard et al. (2015), with the
impact of aggregates and thicker mantles on the final
abundances. In the diffuse model we use, aSil has a 5 nm
mantle, and hydrocarbons have a 20 nm mantle. In our fitting,
the lCM20-to-aSilM5 mass ratio is kept constant, such as
( ) ( ) =M M M M 0.24dust

lCM20
H dust

aSilM5
H .18 Details on the calibra-

tion can be found in Appendix A.3.

3.3.4. B. S. Hensley & B. T. Draine (2021, in preparation)

Rather than employ separate amorphous silicate and
carbonaceous grain components, the (HD21) model invokes a
single homogeneous composition, “astrodust” (Draine &
Hensley 2021), to model most of the interstellar grain mass.
In addition to astrodust, the model incorporates PAHs using the
cross sections from Draine & Li (2007) and a small amount of
graphite using the turbostratic graphite model presented in
Draine (2016). The HD21 model was developed to reproduce
the observed properties of dust polarization, including both
polarized extinction and emission, in addition to total
extinction and emission. This results in the raising of the
emissivity in the far-IR, forcing the dust to be slightly cooler
than other models, and requiring a higher radiation field to get
comparable amounts of emission. We use cross sections
computed for 2:1 prolate spheroids, but the grain shape has
only a small effect on the far-infrared total intensity studied in
this work. Details on the calibration can be found in
Appendix A.4.

For the purposes of this study, the HD21 model has been
parameterized in the same way as Draine & Li (2007), i.e.,
utilizing parameters U and qPAH.

4. Fitting Methodology

4.1. Making Matched Model Grids

Because each model was developed independently, it is not
always possible to create model grids that have exactly the same
parameter sampling, because of the lack of parameter equiva-
lence. However, we attempt to do so as much as possible.
Radiation field—We implement identical dust heating in

each of the physical models: a fraction γ of the dust mass in a
pixel is heated by a power-law distribution of radiation fields
with < U U Umin max (Dale et al. 2001), where U is the
interstellar radiation field, expressed in units of the MW diffuse
radiation field at 10 kpc from Mathis et al. (1983). The
remaining fraction of dust (1− γ) is heated by the minimum
radiation field Umin (Draine & Li 2007):

( )

( ) ( )
g

g
a

= -

+
-
-a a

a
- -

-

M

dM

dU
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1
1
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We fix α= 2 for all models; =U 10max
7 for the

DL07, THEMIS, and MC11 models; and =U 10max
6 for

HD21. This choice is constrained by the available parameter
ranges in the models: the Umax values for the DL07 and HD21
models are fixed, and we do not have the freedom to change
them; thanks to DustEM , we can adjust Umax for MC11
and THEMIS.19 For THEMIS and the MC11 model, which
have multiple dust populations that can be independently
heated, each population is heated by the same radiation field.
The minimum radiation field parameter grid is fixed by the

values provided in the Draine & Li (2007) model. Thanks to
the DustEM tool, we can use the exact same values
with THEMIS and the MC11 model. These parameter values
in HD21 however are not exactly identical to those in Umin

DL07.
We therefore use the spectra with the closest Umin

HD21 values.
Although not strictly equal, the radiation field values in
Hensley & Draine are within 5% of Umin

DL07.
For the modified blackbody models, we use a single

radiation field intensity and translate it into a dust temperature.
We use the relationship

( )bµ =b+U T with 2 8dust
4

to convert Umin to Tdust and find the approximately matching
sampling to use in the blackbody models. We use the
normalization from Draine et al. (2014), i.e., U= 1 at
Tdust= 18 K, found using the same radiation field from Mathis
et al. (1983).
Mid-IR feature carriers—The qPAH parameter is kept strictly

identical between DL07 and HD21. We choose to use THEMIS
and the MC11 models in a similar fashion. Despite the definition

16 The ratio of ionized and neutral PAHs is size dependent. The values are set
in DustEM from the MIX_PAHx.DAT files.
17 This value is that from the DustEM file GRAIN_MC10.DAT.
18 This value is that from the DustEM file GRAIN_J13.DAT.

19 Using DustEM and THEMIS, we checked the effect of using =U 10max
6 or

107, for a range of γ values. We find that most of the mid-IR bands used in this
study are only minimally affected. The difference for IRAC 4.5 and WISE 4.6
can be significant at γ � 0.1, while the maximum γ values reached by the
model fits is 0.07 (for DL07). Additionally, these bands are dominated by
starlight and mostly modeled by the 5000 K blackbody.

7

The Astrophysical Journal, 912:103 (31pp), 2021 May 10 Chastenet et al.



of “PAHs” being different in THEMIS, we parameterize the
model so that the fraction of small grains can vary, keeping the
large-carbonaceous-to-silicate grains ratio constant. The MC11
default model has four populations that can vary independently,
and we choose to tie together SamC, LamC, and aSil to leave the
amount of PAHs as a free parameter. We explain these choices
in more detail in Section 7.

Stellar surface brightness—In addition to the dust model
parameters, we use a scaling parameter of a 5000 K blackbody,
Ω*, to model the stellar surface brightness visible at the
shortest wavelengths. This temperature is a good approx-
imation as the shortest wavelengths are nearly on the Rayleigh–
Jeans tail. The free parameter Ω* scales the amplitude of the
stellar blackbody.

In Table 3, we list the final free parameters we use for each
model. There are five free parameters for the physical models,
and three for the modified blackbody models. Figure 2 shows
all of the dust emission models used in this study. The top-left
panel shows the fiducial MW high-galactic-latitude diffuse
ISM models, labeled “Galactic SED.” The IR MW diffuse
emission from Compiègne et al. (2011) is also plotted. The
bottom-left panel shows the physical dust models at the same
radiation field Umin = 1. The other different panels detail the
models: THEMIS is divided into two grain populations when
fitted to the SED of M101 (note that we tie the lCM20 and
aSilM5 population); for the MC11 model, we tie the SamC,
LamC, and aSil emissions together, and thus there are two free
parameters for the dust mass: fPAH or fsCM20, and the total dust
surface density. The two modified blackbodies are shown with

their best-fit values to the MW diffuse SED: {Tdust= 20.9 K,
β= 1.44} for the simple-emissivity model, and {Tdust=
18.0 K, β2= 1.55} for the broken-emissivity model.

4.2. Fitting Tool

4.2.1. Bayesian Fitting with DustBFF

We use the DustBFF tool from Gordon et al. (2014) to fit
the data with the chosen dust models. DustBFF is a Bayesian
fitting tool that uses flat priors for all parameters. The
probability that a model with parameters θ fits the measure-
ments (Sobs) is given by

( ∣ ) ( )( )q = c q- S
Q

e
1

, 9obs 22

with

( ) ∣ ∣
( ) [ ( )] [ ( )] ( )

p
c q q q

=
= - --


S S S S

Q 2 det

, 10

2 n

2 obs mod T 1 obs mod

where SX is the observed (X= obs) or modeled ( =X mod) 16
band SEDs used here, and  is the covariance matrix that
includes uncertainties from random noise, astronomical back-
grounds, and instrument calibration (described further below).
To create ( )qSmod , each model spectrum is convolved with the

spectral responses for the photometric bands used here. PACS
and SPIRE band integrations are done in energy units, whereas
all the others are done in photon units, as necessitated by the
instrument’s calibration scheme. We also follow the reference

Figure 2. The dust emission models used in this study: Draine & Li (2007), Jones et al. (2017, THEMIS), Compiègne et al. (2011), HD21, simple emissivity, and
broken emissivity. Top left: all six models at theUmin value that best fits the calibration SED. Bottom left: the four physical models atUmin = 1. The right side panels
show each model at the Umin value that best fits the calibration SED and their breakdown as they are used in this study.
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spectra used for the calibration of each instrument: the MIPS
bands require a reference shape in the form of the 104 K
blackbody while the other bands use a reference shape as 1/ν.

4.2.2. Covariance Matrices

The covariance matrix in the previous equations describes
the uncertainties on the measured flux, both due to astronom-
ical backgrounds, and instrumental noise and the uncertainties
in calibrating the instruments. This takes into account the
correlation between the photometric bands due to the
calibration scheme and the correlated nature of astronomical
background signals. We define a background matrix and an
instrument matrix such that = +  bkg ins to propagate the
correlated errors of the background and noise, and of the
calibration uncertainties, respectively.

Background covariance matrix bkg—The “background” in
our images encompasses astronomical signals that do not come
from the IR emission of the target M101. It is dominated by
different objects depending on the wavelength and can therefore
be correlated between bands. For instance, the background from
3.4 to 5.8 μm is mostly from foreground stars, as well as
zodiacal light; from 8 to 24 μm, it is from evolved stars and
background galaxies; in the far-IR, it is dominated by Galactic
cirrus emission and background galaxies. To include this
uncertainty, we measure this combination of signals in “back-
ground pixels” using the processed data and a masking
procedure described in Section 4.2.3.

The elements of the background covariance matrix are
calculated as

( )
( )( )

( )
å

=
- á ñ - á ñ

-


S S S S

N 1
, 11i j

k
i
k

i j
k

j

bkg ,
2

N

where SX
k is the flux of pixel k in band X, and 〈SX〉 is the

average background emission in band X (close to 0). The final
number of 9″ pixels used to measure the covariance matrix is
N= 18,920.

We display the background correlation matrix in Figure 3
(not the elements’ absolute values but the Pearson correlation
coefficients; see Gordon et al. 2014). Three clear sets of
positive correlations appear, as previously explained: correla-
tions are due to starlight in the near-IR, evolved stars and MW
cirrus in the mid-IR, and background galaxies and MW cirrus
in the far-IR. Additionally, some bands may be noise
dominated: it is the case for the PACS 70 band, which is only
weakly correlated with other bands.

Instrument calibration matrix ins—This matrix is calculated
as the quadratic sum of the correlated and uncorrelated errors
for each instrument. The correlated errors (matrix with diagonal
and anti-diagonal terms) refer to the instrument calibration
itself (mcal in Table 2, while the uncorrelated errors (matrix
with diagonal terms only) express the instrument stability, or
repeatability (msta in Table 2). We use the same calibration
errors reported in Chastenet et al. (2017, see Table 2) for the
Spitzer /MIPS and Herschel bands. The correlated errors for
the IRAC bands were changed to take into account the
uncertainties in the extended-source correction factors, larger
than the calibration error themselves. The errors due to
repeatability are unchanged. The errors for WISE bands were
taken from the WISE documentation.20

The elements of the calibration matrix ins are calculated
“model by model” as

( ) ( ) ( ) ( ) ( )q q= +m S S m m , 12i j i j i j i jins ,
2 mod mod

cal, ,
2

sta, ,
2

with particular elements

=
= ¹

m i j

m i j

0 if , belong to two different instruments;

0 if .
i j

i j

cal, ,

sta, ,

We fit all the pixels that are above 1σ of the background
values, in all bands. We use these pixels to show parameter
maps and radial profiles, while the galaxy-integrated values are
calculated for pixels above 3σ detection above the background
(black contours in Appendices B and C).

4.2.3. Stars in the Background/Foreground

Here we describe the masking procedure to measure the
background covariance matrix in Section 4.2.2. To do so, we
use the final images, i.e., background-subtracted, convolved,
and projected to the same pixel grid.
The covariance matrix elements are calculated with the

assumption of a Gaussian noise. While the assumption works
well for faint and unresolved stars and the cosmic infrared
background galaxies, it is no longer correct if we include bright
stars. Bright foreground stars only must therefore be cut to
measure this matrix. This masking has the effect of making the
approximation of Gaussian noise for the remaining background
more correct. Note, however, that they are not masked for
fitting within the boundary of the galaxy,21 but only for the
purpose of the covariance matrix measurement.

Figure 3. Background correlation matrix. The dark color indicates a strong
correlation between the bands. The matrix is symmetric, and we show only
half. The text indicates the astronomical signals that dominate the contoured
bands and that explain their strong correlation.

20 http://wise2.ipac.caltech.edu/docs/release/prelim/expsup/sec4_3g.html

21 We find no pixels showing a bad fit due to a foreground star. The Ω* maps
do not show conspicuous peaks, indicating that the foreground stars are not
dominant, and the models successfully fit the galaxy emission.
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In the process of masking, we first exclude the region within
r25 , to mask the galactic emission. We then mask the brightest
stars, using the star masks from Leroy et al. (2019) that
leverage the known positions of stars from the GAIA and
2MASS catalogs.22 To match the final products, we convolve
and regrid these star masks to the SPIRE 500 resolution. After
convolution, the mask values are no longer binary 0 and 1, but
show intermediate values around the position of bright stars.
We mask pixels above 0.15 to exclude these regions where
bright foreground stars contaminate our measurements from the
covariance matrix calculation.

One argument against the decision to mask bright stars to
measure the covariance matrix would be that the emission from
these stars is an astrophysical signal that should be taken into
account to propagate the noise from a band to another. This
would require creating a new noise model and significant
changes to the fitting methodology. Rather than major changes
to the fitting approach, we decide to mask the stars to measure
the background covariance matrix.

5. Results

We investigate the differences in some of the key parameters
from dust emission modeling when the models presented here
are all used in an identical fitting framework. All residuals in
this analysis are presented as (Data-Model)/Model. For radial
profiles, we use the pixel size as the annulus width and cover

from the center of M101 to r25 . Appendix B shows the
resolved maps of the fitted parameters for each model.
Appendix C shows the residual maps of each model.

5.1. Quality of Fits

Figure 4 shows an example of the fits for each model in a
single pixel (marked by the cross in Figure 1). In each panel,
we plot the best-fit spectrum (colored lines) to the data SED
(empty circles). The residuals are shown by the colored
symbols. Negative residuals mean that the model overestimates
the data. For example, the negative (and decreasing) residuals
from 250 to 500 μm in the physical model panels are
representative of a systematic overestimation of the data
(present also in other locations; see Appendix C,
Figures 19–22). In Figure 5, we show the fractional residuals
(Data-Model)/Model in each band for the pixels above the 3σ
threshold. Appendix D shows the reduced χ2 for all models.
The bulk of the residuals in the short-wavelength bands are

within the instrument uncertainties and calibration errors. For
example, despite the larger uncertainty due to the extended-
source correction, the IRAC 8 band shows residuals mostly
within 10%. Below 4 μm, THEMIS shows a clear offset that
may be related to the absence, or low amount, of an ionized
component in the HAC population, which leads to enhance-
ment of the mid-IR features. It is also worth noting that these
bands are dominated by starlight, modeled by a 5000 K
blackbody, which is independent of the dust model itself. The
residuals at 12 μm are systematically positively offset by less

Figure 4. Example of the best fits in a pixel for the six models used in this study (color lines). The data are shown as empty symbols, with 1σ error bars. The synthetic
photometry from the model spectrum is shown with a cross symbol, due to the band integration; this does not always sit exactly on the spectrum. The location of the
measurement is marked by a cross in Figure 1.

22 https://irsa.ipac.caltech.edu/data/WISE/z0MGS/overview.html
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than 10%, but all physical models show very narrow residual
distributions. This is in contrast with the broader residuals in
the IRAC 8 and WISE 22 bands, where we can see more
differences between models.

All models show differences in the central values of the
residual distribution at 100 μm. At 160 μm, all residuals
overlap, and models perform fits of similar quality. At longer
wavelengths, significant differences begin to appear. At all far-
IR wavelengths, the modified blackbody models reproduce the
SEDs the best. This is likely because of the additional
parameter that can adjust the far-IR slope (β in the simple-
emissivity model and β2 in the broken-emissivity model). The
SPIRE 250 band shows symmetrical residuals centered on 0 for
the physical models (except THEMIS), while the residuals get
progressively worse at 350 and 500 μm for all physical models,

showing that on average, the modeled far-IR slope of the SEDs
is steeper than the data.
In the SPIRE 350 and SPIRE 500 bands, the large number of

pixels underestimated by the models show residuals much
larger than the uncertainties, ruling out statistical noise and
indicating that the models are not able to fit these wavelengths.
In the SPIRE 500 band, some of the pixels show the so-called
“submillimeter excess” seen in other studies (e.g., Galametz
et al. 2014; Gordon et al. 2014; Paradis et al. 2019).

5.2. Total Dust Mass and Average Radiation Field

We compute several galaxy-averaged quantities: the total
dust mass Mdust, the dust mass-weighted average radiation field
á ñU for the physical models, and the mass-weighted average

Figure 5. Fractional residuals (Data-Model)/Model for each model in each band. We plot the (Gaussian) kernel density estimates of the residual distributions. The
WISE 12 band shows narrow, offset fits for all models while other mid-IR bands show clear over-/underestimations by some models. The physical models perform a
good fit at 250 μm that gets progressively worse toward longer wavelengths. Only the modified blackbody models show systematically good fits, within 10%, in all
far-IR bands, likely because of the spectral index, β being a free parameter.
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dust temperature 〈Tdust〉 for the blackbody models. The average
radiation field U is calculated for each pixel as

( ) ( ) ( )g g= - + ´
-

U U U
U

U U
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1
, 13min min

max min
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because we fixed α= 2 (Aniano et al. 2020). The galaxy-
integrated mass-weighted averages are calculated as
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The integrated values are calculated over the pixels above the
3σ detection threshold. In Figure 6, we show these measure-
ments for each model as diagonal elements. We also provide
the ratios between all models in Mdust and á ñU (or 〈Tdust〉) to

explicitly show their differences. These off-diagonal elements
read as Y-model/X-model (e.g., =M M 0.77dust

HD21
dust
DL07 ).

The top panel of Figure 6 shows the total dust masses. The
broken-emissivity modified blackbody model yields the lowest
total dust mass, while the MC11 model yields the highest. The
simple-emissivity model shows a very different spatial varia-
tion of dust surface density from the other models (see
Section 5.3). In a recent study of the KINGFISH sample,
Aniano et al. (2020) found a total dust mass of 9.14× 107Me
(before their renormalization) by fitting the DL07 at MIPS 160
resolution (∼39″).23 Using the CIGALE SED fitting tool (e.g.,
Boquien et al. 2019 and references therein) and THEMIS,
Nersesian et al. (2019) found a total dust mass of
4.70× 107Me , which is similar to the 5.05× 107Me from
THEMIS, in this study. It is worth noting that Nersesian et al.
(2019) performed fits to the integrated SED, which could lead
to a lower dust mass (Aniano et al. 2012; Utomo et al. 2019).
However, low signal-to-noise pixels are included in the
integrated SED and excluded in the resolved fits.
It is interesting to note that despite the fairly good agreement

(∼10%, Figure 5) of all physical models with each other (and
modified blackbody models at far-IR wavelengths) in reprodu-
cing the data, the differences in dust masses can be much
larger. This suggests intrinsic opacity values rather than fit
quality dominate the differences between models in dust mass.
This is supported by the recent extensive study done by
Fanciullo et al. (2020). By comparing the literature opacities
(including three models used in this work) with laboratory dust
analog opacities, they found that dust masses can be over-
estimated by more than an order of magnitude.
The bottom panel of Figure 6 shows the integrated values for

á ñU and 〈Tdust〉. As expected, the HD21 model requires the
highest radiation field, based on its colder dust. THEMIS and
the MC11 model show similar values of á ñU . Nersesian et al.
(2019) found a dust temperature of 21.7 K by fitting a modified
blackbody (with the THEMIS opacity), close to that yielded by
the modified blackbody models here.
The mass-weighted average temperatures correspond to

radiation fields of 2.5 and 2.3 (using Equation (8)) for the
broken-emissivity and the simple-emissivity models, respec-
tively. They are in good agreement with the radiation field
values fitted by the physical models.

5.3. Dust Surface Density, Σdust

Figure 7 shows maps of the dust surface density, Σdust, for
each model, as well as their ratios with each other. We can see
that the physical dust models DL07, HD21, THEMIS,
and MC11 are all fairly close to each other (light colors), with
variations in dust surface density within a factor of 2. They all
yield similar dust surface density structures and appear to vary
from one another by a spatially smooth offset. THEMIS and the
HD21 model show the closest Σdust values but show an
inversion of their ratio around 0.38 r/r25, where THEMIS
requires less dust (see Figure 12). The HD21/DL07
and MC11/THEMIS ratio maps are particularly flat, with
ratios of ∼1.3–1.4 in both cases, pointing at the resemblance in
their large grains properties and size distribution. The MC11
model requires the most dust mass. This is consistent with the
comparison analysis in Chastenet et al. (2017). The dust surface

Figure 6. Integrated values (over the 3σ pixels). The diagonal elements show
the total dust mass (top panel) and radiation field (bottom panel, above the line)
or temperature (bottom panel, below the line). The off-diagonal elements are
the ratios of the integrated values between different models and are read as
“model Y-axis/model X-axis” (e.g., =M M 0.77dust

HD21
dust
DL07 ).

23 The difference between Aniano et al.’s (2020) dust mass and ours is due to
the larger area used in the former for the total dust mass calculation.
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density from the broken-emissivity model is consistently lower
than the physical dust models. It shows a rather smooth offset,
which indicates that the spatial variations are fairly similar
between them. The dust surface density from the simple-
emissivity model shows different spatial structures in the center
and the outskirts of the galaxy. It yields high Σdust values in the
center but drops more rapidly than any other model with
increasing radius (Figure 12; see also Chiang et al. 2018).

A caveat of our approach is the difference in treating the
heating of dust grains between physical dust models and
modified blackbodies. In the latter, we only use a single
temperature, which is not equivalent to the ensemble of
radiation fields used in the physical models. However, given

the two extreme behaviors of the modified blackbodies (the
simple-emissivity model requiring a high dust mass, and the
broken-emissivity model requiring the lowest), it is not obvious
that the use of multiple temperatures (or radiation fields) drives
the differences in dust mass observed here. Rather, the
calibration of the modified blackbodies, and their effective
opacity, seems to be more important.

5.4. Average Radiation Field, U

We perform the same ratio analysis with U , derived from the
fitted parameters in the physical dust models (Equations 13 and 14).
In Figure 8, we show the radial profiles for U , as well as the

Figure 7. Dust surface density maps (diagonal) and corresponding ratios with each model. The MC11 model requires the largest dust mass, followed by the simple-
emissivity and DL07 models. All physical dust models show very similar spatial variations despite having different values of Σdust. The HD21/DL07 and MC11/
THEMIS ratio maps are particularly smooth across the disk, but the MC11/DL07 and THEMIS/HD21 have the ratios closest to 1. The simple-emissivity model
shows clear structural differences with the other models by requiring a lot of dust in the center, but rapidly dropping in the outskirts.
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parameter maps and the ratios of each model. In the radial profile,
the thick lines stop where the selection effect due to fitting only
bright pixels becomes important. Using the SPIRE 500 image, we
found that the radial profile of IR emission for all pixels and for
fitted pixels only differ significantly at ∼6′ (i.e., 0.5 r25). The
variations inU are reflective of those ofUmin, because the γ values
are overall small, lending more power to the delta function than the
power law (Equation (7)).

The overall variations of U appear to be rather smooth,
which is expected because it is dominated by the diffuse
radiation field Umin. However, we do find enhanced values
ofU in H II regions. The ratio maps do not strongly show these
peaks, which indicates that all models behave similarly and

require higher radiation field intensities in these regions. As for
the Σdust parameter, the ratio maps for U do not display any
conspicuous spatial differences, but rather an offset between
each model. This is also visible in the upper panel of Figure 8.
The HD21 model shows the highest values of U . This is

expected as the dust in the model is “colder” than other models,
due to very few large carbonaceous grains. This leads to a higher
radiation field intensity required to reach the same luminosity.
The spatial distributions of the γ parameter are similar in all

physical models, and we chose not to show them. Instead, we use
the average radiation field,U , which includes γ in its calculation.
The HD21 model shows the lowest values of γ, which, combined
with the highest values of Umin, means it requires more power in
the delta function than the other physical models.

5.5. Fraction of PAHs

Three models have an explicitly defined PAH fraction.
The DL07 and HD21 models define the parameter qPAH as the
fraction of dust mass contained in carbonaceous grains with less
than 103 carbon atoms, roughly less than 1 nm in size. We use
the fPAH parameter from the MC11 model to estimate a PAH
fraction, i.e., the mass of grains with sizes from 0.35 to 1.2 nm,
as defined by the fiducial parameters. We refer to the mid-IR
emission feature carriers in THEMIS as HACs. We use the
definition in Lianou et al. (2019) to compute a fraction of HACs
from THEMIS results, which can compare to the PAHs in other
dust models: they found that this fraction of HACs corresponds
to grains between 0.7 and 1.5 nm of the sCM20 component. It is
important to remember that the strict definition of the PAH/
HAC fraction is different in each model, but its purpose—fitting
the mid-IR emission features—remains similar.
We investigate the variations of the surface density of the

carriers, ΣPAH and ΣHAC, instead of their abundances. In the top
panel of Figure 9, we show the radial profiles of Σ{PAH; HAC}.
Although the absolute values of the surface density of PAHs
(HACs) differ by a factor of up to ∼3.5 (similar to dust masses),
their gradients are very similar. This behavior shows that the grain
populations that are held responsible for the mid-IR features in
each model follow comparable distributions. In these models, their
contributions to the total dust mass vary significantly but all prove
to be a good fit to the mid-IR bands (see also Figure 5). This is
also exemplified by the normalized ratio maps in Figure 9 (bottom
panel). The dark colors in the outermost pixels of the HD21 model
are due to the best qPAH fit consistent with 0%. To visualize the
variations between models, we normalize each parameter map to
their mean value (as shown in the color-bar labels). We are thus
able to compare the spatial variations of the maps and avoid the
offsets due to the definition differences of PAHs or HACs.
The qPAH map in Aniano et al. (2020, using the DL07 model)

shows similar features to ours. A large portion of the disk of
M101 has a rather constant distribution of qPAH, with conspicuous
drops in H II regions. In their study using the Desert et al. (1990)
dust model, Relaño et al. (2020) found a flat radial profile of the
small-to-large grain mass ratio, up to 0.8 r25 (∼9 1). Our maps of
the fraction of PAHs, or HACs, present a somewhat flat
distribution (variations less than 1%) out to ∼0.3 r25 (∼3 4; see
Appendix B) and a steep change farther out.

5.6. Reproducing the Mid-IR Emission Features

To investigate in more detail the ability of each physical model
to reproduce the PAH features, we perform a fit on an integrated

Figure 8. Top: radial profile of á ñU (mass-averaged radiation field; see
Equation (14)) for each physical model. The thick lines stop where the radial
profile is affected by the selection effect due to fitting only bright pixels
(Section 4.2.2). Bottom: average radiation field, U , maps (diagonal), and
corresponding ratios with each model. The HD21 model shows the highest
values of U in all pixels. Despite different values, all models show a very
similar spatial distribution of U , including in H II regions.
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SED and compare the results to measurements from the Infrared
Spectrograph (IRS; on board Spitzer) in that same region (J. D. T.
Smith 2021, private communication). Figure 10 shows a zoom on
the mid-IR part of the models and the results of the fits to the
integrated SED. From that fit, it appears that all models are able to
generally reproduce the mid-IR features, with their different
parameters, but we can notice a few differences between models.

From the residuals (bottom panel), we see that the models
perform similarly at 5.8, 8.0, and 12 μm. At 22 and 24 μm, the
offset between the measurements means the models tend to
split the difference and sit between the points. We note that all
models appear to overestimate the continuum around 7 μm, in
between the 6.2 and 7.7 μm PAH features.

There are nonetheless a couple of noticeable differences
between each model. For instance, the HD21 model shows a
higher continuum at 10 μm than the other three models, despite a
similar continuum at 20μm. This rules out the higherUmin found
in the HD21 model as the reason for the higher flux at 10μm.
Rather, in this model, the emission at 10 μm is strongly dependent
on the amount of nanosilicates used to account for the lack of
correlation between PAH emission and anomalous microwave
emission (Hensley & Draine 2017). The ratio between the flux at
20 and 10μm is∼1.7 for the HD21 models and 2 or above for the
other three models. On the other hand, THEMIS shows no
emission feature around 17μm, while the other models do
(although it has no impact on this particular fit). Around 7 μm, all
models show a higher flux than the one seen in the IRS spectrum.
It is notable that, using only photometric bands from WISE

and Spitzer /IRAC in the fit, all models reasonably reproduce
well the mid-IR emission features, despite having different
values of the PAH (or HAC) fraction and different definitions of
the carriers. However, the comparison to spectroscopic measure-
ments shows that there are still differences between models.

5.7. SPIRE 500 and Σdust

The monochromatic dust emission in far-IR wavelengths has
often been used as a mass tracer of the ISM (e.g., Eales et al.
2012; Groves et al. 2015; Berta et al. 2016; Scoville et al. 2017;
Aniano et al. 2020; Baes et al. 2020). In Figure 11, we plot the
emission of M101 at 500 μm as a function of the fitted Σdust for
each model (pixels above the 3σ detection threshold), color-coded
by the minimum radiation field Umin or dust temperature Tdust.
In all cases, we can see two distinct relations as the

SPIRE 500 emission increases. The majority of the fitted pixels
show a linear scaling between the emission at 500 μm and
Σdust, while in some specific regions of the galaxy, all models
prefer a higher radiation field (or temperature) and a lower dust
surface density. We provide the scaling relations between the
emission at 500 μm in MJy sr−1, and the dust surface density in
Me pc−2, for each model. We measure the 5th and 95th
percentiles of the data points above the 3σ detection threshold
(to keep the bulk of the distribution only). We fit a linear slope
to these points:24
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To identify the pixels that “branch out” from the bulk, we
select any pixel that falls below one standard deviation from the

Figure 9. Top: radial profiles for ΣPAH, or ΣHAC, in Me pc−2. The models yield
very similar spatial variations. This indicates that the definition of the feature carriers
matters in terms of their contribution to the total dust mass, but they all reproduce the
mid-IR features similarly. The thick lines stop where the radial profile is affected by
the selection effect due to fitting only bright pixels (Section 4.2.2). Bottom: fraction
of PAHs (or HACs; diagonal) centered on their respective mean value, with
boundaries at the 5th and 95th percentiles (P5, P95). The normalized ratios
(normalized to the mean; off-diagonal) show the spatial variations between models.

24 The fit coefficients and uncertainties were measured using the numpy.
polyfit procedure.
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fit (dashed lines). In each panel, we show the spatial location of
these pixels. It becomes clear that the regions that need a higher
Umin (or Tdust) are H II regions and in the outskirts of the galaxy.
These pixels can account for between 4% and 11% of the pixels
above the 3σ detection. The branching-out from the main

relation is likely the consequence of the fact that the dust in
these H II regions is significantly hotter than average (as shown
by the enhanced U in all models in Figure 8). Lower dust-to-
gas ratios in the galaxy outskirts may also contribute to this
trend.

Figure 10. Fits to the integrated SED from the broadband photometry (open circles) within a rectangle box (drawn in Figure 1). The Spitzer/IRS spectrum and its
corresponding SED (convolved in the 16 bands used here) are shown in gray (line and filled circles). All models perform a good fit to the mid-IR part of the SED but
show different fractions of PAHs (or HACs). Differences can be noticed between models: a higher 10 μm emission in the HD21 model, due to nanosilicates, or the
lack of an emission feature at 17 μm in THEMIS.

Figure 11. SPIRE 500 emission as a function of the fitted Σdust for each model, color-coded by the radiation field Umin or the dust temperature Tdust. We identify a
separation in the linear scaling of Σdust with the dust emission at 500 μm, marked by the dashed lines. The pixels below the lines are plotted in color in the maps and
are located in H II regions and surroundings. In these specific locations, the luminosity does not follow the same relation with Σdust as the rest of the galaxy.
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In Aniano et al. (2020), the authors found that this relation is
well represented by a power-law scaling in the KINGFISH
sample, with a slope of 0.942, which is lower than our
measured value of 1.2 for M101 with the DL07 model. A linear
slope would be expected if the dust temperature and optical
properties were uniform throughout the galaxy, leading to a
constant SnI

500
dust ratio. The spatial distribution of tempera-

tures throughout each individual galaxy leads to distinct slopes,
and for M101, we find that in regions of higher dust surface
density, the dust is also warmer, leading to more 500 μm
emission (this can be seen in the change in the color table in
Figure 11 at the highest Σdust). The branch of H II region points
we see represents only a small fraction of the total data and may
not be evident on the Aniano et al. (2020) plot.

6. Model Performance Given Abundance Constraints on
Dust Mass

6.1. Maximum Dust Surface Density

The calibration of dust models involves a constraint on
elements locked in grains (see Section 2.3). This step relies on
depletion measurements, which characterize the distribution of
heavy elements between the gas and solid phases. The final
amount of elements allowed in dust grains varies between
different physical dust models. The final dust masses derived
by each model vary as well, as discussed in Sections 5.2
and 5.3.

A way to assess the performance of dust models is to verify
that the required dust mass does not exceed the available heavy
element mass, as constrained by metallicity measurements
(e.g., Gordon et al. 2014; Chiang et al. 2018). We perform this
test in M101 because its metallicity gradient has been
thoroughly characterized (e.g., Zaritsky et al. 1994; Moustakas
et al. 2010; Croxall et al. 2016; Berg et al. 2020; Skillman
et al. 2020).

We estimate the dust mass surface density upper limit by
assuming all available metals are in dust and calculating the
metal mass surface density from the metallicity gradient and
observed gas mass surface density:
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where Mgas and MZ are determined as follows.
The gas surface density is the sum of H I and H2 surface

densities including a correction for the mass of He (we ignore
the ionized gas contribution). The latter is built from CO
emission, assuming two prescriptions for the CO-to-H2

conversion (see Section 2). We include the MW αCO

prescription as it is widely used (Equation (1)). We also
choose the αCO prescription from Bolatto et al. (2013), which
takes into account environmental variations of αCO with
metallicity and surface density (Equation (2)). We emphasize
that the Σdust upper limit in this section is dependent on the
choice of αCO to derive a gas surface density. This is
particularly true in the central region of M101, where H2

dominates (e.g., Schruba et al. 2011; Vílchez et al. 2019) and
where the two αCO differ the most. Note also that this result
differs from that of Chiang et al. (2018). This is expected as the
αCO conversion factor in their study (from Sandstrom et al.
2013) is lower than the ones used in this study, which leads to a
lower upper limit.

We use the ( )+12 log O H10 radial profile from Berg et al.
(2020) and convert it to metallicity through
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with mO and mH the atomic masses of oxygen and hydrogen,
respectively, and the oxygen-to-metals mass ratio MO/MZ=
0.445 (Asplund et al. 2009).
The top panels in Figure 12 show the radial profile of Σdust

for each model and the Sdust
max upper limits yielded by the two

αCO prescriptions used here (black lines, dotted and dashed–
dotted). We see on the top-left panel that the DL07 and MC11
models are above both Sdust

max upper limits in almost all of the
significant pixels. THEMIS and the HD21 models are fairly in
line with the Bolatto et al. (2013) upper limit, with the
conservative assumption that 100% metals are in dust grains.
These behaviors suggest that the dust emissivity in all physical
models is too low, which leads to requiring too much dust. We
note that the large dust masses are likely due to the opacity
calibration rather than a wrong fit in the far-IR bands: in
Figure 5, all physical models show a reasonable fit at 160 μm,
much closer to the IR peak than the 500 μm band. We are
confident that the IR peak is correctly recovered and that the
high dust masses are not due to the submillimeter excess. Based
on the reasonable quality of the fits, we believe that the
excessive mass is likely due to the opacity calibration.

6.2. (Re)Normalization

Despite sharing a common calibration approach, the details
of the opacity calibration in the dust models used in this study
vary in small but significant ways. While all models were
calibrated to MW diffuse emission, they did not use exactly the
same high-latitude cirrus spectrum. In addition, the Mdust/MH

adopted for the MW diffuse ISM by the physical dust models
varies. Additionally, the radiation field that best reproduces the
MW diffuse emission, UMW, differs slightly from one model to
the next. Because of the relationship between dust temperature
and radiation field ( )µ b+U Tdust

4 and dust temperature and
luminosity, even a slight difference in the assumed radiation
field may lead to a significant change in the model’s calibrated
dust opacity.
To investigate calibration discrepancies, we renormalize

each of the dust models via a fit to a common MW diffuse
emission spectrum using the same abundance constraints. We
use the MW SED described in Gordon et al. (2014), which we
previously used to calibrate the κν of the modified blackbody
models (Chiang et al. 2018). This SED is the same as that used
in Compiègne et al. (2011), a combination of DIRBE and
FIRAS measurements (e.g., Boulanger et al. 1996; Arendt et al.
1998).25 We do not use the ionized gas correction because
depletion measurements do not correct for it, and instead use a
correction factor of 0.97 for molecular gas only (Compiègne
et al. 2011). We integrate the SED in the PACS 100,
PACS 160, SPIRE 250, SPIRE 350, and SPIRE 500 bands, so
all models use the same wavelength coverage. We use 2.5%

25 Although more recent measurements from Planck are available in the far-IR,
we emphasize here that the important aspect is about uniformity. We choose
the DIRBE+FIRAS SED as it is conveniently the one used to calibrate the
modified blackbody models. Additionally, the significant input brought by
Planck measurements are past the wavelength range used in our study
(submilimeter and millimeter range).
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uncorrelated and 5% correlated errors to account for FIRAS
and DIRBE uncertainties (Gordon et al. 2014). The Mdust/MH

ratio set in the normalization is 1/150, as suggested by
depletion studies (F* = 0.36 from Jenkins 2009, see also
Gordon et al. 2014).

To perform the renormalization using the MW SED, we use
the same fitting technique as previously described with the
following choices: (1) we do not use the combination of
radiation fields nor the stellar component (i.e., Ω* = γ= 0). (2)
We allow the minimum radiation field Umin and the total dust
surface density Σdust to vary in each physical model. (3) We
keep the relative ratios between grain populations fixed and do
not vary them independently (e.g., for each model, we use the
total spectra solid lines “DL07,” “HD21,” “MC11,” and
“THEMIS” in Figure 2).

The fits yield renormalization factors that correct all physical
models from their respective assumptions to a dust-to-H ratio
of 1/150. These corrections range from 1.5 for THEMIS, to 3

for the DL07 model (see Appendix A). With this normal-
ization, we are able to meet the metallicity constraints. The top-
right panel of Figure 12 shows the radial profiles with the
correction factors applied to the surface densities of the
physical dust models. The renormalization brings the models to
lower dust surface densities that agree with the upper limit
based on the metal content. It is interesting to note that the
renormalized models now show three distinct behaviors in the
dust mass surface density radial profile: DL07, HD21, and the
broken power-law emissivity modified blackbody yield very
similar results; THEMIS and MC11 are very similar to each
other and offset by a factor of ∼2 from the first group, and the
simple power-law emissivity modified blackbody has a steeper
increase that still puts it above the abundance constraints even
though it is similarly normalized to the MW cirrus spectrum.
The two different behaviors, for DL07 and HD21, and
for THEMIS and MC11 are likely due to the difference in

Figure 12. Top: radial profiles for Σdust (colored lines) and dust surface density upper limits (black dotted and dashed–dotted lines). Upper limits are estimated from
gas and metallicity measurements, assuming all metals are locked in dust grains (Section 6.1). We have projected the dust surface density maps to the gas maps’ pixel
grid and masked the gas maps where there are no dust data (to ensure we are selecting identical pixels in building radial profiles). The upper limits are invariant
between the left and right panels. Left: radial profiles from the fits. All physical models and the simple-emissivity model are either above or similar to the upper limits,
out to 0.4 r/r25. Right: renormalized dust surface densities for the physical models (Section 6.2). The renormalization forces physical models to the same abundance
constraints (Mdust/MH = 1/150) and to fit the same diffuse MW IR emission. Doing so, we derive correction factors and apply them to the dust surface densities,
scaling them down to plausible values (below the Sdust

max lines). Bottom: dust-to-gas ratios for each model, assuming the gas surface density derived with αCO from
Bolatto et al. (2013). The gray line represents the upper limit from Berg et al. (2020) and assuming a dust-to-metal ratio of 1 (Equation (17)). The thick lines stop
where the radial profile is affected by the selection effect due to fitting only bright pixels (Section 4.2.2), creating the conspicuous features in the H II region locations.
The main bump at 0.6 r/r25 corresponds to the two H II regions NGC 5447 and NGC 5450. The less visible bump at 0.5 r/r25 corresponds to the H II region
NGC 5462.
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the best Umin
MW to fit the MW SED, and their initial spectrum

used for calibration.
In the bottom panels of Figure 12, we show the radial profile

of the dust-to-gas ratios (DGR) for each model, using the
aCO

BWL13 conversion factor. The bottom left shows the DGR with
the derived dust surface densities, and the bottom-right panels
are after renormalization. The thick gray line shows the upper
limit of the DGR using the metallicity gradient from Berg et al.
(2020) and Equation (17), with aCO

BWL13. We find the same
abrupt change in the DGR as Vílchez et al. (2019) around
0.5 r25 , although with slightly lower values, consistent with the
higher dust surface densities in this study.

7. Discussion

Here we discuss some next steps that should be undertaken
to improve dust emission modeling. In the previous sections,
we investigated some systematic effects linked to the modeling
choices.

We showed that physical dust models are likely to require
too much dust mass, exceeding what is available based on
metallicity measurements (for reasonable choices of CO-to-H2

conversion factors, though we note that, in the central region,
this assertion is strongly dependent on this choice). This excess
is linked to the calibration of these models, in particular, the
elemental abundances prescribed, and their assumed radiation
field. Combined with the growing number of metallicity
measurements in nearby galaxies (e.g., Kreckel et al. 2019;
Berg et al. 2020), additional constraints for external environ-
ments (beyond the MW) may help to perform better fits of dust
emission.

Several aspects of galaxy evolution studies rely on grain
properties. Dust evolution models rely heavily on observational
constraints to find the parameters that best match the observed
properties of dust. The balance between destruction and
formation processes in dust evolution models are adjusted by
observed dust masses, which need to be accurately measured
(e.g., by emission fitting). Similarly, dust-to-gas ratio evolution
with metallicity is often derived using dust masses from
emission measurements (e.g., Rémy-Ruyer et al. 2014; De Vis
et al. 2019; Nersesian et al. 2019; De Looze et al. 2020; Nanni
et al. 2020) and are subject to the systematic biases found in
this work.

Our study was designed for a rigorous comparison between
models fit to mid- through far-IR SEDs. Several choices made
in this study are justified by our implementation of each model
in the most similar framework possible. This also requires
using a uniform radiation field description, and the parameters
that go into describing the physical dust models in their fiducial
form are not always adapted to the choice of the radiation field
model of this work (Equation (7)).

Because of the limited wavelength coverage and SED
sampling of this study, we “tie” together different grain
populations, based on the similarity of their respective emission
spectra. In MC11, the large carbon (LamC) and silicate (aSil)
grains have very similar slopes in the far-IR, which would
make these fit parameters strongly degenerate if both were
allowed to vary. In THEMIS, the key difference between the
large carbon grains (lCM20) and the large silicate grains
(aSilM5) is their slopes in the far-IR: the lCM20 grains have a
flatter SED than aSilM5. However, the spectral coverage used
in this study is too limited to properly constrain the emission
from the two grain populations. These choices have

implications for the evolution of dust composition in the ISM
because the ratios of carbon-to-silicate in large grains are
assumed to be constant for each model of this study.
Additionally, our further tests show that the γ parameter is

degenerate with the emission of some of the grain population
in MC11 and THEMIS. The abundance of small amorphous
carbon (SamC) in MC11 helps adjust the slope between 24 and
70 μm. In the radiation field parameterization chosen for this
study, the γ parameter has a similar impact on the shape of the
dust emission. Keeping both the small amorphous carbon
grains abundance and γ as free parameters introduces a
degeneracy in the fitting. For this reason, we choose to keep
the fiducial relative abundances of SamC with respect to that of
big grains (LamC+aSil) fixed. In THEMIS, when allowing
both lCM20 and aSilM5 populations to vary (e.g., with faSil, the
fraction of large grains in the form of aSilM5), we also
introduce a degeneracy with the γ parameter. A varying ratio of
carbon-to-silicate grains induces a similar change in the SED
shape and both parameters, and γ and faSil become slightly
degenerate. Future studies with more wavelength coverage and
more detailed constraints on individual elemental abundances
may be able to allow for more free parameters in the fits.

8. Conclusions

In this study, we compared the dust properties of M101
derived from six dust models: four physical dust models and
two blackbody models. We used the models from Draine & Li
(2007), Compiègne et al. (2011), Jones et al. (2017, THEMIS),
and HD21, as well as simple-emissivity and a broken-
emissivity modified blackbody models to assess the differences
in various dust properties yielded by fitting the mid- to far-IR
emission from WISE, the Spitzer Space Telescope, and the
Herschel Space Observatory photometry. Our main conclu-
sions are:

1. There are a few notable trends in the fitting residuals
(described as (Data-Model)/Model; Figure 5). All
physical models reproduce the mid-IR bands within
10%, with very similar residual distributions in the
WISE 12 band. All models perform fits of similar quality
at 160 μm. While the modified blackbody models can
reproduce the data in all far-IR bands (residuals centered
on 0), the fits from physical models have large residuals
at long wavelengths. This suggests that the flexibility to
adjust the long-wavelength slope of the opacity is
important to reproduce the observed SEDs.

2. All physical models reproduce the mid-IR emission
features but yield different values of the mass fraction of
their carriers (Figure 9). Models that attribute the mid-IR
emission features to PAHs or HACs do similarly well in
reproducing the mid-IR spectrum.

3. We provide the scaling relation of ( )S = n
mf Idust

500 m and
identified a diverging relation in H II regions, where hot
dust changes the relationship between dust emission and
mass (Figure 11).

Examining the fitting results of total dust masses and dust
surface density distributions, we find:

1. Models yield different total dust masses, up to a factor of
1.4 between physical models, and up to 3 including
modified blackbodies (Figure 6), but all show similar
spatial distributions of dust surface density (note the
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fairly low discrepancy between dust masses from
physical models, compared to modified blackbody
models). The MC11 model requires the highest dust
mass and the broken-emissivity model the lowest.

2. We use metallicity and gas measurements to calculate a
dust surface density upper limit (assuming all metals in
dust) and show that all physical dust models require too
much dust over some radial ranges in M101. Only the
broken-emissivity modified blackbody model is below
the upper limit of Sdust

max (Figure 12). This finding is
dependent on the chosen prescription for the CO-to-H2

conversion factor.
3. To investigate the differences between dust masses and

their relationship to the available heavy elements, we
renormalized the models via fits to the same SED of the
MW diffuse emission, assuming a strict abundance
constraint of Mdust/MH= 1/150 (Section 6.2). We derive
scaling factors and apply them to the fitted dust surface
density, and find renormalized dust mass values lower
than Sdust

max (Figure 12). We find that the choices made to
calibrate dust models have a non-negligible impact on the
derived dust masses.

To provide the strictest comparison, we do not always use
dust models in their fiducial aspect, sometimes assuming a
fixed ratio between two dust grain populations. The observa-
tional constraints brought by IR emission fitting are used to
validate evolution models or derive scaling relations like the
dust-to-gas ratio. Our results show that these derived dust
properties have systematic uncertainties that should be taken
into account. Although there are still systematic uncertainties
inherent in the H II region metallicity measurements, resolved
metallicity gradients in nearby galaxies can be helpful for
testing the opacity calibrations in dust models.
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Appendix A
Calibration Details

We present here the details of the calibration methodology
used in each physical model and a summary of the calibration
constraints in Table A1.

A.1. DL07

DL07 was calibrated using the following constraints. The
extinction is described in Weingartner & Draine (2001b) and
uses the Fitzpatrick (1999) extinction curves with a normal-
ization of NH/E(B− V )= 5.8× 1021 H cm−2 or AV/NH=
5.3× 10−22 cm2. The high-latitude cirrus emission per H
observed by DIRBE (Diffuse Infrared Background Experi-
ment) and FIRAS (Far Infrared Absolute Spectrophotometer;
Arendt et al. 1998; Finkbeiner et al. 1999) is used as a reference
for the far-IR emission, complemented by mid- and near-IR
emission from IRTS (Infrared Telescope in Space; Onaka et al.
1996; Tanaka et al. 1996). Weingartner & Draine (2001b)
adopt solar abundances from Grevesse & Sauval (1998),
assuming 30% of carbon is in the gas phase. They assume all
silicon is depleted and has abundance equal to the solar
value. DL07 uses Mdust/MH= 1.0× 10−2. The radiation field
used in the Draine & Li (2007) model is based on Mathis
et al. (1983).

A.2. Compiègne et al. (2011)

MC11 was calibrated using the following constraints.
Extinction constraints were taken from Mathis (1990) and
Fitzpatrick (1999), including the RV= 3.1 extinction curve in
the UV-visible and a normalization of NH/E(B− V )=
5.8× 1021 H cm−2. At λ> 25 μm, MC11 use the MW cirrus
emission per H observed by COBE-DIRBE and WMAP
(integrated in the Herschel and Planck/HFI bands; see MC11).
At λ� 25 μm, a compilation of mid-IR observations of high-
latitude MW cirrus is used (combining measurements from
AROME, DIRBE, and ISOCAM; we refer to reader to the
Compiègne et al. paper for details). They scale the emission
SED by 0.77 to account for ionized and molecular gas not
accounted for in the H column. The allowed dust-phase
abundances for C, O, and other dust components come from the
difference between solar (or F/G star) abundances and the
observed gas-phase abundances. In total, Mdust/MH=
1.02× 10−2. MC11 assumes the Mathis et al. (1983, DG=
10 kpc) solar neighborhood radiation field to heat the dust
grains.

A.3. THEMIS

THEMIS was calibrated using the same constraints as
Compiègne et al. (2011) presented in the previous section,
with the addition of the far-IR-to-extinction relation τ250/
E(B− V )= 5.8× 10−4 (Planck Collaboration et al. 2011).
In THEMIS, Mdust/MH= 7.4× 10−3.
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A.4. B. S. Hensley & B. T. Draine (2021, in preparation)

The full set of observational constraints used to develop the
model is described in Hensley & Draine (2021). In brief, the
extinction curve is primarily a synthesis of those of Fitzpatrick
et al. (2019) in the UV and optical, Schlafly et al. (2016) in the
optical and near-infrared, and Hensley & Draine (2020) in the
mid-infrared. The normalization ( )- = ´N E B V 8.8H

- -10 cm mag21 2 1 is used to normalize extinction to the
hydrogen column (Lenz et al. 2017). The infrared emission
in both total intensity and polarization are based on the
analyses presented in Planck Collaboration Int. XVII
(2014, 2015), and Planck Collaboration XI (2020), including
the normalization to NH. The solid phase interstellar
abundances are re-determined in Hensley & Draine (2021)

using a set of solar abundances (Asplund et al. 2009; Scott et al.
2015a, 2015b), a measurement of Galactic chemical enrich-
ment from solar twin studies (Bedell et al. 2018), and
determination of the gas-phase abundances from absorption
spectroscopy (Jenkins 2009). Mdust/MH= 1.0× 10−2 in this
model. HD21 assumes the same radiation field as the DL07
model to heat the dust grains, with updates from Draine (2011).

Appendix B
Fitted Parameter Maps

We present the spatial variations of the fitted parameters for
all six models, in Figures B1–B5. The contours mark the 3σ
detection threshold. We use the same scale for identical
parameters, when possible.

Table A1
Physical Model Calibration Summary

Draine & Li (2007) Compiègne et al. (2011) THEMIS HD21

Extinction curve Fitzpatrick (1999) Mathis (1990) Mathis (1990) Fitzpatrick et al. (2019)
Schlafly et al. (2016)

Hensley & Draine (2020)
NH/E(B − V ) 5.8 × 1021 H cm−2 5.8 × 1021 H cm−2 5.8 × 1021 H cm−2a 8.8 × 1021 cm−2 mag−1

Emission spectrum Onaka et al. (1996) compiled in Compiègne et al.
(2011)

compiled in Compiègne et al.
(2011)

Planck Collaboration Int.
XVII (2014)

Tanaka et al. (1996) Planck Collaboration Int.
XVII (2015)

Arendt et al. (1998) Planck Collaboration XI (2020)
Finkbeiner et al. (1999)

Md/MH 1.0 × 10−2 1.02 × 10−2 7.4 × 10−3 1.0 × 10−2

Radiation Field Mathis et al. (1983) Mathis et al. (1983) Mathis et al. (1983) Draine (2011)

Renormalization: emission constraint only from Compiègne et al. (2011) b and forcing Md/MH = 6.6 × 10−3

Umin
MW 0.6 1.0 1.0 1.6

Normalization factor 3.1 2.1 1.5 2.5

Notes. All models share RV = 3.1.
a Additional constraint: τ250/E(B − V ) = 5.8 × 10−4 (Planck Collaboration et al. 2011).
b Corrected for molecular gas only, not ionized gas.
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Figure B1.Maps of fitted parameters. Top: simple-emissivity model, dust temperature (Tdust), total dust surface density (Σdust) and spectral index (β). Bottom: broken-
emissivity model, dust temperature (Tdust), total dust surface density (Σdust) and second spectral index (β2); the breaking wavelength is fixed (λc = 300 μm) as well as
the first spectral index (β = 2).
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Figure B2. Maps of the fitted parameters for the Draine & Li (2007) model: minimum radiation field (Umin), total dust surface density (Σdust), fraction of dust mass
heated by a power-law distribution of the radiation field (γ), PAH fraction (mass in grains with less than 103 C atoms, qPAH), and scaling parameter of surface
brightness (5000 K blackbody, Ω*).
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Figure B3. Maps of the fitted parameters for the Compiègne et al. (2011) model: minimum radiation field (Umin), total dust surface density (Σdust), fraction of dust
mass heated by a power-law distribution of the radiation field (γ), PAH fraction (with respect to total dust mass, fPAH), and scaling parameter of surface brightness
(5000 K blackbody, Ω*).
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Figure B4. Maps of the fitted parameters for the Jones et al. (2013) model: minimum radiation field (Umin), total dust surface density (Σdust), fraction of dust mass
heated by a power-law distribution of the radiation field (γ), sCM20 fraction (small carbon grains, fsCM20), and scaling parameter of surface brightness (5000 K
blackbody, Ω*).
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Appendix C
Residual Maps

We present the spatial variations of the fractional residuals
(Data-Model)/Model for all six models, in Figures C1–C5. The

contours mark the 3σ detection threshold. The so-called
“submillimeter” excess is visible in most maps at SPIRE 500
(blue shade).

Figure B5. Maps of the fitted parameters for the HD21 model: minimum radiation field (Umin), total dust surface density (Σdust), fraction of dust mass heated by a
power-law distribution of the radiation field (γ), PAH fraction (mass in grains with less than 103 C atoms, qPAH), and scaling parameter of surface brightness (5000 K
blackbody, Ω*).
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Figure C1. Maps of the fractional residuals for the simple-emissivity and broken-emissivity models.

Figure C2. Maps of the fractional residuals for the Draine & Li (2007) model.
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Figure C3. Maps of the fractional residuals for the Compiègne et al. (2011) model.

Figure C4. Maps of the fractional residuals for the Jones et al. (2013) model.
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Appendix D
Fits Quality

In Figure D1, we show the relative quality of the fits between
each model. The value displayed in the maximum likelihood, in
arbitrary units. The simple-emissivity and broken-emissivitymodels

show the least dynamic range but never reach the highest values
of the physical models. For the physical models, we can clearly
see the H II regions showing fits with low confidence, likely related
to the issues mentioned in Section 5.7.

Figure C5. Maps of the fractional residuals for the HD21 model.
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