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ABSTRACT

Dense regions in networks are an indicator of interesting and un-
usual information. However, most existing methods only consider
simple, undirected, unweighted networks. Complex networks in
the real-world often have rich information though: edges are asym-
metrical and nodes/edges have categorical and numerical attributes.
Finding dense subgraphs in such networks in accordance with this
rich information is an important problem with many applications.
Furthermore, most existing algorithms ignore the higher-order re-
lationships (i.e., motifs) among the nodes. Motifs are shown to be
helpful for dense subgraph discovery but their wide spectrum in
heterogeneous networks makes it challenging to utilize them effec-
tively. In this work, we propose quark decomposition framework
to locate dense subgraphs that are rich with a given motif. We fo-
cus on networks with directed edges and categorical attributes on
nodes/edges. For a given motif, our framework builds subgraphs,
called quarks, in varying quality and with hierarchical relations.
Our framework is versatile, efficient, and extendible. We discuss the
limitations and practical instantiations of our framework as well as
the role confusion problem that needs to be considered in directed
networks. We give an extensive evaluation of our framework in
directed, signed-directed, and node-labeled networks. We consider
various motifs and evaluate the quark decomposition using several
real-world networks. Results show that quark decomposition per-
forms better than the state-of-the-art techniques. Our framework
is also practical and scalable to networks with up to 101M edges.
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1 INTRODUCTION

Dense regions in networks contain unusual and interesting in-
formation [19]. Dense subgraph discovery is shown to be an ef-
fective analysis method in many applications across various do-
mains [5, 13, 17, 18, 26, 30, 33]. It is often a good and cheaper proxy
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for graph clustering because cohesive subgraphs in real-world net-
works exhibit good cuts [19, 33]. However, most algorithms to find
dense subgraphs are designed for simple, undirected, unweighted
graphs. In reality, a common characteristic of natural and engi-
neered systems from various domains is that the nodes (entities)
and edges (relationships) have rich information associated with
them; i.e., networks are heterogeneous [56]. Relationships can be
asymmetrical (one-way) and entities/relationships can be associ-
ated with categorical and numerical attributes; e.g., length of a
road or gender of a person. Finding the dense subgraphs while ac-
tively considering the rich information on nodes/edges has various
applications, such as entity resolution [64] and link prediction [11].
Furthermore, most dense subgraph discovery algorithms are de-
signed to capture only the first-order relationships. Higher-order
structures (i.e., motifs/graphlets) are shown to be the fundamental
building blocks in the organization and dynamics of real-world net-
works such as social and neural networks [2, 24, 40, 43, 44, 54]. Dis-
covering dense subgraphs that have a higher-order structure is im-
perative in the analysis of those networks. In simple networks, mo-
tifs are used to find subgraphs with higher-order structure, which
cannot be detected with edge-centric methods [50, 60]. However,
it is not clear how to find dense subgraphs with motifs in hetero-
geneous networks. The spectrum of motifs in heterogeneous net-
works is wide due to the edge directions and node/edge attributes.
Although this variety is particularly effective for the analysis as the
structure and dynamics can vary with respect to the type of motif
considered [8, 57, 61], handling the diverse nature of heterogeneous
networks while watching for the motifs is a challenging problem.
In this work, we introduce the quark decomposition frame-
work to find motif-driven subgraphs in networks with directed
edges and categorical attributes on nodes/edges. Our framework
builds subgraphs, called quarks, in varying quality and with hier-
archical relations. A k-quark is a motif-parameterized subgraph
where each node/edge (or small motif) participates in a number
of (larger) motifs. The parameter k denotes the extent of partic-
ipation and not an input: quark decomposition finds non-empty
k-quarks for all k values. Our framework is inspired by the peeling
approach in simple graphs, namely core, truss, and nucleus decom-
positions [12, 50, 52], which first locate the outer sparse parts of the
graph and then find the inner dense regions. Given the practicality
and effectiveness of the peeling techniques, we adapt them to the
directed networks with categorical attributes in a principled way.
Note that it is beyond nontrivial to consider a generalization since
edge directions and node/edge attributes create a wide and diverse
spectrum of motifs (see Figure 1 and Figure 6 for examples).
Quark decomposition takes two motifs as parameters, M and N
where M C N, and builds subgraphs where Ms participate in many
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N's. The parameterized formulation enables the discovery of diverse
subgraphs and lets a trade-off between quality and practicality. We
assign density indicators for each motif M, called quark numbers,
to denote how well M is connected to its neighborhood, which are
then used to build the k-quarks. Quark numbers also relate the
k-quarks with each other using containment relations; the quarks
with larger k are contained in the ones with smaller k.

We use quark decomposition in two broad classes of applica-
tions: (1) When the motif of interest is unknown and higher-order
organization of the network is asked; (2) When the motif of in-
terest is known and guides the quark decomposition. For (1), we
compare quarks obtained with various motifs and analyze the num-
ber and quality of resulting quarks in directed and signed-directed
networks. In a word-association network, we show that overlap-
ping quarks by the same motif as well as the quarks by different
motifs capture diverse contexts of the words. We also analyze the
Florida Bay food web and show that quarks obtain consistently bet-
ter results than the state-of-the-art algorithm for finding groups of
compartments with respect to the ground-truth classifications. For
(2), we consider the task of finding gender-balanced communities
in networks where genders are used as node labels. We focus on
the college friendship networks that have low female ratios. We
consider clique-based instantiations of the quark decomposition
and choose gender-balanced triangles and four-cliques as the motif
N. We observe consistently high female ratios when compared to
the label-oblivious state-of-the-art methods.

Key contributions in this paper are summarized as follows:

o Quark decomposition. We propose a framework to find dense
subgraphs according to a given motif in networks with directed
edges and categorical attributes on nodes/edges. Quark decomposi-
tion is versatile, efficient, and extendible.

e Limitations and role confusion problem. We characterize the
limitations and practical instantiations of quark decomposition to
guide the selection of parameter motifs M and N. Presence of mul-
tiple orbits in some directed motifs results in subgraphs where a
node/edge serves in multiple orbits. We call this role confusion and
devise role-aware quark numbers as a remedy.

o Generic peeling algorithm for any motif. We introduce a
generic peeling algorithm that works for any motif pair M, N to
find the quark decomposition. Our algorithm is similar in spirit to
the core/truss/nucleus decompositions and can enjoy the optimiza-
tions applicable for the peeling algorithms.

o Extensive evaluation on real-world networks. We evaluate
quark decomposition on three types of heterogeneous networks;
directed, signed-directed, and node-labeled. We consider various
motifs using several real-world networks. Results show that quark
decomposition outperforms the state-of-the-art techniques and is
also practically scalable to networks with up to 101M edges.

2 RELATED WORK

Here we summarize the related works on motif-driven dense sub-
graphs in heterogeneous networks. Note that there are too many
clustering, community detection/search works on heterogeneous
networks [15], but our focus is limited to motif-based approaches
that find dense subgraphs in directed and labeled networks.

Peeling approaches on simple networks. Core decomposition
is a simple but effective model to locate the seed regions where
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dense subgraphs can be found [52]. It makes use of degrees to
assign core numbers to nodes. Regularizing the node degrees, that
span to a large range, to the core numbers in a smaller range is
the key and makes the peeling a fundamental building block in
an array of applications [5, 10, 29, 37, 42]. Higher-order variants
of the peeling are introduced to take advantage of the triangles
and small subgraphs. Truss decomposition leverages triangles [12,
23, 46], nucleus decomposition makes use of small cliques [50, 51],
and tip/wing decomposition utilizes butterflies (2, 2-bicliques) in
bipartite networks [3, 49] to find dense regions in a principled way.
Nucleus decomposition generalizes core and truss decompositions.
It finds k-(r, s) nucleus, defined as a subgraph where each r-clique
is a part of k number of s-cliques where r < s. Those peeling
approaches work on undirected simple networks. Here we work
on directed networks with attributes on nodes/edges. We compare
our methods with nucleus decomposition to highlight the benefit
of considering edge directions and node labels.

Cycle-, flow-trusses. Regarding the adaptations of core and truss
decompositions for directed graphs, Takaguchi and Yoshida [58] in-
troduced cycle- and flow-trusses. Their algorithms work on directed
networks with respect to cycle and flow (acyclic) motifs (see Fig-
ure 1) and rely on the occurrences of the cycle and flow motifs for
each edge. However, they do not consider the bidirectional edges
and handle each such edge as two separate unidirectional edges.
We compare our work with cycle-flow trusses in Section 5.1.
Motif-based densest subgraph and clique finding. There are a
few works in the literature that studies the motif-driven densest
subgraph problem. For constant size cliques, which can be thought
of as motifs in simple undirected graphs, Tsourakakis introduced
the k-clique densest subgraph problem [60] to generalize the classi-
cal densest subgraph discovery [20] for k-cliques (k > 2). Analo-
gous to finding the subgraph with the maximum average degree,
Tsourakakis proposed to find the subgraphs that have a maximum
average triangle (or k-clique) count per node. More recently, Fang
et al. proposed exact and approximate algorithms for the same
problem [16] and Hu et al. considered heterogeneous information
networks with specific schemas to find maximal motif-cliques [22].
Note that our problem setup is more general and we aim to find mul-
tiple subgraphs that are not necessarily perfect cliques but always
significantly dense.

Higher-order motif clustering. The motif-based graph cluster-
ing problem is studied from a spectral perspective in heterogeneous
networks. Benson et al. [8] introduced a nice generalized framework
for clustering the networks based on the higher-order connectiv-
ity patterns. They defined the motif conductance as the ratio of
the number of motifs cutting the border between two regions to
the number of motif instance endpoints (i.e., nodes) in the sub-
graph or its complement, whichever is smaller. Since getting the
optimal solution for motif conductance is NP-Hard, they proposed
an approximate algorithm that finds the near-optimal cluster in
a given network. Their method relies on the spectral clustering
of motif adjacency matrix whose entry i, j is the number of mo-
tifs where nodes i and j co-occur. The set of nodes in the spectral
ordering that has the minimum conductance is reported as the op-
timal higher-order cluster. Recursive bisection method iteratively
finds the near-optimal clusters in the complement of the graph and
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Figure 1: Directed triangle motifs with three nodes and three edges,
as named in [53]. Automorphism orbit (or just orbit) of a node in a
given motif is the set of other nodes that have the same topological
connectivity patterns. In each triangle, orbits of the nodes are de-
noted with colors (i.e., nodes in the same color have the same orbit).

k-means clustering on the motif adjacency matrix obtains a pre-
specified number of clusters. Concurrently, Tsourakakis et al. [61]
proposed the same framework for motif-aware clustering and also
introduced a random walk interpretation of the graph reweighting
scheme which gives a principled approach to define the notion of
conductance for other motifs. More recently, Li et al. improved the
motif-based clustering approach to handle the clustering of discon-
nected nodes [36]. Our framework differs from those approaches:
we do not partition the graph but find dense subgraphs around
nodes/edges. We give an extensive comparison against the motif
clustering [8] in our experiments.

3 PRELIMINARIES

Motifs and hypergraphs. We define motif M = (Vjy, Epr) as an
induced directed subgraph with node and edge sets Vys, Eys. Each
v € Vs and e € Epy can have categorical (non-numeric) attributes,
defined by f : Vjr, Ep — N. A motif M is a subset of motif N iff

e Viyr C Vn where there is one and only one v’ € Vy for each
v € V1 such that f(v) = f(v').

e E) C En where there is one and only one ¢’ € Epn for each
e € Epy such that f(e) = f(e’).

We use the language of hypergraphs to define the involvements of
small motifs in the larger motifs. A hypergraph H = (V, E) consists
of the node set V and hyperedge set E, where a hyperedge e € E is
simply a subset of V' (in standard graphs, each hyperedge has two
nodes). Consider a hypergraph H = (V, E);

e u,v € V are neighbors if there is a hyperedge e € E that contains
u and v.

o The degree of a node v € V, denoted by d(v), is the number of
hyperedges that contain v.

o The size of a hyperedge e € E, denoted by s(e), is the number of
nodes in it.

e Two nodes u and v are connected if there exists a sequence of
hyperedges e1, e2,...,e, € Esuch thatu € e1, v € ep, and Vi < £,
eiNejr1 # 0.

e H is connected if all pairs of nodes are connected.

DEFINITION 1. Let S C V. The induced hypergraph H|s has
node set S and contains every hyperedge of H completely contained
inS, ie,Ve € Hl|s, iffv € e thenv € S.
® The degree of node v € H|g is denoted by ds(v) (or d(v) when clear).
o The minimum degree in H|s is denoted by §s.
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Induced hypergraph is also known as section hypergraph.

Dense subgraphs. We call a subgraph dense if it has many motifs
(also called motif-based or -driven dense subgraph). Formally,
we use average motif degree to quantify the density of a subgraph
with respect to a given motif.

DEFINITION 2. For a subgraph S and a motif N, the average
motif degree of S is the number of instances of N in S divided by
the number of nodes in S.

4 QUARK DECOMPOSITION FRAMEWORK
We first define the motif hypergraph.

DEFINITION 3. Given a graph G and template motifs M and N
s.t. M C N. Let {M} and {N} be the set of instances of M and N in
G, respectively, and f, g be bijective functions. Motif hypergraph
Hg(M,N) = (Vg, Eg) is a hypergraph constructed as follows:

e Each instance of M € G forms a nodeu € Vg by f{M} — V.
o Each instance of N € G forms a hyperedgee € Eg byg{N} — Eg.
o IffM C N inG, then f(M) € g(N) in Hg.

Note that Hg(M, N) is a t-uniform hypergraph (i.e., s(e) = t Ve €
EG) where t is the number of occurrences of M in N. We also refer
to the degree of each node u € Hg as the motif degree, denoted
by dp,; (u) (or d(u) when Hg is obvious).

We now introduce the notion of k-quark subgraph.

DEFINITION 4. Given a graph G and template motifs M, N such
that M C N, say HG(M, N) is the motif hypergraph defined as above.
e Foranyk € N, a k-quark of HG(M, N) is a connected and maxi-
mal induced sub-hypergraph H|gs such that s > k.

e For a node u in HG(M, N) (corresponding to an instance of motif M
in G), the quark number of u, denoted by K(u), is the largest value
of k such that u belongs to a non-empty k-quark.

We also refer to k-quark as quark when k is irrelevant or clear.

DEFINITION 5. k-quarks form a hierarchy by containment.
e LetS be ak-quark and T be a k’-quark such thatk’” < k andS c T.
S is the child of T (and T is the parent of S) if there is no k-quark
U such thatk’ <k <kandSc U cT.
o A k-quark is leaf (childless) if there is no k* -quark in it s.t. k™ > k.
e Maximum quark number of a graph is the largest k for which
there is a non-empty k-quark.
e Maximum k-quark is a quark where k is the maximum quark
number in the graph.

Quark decomposition is the process of finding the quark numbers
and k-quarks for a given pair of motifs M, N in a graph G. Leaf
k-quarks are the locally optimal subgraphs; they are surrounded
by less dense quarks (with lower k values) and hence often contain
the most interesting information.

If G is a simple undirected graph where M is r-clique and N is s-
clique (r < s), then k-quark is nothing but a k-(r, s) nucleus [50, 51].
If G is a simple undirected bipartite graph where M is edge and N
is 2, 2-biclique, then k-quark reduces to be a k-wing [49]. In the
quark decomposition, each M instance is given a quark number
and the k-quarks along with the hierarchical relationships among
them can be constructed accordingly. Note that, N is the motif
of interest for which dense regions are to be found. Motif M
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Figure 2: We construct the motif hypergraph H with respect to the
motifs M (edge) and N (acyclic) on a toy graph G (in top-left). Each
orbit in N is shown by a different color. We create a node for each
motif M and a hyperedge for each motif N to get the motif hyper-
graph H. Ids of triangles and edges are the union of the nodes in
each. Quark numbers are denoted with gray for 1 and black for 2.
1-quark and 2-quark are shown in top-right. Role confusion occurs
for nodes 3 and 4 in both quarks. Role-aware quarks and quark num-
bers are shown at the bottom (See Section 4.1.2 for more details).
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can be any subset of N but it should satisfy some requirements
such that non-trivial k-quarks can be obtained (more details given
in Section 4.1). When M is edge or a larger motif, the resulting
k-quarks may overlap with each other because quarks are defined
as a group of Ms. This is useful since the overlapping communities
can better capture the network organization [65].

4.1 Limitations & practical instantiations

It is important to consider the necessary and sufficient conditions
for the M and N in Definition 4 so that the k-quarks are non-trivial.
For instance, if M has only one occurrence in N, the size of each
hyperedge in the motif hypergraph becomes one, thus it is not
possible to consider any connectivity among Ms. This is related
to the automorphism orbits [44, 47]. Automorphism orbit (or just
orbit) of a node in a given motif is the set of other nodes that have
the same topological connectivity patterns. For directed triangle
motifs, shown in Figure 1, orbits of the nodes are denoted with
colors. For instance, in+ has two orbits; the first has one node with
two incoming edges (white node) and the second has two nodes
where each has one outgoing and one bidirectional edge (black
nodes). Note that automorphism orbits are defined only for the
nodes. In our framework, we can also consider an edge or a larger
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structure as M in Definition 4, thus automorphism orbits of such
structures need to be taken into account. To define the orbits of
any M, we consider the ordered list of node orbits in it.

Enforcing the automorphism orbits restricts the use of any motif
since Definition 4 requires that at least one orbit should have multi-
ple instances in N. E.g., when M is node or edge; acyclic, cycle+, and
cycle++ motifs have three different orbits, i.e., no orbit has multiple
members. Thus those cannot be considered as N. To remedy this
problem, we use a vanilla motif M, which has only one orbit.
A vanilla motif has no node/edge labels and its edges are direction-
less!. Any motif N > M will contain multiple instances of M, thus
the size of hyperedges will be greater than one. Figure 2 gives an
example when M is a vanilla edge and N is acyclic.

4.1.1 Role confusion problem. Another problem in k-quarks is
the conflation of the orbits for Ms. An instance of M can be a part
of multiple instances of N. Furthermore, orbit of an M instance in
one N instance can be different than its orbit in another N instance.
E.g., if M is node and N is out+, a node may appear as white node in
one out+ instance while being black node in another out+ instance
(see Figure 1). We call this the role confusion problem. Note that
choosing M as a vanilla motif does not help with the role confusion
problem. For example, consider cycle+ with nodes A, B, C and edges
A—B, B—C, A—C. This can be a structure in Twitter network;
e.g., A is a grad student, C is her advisor (a professor), and B is a
junior faculty working in the same field—B is an interesting person
for A but not for C, professor C is a well-known person followed
by many and she follows A since she is A’s advisor. In the motif-
driven subgraphs for cycle+, each node has ideally a single role;
i.e., a grad student is better characterized as the node A in all the
cycle+ instances she participates in. The solution is to construct
the subgraphs in a way that abide by the orbits. To do that, we de-
fine role-aware quark numbers for each M. If M has b orbits in
N, each M will have b role-aware quark numbers, one for each orbit.

DEFINITION 6. Given a graph G and motifs (vanilla) M and N (s.t.
M c N), let HG(M, N) be the motif hypergraph as defined in Defini-
tion 3. Let b be the number of orbits of M in N.

o Orbit degree of an M instance is the number of instances of N that
contain it such that the orbit of the M instance in each N instance is
the same. Each M instance has b orbit degrees.

o Foranyk € N, arole-aware k -quark of H;(M, N) is a connected
and maximal induced sub-hypergraph H|s such that each M instance
has one orbit degree of at least k.

® For a node u in HG(M, N) (corresponding to an instance of motif M
in G), the role-aware quark numbers of u are b numbers, denoted
by Ki(u) for1 <i < b. Ki(u) is the largest value of k such that the
node u belongs to a non-empty role-aware k-quark where its orbit is i.

In a role-aware k-quark, each M instance participates in at least
k N instances and the orbit of the M instance in each of those
participations is the same (note that different M instances can have
different orbits in the quark). Role-aware quark numbers describe
the extent of participation as a particular orbit while the quark
number indicates the extent of participation as any orbit. When M
is node and N is cycle or reciprocal (in Figure 1), there is no role

we do not say bidirectional to avoid any confusion
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confusion since there is only one node orbit in each. For all the
other directed triangles, there is a role confusion. When M is edge,
we always consider the orbits of the two nodes in it. In the context
of directed triangles, one important point is the distinction between
unidirectional and bidirectional edges. In this work, we consider
the bidirectional edge as an atomic entity; i.e., not combination
of two unidirectional edges, due to the fact that a symmetrical
relation has a different semantic than two asymmetrical ones—in
a sense we only consider the induced edges. For instance, in+ and
out+ do not create any role confusion when M is edge, because
the unidirectional edge between the white and black nodes in in+
(or out+) cannot serve as a bidirectional edge (between two black
nodes) in an adjacent in+ (or out+) motif (see Figure 1).

4.1.2 Example. Figure 2 illustrates an example on a toy graph.
We choose the vanilla edge as the motif M and acyclic triangle
as the motif N, shown in the top-left. We denote the node orbits
in acyclic with different colors; orange shows the node with two
outgoing edges, blue is for the node with two incoming edges, and
red denotes the node with one incoming and one outgoing edge.
Motif hypergraph, H, with respect to G, M, N is shown next. As
described in Definition 3, we create a node for each vanilla edge
(bottom set in H) and a hyperedge for each acyclic (top set in H).
Id of each acyclic and edge in H is formed by the concatenation
of the node ids in it, e.g., 12 denotes the edge from 1 to 2. Each
hyperedge is connected to three nodes since there are three edges
in an acyclic—making H a 3-uniform hypergraph. The degree of
each node in H is called the motif degree, e.g., it is 2 for edge 4-5.
Quark numbers of the edges are denoted by gray (X = 1) and black
(K = 2) in the bottom set of H; e.g., quark number of edge 4-5 is
2. Based on those quark numbers, we construct the quarks in the
top-right. Two quarks are created; a 1-quark, corresponding to the
entire graph G, and a 2-quark with nodes 1, 3, 4, and 5. We observe
role confusions for the thick edges in those quarks, which in turn
implies the role confusions on nodes. Regarding the edges, 1-4, 3-4,
and 3-5 have role confusion in both quarks; e.g., in 1-quark, 1-4
connects orange to blue in 1-4-6 acyclic but it links orange to red
in 1-5-4 acyclic. For the nodes, 3 and 4 in both quarks have role
confusions, e.g., node 3 is red in the 1-3-5 acyclic (and in 1-3-4) while
being orange in the 3-4-5 acyclic. We give the role-aware quarks
and quark numbers of the edges at the bottom. If we construct the
role-aware quarks by abiding the orbits, we get three role-aware
1-quarks. Note that the only edges that have multiple non-zero %K;
are the ones that have role confusion in the top-right.

4.2 Algorithms

Here we discuss our peeling algorithms, first for quark decomposi-
tion (Definition 4) and then for role-aware quarks (Definition 6).

4.2.1 Quark decomposition. Algorithm 1 outlines the quark de-
composition. Here we assume the motif M in Definition 4 to be
node or edge for simplicity. Note that larger structures can be con-
sidered as well. Also, we avoid constructing the actual hypergraph
of motifs since it requires enumerating all the N's which will have
a significant space cost. Instead, we discover those motifs for each
node/edge as needed, similar to the space-efficient approach in
nucleus decomposition [50]. There are three different phases in the
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quark decomposition; motif degree counting, peeling to find quark
numbers, and constructing the subgraphs and the hierarchy.
Motif degree counting. Line 1 corresponds to counting the oc-
currences of N instances per each node or edge. There are some
studies [39, 43, 66] that leverage certain commonalities among mo-
tifs to avoid redundant computations. Adapting those studies for
per node/edge motif counting to improve runtime is possible but
out of scope for this work. Also, simultaneously counting the motif
degrees for multiple motifs would speed up the workflow when the
motif of interest is unknown to the user and multiple options need
to be investigated. Note that if the label set of the input motif N
is smaller than the label set of the input graph G, we can filter the
graph to only keep the label set of N, e.g., if a triangle of female
students is N for an undirected graph where genders are the node
labels, only the induced graph of female nodes can be considered.
Peeling to find quark numbers. Lines 3 to 10 assigns a quark
number for each node/edge. The classical core decomposition im-
plementation [7] makes use of the bucket data structure to keep
track of the nodes with the minimum degree. We also use this ap-
proach to watch the nodes/edges with the minimum motif degree.
Initially, all the nodes/edges are marked as unprocessed (line 2),
which will come handy to ensure each N instance is processed
only once. In each iteration, an unprocessed node/edge with the
minimum motif degree is chosen (line 3). The motif degree of the
chosen node/edge is set to be its quark number (%) (line 4). Then,
the N instances that contain the chosen node/edge are found and
processed in lines 5 to 9. In each such instance of N, we make sure
that the other nodes/edges (the neighbors of the chosen node/edge)
are unprocessed (line 6); this is done to ensure that each N instance
is examined only once. Then, the neighbor nodes/edges in each N
instance are checked (line 7) and their motif degree is decremented
if larger than the motif degree of the chosen node/edge (lines 8
and 9). At the end of the iteration, the chosen node/edge is marked
as processed (line 10). For any M, N motif pair, two basic procedures
are necessary and sufficient to instantiate the quark decomposition;
o Finding the N instances that contain a given M instance (line 5),
o Finding the M instances in a given N instance (lines 6 and 7).
Constructing the subgraphs and the hierarchy:. It is also possi-
ble to construct the subgraphs and build hierarchy among k-quarks
during the peeling operation, as noted in magenta lines after lines 6
and 10. Subgraph and hierarchy construction during the peeling
process is introduced in [48] and can be adapted to the quark decom-
position. In line 6, the nodes/edges that are in the same N instance
with the chosen node/edge are checked. If those nodes/edges are
already processed (i.e., assigned a quark number), we can build non-
maximal k-quarks during the peeling process. At the end, those
non-maximal k-quarks are converted to the real (maximal) k-quarks
with a light-weight post-processing that uses the union-find data
structure (following line 10).

THEOREM 1. Given a graph G = (V, E) and motif N, Algorithm 1
finds the quark numbers, K(-), of allu € V (ore € E).

Proor. We give the proof for the node case without loss of
generality (i.e., it is similar for the edge). As noted in Section 3,
nodes u,v € V are neighbors if they participate in a common
motif N. K(u) = k indicates that there are at least k instances of
N which contain u and in each such N, u has a neighbor node
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Algorithm 1: Quark DEcomposITION (G (V, E), motif N)

Algorithm 2: RoLE-AWARE QUARK DEkc. (G (V, E), motif N)

1 Compute d(u) (motif deg.) YV u € V // or d(e) V e € E
2 Mark every u (or e) as unprocessed

3 for each unprocessed u (or e) with minimum degree d do
4 K(u) «— d(u)// or K(e) — d(e)

5 for each motif N s.t. u ¢ N (ore ¢ N)do

6 if any node v € N is processed (or edge) then continue
// can also find subgraphs & hierarchy

7 for each node v (# u) € N (oredge f (# €)) do

8 if d(v) > d(u) (or d(f) > d(e)) then

9 d(v) —d(v)—-1// or d(f) < d(f)—-1

10 Mark u (or e) as processed

// Optional post-processing to build the hierarchy
11 return array K(-)

v s.t. K(v) = K(u). This is enforced by the lines 8-9, where the
motif degree a neighbor node is decreased if it is larger than the
quark number assigned at that step. In other words, any neighbor
node with a smaller quark number does not contribute to the quark
number of the node of interest. If Algorithm 1 finds K'(u) = k for
anode u € V, then by Definition 4, we need to show that (i) 3 a
k-quark G’ > u, (ii) Aa k*-quark G’ 5 u (k* > k).

(i) Once K(u) = k is found in Algorithm 1, we stop and construct
an induced subgraph G’ c G by traversal as follows. Initially, G’
has only u. In each step, we visit a node v € V s.t. v co-participates
in some N instance with a node from G’. If K(v) = k or if it is
unassigned but its current motif degree is equal to k, we add v to
G’. We continue the traversal until no such node v can be found.
At the end, G’ is a k-quark since (1) each node participates in > k
motifs, because the nodes are processed in the non-decreasing order
of their motif degrees, (2) all the nodes are connected to each other
with motifs due to the motif-based traversal, and (3) G’ is maximal
since it is the largest subgraph that can be found by the traversal.
(ii) u cannot be in a k-quark. Assume it is. Then it should take
part in at least k* motifs and each motif contains a neighbor node
with motif degree of at least k*. But, this implies that K(u) = k*
(by Definition 4), contradiction. o

Time and space complexity. Algorithm 1 has O(Y, ¢y d(v)!"NI-1)
complexity when M is node or edge (Vi is the node set of N).
The space complexity is O(|E|) when M is node/edge. Instead of
explicitly building the hypergraph of Ms and Ns in G, we only
build the adjacency lists when required. Since N's are not stored,
space complexity is bounded by O(|E|). We find all motifs con-
taining the node/edge of interest only when that node/edge is
processed. Each node/edge is processed at most once. When M
is node, we can find all the N's containing a node by looking at
all (|[Vn| — 1)-tuples in each of the neighborhoods of the node.
This takes at most Y.,y d(v)! VN |~ Likewise, when M is edge, we
consider | V7| —2 tuples in each edge neighborhood and total time is

Yeck Yoee d@)WI2= 3y 3o, d)VWIT2 = ¥ d(v) VNI

4.22 Role-aware quark decomposition. Algorithm 2 outlines
the role-aware quark decomposition; again, for simplicity, we as-
sume the motif M in Definition 6 is node or edge (larger M can
be considered as well). The only difference with respect to Algo-
rithm 1 is the way we compute and keep the degrees and process
the node/edge in the inner loop. We first find the set of orbits, B,

1 Let B be the set of orbits that a node/edge has in N

2 Compute dy(u) (orbit deg.) V orbits o=1, ..., |B|,Y u€V // or dy(e)
3 Mark every tuple (u, 0) as unprocessed for o=1, ..., |B| // or (e, 0)
4 for each unprocessed (u, a) (or (e, a)) with min. orbit degree d, do

5 Ka(u) «— dg(u) // or Ka(e) « dy(e)

6 for each motif N s.t.u € N (ore € N)do

7 Let v(# u) be anode in N, b be its orbit (or f(# e) is an edge)
8 if any tuple (v, b) € N is processed (or (e, b)) then continue
9 for each node v (# u) C N (or edge f (# e)) do
10 Let b be the orbit of v (or f) in N
11 if dp(v) > dg(u) (or dp(f) > da(e)) then
12 dp(v) —dp(v)—1// or dp(f) — dp(f) -1
13 Mark (u, a) (or (e, a)) as processed

14 return arrays Ki(-), ..., K|p|()

that a node/edge has in N (line 1). In line 2, we count the orbit
degrees for each node/edge and for all orbits 1, ..., | B|. Orbit degree
do of a node u (or edge e) is the number of N instances that contain
the node u (edge e) such that the orbit of u (e) is o (Definition 6).
Each orbit degree of a node/edge is processed separately. We also
keep |B| arrays to keep track of the processed (u, 0) (or (e, 0)) tu-
ples (o is the orbit of node u, or edge e) (line 3). In lines 4-13, we
process all the orbit degrees in non-decreasing order. Role-aware
quark number is assigned for the chosen node/edge (line 5) and
we find the neighbors of the node/edge in each N to adjust their
orbit degrees (lines 6 to 12). At the end, we return role-aware quark
numbers for each node; K;(-) for 1 < i < |B.

5 EXPERIMENTS

We evaluate our framework on three types of networks and motifs
therein; directed (Section 5.1), signed-directed (Section 5.2), and
node-labeled (Section 5.3) networks. We implement quark decom-
positions for various motifs in each type and evaluate the resulting
subgraphs. All experiments are performed on a Linux operating sys-
tem (v. 4.12.14-150.52) running on a machine with Intel(R) Xeon(R)
CPU E5-2698 v3 processor at 2.30GHz with 64 GB DDR3 1866 MHz
memory. Algorithms are implemented in C++ and compiled using
gec 6.1.0 at the -O2 level. The code is available at http://sariyuce.
com/quark_decomposition.tar. For each network type, we dis-
cuss the set of motifs used and present the results. We compare
quark decomposition to the state-of-the-art methods and highlight
anecdotal examples to stress the contrast between our method and
others. We also present the runtime performance of quark decom-
positions and other state-of-the-art methods.

Baselines. We consider three baselines in our comparisons.

o Motif clustering (MC) [8]. Set of higher-order clustering algo-
rithms by Benson et al. (see Section 2 for details). We consider three
versions; (1) MC-SINGLE: Algorithm that gives a single subgraph
with near-optimal motif conductance, (2) MC-Rec-BI1SECTION: Re-
cursive bisection algorithm that iteratively finds multiple clusters
(starting with the optimal) until the cluster size gets too small (less
than 10 nodes) or quality degrades too much (conductance goes
above 0.5), (3) MC-k-MEANS: k-means algorithm that is run on the
motif adjacency matrix — number of clusters (k) must be specified
for this version.
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Table 1: Directed datasets from various domains. |V |, |E|, |E, |,and |E;| are the number of nodes, edges, bidirectional, and unidirectional edges.
We also list the number of motif's for each directed triangle (see Figure 1) and maximum quark numbers in each quark decomposition. Largest
motif count and quark number for each network are shown in bold (for quark numbers, M is a vanilla edge, N is a triangle from Figure 1).

# motifs maximum quark numbers
Vi E] | 1Bul | |Eq] cycle |acyclic| out+ | in+ |cycle+|cycle++|reciprocal)|cycle|lacycliclout+|in+|cycle+|cycle++|reciprocal
foodweb 128| 2.1K 31| 2.0K 70, 7.9K 91 80| 212 75 0 1 8 11 1 1 1 0
EAT 23.2K| 325.0K| 20.1K|284.8K|| 7.4K|295.2K| 76.9K| 44.8K]| 25.0K| 26.9K 4.1K 1 5 31 3 2 3 3
emailEuAll [265.0K| 419.0K| 54.5K[310.0K|| 1.0K| 44.9K| 65.1K| 22.4K| 15.2K| 69.7K 49.0K 1 4 70 4 2 6 11
cit-HepPh | 34.5K|421.5K 657(420.2K 65| 1.3M| 54K| 53K| 232 191 18 1 23 2l 2 1 2 1
Slashdot | 77.4K]|828.2K|359.0K|110.2K 89| 9.6K| 42.8K| 16.4K| 10.0K| 71.1K| 401.9K 1 31 6/ 3 2 3 33
web-ND  [325.7K| 1.5M|379.6K|710.5K|| 9.5K|499.2K|309.7K| 1.2M| 40.6K| 106.6K 6.8M 1 15| 14| 11 2 3 148
amazon 403.4K| 3.4M|944.0K| 1.5M 45| 632.1K[974.9K|627.1K| 58.1K| 821.5K| 872.8K 1 5 6| 4 2 4 9
wiki-Talk | 2.4M| 5.0M|361.8K| 4.3M||171.9K]|227.7K| 1.0M| 1.6M| 1.1M| 2.2M| 836.5K 2 12 70 7 6 18 18
soc-pokec 1.6M| 30.6M| 8.3M| 14.0M||142.7K| 5.0M| 4.1M| 3.9M| 2.1M| 10.4M 7.0M] 2 25 91 5 3 7 18
liveJournal| 4.8M| 68.5M| 25.6M| 17.2M||202.3K| 58.3M| 33.9M| 46.5M| 6.6M| 59.7M 80.6M 7 133 98| 89 27 65 247
en-wiki 4.2M|101.3M| 9.4M| 82.6M|| 2.8M|163.3M| 61.4M| 34.8M|[13.8M| 22.1M 5.9M 7 26| 22| 24 5 18 29

e Takaguchi and Yoshida (TY) [58]. Cycle-truss and flow-truss
algorithms (see Section 2 for details).

o (1,s) nucleus [50]. Nucleus decomposition to find hierarchical
dense subgraphs in undirected networks (see Section 2).

Metrics. We consider three metrics to measure the quality of the
subgraphs. We also show anecdotal examples when feasible.

o Motif conductance. Edge conductance is adapted for motifs
in [8]. Motif conductance of a subgraph is defined as the ratio of
the number of motif instances cut (i.e., motifs in the boundary) to
the number of motif instance end points in the subgraph (i.e., nodes
participating in the motifs). The lower values are better.

e Average motif degree. Conductance metric is known to have a
bias toward giving better results for smaller numbers of clusters [4,
35]. As an alternative, we consider the average motif degree in
each subgraph, as given in Definition 2. In edge-based clustering
literature, the densest subgraph of a graph is defined as the one with
the largest average degree [20, 60]. Here we adapt this measure
for the motif-based subgraphs and simply consider the number of
motifs per node. The higher values are better.

o Edge density. We also consider the ratio of edges over all possible
in a subgraph (|E|/(|‘2/|)). We use this metric in Section 5.3 for
undirected networks. The higher values are better.

5.1 Directed networks

Datasets. We consider several directed networks from various
domains in our experiments: Florida Bay food web (foodweb), word
associations (EAT), emails (email-EuAll), citations (cit-HepPh),
online social networks (slashdot, soc-pokec, livejournal,
wiki-Talk), web networks (web-ND, wiki-Talk), and product co-
purchasing relations (amazon). All networks (except EAT [28]) are
obtained from SNAP [34]. Table 1 gives several statistics, including
the motif counts and maximum quark numbers.

Motifs. We instantiate the quark decomposition for directed net-
works by considering the edge and triangle motifs (Figure 1), corre-
sponding to the M and N in Definition 4, respectively. Note that
considering edge as motif M is more advantageous than node. Since
the edges are assigned quark numbers, k-quarks can overlap with
each other. Also, role confusion does not happen for out+ and in+
as explained in Section 4.1.1. We also incorporate the reciprocity by
considering the unidirectional and bidirectional edges separately,
rather than treating each bidirectional edge as two unidirectional

edges. This is because directed networks often have a significant
percentage of bidirectional edges (also observed in Table 1) and
those need to be treated differently, as discussed in [41, 53]. We
use the vanilla edge as the motif M and each of the seven directed
triangles (Figure 1) as the motif N.

We first discuss the motif counts and quarks for directed triangles.
Then we compare quarks with baselines using the EAT and foodweb
networks. We finish by comparing the runtimes.

5.1.1 Motif counts and subgraphs. Table 1 lists the motif counts
and maximum quark numbers for each motif. cycle is often the least
common motif. Networks with significant fraction of bidirectional
edges tend to contain reciprocal motifs the most. Note that the most
frequent motif does not always yield the highest quark number.
In particular, reciprocals are often concentrated in a small region,
thus yield highly-dense subgraphs. For instance, en-wiki has 5.9M
reciprocal and 163.3M acyclic motifs but the maximum quark num-
bers for those motifs are 29 and 26, respectively. This is because the
maximum k-quark has 465 edges in the reciprocal case but has 9461
edges in acyclic. We also observe that the number of quarks are
independent of the motif counts. For example, the most prevalent
motif in EAT network is, by far, acyclic. However, acyclic yields only
447 k-quarks while the cycle+ locates 2826 subgraphs. Overall, the
abundance of a particular motif does not imply the existence of
dense subgraphs containing that motif.

5.1.2 Comparison with previous methods. We compare quark
decomposition against the three baselines listed above. We use EAT
network, a collection of word association norms where the nodes
are English words and an edge (u, v) implies that human subjects
consider the word v when they are shown the word u as stimulus.

We first compare the quality of subgraphs given by the quark
decomposition and MC algorithms [8] using motif conductance and
average motif degree metrics. For quark decomposition, we only
consider the k-quarks with at least 10 nodes. For MC algorithms,
we consider MC-SINGLE and MC-REc-BIsecTION. Note that we
aim to compare the ‘best’ clusters reported by the two algorithms
and do not intend any comparison with respect to the number
of clusters reported. Figure 3 gives the comparison for reciprocal,
out+, acyclic, and cycle++ motifs (other motifs show similar results
and omitted). For each subgraph, we report the size as well as the
quality metric; number of motifs per node in the top row and the
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Figure 3: Comparison of the quark decomposition and MC [8] in EAT network. Top row shows the results for number of motifs per node, i.e.,
average motif degree, (higher is better) and the bottom row has the motif conductance (lower is better). We consider MC-SINGLE, which obtains
near-optimal motif conductance, and MC-REc-BISECTION, which is applied until the resulting cluster gets too small (less than 10 vertices) or
high conductance (more than 0.5). For quark decomposition, we only show the k-quarks with at least 10 nodes. Each subgraph is denoted by a
point; the size is shown on the x-axis and the metric is given on the y-axis. The large quarks for which the conductance computation requires
the rest of the graph (since the size is more than the half) are denoted by red circles for completeness (conductances for those are not real).

motif conductance in the bottom row. MC variants often give large
subgraphs, always with very low conductance, as expected. MC-
SINGLE (optimal cluster) has more than 1000 nodes for out+, in+,
acyclic, and cycle++. For cycle+, however, it has only five nodes.
Quarks are often small, most in the range of 10-100 nodes, and
have higher conductance scores. For out+ and cycle++, some quarks
yield comparable conductance scores with MC-Rec-BisecTION. We
also observe that a quark for acylic has a better conductance than
MC-SINGLE (which is the near-optimal as shown in [8]). Regarding
the average motif degrees (top row), quarks perform significantly
better in all the motifs (note that y-axis is in log-scale). By definition
of the quark (the connectivity constraint in particular), if the size
is n, the number of motifs is at least n — 2 (for k = 1, a single
motif is a valid subgraph and can be extended by a new node that
creates a new motif, keeping the motif count n — 2). This ensures a
lower bound, "T_z (close to 1), for average motif degree in quarks.
In general, quarks tend to be smaller in size when compared to
MC results, have consistently higher average motif degrees, and
comparable conductance scores for some motifs. Overall, the top-
down partitioning approach in the motif clustering is likely to
result in larger subgraphs in varying quality whereas the bottom-
up computation in quark decomposition yields smaller subgraphs
with larger average motif degrees.

Next we compare quark decomposition with TY [58]. For EAT net-
work, TY reports maximum cycle-truss number of 3 and maximum
flow-truss number of 10. For each maximum truss subgraph, we
checked the quarks that are the most similar. Figure 4 presents the
results for cycle-truss, flow-truss, and their corresponding quarks
with size and average motif degree information. For cycle- and
flow-truss, we calculate the induced cycle and acyclic motif degrees
(i.e., bidirectional edges are not included). Next to each quark, we
denote the size of its intersection with the truss. Various types of

quarks are able to obtain almost all the nodes in those trusses. 70 of
77 nodes in cycle-truss are obtained with 15 quarks and all of the
45 nodes in flow-truss are given in 15 other quarks. This verifies
the artificial over-representation of cycle- and flow-trusses due to
the non-induced nature. Overall, treating the bidirectional edges
as atomic units enables finding diverse subgraphs while correctly
capturing the semantics of pairwise relationships.

Lastly, we compare quarks with (2, 3) nucleus decomposition [50],
which ignores edge directions. We observe that incorporating the
edge directions results in more diverse subgraphs. The number of
subgraphs (of any quality) obtained by each quark decomposition
is significantly larger than what nucleus decomposition yields. As
an anecdotal example, we show a subgraph found by the nucleus
decomposition in Figure 5. The direction-oblivious subgraph con-
tains words related to astronomy and space. Quark decompositions
capture several diverse contexts related to those words. Thanks
to the overlapping quarks, in+ finds two subgraphs that contain
space and stars: one in astronomy theme (uranus, venus, ...) and
another in the religious context (god, eternity, ...). It also finds an-
other subgraph in the vacation theme (sun, holiday, sand, ...). Out+
yields a subgraph in the air-flight context (sky, aircraft, wing, ...).

10
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(a) cycle-truss vs. quarks (b) flow-truss vs. quarks
Figure 4: Comparison of cycle- and flow-truss to quarks in EAT net-

work. For each quark, size of its intersection with the truss is shown.



Motif-driven Dense Subgraph Discovery
in Directed and Labeled Networks

direction-oblivious subgraph by (2,3) nucleus

astronomy cosmos earth moon planet
planetarium planets sky solar-system
space star stars sun universe
in+
god jupiter mars moon planets saturn
space star stars uranus venus

cosmos earth

moon
darkness end endless eternal eternity planet planets sky
ever everlasting finite for ever forever solar-system space star
god infinite infinity lasting long love never stars universe
perpetual space star stars universe T
out+

aeroplane air air-force aircraft flier fly

abroad away holiday holidays home
glide kite parachute plane sky soar wing

sand spain sun sunshine vacation

Figure 5: Comparison of a direction-oblivious (2, 3) nucleus and
various quarks in EAT network. The common words in quarks and
the nucleus is shown in black. Quarks by different motifs capture
different contexts for those words. in+ provides multiple contexts
for space, stars thanks to the fact that quarks are overlapping.

We also recognize that multiple meanings of the homonym words
are reflected in various k-quarks. For instance, lie is reported in
two subgraphs by cycle++: one is about incorrectness (falsehood,
untruth, ...) and the other is about staying at rest in the horizontal
position (couch, rest, ...). Overall, quark decompositions by various
motifs can locate diverse contexts for a given word thanks to the
motif-aware approach and overlapping nature of quarks.

5.1.3 Analysis of Florida Bay food web. Here we analyze the
structure of Florida Bay food web network (foodweb) where the
nodes are the compartments (i.e., organisms, species) and the edges
are the directed carbon exchanges (i.e., u — v if v eats u). Benson
et al. showed that high-quality clusters (i.e., with low conductance)
by MC only exist for out+, which implies that the organization
of compartments is better described with out+ (as opposed to the
common belief that acyclic is the key motif) [8]. They also show
that the 4 clusters by MC-k-MEANS for out+ reflect the ground-truth
subgroup classifications better than the state-of-the-art clustering
algorithms such as spectral edge clustering (with k-means and
recursive bisection) [63], InfoMap [45], and Louvain method [9].

We first compare the quarks for out+ with MC-k-MEANs. We find
7 quarks for out+, so we consider MC-K-MEANS with 7 clusters as
well as with 4 clusters. The nodes that appear in multiple quarks are
only considered to be part of their largest quark (other choices give
similar results). Table 2 presents the results for two ground-truth
classifications given in [8, 62] by four metrics: Adjusted Rand Index
(ARI), F1 score, Normalized Mutual Information (NMI), Purity [38].
Quarks clearly outperforms MC-K-MEANS variants in both
classifications by all the metrics. One particular difference is
that MC-k-MEANS considers some macroinvertebrates like preda-
tory crabs among the benthic predators of eels and toadfish whereas
quark decomposition finds all macroinvertebrates in the same sub-
graph. We believe the main reason is that MC-K-MEANS considers
motif counts from the node-perspective while quark decomposition
is based on the edges and their motif counts.

We also consider acyclic and use role-aware quark decomposition
(Algorithm 2) to determine the roles of the compartments in the
resulting quarks. For an acyclic formed by u—v, u—w, and v—w,
we define u as the prey orbit, v as the balancer orbit, and w as the
predator orbit. The maximum quark obtained by QuarkDEC (Algo-
rithm 1) and RA-QUARKDEC (Algorithm 2) is the same and contains
48 compartments. RA-QUARKDEC assigns three quark numbers for
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Table 2: foodweb classification results. Best in each row is in bold.

. Quarks MC-K-MEANS | MC-K-MEANS
out+ | Metric
(7 subgraphs) | w/ 4 clusters | w/ 7 clusters
ARI 0.3627 0.3005 0.1485
E F1 0.4869 0.4574 0.3794
5 NMI 0.5415 0.5040 0.4843
Purity 0.5968 0.5645 0.5161
ARI 0.3816 0.3265 0.1871
; F1 0.5675 0.5380 0.4601
vg NMI 0.5206 0.4822 0.4309
Purity 0.6452 0.6129 0.5645

each edge, corresponding to the three edge orbits in acyclic (each is
a union of its nodes’ orbits). We determine the role profile for each
node based on the quark numbers of its outgoing and incoming
edges. The compartments that are dominantly predator are the birds
including predatory ducks, big herons & egrets, greeb, and more.
Dominantly prey compartments include clown goby, four types of
zooplankton microfauna, and seven macroinvertebrates (includ-
ing pink and herbivorous shrimps). Lastly, the ones that have the
balancer role are the fishes, such as (bay) anchovy, sardines, and
mojarra. Note that it is not possible to understand the roles of the
compartments by QUARKDEC since each edge has a single quark
number. For instance, the average quark numbers of incoming and
outgoing edges for predatory ducks and code goby are very close,
which tells nothing about their roles.

5.1.4 Runtime performance. We measure the runtime for quark
decomposition and MC-SINGLE on all directed networks, Table 3
lists the results for large networks. MC-SINGLE (denoted M) gives
only one near-optimal cluster and quark decomposition (denoted
Q) finds all the quark numbers. Quark decomposition is faster
than MC-SINGLE for all motifs in web-ND, amazon, soc-pokec, and
liveJournal. For some configurations, such as in+in 1iveJournal,
we observe up to 10x speedup. For en-wiki, however, MC-SINGLE
is faster for all motifs. Note that MC-SINGLE runtime includes motif
adjacency construction and spectral clustering to find one cluster.
In order to find more clusters, spectral clustering needs to be run
again. However, the spectral clustering takes 36% of the total time
for en-wiki (on avg.), hence obtaining 10 clusters will increase the
runtime by 4x. All in all, although MC-SINGLE finds only one cluster,
quark decomposition is faster for most networks and motifs, and a
better choice especially when multiple subgraphs are targeted.

5.2 Signed-directed networks

Datasets. We use signed-directed networks that have categorical
labels on edges to denote one-sided positive/negative relationships
(no bidirectional edges). We have two Reddit hyperlink networks
that have directed connections among the subreddits. reddit-body
Table 3: Runtimes for large directed networks (sec). Best result in
each motif column is shown in bold.

cycle acyclic| out+ in+ cycle+ cycle++
Q M|Q M|Q M|Q M|Q M|Q M
web-ND|0.34, 3.31[4.26, 16.8[0.62, 6.3]2.11, 8.54/0.53,10.01|0.78, 9.86
amzn |0.74,3.54|3.29; 79|2.25, 132|1.92| 105(1.18; 5.29|3.23, 107
wiki |28.9114.0| 112118.2|10.91 16.4| 21.1117.7| 20.51 20.2| 47.8116.8
soc-p [23.6! 79(66.91 99/37.0! 119|34.21 139(48.9! 129(98.1! 128
live-j|37.4' 200| 180' 943| 118'1135| 126'1438| 112' 828| 289'2248
en-w | 900' 501|7746' 864|1511' 799(1709' 677| 398' 724|2223' 677
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Figure 6: Signed directed triangle motifs.

and reddit-title consider the positive and negative interactions
among users who belong to different subreddits [31]. We considered
the last interactions in the datasets. We also consider epinions, a
who-trust-whom social network [21], and slashdot which contains
the self-tagged friend/foe relationships [32]. All are obtained from
SNAP [34]. Table 4 gives the number of positive and negative edges,
motif counts, and maximum quark numbers.

Motifs. We use edge and triangle motifs, corresponding to the M
and N in Definition 4, respectively. This also ensures that quarks
can overlap with each other. There is no bidirectional edge and there
are twelve possible triangle motifs in total, as shown in Figure 6;
four cycle motifs since there is a single orbit and eight acyclic motifs
where each ++- and +-- appears in three different ways. We use the
vanilla edge as M and each of the twelve triangles (Figure 6) as N.

5.2.1 Motif counts and quark numbers. Acyclic variants are
significantly more common than the cycles in all networks. Among
the cycle variants, +++ is the most prevalent in reddit networks
and --- is the least common in all. This is also coherent with the
structural balance theory [14], which states that the triangles with
an odd number of negative links are rare. However, cycle++- is
more common than the other cycles in the epinions network. This
might be due to hierarchical status among the nodes; the lower
status nodes are likely to trust the ones with higher status but the
reverse is not true. The ratio of balanced triangles is 0.8 for reddit
networks but 0.42 for epinions. Per the maximum quark numbers,
we observe a correlation with the motif counts. Among all, only
acyclict++ yields non-trivial subgraphs with large quark numbers.
Cycle variants fail to give significant quarks.

5.22 Comparison with MC. We compare the k-quarks with the
MC-SiNGLE and MC-REc-BisecTION for acyclict++ motif in Figure 7.
Some quarks are able to obtain very low conductance scores, close
to MC results. For the average motif degrees, quarks significantly
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Table 4: Signed datasets. |V|, |E|, |E+|, and |E_| are the number
of nodes, edges, positive, and negative edges. Motif counts (see Fig-
ure 6) and corresponding maximum quark numbers are also shown.

red-body |red-title|epinions|slashdot

4l 34.7K 52.9K 125.8K 74.3K

|E| 110.8K 205.5K 581.6K 420.5K

|E4 | 102.5K 188.7K 465.4K 311.3K

[E_]| 3.3K 168K| 1163K| 109.2K

++ + 49K 7.8K 14.1K 1.2K

++ = 1.3K 1.9K 34.2K 1.3K

cycle |+ —— 166 233 10.9K 702

- == 9 13 745 86

++ + 145.7K 592.9K 1.1IM 125.0K

motif ++-a 20.0K 88.8K 37.1K 15.3K
counts ++4+-b 22.1K 88.8K 14.1K 9.0K
acylic |+ + —c 18.0K 59.3K 115.0K 15.7K

+—--a 3.4K 10.8K 88.5K 11.8K

+—--b 3.1K 10.8K 8.3K 7.8K

+—--c 6.2K 26.6K 92.1K 30.4K

-—= 1.1K 3.5K 39.7K 9.0K

max. | cycle |all 1 1-2 1-2 1
quark |acyclic|+ + + 15 20 15 6
numbers others 2-3 2-4 2-5 2-5

1

v v <
. MC-REC-BI e
o100 [0}
kel P 208 . MC-SINGLE
o
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21-) [ 506 °
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(b) Motif conductance
Figure 7: Comparison of quarks and MC [8] for acyclict++ in
reddit-body network with respect to the number of motifs per node
(left, higher is better) and motif conductance (right, lower is better).
Subgraphs with at least 10 nodes are shown. Each subgraph is de-
noted by a point; size is on the x-axis and metric is on the y-axis.

(a) Average motif degree

outperform MC-REc-BIsecTION. In particular, one quark has 284
nodes with average motif degree of 185.2.

One of the quarks by acyclict+++ has 21 subreddits about rap-
pers/singers, such as kanye and kendricklamar. The ones which
praised the others but have not received much praise (the white
node in acyclic in Figure 1) are boogalized, runthejewels, and char-
lieputh. The last two are a young rapper duo and a new Canadian
singer, respectively, with 6.6K and 279 members. On the other hand,
the subreddits that got praised by the others but have not recip-
rocated (the black node in acyclic) are theweeknd, frankocean, and
kidcudi. Those are experienced ones (active since 2010, 2005, and
2003) with tens of thousands of members in their subreddits.

5.3 Node-labeled networks

Datasets. Here we consider node-labeled undirected networks. We
use the Facebok100 dataset that contains the complete Facebook
networks of 100 American colleges from a single-day snapshot in
September 2005 [59]. Each node has multiple labels, here we only
consider the genders of the nodes (there are only two available
in the dataset; female and male) and use quark decomposition to
find subgraphs that have balanced gender ratios, i.e., close number
of females and males. Excluding the female-only institutions, the
overall average female ratio is %48.5 and there are 57 networks
with less than 50% female. We choose 18 networks with the lowest
female ratio (all have < 45%), Table 5 gives a partial list.

Motifs. We instantiate the quark decomposition in five ways, where
F/M denotes the female/male nodes: (1) M is vanilla edge and N
is triangle in the following two forms: FMM and FFM; and (2) M is
vanilla triangle, N is four-clique in the following three forms: FMMM,
FFMM, and FFFM. Also, there is no role confusion for any variant
since the graph is undirected and node labels ensure that an edge
cannot serve in different roles in its triangles in (1) (likewise for

().

5.3.1 Finding gender balanced subgraphs. Algorithmic fair-
ness is one of the most important problems in today’s automated
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Table 5: Node-labeled graphs. Statistics and avg. of the female ra-
tios in nuclei and quarks are given. V; denotes the set of female
nodes. (2,3)n and (3,4)n are the nucleus decompositions.

edge, triangle triangle, 4-clique
Quarks Quarks

FMM | FFM FMMM| FFMM| FFFM
Mich67 3.7K] 81.9K|25%|(23.0%(45.0%|50.0%|24.5%|40.0%(45.0%|51.6%
Caltech36 769 16.7K[30%|(39.4%|46.0%|52.0%(38.5%(43.1%|50.2%|52.8%
Carnegie49| 6.6K| 250.0K[37%||32.6%49.0%|52.5%|38.5%43.5%|49.5%|54.9%
MIT8 6.4K|  251.3K|37%|38.8%|48.0%|52.1%|42.0%|44.3%|50.3%(53.9%|
Stanford3 |11.6K| 568.3K|40%||46.8%|48.1%49.0%|44.1%|45.4%|49.2%|55.4%)
Cornell5 |[18.7K| 790.8K|44%|(44.3%|47.6%|51.8%|45.6%|43.7%|48.7%|54.9%)
Penn94  |41.6K 1.4M|44%||49.7%|48.4%|51.4%|52.1%|44.0%|49.8%|55.8 %
UPenn7 14.9K| 686.5K|44%||37.3%48.8%|51.1%|46.4%(45.1%|50.4%|55.4%
Average of 18 networks:|40%|(42.5%(48.2%|51.5%|44.1%|44.4%|49.7%|54.7%

V,
wi| el (2

VT1((2,3)n] (3,4)n]

world [27]. Algorithms can amplify the implicit bias in the data,
particularly based on the protected attributes like gender, race, eth-
nicity, and this can lead to unwanted consequences in criminal
justice system, hiring, credit scoring, and more [6]. The bias in the
network data is more complicated; regarding the gender attribute,
for example, the problem is not only the imbalanced gender distri-
bution but also how each gender category is connected to the other
categories. There are a few studies that analyze the implications on
information diffusion [25, 55]. In this context, the community struc-
ture in the network plays an important role and algorithms that
do not actively consider the protected attributes are likely to fail
getting fair results. Algorithms that can find balanced communities
even when there is an imbalance in the input network are essential.
Here we use quark decomposition to find subgraphs with balanced
gender ratios. As explained above, we set the input motif N in ways
to reflect the characteristics of gender balanced subgraphs.

Table 5 gives the female ratios in quarks in comparison to the
label-oblivious nucleus decomposition algorithms [50]. For each
network, we find the leaf quarks (Definition 5) and nuclei with at
least 10 nodes, calculate the female ratio in each quark or nucleus,
and then take the average of those ratios. We also show the average
ratios across all the 18 datasets at the bottom. The average female
ratio of all the networks is 40.3%. (2, 3)-nuclei have a bit better
number, 42.5%. Quarks for FMM get 48.2% and the ratios are con-
sistently good for all the networks, varying between 45% — 51.3%.
This significant jump from (2, 3)-nuclei is due to the fact that each
edge has to participate in a number of FMM triangles. Quarks for FFM
give an even better ratio, 51.5%. (3, 4)-nuclei are larger in number
and also denser than (2, 3). Its average female ratio (44.1%) is also
a bit better than (2, 3)-nuclei. Quarks for FMMM are very close to
(3,4)-nuclei but more consistent. FFMM achieves 49.7% and FFFM
gets the best: 54.7%. Note that results get better for the motifs with
larger female ratio: FMMM < FMM < FFMM < FFM < FFFM.

Quarks cannot provide a good theoretical lower bound for the
female ratio since there is no size constraint in the quark definition.
For instance, a 1-quark for FFM can possibly be formed by a pair
of connected female nodes and n male nodes that are connected
to both females; the female ratio would be 2/(n + 2) in this case.
But in practice, quarks with female-dominant motifs yield dense
subgraphs with high female ratios. Even with FMM, which implies
a 1/3 ratio (smaller than the average female ratio of the datasets),
quarks can obtain better results than the label-oblivious (2,3)-nuclei.
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Figure 8: Comparison of the female ratios in subgraphs obtained
by quark (FFFM) and (3, 4)-nucleus decompositions for UPenn?7. For
each subgraph, size is given on the x-axis, female ratio is shown on
the y-axis, and the edge density is color-coded.

We also show all the subgraphs with size, edge density, and
female ratio information obtained by quark and nucleus decomposi-
tions in UPenn7 network. Figure 8 gives (3, 4)-nuclei and quarks for
FFFM on UPenn7 network. Quarks are consistently gender balanced
when compared to the nuclei; no quark with less than 25% female
ratio exists. Note that there is a bit degradation in the number and
density of the quarks for FFFM: 216 subgraphs with 0.88 avg. edge
density, compared to the 230 (3, 4) nuclei with avg. density 0.94.
Given the consistently high female ratios, we believe that this is an
affordable loss in quality.

6 DISCUSSION

Quark decomposition offers a principled approach for motif-driven
dense subgraph discovery in heterogeneous networks by success-
fully regularizing the motif degrees to quark numbers. Our evalua-
tion shows that the k-quarks can find dense subgraphs according
to a given motif. Role-aware variant solves the role confusion prob-
lem by creating multiple quark numbers for each motif M. Overall,
quark decomposition is versatile, efficient, and extendible.

For future work, it would be interesting to investigate the other
byproducts of the quark decomposition, such as hierarchy structure.
Our initial results show limited success; detailed and meaningful
hierarchies are rare for the most motifs. Theoretical and empirical
analysis of the impact of the input motifs, M, N, on the hierarchy
structure would be interesting . Also, adapting the quark decompo-
sition for numerical attributes on nodes/edges would be promising.
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