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In Section 5 of our previous paper [1] (the proof of Theorem 2.2), it is presumed ε > 0 in 
(5.14) therein. While it works for ε > 0, the approach needs to be modified for the case ε = 0. 
The purpose of this corrigendum is to provide an alternative, which is to replace the proofs of 
Lemma 5.2 and Lemma 5.3, and is valid for both ε = 0 and ε > 0.

From (5.11), (5.10), (5.4) and (1.13) of [1],
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Thus by the mean value theorem,
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where C = s̄D/|χ | is a constant. Our goal here is to prove

‖ψ‖(t) ≤ C(t + 1)−
1
4 , t ≥ 2, (2)
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with a constant C > 0 depending on the system parameters and initial data. Once we have proved 
(2), the Sobolev inequality and the estimates on v, see (4.11), (1.13), (2.3) and (2.4) in [1], imply

‖ψ‖L∞(t) ≤ C‖ψ‖ 1
2 ‖v‖ 1

2 ≤ C(t + 1)−
1
2 , t ≥ 2. (3)

Substituting (2) and (3) into (1) gives us

‖φ‖(t) ≤ C‖ψ‖
(
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D
t

)
≤ C(t + 1)−

1
4 (4)

for t ≥ 2D/(χμK). The case t ≤ 2D/(χμK) is trivial since ‖φ‖(t) is bounded by Lemma 5.1 in 
[1]. Equation (4) is (5.24) in [1] hence Lemma 5.3 therein is justified. Lemma 5.2 is also justified 
in view of (1) and (3). The rest of the proof (after Lemma 5.3) in [1] stays valid.

To prove (2) we have the following from (1.13) and (2.1) in [1]:
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where, as in (2.1) of [1], ε1 = ε/D, ε2 = ε/χ , r = aD/(χμK) and
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By Duhamel’s principle and (5), we write
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Thus by the triangle inequality,
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(7)

Noting t ≥ 2 and by Young’s inequality and (2.3) and (2.4) in [1], (6) and (7) imply the 
following:
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I0 ≤ ‖H‖(t)‖ψ0‖L1 ≤ C(t + 1)−
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4 , (8)
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For the estimate on I1 we have
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Here I11 is treated by integration by parts with respect to t , and following the same strategy as in 
the estimate of I3.
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(13)

For the estimate of I12 we use the second equation in (2.1) of [1] to convert ut as follows.
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Combining (12)-(14) gives us

I1 ≤ C(t + 1)−
1
4 . (15)

Substituting (8)-(11) and (15) into (7), we arrive at (2).
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