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In Section 5 of our previous paper [1] (the proof of Theorem 2.2), it is presumed ¢ > 0 in
(5.14) therein. While it works for ¢ > 0, the approach needs to be modified for the case ¢ = 0.
The purpose of this corrigendum is to provide an alternative, which is to replace the proofs of
Lemma 5.2 and Lemma 5.3, and is valid for both ¢ =0 and ¢ > 0.

From (5.11), (5.10), (5.4) and (1.13) of [1],
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Thus by the mean value theorem,
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where C =5D/|x| is a constant. Our goal here is to prove
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with a constant C > 0 depending on the system parameters and initial data. Once we have proved
(2), the Sobolev inequality and the estimates on v, see (4.11), (1.13), (2.3) and (2.4) in [1], imply
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Substituting (2) and (3) into (1) gives us
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fort >2D/(xuK). Thecaset <2D/(xuK) is trivial since ||¢||(¢) is bounded by Lemma 5.1 in
[1]. Equation (4) is (5.24) in [1] hence Lemma 5.3 therein is justified. Lemma 5.2 is also justified
in view of (1) and (3). The rest of the proof (after Lemma 5.3) in [1] stays valid.

To prove (2) we have the following from (1.13) and (2.1) in [1]:
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where, asin (2.1) of [1],e1 =¢/D,ex =¢/x,r =aD/(x nK) and
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By Duhamel’s principle and (5), we write
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Thus by the triangle inequality,
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Noting ¢ > 2 and by Young’s inequality and (2.3) and (2.4) in [1], (6) and (7) imply the
following:
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For the estimate on I; we have
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Here 17 is treated by integration by parts with respect to ¢, and following the same strategy as in
the estimate of /3.
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For the estimate of 11, we use the second equation in (2.1) of [1] to convert u; as follows.
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Combining (12)-(14) gives us
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Substituting (8)-(11) and (15) into (7), we arrive at (2).
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