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Many complex systems, ranging from migrating cells to animal groups, exhibit stochastic dynamics
described by the underdamped Langevin equation. Inferring such an equation of motion from experimental
data can provide profound insight into the physical laws governing the system. Here, we derive a principled
framework to infer the dynamics of underdamped stochastic systems from realistic experimental
trajectories, sampled at discrete times and subject to measurement errors. This framework yields an
operational method, Underdamped Langevin Inference, which performs well on experimental trajectories
of single migrating cells and in complex high-dimensional systems, including flocks with Viscek-
like alignment interactions. Our method is robust to experimental measurement errors, and includes
a self-consistent estimate of the inference error.

DOI: 10.1103/PhysRevLett.125.058103

Across the scientific disciplines, data-driven methods are
used to unravel the dynamics of complex systems. These
approaches often take the form of inverse problems, aiming
to infer the underlying governing equation of motion from
observed trajectories. This problem is well understood for
deterministic systems [1–3]. For a broad variety of physical
systems, however, a deterministic description is insuffi-
cient: fast, unobserved degrees of freedom act as an
effective dynamical noise on the observable quantities.
Such systems are described by Langevin dynamics, and
inferring their equation of motion is notoriously harder: one
must then disentangle the stochastic from the deterministic
contributions, both of which contribute to shape the
trajectory. In molecular-scale systems described by the
overdamped Langevin equation, a first-order stochastic
differential equation, recently developed techniques make
it possible to efficiently reconstruct the dynamics from
observed trajectories [4–8]. Many complex systems at
larger scales, however, exhibit stochastic dynamics gov-
erned by the underdamped Langevin equation, a second-
order stochastic differential equation. Examples include
cell motility [9–13], postural dynamics in animals [14,15],
movement in interacting swarms of fish [16–18], birds
[19,20], and insects [21,22], as well as dust particles in a
plasma [23]. Due to recent advances in tracking technology,
the diversity, accuracy, dimensionality, and size of these
behavioral datasets is rapidly increasing [24], resulting in a
growing need for accurate inference approaches for high-
dimensional underdamped stochastic systems. However,
there is currently no rigorous method to infer the dynamics
of such underdamped stochastic systems.

Inference from underdamped stochastic systems suffers
from a major challenge absent in the overdamped case. In
any realistic application, the accelerations of the degrees of
freedom must be obtained as discrete second derivatives
from the observed position trajectories, which are sampled
at discrete intervals Δt. Consequently, a straightforward
generalization of the estimators for the force and noise
fields of overdamped systems fails: these estimators do not
converge to the correct values, even in the limit Δt → 0

[25,26]. To make matters worse, real data is always subject
to measurement errors, leading to divergent biases in the
discrete estimators [27]. These problems have so far
precluded reliable inference in underdamped stochastic
systems.
Here, we introduce a general framework, Underdamped

Langevin Inference (ULI), that conceptually explains the
origin of these biases, and provides an operational scheme
to reliably infer the equation of motion of underdamped
stochastic systems governed by nonlinear force fields and
multiplicative noise amplitudes. To provide a method that
can be robustly applied to realistic experimental data, we
rigorously derive estimators that converge to the correct
values for discrete data subject to measurement errors. We
demonstrate the power of our method by applying it to
experimental trajectories of single migrating cells, as well
as simulated complex high-dimensional data sets, including
flocks of active particles with Viscek-style alignment
interactions.
We consider a general d-dimensional stationary stochas-

tic process xðtÞwith components fxμðtÞg1≤μ≤d governed by
the underdamped Langevin equation
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_xμ ¼ vμ;

_vμ ¼ Fμðx; vÞ þ σμνðx; vÞξνðtÞ; ð1Þ

which we interpret in the Itô sense. Throughout, we employ
the Einstein summation convention, and ξμðtÞ represents a
Gaussian white noise with the properties hξμðtÞξνðt0Þi ¼
δμνδðt − t0Þ and hξμðtÞi ¼ 0. Our aim is to infer the force
field Fμðx; vÞ and the noise amplitude σμνðx; vÞ from an
observed finite trajectory of the process [28].
We start by approximating the force field as a linear

combination of nb basis functions b ¼ fbαðx; vÞg1≤α≤nb ,
such as polynomials, Fourier modes, wavelet functions,
or Gaussian kernels [14]. From these basis functions, we
construct an empirical orthonormal basis ĉαðx; vÞ ¼
B̂−1=2
αβ bβðx; vÞ such that hĉαĉβi ¼ δαβ, an approach that

was recently proposed for overdamped systems [8]. Here
and throughout, averages correspond to time averages
along the trajectory. We can then approximate the force
field as Fμðx; vÞ ≈ Fμαĉαðx; vÞ. Similarly, we perform a
basis expansion of the noise amplitude σ2μνðx; vÞ. Thus, the
inference problem reduces to estimating the projection
coefficients Fμα and σ2μνα.
Dealing with discreteness.—In practice, only the con-

figurational coordinate xðtÞ is accessible in experimental
data, sampled at a discrete time intervalΔt.We therefore only
have access to the discrete estimators of the velocity v̂ðtÞ ¼
½xðtÞ − xðt − ΔtÞ�=Δt and acceleration âðtÞ ¼ ½xðtþ ΔtÞ−
2xðtÞ þ xðt − ΔtÞ�=Δt2. Our goal is to derive an estimator
F̂μα, constructed from the discrete velocities and acceler-
ations, which converges to the exact projections Fμα in the
limit Δt → 0.
An intuitive approach would be to simply generalize the

estimators for overdamped systems [8] and calculate the
projections of the accelerations hâμĉαðx; v̂Þi. This expres-
sion has indeed previously been used for underdamped
systems [13,14,25,27]. We derive the correction term to this
estimator by expanding the basis functions ĉαðx; v̂Þ ¼
ĉαðx; vÞ þ ð∂vμ ĉαÞðv̂μ − vμÞ þ…, where the leading order
contribution to the second term is a fluctuating (zero
average) term of order Δt1=2. Similarly, we perform a
stochastic Itô-Taylor expansion of the discrete acceleration
âðtÞ, which has a leading order fluctuating term of order
Δt−1=2 [29]. Thus, while each of these terms individually
averages to zero, their product results in a bias term with
nonzero average of order Δt0: hâμĉαðx; v̂Þi ¼ Fμα þ
1
6
hσ2μν∂vν ĉαðx; vÞi þOðΔtÞ [30]. As expected, this bias

vanishes in the limit σ → 0, and therefore does not appear
in deterministic systems. However, it poses a problem
wherever a second derivative of a stochastic signal is
averaged conditioned on its first derivative. The occurrence
of such a bias was observed in linear systems [25,26].
Specifically, for a linear viscous force FðvÞ ¼ −γv, it was

found that hâ ĉðv̂Þi ¼ − 2
3
γ þOðΔtÞ, which is recovered

by our general expression for the systematic bias [30].
Previous approaches to correct for this bias rely on

a priori knowledge of the observed stochastic process [25],
are limited to simple parametric forms [26], or perform an
a posteriori empirical iterative scheme [13]. In contrast, by
simply deducting the general form of the bias, we obtain
our ULI estimator [30]:

F̂μα ¼ hâμĉαðx; v̂Þi −
1

6
h bσ2μνðx; v̂Þ∂vν ĉαðx; v̂Þi ð2Þ

The presence of the derivative of a basis function in the
estimator highlights the importance of projecting the
dynamics of underdamped systems onto a set of smooth
basis functions, in contrast to the traditional approach of
taking conditional averages in a discrete set of bins [4,5],
equivalent to a basis of nondifferentiable top-hat functions.
Similarly to the force field, we expand the noise

amplitude as a sum of basis functions, and derive an
unbiased estimator for the projection coefficients [30]

bσ2μνα ¼ 3Δt
2

hâμâνĉαðx; v̂Þi ð3Þ

To test our method, we start with a simulated minimal
example, the stochastic damped harmonic oscillator _v ¼
−γv − kxþ σξ [Figs. 1(a)–(e)]. Indeed, we find that even for
such a simple system, the intuitive acceleration projections
hâμĉαðx; v̂Þi yield a biased result [Fig. 1(e)]. In contrast,
ULI, defined by Eqs. (3) and (2), provides an accurate
reconstruction of the force field [Figs. 1(c) and 1(e)]. To test
the convergence of these estimators in a quantitativeway, we
calculate the expected random error due to the finite length τ
of the input trajectory, δF̂2=F̂2 ∼ Nb=2Îb, where we define
Îb ¼ ðτ=2Þσ̂−2μν F̂μαF̂να as the empirical estimate of the
information contained in the trajectory, and Nb ¼ dnb is
the number of degrees of freedom in the force field [8]. We
confirm that the convergence of our estimators follows this
expected trend, in contrast to the biased acceleration pro-
jections [Fig. 1(d)]. Therefore, ULI provides an operational
method to accurately infer the dynamical terms of under-
damped stochastic trajectories.
Treatment of measurement errors.—A key challenge in

stochastic inference from real data is the unavoidable
presence of time-uncorrelated random measurement errors
ηðtÞ, which can be non-Gaussian: the observed signal in
this case is yðtÞ ¼ xðtÞ þ ηðtÞ. This problem is particularly
dominant in underdamped inference, where the signal is
differentiated twice, leading to a divergent bias of order
Δt−3 [30]. Thus, for small Δt, even small measurement
errors can lead to prohibitively large systematic inference
errors, which cannot be rectified by simply recording
more data.
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To overcome this challenge, we derive estimators which
are robust against measurement error. These estimators are
constructed such that the leading-order bias terms cancel.
For the force estimator, we find that this is achieved by
using the local average position x̄ðtÞ ¼ 1

3
½xðt − ΔtÞ þ

xðtÞ þ xðtþ ΔtÞ� and the symmetric velocity v̂ðtÞ ¼
½xðtþ ΔtÞ − xðt − ΔtÞ�=ð2ΔtÞ in Eq. (2) [31]. Similarly,
we derive an unbiased estimator for the noise term, which is
constructed using a linear combination of four-point incre-
ments [30].
Remarkably, these modifications result in a vastly

improved inference performance in the presence of meas-
urement error [Figs. 1(f)–1(j)]. Specifically, while the bias
becomes dominant at an error magnitude jηj ∼ σΔt3=2 in the
standard estimators, the bias-corrected estimators only fail
when the measurement error becomes comparable to the
displacement in a single time-step, jηj ∼ vΔt [Fig. 1(j)]
[30]. Thus, our method has a significantly larger range of
validity extending up to the typical displacement in a single
time-frame.
Nonlinear dynamics.—Since our method does not assume

linearity,we can expand theprojection basis to include higher
order functions to capture the behavior of systems with
nonlinear dynamics. As a canonical example, we study the
stochastic Van der Pol oscillator _v ¼ κð1 − x2Þv − xþ σξ, a
common model for a broad range of biological dynamical

systems [32]. We simulate a short trajectory of this process,
with added artificial measurement error [Fig. 2(a)]. Indeed,
we find that ULI reliably infers the underlying phase-space
flow [Fig. 2(b)]. This is not limited to one-dimensional
systems, as shown by studying convergence of higher-
dimensional oscillators [Fig. 2(c)]. Importantly, this good
performance does not rely on using a polynomial basis to fit a
polynomial field: employing a nonadapted basis, such as
Fourier components, yields similarly good results [30].
To capture the Van der Pol dynamics, only the three basis

functions fx; v; x2vg are required. But can these functions
be identified directly from the data without prior knowledge
of the underlying force field? To address this question, we
introduce the concept of partial information. We can
estimate the information contained in a finite trajectory
as ÎbðnbÞ ¼ ðτ=2Þσ̂−2μν F̂μαF̂να, where F̂να are the projection
coefficients onto the basis b with nb basis functions [8]. To
assess the importance of the nth basis function in the
expansion, we calculate the amount of information it
contributes:

ÎðpartialÞb ðnÞ ¼ ÎbðnÞ − Îbðn − 1Þ; ð4Þ

which we term the partial information contributed by the
basis function bn. This approach successfully recovers the

(a)

(f) (g) (h) (i) (j)

(b) (c) (d) (e)

FIG. 1. Inference from discrete time series subject to measurement error. (a) Trajectory xðtÞ of a stochastic damped harmonic
oscillator, Fðx; vÞ ¼ −γv − kx. (b) The same trajectory represented in xv-phase space. Color coding indicates time. (c) Force field in xv-
space inferred from the trajectory in (a) using ULI with basis functions b ¼ f1; x; vg (blue arrows), compared to the exact force field
(black arrows). Inset: inferred components of the force along the trajectory versus the exact values. (d) Convergence of the mean squared
error of the inferred force field, obtained using ULI (circles) and with the previous standard approach [13,14,25,27] (squares). Dashed
lines indicate the predicted error δF̂2=F̂2 ∼ Nb=2Îb. (e) Inferred friction coefficient γ divided by the exact one as a function of the
sampling time interval Δt, comparing the previous standard approach to ULI. (f) Trajectory yðtÞ ¼ xðtÞ þ ηðtÞ (blue) corresponding to
the same realization xðtÞ in (a), with additional time-uncorrelated measurement error ηðtÞ (orange) with small amplitude jηj ¼ 0.02. (g),
(h) Force field inferred from yðtÞ using estimators without and with measurement error corrections, respectively. (i) Inference
convergence for data subject to measurement error using estimators without (circles) and with (diamonds) measurement error
corrections. (j) Dependence of the inference error on the noise amplitude jηj [same symbols as in (i)].
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relevant terms in large basis sets [inset, Fig. 2(b)]. Thus, the
partial information provides a useful heuristic for detecting
the relevant terms of the force field.
To illustrate that ULI is practical and data efficient, we

apply it to experimental trajectories of cells migrating in
two-state confinements [Fig. 2(d)]. Within their lifetime,

these cells perform several transitions between the two
states, resulting in relatively short trajectories. Previously,
we inferred dynamical properties by averaging over a large
ensemble of trajectories [13,33,34]. In contrast, with ULI,
we can reliably infer the governing equation of motion from
single cell trajectories. Here, Fðx; vÞ corresponds to the
deterministic dynamics of the system, and not to a physical
force. We employ the partial information to guide our basis
selection: indeed, it recovers the intrinsic symmetry of the
system, suggesting a symmetrized third order polynomial
expansion is a suitable choice [Fig. 2(e)]. Using this
expansion, we infer the deterministic flow field of the
system [Fig. 2(f)], which predicts trajectories similar to the
experimental ones [Fig. 2(d)]. Importantly, the inferred
model is self-consistent: reinferring from short simulated
trajectories yields a similar model [30]. Using ULI, we can
thus perform inference on small data sets, enabling “single-
cell profiling,” which could provide a useful tool to
characterize cell-to-cell variability [34,35].
To demonstrate the broad applicability of our approach,

we evaluate its performance in the presence of multiplica-
tive noise amplitudes σμνðx; vÞ, which occur in a range of
complex systems [13,14,36]. ULI accurately recovers the
space- and velocity dependence of both the force and noise
field, and the estimators converge to the exact values, even
in the presence of measurement errors [Figs. 2(g)–2(j)]. To
summarize, we have shown that ULI performs well on short
trajectories of nonlinear data sets subject to measurement
errors, and can accurately infer the spatial structure of
multiplicative noise terms.
Collective systems.—A major challenge in stochastic

inference is the treatment of interacting many-body sys-
tems. In recent years, trajectory data on active collective
systems, such as collective cell migration [11,12] and
animal groups [19–22,37], have become readily available.
Previous approaches to such systems frequently focus on
the study of correlations [19,38,39] or collision statistics
[12,17,37], but no general method for inferring their
underlying dynamics has been proposed. The collective
behavior of these systems, ranging from disordered swarms
[22] to ordered flocking [19], is determined by the interplay
of active self-propulsion, cohesive and alignment inter-
actions, and noise. Thus, disentangling these contributions
could provide key insights into the physical laws governing
active collective systems.
We consider a simple model for the dynamics of a 3D

flock with Viscek-style alignment interactions [11,40–42],

_vi ¼ pi þ
X
j≠i

½fðrijÞrij þ gðrijÞvij� þ σξi; ð5Þ

where vi ¼ _ri, rij ¼ rj − ri, vij ¼ vj − vi, and pi ¼ γðv20 −
jvij2Þvi is a self-propulsion force acting along the direction
of motion of each particle i. Here, f and g denote the
strength of the cohesive and alignment interactions,

(a)

(d)

(g) (h)

(i)

(j)

(e) (f)

(b) (c)

FIG. 2. Inferring nonlinear dynamics and multiplicative noise.
(a) xv trajectory of the stochastic Van der Pol oscillator,
Fðx; vÞ ¼ κð1 − x2Þv − x with measurement error. (b) Partial
information of the 28 basis functions of a sixth-order polynomial
basis in natural information units (1 nat ¼ 1= log 2 bits), inferred
from the trajectory in (a). Inset: Corresponding force field
reconstruction. (c) Convergence of the inference error for the
d-dimensional Van der Pol oscillator Fμðx; vÞ ¼ κμð1 − x2μÞvμ −
xμ (no summation, 1 ≤ μ ≤ d) with d ¼ 1;…; 6, using a third-
order polynomial basis. (d) Microscopy image of a migrating
human breast cancer cell (MDA-MB-231) confined in a two-state
micropattern (scale bar: 20 μm). Experimental trajectory of the
cell nucleus position, recorded at a time interval Δt ¼ 10 min
(blue), and simulated trajectory using the inferred model (red).
(e) Partial information for the experimental trajectory in (d),
projected onto a third-order polynomial basis. (f) Deterministic
flow field inferred from the experimental trajectory in (d).
(g) Trajectory of a Van der Pol oscillator with multiplicative
noise σ2ðx; vÞ ¼ σ0 þ σxx2 þ σvv2 (colormap). (h),(i) Inferred
versus exact components of the force and noise term, respec-
tively, for the trajectory in (g). (j) Inference convergence of the
multiplicative noise amplitude, using Eq. (3) without measure-
ment error (circles), with measurement error (squares), and using
the error-corrected estimator (diamonds). The error saturation at
large τ is due to the finite time step. Dashed line: predicted error

δ bσ2= bσ2 ∼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NbΔt=τ

p
[8].
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respectively, as a function of interparticle distance rij. This
model exhibits a diversity of behaviors, including flocking
[Fig. 3(a)]. Intuitively, one might expect that ULI should
fail dramatically in such a system: a 3D swarm of N
particles has 6N degrees of freedom, and “curse of
dimensionality” arguments make this problem seem intrac-
table. However, by exploiting the particle exchange sym-
metry and radial symmetry of the interactions [30], we find
that ULI accurately recovers the cohesion and alignment
terms [Figs. 3(b) and 3(c)], and captures the full force field
[Figs. 3(d) and 3(e)]. Furthermore, simulating the inferred
model yields trajectories with high similarity to the input
data [Fig. 3(f)]. This example illustrates the potential of
ULI for inferring complex interactions from trajectories of
stochastic many-body systems.
In summary, we demonstrate how to reliably infer the

force and noise fields in complex underdamped stochastic
systems. We show that the inevitable presence of discrete-
ness and measurement errors result in systematic biases
that have so far prohibited accurate inference. To circum-
vent these problems, we have rigorously derived un-
biased estimators, providing an operational framework,
Underdamped Langevin Inference, to infer underdamped
stochastic dynamics [43]. Our method provides a new
avenue to analyzing the dynamics of complex high-dimen-
sional systems, such as assemblies of motile cells [11,12],
active swarms [19,21,22,37], as well as nonequilibrium
condensed matter systems [23,32,44].
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