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Symmetric Bloch oscillations of matter waves
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Cold atoms in an optical lattice provide an ideal platform for studying Bloch oscillations. Here we extend
Bloch oscillations to two superposed optical lattices that are accelerated away from one another, and show
that these symmetric Bloch oscillations can split, reflect, and recombine matter waves coherently. Using the
momentum parity symmetry of the Hamiltonian, we map out the energy band structure of the process and
show that superpositions of momentum states are created by adiabatically following the ground state of the
Hamiltonian. The relative phase and velocity of the two lattices completely determines the trajectories of
different branches of the matter wave. Experimentally we demonstrate symmetric Bloch oscillations using cold
cesium atoms where we form interferometers with up to 240h̄k momentum splitting, one of the largest coherent
momentum splittings achieved to date. This work has applications in macroscopic tests of quantum mechanics,
measurements of fundamental constants, and searches for new physics.
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I. INTRODUCTION

Bloch oscillations and the Wannier-Stark ladder of matter
waves in a periodic potential were first studied in the context
of electrons in crystals in the presence of a homogenous
electric field [1,2]. Their counterintuitive nature—that a con-
stant electric field should lead to an AC current—triggered
a debate about their existence [3,4] and led to the formula-
tion of criteria for their observability [5]. Bloch oscillations
were first experimentally observed in semiconductor super-
lattices [6,7], and have since been studied in a wide variety
of physical systems ranging from Bloch oscillations of light
[8,9] to cold atoms [10,11]. Bloch oscillations are particu-
larly useful in matter wave interferometers, which have found
widespread applications in precision measurements of fun-
damental constants [12–15], tests of the weak equivalence
principle [16,17] and dark energy theories [18,19], as well as
precision gravimetry [20,21] and gradiometry [22].

Matter wave interferometers use optical lattices to coher-
ently transfer momentum, allowing one to split a matter wave
between different spatial trajectories, then later recombine
them and create interference. The measured phase can be
increased by using larger momentum splitting between the
trajectories [12,13]; Bloch oscillations enable such a process
[10,23] and have recently shown to coherently transfer the
momentum of more than 104 photons to the atoms [24]. With
two superposed lattices that are independently accelerated, it
might even be possible to realize large-momentum-transfer
beam splitters for matter waves, by performing Bloch oscilla-
tions of two different velocity classes of atoms simultaneously
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[25]. However, this process has never been demonstrated.
Near velocity degeneracy of the two accelerated lattices, it
was expected that nonadiabatic effects would prevent coher-
ent ground state dynamics. Instead, Bloch oscillations have
only been used to accelerate atoms after an initial momentum
splitting was already made with Bragg diffraction [12,26],
resulting in up to 408h̄k momentum splittings [27,28], where
k is the wave vector of the laser.

Here we show that Bloch oscillations of atoms in two
symmetrically accelerated lattices can remain adiabatic and
coherent even as the two lattices pass through velocity de-
generacy. Theoretically, we show that it is possible to split,
reflect, and recombine atoms simply by allowing them to
adiabatically follow the ground state of the Hamiltonian while
accelerating the two lattices. The dynamics result in symmet-
ric Bloch oscillations where the matter wave is in a coherent
superposition of interacting with each of the two lattices, and
the relative phase and velocity of the two lattices completely
determines the trajectories of different branches of the matter
wave. Experimentally we demonstrate symmetric Bloch oscil-
lations and realize 240 h̄k coherent momentum splitting of a
superposition state as well as interferometry with nearly fully
guided matter waves.

Using only accelerated lattices for momentum transfer is
desirable for a number of reasons. In comparison with res-
onant processes such as Bragg diffraction, (1) the dynamics
are adiabatic, and can therefore be much more efficient per
h̄k momentum transfer, (2) the processes require less laser
power, (3) the velocity class of atoms addressed can be larger,
relaxing temperature requirements on atom clouds, and (4)
the optical lattices prevent thermal expansion of the atom
cloud, further relaxing temperature requirements. As a result,
symmetric Bloch oscillations can find applications in next-
generation precision measurements of fundamental constants,

2469-9926/2020/102(5)/053312(15) 053312-1 ©2020 American Physical Society

https://orcid.org/0000-0001-6205-7932
https://orcid.org/0000-0002-2139-6468
https://orcid.org/0000-0002-0555-7399
https://orcid.org/0000-0003-0194-7266
https://orcid.org/0000-0003-0636-5951
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.053312&domain=pdf&date_stamp=2020-11-13
https://doi.org/10.1103/PhysRevA.102.053312


ZACHARY PAGEL et al. PHYSICAL REVIEW A 102, 053312 (2020)

FIG. 1. (a) Density plot of |ψ (x, t )| from numerical simulation of
a symmetric beam splitter with a lattice depth U0 = 1.3Er and ramp
rate r = 0.2 ω2

r . Timing sequence is indicated on the left. The initial
wave function is a Heisenberg-limited Gaussian wave packet with
velocity spread 0.05 vr , corresponding to our experimental tempera-
ture. Frequencies are ramped for one Bloch period, corresponding
to a 4h̄k splitting between arms. (b) Experimental time of flight
fluorescence trace showing an efficient 60h̄k beam splitter with a
ramp rate r = 0.26 ω2

r , and a lattice depth of around 1.5 Er .

searches for gravitational waves, and searches for new physics
[17,19,29–31].

Section II presents a theoretical treatment of the Hamil-
tonian and the resulting dynamics. The Hamiltonian is
symmetric under momentum inversion, allowing one to simul-
taneously diagonalize the Hamiltonian in momentum parity
and energy. For the beam splitter process described above,
we show that an atom adiabatically follows the even-parity
ground state of the Hamiltonian. The momentum-parity basis
is then used to study effects such as nonadiabatic losses,
dynamics while ramping the lattices through velocity degen-
eracy, and effects from different experimental imperfections.

In Sec. III we describe how we implement symmetric
Bloch oscillations experimentally. We use the relative phase
between the two lattices to control the populations in the two
lattices after ramping through velocity degeneracy; in effect,
this creates a fully tunable matter-wave switch each time the
lattices cross through velocity degeneracy. We demonstrate
interferometers created only using accelerated lattices, includ-
ing a Mach-Zehnder (MZ) interferometer with a momentum
splitting of up to 240h̄k. Prior to this work, the largest momen-
tum transfer from a single beam splitter operation was 24h̄k
[32]. In order to confirm that symmetric Bloch oscillations
are first-order phase coherent, we implement a differential

measurement between two simultaneous MZ interferometers
and see a stable phase between the interferometer outputs.

II. THEORY

When two superposed optical lattices are far apart in ve-
locity, it is well known that atoms can undergo efficient Bloch
oscillations in either of the lattices [12,26–28]. Near velocity
degeneracy, however, it was previously expected that near-
resonant effects from the second lattice would cause too large
of a perturbation to the standard Bloch oscillation dynamics
to permit an efficient beam splitter. We first derive a unitary
transformation that isolates the relevant dynamics (Sec. II A),
and then show that the effects of the perturbation terms can
remain small within the rotating wave approximation under
certain conditions (Sec. II B). Throughout the analysis it is
useful to stress the parallels between Bloch oscillations in
a single lattice (SLBO) and Bloch oscillations in two lat-
tices which we call dual-lattice Bloch oscillations (DLBO).
The simplified DLBO Hamiltonian is nearly identical to the
SLBO Hamiltonian, differing only in being invariant under
momentum inversion. As a result, the eigenstates of DLBO
are symmetric and antisymmetric in momentum space.

We then study nonadiabatic loss mechanisms, which in-
clude standard Landau-Zener tunneling due to avoided level
crossings as well as higher-order transitions which are pos-
sible due to perturbation terms dropped in the rotating wave
approximation (Sec. II C). These conditions are combined to
place limits on the permissible lattice accelerations and lattice
depths, and in total they allow for the DLBO to approach
100% efficiency in the limit of slowly accelerated lattices
(Sec. II D). The dynamics are also discussed for lattices that
are ramped through velocity degeneracy, showing that an off-
set laser phase can be used to coherently control the output
population in the two lattices (Sec. II E). Lastly, we discuss
some important experimental requirements in order to realize
these methods in the laboratory (Sec. II F), and supporting
material is left for the Appendixes.

A. Hamiltonian and unitary transformation

SLBO are most easily studied using a coordinate system
that is comoving with the accelerating lattice [33–35], and a
unitary transformation can be used to boost the Hamiltonian
between the atom’s inertial frame and the accelerating lattice
frame [35,36]. For DLBO, it is not possible to transform to
a coordinate system that is simultaneously comoving with
both lattices. Instead, using a basis of momentum states it
is possible to independently transform each momentum state
so that positive (negative) momentum states are boosted to a
coordinate system comoving with the positively (negatively)
accelerating lattice. This unitary transformation is shown to
capture the core coherent dynamics of DLBO. The analysis
that follows is relevant for zero temperature atoms comoving
with the initially degenerate lattices: a similar analysis can be
explored for atoms with a small initial velocity, and the band
structure of the Hamiltonian can still be studied. One finds
that any initial velocity breaks the parity symmetry discussed
in the following sections and leads to asymmetric dynamics.
A full analysis is beyond the scope of this paper.
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FIG. 2. (a) Counterpropagating lasers form two superposed opti-
cal lattices. The frequency differences are ω+ − ω = ω − ω− = ωm.
(b) Energy-momentum level diagram showing relevant atomic states.
The lasers drive two-photon transitions between neighboring mo-
mentum states such that the atom remains in the same internal ground
state. The detuning from the excited states � (many GHz) is much
larger than the separation between adjacent ground states (few kHz).
As the modulation frequency ωm is swept away from zero, the lasers
sweep past a succession of two-photon transitions between adjacent
ground states. Off-resonant transitions driven by the extra oscillating
terms in the Hamiltonian [Eq. (4)] are omitted for clarity.

We begin with a Hamiltonian containing the AC Stark
shift of two superposed optical lattices that are far detuned
from single-photon transitions (see Fig. 2). Experimentally,
the lattices are realized with one upward-propagating laser
frequency ω1, and two downward-propagating frequencies
ω2 ± ωm(t ). We work in the frame of reference where ω1 =
ω2 = ω, and denote ω± = ω ± ωm(t ). The relative speed of
the two lattices is given by ωm(t )/k, where k is the wave num-
ber of the laser defined as k = ω/c. Two-photon transitions
leave atoms in the same internal state but different external
momentum states. After adiabatic elimination of the excited
state, the Hamiltonian for an atom in these two optical lattices
can be written as

HBBS(t ) = p̂2

2m
+ U0

2

[
cos

(
2k+x̂ +

∫ t

0
ωm(t ′)dt ′ + φ1

)

+ cos

(
2k−x̂ −

∫ t

0
ωm(t ′)dt ′ + φ2

)]

= p̂2

2m
+U0 cos (2kx̂) cos

(∫ t

0
ωm(t ′)dt ′ + φ0

)
.

(1)

Constant terms are dropped in the second form, which will
be used for analytics and simulation. The wave numbers

k+ = ω+/c and k− = ω−/c are nearly identical to k, so we
approximate k+ ≈ k− ≈ k in the second form as well. For
Cs atoms separated by n = 1000 photon momenta, k+, k−,
and k differ by less than one part in 108. The phases φ0,
φ1, and φ2 are offsets between counterpropagating lasers at
time t = 0. The lattice depthU0 = h̄�2

R/(2�) is the AC Stark
shift for a single, far-detuned lattice [33], where � is the
detuning from the excited state and �R is the on-resonance
Rabi frequency between the ground and excited states. The
integral

∫ t
0 ωm(t ′)dt ′ keeps track of the phase evolution of

the lattice for time dependent frequencies. Specializing to
linear frequency ramps with rate r, the modulation frequency
can be written as ωm(t ) = rt so that the lattices are velocity
degenerate at time t = 0 and

∫ t
0 ωm(t ′)dt ′ = rt2/2. This ramp

rate corresponds to an acceleration a = r/2k.
We now write the Hamiltonian in a momentum-state basis

|l〉, where l is an integer that labels the basis states such that
the state |l〉 has 2l h̄k momentum. Plane-wave basis states are a
good approximation to initial atomic states when the velocity
spread is much smaller than the recoil velocity vr = h̄k/m.
Projected into this basis, the Hamiltonian is

H =
∞∑

l=−∞

[
(2l h̄k)2

2m
|l〉〈l|

+U0 cos

(
rt2

2
+ φ0

)
(|l〉〈l + 1| + |l〉〈l − 1|)

]
. (2)

The unitary transformation used to boost the different mo-
mentum states in this Hamiltonian is given by

U =
∞∑

l=−∞
ei

d (t )|p̂|
h̄ ei

θ (t )
h̄ |l〉〈l| , (3)

where d (t ) ≡ at2/2 + φ0/k and θ (t ) ≡ ma2t3/6. The first
term corresponds to the position translation operator, and the
absolute value sign ensures that positive momentum states
are translated with the positive-moving lattice while negative
momentum states are translated with the negative-moving lat-
tice. The d (t ) term in Eq. (3) also absorbs the offset phase
φ0 into the definition of the basis states. The θ (t ) in Eq. (3)
corresponds to a global energy shift to each state such that
the energy of the ground states comoving with either of the
lattices stays near zero at all times [36]. See Appendix A for
the analogous treatment of the SLBO Hamiltonian.

The transformed Hamiltonian H ′ = UHU † + ih̄ dU
dt U

† is

H ′ =
∑
l �=0

[
(2|l|h̄k − Ft )2

2m
|l〉〈l|

+ U0

2
(1 + eisl (rt

2+2φ0 ) ) |l〉〈l + 1|

+ U0

2
(1 + e−isl (rt2+2φ0 ) ) |l〉〈l − 1|

]
+ (Ft )2

2m
|0〉 〈0|

+ U0

2
(1 + e−i(rt2+2φ0 ) )(|0〉〈1| + |0〉〈−1|), (4)
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FIG. 3. Energy band structures of the reduced Hamiltonian (5)
as a function of the lattice velocity, using a lattice depth U0 = 1Er .
The lattice velocity is defined as vL = rt , such that the two lattices at
time t have velocities ±vL . (a) Even-parity and (b) odd-parity energy
eigenvalues starting from velocity degeneracy. (c) Combined band
structure as lattices are ramped through velocity degeneracy.

where sl ≡ l/|l| is the sign of the momentum state, and the
force F = rm/2k is adapted from the standard treatment of
SLBO [33].

The nearest-neighbor coupling terms proportional to
|l〉〈l ± 1| include both a stationary term and an oscillating
term. In a two-level system, oscillating coupling terms of this
type can be dropped under a rotating wave approximation
(RWA) provided the terms time average to zero on the relevant
timescale of the dynamics. Here the couplings between neigh-
boring momentum states can be treated with an analogous
RWA to arrive at the reduced DLBO Hamiltonian:

HDLBO =
l=∞∑
l=−∞

(2|l|h̄k − Ft )2

2m
|l〉〈l|

+ U0

2
(|l〉〈l + 1| + |l〉〈l − 1|). (5)

The validity of this RWA is discussed in Sec. II B, where we
derive bounds on the ramp rate for which the Hamiltonian in
Eq. (5) is valid.

The DLBO Hamiltonian in Eq. (5) and the SLBO Hamil-
tonian derived in Appendix A are nearly identical; the only
difference is the absolute value |l| in the kinetic energy term
for HDLBO, which makes HDLBO symmetric under momentum
inversion. This symmetry is already apparent in the original
Hamiltonian (1), which commutes with a momentum inver-
sion operator. Using a basis of momentum eigenstates that are
also eigenstates of momentum parity, the even- and odd-parity
states are decoupled.

Figures 3(a) and 3(b) show the energy band structure over
time of the Hamiltonian (5) for even- and odd-parity states,

respectively, where the two lattices are ramped away from ve-
locity degeneracy beginning at time t = 0. The energy bands
are calculated by finding eigenvalues of a truncated version
of the Hamiltonian in Eq. (5) as a function of time. Note
that in plotting the energy bands in Fig. 3(c), for negative
times we use the substitution d (t ) → −d (t ) in Eq. (3) in
order to use the coordinate frame comoving with the lattices
driving amplitude towards zero momentum instead of driving
amplitude away from zero momentum.

A beam splitter can be understood as an atom adiabatically
following the even-parity ground state of the Hamiltonian (5),
and higher efficiency beam splitters can be achieved by mak-
ing the process more adiabatic. At every time t = (a + 1/2)TB
for integers a � 0, where the Bloch period TB = 8ωr/r and
the recoil frequency ωr = h̄k2/(2m), there is a level cross-
ing such that the even-parity state receives an additional 4h̄k
momentum splitting; the positive momentum component of
the even state acquires an additional +2h̄k momentum and
the negative momentum component acquires an additional
−2h̄k momentum. This is the momentum-symmetric analog
of SLBO in the ground Bloch band, where atoms receive
2h̄k momentum at the edge of the first Brillouin zone at
each avoided level crossing between the ground band and first
excited band.

B. Limits on ramp rate from the rotating wave approximation

A RWA can be used to drop the oscillating coupling terms
in Eq. (4) provided that the time average of the oscillating term
eirt

2
is 
 1 on the relevant timescale of the dynamics, namely

the duration of first level crossing between the ground even
band and the first excited even band. This crossing occurs at
time t = TB/2, and the time interval during which the level
crossing happens is given by �t = 2

√
2U0/(h̄r). A simplified

form of the resulting inequality gives an upper limit on the
ramp rate for which the RWA is valid:

r 
 4U0(2
√

2Er −U0)/h̄2, (6)

where we define the recoil energy Er = h̄ωr . The RWA is
therefore valid in the limit as r → 0. See Appendix C for a
full derivation of this condition.

The validity of the RWA can be further studied with nu-
merical simulation. By solving for the evolution of |ψ (t )〉
from the Hamiltonian in Eq. (4), the full state evolution is
captured without using the RWA. We numerically integrate
the Schrödinger equation with the Hamiltonian Eq. (2). The
initial condition is a free particle (plane-wave) momentum
state which is adiabatically loaded into the lattice; the modula-
tion frequency is then ramped to its final value, and finally the
lattice is adiabatically unloaded. This state evolution can then
be compared with the eigenstates of the Hamiltonian in Eq. (5)
after the RWA. Figure 4(a) shows the probability amplitude
in the ground state of Eq. (5) during the frequency ramping,
defined as P0(t ) = |〈+gs(t )|ψ (t )〉|2. The state |+gs(t )〉 denotes
the even-parity ground state of Hamiltonian (5) as a function
of time. Figure 4(a) shows that the true state evolution is
nearly identical to that of the ground state of the Hamiltonian
in Eq. (5), which generally holds true when Eq. (6) is satisfied.

To stress the parallel between SLBO and DLBO, we also
plot the probability amplitude in the ground state for SLBO
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FIG. 4. Comparison of single-lattice and dual-lattice Bloch oscil-
lations. (a) Probability amplitude in the ground state over three Bloch
periods. A lattice depth of U0 = 0.5Er and ramp rate r = 0.02ω2

r

are used for both simulations. The lattice depth is intentionally cho-
sen to be low in order to illustrate loss mechanisms for SLBO in
comparison with DLBO. See text for discussion. (b) Simulation of
efficiencies after one level crossing. For each ramp rate, the lattice
depth is chosen to keep the Landau-Zener (LZ) parameters constant
at �1 = �2 = 0.3 such that the expected losses from the LZ formula
are constant. The atom begins in the ground state at time t = 0 with
ωm(t = 0) = 0 and φ0 = 0.

using eigenstates calculated from the Hamiltonian in Eq. (A4)
in Appendix A. In both SLBO and DLBO, the states pass
avoided level crossings at times t = (a + 1/2)TB for integer a,
where there is mixing with the second band as well as Landau-
Zener tunneling losses, which are discussed in Sec. II C. The
dual-lattice simulation does not project perfectly onto the
ground eigenstate around time t = 0 due to the perturbation
terms dropped in the RWA.

C. Limits on ramp rate from Landau-Zener
tunneling and higher-order transitions

Nonadiabatic Landau-Zener losses arise from the level
crossings in Fig. 3 between the first and second even-parity
energy bands. For SLBO with weak lattices and slow ramp
rates, the survival probability per Bloch oscillation is given
by PLZ = 1 − e−2π�1 where �1 = U 2

0 /(4h̄2r) is the Landau-
Zener parameter [37,38]. For ramp rates r < ω2

r , this formula
also describes losses from all level crossings of the DLBO
Hamiltonian, Eq. (5), except for the two level-crossings at
t = ±TB/2. These two crossings between even-parity eigen-
states have an energy gap that is increased by a factor of

√
2,

as derived in Appendix B. The Landau-Zener parameter �2

for these two crossings is therefore given by �2 = U 2
0 /2h̄2r.

All subsequent crossings in DLBO have the same energy gap
as SLBO and are described by the same tunneling parameter
�1. The dual-lattice beam splitter is therefore more robust to
Landau-Zener losses at the first level crossing than SLBO at a
fixed lattice depth U0, as shown in Fig. 4(a).

Figure 4(b) shows the simulated efficiency of a single
Bloch oscillation at a constant Landau-Zener parameter for
both the SLBO and DLBO Hamiltonians in Eqs. (2) and
(A1), respectively. The efficiency is defined as the total pop-
ulation in the desired final momentum states relative to the
initial population. In order to have the same expected Landau-
Zener losses for both simulations, the SLBO lattice depth is
increased by a factor of

√
2 for each ramp rate compared

to the DLBO simulation such that �1 = �2 = 0.3. There is
asymptotic agreement with the Landau-Zener formula for
ramp rates r 
 ω2

r for both single-lattice and dual-lattice level
crossings, as well as additional oscillatory behavior of the
DLBO efficiency compared to the SLBO efficiency owing to
the oscillatory terms dropped in the RWA.

The rotating terms being dropped in the RWA can also
contribute to higher-order processes that couple amplitude
from the ground band to higher energy bands, and are further
discussed in Appendix D. The dominant loss channel is a
third-order transition that couples the first and second energy
levels around time t = TB/6. These higher-order losses place
a lower limit on the ramp rate for a fixed lattice depth, below
which losses from the ground band begin to be appreciable.

D. Comparison of limits on the ramp rate

The RWA condition in Eq. (6) and Landau-Zener tun-
neling losses both place an upper limit on the ramp rate.
For Landau-Zener losses, efficient dynamics require r 

(π/2)U 2

0 h̄
2; whenU0 �

√
2Er , the RWA condition in Eq. (C3)

is automatically satisfied if the lattice depth is large enough
to sufficiently suppress Landau-Zener tunneling. The RWA
that leads to the Hamiltonian (5) is therefore asymptotically
correct in the limit r → 0 provided that h̄

√
r 
 U0 �

√
2Er .

On the other hand, whenU0 �
√

2Er , both the RWA condition
and the standard Landau-Zener criterion begin to fail because
the time windows for successive transitions begin to overlap
non-negligibly.

Higher-order losses place a lower limit on the ramp rate,
and for r � ω2

r , this limit and the upper limits on the ramp
rate from Landau-Zener losses and the RWA condition can
all easily be satisfied. Because of the nonlinear scaling of
these different limits on the ramp rate, the maximum possible
efficiency of the processes quickly approaches 1 as r → 0; for
r = 0.5ω2

r , the maximum efficiency of the initial 4h̄k momen-
tum splitting in a Bloch beam splitter is already >99%.

Figure 5 illustrates beam splitter losses as a function of
the ramp rate r and the lattice depth U0. Losses towards the
top-left of the plot correspond to Landau-Zener tunneling
losses, and losses towards the bottom-right correspond to
higher-order transitions. Moving towards higher lattice depths
and ramp rates, the maximum efficiency of the beam splitter
decreases because of the competing loss mechanisms.

The two loss channels result in nonzero wave function
amplitude in momentum states different from the target states,
and these additional momentum states could contribute to
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FIG. 5. Numerical simulation of beam splitter losses showing the
dependence on the two most important parameters in the Hamilto-
nian: frequency ramp rate and lattice depth. Darker color corresponds
to lower losses, or higher efficiency. The simulation includes adia-
batic loading of lattice, frequency ramping for four Bloch periods,
and adiabatic unload, such that the final momentum splitting is 16h̄k.
Efficiency is defined as the probability amplitude on the desired
momentum states after unloading the lattice. See text for discussion
of loss mechanisms.

parasitic interferometers. This analysis is beyond the scope of
the paper, however we note that there exist methods to reduce
the effects of parasitic interferometers [39].

E. Crossing through velocity degeneracy

In addition to a beam splitter, one can also ramp the two
lattices through velocity degeneracy to create atom mirrors
and combiners. This process has previously been attempted
experimentally [40], but the dynamics were seen to be inef-
ficient and uncontrolled because the ramp rate, lattice depth,
and relative phase between lattices were not optimized. The
intuition for the dynamics through a level crossing are de-
scribed below, and for a more mathematical treatment see
Appendix E.

Consider two optical lattices with velocities that are ini-
tially far apart. One arm of an interferometer that is initially
comoving with one of the two lattices can be understood as
a superposition of an even-parity and an odd-parity ground
state. Relative phase shifts between the even and odd states
causes amplitudes to add constructively or destructively for
positive or negative momentum states, which means that a
controlled relative phase shift between the even- and odd-
parity states can be used to control the momentum distribution
of the atomic state after crossing through velocity degeneracy.

Figure 3(c) shows the band structure as the lattices are
ramped through velocity degeneracy at time t = 0. Far from
velocity degeneracy, the even and odd ground state energy
bands overlap and have the same level crossing structure. Near
time t = 0, however, these energy bands deviate because, by
definition, an odd-parity state in momentum space cannot

have amplitude on the zero-momentum basis state |0〉. As a
result, when crossing through velocity degeneracy the odd-
parity ground state has no level crossing coupling momentum
into or out of the zero momentum state, so the even parity
ground state passes through two additional level crossings at
times t = ±TB/2 compared to the odd parity ground state.

Through the coherent interactions with photons from each
of the lattices, the relative phase φ0 of the two optical lattices
is ultimately added to amplitude in the even-parity state, but
not the odd-parity state. As a result, the offset phase φ0 can
coherently control the population in the two lattices after a
degeneracy crossing. This allows one to create reflection or
recombination pulses in an interferometer, and together with
the beam splitter process described previously, this comprises
a full set of atom-optics tools for atom interferometry (see
Fig. 6 for experimental implementation).

F. Experimental considerations

The dynamics of symmetric Bloch oscillations are sensitive
to the initial velocity distribution of an atom. Efficient beam
splitter dynamics are observed for atoms with velocity spreads
of more than σv = 0.5vr , where σv is the standard deviation
in velocity of a Heisenberg-limited Gaussian wave packet.
However, this spatial separation does not necessarily result
in a superposition state in momentum space. For matter wave
sources where different velocity classes are uncorrelated, only
amplitude within a certain momentum window �p results in
a superposition state, and amplitude to the left (right) of this
window in momentum space will preferentially follow the
right-moving (left-moving) lattice [25]. Intuitively, this can
be understood by considering the dynamics in the Brillouin
zone. When an atom begins at zero velocity, symmetric Bloch
oscillations apply a force in both directions, and the quasimo-
mentum can be thought of as being ramped in both directions
simultaneously such that the state reaches both edges of the
Brillouin zone at the same time, splitting the atom symmet-
rically in a superposition state. If the atom has some initial
velocity, however, it will reach one edge of the Brillouin zone
before the other, and as a result amplitude will preferentially
be driven by this first transition.

Numerical integration of the Hamiltonian (1) can be used
to solve for evolution of a wave function ψ (x, t ) with arbi-
trary initial conditions (see Fig. 1) using the Crank-Nicolson
method to discretize the Schrödinger equation [41,42]. These
simulations confirm that faster ramp rates result in higher
fidelity superposition states in momentum states, which in
turn results in higher contrast interferometers.

Diffraction phases are fundamental to any asymmetric
Bragg diffraction beam splitter [43,44], and must be ac-
counted for in precision measurements [12]. For symmetric
Bloch oscillations, if the center of the initial atomic velocity
distribution is nonzero, the initial state has some projection
onto the odd-parity eigenstates which leads to asymmetry and
diffraction phases. The symmetry of the Bloch beam splitter
(see Fig. 1) ensures that there is no diffraction phase that
is fundamental to the technique. An initial velocity of the
atoms, however, breaks the symmetry and creates a diffrac-
tion phase between interferometer arms. The numerical study
discussed in Appendix F shows that there are “magic” lattice
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FIG. 6. Experimental realization of a Bloch beam splitter (yel-
low), reflection (red), transmission (blue), and recombination (green)
as lattices are ramped through velocity degeneracy. (a) Space-time
trajectories. (b) Intensity profiles of the ω2 ± ωm(t ) interferometry
beams, which are measured by imaging the laser beams on a pho-
todiode just before entering the vacuum chamber. The profiles show
beats between the two frequencies, which is the temporal part of the
potential in the Hamiltonian (1). Time t = 0 indicates when ωm = 0.
Different phase offsets φ0 result in different beat profiles on the
beam. (c) Fluorescence traces of atoms from time-of-flight imaging
showing the resulting distribution after various operations.

depths where the diffraction phase vanishes. For realistic ex-
perimental control over the stability of the lattice depth, the
diffraction phase can be limited to ±10 mrad, independent of
the momentum splitting. Increasing the momentum splitting
will therefore fractionally suppress the diffraction phase, and
diffraction phases can also be measured directly by varying
the time between pulses in an interferometer. Note also that an
ensemble of atoms with different center velocities will result
in phase spreading in an interferometer.

The analytic results derived for Landau-Zener tunneling
and the rotating wave approximation only apply to slow ramp
rates that satisfy the condition in Eq. (6). Experimentally, we
use larger ramp rates of up to r = 10ω2

r and lattice depths
around 8Er in order to maximize interferometer contrast,
which is a region of parameter space that breaks the assump-
tions used to derive this inequality. Although the analytical
efficiency predictions break down in this regime, we still
observe reasonably efficient dynamics both numerically and
experimentally. In fact, the velocity bandwidth of the beam
splitter is larger at faster ramp rates which results in higher
contrast interferometers. See Fig. 5 for an illustration of a
beam splitter for different values of lattice depth and ramp
rate. Notably, even in regions of parameter space outside
where the RWA is valid, one can still achieve relatively low
loss beam splitters.

III. EXPERIMENT

Our experimental apparatus has been described previously
in [12]. A magneto-optical trap of cesium atoms is launched
vertically in an atomic fountain. The cloud is further cooled
to a few hundred nK using polarization gradient cooling and

Raman sideband cooling. Three successive Raman transitions
prepare the atom in the internal state |F = 3,mF = 0〉 with a
vertical velocity spread around 0.05 recoil velocities vr .

The frequencies ω1 and ω2 in the Hamiltonian (1) are
ramped in the laboratory to compensate for Doppler shifts
from gravitational acceleration of the atoms such that in the
atom’s inertial frame, ω1 = ω2 = ω. The optical lattice is de-
tuned by +80 GHz (blue) from the Cs D2 line, and is formed
from a roughly Gaussian beam with 1/e waist of about 3 mm
that is retroreflected. The frequency components ω1 and ω2±
are cross polarized and a quarter waveplate is placed in front
of the retroreflecting mirror such that the desired lattices are
formed upon retroreflection. The laser intensity is actively
stabilized by feeding back to the drive power of an acousto-
optic-modulator (AOM) [45].

The modulation frequency ωm(t ) from the Hamiltonian
in Eq. (1) determines the velocity splitting between the two
lattices. It is generated experimentally by mixing the output
of an AD9959 digital frequency synthesizer with a 10-MHz
clock and low-pass filtering the output, after which ωm(t )
is mixed into the drive frequency for an AOM to generate
frequency sidebands that are written onto the laser. The off-
set phase φ0 is a tunable parameter on the digital frequency
synthesizer.

A. Atom optics with symmetric Bloch oscillations

To create a beam splitter, atoms are adiabatically loaded
into two velocity-degenerate lattices that initially add con-
structively to form a single lattice, which corresponds to
ωm = 0 and φ0 = 0 at time t = 0 in Eq. (1). The modulation
frequency is then ramped linearly at a rate r such that ωm = rt
and the two lattices accelerate away from one another. The
resulting momentum distribution is then measured using time-
of-flight detection, as shown in Fig. 1(b). For a ±2n-photon
beam splitter, the final atomic state after the beam splitter is
mostly in the |±n〉 states, with a small number of atoms left in
the |0〉 state.

In addition to an initial beam splitter, a full interferometer
sequence requires reflection pulses to reverse momentum of
the interferometer arms and a recombination pulse to interfere
the two arms together. We find that varying the offset phase φ0

between the two lattices from 0 to π controls the population
in the two lattices after the degeneracy crossing, varying from
reflection to transmission with a beam splitter/recombination
behavior at an intermediate φ0. This phase also dictates the
interference (“beat”) between the two optical lattices at the
time of the modulation frequency zero crossing, as shown
in Fig. 6(b). The optimal phase offsets φ0 are found which
maximize population in the desired output channels, as shown
in Fig. 6. Note that the optimal phase offset φ0 is dependent
on both the ramp rate and the lattice depthU0; the beat profiles
shown in Fig. 6(b) are specific to the lattice depth and ramp
rate used experimentally, and will need to be optimized anew
if either parameter is changed. This is due to the fact that
the dynamical phase φd in Eq. (E3) is a function of both
the ramp rate and the lattice depth. For the parameters used
in our experiment, the simulated efficiencies are similar to
those realized experimentally, but experimentally we see more
atoms lost to the zero momentum state.

053312-7



ZACHARY PAGEL et al. PHYSICAL REVIEW A 102, 053312 (2020)

FIG. 7. Experimental realization of a Mach-Zehnder interferometer. (a) Interferometer geometry, laser intensity profile, and profile of
the modulation frequency ωm vs time. The time interval T is defined based on ωm-zero crossings. A time offset can be used to open the
interferometer to eliminate interference, while δT = 0 leads to maximum contrast. (b) Sample fluorescence trace of a T = 8.5 ms, 60h̄k
MZ interferometer. (c) and (d) Histogram of population fractions for 60h̄k and 240h̄k momentum splittings, respectively, in T = 8.5 ms
interferometers. Population fraction is defined as (A − B)/(A + B) where A and B are populations in the two output ports. (e) Contrast versus
momentum splitting for closed and open interferometers. For all data points, ωm is ramped at a rate of r/(2π ) = 249 MHz/s.

B. Mach-Zehnder interferometer

Combining these techniques, we implement a MZ interfer-
ometer, see Fig. 7. The sequence starts with a Bloch beam
splitter that is ramped to some final momentum splitting ni.
After this, a reflection sequence is performed and the phase φ0

in the Hamiltonian Eq. (1) is arranged as shown in Fig. 6(b).
The two halves of the wave function are then interfered using a
recombination sequence and the outputs are separated to some
final momentum state n f .

To optimize the contrast of the detected interferences, we
need to separate signal atoms from background atoms that
arise from loading and unloading the lattices. Using n f > ni
separates “signal” atoms from those backgrounds in time-of-
flight imaging, see Fig. 7(b).

A ramp rate for ωm of r = 2π × 249 MHz/s = 9.3 ω2
r and

a lattice depth of around 8 recoil energies (for each lattice in-
dividually) are used, as these parameters resulted in the largest
interferometer contrast. The phases φ0 for the two degeneracy
crossings were also optimized experimentally to maximize
contrast. In between different interferometer operations, we
switch the direction of the modulation frequency ramp by
switching RF frequency sources for the modulation frequency
ωm(t ), and we adiabatically unload the lattice during this time
to avoid losses from the ground state.

We observe up to 40% contrast in a T = 8.5 ms, 20h̄k
interferometer where atoms are guided in the lattices during
16.7 ms of the 17 ms interferometer duration [Fig. 7(e)].
Because of vibrational noise in the experiment, it was not
possible to observe a stable fringe, so contrast was determined
by measuring the fluctuations in the output populations on a
histogram. Without changing the laser intensity profile, mo-
mentum transfer is increased by changing the profile of ωm

as shown in Fig. 7(a), and contrast is observed up to 240h̄k
momentum splitting.

C. Gradiometer

Observing contrast in an interferometer does not show that
the interferometer is phase stable. In order to show phase
stability and first-order coherence [46], we also perform a
differential measurement between two MZ interferometers
in a gradiometer configuration, see Fig. 8. In this config-
uration, phase noise from vibrations is common to both
MZ interferometers, so the differential measurement can
reveal a stable relative phase. The two MZ interferome-
ters are separated vertically by roughly 11 cm by using a
500h̄k Bloch beam splitter with a ramp rate of r = 2π ×
249 MHz/s = 1.9 ω2

r . Within each MZ, a momentum splitting
of 20h̄k, an interferometer time Ti = 10 ms, and a ramp rate
of r = 2π × 249 MHz/s = 9.3 ω2

r are used. The slower ramp
rate for the first beam splitter minimizes background atoms
in the time-of-flight traces, and the faster ramp rate during the
interferometer maximizes contrast. Phase stability is observed
between the interferometers by plotting the relative popula-
tions parametrically [see Fig. 8(b)].

If there is no differential phase acquired between the in-
terferometers, one sees perfect correlation in the outputs, and
common-mode vibration noise causes data to fall at different
points on this line. Instead, we see that the outputs are an-
ticorrelated, owing to a ±π/2 phase shift imprinted on the
upper and lower MZ interferometers, respectively, during the
opening pulse of the interferometer. Similar phases are well
known in higher-order Bragg transitions, and come directly
from Schrödinger equation dynamics [45]. Note that this

053312-8



SYMMETRIC BLOCH OSCILLATIONS OF MATTER WAVES PHYSICAL REVIEW A 102, 053312 (2020)

FIG. 8. (a) Schematic of a dual-lattice gradiometer. A and B are
populations in output ports of one MZ, and C and D are populations
in output ports of the second MZ. (b) Parametric plot of data taken
using ns = 125 and Ts = 150 ms for �z ≈ 11 cm vertical splitting
between the two MZ interferometers. Within the interferometers,
ni = 5 and T = 10 ms, and nf = 10 to resolve the outputs. The dark
line is an ellipse fit to the δT = 20 μs data.

phase is not permitted from symmetry arguments: the opening
of the upper and lower interferometers around time Ts are
asymmetric, since upper (lower) arm has positive (negative)
velocity prior to the splitting.

Differential phase shifts between the two MZs results
in an elliptical distribution in the parametric plot. We find
that a timing delay δT of the final recombination, as de-
fined in Fig. 8(a), introduces a controlled phase difference
into the interferometer that scales linearly with the timing
delay �φ = (40 rad/ms)δt . Differences in gravity between
the two MZs also creates a differential phase shift which is
proportional to the gravity gradient. However, this phase is
around 5 mrad for the parameters used experimentally and
is too small to be observed. The phase coherence between
the two MZs demonstrates that the technique is first-order
coherent and phase stable, and can therefore be used for
measurements in atom interferometry. We achieve as large
as 50% contrast in the differential measurement, which is
similar to the largest contrast we ever observed with Bragg
diffraction in the same instrument. The contrast is higher than
the contrast in the Mach-Zehnder interferometers in Fig. 7
because the lattice in the gradiometer configuration is turned

off when the lattices are not being accelerated. The timing
delay causes loss of contrast because of not fully closing the
interferometer.

IV. CONCLUSIONS AND OUTLOOK

We have developed several techniques for coherently con-
trolling superpositions of momentum states by generalizing
Bloch oscillations to two independently accelerated optical
lattices. First, the Hamiltonian was treated analytically, and
it was shown that the dynamics can produce efficient and
coherent atom optics elements, even when the lattices pass
through velocity degeneracy. For slow ramp rates, the process
is adiabatic and atoms can adiabatically follow the even-
parity ground state of Hamiltonian (5). When ramping lattices
through velocity degeneracy, the populations in the two lat-
tices can be controlled by changing the relative phase of the
two optical lattices, allowing for all atom-optics elements
required to form an interferometer. Using only accelerated
lattices, we create LMT interferometers with high contrast,
and we showed that the resulting dynamics were first-order
coherent using a differential measurement.

Compared to existing atom optics techniques [26,27,47],
DLBO offer a number of advantages. Applications with
constraints on laser power and free-fall distance, such as
space-based interferometry [48,49] or portable gravimeters
[21], can use these techniques to maximize momentum trans-
fer and thus sensitivity. Being based on adiabatic processes,
these methods are robust to fluctuations in experimental pa-
rameters like lattice depth or laser frequency [33]. Symmetric
Bloch oscillations are more robust to small laser intensity
variations than Bragg diffraction beam splitters, and can elim-
inate systematic phase shifts known as diffraction phases
[44,50,51]. Moreover, large momentum transfer can be ob-
tained with modest laser power, whereas in multiphoton Bragg
diffraction the required laser intensity scales proportional to
n2 or even n4, if scattering losses are to be kept constant [52].
In contrast, the laser power required for DLBO is independent
of the momentum splitting, relaxing the laser power require-
ments in an experiment. Compared to combinations of Bragg
diffraction and Bloch oscillations [26,28], DLBO requires less
laser power and can achieve higher efficiencies. For exam-
ple, two sequential 4h̄k double-Bragg beam splitters used in
Ref. [27] use a peak lattice depth of 3 − 4Er and achieve a
total efficiency around 90%, and higher-order double Bragg
pulses require considerably more laser power. In contrast, the
60h̄k beam splitter in Fig. 1(b) uses a lattice depth of 1.5Er

while achieving an efficiency greater than 90%.
A generalization of these dual-lattice techniques shows

promise for new measurements of the fine-structure constant
α. A set of realistic experimental parameters are outlined in
Appendix H, where we show that 108 rad of phase are attain-
able. This paves the way for a measurement of α at the 10−11

level, an order of magnitude improvement on existing mea-
surements. Another generalization of the Bloch beam splitter
uses a multiphoton, 4nh̄k transition to open the interferometer
where n > 1. Our numerical simulations show that this mul-
tiphoton process also leads to an efficient beam splitter for
appropriate ramp rates and lattice depths, see Appendix D for
further discussion.
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APPENDIX A: UNITARY TRANSFORMATION
FOR SINGLE-LATTICE BLOCH HAMILTONIAN

In an inertial frame initially comoving with the atoms, the
SLBO Hamiltonian can be written as

H =
∞∑

l=−∞

(
(2l h̄k)2

2m
|l〉〈l| +U0e

i( rt2

2 +φ0 )(|l〉 〈l + 1|

+ |l〉 〈l − 1|)
)

. (A1)

The Hamiltonian, Eq. (A4), is derived by transforming this
Hamiltonian, Eq. (A1), into a rotating frame that puts the time
dependence of the rotating terms into the diagonal. This is
achieved with the following unitary:

U =
∞∑

l=−∞
ei

d (t )p̂
h̄ ei

θ (t )
h̄ |l〉〈l| (A2)

=
∞∑

l=−∞
eil (

rt2

2 +φ0 )ei
ma2t3

6h̄ |l〉〈l| , (A3)

with d (t ) ≡ at2/2 + φ0/k and θ (t ) ≡ ma2t3/6. This same
transformation is used in Ref. [53], and it is almost identical
to the transformation used in Eq. (3), except there is no longer
a absolute value sign on the momentum operator. Acting on
the Hamiltonian, Eq. (A1), with the unitary transformation in
Eq. (A2) results in HSLBO:

HSLBO =
∞∑

l=−∞

(2l h̄k − Ft )2

2m
|l〉〈l|

+ U0

2
(|l〉〈l + 1| + |l〉〈l − 1|). (A4)

The Ft term that appears in the kinetic energy is related to the
quasimomentum kq through the relation h̄kq = Ft .

APPENDIX B: SYMMETRIZED HAMILTONIAN

The Hamiltonian in Eq. (5) can be explicitly symmetrized
by applying a rotation to the basis states. This is achieved
by rotating to new basis states that are symmetric and anti-
symmetric combinations of the free-space momentum basis
states, namely we will have (unnormalized) even parity basis
states |+l〉 = |l〉 + |−l〉 and odd parity states |−l〉 = |l〉 −
|−l〉. The zero momentum state remains unchanged under this
rotation, as it is already an even-parity state. The following

rotation matrix achieves this transformation:

R = |0〉〈0| +
∑
l>0

1√
2

(|l〉〈l| + |−l〉〈−l|)

+ 1√
2

(|l〉〈−l| − |−l〉〈l|). (B1)

The Hamiltonian (5) can then be rotated to the symmetric
Hamiltonian Hsym = RHDLBO RT to arrive at the following:

Hsym = (Ft )2

2m
|0〉〈0| +

∑
l>1

(
(2|l|h̄k − Ft )2

2m
(|+l〉〈+l |

+ |−l〉〈−l |) + U0

2
(|+l〉 (〈+l+1| + 〈+l−1|)

+ |−l〉 (〈−l+1| + 〈−l−1|))
)

+ U0

2
(|+1〉 〈+2|

+ |−1〉〈−2|) + U0√
2

(|0〉 〈+1| + |+1〉 〈0|). (B2)

In this rotated basis, there is no coupling between |0〉 and
|−1〉, so we can explicitly see why the odd-parity states have
no level crossing at times t = ±TB/2 in Fig. 3(c). Moreover,
the coupling between |0〉 and |+1〉 is

√
2 larger than any

of the other couplings, resulting in suppressed Landau-Zener
tunneling from the level crossings of the even-parity ground
state at times t = ±TB/2 in Fig. 3(c).

APPENDIX C: ROTATING WAVE
APPROXIMATION CONDITION

To make the rotating wave approximation (RWA) in
Eq. (4), we average the oscillating term eirt

2
over the dura-

tion of the transition between momentum states. This term is
oscillating most slowly around the first level crossing between
the first and second even bands at time t = TB/2. In the limit
of small lattice depths U0 
 4Er , the energy gap Eg(t ) near
this level crossing is given by

Eg(t ) =
√
h̄2r2(t − TB/2)2 + 2U 2

0 , (C1)

such that the center of the level crossing occurs at time
t = TB/2, and the duration of the level crossing is �t =
2
√

2U0/h̄r.
Taking the time average of the rotating term eirt

2
over the

duration of the level crossing gives the following:

〈eirt2〉 ≈ − ih̄2r

4U0
eiα

U0 cos β − 2
√

2iEr sin β

8E2
r −U 2

0

, (C2)

where we define α = 2(8E2
r +U 2

0 )/(h̄2r) and β = 8
√

2ErU0/

(h̄2r), and we have assumed that r 
 2(2
√

2Er −U0)2/h̄2.
The rotating term can be dropped so long as this average is
small compared to 1, i.e., when

|〈eirt2〉| <
h̄2r

4U0(2
√

2Er −U0)

 1 (C3)

or equivalently, r 
 4U0(2
√

2Er −U0)/h̄2. We note that
varying the time window of integration in Eq. (C2) changes
the numerical factors in Eq. (C3), but not the limiting behavior
as r → 0.
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FIG. 9. Simulations of one Bloch period of a Bloch beam splitter
illustrating losses from the ground band due to higher-order transi-
tions. The states used for determining the probability amplitude are
even-parity eigenstates of Hamiltonian (5). A slow ramp rate is used
so that the various transitions are resolved from one another. (a) The
first losses to occur are due to a third-order transition coupling the
ground state and first excited state. (b) A much larger lattice depth
shows a number of different higher-order transitions. Before time
t = TB/2 there are four separate higher-order resonances between the
ground state and first excited state that transfer population between
the levels. Around time t = 0.6 TB there is a transition between the
ground state and the second excited state.

APPENDIX D: HIGHER-ORDER LOSS MECHANISMS

When the lattice depth is too large, the oscillating terms
dropped in the rotating wave approximation from the Hamil-
tonian in Eq. (4) can contribute to higher-order parasitic
transitions. The dominant loss mechanism at ramp rates r 

ω2
r is a third-order (six-photon) process coupling the states

|0〉 and |+1〉 around time t = TB/6, where |+l〉 refers to the
symmetrized basis states derived in Appendix B. There are
two possible energy and momentum conserving pathways for
the transition to occur; |0〉 → |+1〉 → |0〉 → |+1〉 and |0〉 →
|+1〉 → |+2〉 → |+1〉. For lattice depths much less than the
spacing between energy levels, U0/2 
 4Er , the effective
coupling between these states scales like (U0/2)3/(4Er )2,
which is the same scaling as the Rabi frequency in higher-
order Bragg diffraction [52,54].

During a Bloch beam splitter, the laser frequencies are
swept across this parasitic resonance, as seen in Fig. 9(a),
which can be thought of as a parasitic level crossing between
|0〉 and |+1〉; for an efficient Bloch beam splitter, ampli-
tude should remain in |0〉 by tunneling through this level
crossing diabatically. To first order, the adiabatic population

transfer to the state |+1〉 during this level crossing is given by
PLZ = 1 − e−2π� ≈ 2π� when the Landau-Zener parameter
� is close to zero. For U0 
 8Er and r 
 ω2

r , we therefore
expect losses from the Bloch beam splitter Ploss = 2π�3 ∝
(ω2

r /r)(U0/8Er )6 where �3 ∝ (ω2
r /r)(U0/8Er )6. This scaling

of the higher-order losses in the limit of r → 0 agrees with
our numerical simulations.

In addition to the third-order process discussed above,
there are an infinite number of these higher-order processes
that conserve energy and momentum, but the transition rates
are highly suppressed at lower lattice depths. Figure 9(b) show
the result of a simulation with an increased lattice depth,
to a regime in which many of these higher-order transitions
can couple amplitude to higher-excited states. The parameters
chosen for this simulation happen to drive five of these higher-
order transitions within the first Bloch period. A ramp rate
r 
 ω2

r is chosen for the simulation so that the transitions
are well resolved. In contrast, Fig. 4(a) illustrates negligible
higher-order losses because all higher-order transitions are
highly suppressed at lower lattice depths.

APPENDIX E: CROSSING THROUGH
VELOCITY DEGENERACY

The dynamics while crossing through velocity degeneracy
are determined by studying the eigenstates of the DLBO
Hamiltonian, Eq. (5). An initial momentum state |n〉, where
n > 0, can be decomposed as

|n〉 = 1√
2

(|+n〉 + |−n〉), (E1)

where are the symmetric and antisymmetric combinations
of the free-space momentum basis states |±n〉 as derived in
Appendix B. Similarly, |−n〉 can be decomposed as

|−n〉 = 1√
2

(|+n〉 − |−n〉). (E2)

Without loss of generality, we restrict our attention to one
arm of an interferometer with momentum |n〉. Then when one
of the two lattices is initially comoving with the state |n〉,
this state will be loaded into the ground state of the DLBO
Hamiltonian in Eq. (5) as a superposition of odd-parity and
even-parity ground states according to Eq. (E1).

Crucially, relative phase shifts between the even- and odd-
parity eigenstates cause amplitude to add constructively or
destructively for the positive momentum or negative momen-
tum states; for example, if the state |−n〉 acquires a π phase
shift relative to the state |+n〉, then the state |n〉 in Eq. (E1) will
transform the the state |−n〉 in Eq. (E2). There are two sources
of relative phase shifts between the even- and odd-parity
states as the lattices are swept through velocity degeneracy.
First, since these states are energy eigenstates of the Hamil-
tonian, there is a dynamical phase difference φd between the
two states given by φd = (1/h̄)

∫
dt ′(E−(t ′) − E+(t ′)), where

E± denotes the energy of the even- and odd-parity ground
states over time, as shown in Fig. 3(c). Since the even- and
odd-parity states have different level structure near the degen-
eracy crossing, this gives a nontrivial phase shift. In addition,
there are two additional level crossings for the even state
near velocity degeneracy compared to the odd-parity state, as
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discussed in Appendix B. These level crossings correspond to
transferring photons to and from the laser field, so the phase
of the laser field is imparted to the atomic state during these
crossings.

Laser phase is a well known source of phase in atom
interferometers, and is the primary phase contribution for
certain interferometer configurations such as Mach-Zehnder
interferometers [55]. In a single optical lattice, laser phase
arises when the position of the laser standing wave shifts
position with respect to the atom, resulting in a phase shift
�φ = 2k�x. In the case of two optical lattices, there is an
additional degree of freedom, namely the relative position of
the two lattices. This changes the offset phase φ0 in Eq. (1),
and it is reasonable to expect this phase term to play a coherent
role in the dynamics.

There are two ways to understand the laser phase effects,
mathematically and physically. Mathematically, one can see
that the even-parity state is shifted relative to the odd-parity
state from the definition of the unitary transformation in
Eq. (3). As mentioned previously, the sign on d (t ) in Eq. (3)
is changed at time t = 0, which changes the phase offset on
every basis state except for the zero momentum state |0〉.
Just before time t = 0, the odd-parity ground state is ap-
proximately given by |−gs〉 = (e−iφ0 |1〉 − e−iφ0 |−1〉)/

√
2 =

e−iφ0 |−1〉, whereas after time t = 0 the state becomes |−gs〉 =
(eiφ0 |1〉 − eiφ0 |−1〉)/

√
2 = eiφ0 |−1〉. The odd state is there-

fore phase shifted by 2φ0. Since the state |0〉 is unchanged, the
even- and odd-parity states see a relative phase shift of 2φ0.
Physically, the nature of the degeneracy crossing is a result of
constructive or destructive interference between amplitudes.
Since there are two additional level crossings of the even
state compared to the odd state, the even state receives a laser
phase shift φl = 2φ0. At time t = TB, after the two additional
crossings, both the even- and odd-parity states are mostly
superpositions of the states |±l〉, but the extra phase shift of
the even state results in coherent interference and changes the
resulting output state. This phase shift can also be observed
in our numerical simulations, where the even-parity state is
phase shifted by φ0 at each of the two level crossings near
velocity degeneracy.

Up to a global phase, the new state after the degeneracy
crossing can be written as

|ψ f 〉 = 1√
2

(ei(φd+φl ) |+n〉 + |−n〉). (E3)

By controlling the phase shifts φd and φl in an experiment, one
has control over the output nature of the degeneracy crossing.
For example, arranging for φd + φl = 2mπ for some integer
m ensures that the state after the crossing will be identical to
the state before the crossing, which corresponds to transmis-
sion through the crossing. For φd + φl = (2m + 1)π for some
integer m, the output state becomes − |+n〉 + |−n〉 = |−n〉,
which has opposite momentum compared to the input state
|n〉 and corresponds to a reflection. Intermediate values of
the phase can be used to split amplitude between the two
momentum states |±n〉. In practice, it is easiest to change
φ0, and therefore φl , since this phase is directly controllable
experimentally. Our simulations show that φd also depends
on φ0 at the moment that the lattices are velocity degenerate,

FIG. 10. Numerical simulation of diffraction phase from a Bloch
beam splitter as a function of velocity with respect to the initial
optical lattice. Simulation includes adiabatically loading the lattice,
frequency ramping at a rate r = 1.0 ω2

r for four Bloch periods, then
adiabatic unloading of the lattice. See text for further discussion.

but this dependence does not prevent one from continuously
transforming between different output behaviors by changing
only φ0.

The phase φd is dependent on the lattice depth, and there-
fore the lattice depth needs to be well controlled in order to see
coherent dynamics after the zero crossing. In the limitU0 = 0,
the dynamical phase φd is given by φd = 16ω2

r /r, such that
φd 
 2π when r 
 ω2

r . WhenU0 > 0, this phase term is also
a function of the lattice depth; as a result, fluctuations in U0

lead to fluctuations in φd . Similarly, variableU0 across a finite
laser beam leads to a variable φd across an atom cloud. Both
of these effects result in unreliable zero-crossing behavior at
slow ramp rates, and both effects likely explain why we see
the largest interferometer contrast for fast ramp rates around
r = 10ω2

r .

APPENDIX F: DIFFRACTION PHASE

Here we consider the diffraction phase acquired from a
beam splitter, which is the phase difference between the pos-
itive and negative momentum components of the resulting
wave function. If the atomic state initially has some free-space
velocity with respect to the lattice, the momentum-parity sym-
metry of the problem is broken and the resulting dynamics
will be asymmetric, leading to a diffraction phase.

Figures 10 and 11 show numerical simulations of the
diffraction phase for a 16h̄k Bloch beam splitter. Almost all
of the diffraction phase from the beam splitter comes from
the first 8h̄k momentum splitting near velocity degeneracy;
further increasing the momentum transfer beyond this does
not further increase the dynamical phase φd . The diffraction
phase for a beam splitter scales like the square root of the
initial velocity, but the prefactor in front of this scaling can
be controlled by varying the lattice depth and the details of
loading or unloading the lattice. The simulations in Figs. 10
and 11 use a linear intensity ramp for loading an unloading
over a time tload = 6πω−1

r .
Figure 11 shows the diffraction phase as a function of the

lattice depth, and oscillations in the diffraction phase allow
one to operate at a “magic” lattice depth with suppressed
sensitivity to diffraction phases from missing the center ve-
locity of the atom cloud. For precision measurement, such
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FIG. 11. Numerical simulation of diffraction phase from a Bloch
beam splitter as a function of lattice depth for two different ramp
rates, using an initial velocity with respect to the lattice of 0.001vr .
Points are from simulation, lines are an interpolation between points
to guide the eye. The zero crossings in the diffraction phase allow for
one to operate an interferometer at a magic lattice depth to suppress
sensitivity to diffraction phase. See text for further discussion.

magic lattice depths could be used to significantly reduce
the diffraction phases caused by fluctuations in experimental
parameters. For example, a ramp rate of r = 4ω2

r and a lattice
depth around U0 = 5.9Er gives 80% efficient beam splitters
with minimized diffraction phase sensitivity (see Figs. 5 and
11). We can reasonably operate within 0.001vr of the center
velocity of the atom cloud, and by intensity stabilizing the
lattice to 1% fluctuations, the diffraction phase can be limited
to ±10 mrad. This diffraction phase can then be measured
directly by varying the duration of the interferometer, as done
in Ref. [12].

APPENDIX G: HIGHER-ORDER GENERALIZATION
OF THE DUAL-LATTICE METHODS

The transitions driven in DLBO are two-photon processes
that transfer 2h̄k momentum. By sweeping past multiple of
these transitions in successions, LMT can be easily achieved.
In contrast, higher-order transitions are also possible that
transfer 2nh̄k momentum in a single, multiphoton process.

It is instructive to first understand single-lattice higher-
order processes before understanding the dual-lattice analogs.
SLBO can be though of as adiabatically sweeping past a
successions of 2h̄k Bragg transitions [35]. The higher-order,
multiphoton analog has been implemented experimentally in
Ref. [56]. The laser is adiabatically swept across a 2nh̄k Bragg
resonance, which adiabatically drives a 2n-photon process.
Though not discussed directly in [56], this process can be
interpreted using a Bloch band picture where atoms have an
initial quasimomentum outside of the first Brillouin zone such
that they are loaded into higher Bloch bands. As the lattice
is accelerated, the state sweeps past a level crossing between
higher Bloch bands, and successful momentum transfer re-
quires the state to adiabatically traverse the crossing and stay
in the same Bloch band.

DLBO can be thought of as adiabatically sweeping past a
succession of “double Bragg” transitions [57]. A first-order
double Bragg transition symmetrically drives ±2h̄k Bragg
resonances such that the two arms are split by 4h̄k momentum.
One can also symmetrically drive two higher-order Bragg

resonances that transfer ±2nh̄k momentum to obtain a 4nh̄k
beam splitter, as are implemented in Refs. [27,28].

It is also possible to adiabatically sweep past a higher-order
double Bragg transition. In terms of the modulation frequency
ωm in Eq. (1), these resonances occur at ωm = (2m + 1)ωr

for integers m. A 4nh̄k adiabatic dual-lattice beam splitter
can be achieved by sweeping past one of these resonances
adiabatically. An experimental sequence would consist of the
following: (1) atoms are adiabatically loaded into a lattice
with a modulation frequency slightly below the desired res-
onance, (2) the modulation frequency is swept across the
resonance, and (3) the atoms are adiabatically unloaded from
the lattice. It is important that the modulation frequency does
not become close to other resonances during this sequence.
Unlike a Bloch beam splitter, continued ramping of ωm af-
ter a high-order beam splitter process will not transfer more
momentum, but rather alternate between increasing and de-
creasing the momentum splitting between arms. The average
momentum transfer per Bloch period will still be 4h̄k, as in
the ground band.

Our simulations of this process show that it can be more
efficient than a Bloch beam splitter at a given ramp rate.
However, there are two major downsides to these higher-order
dual-lattice techniques. First, much more laser power is re-
quired to drive the transition; the power required to drive
an nth-order Bragg transition scales sharply with the order
n, namely as n2 to maintain the same Rabi frequency, and
n4 to also maintain the same single-photon scattering rate
[52]. Second, continued ramping of the lattices does not con-
tinue to increase momentum splitting in any advantageous
way compared to using the ground band. As a result, the
first-order dual-lattice methods discussed in the main text are
easier to use if the goal is to achieve very large momen-
tum splitting without the need for significantly more laser
power.

FIG. 12. Interferometer geometry sensitive to an atomic recoil
phase. The asymmetry between the two upper (lower) trajectories
leads to a kinetic recoil phase acquired by the upper (lower) interfer-
ometer. The simultaneous conjugate interferometer configuration is
used for a differential measurement that cancels gravitational phase
to first order, and adds the recoil phases in the upper and lower inter-
ferometers. Addressing the four velocity classes of light requires one
left-moving frequency and four right-moving frequencies, similar to
Fig. 2(a).
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APPENDIX H: APPLICATION TO
RECOIL MEASUREMENTS

A generalization of DLBO shows promise for atom re-
coil measurements, and therefore in measurements of the
fine-structure constant α [12]. This section is included as an
example of the potential applications of DLBO, however we
note that before such a measurement, many new systematic
effects would likely need to be studied.

By removing the assumption that ω1 = ω2 and are inde-
pendent of time in the Hamiltonian in Eq. (1), asymmetric
lattice guided geometries can be created [36]. Additional light
frequencies can also be added to the laser in order to address
more than two velocity classes of atoms at the same time.
Figure 12 shows an example interferometer configuration that
would be sensitive to an atom recoil phase. The phase in the
interferometer can be calculated by integrating the energy of
the atoms over the various trajectories [54]. Assuming that the
time to accelerate atoms is much less than the time between
beam splitter or reflection pulses, the phase of the interferom-
eter is given by

φ = 16ωrn
2
s T, (H1)

where ωr is the recoil frequency of the matter wave,
ns is defined in Fig. 12, and T is the time between
beam splitter and reflection pulse in the upper (or lower)
interferometer.

The following outlines a set of realistic experimental pa-
rameters that could lead to 108 rad of recoil phase, an order
of magnitude improvement in sensitivity over the leading
recoil measurement [12]. Based on the results discussed in
Sec. III, atoms in our apparatus can interact with up to 1000
photons inside an interferometer where contrast can still be
observed. Choosing ni = 100, ns = 80, and n f = 100 (de-
fined in Fig. 12) requires atoms to interact with 840 photons
before closing the interferometers. For the calculation we
use a time of 80 ms between opening the interferometers
and slowing the arms back to having the same velocity,
the same timing used in Ref. [12]. Using a frequency ramp
rate of r = 250 MHz/s, cesium atoms can be accelerated
from |2nih̄k〉 to |2(ns + ni )h̄k〉 in roughly 6 ms, which is
much less than the time between different pulses. This
ramp rate was shown to give good interferometer contrast
in the main text for atoms with a vertical velocity spread
of 0.05vr .
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