

Contributions: In this work, we acknowledge this distinc-

tion between regression-oriented and control-oriented learning,

and propose a control-oriented method to learn a parametric

adaptive controller that performs well in closed-loop at test

time. Critically, our method (outlined in Figure 1) focuses on

offline learning from past trajectory data. We formalize training

the adaptive controller as a semi-supervised, bi-level meta-

learning problem, with the average integrated tracking error

across chosen reference trajectories as the meta-objective. We

use a closed-loop simulation with our adaptive controller as a

base-learner, which we then back-propagate gradients through.

We discuss how our formulation can be applied to adaptive

controllers for general dynamical systems, then specialize it

to the case of nonlinear mechanical systems. Through our

experiments, we show that by injecting the downstream control

objective into offline meta-learning of an adaptive controller,

we improve closed-loop trajectory tracking performance at

test time in the presence of widely varying disturbances. We

provide code to reproduce our results at https://github.com/

StanfordASL/Adaptive-Control-Oriented-Meta-Learning.

II. RELATED WORK

In this section, we review three key areas of work related

to this paper: control-oriented system identification, adaptive

control, and meta-learning.

A. Control-Oriented System Identification

Learning a system model for the express purpose of closed-

loop control has been a hallmark of linear system identification

since at least the early 1970s [61]. Due to the sheer amount

of literature in this area, we direct readers to Ljung [43] and

Gevers [24]. Some salient works are the demonstrations by

Skelton [68] on how large open-loop modelling errors do not

necessarily cause poor closed-loop prediction, and the theory

and practice from Hjalmarsson et al. [30] and Forssell and

Ljung [22] for iterative online closed-loop experiments that

encourage convergence to a model with optimal closed-loop

behaviour. In this paper, we focus on offline meta-learning

targeting a downstream closed-loop control objective, to train

adaptive controllers for nonlinear systems.

In nonlinear system identification, there is an emerging body

of literature on data-driven, constrained learning for dynamical

systems that encourages learned models and controllers to

perform well in closed-loop. Khansari-Zadeh and Billard [36]

and Medina and Billard [47] train controllers to imitate known

invertible dynamical systems while constraining the closed-

loop system to be stable. Chang et al. [18] and Sun et al. [73]

jointly learn a controller and a stability certificate for known

dynamics to encourage good performance in the resulting

closed-loop system. Singh et al. [66] jointly learn a dynamics

model and a stabilizability certificate that regularizes the

model to perform well in closed-loop, even with a controller

designed a posteriori. Overall, these works concern learning a

fixed model-controller pair. Instead, with offline meta-learning,

we train an adaptive controller that can update its internal

representation of the dynamics online. We discuss future work

explicitly incorporating stability constraints in Section VII.

B. Adaptive Control

Broadly speaking, adaptive control concerns parametric

controllers paired with an adaptation law that dictates how

the parameters are adjusted online in response to signals in a

dynamical system [71, 51, 41, 32]. Since at least the 1950s,

researchers in adaptive control have focused on parameter

adaptation prioritizing control performance over parameter

identification [7]. Indeed, one of the oldest adaptation laws,

the so-called MIT rule, is essentially gradient descent on the

integrated squared tracking error [46]. Tracking convergence

to a reference signal is the primary result in Lyapunov stability

analyses of adaptive control designs [52, 53], with parameter

convergence as a secondary result if the reference is persis-

tently exciting [5, 14]. In the absence of persistent excitation,

Boffi and Slotine [12] show certain adaptive controllers also

“implicitly regularize” [8, 9] the learned parameters to have

small Euclidean norm; moreover, different forms of implicit

regularization (e.g., sparsity-promoting) can be achieved by

certain modifications of the adaptation law. Overall, adaptive

control prioritizes control performance while learning param-

eters on a “need-to-know” basis, which is a principle that can

be extended to many learning-based control contexts [75].

Stable adaptive control of nonlinear systems often relies on

linearly parameterizable dynamics with known nonlinear basis

functions, i.e., features, and the ability to cancel these nonlin-

earities stably with the control input when the parameters are

known exactly [69, 70, 71, 44]. When such features cannot

be derived a priori, function approximators such as neural

networks [65, 33, 34] and Gaussian processes [25, 23] can be

used and updated online in the adaptive control loop. How-

ever, fast closed-loop adaptive control with complex function

approximators is hindered by the computational effort required

to train them; this issue is exacerbated by the practical need

for controller gain tuning. In our paper, we focus on offline

meta-training of neural network features and controller gains

from collected data, with well-known controller structures that

can operate in fast closed-loops.

C. Meta-Learning

Meta-learning is the tool we use to inject the downstream

adaptive control application into offline learning from data.

Informally, meta-learning or “learning to learn” improves

knowledge of how to best optimize a given meta-objective

across different tasks. In the literature, meta-learning has been

formalized in various manners; we refer readers to Hospedales

et al. [31] for a survey of them. In general, the algorithm

chosen to solve a specific task is the base-learner, while the

algorithm used to optimize the meta-objective is the meta-

learner. In our work, when trying to make a dynamical

system track several reference trajectories, each trajectory is

associated with a “task”, the adaptive tracking controller is the

base-learner, and the average tracking error across all of these

trajectories is the meta-objective we want to minimize.

Many works try to meta-learn a dynamics model offline that

can best fit new input-output data gathered during a particular

task. That is, the base- and meta-learners are regression-

oriented. Bertinetto et al. [11] and Lee et al. [42] back-

propagate through closed-form ridge regression solutions for

few-shot learning, with a maximum likelihood meta-objective.

O’Connell et al. [55] apply this same method to learn neural

network features for nonlinear mechanical systems. Harri-

son et al. [28, 27] more generally back-propagate through

a Bayesian regression solution to train a Bayesian prior

dynamics model with nonlinear features. Nagabandi et al.

[50] use a maximum likelihood meta-objective, and gradient

descent on a multi-step likelihood objective as the base-learner.

Belkhale et al. [10] also use a maximum likelihood meta-

objective, albeit with the base-learner as a maximization of

the Evidence Lower BOund (ELBO) over parameterized, task-

specific variational posteriors; at test time, they perform latent

variable inference online in a slow control loop.

Finn et al. [21], Rajeswaran et al. [58], and Clavera et al.

[20] meta-train a policy with the expected accumulated reward

as the meta-objective, and a policy gradient step as the base-

learner. These works are similar to ours in that they infuse

offline learning with a more control-oriented flavour. However,

while policy gradient methods are amenable to purely data-

driven models, they beget slow control-loops due to the sam-

pling and gradients required for each update. Instead, we back-

propagate gradients through offline closed-loop simulations to

train adaptive controllers with well-known designs meant for

fast online implementation. This yields a meta-trained adaptive

controller that enjoys the performance of principled design

inspired by the rich body of control-theoretical literature.

III. PROBLEM STATEMENT

In this paper, we are interested in controlling the continuous-

time, nonlinear dynamical system

ẋ = f(x, u, w), (1)

where x(t) ∈ R
n is the state, u(t) ∈ R

m is the control input,

and w(t) ∈ R
d is some unknown disturbance. Specifically, for

a given reference trajectory r(t) ∈ R
n, we want to choose u(t)

such that x(t) converges to r(t); we then say u(t) makes the

system (1) track r(t).
Since w(t) is unknown and possibly time-varying, we want

to design a feedback law u = π(x, r, a) with parameters a(t)
that are updated online according to a chosen adaptation law

ȧ = ρ(x, r, a). We refer to (π, ρ) together as an adaptive

controller. For example, consider the control-affine system

ẋ = f0(x) +B(x)(u+ Y (x)w), (2)

where f0, B, and Y are known, possibly nonlinear maps. A

reasonable feedback law choice would be

u = π0(x, r)− Y (x)a, (3)

where π0 ensures ẋ = f0(x) + B(x)π0(x, r) tracks r(t),
and the term Y (x)a is meant to cancel Y (x)w in (2). For

this reason, Y (x)w is termed a matched uncertainty in the

literature. If the adaptation law ȧ = ρ(x, r, a) is designed

such that Y (x(t))a(t) converges to Y (x(t))w(t), then we can

use (3) to make (2) track r(t). Critically, this is not the same

as requiring a(t) to converge to w(t). Since Y (x)w depends

on x(t) and hence indirectly on the target r(t), the roles of

feedback and adaptation are inextricably linked by the tracking

control objective. Overall, learning in adaptive control is done

on a “need-to-know” basis to cancel Y (x)w in closed-loop,

rather than to estimate w in open-loop.

IV. BI-LEVEL META-LEARNING

We now describe some preliminaries on meta-learning akin

to Finn et al. [21] and Rajeswaran et al. [59], so that we can

apply these ideas in the next section to the adaptive control

problem (1) and in Section VI-A to our baselines.

In machine learning, we typically seek some optimal param-

eters ϕ∗ ∈ argminϕ `(ϕ,D), where ` is a scalar-valued loss

function and D is some data set. In meta-learning, we instead

have a collection of loss functions {`i}
M
i=1, training data

sets {Dtrain
i }Mi=1, and evaluation data sets {Deval

i }Mi=1, where

each i corresponds to a task. Moreover, during each task i, we

can apply an adaptation mechanism Adapt : (θ,Dtrain
i) 7→ ϕi

to map so-called meta-parameters θ and the task-specific

training data Dtrain
i to task-specific parameters ϕi. The crux

of meta-learning is to solve the bi-level problem

θ∗ ∈ argmin
θ

1

M

(
M∑

i=1

`i(ϕi,D
eval
i) + µmeta‖θ‖

2
2

)

s.t. ϕi = Adapt(θ,Dtrain
i)

, (4)

with regularization coefficient µmeta ≥ 0, thereby producing

meta-parameters θ∗ that are on average well-suited to being

adapted for each task. This motivates the moniker “learning

to learn” for meta-learning. The optimization (4) is the meta-

problem, while the average loss is the meta-loss. The adapta-

tion mechanism Adapt is termed the base-learner, while the

algorithm used to solve (4) is termed the meta-learner [31].

Generally, the meta-learner is chosen to be some gradi-

ent descent algorithm. Choosing a good base-learner is an

open problem in meta-learning research. Finn et al. [21]

propose using a gradient descent step as the base-learner, such

that ϕi = θ − η∇θ `i(θ,D
train
i) in (4) with some learning

rate η > 0. This approach is general in that it can be applied

to any differentiable task loss functions. Bertinetto et al. [11]

and Lee et al. [42] instead study when the base-learner can be

expressed as a convex program with a differentiable closed-

form solution. In particular, they consider ridge regression with

the hypothesis ŷ = Ag(x; θ), where A is a matrix and g(x; θ)
is some vector of nonlinear features parameterized by θ. For

the base-learner, they use

ϕi = argmin
A

∑

(x,y)∈Dtrain
i

‖y−Ag(x; θ)‖22 +µridge‖A‖
2
F , (5)

with regularization coefficient µridge > 0 for the Frobenius

norm ‖A‖2F , which admits a differentiable, closed-form solu-

tion. Instead of adapting θ to each task i with a single gradient

step, this approach leverages the convexity of ridge regression

tasks to minimize the task loss analytically.

V. ADAPTIVE CONTROL AS A BASE-LEARNER

We now present the key idea of our paper, which uses

meta-learning concepts introduced in Section IV to tackle the

problem of learning to control (1). For the moment, we assume

we can simulate the dynamics function f in (1) offline and that

we have M samples {wj(t)}
M
j=1 for t ∈ [0, T] in (1); we will

eliminate these assumptions in Section V-B.

A. Meta-Learning from Feedback and Adaptation

In meta-learning vernacular, we treat a reference trajec-

tory ri(t) ∈ R
n and disturbance signal wj(t) ∈ R

d to-

gether over some time horizon T > 0 as the training data

Dtrain
ij = {ri(t), wj(t)}t∈[0,T] for task (i, j). We wish to learn

the static parameters θ := (θπ, θρ) of an adaptive controller

u = π(x, r, a; θπ),

ȧ = ρ(x, r, a; θρ),
(6)

such that (π, ρ) engenders good tracking of ri(t) for t ∈ [0, T]
subject to the disturbance wj(t). Our adaptation mechanism is

the forward-simulation of our closed-loop system, i.e., in (4)

we have ϕij = {xij(t), aij(t), uij(t)}t∈[0,T], where

xij(t) = xij(0) +

∫ T

0

f(xij(t), uij(t), wj(t)) dt,

aij(t) = aij(0) +

∫ T

0

ρ(xij(t), uij(t), wj(t); θρ) dt,

uij(t) = π(xij(t), ri(t), aij(t); θπ),

(7)

which we can compute with one of many Ordinary Differ-

ential Equation (ODE) solvers. For simplicity, we always set

xij(0) = ri(0) and aij(0) = 0. Our task loss is simply the

average tracking error for the same reference-disturbance pair,

i.e., Deval
ij = {ri(t), wj(t)}t∈[0,T] and

`ij(ϕij ,D
eval
ij) =

1

T

∫ T

0

(
‖xij(t)− ri(t)‖

2
2 + α‖uij(t)‖

2
2

)
dt,

(8)

where α ≥ 0 regularizes the control effort 1
T

∫ T

0
‖uij(t)‖

2
2 dt.

This loss is inspired by the Linear Quadratic Regulator

(LQR) from optimal control, and can be generalized to

weighted norms. Assume we construct N reference trajecto-

ries {ri(t)}
N
i=1 and sample M disturbance signals {wj(t)}

M
j=1,

thereby creating NM tasks. Combining (7) and (8) for all

(i, j) in the form of (4) then yields the meta-problem

min
θ

1

NMT





N∑

i=1

M∑

j=1

∫ T

0

cij(t) dt+ µmeta‖θ‖
2
2





s.t. cij = ‖xij − ri‖
2
2 + α‖uij‖

2
2

ẋij = f(xij , uij , wj), xij(0) = ri(0)

uij = π(xij , ri, aij ; θπ)

ȧij = ρ(xij , ri, aij ; θρ), aij(0) = 0

(9)

Solving (9) would yield parameters θ = (θπ, θρ) for the

adaptive controller (π, ρ) such that it works well on average

in closed-loop tracking of {ri(t)}
N
i=1 for the dynamics f ,

subject to the disturbances {wj(t)}
M
j=1. To learn the meta-

parameters θ, we can perform gradient descent on (9). This

requires back-propagating through an ODE solver, which can

be done either directly or via the adjoint state method after

solving the ODE forward in time [57, 19, 6, 49]. In addition,

the learning problem (9) is semi-supervised, in that {wj(t)}
M
j=1

are labelled samples and {ri(t)}
N
i=1 can be chosen freely. If

there are some specific reference trajectories we want to track

at test time, we can use them in the meta-problem (9). This is

an advantage of designing the offline learning problem in the

context of the downstream control objective.

B. Model Ensembling as a Proxy for Feedback Offline

In practice, we cannot simulate the true dynamics f or

sample an actual disturbance trajectory w(t) offline. Instead,

we can more reasonably assume we have past data collected

with some other, possibly poorly tuned controller. In particular,

we make the following assumptions:

• We have access to trajectory data {Tj}
M
j=1, such that

Tj =
{(
t
(j)
k , x

(j)
k , u

(j)
k , t

(j)
k+1, x

(j)
k+1

)}Nj−1

k=0
, (10)

where x
(j)
k ∈ R

n and u
(j)
k ∈ R

m were the state and control

input, respectively, at time t
(j)
k . Moreover, u

(j)
k was applied

in a zero-order hold over [t
(j)
k , t

(j)
k+1), i.e., u(t) = u(t

(j)
k) for

all t ∈ [t
(j)
k , t

(j)
k+1) along each trajectory Tj .

• During the collection of trajectory data Tj , the distur-

bance w(t) took on a fixed, unknown value wj .

The second point is inspired by both meta-learning literature,

where it is usually assumed the training data can be segmented

according to the latent task, and adaptive control literature,

where it is usually assumed that any unknown parameters are

constant or slowly time-varying. These assumptions can be

generalized to any collection of measured time-state-control

transition tuples that can be segmented according to some

latent task; in (10) we consider when such tuples can be

grouped into trajectories, since this is a natural manner in

which data is collected from dynamical systems.
Inspired by Clavera et al. [20], since we cannot simulate

the true dynamics f offline, we propose to first train a

model ensemble from the trajectory data {Tj}
M
j=1 to roughly

capture the distribution of f(·, ·, w) over possible values of the

disturbance w. Specifically, we fit a model f̂j(x, u;ψj) with

parameters ψj to each trajectory Tj , and use this as a proxy

for f(x, u, wj) in (9). The meta-problem (9) is now

min
θ

1

NMT





N∑

i=1

M∑

j=1

∫ T

0

cij(t) dt+ µmeta‖θ‖
2
2





s.t. cij = ‖xij − ri‖
2
2 + α‖uij‖

2
2

ẋij = f̂j(xij , uij ;ψj), xij(0) = ri(0)

uij = π(xij , ri, aij ; θπ)

ȧij = ρ(xij , ri, aij ; θρ), aij(0) = 0

(11)

This form is still semi-supervised, since each model f̂j is

dependent on the trajectory data Tj , while {ri}
N
i=1 can be

chosen freely. The collection {f̂j}
M
j=1 is termed a model

ensemble. Empirically, the use of model ensembles has been

shown to improve robustness to model bias and train-test

data shift of deep predictive models [40] and policies in

reinforcement learning [58, 39, 20]. To train the parameters ψj
of model f̂j on the trajectory data Tj , we do gradient descent

on the one-step prediction problem

min
ψj

1

Nj





Nj−1
∑

k=0

∥
∥x

(j)
k+1 − x̂

(j)
k+1

∥
∥
2

2
+ µensem‖ψj‖

2
2





s.t. x̂
(j)
k+1 = x

(j)
k +

∫ t
(j)
k+1

t
(j)
k

f̂j(x(t), u
(j)
k ;ψj) dt

(12)

where µensem > 0 regularizes ψj . Since we meta-train θ in

(12) to be adaptable to every model in the ensemble, we only

need to roughly characterize how the dynamics f(·, ·, w) vary

with the disturbance w, rather than do exact model fitting of f̂j
to Tj . Thus, we approximate the integral in (12) with a single

step of a chosen ODE integration scheme and back-propagate

through this step, rather than use a full pass of an ODE solver.

C. Incorporating Prior Knowledge About Robot Dynamics

So far our method has been agnostic to the choice of

adaptive controller (π, ρ). However, if we have some prior

knowledge of the dynamical system (1), we can use this to

make a good choice of structure for (π, ρ). Specifically, we

now consider the large class of Lagrangian dynamical systems,

which includes robots such as manipulator arms and drones.

The state of such a system is x := (q, q̇), where q(t) ∈ R
nq

is the vector of generalized coordinates completely describing

the configuration of the system at time t ∈ R. The nonlinear

dynamics of such systems are fully described by

H(q)q̈ + C(q, q̇)q̇ + g(q) = fext(q, q̇) + τ(u), (13)

where H(q) is the positive-definite inertia matrix, C(q, q̇) is

the Coriolis matrix, g(q) is the potential force, τ(u) is the

generalized input force, and fext(q, q̇) summarizes any other

external generalized forces. The vector C(q, q̇)q̇ is uniquely

defined, and the matrix C(q, q̇) can always be chosen such

that Ḣ(q, q̇)−2C(q, q̇) is skew-symmetric [71]. Slotine and Li

[69] studied adaptive control for (13) under the assumptions:

• The system (13) is fully-actuated, i.e., u(t) ∈ R
nq and

τ : Rnq → R
nq is invertible.

• The dynamics in (13) are linearly parameterizable, i.e.,

H(q)v̇+C(q, q̇)v+g(q)−fext(q, q̇) = Y (q, q̇, v, v̇)a, (14)

for some known matrix Y (q, q̇, v, v̇) ∈ R
nq×p, any vectors

q, q̇, v, v̇ ∈ R
nq , and constant unknown parameters a ∈ R

p.

• The reference trajectory for x := (q, q̇) is of the form

r = (qd, q̇d), where qd is twice-differentiable.

Under these assumptions, the adaptive controller

q̃ := q − qd, s := ˙̃q + Λq̃, v := q̇d − Λq̃,

u = τ−1(Y (q, q̇, v, v̇)â−Ks),

˙̂a = −ΓY (q, q̇, v, v̇)Ts,

(15)

ensures x(t) = (q(t), q̇(t)) converges to r(t) = (qd(t), q̇d(t)),
where (Λ,K,Γ) are chosen positive-definite gain matrices.

The adaptive controller (3) requires the nonlinearities in the

dynamics (13) to be known a priori. While Niemeyer and Slo-

tine [54] showed these can be systematically derived for H(q),
C(q, q̇), and g(q), there exist many external forces fext(q, q̇) of

practical importance in robotics for which this is difficult to do,

such as aerodynamic and contact forces. Thus, we consider the

case when H(q), C(q, q̇), and g(q) are known and fext(q, q̇) is

unknown. Moreover, we want to approximate fext(q, q̇) with

the neural network

f̂ext(q, q̇;A, θy) = Ay(q, q̇; θy), (16)

where y(q, q̇; θ) ∈ R
p consists of all the hidden layers of the

network parameterized by θy , and A ∈ R
nq×p is the output

layer. Inspired by (15), we consider the adaptive controller

q̃ := q − qd, s := ˙̃q + Λq̃, v := q̇d − Λq̃,

u = τ−1(H(q)v̇+C(q, q̇)v+g(q)−Ay(q, q̇; θy)−Ks),

Ȧ = Γsy(q, q̇; θy)
T,

(17)

If fext(q, q̇) = f̂ext(q, q̇;A, θy) for fixed values θy and A,

then the adaptive controller (17) guarantees tracking con-

vergence [69]. In general, we do not know such a value

for θy , and we must choose the gains (Λ,K,Γ). Since (17) is

parameterized by θ := (θy,Λ,K,Γ), we can train (17) with the

method described in Sections V-A–V-B. While for simplicity

we consider known H(q), C(q, q̇), and g(q), we can extend to

the case when they are linearly parameterizable, e.g., H(q)v̇+
C(q, q̇)v+g(q) = Y (q, q̇, v, v̇)a with Y (q, q̇, v, v̇) a matrix of

known features systematically computed as by Niemeyer and

Slotine [54]. In this case, we would then maintain a separate

adaptation law ˙̂a = −PY (q, q̇, v, v̇)Ts with adaptation gain

P � 0 in our proposed adaptive controller (17).

VI. EXPERIMENTS

We evaluate our method in simulation on a Planar

Fully-Actuated Rotorcraft (PFAR) with degrees of freedom

q := (x, y, φ) governed by the nonlinear equations of motion




ẍ
ÿ

φ̈



+ g =





cosφ − sinφ 0
sinφ cosφ 0
0 0 1





︸ ︷︷ ︸

=:R(φ)

u+ fext, (18)

where (x, y) is the position of the center of mass in the inertial

frame, φ is the roll angle, g = (0, 9.81, 0) m/s2 is the gravi-

tational acceleration in vector form, R(φ) is a rotation matrix,

fext is some unknown external force, and u = (u1, u2, u3) are

the normalized thrust along the body x-axis, thrust along the

body y-axis, and torque about the center of mass, respectively.

We depict an exemplary PFAR design in Figure 1 inspired by

thriving interest in fully- and over-actuated multirotor vehicles

in the robotics literature [64, 35, 16, 77, 60]. The simplified

system in (18) is a fully-actuated variant of the classic Planar

Vertical Take-Off and Landing (PVTOL) vehicle [29]. In our

simulations, fext is a mass-normalized quadratic drag force,

due to the velocity of the PFAR relative to wind blowing at a

velocity w ∈ R along the inertial x-axis. Specifically,

v1 = (ẋ− w) cosφ+ ẏ sinφ,

v2 = −(ẋ− w) sinφ+ ẏ cosφ,

fext = −

[
cosφ − sinφ
sinφ cosφ
0 0

](
β1v1|v1|
β2v2|v2|

)

,

(19)

where β1, β2 > 0 are aggregate coefficients; we use β1 = 0.1
and β2 = 1 in all of our simulations.

A. Baselines

We compare our meta-trained adaptive controller in trajec-

tory tracking tasks for (18) against two baseline controllers:
PID Control: Our simplest baseline is a Proportional-

Integral-Derivative (PID) controller with feed-forward, i.e.,

u = R(φ)T
(

g + q̈d −KP q̃ −KI

∫ t

0

q̃(ξ) dξ −KD
˙̃q

)

, (20)

with gains KP ,KI ,KD � 0. For fext(q, q̇) ≡ 0, this

controller feedback-linearizes the dynamics (18) such that the

error q̃ := q− qd is governed by an exponentially stable ODE.

The integral term must compensate for fext(q, q̇) 6≡ 0.
Adaptive Control via Meta-Ridge Regression (ACMRR):

This baseline is a slightly modified1 version of the approach

taken by O’Connell et al. [55], which applies the work

on using ridge regression as a base-learner from Bertinetto

et al. [11], Lee et al. [42] and Harrison et al. [28] to learn

the parametric features y(q, q̇; θy). Specifically, for a given

trajectory Tj and these features, the last layer A is specified

as the best ridge regression fit to some subset of points

in Tj . The features y(q, q̇; θy) are then used in the adaptive

controller (17).

To clarify, we describe ACMRR with the meta-learning

language from Section IV, specifically for the PFAR dynamics

in (18). Let Kridge
j ⊂ {k}

|Tj |−1
k=0 denote the indices of transition

tuples in some subset of Tj . The Euler approximation

ˆ̇q
(j)
k+1(A) := q̇

(j)
k +∆t

(j)
k

(
R(φ

(j)
k)u

(j)
k +Ay(q

(j)
k , q̇

(j)
k ; θy)

)
(21)

with ∆t
(j)
k

:= t
(j)
k+1 − t

(j)
k is used in the task loss

`j(Aj , Tj) =
1

|Tj |

|Tj |−1
∑

k=0

‖q̇
(j)
k+1 −

˙̂q
(j)
k+1(Aj)‖

2
2 (22)

alongside the adaptation mechanism

Aj = argmin
A

∑

k∈Kridge
j

‖q̇
(j)
k+1−

ˆ̇q
(j)
k+1(A)‖

2
2+µridge‖A‖

2
F . (23)

The adaptation mechanism (23) can be solved and differ-

entiated in closed-form for any µridge > 0 via the normal

1Unlike O’Connell et al. [55], we do not assume access to direct mea-
surements of the external force fext. Also, they use a more complex form
of (15) with better parameter estimation properties when the dynamics are
linearly parameterizable with known nonlinear features [70]. While we could
use a parametric form of this controller in place of (17), we forgo this in
favour of a simpler presentation, since we focus on offline control-oriented

meta-learning of approximate features.

equations, since ˆ̇q
(j)
k+1(A) is linear in A; indeed, only lin-

ear integration schemes can be substituted into (21). The

meta-problem for ACMRR takes the form of (4) with meta-

parameters θy for the features y(q, q̇; θy), the task loss (22),

and the adaptation mechanism (23). The meta-parameters θy
are trained via gradient descent on this meta-problem, and then

deployed online in the adaptive controller (17).

ACMRR suffers from a fundamental mismatch between

its regression-oriented meta-problem and the online problem

of adaptive trajectory tracking control. The ridge regression

base-learner (23) suggests that A should best fit the input-

output trajectory data in a regression sense. However, as we

mentioned in Section III, adaptive controllers such as the

one in (17) learn on a “need-to-know” basis for the primary

purpose of control rather than regression. As we discuss in

Section VI-D, since our control-oriented approach uses a meta-

objective indicative of the downstream closed-loop tracking

control objective, we achieve better tracking performance than

this baseline at test time.

B. Data Generation and Training

To train the meta-parameters θours := (θy,Λ,K,Γ) in

our method, and the meta-parameters θACMRR := θy in the

ACMRR baseline, we require trajectory data {Tj}
M
j=1 of the

form (10). To this end, we synthesize Tj as follows:

1) Generate a uniform random walk of six (x, y, φ) points.

2) Fit a 30-second, smooth, polynomial spline trajec-

tory qd(t) ∈ R
3 to the random walk with minimum snap

in (x, y) and minimum acceleration in φ, according to the

work by Mellinger and Kumar [48] and Richter et al. [63].

3) Sample a wind velocity w ∈ R from the training distribu-

tion in Figure 2, and simulate the dynamics (18) with the

external force (19) and the Proportional-Derivative (PD)

tracking controller

u = R(φ)T(g − kP (q − qr)− kD(q̇ − q̇r)) (24)

in a zero-order hold at 100 Hz, with kP = 10 and

kD = 0.1. This controller represents a “first try” at con-

trolling the system (18) in order to collect data. We record

time, state, and control input measurements at 100 Hz.

We record 500 such trajectories and then sample M of them to

form the training data {Tj}
M
j=1 for various M to evaluate the

sample efficiency of our method and the ACMRR baseline. We

present hyperparameter choices and training details for each

method in Appendix A. We highlight here that:

• To train the positive-definite gains (Λ,K,Γ) via gradient-

based optimization in our method, we use an unconstrained

log-Cholesky parameterization for each gain2.

• To compute the integral in the meta-problem (11) for our

method, we use a fourth-order Runge-Kutta scheme with

a fixed time step of 0.01 s. We back-propagate gradients

2Any n×n positive-definite matrix Q can be uniquely defined by 1

2
n(n+1)

parameters. For n = 2, the log-Cholesky parameterization of Q is Q = LLT

with L =

[

exp(θ1) 0
θ2 exp(θ3)

]

and unconstrained parameters θ ∈ R
3 [56].

ACKNOWLEDGEMENTS

We thank Masha Itkina for her invaluable feedback, and

Matteo Zallio for his expertise in crafting Figure 1. This

research was supported in part by the National Science

Foundation (NSF) via Cyber-Physical Systems (CPS) award

#1931815 and Energy, Power, Control, and Networks (EPCN)

award #1809314, and the National Aeronautics and Space Ad-

ministration (NASA) University Leadership Initiative via grant

#80NSSC20M0163. Spencer M. Richards was also supported

in part by the Natural Sciences and Engineering Research

Council of Canada (NSERC). This article solely reflects our

own opinions and conclusions, and not those of any NSF,

NASA, or NSERC entity.

REFERENCES

[1] V. Adetola and M. Guay. Robust adaptive MPC for

constrained uncertain nonlinear systems. Int. Journal of

Adaptive Control and Signal Processing, 25(2):155–167,

2011.

[2] A. Agrawal, S. Barratt, S. Boyd, E. Busseti, and W. M.

Moursi. Differentiating through a conic program. Journal

of Applied and Numerical Optimization, 1(2):107–115,

2019.

[3] A. Agrawal, S. Barratt, S. Boyd, and B. Stellato. Learn-

ing convex optimization control policies. In Learning for

Dynamics & Control, 2020.

[4] B. Amos, I. D. J. Rodriguez, J. Sacks, B. Boots, and

J. Z. Kolter. Differentiable MPC for end-to-end planning

and control. In Conf. on Neural Information Processing

Systems, 2018.

[5] B. D. O. Anderson and C. R. Johnson, Jr. Exponential

convergence of adaptive identification and control algo-

rithms. Automatica, 18(1):1–13, 1982.

[6] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings,

and M. Diehl. CasADi: A software framework for non-

linear optimization and optimal control. Mathematical

Programming Computation, 11(1):1–36, 2019.

[7] J. Aseltine, A. Mancini, and C. Sarture. A survey of

adaptive control systems. IRE Transactions on Automatic

Control, 6(1):102–108, 1958.

[8] N. Azizan and B. Hassibi. Stochastic gradient/mirror

descent: Minimax optimality and implicit regularization.

In Int. Conf. on Learning Representations, 2019.

[9] N. Azizan, S. Lale, and B. Hassibi. Stochastic mirror

descent on overparameterized nonlinear models: Conver-

gence, implicit regularization, and generalization. In Int.

Conf. on Machine Learning - Workshop on Generaliza-

tion, 2019.

[10] S. Belkhale, R. Li, G. Kahn, R. McAllister, R. Calandra,

and S. Levine. Model-based meta-reinforcement learning

for flight with suspended payloads. IEEE Robotics and

Automation Letters, 2021. In press.

[11] L. Bertinetto, J. Henriques, P. H. S. Torr, and A. Vedaldi.

Meta-learning with differentiable closed-form solvers. In

Int. Conf. on Learning Representations, 2019.

[12] N. M. Boffi and J.-J. E. Slotine. Implicit regularization

and momentum algorithms in nonlinearly parameterized

adaptive control and prediction. Neural Computation, 33

(3):590–673, 2021.

[13] N. M. Boffi, S. Tu, N. Matni, J.-J. E. Slotine, and

V. Sindhwani. Learning stability certificates from data.

In Conf. on Robot Learning, 2020.

[14] S. Boyd and S. S. Sastry. Necessary and sufficient

conditions for parameter convergence in adaptive control.

Automatica, 22(6):629–639, 1986.

[15] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson,

C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. Vander-

Plas, S. Wanderman-Milne, and Q. Zhang. JAX: Com-

posable transformations of Python+NumPy programs,

2018. Available at http://github.com/google/jax.

[16] D. Brescianini and R. D’Andrea. Computationally ef-

ficient trajectory generation for fully actuated multirotor

vehicles. IEEE Transactions on Robotics, 34(3):555–571,

2018.

[17] M. Bujarbaruah, X. Zhang, U. Rosolia, and R. Borrelli.

Adaptive MPC for iterative tasks. In Proc. IEEE Conf.

on Decision and Control, 2018.

[18] Y.-C. Chang, N. Roohi, and S. Gao. Neural Lyapunov

control. In Conf. on Neural Information Processing

Systems, 2019.

[19] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Du-

venaud. Neural ordinary differential equations. In Conf.

on Neural Information Processing Systems, 2018.

[20] I. Clavera, J. Rothfuss, J. Schulman, Y. Fujita, T. Asfour,

and P. Abbeel. Model-based reinforcement learning via

meta-policy optimization. In Conf. on Robot Learning,

2018.

[21] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-

learning for fast adaptation of deep networks. In Int.

Conf. on Machine Learning, 2017.

[22] U. Forssell and L. Ljung. Some results on optimal

experiment design. Automatica, 36(5):749–756, 2000.

[23] A. Gahlawat, P. Zhao, A. Patterson, N. Hovakimyan,

and E. A. Theodorou. L1-GP: L1 adaptive control with

Bayesian learning. In Learning for Dynamics & Control,

2020.

[24] M. Gevers. Identification for control: From the early

achievements to the revival of experiment design. Euro-

pean Journal of Control, 11(4–5):335–352, 2005.

[25] R. C. Grande, G. Chowdhary, and J. P. How. Nonpara-

metric adaptive control using Gaussian processes with

online hyperparameter estimation. In Proc. IEEE Conf.

on Decision and Control, 2013.

[26] C. R. Harris, K. J. Millman, S. J. Van der Walt, R. Gom-

mers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor,

S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H.

Van Kerkwijk, M. Brett, A. Haldane, J. F. Del Rı́o,

M. Wiebe, P Peterson, P. Gérard-Marchant, K. Sheppard,

T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E.

Oliphant. Array programming with NumPy. Nature, 585

(7825):357–362, 2020.

[27] J. Harrison, A. Sharma, R. Calandra, and M. Pavone.

Control adaptation via meta-learning dynamics. In Conf.

on Neural Information Processing Systems - Workshop

on Meta-Learning, 2018.

[28] J. Harrison, A. Sharma, and M. Pavone. Meta-learning

priors for efficient online bayesian regression. In Work-

shop on Algorithmic Foundations of Robotics, 2018.

[29] J. Hauser, S. Sastry, and G. Meyer. Nonlinear control

design for slightly non-minimum phase systems: Appli-

cation to V/STOL aircraft. Automatica, 28(4):665–679,

1992.

[30] H. Hjalmarsson, M. Gevers, and F. de Bruyne. For

model-based control design, closed-loop identification

gives better performance. Automatica, 32(12):1659–

1673, 1996.

[31] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey.

Meta-learning in neural networks: A survey. Available at

https://arxiv.org/abs/2004.05439, 2020.

[32] P. Ioannou and J. Sun. Robust Adaptive Control. Dover

Publications, 2012.

[33] G. Joshi and G. Chowdhary. Deep model reference

adaptive control. In Proc. IEEE Conf. on Decision and

Control, 2019.

[34] G. Joshi, J. Virdi, and G. Chowdhary. Asynchronous

deep model reference adaptive control. In Conf. on Robot

Learning, 2020.

[35] M. Kamel, S. Verling, O. Elkhatib, C. Sprecher,

P. Wulkop, Z. Taylor, R. Siegwart, and I. Gilitschenski.

The Voliro omniorientational hexacopter: An agile and

maneuverable tiltable-rotor aerial vehicle. IEEE Robotics

and Automation Magazine, 25(4):34–44, 2018.

[36] S. M. Khansari-Zadeh and A. Billard. Learning sta-

ble nonlinear dynamical systems with Gaussian mixture

models. IEEE Transactions on Robotics, 27(5):943–957,

2011.

[37] D. P. Kingma and J. L. Ba. Adam: A method for

stochastic optimization. In Int. Conf. on Learning Rep-

resentations, 2015.

[38] J. Köhler, P. Kötting, R. Soloperto, F. Allgöwer, and

M. A. Müller. A robust adaptive model predictive control

framework for nonlinear uncertain systems. Int. Journal

of Robust and Nonlinear Control, 2020. In press.

[39] T. Kurutach, I. Clavera, Y. Duan, A. Tamar, and

P. Abbeel. Model-ensemble trust-region policy optimiza-

tion. In Int. Conf. on Learning Representations, 2018.

[40] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Sim-

ple and scalable predictive uncertainty estimation using

deep ensembles. In Conf. on Neural Information Pro-

cessing Systems, 2017.

[41] I. D. Landau, R. Lozano, M. M’Saad, and A. Karimi.

Adaptive Control: Algorithms, Analysis and Applications.

Springer-Verlag, 2 edition, 2011.

[42] K. Lee, S. Maji, A. Ravichandran, and S. Soatto. Meta-

learning with differentiable convex optimization. In IEEE

Conf. on Computer Vision and Pattern Recognition, 2019.

[43] L. Ljung. System Identification: Theory for the User.

Prentice Hall PTR, 2 edition, 1999.

[44] B. T. Lopez and J.-J. E. Slotine. Adaptive nonlinear

control with contraction metrics. IEEE Control Systems

Letters, 5(1):205–210, 2020.

[45] I. R. Manchester and J.-J. E. Slotine. Control contraction

metrics: Convex and intrinsic criteria for nonlinear feed-

back design. IEEE Transactions on Automatic Control,

62(6):3046–3053, 2017.

[46] I. M. Y. Mareels, B. D. O. Anderson, R. R. Bitmead,

M. Bodson, and S. S. Sastry. Revisiting the MIT rule for

adaptive control. In IFAC Workshop on Adaptive Systems

in Control and Signal Processing, 1987.

[47] J. R. Medina and A. Billard. Learning stable task

sequences from demonstration with linear parameter

varying systems and hidden Markov models. In Conf.

on Robot Learning, 2017.

[48] D. Mellinger and V. Kumar. Minimum snap trajectory

generation and control for quadrotors. In Proc. IEEE

Conf. on Robotics and Automation, 2011.

[49] D. Millard, E. Heiden, S. Agrawal, and G. S. Sukhatme.

Automatic differentiation and continuous sensitivity anal-

ysis of rigid body dynamics. Available at https://arxiv.

org/abs/2001.08539, 2020.

[50] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing,

P. Abbeel, S. Levine, and C. Finn. Learning to

adapt in dynamic, real-world environments through meta-

reinforcement learning. In Int. Conf. on Learning Rep-

resentations, 2019.

[51] K. S. Narendra and A. M. Annaswamy. Stable Adaptive

Systems. Dover Publications, 2005.

[52] K. S. Narendra and L. S. Valavani. Stable adaptive

controller design – direct control. IEEE Transactions

on Automatic Control, 23(4):570–583, 1978.

[53] K. S. Narendra, Y.-H. Lin, and L. S. Valavani. Stable

adaptive controller design, part II: Proof of stability.

IEEE Transactions on Automatic Control, 25(3):440–

448, 1980.

[54] G. Niemeyer and J.-J. E. Slotine. Performance in adaptive

manipulator control. Int. Journal of Robotics Research,

10(2):149–161, 1991.

[55] M. O’Connell, G. Shi, X. Shi, and S.-J. Chung. Meta-

learning-based robust adaptive flight control under un-

certain wind conditions. Available at https://arxiv.org/

abs/2103.01932, 2021.

[56] J. C. Pinheiro and D. M. Bates. Unconstrained

parametrizations for variance-covariance matrices. Statis-

tics and Computing, 6(3):289–296, 1996.

[57] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze,

and E. F. Mishchenko. The Mathematical Theory of

Optimal Processes. Wiley Interscience, 1962.

[58] A. Rajeswaran, S. Ghotra, B. Ravindran, and S. Levine.

EPOpt: Learning robust neural network policies using

model ensembles. In Int. Conf. on Learning Representa-

tions, 2017.

[59] A. Rajeswaran, C. Finn, S. Kakade, and S. Levine. Meta-

learning with implicit gradients. In Conf. on Neural

Information Processing Systems, 2019.

[60] R. Rashad, J. Goerres, R. Aarts, J. B. C. Engelen, and

S. Stramigioli. Fully actuated multirotor UAVs. IEEE

Robotics and Automation Magazine, 27(3):97–107, 2020.

[61] K. J. Åström and B. Wittenmark. Problems of identifica-

tion and control. Journal of Mathematical Analysis and

Applications, 34(1):90–113, 1971.

[62] S. M. Richards, F. Berkenkamp, and A. Krause. The

Lyapunov neural network: Adaptive stability certification

for safe learning of dynamical systems. In Conf. on Robot

Learning, 2018.

[63] C. Richter, A. Bry, and N. Roy. Polynomial trajectory

planning for aggressive quadrotor flight in dense indoor

environments. In Int. Symp. on Robotics Research, 2013.

[64] M. Ryll, G. Muscio, F. Pierri, E. Cataldi, G. Antonelli,

F. Caccavale, and A. Franchi. 6D physical interaction

with a fully actuated aerial robot. In Proc. IEEE Conf.

on Robotics and Automation, 2017.

[65] R. M. Sanner and J.-J. E. Slotine. Gaussian networks for

direct adaptive control. IEEE Transactions on Neural

Networks, 3(6):837–863, 1992.

[66] S. Singh, S. M. Richards, V. Sindhwani, J-J. E. Slotine,

and M. Pavone. Learning stabilizable nonlinear dynamics

with contraction-based regularization. Int. Journal of

Robotics Research, 2020. In Press.

[67] R. Sinha, J. Harrison, S. M. Richards, and M. Pavone.

Adaptive robust model predictive control with matched

and unmatched uncertainty. Available at https://arxiv.org/

abs/2104.08261, 2021.

[68] R. E. Skelton. Model error concepts in control design.

Int. Journal of Control, 49(5):1725–1753, 1989.

[69] J.-J. E. Slotine and W. Li. On the adaptive control of

robot manipulators. Int. Journal of Robotics Research, 6

(3):49–59, 1987.

[70] J.-J. E. Slotine and W. Li. Composite adaptive control of

robot manipulators. Automatica, 25(4):509–519, 1989.

[71] J.-J. E. Slotine and W. Li. Applied Nonlinear Control.

Prentice Hall, 1991.

[72] R. Soloperto, J. Köhler, M. A. Müller, and F. Allgöwer.

Dual adaptive MPC for output tracking of linear systems.

In Proc. IEEE Conf. on Decision and Control, 2019.

[73] D. Sun, S. Jha, and C. Fan. Learning certified control

using contraction metric. In Conf. on Robot Learning,

2020.

[74] H. Tsukamoto, S.-J. Chung, and J.-J. E. Slotine. Neural

stochastic contraction metrics for learning-based control

and estimation. IEEE Control Systems Letters, 5(5):

1825–1830, 2021.

[75] P. M. Wensing and J.-J. Slotine. Beyond convexity–

contraction and global convergence of gradient descent.

PLoS ONE, 15(12), 2020.

[76] P. M. Wensing, S. Kim, and J.-J. E. Slotine. Linear matrix

inequalities for physically consistent inertial parameter

identification: A statistical perspective on the mass dis-

tribution. IEEE Robotics and Automation Letters, 3(1):

60–67, 2017.

[77] P. Zheng, X. Tan, B. B. Kocer, E. Yang, and M. Kovac.

TiltDrone: A fully-actuated tilting quadrotor platform.

IEEE Robotics and Automation Letters, 5(4):6845–6852,

2020.

[78] J. Zhuang, N. Dvornek, X. Li, S. Tatikonda, X. Pa-

pademetris, and J. Duncan. Adaptive checkpoint adjoint

method for gradient estimation in neural ODE. In Int.

Conf. on Machine Learning, 2020.

APPENDIX A

TRAINING DETAILS

Our Method: To meta-train θours := (θy,Λ,K,Γ), we

first train an ensemble of M models {f̂j}
M
j=1, one for each tra-

jectory Tj , via gradient descent on the regression objective (12)

with µensem = 10−4 and a single fourth-order Runge-Kutta

step to approximate the integral over t
(j)
k+1− t

(j)
k = 0.01 s. We

set each f̂j as a feed-forward neural network with 2 hidden

layers, each containing 32 tanh(·) neurons. We perform a

random 75%/25% split of the transition tuples in Tj into

a training set T train
j and validation set T valid

j , respectively.

We do batch gradient descent via Adam [37] on T train
j

with a step size of 10−2, over 1000 epochs with a batch

size of b0.25|Dtrain
j |c, while recording the regression loss

with µensem = 0 on T valid
j . We proceed with the parameters

for f̂j corresponding to the lowest recorded validation loss.

With the trained ensemble {f̂j}
M
j=1, we can now meta-train

θours := (θy,Λ,K,Γ). First, we randomly generate N = 10
smooth reference trajectories {ri}

N
i=1 in the same manner as

above, each with a duration of T = 5 s. We then randomly

sub-sample Ntrain = b0.75Nc = 7 reference trajectories and

Mtrain = b0.75Mc models from the ensemble to form the

meta-training set {(ri, f̂j)}
Ntrain,Mtrain

i=1,j=1 , while the remaining

models and reference trajectories form the meta-validation set.

We set Ay(q, q̇; θy) as a feed-forward neural network with 2
hidden layers of 32 tanh(·) neurons each, where the adapted

parameters A(t) ∈ R
nq×32 with nq = 3 serve as the output

layer. We use an unconstrained log-Cholesky parameterization

for each of the positive-definite gains (Λ,K,Γ). We set up the

meta-problem (11) using {(ri, f̂j)}
Ntrain,Mtrain

i=1,j=1 , α = 10−3,

µmeta = 10−4, and the adaptive controller (17). We then

perform gradient descent via Adam with a step size of 10−2 to

train θours := (θy,Λ,K,Γ). We compute the integral in (11)

via a fourth-order Runge-Kutta integration scheme with a fixed

time step of 0.01 s. We back-propagate gradients through this

computation in a manner similar to Zhuang et al. [78], rather

than using the adjoint method for neural ODEs [19], due to our

observation that the backward pass is sensitive to any numer-

ical error accumulated along the forward pass during closed-

loop control simulations. We perform 500 gradient steps while

recording the meta-loss from (11) with µmeta = 0 on the meta-

validation set, and take the best meta-parameters θours as those

corresponding to the lowest recorded validation loss.

ACMRR Baseline: To meta-train θACMRR := θy , we

first perform a random 75%/25% split of the transition

tuples in each trajectory Tj to form a meta-training set

{T meta-train
j }Mj=1 and a meta-validation set {T meta-valid

j }Mj=1.

We set Ay(q, q̇; θy) as a feed-forward neural network with 2
hidden layers of 32 tanh(·) neurons each, where the adapted

parameters A(t) ∈ R
nq×32 with nq = 3 serve as the

output layer. We construct the meta-problem (4) using the task

loss (22), the adaptation mechanism (23), and µmeta = 10−4;

for this, we use transition tuples from T meta-train
j . We then

meta-train θACMRR via gradient descent using Adam with a

step-size of 10−2 for 5000 steps; at each step, we randomly

sample a subset of b0.25|T meta-train
j |c tuples from T meta-train

j

to use in the closed-form ridge regression solution. We also

record the meta-loss with µmeta = 0 on the meta-validation

set at each step, and take the best meta-parameters θACMRR

as those corresponding to the lowest recorded validation loss.

	Introduction
	Related Work
	Control-Oriented System Identification
	Adaptive Control
	Meta-Learning

	Problem Statement
	Bi-Level Meta-Learning
	Adaptive Control as a Base-Learner
	Meta-Learning from Feedback and Adaptation
	Model Ensembling as a Proxy for Feedback Offline
	Incorporating Prior Knowledge About Robot Dynamics

	Experiments
	Baselines
	Data Generation and Training
	Testing with Distribution Shift
	Results and Discussion

	Conclusions & Future Work
	Appendix A: Training Details

