




〈s0, a0, · · · , sN−1, aN−1, sN 〉, where s0 = sinit, sN = sg

and P denotes a set of satisfactory plans. Task planner P t

can produce an optimal plan p∗ among all satisfactory plans,

where γ is a constant coefficient and γ > 0.

p∗ = argmin
p∈P

∑

〈s,a,s′〉∈p

[Cost(〈s, a, s′〉) +
γ

1 + eSafe(〈s,a,s′〉)−1
]

Motion Planning: A motion planning domain is specified by

Dm, where we directly search in 2D space constrained by the

urban road network. Some parts of the space are designated

as free space, and the rest are designated as obstacles. The 2D

space is represented as a region in Cartesian space such that

the position and orientation of the vehicle can be uniquely

represented as a pose, denoted by x.

Given domain Dm, a motion planning problem can be

specified by an initial pose xi and a goal pose xg . The

motion planning problem is solved by a motion planner

Pm consisting of path planner and tracking planner into

two phases. In the first one, a path planner computes a

collision-free trajectory ξ connecting pose xi and pose xg

taking into account any motion constraints on the part of the

vehicle with minimal trajectory length. In the second one, a

tracking controller computes desired control signals to drive

the vehicle to follow the computed trajectory. Due to the

fundamental difference between representations at task and

motion levels, in line with past research [26], [29], [8], [11],

we use a state mapping function, f : X = f(s), to map the

symbolic state s into a set of feasible poses X in continuous

space, for motion planner to sample from. We assume the

availability of at least one pose x ∈ X in each state s, such

that the vehicle is in the free space of Dm. If it is not the

case, the state s is declared infeasible.

IV. ALGORITHMS

In this section, we present our main contribution of this

research, including two algorithms for safety estimation, and

efficient and safe urban driving.

A. Safety Estimation

Safety estimation aims at computing the safety level,

Safe(〈s, a, s′〉), of the motion-level implementation of a

symbolic action 〈s, a, s′〉. The goal of computing the safety

value is to enable the task planner to incorporate the road

condition into the process of sequencing high-level actions

toward accomplishing complex driving tasks.

Terminology: To perform symbolic action 〈s, a, s′〉, we use a

motion planner to compute a sequence of continuous control

signals, i.e., acceleration δ ∈ ∆ and steer angle θ ∈ Θ,

to drive the vehicle following the planned trajectory, while

ensuring no collision on the road. Sets ∆ and Θ denote

the operation specification of the controller, which generally

depends on the adopted motion planner and the ego vehicle

itself. Let US(t) (mathematically US(t) ⊂ ∆ × Θ) specify

a safe control set at time t, in which all elements, denoted

by u(t) = 〈δ, θ〉, are safe for an ego vehicle to perform at

time t. Intuitively, the size of safe control set US reflects the

Algorithm 1 Safety Estimation

Input: Symbolic action 〈s, a, s′〉, state mapping function f ,

motion planner Pm, control operation sets ∆ and Θ
1: Sample initial and goal poses, x← f(s) and x′ ← f(s′),

given action 〈s, a, s′〉, and f .

2: Compute a collision-free trajectory, ξE , using Pm,

where ξE(t1)=x, ξE(t2)=x′, and [t1, t2] is the horizon

3: Predict trajectory ξSi for the ith surrounding vehicle,

where i ∈ [1, · · · , N ], and [t1, t2] is the horizon

4: while for each vehicle Vi do

5: Compute safe control set US
i (t) between the ego

vehicle and vehicle Vi at time t ∈ [t1, t2], where

US
i (t) ⊂ ∆×Θ and t = t1 + ω × i, i ≤ ⌊ (t2−t1)

ω
⌋

6: Sample M elements 〈δ, θ〉 randomly from set ∆ ×
Θ and compute the probability oi(t) of the elements

falling in set US
i (t)

7: Convert a list of estimated safety values, {oi(t)}, into

a scalar value o∗i using Eqn. 1

8: end while

9: return min{o∗i , i = 1, · · · , N}

safety level. For instance, when |US | is very small, meaning

that very few control signals are safe, the vehicle can only

be operated in very particular ways, indicating the safety

level in general is low. Accordingly, we use the probability

of elements sampled from set ∆ × Θ being located in the

safe set US to represent the safety value of action 〈s, a, s′〉.

Safety Estimation Algorithm: Algorithm 1 summarizes

the procedure of our safety estimation algorithm. The input

includes symbolic action 〈s, a, s′〉, stating mapping function

f , motion planner Pm consisting of path planner and track-

ing controller, and the controller’s operation specification

sets ∆ and Θ. The output is the estimated safety value

Safe(〈s, a, s′〉) ∈ [0.0, 1.0].
Lines 1-3 aim to obtain the short-period trajectories of

the ego and surrounding vehicles, where Vi, i ∈ [1, · · ·N ],
is the ith vehicle within the ego vehicle’s sensing range.

More specifically, we first sample a pair of feasible initial

and goal poses for the symbolic actions using the state

mapping function (Line 1). Taking these two poses as input,

the motion planner then computes a continuous trajectory

for our ego vehicle for a short period of time [t1, t2]
(Line 2), where t1 is the current time, and t2 = t1 + T

indicates the time horizon of the ego vehicle. We predicate

surrounding vehicles’ trajectories, assuming their linear and

angular speeds being stationary (Line 3), though there are

more advanced methods [30], [31], which is beyond the

scope of this research.

Lines 4-8 present a control loop that computes the safety

estimation between the ego vehicle and the surrounding

vehicles Vi, wehre i ∈ [1, · · · , N ], given that the ego

vehicle is performing action 〈s, a, s′〉 at the motion level.

We compute a safe control set US
i (t), similar to [19], that

includes all safe control signals with regard to vehicle Vi at

time t (Line 5). Parameter ω controls the sampling interval.
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In Line 6, we randomly sample M elements from the

set ∆ × Θ, and compute probability oi(t) of the sampled

elements falling in set US
i (t). We convert a list of values of

safety estimation {oi(t)} into a single value o∗i using eqn.1,

where max and mean are two functions to calculate the

maximum and mean value of a list, respectively (Line 7).

Although all surrounding vehicles can potentially introduce

risks to the ego vehicle, we assume the ego vehicle only

considers the most dangerous vehicle. Accordingly, Line 9

is used for selecting the minimum value, o∗i , i ∈ [1, · · · , N ],
as the overall safety value:

o∗i =
maxt∈T {oi(t)}+meant∈T {oi(t)}

2
(1)

where T = t1 + ω × i, 0 ≤ i ≤ (t2−t1)
ω

B. TMPUD

Our motion planner Pm computes both costs (trajectory

lengths) and safety values of the ego vehicle’s navigation

actions, which have been discussed in Section IV-A. Here,

we focus on the main contribution of this work on enabling

interactive task-motion planning for urban driving.

Terminology: We use sinit to represent the initial state of

the ego vehicle, and the goal (service request from people) is

specified using sg . Our task planner P t computes a sequence

of symbolic actions, and it requires two functions that are

initialized and updated within the algorithm, including cost

function Cost, and safety estimation function Safe. Motion

planner Pm is used for computing motion trajectories, and

generating control signals to move the ego vehicle. The state

mapping function f is used for mapping symbolic states to

2D coordinates in continuous spaces.

The TMPUD Algorithm: Algorithm 2 summarizes the pro-

cedure of TMPUD. It starts by initializing the cost and safety

estimation functions (Lines 1 and 2). Cost function Cost is

initialized using A star algorithm provided by CARLA, as

shown in Line 1. In Line 2, TMPUD optimistically initializes

the safety estimation function by setting 1.0 to all actions,

indicating all task-level actions are completely safe. After

that, an optimal task plan, p∗ = 〈sinit, a0, s1, · · · , s
g〉, is

computed in Line 3. The head and tail elements of the

plan, sinit and sg , correspond to the initial and goal poses

respectively.

Lines 4-19 form TMPUD’s main control loop that enables

the interaction between task and motion planners. The loop’s

termination condition is the task-level plan being empty, i.e.,

the goal has been achieved (Line 4). Specifically, TMPUD

estimates the safety level, µ, of action 〈s, a, s′〉 (Line 5).

Functions Safe and Cost are updated using µ and A∗ search

in Line 6. Then a new optimal plan p′ is computed in Line

7. Lines 8-18 is for plan monitoring and action execution. If

the task planner suggests the same plan (Line 8), the vehicle

will continue to execute action a at the motion level. The

goal state is sampled from state mapping function in Line 9.

Line 10-14 is a loop to execute the action. Specifically, the

Algorithm 2 TMPUD algorithm

Input: Initial state si, goal specification sg , task planner P t,

state mapping function f , motion planner Pm, and safety

estimator (Algorithm 1)

1: Initialize cost function Cost with sampled poses x ∈
f(s): Cost(〈s, a, s′〉)← A∗(x, x′)

2: Initialize safety estimation Safe(s, a, s′)← 1.0
3: Compute an optimal task plan p using Cost and Safe

functions: p ← P t(sinit, sg, Cost, Safe), where p =
〈sinit, a0, s1, a1, · · · , s

g〉
4: while Plan p is not empty do

5: Extract the first action of p, 〈s, a, s′〉, and compute

safety value µ using Algorithm 1

6: Update Safe function: Safe(〈s, a, s′〉) ← µ and

Cost function: Cost(〈s, a, s′〉)← A∗(x, x′)
7: Generate a new plan: p′ ← P t(s, sg, Cost, Safe)
8: if p′ == p then

9: x′ ← f(s′)
10: while x != x′ do

11: Call motion planner 〈δ, θ〉 ← Pm(x, x′)
12: Execute the control signal 〈δ, θ〉
13: Update the vehicle’s current pose x

14: end while

15: Remove the tuple 〈s, a〉 from plan p

16: else

17: Update current plan p← p′

18: end if

19: end while

motion planner will compute and execute a desired control

signal 〈δ, θ〉 repeatedly until the vehicle reaches the goal pose

(Line 10). The vehicle’s current pose x will be updated after

each execution (Line 13). After completing the operation,

the tuple 〈s, a〉 will be removed from the plan p (Line 15).

On the contrary, if the task planner suggests a new plan p′

different from the plan p, the currently optimal p′ will replace

the non-optimal plan p (Line 17).

C. Algorithm Instantiation

Task Planner: Our task planner P t is implemented using

Answer Set Programming (ASP), which is a popular declar-

ative language for knowledge representation and reasoning,

and ASP has been used for task planning [32], [33], [11],

[34]. For example, predicate leftof(La1,La2) can be

used to specify lane La1 being on the left of lane La2.

We model five driving actions, including mergeleft,

mergeright, forward, turnleft, and turnright.

For instance, action mergeright can be used to help the

vehicle merge to the right lane, where constraints, such as

“changeright” is allowed only if there exists a lane on

the right, have been modeled as well.

Motion Planner: At the motion level, path planner firstly

generates a desired continuous trajectory with the minimal

traveling distance using A∗ search. The trajectory includes

a set of waypoints (each in the form of a pair of x − y
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Fig. 4. Abstraction simulation: the overall performances of TMPUD and two baseline methods. The x-axis represents the average traveling distance,
and the y-axis represents the total number of collisions and stops. The four subfigures correspond to four different road conditions. The road conditions,
from left to right, are low-density and low-acceleration, low-density and high-acceleration, high-density and low-acceleration, high-density and high-

acceleration. Under each road condition, we evaluate each algorithm using 4000 trials. We did batch-based evaluations with four batches for significance
analysis, where each batch includes 1000 trials.

TABLE I

FULL SIMULATION: TRAVELING DISTANCE AND NUMBER OF

COLLISIONS AND STOPS FOR THREE ALGORITHMS UNDER DIFFERENT

TRAFFIC CONDITIONS (NORMAL AND HEAVY TRAFFIC).

Normal
Traffic

Algorithm
Traveling

Distance (m)
Num. of collisions

and stops
TMPUD 514 0

Th-based
β = 0.5 537 0
β = 0.3 513 5
β = 0.1 478 24

No-com 426 48

Heavy
Traffic

Algorithm
Traveling

Distance (m)
Num. of collisions

and stops
TMPUD 530 2

Th-based
β = 0.5 545 2
β = 0.3 528 7
β = 0.1 497 35

No-com 426 54

β, where a higher (lower) β threshold makes a vehicle

more conservative (aggressive). In case of an action being

rejected, the task planner will compute a new plan to avoid

the risky action. We develop three versions of of the Th-

based baseline with different β values (0.1, 0.3, and 0.5).

C. Results

Results from Full Simulation: Table I presents the results

in comparing TMPUD to the two baseline methods. From the

table, we see that, in both road conditions, TMPUD achieved

the lowest traveling distance, in comparison to those methods

that produced compared safety levels (in terms of the number

of collisions and stops). For instance, under normal traffic,

only the Th-based baseline with β = 0.5 was able to

completely avoid collisions and stops, but it produced an

average traveling distance of 537m. In comparison, TMPUD

required only 514m, while completely avoided collisions and

stops. Under heavy traffic, TMPUD (again) produced the best

performance in safety (based on the number of collisions and

stops), while requiring less traveling distance in comparison

to the only baseline (Th-based with β = 0.5) that produced

comparable performance in safety. The experimental trials

(200 for each approach) from full simulation took eight full

workdays. We aim at evaluating the performance of TMPUD

under different domain factors, requiring a much larger

number of trials, which motivated us to conduct experiments

using the abstract simulator.

Results from Abstract Simulation: Fig. 4 presents the

performances of TMPUD and the baseline methods in both

traveling distance and the number of unsafe behaviors. The x-

axis corresponds to the average traveling distance, and y-axis

corresponds to the total number of collisions and stops (both

are considered failure cases of driving behaviors). From the

four subfigures, we see that TMPUD is the most efficient

(x-axis) among those methods that produced comparable

performances in safety (y-axis), except that Th-based (β =
0.5) produced slightly less unsafe behaviors (but it performed

poorly in efficiency).

There are a few side observation. Not surprisingly, No-com

produced the worst performance of in safety (y-axis), though

its traveling distance remains the lowest. This is because,

using No-com, the vehicle blindly executes task-level actions

while unrealistically believing driving behaviors are always

safe. The Th-based baseline’s performance depends on its

safety threshold (β), where a greater value produces safer

but less efficient behaviors. The results support our claim

that TMPUD improves vehicles’ task-completion efficiency,

while ensuring safety in different road conditions.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, focusing on urban driving scenarios, we

develop a safety evaluation algorithm, and a task-motion

planning algorithm, called TMPUD, for autonomous driving.

TMPUD, for the first time, bridges the gap between task

planning and motion planning in autonomous driving. We

have extensively evaluated TMPUD using a 3D urban driving

simulator (CARLA) and an abstract simulator. Results sug-

gest that TMPUD improves the task-completion efficiency in

different road conditions, while ensuring the safety of driving

behaviors.

In the future, we will implement TMPUD using different

task and motion planners, and evaluate their performances

in different testing platforms (e.g., using simulators with a
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physics engine) under different conditions. Also, there is the

possibility of implementing and evaluating TMPUD using

indoor mobile robots.
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“Robust pid steering control in parameter space for highly automated
driving,” International Journal of Vehicular Technology, 2014.

[36] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity
visual and physical simulation for autonomous vehicles,” in Field and

service robotics. Springer, 2018, pp. 621–635.

[37] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.

04CH37566), vol. 3. IEEE, 2004, pp. 2149–2154.

2125

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on June 10,2021 at 21:57:00 UTC from IEEE Xplore.  Restrictions apply. 


