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1. Introduction

Categorification originated with the goal of lifting quantum 3-manifold invariants,
specifically the Witten-Reshetikhin—Turaev invariants based on Chern—Simons gauge
theory, to smooth 4-manifold invariants. Within Crane and Frenkel’s original pro-
posal [14], quantum groups associated to semi-simple Lie algebras heavily influenced
the investigation of categorified quantum 3-manifold invariants. Positive and integral
structures arising from geometric representation theory and the discovery of canonical
bases for quantum groups suggested that quantum groups could themselves be categori-
fied. These original insights ultimately birthed the field of higher representation theory
and the study of categorified quantum groups.

Quantum groups associated to symmetrizable Kac-Moody algebras have been cate-
gorified along with a significant amount of their representation theory [38,75,76,36,90].
These categorical representations, or higher representations, govern link homology theo-
ries categorifying the Reshetikhin-Turaev invariants of knots and tangles. Though these
link homologies such as Khovanov-Rozansky homology can be formulated in many differ-
ent languages like matrix factorizations [41], Soergel bimodules [74,33], coherent sheaves
on the affine Grassmannian [15], BGG category O [84,85,56], and tensor product 2-
representations [90], higher representation theory unifies these different formulations by
realizing them all as 2-representations of categorified quantum groups [13,58].

Despite these successes, thus far the higher representation theoretic approach has
fallen short at categorifying quantum invariants for 3-manifolds, not just links in S3.
This issue is partly related to the challenges associated with categorification at a root of
unity, though there has been some progress in this direction [35,39,70,40,71].

1.1. Knot Floer homology and categorification

On the other hand, Heegaard Floer homology [65,64] has proven tremendously suc-
cessful as a 4-dimensional TQFT sensitive to the smooth structure of 4-manifolds. This
theory has a much different flavor than the quantum invariants discussed above; it is
a symplectic approach to Seiberg—Witten theory, a more analytically tractable relative
of the celebrated Donaldson—Floer invariants that initially sparked mathematical inter-
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est in TQFTs in the 1980s. Its definitions rely on moduli spaces of pseudoholomorphic
curves as in Lagrangian Floer homology. Heegaard Floer theory also provides a categori-
fication of the Alexander polynomial called knot Floer homology (HFK) [63,72], similar
in its formal properties to Khovanov’s categorification of the Jones polynomial despite
the significant differences in the definitions. Knot Floer homology determines important
knot-theoretic information like genus and fiberedness that is only bounded or restricted
by the Alexander polynomial [62,60,29].

Despite its analytic origins, knot Floer homology can be understood fruitfully from an
algebraic perspective by making it into a local tangle invariant based on the ideas of bor-
dered Floer homology as studied by Lipshitz—Ozsvath-Thurston [45]. In this framework,
one associates Ay-algebras (usually dg) to parametrized surfaces and A..-bimodules
to certain diagrams for 3d cobordisms. Applying these methods to tangle complements
viewed as cobordisms between genus-zero surfaces with boundary, Ozsvath-Szabé [67]
recently introduced a computational method for knot Floer homology. They have used
their theory to write a very fast HFK calculator program [68], capable of computing
HFK and some related concordance invariants for most knots with 40-50 crossings (and
some with significantly more, e.g. the 80+ crossing examples' from [23]).

Ozsvath—Szabd’s theory is similar in its motivation and formal structure to another
construction due to Petkova—Vértesi [69], which computes HF K using local versions of
“nice diagrams” in the sense of [86]. Holomorphic curve counts arising from nice diagrams
can always be understood combinatorially, but the resulting Heegaard Floer invariants
are typically the homology of complexes with a large (e.g. factorial-sized) number of
generators. Ozsvath-Szabd [67] gain efficiency by using a diagram giving a small and
natural number of generators, but in which the curve counts are quite complicated to
understand; nevertheless, they succeed in describing the counts and their associated A«
structures algebraically.

The local or bordered approach to knot Floer homology provides a bridge to represen-
tation theory by categorifying the Alexander polynomial as a quantum invariant. From
the introduction of quantum link invariants in the 1980s, it became a natural question
to ask if the Alexander polynomial has a definition as a physical observable in some
3-dimensional Chern—Simons theory. The relevant Chern—Simons theory turns out to be
the one whose structure group is given by the Lie superalgebra gl(1]|1) (or gl(n|n) for
any n > 0). Indeed, the Alexander polynomial can be understood as the quantum in-
variant associated to the quantum superalgebra U, (gl(1|1)), where endpoints of a tangle
correspond to tensor powers of the vector representation V' and its dual V*, and tangles
give maps of U,(gl(1|1))-representations, see e.g. [42,77].

As shown in [50], Ozsvath-Szabd’s theory gives a categorification of these tensor
powers of V and V*, together with tangle maps between them. Closely related results

! This claim can be verified by downloading ComputeHFKv1.zip from [68], then compiling the enclosed
C++ files and running them on the enclosed examples. The files K2b86.txt, K3c83.txt, and K3d91.txt give
86, 83, and 91-crossing presentations of the knots K> and K3 from [23]; they can be run in a few minutes
on a laptop.
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were obtained for Petkova—Vertesi’s theory in [21]; this theory categorifies tensor powers
of V and V* with one additional factor L(Ap). See [88,87] for still another approach
using bordered Floer ingredients with more of a contact topology flavor, although Tian
does not categorify tangle maps. None of these constructions categorify the action on
V@™ of both generators E and F of Uy(gl(1]|1)); Ellis-Petkova—Vertesi categorify both E
and F' acting on a related representation, Tian works with a different quantum group,
and actions of quantum group generators are not considered at all in [67,66,50] (we will
rectify this last issue in the current paper).

1.2. Algebraic categorifications associated with gl(1[1)

Moving to the algebraic side, Sartori [78] defines a categorification of tensor powers
of V, with intertwining maps and (half of) the action of U,(gl(1]|1)), in the usual spirit
of algebraic categorification via the Bernstein-Gelfand-Gelfand category O [9]. More
specifically, categorification is achieved though certain subquotient categories of category
O(gl,,), or what are referred to as g-presentable quotients O 7P of the regular block Of
of the parabolic subcategory OP C O (see Section 3.5.1 for more details; such presentable
quotients were first defined in [24] and studied in relation to categorification in [55]).
Sartori uses projective functors on these quotients to categorify the Hecke algebra action
on V®™ and Zuckerman’s approximation functors to categorify the action of U,(gl(1|1))
(more precisely, of the generator F of half of the quantum group and its dual E’ with
respect to a bilinear form on V" arising from graded dimensions of morphism spaces
in OpPres).

In the sl(n) case, category O is related to geometric categorification via perverse
sheaves [8] by localization, and related to elementary diagrammatic definitions in the
original Khovanov style by work of Stroppel [84]. Webster can describe general blocks
of (parabolic) category O, up to equivalence, as module categories over his diagram
tensor product algebras from [90]. In this way, Sartori’s categorifications fit naturally
into traditional structures associated with higher representation theory.

While an explicit description of blocks in parabolic category O can become unwieldy
in general, Sartori defines diagrammatic algebras whose module categories are equivalent
to the subquotients OF %" for p,q of Levi type (1,...,1,n — k) and (k,1,...,1) re-
spectively [79]. The structure of these subquotients is accessed through a combinatorial
relationship with Soergel modules corresponding to smooth Schubert varieties. Through
a careful analysis of these Soergel modules and the maps between them, Sartori defines
algebras A, ;; we call Sartori algebras. We note the description of multiplication on these
algebras is not entirely diagrammatic; rewriting products in the basis of the algebra re-
quires significant effort. Sartori goes on to show that his algebras are graded cellular
and properly stratified, equipping them with explicit classes of modules and filtrations
lifting the standard and canonical bases for V®" and their duals. Relationships between
Sartori’s constructions and categorifications of tensor product representations of sl(k)
are studied in [83].
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1.8. Relating categorifications

Both the Oszvath-Szabé algebras B;(n, k) appearing in [67,66] and the Sartori alge-
bras A, ; can be used to categorify the same U, (gl(1|1))-representations. While higher
representation theory is often useful for unifying categorifications like these that come
from different worlds, it has not been developed enough in the case of superalgebras to
make the path to such a unification clear. New ideas appear necessary for defining cate-
gorified U, (gl(1|1)) tangle and link invariants from the usual algebraic ingredients (such
as geometric categorifications and skew Howe duality) and connecting them to HFK.
Indeed, the elaborate structures invoked by Ozsvdth—Szabd to solve this problem (e.g.
curved A,, bimodules) may suggest a way forward on the algebraic side, leading to a
wide range of possible generalizations.

In fact, there are surprising general relationships between bordered Floer homology
and higher representation theory. Work in preparation [54] of Raphaél Rouquier and the
second named author will show that in considerable generality, bordered Floer homology
has close ties to the U,(gl(1]1)) case of Rouquier’s tensor product operation for
higher representations applied to Khovanov’s categorification U™ of the positive half of
U, (gl(1]1)) [34]. This work reinterprets and extends cornered Floer homology [19,18],
a further extension of bordered Floer homology. The connection with bordered Floer
homology yields 2-representations of /T on a very general family of examples, including
bordered Floer algebras for surfaces of arbitrary genus, together with gluing formulas
based on ®).

The constructions of [54] simplify considerably when applied via [53] to Ozsvath—
Szabd’s theory [67], and higher morphisms in " do not have room to act. On the other
hand, this particular genus-zero example of a bordered Floer algebra is highly sym-
metric and has an explicit and powerful bimodule theory for tangles. The relationship
to Sartori’s theory studied in this paper is of particular interest as mentioned above;
it also provides a window into the structure of Heegaard Floer homology and its rela-
tionship with other areas of mathematics, advancing the general aim of understanding
4-dimensional gauge theories via categorified quantum invariants.

The first hint that such a relationship might exist came in [49] where the second
named author related Sartori’s algebra A,, ;1 with Ozsvath-Szabd’s algebra B;(n, 1); both
algebras categorify a next-to-extremal weight space of V®" for the U,(gl(1]1)) action.
This weight space for gl(1]1) is actually isomorphic to the corresponding weight space of
the n-th tensor power of the vector representation of s[(2). Sartori’s algebra A, ;1 for this
weight space describes (’)8 for p of Levi type (1,n — 1), since the g-presentable quotient
does nothing here, and correspondingly A,, 1 is isomorphic to the Khovanov—Seidel quiver
algebra from [43] (a well-known algebra describing this particular O}). It is shown in
[49] that the Khovanov—Seidel algebra is isomorphic to a quotient of B;(n,1).

Our main result generalizes and reframes the quotient description of the Khovanov—
Seidel quiver algebra from [49].
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Theorem 1.1 (¢f. Theorem 7.6, Theorem 7.4). For 0 < k < n, Ozsvdth-Szabd’s algebra
Bi(n, k) is o graded flat deformation of Sartori’s algebra A, .

Explicitly, A, is isomorphic to the quotient of Bj(n, k) by the ideal generated by
the elementary symmetric polynomials e;(Uy,...,U,) for 1 < i < k, where U; is a
central element of B;(n, k) reviewed in Section 2.1. By Remark 6.6, we could include
e;(U1,...,Uy) for i > k in this ideal, since these polynomials are already zero in B;(n, k);
it follows that A, j is the quotient of B;(n,k) by all symmetric functions in the U;
variables. We prove Theorem 1.1 for the Z version of Ozsvath-Szabd’s algebra from [66,
Section 12] and a Z lift of Sartori’s C-algebra defined here. Flatness of the deformation
follows from Theorem 7.4, which gives an explicit basis for B;(n, k) as a free module over
the polynomial ring Z[eq, ..., e] with &; acting as e;(Uy,...,Uy).

The case k = 1 is the first main theorem of [419], although flatness was not considered.
For general k, Sartori’s algebras are much more complicated than the Khovanov—Seidel
algebra, so more intricate arguments are required. By transporting the diagrammat-
ics of By(n,k) from [67,52] through this isomorphism, we obtain as a corollary a new
purely diagrammatic interpretation of Sartori’s algebra with a more natural product
operation.

The following remarks, written with Heegaard Floer readers in mind, may be helpful
for those unfamiliar with category O but familiar with Khovanov’s tangle theory involv-
ing the arc algebra H™ [32]. Given known and conjectured spectral sequences relating
Khovanov and Khovanov-Rozansky homology to HF K [73,17,20], one could try to find
relationships between B;(n, k) and H™. Since Bi(n,k) has (}) basic idempotents, it is
natural to replace H™ with the “platform algebras” of [84,16] having H™ as an idempo-
tent truncation. These have (Z) basic idempotents, but they still seem unrelated to the
idempotents of B;(n, k).

Representation theory sheds significant light on this question. Idempotents in B;(n, k)
and the platform algebras both correspond to certain canonical basis elements for a 2"-
dimensional vector space V®" but the basis elements depend on the quantum group in
question: the U,(sl(2)) action gives one canonical basis for V®" while the U,(gl(1]1))
action gives a different one. When k € {2,...,n — 1}, this difference in bases means we
cannot hope to relate B;(n, k) with the platform algebras except in a derived sense (when
k =1 the bases agree and the platform algebra is Khovanov—Seidel’s algebra).

To make progress, one could ask where the platform algebras come from. Their idem-
potents correspond to indecomposable projectives in parabolic versions (’)8 of category
O by [84], where p has Levi type (k,n — k). Similarly, Sartori’s idempotents correspond
to indecomposable projectives in related categories C’)g 4P where the Levi types are as
described above; in this case they categorify U, (gl(1]1)) basis elements, not Uy (s[(2)) ba-
sis elements. A reasonable update of the question about B;(n, k) and H™ or the platform
algebras is to ask whether B;(n, k) is related to Sartori’s algebras. Theorem 1.1 answers
this question affirmatively by giving a close relationship with immediate applications for
the structure of Ozsvith—-Szabd’s theory [67].
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1.4. Applications

Theorem 1.1 establishes a bridge between modern constructions in Heegaard Floer
homology and the wider world of mathematics. For example, Theorem 1.1 is, to the
authors’ knowledge, the first result relating HF K with category O, outside the k£ = 1
case proved in [49]. We note that other bordered Floer algebras have been related to
category O in [3], including to the Khovanov—Seidel quiver algebra; these bordered Floer
algebras appear to be more related to HF of branched double covers than to HFK ,
although interesting connections between the two may exist. In general, work of Auroux
suggests a path from bordered Floer algebras to geometry via Fukaya categories of
symmetric products; we discuss this connection further in Section 1.4.5 below. First we
discuss some ramifications for B;(n, k) of the conceptual framework surrounding A, .

1.4.1. Bilinear forms on V®"

In general, given a graded categorification of a C(g)-vector space V, one gets a
sesquilinear pairing on V from graded dimensions of Ext spaces in the categorification,
which can be made bilinear using algebra symmetries if they exist. In particular, the
results of [50] imply that projective modules over Ozsvath—Szabd’s algebra B;(n, k) give
a bilinear pairing on V®™ where V is the vector representation of U,(gl(1|1)), but this
pairing is not discussed in [50].

On the other hand, Sartori [78] studies the bilinear form arising from his categorifi-
cation in some detail and shows that this form has a scalar matrix in the standard basis
of each weight space of V®". His results suggest analogous conjectures for the Ozsvath—
Szabé bilinear form, which we verify; this form also turns out to be scalar in the standard
basis of each weight space of V®", with a different scalar than Sartori’s.

Using the simple relationship between these forms, we revisit the identification of
indecomposable projectives over B;(n, k) with basis elements of V®" given in [50]. The
bilinear forms suggest a change of conventions under which indecomposable projectives
correspond exactly to Sartori’s canonical basis elements of V", rather than the modified
basis elements introduced in [50].

Theorem 1.2 (¢f. Theorem 8.12). Under these conventions, the projection functors
pr: Bf(n, k)—proj — Ay x—proj
between categories of finitely generated projective graded modules induce isomorphisms

on Grothendieck groups Ky intertwining the identification of indecomposable projectives
with canonical basis elements on each side.

1.4.2. Categorified action of Ugy(gl(1]1))
The quantum group generator F acting on V®" has a dual E’ with respect to Sartori’s
bilinear form. This dual is related to the usual generator E by a weight dependent
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scalar in C(q); as a quantum group element, E’ only makes sense in the idempotented,
or modified, form U,(gl(1|1)) of the quantum group. Sartori categorifies the action of
E',F € U,(gl(1]1)) via certain Zuckerman functors £ and F acting on O} 9P™, This
action can be interpreted on the algebra level as tensoring with bimodules E' = (E/)®
and F = F¥ where E' is the left dual of F as a bimodule.

The close relationship between Ozsvath—Szabd’s and Sartori’s algebras suggests anal-
ogous definitions of bimodules E” = (E”)?%* and F = F95% over Ozsvath-Szabd’s

algebras.

Theorem 1.3 (c¢f. Theorem 9.2, Theorem 9.5). The bimodules E" and F over Ozsvdth—
Szabé’s algebras square to zero and categorify the action of E” and F on V", where
E" is the dual of F with respect to Ozsvdth—Szabd’s bilinear form.

This result fills a gap in the discussion of [50]. The element E” = (¢~! — ¢) EK makes
sense directly in U,(gl(1|1)), unlike £’ which can only be defined in the idempotented
form of Uy(gl(1|1)). We note that the relations satisfied by E” and F agree with the
algebra Uz studied by Tian [88] upon setting T = K2.

Theorem 1.4 (¢f. Theorem 9.3, Theorem 9.7). The inflation functors
infl: A, ,—fmod — Bf(n, k)—fmod

between categories of finite dimensional graded modules intertwine (£")°%% and FO5*
with ()5 and F*3.

The constructions of [54] also yield bimodules that square to zero, defined over a
bordered strands algebra known by [53] to be quasi-isomorphic to B;(n, k). The bimodules
defined here are compatible with the ones from [54] under this quasi-isomorphism.

1.4.3. Modules over Ozsvath—Szabd’s algebras

One important feature of Sartori’s algebra A,, ;, is that it is graded cellular and prop-
erly stratified (for more details, see [79]). The cellular structure gives us a family of
modules over A, (cell modules or standard modules) whose classes in an appropri-
ate Grothendieck group correspond to standard tensor product basis elements of V.
Thus, from A,, i, Sartori naturally sees both the standard tensor-product basis and the
canonical basis for V&7,

We can use our quotient map to inflate Sartori’s modules over A,, j into modules over
Bi(n, k) (in other words, an element of B;(n, k) acts after applying the quotient map).
Our understanding of the bilinear forms on V" and how they relate allows us to identify
these inflated modules with certain basis elements of V.
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Theorem 1.5 (¢f. Theorem 8.53). The inflations of Sartori’s modules categorify the bases
of VO™ listed in Theorem 8.33, including a multiple of the standard basis as well as the
Ozsvdth—Szabd dual standard basis with no multiple.

To see the standard basis of V®" via modules over Bj(n, k), rather than a weight
dependent multiple of this basis, it would be desirable to give B;(n, k) the structure of a
(graded) affine cellular algebra.

1.4.4. Bimodules for intertwining maps

In [43], Khovanov—Seidel define dg bimodules categorifying maps for braids acting
on the weight space of V®" categorified by their quiver algebra A, ;. It is shown in
[49] that these bimodules are A,, homotopy equivalent to Ozsvath—Szabd’s bimodules
over Bj(n, 1) after applying induction and restriction. Generalizing to k > 1, Sartori has
a categorical Hecke algebra action, including functors categorifying U,(gl(1]1))-linear
maps for singular crossings or “thick edges.” Ozsvath—Szab6 have bimodules for tangles
with arbitrary orientations, but they do not define bimodules for thick edges. Alishahi—
Dowlin’s bimodules from [1] provide one candidate generalization (see also [2]); more
complicated Ao, bimodules are defined in [51], and both constructions may be relevant
when trying to define both upward- and downward-pointing thick-edge bimodules. It
would be desirable to relate any of these bimodules to Sartori’s categorical Hecke action.

1.4.5. Fukaya categories

Sartori’s theory fits into a rich framework of algebraic and geometric constructions,
and Theorem 1.1 suggests natural deformations of these structures. One can use The-
orem 1.1 to investigate relationships between Heegaard Floer homology and deformed
category O, Schubert varieties, Soergel modules, and other entities. While these objects
might seem far afield from the holomorphic curve counts motivating the definition of
Bi(n, k), general conjectures suggest that geometric categorifications should have Fukaya
interpretations. For example, (98 is equivalent to a category of perverse sheaves on a par-
tial flag variety X, [7,28], and thereby to a subcategory of a Fukaya category of T%(X,)
[61,59].

Going beyond cotangent bundles, the symplectic Khovanov homology program [82,
48,4,5] formulates standard algebraic categorifications like Khovanov homology in terms
of Fukaya categories of certain symplectic manifolds. In fact, Khovanov—Seidel’s work in
[43] can be seen as a progenitor of this program; they interpret their quiver algebra as an
Ext-algebra of Lagrangians in the Fukaya category of a Milnor fiber. Similar results have
been obtained for Khovanov’s arc algebra H™ by Abouzaid-Smith [4,5], allowing them
to prove that the construction of [82] agrees with Khovanov homology. The symplectic
interpretation of the Khovanov—Seidel algebra and H™ has recently been extended to the
above-mentioned platform algebras by Mak-Smith [57].

By the results of this paper, Ozsvath—Szabd’s algebras B;(n, k) for general k are flat de-
formations of algebras describing OF " for certain p, q. It is reasonable to suspect that
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By(n, k) describes an OF%P***_analogue of Soergel’s deformed category O [31] (related to
equivariant rather than ordinary cohomology). When k = 1, so there is no g-presentable
quotient, one can further speculate that B;(n, k) is an Ext-algebra of Lagrangians in a
deformed or equivariant Fukaya category of Khovanov—Seidel’s Milnor fiber. For k > 1
one could hope for a similar story, although it is less clear what symplectic manifolds
should be involved.

On the other hand, bordered Floer algebras are known by Auroux’s work [6] to be
related to Fukaya categories of symmetric products. Using the strands interpretation of
Bi(n, k) given in [53] (and assuming that Auroux’s results extend to this setting), B;(n, k)
should be an Ext-algebra of certain noncompact Lagrangians in a wrapped Fukaya cat-
egory of the k-th symmetric power of an n-punctured disk. When k& = 1, it appears
that we have two Fukaya interpretations of B;(n, k); one is presumably equivariant and
applied to a Milnor fiber, while the other is non-equivariant and applied to a punctured
disk. It would be desirable to have a Fukaya-theoretical explanation of this apparent
coincidence, and the quotient results of this paper; the question is especially immedi-
ate when k = 1 but generalized explanations for arbitrary k¥ do not seem implausible.
Viewing the Milnor fiber as the total space of a Lefschetz fibration following Khovanov—
Seidel, the complement of the singular fibers has a free C* action whose quotient is the
n-punctured plane. Roughly, the above apparent coincidence for k = 1 seems to suggest
that a suitably C*-equivariant version of the wrapped Fukaya category of this comple-
ment should be related to an analogous category for the full Milnor fiber; if so, it would
be informative to understand the relationship geometrically.
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2. Ozsvath-Szabd’s algebras

In [67], Ozsvath-Szabé define an I-state to be a subset x C {0, ...,n}; similarly, we
call a subset x C {0,...,n — 1} a left I-state. We write V(n, k) for the set of I-states
with |x| = k and Vj(n, k) for the subset of left I-states with |z| = k. For x € V(n, k),
write x = {x1,..., 25} with 1 < -+ < x.

Convention 2.1. Below we will consider quivers whose vertices are labeled by certain

I-states or left I-states. If x = y b, 7 are arrows in such a quiver, we will write their
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product in the path algebra as ab. At times it is also useful to view a and b as mor-
phisms in a category whose objects correspond to the quiver vertices. When taking this
perspective, we will view a as a morphism from y to x and b as a morphism from z to
y. The composition ab, without order reversal, also makes sense in the category and is

interpreted as x <~ y Loy
2.1. Big-step quiver description

We begin by giving a “big-step” quiver description of Ozsvath—Szabd’s algebras, fol-
lowing [67] (although we work over Z as in [66, Section 12]).

Z) " associated

Definition 2.2. For n > 0, we define the following elements of Z%, or (% -0

to I-states; in each item below, i ranges from 1 to n.

o If x is an I-state, define v* € Z% by v} = [x N {i,i +1,...,n}|.
o Ifx and y are two L-states, define w*¥ € (3Z)7 by w¥ = Ljo¥—oY|for 1 <i <n.

i
X, ¥z __ y.z X,z X,y
f =w;"” —w;t Fw .

e If x, y, and z are three I-states, define g*Y-* EiZgO by g

x,¥,2
i

The triangle inequality implies that g > 0, and parity considerations imply that

g:¥"* is in Z rather than just %Z.

Definition 2.3. For n > 0 and 0 < k < n, the Z[Uy,...,Uy]-algebra By(n, k) is the path
algebra over Z[U, ..., U,] of the quiver whose vertices are I-states with k elements, with
a unique arrow fy y from any I-state x to any I-state y, modulo the relations

n X,¥,Z
fx,yfy,z = HUzgl fx,z~
=1

For x € V(n, k), let Ix = fxx. The defining relations imply that fxxfxy = fxy =
fxyfy,y for all x,y; it follows that the elements I for I-states x are primitive orthogonal
idempotents that sum to 1 and that fxy = I« fx yly.

Next we take a quotient of By(n, k). For 1 < i < n, define elements R; and L; of
Bo(n, k) by

R; = Z Jxx\{i—1}u{i}

x:xN{i—1,2}={i—1}

and

L= Z Txx\{iyuli-1}-

x:xN{i—1,i}={i}

Definition 2.4. The Z[U, ..., U,]-algebra B(n, k) is the quotient of By(n, k) by the ideal
generated by the following elements for 1 < i < n:
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(1) RiflRi and LiLifh
(2) Ulx if x is an I-state with x N {i — 1,i} = @.

Primitive idempotents Ix of B(n, k) correspond to I-states x. The Z[Uy, ..., U,]-algebra
Bi(n, k) is defined to be

Bi(n, k) = ( > Ix> -B(n, k) - ( > Ix>;

X:n¢x x:né¢x

equivalently, the sums are over x € Vj(n, k).

Like By(n, k) and B(n, k), Bi(n, k) is a Z[Uy,...,U,]-algebra, so we have central ele-
ments

U= Y Ul

x€Vi(n,k)

of By(n, k) for 1 <i < n, analogous to the “global” elements R; and L; above.
2.2. Small-step quiver description

The following quiver description was shown to be equivalent to Definition 2.4 in [52,
Section 4.4]. The results of [52] are formulated over Fa, but they can be lifted to Z as
in [66, Section 12]. An analogous statement holds for B(n, k), but we will focus on the
algebra Bj(n, k) most closely related to Sartori’s algebras.

Proposition 2.5 (Proposition 4.19 of [52]). Forn > 0 and 0 < k < n, the algebra B;(n, k)
is isomorphic as a Z|Uy,...,Uy]-algebra to the path algebra over Z of the quiver whose
vertices are left I-states x with k elements, whose arrows are given as follows:

o for vertices x,y differing in only one element, i.e. such that x = zU {i — 1} and
y =z U{i} for some 1l <i<n-—1 and somez € Vi(n,k— 1) not containing i — 1
or i, an arrow (called an R; arrow) from x to'y and an arrow (called an L; arrow)
fromy to x

o for each vertex x and each i between 1 and n, an arrow from x to itself (called a U;
arrow)

and whose relations we now describe. Any linear combination of paths with the same
source and target in the above quiver has an associated (noncommutative) polynomial in
the variables R;, L;, and U;, and we include such a linear combination as a generator
of the relation ideal if its polynomial is:
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R,U; —U;R;, L;U; —U;L;, or U;U; —U;U;, (2.1)
R;L; —U; or L;R; — Uj, (2.2)
R;R; — R;R;, L;L; —L;L;, or R;L; — L;R; for|i—j|>1, (2.3)
R;_1R; or L;L;_q, (2.4)
U, if the source and target are a left I-state x with x N {i — 1,i} = @. (2.5)

Note that from this perspective, the first set of relations gives Bj(n, k) its algebra structure
over Z[Uy, ..., Uy].

The isomorphism of Proposition 2.5 makes the following identifications:

e R; arrow starting at x <> fx x\{i—1}u{4}

e L; arrow starting at X <> fx x\{iyu{i—1}

U; loop at x < U, fx x

Trivial path (no edges) at x <> the idempotent Ix = fx x.

For any given generator fx of Bi(n, k), an explicit path representing fx y in the R;, L;,
and U; arrows of the quiver is constructed in [52, Definition 2.29]. To see that relations
of the form (2.2) hold in Bj(n, k), for example, it suffices to note that if x =z U {i — 1}
and y = z U {i} for some z € V;(n, k — 1) not containing ¢ or i — 1, then g;">* = 1 while
g;Y7* =0 for j # i, 50 fx,yfyx = Uifxx. Similarly, for relations of the form (2.3), both
quadratic terms of the relation are of the form fxy fy, = fx,z with g;Y"* = 0 for all i,

so their difference vanishes.
2.3. Gradings

The algebra B;(n, k) has a multi-grading by Z?", but this grading is not preserved by
the quotient map to Sartori’s algebra we will define in Section 4; Sartori’s algebra has only
a Z grading. Correspondingly, we will use Ozsvath—Szabd’s single “Alexander grading”
by %Z, corresponding to the power of ¢ in the Alexander polynomial (for a closed knot
these powers are always integers, but fractional powers may appear when considering
tangles). When viewing the Alexander polynomial as a quantum invariant depending on
a parameter ¢, the variables are related by ¢t = ¢?. Thus, in relating Ozsvath-Szabd’s
algebras to Sartori’s, it will be useful to double the Alexander gradings.

Definition 2.6. Let deg’ be defined by deg’(R;) = deg’(L;) = 1/2 and deg'(U;) = 1; for
X,y € Vi(n, k), we have deg'(fxy) = > i, wY. Let deg? be obtained by doubling deg’;

(3

explicitly, deg?(R;) = deg?(L;) = 1 and deg?(U;) = 2 while deg?(fx,y) =2 1, w;”.

Remark 2.7. In the conventions of [67], this definition of the single Alexander grading
from the refined grading (together with the absence of C; variables, a homological grad-
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Fig. 1. Visualizing I-states, fully used coordinates, and crossed lines for n = 8, k = 5, x = {0,2,5,6, 7}, and
y=141,2,4,5,7}.
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ing, and a differential) is meant for an algebra associated to n endpoints of a tangle,
all pointing downwards. When relating Ozsvath—Szabd’s theory with constructions in
representation theory, various changes of convention are often necessary; see e.g. Sec-
tion 8.12.

2.4. Basis for the algebra

Ozsvath—Szabd’s proof of [67, Proposition 3.7] works over Z and implies that for
any x,y € V(n, k), I«B(n, k)L, is a graded free abelian group with a basis we review
below. In particular, we get a basis for It5;(n, k)I, when x and y are left I-states in
Vi(n, k).

Definition 2.8. If x,y € V(n, k) with |x; — y;| > 1 for some 7, then x and y are said to
be too far.

If x and y are too far then I.B(n,k)I, = 0. Otherwise, we consider the following
further definitions.

Definition 2.9. Let x and y be I-states with k£ elements.

o If0<i<mnandié€xNy, wesay that i represents a “fully used region.” Otherwise,
1 represents a “not fully used region.”

o If 1 <j <nandvf# 1);', we say that j represents a “crossed line.” Otherwise, j
represents an “uncrossed line.”

Remark 2.10. One can visualize the above notions as follows: depict an I-state x by
drawing n parallel lines, with n+ 1 regions outside the lines labeled 0, . ..,n, and placing
a dot in region ¢ if and only if ¢ € x. If x and y are two I-states with k elements, draw
the dot pattern for x next to that of y, and connect the dots of x to the dots of y in
the unique order-preserving way. A region is fully used if it has a dot in both x and
y; otherwise it is not fully used. One of the original parallel lines is crossed if a line
connecting a dot of x to a dot of y crosses it; otherwise it is uncrossed. See Fig. 1 for an
illustration.
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Definition 2.11. Given I-states x,y € V(n, k) that are not too far, an interval of coor-
dinates G = [j+ 1,7+ ={j+1,7+2,...,5 +1} C [1,n] for some [ > 1 is called a
“generating interval” for x and y if:

e regions j and j + [ are not fully used,
e regions j+1,...,5 + 1 — 1 are fully used, and
e the lines j + 1,...,j + [ are all uncrossed.

If G is a generating interval for x and y, we define a monomial pg := Uj4q1---Ujp €
ZUy, ..., U]

Proposition 2.12 (Proposition 3.7 of [67], Z version). Let x,y € V(n, k) be not too far.
We have an isomorphism

Z[Uy,..., U]
(pg : G generating interval)

12

IB(n, k)1,

of Z|Uy, ..., U,]-modules. When x and 'y are left I-states, the same formula describes
IxBl(n, k)Iy.

In the big-step quiver description, the element 1 of the above quotient of Z[Uy, ..., U,]
corresponds to fxy. In the small-step quiver description, a recursive definition of a
path in the above quiver giving rise to the element of I.B;(n,k)I, corresponding to
1€ Z|Uy,...,U,] is given in [52, Definition 2.28].

Corollary 2.13. Let x,y € V(n, k) that are not far. The graded abelian group I.B(n, k)1,
is free with a basis given by monomials in Uy, ..., U, that are not divisible by the mono-
mial pg of any generating interval G for x andy.

2.5. Characterization of generating intervals

Definition 2.14. Given an I-state x, define its hole sequence x¢ to be {0,1,...,n}\ x.
If |x| = k, then [x°| = n —k + 1 and we write x® = {2f,25,...,2)_,,25_, ,} with
rf <a§ <o <ah_py Forall x € Vi(n, k) we have zf_, | =n.

In terms of Remark 2.10, say x has a hole in a region if it does not have a dot there;
then ¢ is the region containing the i-th hole of x (compare with z; which is the region
containing the i-th dot of x). Notice that j is not fully used if and only if j € x°Uy*®. If
x§ > yf, set j = xf; then v¥ > vy,

Lemma 2.15. The I-states x,y € V(n, k) are too far if and only if x{ > y§ | orys > xf
for some 1 <i<n-—k.
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Proof. Set j = z§ and suppose that z§ > y¢, ;. Recall that j = 2§ means that j is the
position of the ith hole in x, so that of the j possible entries in {0, 1,...,j — 1} there are
(i —1) missing entries in x, leaving j — (i —1) filled. Hence x;_; 1 < j. But j = xf > yf,
means that y has at least ¢ holes in the set {0,...,j — 1}, implying that y,_, > j. We
then have

Tji < Tjoit1 <J<Yjoi, e @i <xjip1 —1<7-2<y; -2,

so that |z;_; — y;—;] > 1 and x and y are too far. A similar argument shows that if
y§ > x{,, then x and y are too far.

Now suppose that x and y are too far, so that |x; — y;| > 1 for some index i. First,
assume that y; > x; + 2 and that i is the largest index satisfying this condition. Since
Zit1 > T+ 2 (otherwise y;41 > y; +1 > x; +3 = x;41 + 2, contradicting the maximality
of i), we have z; + 1 ¢ x. It follows that z; + 1 = z§ for some 1 < j < n — k. Since
y; > x;+ 1, the set yN{0,...,x; + 1} has size at most ¢ — 1, whereas xN{0,...,z; + 1}
has size i. We see that y has at least one more hole in {0,...,z; +1} = {0,...,z5} than
does x, so yj-H < x§

If y; < z; + 1 for all ¢ but x and y are too far, then x; > y; + 2 for some minimal i.
In this case, we can show that z% ; <y for some j with a similar argument. O

The following gives an alternative characterization of the generating intervals from
Definition 2.11.

Lemma 2.16. Suppose x,y € V(n,k) are not too far. An interval [j + 1,5 +1] is a
generating interval for x andy if and only if j = max (x5, y) and j+1 = min (a:fﬂ, yfﬂ)
for some index 1 <i<n—k.

Proof. First, assume that [j + 1,7 4 {] is a generating interval; we will show that it has
the described form. We have j, j+1 € x°Uy®and j+1,...,7+1l—1 € xNy. Lemma 2.15
implies that z§ < yf,; and yf < ¢, for any 1 <7 <n — k.

We claim that j = max (z¢,y) for some . Indeed, we have j = z§ or j = y¢ for some
i because j is not fully used; assume to derive a contradiction that j = z§ and z{ < y§
(the case when j = y¢ and y§ < x§ is analogous). Since y¢ < min (z£,,,y¢, ), the first
non-fully-used coordinate to the right of j is y{, so j+1 = y{. Since x and y have differing
number of holes/dots to the left of line j + [ (and thus differing numbers of holes/dots
to its right), we have i #+ ’U;’_H. Therefore, line j + [ is crossed, a contradiction.

Now, since j = max (z¢,y¢), the first non-fully-used coordinate to the right of j is
min (x{ 1S +1)’ S0 741 is also equal to this quantity, and we have shown any generating
interval is of the form described in the statement.

Conversely, for 1 <1i <n —k, let j = max (z§,yf) and j + [ = min (:vf+1,yf+l). We
claim that [j + 1,5 + ] is a generating interval. Indeed, the coordinates j and j + [ are
non-fully-used because at least one of {x,y} has a hole in coordinates j and j + [, while
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all coordinates between them are fully used. The I-states x and y have the same number
of holes/dots to the left of line j + 1 and to the right of line j + I, so all lines between j
and j + [ are uncrossed. O

2.6. Anti-automorphism

In [67, Section 3.6], Ozsvath-Szabé define an anti-automorphism of B(n, k) that re-
stricts to an anti-automorphism of Bj(n, k).

Definition 2.17. The anti-automorphism ©¥ogs,: Bi(n, k) — Bi(n, k)°PP sends R; — L;,
L; = R;, and U; — U; in the small-step quiver description of B;(n, k).

Remark 2.18. In [67], ¥os. is called o. Ozsvath—Szabé also describe another symmetry R
of B(n, k); restricted to B;(n, k), it gives an isomorphism from B;(n, k) to B, (n, k), where
B,.(n, k) is defined by summing over x with 0 ¢ x rather than n ¢ x in the definition of
B;(n, k). The symmetry R is not present in the Sartori algebras we review below.

3. Sartori’s algebras
3.1. Polynomial rings and bases for quotient rings

Let R = Z[x1,...,2,) and set deg(z;) = 2 so that R is a graded ring. Write R¢
for R® C = Clxy,...,7,]. Denote by S, the symmetric group, R°" the symmetric
polynomials in R, and RJSF” the symmetric polynomials of strictly positive degree. The
coinvariant algebra R/ qur" is a graded free abelian group with both a monomial basis
{zt = 2% . .2l | 0 < ¢; < n—i} and a Schubert polynomial basis {G,, | w € S,}
indexed by permutations w € S,,. It is possible to enumerate the monomial basis by
permutations by defining ¢; = #{j < w™!(i) | w(j) > i} for w € S,, and defining

Sl (z1,... @) =T 2s? . oay (3.1)
The monomial &, is the leading term of the Schubert polynomial &,, in the lexicographic
order generated by =, > x,_1 > - > x7.

Define the elementary and complete symmetric polynomials by

ej(Z1,...,2n) = Z Tiy Ty, hi(z1,...,2n) = Z Tiy oo Ty,

1<ip < <i;<n 1< <-<ij<n

forj > 1. Let b= (by,...,b,) € Z%, be a decreasing sequence that decreases by at most
1, i.e. we have b; > b;11 > b; — 1 for all i. Given b, define a homogeneous ideal Iy, C R
by

Ib = <hb1 (1‘1), hb2 (1‘1,132), e ,hbn (a:l, . ,xn)> . (3.2)
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Set Ry, = R/I, and RS = Ry ® C. By a Z analogue of [79, Proposition 2.3], the
quotient ring Ry, is a graded free abelian group of rank b1bs - - - b,,, and a basis is given
by {x} =z]' ...z | 0 < j; < b;}.

3.2. Sequences and permutations

Fix 0 < k < n and consider the set D = D,, j, of sequences p = py ..., where each
wi € {A,V} and there are k A’s and (n—k) V’s. Given a AV sequence g € D, number the
positions from left to right, the A terms from 1 to k, and the V terms from 1 to n — k.
Let A} be the position of the ith A and V4 be the position of the jth V in p. Define
the b-sequence associated to 1 € D to be the sequence b* = (by, b4, ..., b%) with b — 1
equal to the number of A’s strictly to the right of position i.

By mapping the sequence A---AV - -V to the identity element e € S,,, each element of
D,, i, corresponds to a minimal-length coset representative for (Si % Sy,—k)\ Sy by letting
Sy, act by permutation of positions. In particular, given p € D,, j, the corresponding
minimal-length coset representative w is specified by w=(j) = /\5-‘ for 1 <7 <k and
wl(j+k) = \/5 for 1 < j < n — k. Conversely, a minimal-length representative w €
(Sk X Sp—x)\Sn maps to the sequence u € D, ) with Al = w™1(i) for 1 <4 < k and
\/g =w~(j+k) for 1 <j < n—k. We will identify a AV sequence with its corresponding
permutation.

Remark 3.1. There is a bijection between D, ; and Vj(n,k) defined by sending a left
I-state x = {x1,...,z;} to the AV sequence with a A in position x; + 1. Given p € D,
we define a left I-state x* whose ith term z; is Al — 1. Sartori’s sequence b* is obtained
from Ozsvath-Szabd’s weight v** by adding 1 to each coordinate. The hole sequence
(x#)¢ associated to the I-state x* is expressed in the language of AV sequences by
() = V¥ 1.

Definition 3.2. We say that AV sequences p,A € D, j are too far if for some index
1<j<n-—k—1we have v;‘zv;H orv?Z\/g‘_H.

Lemma 2.15 above shows that the sequences A and p are too far if and only if the
corresponding I-states x* and x* are too far in the sense of Definition 2.8; note that for
X,y € Vi(n, k) it is impossible to have f,_, >y .  =norys_, >z, _, ., =n.

3.3. Soergel modules and their hom spaces
Soergel modules for the symmetric group S,, are modules C, over the polynomial

ring Rc = Clz1,...,,] indexed by permutations w € S,. Set B = Rc/(Rc 4)°
for a simple transposition s; € S,, let B’ denote the invariants of B under s;. Given

n and

a reduced expression w = s;_...S;,, the module C,, is defined as the indecomposable
direct summand of the module
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containing 1®- - -®1. Soergel showed [80] that C,, is the unique indecomposable summand
of the above tensor-product B-module that is not isomorphic to any C, for w’ < w in
the Bruhat order on S,,. Up to isomorphism, C,, does not depend on the choice of reduced
expression for w. This holds more generally for R = Z[x1, ..., x,]; see [22, Theorem 1.1
(3))-

Identifying summands giving rise to Soergel modules is in general a difficult task;
even the dimensions of the modules are computed using Kazhdan-Lusztig polynomials.
However, things simplify dramatically when the Soergel module is cyclic. Under the
identification of B with the cohomology of the full flag variety, the condition of a So-
ergel module to be cyclic is equivalent to the rational smoothness of the corresponding
Schubert variety in the full flag variety [37, Appendix].

Let wy denote the longest element of Sy considered as an element of S, via the
inclusion S x S1 X -+ x S1 = S,,. For p € D, j, identified with a coset representative of
(Sk X Sn_1)\Sn as above, we write wyp for the product in S,,.

Proposition 3.3. We collect the relevant results from [79] on Soergel modules and the hom
spaces between them.

(i) For every p € Dy, i, the module Cy,,, s cyclic ([79, Proposition 4.5]).
(ii) By [79, Theorem 4.10] there is an isomorphism Cy,, = RS, so that Cy,, has a
basis given by

{abad> 2P0 <dp < b

(iii) The dimension of Cy,, = RS, is b - bE.
(iv) Given \,pu € Dy, ., set d; = max(b}' — b},0). By [79, Corollary 4.11], a basis for
the vector space Homp . (Cypr, Cop) = HomRC(REA,RE‘L) is given by

(L2l 2" dy < i < b}

n—1

3.4. Illicit morphisms

Let Wi C S, be the subgroup generated by si,...,s,—1, and W the subgroup
generated by sk, Sk+1,---,Sn—1. Let D’ be the set of minimal-length coset representatives
for W,CJ- \ Sy, so that for any u € D, , we have p, wip € D' where wy, is defined before
Proposition 3.3.
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Definition 3.4. For A, € D,, ), we say that a morphism Cy, x — Cy,, is dllicit if it is a
sum” of morphisms that each factor through some C,,, where y is a longest coset represen-
tative for Wy, \ S, with y ¢ D’. Let W, ,, be the Rc-submodule of Homp. (Cyyx, Cuvypr)
consisting of illicit morphisms.

Note that the elements wyp for p € D, , are those permutations which are both
maximum-length coset representatives for W;\ S, and minimum-length coset represen-
tatives for Wkl\Sn By contrast, the elements y appearing in the above definition are
those permutations which are maximum-length coset representatives for Wi \S,, but not
minimum-length coset representatives for W\ S,,. The definition of illicit is chosen to
match with morphism spaces between projective modules in parabolic category O, as
explained in [79]; the quotient by illicit morphisms is a feature of Soergel module ap-
proaches to O} for general parabolic p, not specific to the categories Of7*"** under
consideration.

Sartori’s algebras A,, j, are built from maps between cyclic Soergel modules modulo
illicit morphisms. For our purposes, it suffices to know a few simple illicit morphisms; then
the fact that composition with an illicit morphism is illicit (a factorization of a morphism
through C, gives such a factorization through any composite with the morphism and
the same holds for sums) will enable us to completely characterize illicit morphisms in
Corollary 5.11 below. The following lemma collects Lemmas 4.14-4.16 from [79].

Lemma 3.5 ([79]).

(i) Suppose that p,A\ € D, are identical except in entries (j,j + 1,5 + 2)
where (W, i1, Ljv2) = AV V and (Aj, Aji1,Nj12) = VV A. Then W, \ =
Homp,. (RS, RC.) and W, = Homp. (RS, , RS,.).

(it) For X € Dy ), with V3, =V} + 1, the endomorphism (1 — xv;) of RS, is illicit.

(iii) For A € Dy, i, the morphisms

1= zyrxon R AN
ViVl VisiT

1
are illicit endomorphisms of REA foreach1<j<n-—k-—1.
3.5. Definition of Sartori’s algebra
Definition 3.6. Define the Sartori algebra A to be the graded C-algebra

A=Anr= € Homg. (RS, R/ MWap- (3.3)
Av“‘EDn,k

2 Sartori [79, Section 4.3] does not mention such sums explicitly when defining illicit morphisms, but he
always treats the space of illicit morphisms as being closed under such sums.
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Let 1, denote the identity map on REA' The collection {1x | A € D, } form a
system of mutually orthogonal idempotents on the algebra A. We can view A as a
Clz1,...,x,]-algebra by sending x; to ZAeDn,k 2; 1. In the subsequent sections we will
review Sartori’s diagrammatic description of the graded vector spaces 1,,.A1, and define
a version of Sartori’s algebra over Z.

8.5.1. Connection to BGG category O

Let IT = {a1,...,an_1} denote the set of simple roots for gl,, so that a; = €; — 41,
with ¢; = (0,...,0,1,0...,0) the standard basis vectors.

Define ZOP:9-Pres to be the g-presentable quotient of the p-parabolic subcategory of
graded category O(gl,,), where q, p are the standard parabolic subalgebras of gl,, with
sets of simple roots Il = {a1,..., a1} and II, = {og,...,am_1} (s0 p,q have Levi
types (1,...,1,n—k) and (k,1,...,1) as in the introduction). For the relevant definitions
see [78, Section 6] and the references therein.

The main result of [79, Theorem 6.7] shows that the graded algebra A,, 1 is isomorphic
to the endomorphism algebra of a minimal projective generator of the block ZOf 97 P
of ZOP-a-Pres containing the trivial representation. In particular, there is a graded equiv-
alence

Ay p—gmod = Z(ng‘l—pres7 (3.4)

where A;, ,—gmod is the category of finite-dimensional graded A,, -modules, so that

the Sartori algebra provides a combinatorial model for ZO}7P*,

3.6. Anti-automorphism

There is a symmetry between maps of Soergel modules defined for any A\, u € D, , by

Homp, (RS, RS,.) — Homp, (RS, RS,) (3.5)

(1—=p)— (1 xbk_b“p)

b bt b0 b
= .

with x .. xn“_bz (the product of this expression with p will have non-

negative exponents). By [79, Lemma 5.14] this map sends W, ,, to W, » and thus extends
to an anti-automorphism g: A, — Ay, (Sartori refers to ¥g as ).

4. A surjective homomorphism from Ozsvath—Szabé to Sartori

If k is a field, let Bf(n, k) denote Bj(n, k) ® k. View A, ;, as a C[Uy,...,U,]-algebra
by relabeling x; as U; in the C[zy,...,x,]-algebra structure.

Proposition 4.1. Let p = p*, A = ¥ denote VA-sequences in D, associated to left I-
states x,y € Vi(n, k) as in Remark 3.1. The map =Z: B;C (n, k) = A, i sending I to 1,
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sending fx,y to zero if X,y are too far, and otherwise sending fxy to (the equivalence
class of) the morphism of Soergel modules

ey 1= E(fxy): R(bjk — RE‘L

1 »—)x‘f1-~-md“

n

where d; = max (v¥ — v}, 0) = max (b}’ — b},0), extended linearly over C[Un, ..., U,], is

%

a well-defined surjective homomorphism of Z-graded C[Uy, ..., U,]-algebras.

x,¥y,z
Note that if x,y,z are pairwise not too far, then Zy Zy . = [, U Ef ;
this identity follows from the relationship max(a,b) = %la*bl between maxima and
absolute values, since

max (v} — v}, 0) + max(v) —v7,0) — max (v} — v7,0)

79

of —of X —of| o) —vf oy —of| uf —wf o+ oF —of
h 2 2 2
I A I A O
B 2 2 2
:gz‘c,ym.

However, to prove Proposition 4.1 along these lines, one would also need to consider
what happens when some pairs among x,y,z are too far (as well as present B;(n, k) as
a quotient of a truncation B (n, k) of By(n, k) and show that the quotient relations are
satisfied).

Instead, to show that = is well-defined and prove Proposition 4.1, we will make use
of the small-step quiver description of B;(n, k). In this description, B;(n, k) is generated
multiplicatively (over the subalgebra spanned by {Ix|x € Vi(n,k)}) by arrows of the
quiver labeled R;, L;, or U;; we will refer to such elements as small-step quiver generators.
The small-step quiver generators R;, L;, and U; can be viewed as instances of fxy or
Ui fx,x for certain x and y; below we describe where = sends these generators.

Lemma 4.2. For a small-step quiver generator with label R;, left idempotent x, and right
idempotent y, we have

= C C
ZR; - Rby — be

1 - 1

For a small-step quiver generator with label L;, left idempotent x, and right idempotent
y, we have

= C C
'y P Rby — be

1 — X;.
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For a small-step quiver generator with label U; and left and right idempotent x, we have

= . pC C
—=U, - be — be

1 — Z;.

Proof. If a small-step generator with label R; exists with left idempotent Iy and right
idempotent I, then we have x N {i — 1,4} = {t — 1} and y = (x\ {i — 1}) U {s}. Tt
follows that v* —vY is the element of Z™ with —1 in entry i and zero in all other entries,
so we have c; = 0 for all j in Proposition 4.1. For small-step generators labeled L;, the
argument is similar, except that v* — v¥ has 1 in entry ¢. It follows that ¢; = 0 for
j # i and ¢; = 1 in Proposition 4.1. Finally, for small-step generators labeled U;, the
claim follows because these generators can be written as U, fx x, = was defined to be
C|Uy,...,Uy]-linear, and the action of C[Uy,...,U,] on the Soergel module morphism
space has U; acting as multiplication by z;. O

Lemma 4.3. Extending the values of = from Lemma 4.2 multiplicatively, we get a well-
defined C-algebra homomorphism

Z: BE(n, k) = An k.

Proof. We need to check that the relations of Proposition 2.5 are satisfied. The re-
lations (2.1) follow because Soergel module morphisms are assumed to be linear over
Rc = Clz1,...,x,). The relations (2.2) and (2.3) follow from the explicit formulas of
Lemma 4.2. The relations (2.4) and (2.5) follow from Lemma 3.5, items (i) and (ii)

respectively. O

Lemma 4.4. The ring homomorphism = from Lemma 4.3 is linear over C[Uy,...,U,]
and satisfies =(fx.y) = Z(fxy) for all big-step generators fxy of BE (n, k).

Proof. Since C[Uy,...,U,] acts on the small-step description of BF (n, k) via the small-
step generators with label Uj, = sends these to Soergel module endomorphisms that
multiply by z;, and C[Uy,...,U,] acts on A, by having U; multiply by z;, the map =
is C[Un, ..., Uy]-linear.

To show that = maps fxy as claimed, first note that if x and y are too far then fy
is zero in B (n, k), so Z maps it to 0 = E(fxy) in Ay .

When x and y are not too far, we will proceed by induction on k—|xNy| using a small-
step path 7%y representing fxy in Bj(n, k) under the isomorphism of Proposition 2.5.
We make use of a recursive definition of 7y y from [52, Definition 2.28].

If kK — |x Ny]| is zero, then x =y and the claim follows. Assume that x # y and that
the claim holds for all (x,y) with k — |x’' Ny’| < k — |x Ny|. We consider two cases:

o If x, < y, for some a, let a be the maximal such index. Since x and y are not too
far, we must have y, = x, + 1, and since @ is maximal, we must have z, + 1 ¢ x.
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Let x" = (x \ {z.}) U{zq + 1}; by construction, we have 7xy = Ry, +17x/,y. Thus,
by the induction hypothesis,

E(ry) = E(Rea+1)=E (1 y)

:(1|—>1)o(1»—>x(1:/1---xf{‘)

where ¢; = max(v¥ — v¥,0). For all i except i = 2, + 1, we have v¥ = v¥, and we
have v;‘;H = v} .1+ 1. Since v}, —v) || = —1, we have vi‘;ﬂ —v) .1 =0. We
see that for all i, ¢; = ¢; = max(v¥ — v, 0), so that
Elyxy) =1 - apr)

as claimed.

o If z, > y, for all a, then x, > y, for some minimal a because x # y. As above,
Yo = xo—1land z,—1 ¢ x. Letting x’ = (x\{z,})U{zs—1}, we have 7x y = Ly, V¢’ y-
We get

l
l

(11}

('Vx,y) = E(Lza )E(’Yx’ ,y)

= (lexa)O(lr—)zfll--'xf{‘)

’ . . ’
where ¢, = max(v¥ — v}, 0). For all i except i = z,, we have v¥ = v¥, and we have

<’
'Uma

= vy — 1. Since vy —wvY =1, we have v;‘; —v¥ = 0. We see that for i # z,,
we have ¢; = ¢; = max(v} — v},0), while ¢, = ¢;, — 1(= 0). Again, it follows that

for all 4, we have
E(ey) = (L 2§ ar)
as claimed. O

Proof of Proposition 4.1. Since BE (n, k) is generated over C[Uy, ..., U,] by the elements
fx,y, and both = and Zare C [U1,...,Uy]-linear, Lemma 4.4 implies that = = . Thus, =
is a well-defined algebra homomorphism; surjectivity of = follows from Proposition 3.3,
item (iv). O

Proposition 4.5. The surjective homomorphism =: B;C (n,k) — Ap i intertwines the
anti-automorphism Yogs, from Section 2.6 with the anti-automorphism g from Sec-
tion 3.0.

Proof. This is easiest to see in the small-step description of the homomorphism using
the mappings from Lemma 4.2. Then it is clear that ¥ og,, which swaps the roles of R;
and L;, agrees with the definition of ¥g. O
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5. Characterizing illicit morphisms via generating intervals
5.1. Generating interval and the W< submodule

We now begin to work with Sartori-style constructions over Z rather than C.

Definition 5.1. For yi, A € Dy, i, let WY | C Hom r(Rpr, Rpw) be the R-submodule defined
by:

(i) if X and p are too far in the sense of Definition 3.2, then
WS\I,;,L = HomR(RbA ’ Rb");

(ii) otherwise, define WY, to be the submodule generated by the morphisms

1 (ma(j)7xa(j)+1 . xﬁ(j)) (mfl xfl") for 1 <j<n-—k, (5.1)
where d; = max (b} — b},0) and

min (V?HVJA‘—H) -1, ifj<n—k,

2
n, ifj=n—%k. (52)

a(j) = max (V},V4),  B()= {

Proposition 5.2 (cf. Theorem 4.17 [79] ). For all i, A € Dy, i, we have WY, @ C C Wy,
so that the submodule Wﬁu ® C contains only illicit morphisms.

Proof. Identify x with g and y with A. Observe that \/? = z§ + 1. By Lemma 2.16,
the element of A, j, represented by each generator of WY, ® C is the image under the
homomorphism E of pg(Un, . .., Up) fx,y for some generating interval G = [j+1, ..., j+]
between x and y as defined in Definition 2.11. These elements pg (Ui, ...,U,)fxy are

zero in By(n, k), so E sends them to zero in A, ;. Thus, each generator of Wj‘\‘u ®C
represents zero in A, , and is hence illicit. O

The statement above differs from [79, Theorem 4.17] as we explain in the next section.
5.2. Comparison with Sartori’s Theorem 4.17

In [79, Theorem 4.17], Sartori defines a collection of illicit morphisms VNVA, u expressed
in our terminology as follows. For pu, A € D,, 1, let WA,H C Hompg(Ry», Rpr) be defined
as in Definition 5.1 with «a(j) := \/]A- in (5.1).

Whenever A and p are not too far and \/5 > \/?‘ for some 1 < j < n—k, this definition
differs from Definition 5.1. Below we give an example showing that WY , W,\w (the
same is true after complexification), so that WA, . cannot be equivalent to the submodule
of illicit morphisms.
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Example 5.3 (Comparing W and We). Let A = VAAV and 4 = AV VA. Then b =
(3,2,1,1) and b* = (2,2,2,1). The submodule WA# is generated by (z1z2)(z3) (from
J=1) and (z4)(z3) (from j = 2). However, WY  is generated by (22)(z3) and (z4)(x3).

A Z analogue of Proposition 3.3, item (iv) implies that a Z-basis for the space of
maps from Ry» to Rpe is given by the set

{af'alay |0< 1 <1,0< jo <1, jg =1} = {x3, z123, 2273, 10203}

(since c3 =1 < j3 < by =2).
Notice that the j = 1 generators of both Wy , and WY  are both elements of the
above basis. The j = 2 generator x3x4 of these ideals is redundant in both cases since

Ipi = (ha(x1), ha(w1, 22), ho(x1, 22, 23), hi (21, 2, T3, 24))
SO
r3T4 = —T1X3 — To2X3 — ZL’% = 1’% + CC% + T1x0 = h2($1,502) € Ipn.

It follows that {x3,z123,x223} is a basis for Homp, (Rbk,Rbu)/W)\7u; in particular,
ToX3y € Wi# \ WA»H'

5.83. Fork diagrams and the dimension of homs mod illicits

5.8.1. Oriented fork diagrams

Here we recall the notion of (enhanced) fork diagram from [79, Section 5.1]. An m-fork
is a tree with a single root and valency m, with 1-forks called rays. Let H_ (resp. Hy)
denote the lower (resp. upper) half plane. A lower fork diagram is a collection of forks
in H_ such the leaves of each m-fork are m distinct points on the boundary 0H_ of
H_. Upper fork diagrams are defined analogously. Below is an example of an m-fork for
m = 5 and a lower and upper fork diagram.

NSOV N AT N e

root

If ¢ is a lower fork diagram with |cNOH_| =n and X € D,, ; then c) is a unenhanced
oriented lower fork diagram if:

o each m-fork for m > 2 is labeled® with exactly one V and m — 1 A’s;

o the diagram begins at the left with a (possibly empty) sequence of rays labeled A,
and there are no other rays labeled A in c.

3 In [79] there is a typo indicating m > 1.
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For example, in the labeled fork diagrams below

>

/\\//\\|/\|/\//\/\/\ NV \|//|\\//\/\/\ /\\//\\|/\|/\//\\//\

VIS NV TINY S NV TN

only the first is an oriented fork diagram. The second has a A labeled ray not appearing
at the beginning of the diagram, while the third is disallowed because the 4-fork has two
strands labeled V.

A enhanced oriented lower fork diagram c\’ is a unenhanced lower fork diagram
equipped with a bijection o between the vertices labeled A in A and the set {1,...,k}.
Unenhanced and enhanced upper fork diagrams are defined analogously.

By a fork diagram we mean a diagram of the form ab obtained by gluing a lower
fork diagram @ underneath an upper fork diagram b with compatible endpoints on the
boundaries. An unenhanced oriented fork diagram is a fork diagram aAb in which both
aX is an oriented lower fork diagram and Ab is an oriented upper fork diagram. Some

NNV ANV V.V AANA VNNV VAANANYV (5.4)

V VA%

The degree of an oriented m-fork for m > 2 is defined to be (i — ip) where 4 is the

examples of oriented fork diagrams are given below.

M

<o

index of the unique V labeling the fork and iy is the leftmost index in the fork; 1-forks
have degree zero. The degree of an upper or lower oriented fork diagram is the sum of
the degrees of its forks; the degree of an oriented fork diagram is the degree of its upper
part plus the degree of its lower part. Define the degree of a permutation o € 5, as
deg(c) = 2¢(o). Then the degree of an enhanced oriented fork diagram is given by

deg(aA?b) = deg(aA) + deg(Ab) + 2((0). (5.5)

For example, the first fork diagram in (5.4) has a degree 1 upper fork diagram and a
degree zero lower fork diagram for a total degree of 1. In the second example, the upper
fork diagram has degree 0 4+ 3 while the lower fork diagram has degree 0 + 0 + 2 for a
total degree of 5.

For each sequence A, we denote by A the unique lower fork diagram such that A\® is an
oriented lower fork diagram of degree zero. In other words, \ is the fork diagram where
each V in X is the first vertex of an m-fork for some m. We write A for the unique degree
zero upper fork diagram given by reflecting A\ across the horizontal axis. For example,
the lower fork diagram in (5.3) is p for p = VAAVVVAAA and the upper fork diagram
in (5.3) is A for A\ = AV AV VVAAA. Note that the same lower (resp. upper) fork
diagram can correspond to AV sequences in D, ;, for different k. For example, the upper
fork diagram in (5.3) can also be identified with A for A=V VAV V VA AA.



28 A.D. Lauda, A. Manion / Advances in Mathematics 376 (2021) 107455

Definition 5.4. Given two sequences u, A € D, 1, define Z, 5 to be the graded free abelian
group with homogeneous basis given by

{ Hn”/_\ | an’j\ is an oriented enhanced fork diagram} .

5.8.2. Counting fork diagrams

For p, A € D,, 1, that are not too far, we would like an explicit formula for the graded
rank of Z, 5 (if u and A are too far then the rank is zero). First, we recall a relevant
lemma from [79].

Lemma 5.5 (cf. Lemma 5.5(i) of [79]). Given p,n € Dy, the lower fork diagram pn is
oriented if and only if

Vi SV <Vvig

or 1 <i<n—k, where we set V¥ _, . =n+1 by convention."
n—k+1 Y

Proof. Note that pu has some A-labeled rays at the left (say ro of them), followed by
n — k “V-labeled forks” (each with one V label and m — 1 A labels in u for some m > 1).
Say p has r > rg rays before its first m-fork for m > 2.

Assume that pn is oriented. For 1 < ¢ < n — k, if the i-th V-labeled fork of [ is an
m-fork for m > 2, then n must have exactly one V that is > V4 but < V4. There must
also be a V in n for every V-labeled ray of pu occurring to the right of an m-fork for
m > 2. We have accounted for n —k —r +r¢ V’s in n, and r — rg of them remain. Since
pn is oriented, 7 must have these V’s on the rightmost r — r¢ out of the initial r rays of
p. These are precisely the initial rays of g on which p has a V, so the condition in the
statement of the lemma holds.

Conversely, if the condition holds, then each m-fork of p with m > 2 has exactly one
V in 7. Furthermore, ppu starts with a sequence of A-labeled rays and no A-labeled rays
appear in ppu outside this sequence, so the condition implies that the same is true for
pn. Thus, un is oriented. O

Proposition 5.6. Let u, A € D,, ;. correspond to left I-states x,y that are not too far as
in Remark 3.1. Suppose the generating intervals between x and 'y are [j; + 1, j; + ;] for
1 <i<mn-—k. There are exactly ly - - -1,k choices of n such that EUS\ is oriented.

Proof. By Lemma 5.5, a choice of n such that EUS‘ is oriented amounts to a choice of
integers 1 < V{ < --- < V]! | <n such that

max(V, V) < VI < min(VE, |, Vi)

4 In [79] there is a typo incorrectly indicating 1 < ¢ < n — k — 1, rather than 1 < ¢ < n — k. For example,
take p = AV and n = VA.
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for 1 <i <n — k, where we set Vﬁ_k_H = VT)’\L—k-'rl = n + 1. Translating V-sequences for
w and 7 to hole sequences z§ = V¥ — 1 and y¢ = V3 — 1 (see Remark 3.1), the above
condition is equivalent to

max(zf,y;) + 1 < \/n < min(z z+17yz+1)

By Lemma 2.16, these inequalities are equivalent to V| € {j; +1,...,7; + {;}. It follows
that the number of 1 such that un is oriented is equal to the number of ways to choose
one element from each set {j; +1,...,4; +1;} for 1 <1i <n —k, proving the lemma. 0O

We use the nonsymmetric quantum integers and factorials

Klo=14+¢+ -+ @%bV =¢* g,  [klo! = [Klo[k —1]o...[1]o = ¢"F~D/2[g]l.
(5.6)

Corollary 5.7. For pi, A € D,, i, that are not too far, corresponding to left I-states x,y as
in Remark 5.1, the graded rank of the graded free abelian group Z,, x is

rkq(Zu) = q*[k]o! - H (li]os

where d = Zf 1] /\/\ N and by, .o Lk are the lengths of the generating intervals
between x and'y. Thus, the ungraded mnk of Zux is KT Ui If p, X are too far, then
Zux=0.

Proof. By the remarks at the end of Proposition 5.6, each choice of n € D, j such
that Hnjx is oriented corresponds to a choice of one element from each of the generating
intervals [j;+1, j;+1;], 1 <i < n—k, for x and y. Choosing the (j; 4+ 1)-st term of 1 to be
V for all i produces the lowest degree element un which has degree d = Zle | AN = AR
More generally, if n has a V in index (j; + 1 + ;) for 0 < v; < I;, then Hnjx has degree
d+ Zle 2;, so the choices in the i-th generating interval contribute a factor of [I;]o to
the graded rank. The result then follows since

> deg, (un7A) = > ¢*7 deg, (un)) = [klo! deg, (un)) O

ocESy €Sy

Example 5.8 (Number of oriented fork diagrams). Let n =12 and k = 8. Set
A= (VA VLA VLA A VLA AAA), = (Vo AA VLAY A A A VLA, A).

We have

NAMN AN o=\ VNV Y
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so that oriented fork diagrams Hnj\ look like

oag -

T1T2 TeT7 10211212

where the blue® circled regions correspond to the generating intervals and represent the
possible locations of the V in EUS\- Note that the i-th generating interval is formed by
all indices (necessarily consecutive) connecting the i-th V-labeled fork (not a A-labeled
ray) of p to the i-th Vv-labeled fork of A (both p and A have n — k V-labeled forks).

5.8.3. Fork diagrams and maps between Soergel modules

Proposition 5.2 gives us a natural surjective morphism of Rg¢-modules from
HomRC(RbA,RbH)/(W)\a,M ® C) to Homp, (Cuyx, Cuwgp) /Wi, u- We want to show that
this map is an isomorphism, so that the explicit submodule WY, @ C describes the
space of illicit morphisms from Cy,x to Cyyp-

Indeed, we know the dimension of Hompg (Cyyx, Cuwyp)/WWa i by a result of Sartori.
Using the connection between 4, , and subquotients of category O, Sartori establishes
the following lemma.

Lemma 5.9 (Lemma 6.6 [79]). We have
dim Hompg. (Cuwyx, Cuwpp) /Wa,p = dim(Z, y @ C).
To show that Wy , = WY u® C, it therefore suffices to show that
dim Hom g, (Rox, R.)/ (WS, ® C) < dim(Z,,, ® C).

Lemma 5.10 (¢f. Proposition 5.8 of [79], Remark 5.12 below). The map ¥ from
oriented enhanced fork diagrams for p and X (i.e. basis elements for Z, ) to
Homp(R/Ipx, R/Ior) /WY, sending

Hnaj\ — (1 — me) + WS s
where

n—k

Dune = 6/0 (x/\?, . ,.’L‘Az) H La(HLa(j)+1 - - JJV;]_l eER (5.8)
j=1

5 For interpretation of the references to color please refer to the web version of this article.
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and a(j) = max(v;‘,vé‘), is degree zero and its image generates Homp(Rpx, Ron ) /WY,
over Z. Thus, the image gives a homogenous spanning set for Hompg,. (R(b:* , REH)/(W;#®

C) over C.

Proof. One can check that the elements given in Proposition 3.3, item (iv) generate
Hompg(Rpx, Rpr) over Z. The set of such elements that are not in Ja% , 18 a generating
set for Homp(Rp», Rpe) /WY ;5 it suffices to show that this set is contained in the image
of U,

Indeed, to see that (the class of) any such basis element that is not in WY, is in
the image of ¥, one can use the argument in the final paragraph of [79, Proposition
5.8]. This argument works (replacing V4 with a(j) = max (v}, %) in the definition of £;)
assuming we are given a monomial m that is not in WY ; see Remark 5.12 below for a

counterexample when we are given m € WY '\ WA, o O
Corollary 5.11. Under the identification

Homp. (Cuyrs Cuoype) ¢+ Homp (R, Riw)
given by Proposition 5.5, item (ii), we have Wy, <+ WY, @ C.

Proof. As mentioned above, Proposition 5.2 shows that the identification of Proposi-
tion 3.3, item (ii) gives a natural surjective linear map of complex vector spaces

Homp (Rgs, Riye) /WS, @ €) = Hompe (Cuyxs Cuyps)/Wae

By Lemma 5.9 and Lemma 5.10, the dimension of the domain is no greater than the
dimension of the codomain, so the map is an isomorphism. 0O

Remark 5.12. The final paragraph of Sartori’s proof of [79, Proposition 5.8] does not
work if we are only given m that does not lie in W, ,. For instance, take m = xox3 in

Example 5.3. We have xaz3 € WY, \ Wi - Since V& = 2 and V4 = 3, we have (1 = 4
and fo = 4. This is a problem because we need ¢; < --- < £,,_j, for the proof to work.

5.4. A Z lift of Sartori’s algebra

By Corollary 5.11, it is reasonable to define the following Z lift of Sartori’s algebra.

Definition 5.13. Let AZ | be the graded ring

-A%,k: @ Hompg(Rpx, Rpu) /WX .-
MUED,, 1
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Corollary 5.11 implies that A%,k ® C = A, ;. It is natural to ask whether passing
from C to Z in this manner introduces any torsion in A%’ ; the answer is “no,” as shown
in the next proposition.

Proposition 5.14. For A\,u € D, that are not too far, the graded abelian group
Homp(Rpx, Rou) /WY, is free. Consequently, lu.AfyklA is a free graded Z-module with
homogeneous basis given by the set {1 — puno} where n € Dy .0 € Sy run over all
choices such that An° i is an enhanced oriented fork diagram. Furthermore, the graded
rank rkq(lpA%’klA) is equal to tkqe(Z, 5) from Corollary 5.7.

Proof. Lemma 5.10 gives us a generating set for Hompg (R, Rpu )/W)‘\“H whose size is the
number of oriented enhanced fork diagrams for A, i, i.e. the dimension of Z, ;, ® C. This
number is also the rank of Homp(Rpx, Ruu ) /WY , by Lemma 5.9 and Corollary 5.11, so
the generating set is a basis. It follows that Homp(Rpx, Rpr)/ WY, is free; the graded
rank follows from Corollary 5.7 and Lemma 5.10. O

Thus, the natural map from A%,k to A, 1 is injective.
Proposition 5.15. The composition
Bi(n, k) — BE(n, k) = Ap s

has image in A%k C An. i, where E is the homomorphism from Proposition /.1.

Proof. One can check that each generator of B;(n, k) C B;C (n, k), in either the big-step
or the small-step description, gets sent by = to an element of .A,Zl,k CAni O

Corollary 5.16. We have a commutative square of R-algebra homomorphisms

Bi(n,k) —— AZ,

I

BF (n, k) T) An,lw

where the bottom edge is the map from Proposition /.1; by slight abuse of notation, we
call both the top and the bottom edges =. Since each fork monomial p,y- is an R-multiple
of E(fx,y) where x,y € Vi(n, k) correspond to 1, A € Dy, ,, Lemma 5.10 implies that the
top edge = of the square is surjective.

The anti-automorphism ¢g: A, — A, i, from (3.6) extends to an anti-automorphism
of the integral form g : .A%_’k — A%,k given on the basis from Proposition 5.14 by
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st AL, — AZ, (5.9)
pn° A — An° fi.
6. A vanishing ideal in the Sartori algebra

In this section we identify an ideal that is present in Rpx for all i € D, j, and hence
is zero in A%,k- Define an ideal in R by

T =Tk =(e1(x1,...,Tn),e2(x1, ..., Tn), ... x(T1,...,Tn)) - (6.1)

Equivalently, J,, i is the ideal generated by h;(x1,...,z,) for 1 < i < k; we will work
primarily with the polynomials h; as generators of 7, , below.

The ideal J admits a further alternate description that we give below after a prelim-
inary lemma.

Lemma 6.1. For 1 <k <n and 1 <p <k, we have hp(z1,...,Tn—pt1) = hi(T1,...,Zs)
in the ring C

hi(21,5Tn )y s he—1(T150520)) 7

Proof. Induct on k; the case k = 1 follows from 1 < p < k. For k > 1, we will induct on
p; the case p =1 is trivial. Assume p > 1; then

hi(x1, . Tn—pg1) = hi(@1, - Tnepi2) — Tnepr2hp—1(T1, ..., Tn_pt2).
By induction on k, we have hy_1(x1,...,Zn—pt2) = hp—1(x1,...,2y) in

R
(hi(z1y. oy mn)y ey hi—o(z1, .. mp))

Thus,

hk(xl, e ,l‘n_p_H) = hk(xl, e ,xn_p_,_g) = hk(l‘l, e ,xn)

modulo (hy(z1,...,%n),. .., hg—1(x1,...,25)) (the second equality follows from induc-
tion on p). O

Corollary 6.2. The elements 0; := h;(z1,...,Tny1-i) of R, for 1 < i <k, generate the
ideal J.

Proof. For 1 <1 < k, write n; = h;(z1,...,2,). Induct on k; the case k = 1 is clear. If
k > 1, then

(91,...,9k) = (Gk) + (917...,9;@,1)
= (ek) + ("71,~-~777k—1)
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= (77k) + (7717 v 7”7[{271)

= (771a-~-a77k')a

where we use the inductive hypothesis in the second equality and Lemma 6.1 in the third
equality. O

Proposition 6.3. The ideal J, 1 acts by zero on A%’k.

Proof. The minimal sequence g in the Bruhat order generated by AV = VA is the
sequence

E=V"EAR D b= (k4 1,k+ 1, k+ 1k k—1,...,2,1). (6.2)

All other sequences A € D,, ;, will have b-sequences with b} < bf . The result follows by
a Z analogue of [79, Lemma 2.7] showing that h,(z1,...,z;) € I for every a > b;, so
that J C Ipx for all A € D,, ;, by Corollary 6.2. O

In other words, the Z[z1,...,z,]-module structure on .A%,k descends to an action of
Z[Ily‘“vmn]

J

Definition 6.4. Define the quotient Ozsvath-Szabé algebra Bj(n, k) to be the quotient of
the Z[Uy,...,Uy,]-algebra B;(n, k) by the action of the ideal J defined in (6.1) (with z;
variables relabeled as U;).

Note that Lemma 6.1 and Corollary 6.2 hold in Bj(n,k) since they hold in
Zlxy,...,Tn).

Corollary 6.5. The homomorphism E : By(n, k) — A%’k from Corollary 5.16 descends to
a well-defined homomorphism

Z: Bi(n, k) — AZ,.

Remark 6.6. Note that any monomial m in Z[Uy,...,U,] divisible by at least k + 1
distinct variables is zero in Bj(n, k). Indeed, for any x,y € Vi(n,k), there are n — k
distinct generating intervals between x and y, and for m to be nonzero, there must be
at least one variable in each generating interval that does not divide m, so there must be
at least n — k distinct variables not dividing m. In particular, the elementary symmetric
functions e;(Ut, ..., U,) for i > k vanish in B;(n, k), so we can equivalently define 7 (and
thus B;(n, k)) using all symmetric functions in Uy, ..., U,, not just the ones of degree at
most k.



A.D. Lauda, A. Manion / Advances in Mathematics 376 (2021) 107455 35

7. Fork elements and injectivity
7.1. Deformations

Let A be a graded ring, and let U be a finitely generated free Z-module. Following
the notation of [12, Section 4], we say a graded ring A is a graded deformation of A over
U* if A is equipped with graded homomorphisms

Sym(U) LA A

such that im(j) C Z(A) and 7 induces an isomorphism from ﬁ to A. The deformation

is called flat if j makes A a flat Sym(U)-module.

Let U = Z* with standard basis {1, ...,ex}, so that Sym(U) = Z[ey, ..., &), and de-
fine j: Sym(U) — Bi(n, k) by sending ¢; to the central element e;(Uy, ..., U,) (one could
equivalently use complete homogeneous symmetric polynomials h;(Uy,...,U,) instead
of elementary symmetric polynomials). If 7: Bj(n, k) — A%’k is the homomorphism =
from Corollary 5.16, then Corollary 6.5 tells us that the image of j is contained in the
kernel of 7.

We want to show that 7 = = induces an isomorphism from B;(n, k)/im(j) to A%yk, SO
z

n,k?

this deformation is flat. Indeed, we first show that B;(n, k) is a free Sym(U)-module on

that we may view Bj(n, k) as a graded deformation of A and we want to know that

a basis defined in the next section; we deal with injectivity in Section 7.3.
7.2. Fork elements as a Sym(U)-basis

The Bruhat order generated by AV > VA induces a partial order on I-states with size
k given below.

Definition 7.1. Define a partial order on the set V(n, k) of I-states with [x| =k by x = y
ifx; <y, forall 1 <i<k.

Definition 7.2. Let x,y,z € Vi(n, k) and suppose that none of the three are too far from
one another. Let [j; + 1,7; + ;] for 1 <1i < n — k be the generating intervals for x and
y and assume x < z = y (if x,y,z correspond to p, A, € D,, 1, Lemma 5.5 implies that
this condition is equivalent to EnS\ being an oriented fork diagram). For o € Sy, define
fork polynomials

n—k
P(x,zo,y) ‘= 627 (UZ1+1’ ey Uzk—i-l) (H U‘i+1U'qz+2 ce sz) S Z[U1 ey Un], (71)

i=1

where z€¢ is the hole sequence of z defined in Definition 2.14. We have corresponding fork
elements px o y)fxy € Bi(n, k).
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Note that pxzey) = Up'...Usr with ¢; = min(o¥,v}) — vZ € {0,1}, so that
P(x,z¢,y) = 1 if z; = min(z;,y;). Likewise, recall from (3.1) that &), (U, 41,...,Uz,41) €

{UZ€11+1"'Uf:+1 |0<¢ <k—i}.

Proposition 7.3. Let p = p*, A = p¥, and n = pu* denote VA-sequences in D, j, associated
to left I-states x,y,z € Vi(n, k) satisfying the assumptions in Definition 7.2 (equivalently,
such that ETIS\ is oriented). Under the surjective homomorphism =: Bi(n, k) — A, i, we
have

Ep(x,zv,y)fx,y = (1 — pgn") (7.2)
with pune defined in (5.8).

Proof. Let o € D, 1 be such that ngj\ is the minimal degree oriented enhanced fork
diagram with lower fork p and upper fork A, so that o has all V’s maximally to the
left subject to the constraint that ng/_\ is an oriented fork diagram. Explicitly, we have
\/? = max(\/? , \/j‘) Then since g = n for all oriented fork diagrams H77/_\ by assumption,
Pue divides py,o for every oriented enhanced fork diagram pn\. The morphism 1 +— p,,
is the image of the generator fx,y of I.B(n, k)I, under =. Then -

n—k
sy fry (1) 7= 6 (T2 41,5 Tz 1) (H Tj 41T, 42 - - ~l‘z5> “Ef, (1)
=1

n—=k
!
= 60_ (CC/\I/,...,.'L'/\Z) H :Cvgx(vf)+1...xv]n__l pﬁg
j=1
n—k
!
_GJ (x/\y,...,x/\z) Hxvgx(v5)+1...xvy_1
Jj=1
n—k
X H T\ b\ R AT
vEL(vE) 1 ve-1
Jj=1
n—k
!
_60 (J,‘/\;r,...,x/\z) vagw(vy)+1...xv;71
Jj=1
:pﬂnﬁ

and the result follows. O

Theorem 7.4. The Ozsvdth—-Szabd algebra Bi(n, k) is free over Sym(U) with a basis given
by elements p(x zo y) fx,y where x,y € Vi(n, k) are not too far and {px z-y)} are the fork
polynomdals from (7.1).
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Proof. Asa Sym(U)-module, B;(n, k) is the direct sum of L. B;(n, k)L, for x,y € Vi(n, k).
Let x,y € Vi(n, k) be not too far; it suffices to show that I.53;(n, k)L, is a free Sym(U)-
module with a basis given by the above fork elements.

Let i > 0 be the maximal index such that x; = y; = i — 1 for all ¢ < 7. We will
induct on |{i > ig : &; = y;}|; first suppose this number is zero. We have a crossed line
between x and y as in Definition 2.9 for each index i + 1 < j < k, so k — i¢ lines are
crossed. The n — k generating intervals between x and y must all be contained in the
(n—1ip)-element set {igp+1,...,n}, k—io of whose elements correspond to crossed lines,
so each generating interval must have length 1. There is a unique z € Vj(n, k) that is
pairwise not too far from x,y and satisfies x < z *= y, namely z; = min(x;,y;), and
I:Bi(n, k)1, is the quotient of Z[Uy,...,U,| by all variables except U, 4+1,..., Uz +1.
The fork elements of I.53;(n, k)L, are given in this quotient by “staircase” monomials
UzdllJrl e Uj:+1 with 0 < d; < k — 4, and the elements e;(Uy,...,U,) of Sym(U) act as
€i(Uz; 415+ -+, Uszp41). The result now follows from [47, Proposition 2.5.5], which shows
that the staircase monomials provide a basis for the polynomial ring over the ring of
symmetric polynomials.

Now suppose that z; = y; for some minimal ¢ > ig. It follows that x; = j+ 1 for some
generating interval [j + 1,...,7 + (] between x and y. We consider four cases.

o Ifjex(sojé¢y)andj+lex(soj+l¢y)letx' =xandy = (y\{j+1}HU{j+I}.
Let x" =xand y”" = (y \ {7 +1}) U {j}.

e Ifjexandj+ié¢x,letx' =x\{j+1}HU{j+!}andy =y. Let x” = x and
y' =\ +1)u i}

o If j ¢ xand j+1 € x, let x/
(x\ {7+ 1} U{j} and y" =y.

e Ifje¢xand j+1 ¢ x, let X' = (x\{j+1}H)U{j+1} and y =y. Let x" =
(x\{j+1HU{j} and y" =y.

=xandy = (y\{j+1}) U{j+1} Let x" =

In all cases, an element z € Vj(n, k) is pairwise not too far from x’ and y’ and satisfies
x' <z =y’ if and only if z is pairwise not too far from x and y, satisfies x < z = y, and
also satisfies z; = x;(= y;). Similarly, z is pairwise not too far from x’ and y’ and satisfies
x' < z =y’ if and only if z is pairwise not too far from x and y, satisfies x < z > y,
and also satisfies z; = x; — 1(=y; — 1).

For o € Sy and z as above, we have p(x 2o y) = P(x/,27,y*) OF P(x,z7,y) = Uj+1P(x" 27 y')
as appropriate. We see that the fork polynomials for I.B;(n, k)I, can be viewed as the
fork polynomials for IwB;i(n, k)L, together with Uj;, times the fork polynomials for
Ixn Bl (n, k‘)Iyu.

Now consider the exact sequence

Uja

0 = L Bi(n, k)Iyn 5 LBi(n, k)Iy -5 Lo By(n, k)L, — 0,
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of Sym(U)-modules, interpreting each term as a quotient of Z[Uy,...,U,]. We have
i >0 : 2 =y} < |{i >0 : x; = y;}| and similarly for x”,y”. By induction, the first
and third terms of the exact sequence are free Sym(U)-modules with bases given by fork
elements. Since the third term is free, the sequence splits; a basis for the middle term
is given by fxy times fork polynomials for the third term together with Uj4q fx y times
fork polynomials for the first term. As discussed above, the resulting basis coincides with
the fork elements of L:B;(n, k)I,. O

Remark 7.5. The proof of Theorem 7.4, together with [47, Proposition 2.5.3], shows that
we can replace the leading term &/ (U, 41,. .., Uz, +1) of the Schubert polynomial with
the actual Schubert polynomial S, (U, 41, ..., Uz, +1) in the definition of fork polyno-
mials from Definition 7.2 and Theorem 7.4 continues to hold.

7.3. Injectivity
We can now prove injectivity for the algebra homomorphism = from Corollary 6.5.
Theorem 7.6. The map =: Eg‘(n, k) — A%’k from Corollary 6.5 is an isomorphism.

Proof. By Theorem 7.4, the fork elements from (7.1) for all x,y € V;(n, k) that are not
too far give a Z-basis for E]f(n,k;); Proposition 7.3 and Proposition 5.14 show that =
sends these elements to a Z-basis for A%_’k. O

8. Categorification of bases and bilinear forms
8.1. Quantum gl(1|1)

Let e1 = (1,0) and 3 = (0,1) denote the standard basis for the weight lattice Z?2
of gl(1]1); let h; and he denote the basis for dual weight lattice with associated pairing

(hi,e5) = 0;,;. We denote the simple root of gl(1|1) by o = &1 — ea.

Definition 8.1. The Hopf superalgebra U,(gl(1|1)) is generated as a superalgebra over
C(q) by two even generators K 1i, K2i and two odd generators F, F' with relations

K,K; = K;K; K,K;'=1=K;'K; fori,je{1,2}
K,E =" EK;, K,F=q MYFK,

K- Kt
E*=F*=0 EF + FE= ——

qa—4q

where K = K;K,. The comultiplication is given by A(E) = E® K~! +1® E and
A(F)=F®1+K®F, and A(K;) = K; ® K;. We will not need explicit formulas for
the counit or antipode.
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Let V' = C(q)(vo,v1) denote the two dimensional simple Ug(gl(1|1))-module with
highest weight €;. The super grading is fixed by setting the highest weight space spanned
by vy to be even, so that v; is odd. We write V®" for the n-fold tensor power of V and
(Vo) for {v € VO | Kv = g{hker(n=k)ez)y1

8.2. The canonical basis of V"

We first describe the canonical basis of V®™ used by Sartori [78, Section 4.3], following
Zhang [91] (see also [92,11]).

Remark 8.2. Here we are using “canonical” in the combinatorial or crystal sense of Kashi-
wara [30]. For superalgebras the authors are not aware of a geometric construction in
the sense of Lusztig [46] giving rise to canonical bases for U,(gl(1]1))-modules.

For 1 < i < n, let e; be the standard basis element of V®" with vy in position 7 and
vy in all other positions. Identifying V" = (C?)" with &7_, A* (C?) in the usual way,
we write the standard basis vector of V®" with vy in positions i;, > --- > i; and vy in
all other positions as e;, A---Ae;, . Sartori writes this basis vector as v, where n € D), 1,
has a A in positions i1, ..., and V elsewhere; we will also use this notation.

For 2 <i<m,let {; =e; +qe;_1; let {1 = e;. We expand wedge products of the /; as
usual, with e; Ae; = —e; Ae; and e; A e; = 0, without any “super” sign rules.

Proposition 8.3. Letn € D, ;, be a \V sequence with A in positions 1 < i; < --- < iy < n.
The canonical basis element v,? for VO defined in [78, Theorem 4.2], is

{&k/\~~~/\€il:1§i1<~~<ik§n}.

Proof. First, we notice that if ¢ > j > 1, then

7
gi/\&,l/\-“/\sz Z qm_j+1€i/\-~-/\€,\n/\-"/\6j,1,

m=j—1

while if 4 > 1 then
biN--- Nl =¢e; N---Neq.

In general, a wedge product element as above is a product of such expressions over its
consecutive /; intervals.

By [78, Proposition 5.5], the canonical basis element vg arises from an evaluation
of the lower fork diagram of 1. In more detail, one views the lower fork diagram as a
web giving a morphism of U,(gl(1|1))-representations with target V®"; the canonical
basis element is the image under this morphism of a certain distinguished element of the
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domain. The result follows from a comparison of the above formulas with [78, Figure 1],
which shows how matrix entries of the morphism are built from local pieces. O

If x € Vi(n, k) corresponds to n € D, j, we will write v = v,?. For example, if x = &
then v¥ = v; ® --- ® vy, while if x = {1,...,n} then v¥ = vy ® - - - ® vy.

Example 8.4. Write AV sequences n € D, ; as sequences of zeroes and ones, with A
corresponding to zero and V corresponding to one. The canonical basis elements for V®3

are:
& & 2 & &

V00 =000 V100="100 + qVo10 + ¢ Voo1 Vg10="010 *+ QU001 Vo1 =001
& & & &

V170="110 + qV101 V151 ="101 + QU011 V11 =011 V171 ="V111

One can check that these elements are invariant under the bar involution of V®"
discussed in [78, Section 4.3]. This bar involution is induced from the involution
g g1, v9 = vo,v1 = vy of V by the formula w ® w’ = ©'(w ® w’) for tensor products
of Uy(gl(1]1))-modules with g-antilinear involutions -, where ' =1+ (¢7' —¢)E® F €
Uy(al(1[1)) © U, (gl(1]1)).

8.8. Categorification of VE™ wvia Sartori’s algebras

Let k be an arbitrary field. Write Aﬂfhk = .A%’k ®zk. For A € Dy, 1, let P(\) = .A“fhklA,
and let L(\) be the one-dimensional irreducible Aﬂfh p-module such that 1yL(\) # 0. For
any graded module M and integer i, let ¢° M denote M with degrees shifted upwards by
i. The following result is standard.

Proposition 8.5. The Grothendieck group
Ko(A7 1) = K (A7 —proj)

of the abelian category of finitely generated projective graded left Aﬂfl’k modules is a free
Z]q,q~']-module with basis given by the classes of indecomposable projective modules
[P(\)] for A\ € Dy, . The action of ¢** is given by ¢*'[P] := [¢T'P].

Similarly, the Grothendieck group

Go(AL 1) = K(Af ,—fmod)

of the abelian category of finite dimensional graded left ,A'f%k modules is a free Z[q,q"]-
module with basis given by the classes of simple modules [L(N)] for X € Dy, .

Remark 8.6. Since .AE; , is finite-dimensional over k, we have Anfh ,—fmod = .AE; x—gmod,
the category of finitely generated graded left .A“;yk modules. Similarly, all objects of
Aﬂgyk—proj are finite-dimensional over k. Note that all objects of Aﬂgyk—proj can be
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thought of as objects of .Aﬂfh —fmod, but not conversely. We will see below that K O(Aﬂfl, i)
and Go(Aﬂ7§7k) can be identified over C(q).

Write K(()C(q) (As x) = Ko(Af ) ®@zig.4-1 Clg), and similarly for Go. Recall that
(V) denotes the weight space of V®" defined near the end of Section 8.1.

Definition 8.7 (Theorem 7.13 of [78]). We identify K((Jc(q) (Aﬂfhk) with (V®™), by identi-
fying the basis element [P()\)] of KSC (q)(.Aﬂfh ,) With the canonical basis element v$ .

8.4. Categorification of V&™ via Ozsvdth-Szabd’s algebras

As in Section 4 above, write B¥(n, k) := Bi(n, k) ®z k. For x € V(n, k), let P(x) =
Bf(n, k)L, and let L(x) be the one-dimensional irreducible Bf(n,k)-module such that
I« L(x) # 0.

Since Bg‘i(n, k) is positively graded and semisimple in degree zero, grading shifts of the
modules P(x) form a complete set of isomorphism classes of indecomposable projective
graded Bf(n, k)-modules, and grading shifts of the modules L(x) form a complete set of
isomorphism classes of simple graded Bf(n, k)-modules. Let Bf(n, k)—fmod denote the
category of finite dimensional graded left Bf(n, k)-modules and let Bf(n, k)—proj denote
the category of finitely generated projective graded left Bg‘(n, k)-modules.

Corollary 8.8. The Grothendieck group
Ko(Bf(n,k)) := K(Bf(n, k)—proj)

is a free Z|q,q ']-module with basis given by the classes of indecomposable projective
modules [P(x)] for x € Vi(n, k).
Similarly, the Grothendieck group

Go(Bf(n, k)) := K(Bf(n, k)—fmod)

is a free Z[q,q ']-module with basis given by the classes of simple modules [L(x)] for
x € Vi(n, k).

As with A¥ ;, we will see below that Ko(Bf(n, k)) and Go(Bj(n, k)) can be identified
over C(q). Write K((Jc(q)(B%‘(n, k)) := Ko(Bf(n,k)) ®z(4,4-1] C(q), and similarly for Gy.

Definition 8.9. We identify K(;C(q)(B%‘(n,k)) with (V®™"), by identifying [P(x)] €
Kg:(q) (BF(n, k)) with the canonical basis element v .

Remark 8.10. When x = @, Definition 8.9 sends [Px] to v1 ® - - - ® v1, in contrast to the
conventions in [50] where this class [Pyx] is sent to vp ® -+ ® vg. We will compare the
identification of Definition 8.9 with the one given in [50] in Section 8.12.
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8.5. Relating the categorifications by projection and inflation

If P is a finitely generated projective Bf(n, k)-module, define the projection pr(P) of
P to be the Aﬂfhk—module A],lfb,k ®@pi(n,k) > where .A!]fhk is a right module over Bf(n, k) via
the quotient map = of Section 4.

If M is a finite-dimensional A}, ;-module, define the inflation infi(M) of M to be the
B¥(n, k)-module with the same underlying set as M, with an action of Bf(n, k) given by
applying = to get an element of -A]i, . and then acting on M. We get functors

pr: Bf(n, k)—proj — Aﬂ;‘l7k—proj, infl: .Aufl}k—fmod — B¥(n, k)—fmod,; (8.4)

note that infl preserves exact sequences, since it acts as the identity on underlying sets
and functions between them (it replaces actions of the quotient algebra Aﬂfl’ « by actions
of the larger algebra Bf(n, k), such that an element of B¥(n, k) acts the way its image in
Aﬂfh i acts, but it leaves modules and morphisms between them unchanged otherwise).

Remark 8.11. Heegaard Floer homologists may be most familiar with pr and infl as
special cases of the induction and restriction functors discussed in [44, Section 2.4.2],
which make sense in a general A, setting.

Theorem 8.12. The projection functor induces an isomorphism from Ko(B¥(n,k)) to
K, (Aﬂfhk), compatible with the identifications of both Grothendieck groups over C(q) with
(V™) in Definitions 8.9 and 8.7.

Proof. By the above discussion, the result follows since projection sends basis elements
[P(x)] to basis elements [P(A)] where A € D,, j corresponds to x € Vi(n, k). O

On the other hand, Sartori defines interesting families of modules over A,, 1, and one
can obtain similar families of modules over B;(n, k) by inflation. Since inflation sends
simples L(A) to simples L(x), we have the following result.

Corollary 8.13. The inflation functor gives us an isomorphism from GO(AET‘L),C) to

Go(Bf(n, k)).

As mentioned above, we will be able to identify Ky and G over C(q) on both sides.
From the identification Gg(q) (Bf(n,k)) = K(()C(q)(BQ‘(n, k)) we define below, the inflated
modules will give us classes in Kg:(Q)(B%g(n, k)) and thus elements of (V®"), by Defini-
tion 8.9.

Warning 8.14. Under the identifications of K(()C(q) and Gg(q) on both sides, the inflation
isomorphism is not the inverse of the projection isomorphism. Rather, they are related
by a scalar multiple; see Proposition 8.32 below.
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To understand which elements of V&™ we get from the inflated modules, we need to
study the identifications of K(()C @ and Gg(q) for Ozsvath—Szabd’s and Sartori’s algebras;
this task will occupy the next few sections.

8.6. The Sartori bilinear form for V®"

For a finitely generated projective (graded) left module P over AX , . define Y P¥s to

n,k?

be the dual YP = Hom 4 (P, Aﬂﬁb’k) of P with its action of A¥ , twisted by ¢g. Since
VP is a right A¥ ,-module, Y PYS is a left Aj; ,-module, like P itself. When P = ¢'P()),
we have VP¥ = ¢~ P()\).

Definition 8.15. Let [,]s be the Z[q, ¢ !]-bilinear pairing

[7]5: KO(A]]T(LJC) X KO(AﬂﬁLk) - Z[q’q_l]
[P], [P'] = dimg (Hom 4 (YP¥, P")).

Note that we have [[P(u)], [P(A)]]s = dim, 1MAE7§,7,C1>\.

Remark 8.16. The form defined in [78, Proposition 7.12], restricted to finitely-generated
projective modules, is given by

[[P], [P]]s = dimg(Hom g (P, (P')))
where (P)* = Homg(P’, k) with

(a¢)(z) = ¢(¢(a)z)

forp € (P')*, a € Aﬂfl,k, and z € P’. The operation (-) is the involution of Z[q, ¢~!] given
by q — ¢~ 1. It follows from [10, Lemma 2.5] that this definition of the form is equivalent
to Definition 8.15; this can be seen directly by comparing the values on indecomposable
projectives [P()\)].

By Definition 8.7, we get a C(q)-bilinear pairing on V®". We can describe this pairing
as follows.

Definition 8.17. Sartori’s bilinear form (,)s on V®" has matrix [k]o! times the identity
in the standard basis of the weight space (V®"),.

Proposition 8.18. The identification of KS:(Q)(AET‘L’,C) and (V®™), from Definition 8.7
identifies [,]s with (,)s.

Proof. This proposition is a consequence of [78, Proposition 7.12] and Remark 8.16. O
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It follows from Proposition 8.18 that [,]s is perfect after tensoring with C(q), so it
gives us an identification of Ké)c(q) (A%, ) with its dual (Ké)c(q) (A% )"
We can also consider the Z[q, ¢~ !]-bilinear pairing

KO(A“fL,k) X GO(AHZ,k) — Zlg,q7 "]

[P],[M] — dim,(Hom An;yk(vaS,M)).

The matrix for this pairing in the bases of projectives for Ky and simples for Gy is
the identity matrix, so the pairing allows us to identify Ky and G§ (or vice-versa)
over Z[q,q '], and thus over C(q). Combining this identification with the isomorphism
Ké)c(q) (Af ) = (Kg:(Q)(Aﬂfl}k))* from [,]g, we get an identification of Kg:(q)(Aﬂfhk) with
GE)C(Q)(A“,‘L’,C). The pairing on G§ @ (Af ;) induced by [,]s can be described by

M, N]s = g (Ext?y (M, N"))

where N* is defined as in Remark 8.16 and x, is the g-graded Euler characteristic.

The basis of simples {[L()\)]} for Gé)c(q)(AﬂfL7k) gives us a basis for K(()C(q)(.Aﬂf%k) under
the above identification. Under the identification of this latter space with V®", the basis
of simples corresponds to Sartori’s dual canonical basis, as we review in Section 8.8
below.

The change-of-basis matrix from projectives to simples on K(()C (q)(Aﬂfz,k) is the matrix
for [,]s on K(;C(Q) (.Aﬂfhk) in the basis of projectives. We compute this matrix below;
equivalently, we compute the matrix for (,)g in the canonical basis of V®".

Recall the nonsymmetric quantum integers defined in (5.6).

Proposition 8.19. For p, A € D,, i, we have (vf, v?)s =0 if p and X are too far. If p, A
are not too far and correspond to x,y € Vi(n, k), we have

n—=k
9, 09)s = ¢ [klo! [] llilo
=1

where ly,...,l,_ are the lengths of the generating intervals between x and 'y and d =
it [ AF = AL
i=1 % i1

Proof. This proposition follows from Corollary 5.7 and Proposition 8.18. O

Example 8.20. The matrix for (,)s on (V®3), for 0 < k < 3 is given below.
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(V¥%)s (VE?)s (Ve3)y, (V®3),
<& < <&
Y100 Yo10  Voor '”ﬁu Uﬁu ’Unoll
030 vio [1+a*+d* a+d® ¢ vio [1+ ¢? q 0 09,
Blo! |vgoe [ 1] [2lo!|v§o | at+d®  1+d® q o | @ 144 a v L]
U()Oﬂl e q 1 Vo1 0 q 1

8.7. The Ozsvdth—Szabé bilinear form for V&"
We can define a similar bilinear pairing [,]os. on Ko(Bf(n,k)).
Definition 8.21. Let [,]os. be the Z[q, ¢~ !]-bilinear pairing

s+ Ko(Bf(n. k) x Ko(BE(n.k)) = Zla. "]
[PLLP') = dimg (Homgs, , ) (* PYo, P').

Note that we have [[P(x)],[P(y)]los: = dim, LB (n, k)Iy. By Definition 8.9, we
get another C(g)-bilinear pairing on V®". This pairing has a simple description in the
standard basis, analogous to Sartori’s. To see this, we compute its matrix in the canonical
basis, or equivalently the matrix for [,]os. in the basis of projectives. This amounts to
computing dim, L B (n, k)1, for x,y € Vi(n, k).

Proposition 8.22. For x,y € V(n,k) that are not too far, the graded dimension of
n—=kry.

IXB%‘(n7 k)L is qdrgﬁliqy)’,]co, where I, ..., l,_k are the lengths of the generating intervals

between x and y and d = Zle |x; —yil. If x and y are too far, this graded dimension

15 zero.

Proof. Since LB} (n, k)1, can be viewed as k[Ui, ..., U,] modulo the ideal generated by

monomials of generating intervals between x and y, its graded dimension is some power
n—k 21;
q% (where d is the degree of the minimal generator) times %

n—k
% The degree d of the minimal generator is Zle |z, —yil|. O

, which equals

Example 8.23. The matrices for [,]os. on Ko(Bf(n,k)) are given in the following table.

Ko (B (n, 3) Ko(B}(n,2)) Ko (Bf(n, 1) Ko (B} (n,0))
[P12] [Po2]  [Poal [P.] [P1]  [Po]
[Pi2] 1+a*+q¢" qg+¢* 4° [P] 11+ q° q 0
oo (1 a7 |[Poel [ a+d® 1+d  q } = |2 [ ¢ 1+ g } 1]
[Po,1] q° q 1 [Po] 0 q 1

where the first matrix is in the basis [Py 1,2] and the last matrix is in the basis Pygj.
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Corollary 8.24. We have
[pr(P)], [pr(P")]s = [K]o!(1 — ¢*)*[[P], [P)]os-
for all objects P, P’ of Bf(n, k)—proj.

Alternatively, one could note that [k]o!(1—¢?)* = Hle (1 — ¢*"), which is the graded
dimension of Sym(U) from Section 7. Thus, Theorem 7.4 implies Corollary 8.24 (and
thus Proposition 8.22) directly.

The above corollary motivates the following definition.

Definition 8.25. The Ozsvath-Szabd bilinear form (,)os, on V®" has matrix (1_22),€
times the identity in the standard basis of the weight space (V®™),.

Corollary 8.26. The identification of K(()C(q) (Bf(n,k)) and (V®"), from Definition 8.9
zdentzﬁes [7]OSz with (7 )OSz-

Proof. We have

1
_ S 0V, = (1 0 .
= Uy yUyr )8 = U, Uy )OS 25
the first equality follows from Corollary 8.24, the second follows from Proposition 8.18,
and the third follows from the definitions of (,)s and (, )os.. O

By Corollary 8.26, [, ]os: is perfect over C(gq). Thus, as above, we get an identification
of K¢ (BE(n, k)) with (KG9 (B¥(n,k)))* and thereby with G @ (B¥(n, k). Via this
identification, the basis of simples for Gg(Q) (Bf(n, k)) gives us as basis of KE)C(Q) (Bf(n, k))
and thus of V®"; the change of basis matrix from the basis of projectives (or canonical
basis) to this basis is the matrix for [,]os, in the basis of projectives. Below we will
identify the basis of simples for K,;C @ (Bf(n, k)) with the Ozsvath-Szabé dual canonical
basis of V®™ (to be defined).

The pairing on G(O:(q) (Bf(n,k)) induced by [,]os. can be described by

[M, Nlos: = xq (Bt (M, N°));
again, N* is defined as in Remark 8.16 and x4 is the g-graded Euler characteristic.

8.8. Dual standard and dual canonical bases

Definition 8.27. From the standard and canonical bases for V®", we obtain four bases by
dualizing with respect to the above two bilinear forms (, )s and (, )os.. We will call these
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the Sartori dual standard, Sartori dual canonical, Ozsvath—Szabé dual standard, and
Ozsvath—Szabé dual canonical bases. We will use the following notation; let x € Vi(n, k).

« The Sartori dual standard basis element associated to x will be denoted v®.
o The Sartori dual canonical basis element associated to x will be denoted vy .
e The Ozsvath—Szabd dual standard basis element associated to x will be denoted
o
.
e The Ozsvath—Szabé dual canonical basis element associated to x will be denoted
,UUC?
D
The matrices for the bilinear forms in these dual bases are the inverses of the matrices
in the original bases.

Example 8.28. Labeling AV sequences as in Example 8.4, Sartori’s dual canonical basis
for V®3 is

0 1 o 1 0 1 o 1

v =—7 v =— (Y =— — qu v =— (U —q,

000 000 100 100 010 ( 010 q 100) 001 ( 001 —¢q 010)
[3)o! [2]o! [2]o! [2]o!

v v V] 2 v

V1190="110 V1p1=v101—4qV110 Yp11=V011—qV1011+¢ V110 V111=V111

The Ozsvath-Szabé dual canonical basis elements vy © are obtained by replacing the

coefficients ﬁ with (1 — ¢%). We have v¥® = ﬁvx and v** = (1 — ¢?)ku,.

Our identification of ng(q) (A% &) and Gé)c(q)(AﬂfL’k) goes via (ng(q) (A% &))*; the basis
of simples for Gy naturally corresponds to the dual basis to the basis of projectives for
K. Under the further identification of Ké)c @ with its dual, this dual basis gets sent to
the dual to the basis of projectives for KE)C @ under the bilinear form [,]s. Identifying
(KE)C(Q), [,]s) with (V®™ (,)s) by Definition 8.7, we see that the basis of simples for Gy
gets sent to the basis of V®" that is dual to the canonical basis under (,)g, i.e. the Sartori
dual canonical basis. Similar reasoning applies in the Ozsvath—Szabé case, proving the
following corollary.

Corollary 8.29. Under the identification KE)C(Q)(A]k

ni

w) = (VO™ of Definition 8.7, we
have

{indecomposable projective modules P(\)} <> canonical basis elements v§\>

{simple modules L(\)} < Sartori dual canonical basis elements v;?.

Under the identification K(Oc(q) (Bf(n,k)) = (V®"), of Definition 8.9, we have
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<&

{indecomposable projective modules P(x)} <> canonical basis elements vy,

{simple modules L(x)} <> Ozsvdth—Szabé dual
QO

<

canonical basis elements v
8.9. Sartori’s categorification of standard bases for VO

Adding to Corollary 8.29, Sartori also defines classes of modules over A, i categori-
fying standard and (Sartori) dual standard basis elements. We review these modules
below.

Sartori shows [79, Proposition 5.18 and Theorem 5.24] that the algebras A, are
graded cellular [26,27] and properly stratified [25]. These properties can be formally de-
duced from the algebras’ connection with category O, but Sartori gives an independent
proof with an explicit description of projective modules P(u), standard modules A(p),
cellular modules (including proper standard modules A(y)), and simple modules L(p)
for p € Dy, .

In addition, projective modules have explicit filtrations whose subquotients are stan-
dard modules [79, Proposition 5.19]. Standard modules admit filtrations by proper
standard modules [79, Proposition 5.21], and proper standard modules admit filtrations
by simples [79, Proposition 5.22]. These modules and filtrations give rise to various bases
and change of basis formulas in the Grothendieck group of A, .

Proposition 5.14 gives a basis for A%’k as a free Z-module. Consequently, it is im-
mediate from [79, Proposition 5.18] that ‘A%,k is graded cellular over Z. Furthermore,
the four classes of modules L()\), A()), A(\), and P(\) for A € D,, 1 all can be defined
integrally, giving modules for .A%’ - 1t follows that, working over an arbitrary field k, the
algebras A%) « ®z k are properly stratified algebras.

The filtrations described above along with the properly stratified structure on Aﬂfhk
give rise to identities in Go(AY ;):

PN = Y dulA@w),  [Aw]l= Y dau LV, [Aw)] = [ko![A(w)]
I n,k 1 n,k (8.5)
where

P g8 - if A\ is an oriented lower fork diagram
AT, otherwise,

and

o= &=L and [Ko! = [klo[k — 1o [1]o.

Remark 8.30. A priori, one can get a class in Gg (Anﬁb’ i) from a finitely generated projec-
tive module P in two ways. Since A% , and thus P is finite-dimensional, P is an object of
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Aﬂfl —fmod and thus gives a class in its Grothendieck group. On the other hand, one can
use the above isomorphism K(C(q)(A]k = Gg(q) (A% 1) to get a class in Gg(q) (Af ) In
fact, this class makes sense in Go(Am ), and it agrees with the class of P defined in the
first way since they both have the same expansion in the basis of simples.

The cellular structure can be used to show that the matrices dy , are upper triangular
with determinant 1, so that they are invertible over Z[g,¢~!] and the classes of proper
standard modules {A(X) | A € D,, x} also form a basis for Go (A5, ). Since [k]o! is not
invertible over Z[g,q™'] in general, the classes of projective modules {P(\) | X € D,, 1}
and standard modules {A(X\) | A € D, } do not generate GO(AR:L,kJ) over Zlgq,q 1]

The situation improves if we pass from Z[q,¢~!] to C(q). Each of the four classes of
modules above gives a basis for G(C Q)(Ak ) over C(q). In particular, the classes [P(\)]
give a basis; thus, we can identify G (A ) with Kg:(q) (Aﬂf%k) by identifying [P(\)]
with [P(\)] on either side, agreeing Wlth our previous identification as in Remark 8.30.
We have four bases for ng(q) (Af ) corresponding to the four bases for Gg:(q)(Aﬂ;‘L’k).

Theorem 8.31 (Theorem 7.13 of [78]). Under the identification Kéc(q) (Af R) = (V)
of Definition 8.7, we have

{indecomposable projective modules P(\)} < canonical basis elements v§\>

} < standard basis elements vy

L]

A} < Sartori dual standard basis elements v

(
{standard modules A(\
{proper standard modules A(

(

)
)
)
{simple modules L(\)} <> Sartori dual canonical basis elements v;?.

8.10. Classes in Kg:(q) (Bf(n, k)) from inflated Sartori modules

As in Corollary 8.13, inflation gives an isomorphism from Go(AY ;) to Go(Bf(n, k)).
Passing to C(g), we can compare inflation with the isomorphism

rt C =
b T Ko P (Bf(n, k) = G P (Bf (n, k).
Proposition 8.32. With ® defined as above, we have infl = [k]o!(1 — ¢2)*®.

Proof. The formula follows from the fact that the Sartori bilinear form (,)g is [k]o!(1 —
¢®)¥ times the Ozsvath-Szabé form (,)os.. O

The finite-dimensional modules over B¥(n,k) defined above give us classes in
(ng(n, k)) via the identification of K (Q)( ¥(n, k)) with GE(Q) (Bf(n,k)). By Defi-
nition 8.9, we get elements of (V®™),.
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Theorem 8.33. Let A\ € D,, .. Under the above identification, the modules over Bf(n, k)
obtained by inflating Sartori’s indecomposable projective, standard, proper standard, and
simple modules P()\), A()), A()), and L(\) categorify

[k]o!(1 — ¢*)* times the canonical basis element v§\>,

[k]o!(1 — ¢*)* times the standard basis element vy,
&
A

, and
Q

o the Ozsvdth—Szabd dual standard basis element v
o the Ozsvdath—Szabd dual canonical basis element v;?

of (V&™) respectively.

Proof. Proposition 8.32 implies that infl: Gg (.Alfl’k) — Go(B¥(n,k)), viewed a map
from KJ @ (A5 x) to K& (B¥(n, k)), is equal to [k]o!(1 — ¢2)* times the isomorphism
prt: Kéc(q) (A% L) — Kg(q)(B%‘(n,kj)) that we have chosen. Thus, inflating a Sartori
module and using Definition 8.9 to get a class in (V®"), amounts to using Theorem 8.31
to get a class in (V®™), directly, then multiplying the result by [k]o!(1 —¢*)*. The claim
follows from Theorem 8.31 plus the fact that multiplying the Sartori dual standard and
dual canonical bases by [k]o!(1 — ¢%)* gives the Ozsvath-Szabé dual standard and dual
canonical bases. 0O

8.11. Compact derived categories

As discussed in [31, Section 5.1], the homotopy category of bounded complexes of
finitely generated projective (graded) B¥(n, k)-modules H®(B¥(n, k)—proj) is equivalent
to the compact derived category D¢(Bf(n, k)), i.e. the full subcategory of the unbounded
derived category D(B¥(n, k)) on compact objects. An object z of an additive category C
is compact if whenever the coproduct [[, ¢ s exists for some set S of objects of C, the
natural map

H Home (2, s) — Home <x, H s)

ses seS

is an isomorphism. We have
K (H(Bf (n, k)—proj)) = Ko(Bf (n. k))
and thus
Ko(Bj (n, k)) = K (D*(B (n, k)))-

Passing to C(g), we can use Definition 8.9 to identify K@ (D¢(B¥(n, k))) with (V&™)
(we could do the same with the Sartori algebra).
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Corollary 8.34. Under the above identification, we have classes in K€@(D¢(Bf(n,k)))
categorifying

e the canonical basis,

o [k]o!(1 — ¢*)* times the canonical basis,

o [Klo!(1 — ¢*)* times the standard basis,

e the Ozsvdth—-Szabd dual standard basis, and

o the Ozsvdth—Szabd dual canonical basis

of (V&™),.
8.12. Comparison with the conventions of [50]

In [67,66], Ozsvath—Szabd give B;(n, k) different gradings based on a choice of orienta-
tions for n points. Our quotient map from Ozsvath—Szabd’s algebra to Sartori’s algebra
is a degree-zero map when Ozsvath—Szabd’s algebra is given the gradings for all n points
oriented negatively.

In [50], Ozsvath-Szabd’s algebra with these gradings was used to categorify tensor
powers of V* rather than of V. Since Sartori uses his algebra to categorify tensor powers
of V, our conventions cannot match those of [50] exactly.

One way to relate the conventions is as follows. The “right modified basis” for (V*)®"
defined in [50] can be described (up to a power of ¢ that we will change for convenience)
by letting w; be the standard basis element with v in position ¢ and v] in all other
positions; then ¢; := w; + qw;41 for 1 <1 < n — 1, while £, := w,. Wedge products of
the elements ¢; (taken with 4 in increasing order in [50]) form the right modified basis
for (V*)®n.

As vector spaces, identify V" with (V*)®" by sending the standard basis element
vj, @+ ®@vj, to the dual basis element v; ® ---® v} where j; € {0,1}. Then £, gets
sent to {1 = e; while £ gets sent to {41-; = ept1-; + gen—; for 1 < i < n — 1. More
generally, wedge products of the ¢ are sent to the canonical basis for V®™. One can
check that this identification intertwines the braiding on V' with the braiding on V*.

In [50], for an I-state x with 0 ¢ x (a right I-state), the element [P(x)] of Ko(B%(n, k))
was identified with the right modified basis element £, ,; A--- AL, ., of (V*)®", where
BE(n, k) is defined as in Remark 2.18. Translating to an element of V®" as in the above
paragraph, we get £,_,, A---Al,_5,. This is the canonical basis element fuf:, associated
to the left I-state R(x) (and thus [P(R(x))]) in Definition 8.9, where R is the Ozsvith—
Szabé symmetry mentioned in Remark 2.18 and R(x) = {n —a; | 1 < i < k}. It now
follows from [67, Lemma 10.1], [50, Theorem 1.4.2], and the previous paragraph that
under the conventions of Definition 8.9, Ozsvath—Szabd’s positive-crossing bimodule P;
over B;(n, k) categorifies the braiding acting on factors (i,i+1) of V™ for 1 <i < n—1.
Similarly, Ozsvath-Szabd’s negative-crossing bimodule N; categorifies the inverse of the
braiding acting on factors (i,i + 1).
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9. Bimodules for quantum group generators
9.1. The Sartori F functor

Let I') denote the set of VA-sequences in D,, , whose leftmost symbol is a V, and let
I'7 be the set of A € D,, ;, whose leftmost symbol is a A. Define idempotents

el =Y 1, ep= > 1, (9.1)

A€Ty S

For A € T}/, set AN € I to be the sequence obtained from A by swapping the lead
term from V to A. Similarly, for u € FQH define ¥ € T') by swapping the first symbol
from A to V. This operation defines a bijection I'y) — T, ;.

For any A\, p € ]."QH, there is a natural surjective map lﬂA,Zl7k+11>\ — 1“(\/)./47ZL7k 1y
We thus get a surjective algebra homomorphism

Z
v €£+1A%,k+1€£+1 — eXAn,keZ (9.2)
and thereby a well-defined surjective homomorphism (see [79, Proposition 5.36])

Z Z vV Z NV AZ N
An,k+1/An,k+1€k+1An,k+1 — ep Ay per

[a] — \Il(e,/c\_s_lae,ﬁ_s_l). (9.3)

Consider the projective module P := .A%Vkez. Sartori shows in [79, Section 5.5] that
P is the sum of all the indecomposable projective-injective left A%y r-modules. The left

A% p-module PY has a right A%’k 4 1-module structure induced by the map
Z Z Z VA Z
An,kJrl — An,k+1/“4n,k+le>c/+1“4n,k+1 — e)c/'An,keZ (94)

where the first arrow is the quotient map and the second is the surjective map (9.3).
This gives P} the structure of an (A%’ . A%, x+1)-bimodule; call this bimodule Fj, = Fy.
One can define a right-exact functor
Fr® ,z i
Fr=TFp: A%, —gmod ————— A, ;—gmod. (9.5)
We have Fj,_1 0 F; = 0. Applying Fj, to an indecomposable projective P(u) = A%’kﬂlu
gives either an indecomposable projective or zero:

A%Jkl,\7 if \(\) = 4 for some \ € T'Y';

9.6
0, otherwise. (9:6)

Fi(P(n)) :=Fr@qz, AT pial, = {

Sartori views JF as inducing a map on a topological Grothendieck group of a derived
analogue of GO(.AﬂfL’k). On Ko(Ag &), derived categories and topological completions are
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not required for F to induce a map; any additive functor between categories of finitely
generated projective modules induces a map on KO(AHfL, )

Corollary 9.1 (c¢f. Proposition 5.8 of [78] and equation (9.6) above). The map from
Ko(A5 1) to Ko(AY ) induced by Fy agrees with the map F: (V™) — (V™)
under the identification of Definition 8.7.

9.2. The Ozsvdth—-Szabd F functor

As done above for the Sartori algebras, define idempotents in B;(n, k) by

eZ = Z I, ep = Z L. (9.7)

x€Vi(n,k) : 0¢x xEVi(n,k): 0€x

For x € Vi(n,k) with 0 ¢ x, let x») = x U {0}; for x € Vj(n,k) with 0 € x, let
x(V) = x\ {0}. If 0 € x Ny, the structure of generating intervals gives us a natural
surjective map

LBi(n, k + 1)Iy — Lo Bi(n, k)L,
giving us a surjective ring homomorphism
Ve 1 Bi(n,k+ 1)ep,, — el Bi(n, k)ey
Thus, analogous to [79, Prop 5.36], we have a well defined surjective map

Bi(n,k+1)/Bi(n, k+ l)eXHBl(n, k+1) — e!Bi(n, k)e)

(] = ‘I’/(eﬁﬂ be£+1)~

Let PY = Bi(n, k)e). As in the Sartori case, the above homomorphism gives P, the struc-
ture of a right module over B;(n, k+1); thus, P\ is a bimodule over (B;(n, k), B;(n, k+1)).
Call this bimodule Fy, = ngz. We define

Fr = fkoszz Bi(n, k + 1)—proj — B;(n, k)—proj

to be the tensor product with ngz. We have Fj,_1 o Fr, = 0 and

P(x\{0}) 0ex

0 otherwise.

Fr(P(x)) = {

Theorem 9.2. The map from Ko(Bf(n,k + 1)) to Ko(B¥(n,k)) induced by FP°% agrees
with the map F: (V") ., — (V®"), under the identification of Definition 8.9.

Proof. The result follows from [78, Proposition 5.8] and Definition 8.9. O
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9.8. Comparing the Ozsvdth—Szabd and Sartori functors

As above, let Ff and FkOSZ denote the bimodules giving rise to the Sartori and
Ozsvath-Szabé functors Fi and F9%. We write ,,,(F{9%) and (F%)ing for the bimod-
ules over (.A%yk, Bi(n,k+1)) obtained by projecting the left action of F{%* and inflating
the right action of Ff respectively.

Theorem 9.3. The bimodules lDr(F,COSZ) and (Ff)inﬂ are isomorphic.

Proof. We just need to show that the right actions agree, which follows from commuta-
tivity of the square

Bi(n, k+1)/Bi(n, k+ 1)e) Bi(n, b +1) ——s eYBi(n, k)e), -

z z v z VAZ LV
%
An,k+1/ArL,k+lek+1"4n,k+l " €k An,kek

To see that the square commutes, note that the generator fx, at the top left (with
0 € xNy) gets sent by the left edge to the basis element of the minimal oriented fork
diagram between x and y, which starts with at least one A-labeled ray. The bottom
edge “forks together” all these A-labeled rays and sends this basis element to the basis
element of the minimal oriented fork diagram on the bottom right, which has one extra
V at the left of the new fork. On the other hand, the top edge sends fx , to fx(\/))y(\/),
whose associated unoriented fork diagram also “forks together” the initial sequence of
A-labeled rays in the fork diagram for fxy, and the right edge sends fy) yv) to the
basis element of the minimal oriented fork diagram for this unoriented fork diagram. The
result now follows from Z[Uq,. .., U,]-linearity of all the edges. O

It follows that the functors F and F%% intertwine the projection functors from
Bi(n, k + 1)—proj to A%,H_l—proj and from B;(n, k)—proj to A%Jg—proj.

9.4. Duals of the F functors
Let
= (B)f := F§ = Hom 4z (F§, AZ))
(see [79, Section 5.6]) and

EZ = (E//)kOSz = vFgSZ = Homgl(n’k) (FkOSZ,Bl (n, k'))
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As before, these bimodules square to zero. The functors
& =Ej®—: AL, —fmod — A%, | —fmod
and
&l =E]l ® —: Bi(n,k)—fmod — B(n,k + 1)—fmod

are exact since Ej, and EJ} are projective as right modules, so they induce maps on Gy
after tensoring with k.

The matrix for Go(&},) in the basis of simples is the transpose of the matrix for
Ko(F7) in the basis of projectives. Identifying ch(q)(A“;,k) with (V") via KEW (A% )
as in Definition 8.7, G(&},) sends Sartori dual canonical basis elements to Sartori dual
canonical basis elements or zero. Analogous claims hold for & in the Ozsvith-Szabé
setting.

Proposition 9.4 (cf. Theorem 7.19 of [78]). The map from (VE™), to (VE™), ., induced
by the Sartori functor &], agrees with the action of the quantum group element®

n—1
/ q _1 1
= E p—
k1o 1 Tk+io

EK. (9.8)

Below we describe the decategorification of the Ozsvath-Szabé functor &£/, which is
similar.

Theorem 9.5. The map from (VE™), to (VE™), ., induced by & agrees with the action
of the quantum group element

E'=q¢'1-¢)EK=(¢" - qEK.

Proof. We claim that the map [£}] induced by & equals 1 — ¢>*+1) times the map
[€7] induced by &}; the result then follows from Proposition 9.4. Indeed, [€]/] acts on
Ozsvath-Szabé dual canonical basis elements the way [£}] acts on Sartori dual canonical
basis elements. For x € Vj(n, k) we have vy% = [k]o!(1 —¢*)*vY, and for y € Vi(n, k+1)

X

6 Sartori defines E’ in an arbitrary weight space by

E=qg— " 'EF' K,
e

which can be interpreted as defining E’ in the modified (or idempotent form) U, (gl(1]1)) of Uy(gl(1|1))
defined in [89, Definition 3.2] by

E'l sy = ¢ la+ 10 EL(a,).-
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we have v;?@ = [k+ 1]o!(1 — q2)k+1v§,7. Thus, [£}] sends a Sartori dual canonical basis
element for (V®"), to

[+ 1Jol(1 — g2+

Kol — 2)F [k+1]o(1—¢?) =1— g*k+D

times where [£]] sends this basis element. O

Remark 9.6. The generators E” and F satisfy the anticommutation relation E”F +
FE" = 1 — K?; compare with [87, Section 1.2]. We set T = K?, a slight change of
conventions from what Tian writes.

Define ina(E},) and (E})p: by inflating the left action on Ej and projecting the right
action on EY.

Theorem 9.7. The bimodules ina(E}) and (E})pr over (Bi(n,k+1), A%,k) are isomorphic.

(a2

Proof. This result is a consequence of Theorem 9.3 because ina(E)) = inﬁ(va )
V((F)ima) and (EY)pr = (YFP%%) e = V(e (FP®%)). O

It follows that the functors &, and &) intertwine the inflation functors from
A%, —fmod to By(n, k + 1)—fmod and from A%, —fmod to By(n, k)—fmod.

References

[1] A. Alishahi, N. Dowlin, A link invariant related to Khovanov homology and knot Floer homology,
arXiv:1810.13406, 2018.

[2] A. Alishahi, N. Dowlin, Relating tangle invariants for Khovanov homology and knot Floer homology,
arXiv:1909.03865, 2019.

[3] D. Auroux, J.E. Grigsby, S.M. Wehrli, Khovanov-Seidel quiver algebras and bordered Floer homol-
ogy, Sel. Math. New Ser. 20 (1) (2014) 1-55, arXiv:1107.2841.

[4] M. Abouzaid, I. Smith, The symplectic arc algebra is formal, Duke Math. J. 165 (6) (2016) 985-1060,
arXiv:1311.5535.

[5] M. Abouzaid, I. Smith, Khovanov homology from Floer cohomology, J. Am. Math. Soc. 32 (1)
(2019) 1-79, arXiv:1504.01230.

[6] D. Auroux, Fukaya categories and bordered Heegaard-Floer homology, in: Proceedings of the
International Congress of Mathematicians, vol. II, Hindustan Book Agency, New Delhi, 2010,
pp. 917-941, arXiv:1003.2962.

[7] A. Beilinson, J. Bernstein, Localisation de g-modules, C. R. Acad. Sci., Sér. 1 Math. 292 (1) (1981)
15-18.

[8] J. Bernstein, I. Frenkel, M. Khovanov, A categorification of the Temperley-Lieb algebra and Schur
quotients of U(sl2) via projective and Zuckerman functors, Sel. Math. New Ser. 5 (2) (1999) 199-241,
arXiv:math/0002087.

[9] J. Bernstein, .M. Gelfand, S.I. Gelfand, A certain category of g-modules, Funkec. Anal. Prilozh.
10 (2) (1976) 1-8.

[10] J. Brundan, A. Kleshchev, Graded decomposition numbers for cyclotomic Hecke algebras, Adv.
Math. 222 (6) (2009) 18831942, arXiv:0901.4450.

[11] G. Benkart, S.J. Kang, M. Kashiwara, Crystal bases for the quantum superalgebra Uy (gl(m,n)), J.
Am. Math. Soc. 13 (2) (2000) 295-331, arXiv:math/9810092.

[12] T. Braden, A. Licata, C. Phan, N. Proudfoot, B. Webster, Localization algebras and deformations
of Koszul algebras, Sel. Math. New Ser. 17 (3) (2011) 533-572, arXiv:0905.1335.


http://refhub.elsevier.com/S0001-8708(20)30483-7/bibA0AC9D93AC843D0640053A49E278ECA0s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibA0AC9D93AC843D0640053A49E278ECA0s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib919587D0629B30E4549FE99ED9664194s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib919587D0629B30E4549FE99ED9664194s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibA5877D5D13DB64C83EBBE0E4F1F2E27As1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibA5877D5D13DB64C83EBBE0E4F1F2E27As1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibFC236DA86B0AEF7AA92207F1F23AC3FBs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibFC236DA86B0AEF7AA92207F1F23AC3FBs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibE612D54664C7BCE219093AFAD1BF53CCs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibE612D54664C7BCE219093AFAD1BF53CCs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib7602A6B412DB6DFFC81B46E8E9491853s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib7602A6B412DB6DFFC81B46E8E9491853s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib7602A6B412DB6DFFC81B46E8E9491853s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib3490EB0EECC60B4E031DCE999192F43Bs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib3490EB0EECC60B4E031DCE999192F43Bs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib4D0EC5E94EDB70900641189356FE4645s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib4D0EC5E94EDB70900641189356FE4645s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib4D0EC5E94EDB70900641189356FE4645s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib42F3F1D1E3D5F9566B2C9525FEF11096s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib42F3F1D1E3D5F9566B2C9525FEF11096s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib2BADEE9944E3E77F76B3434DF420D3FBs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib2BADEE9944E3E77F76B3434DF420D3FBs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibD4C087CB3D10255D84E1810CA5A24879s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibD4C087CB3D10255D84E1810CA5A24879s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibEF580B748DF396F97DFA9FC6FB3CCCD9s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibEF580B748DF396F97DFA9FC6FB3CCCD9s1

A.D. Lauda, A. Manion / Advances in Mathematics 376 (2021) 107455 57

[13] S. Cautis, Clasp technology to knot homology via the affine Grassmannian, Math. Ann. 363 (3-4)
(2015) 1053-1115.

[14] L. Crane, I. Frenkel, Four-dimensional topological quantum field theory, Hopf categories, and the
canonical bases, J. Math. Phys. 35 (10) (1994) 5136-5154, arXiv:hep-th/9405183.

[15] S. Cautis, J. Kamnitzer, Knot homology via derived categories of coherent sheaves, II: the sl(m)-
case, Invent. Math. 174 (1) (2008) 165-232, arXiv:math/0701194.

[16] Y. Chen, M. Khovanov, An invariant of tangle cobordisms via subquotients of arc rings, Fundam.
Math. 225 (1) (2014) 23-44, arXiv:math/0610054.

[17] N.M. Dunfield, S. Gukov, J. Rasmussen, The superpolynomial for knot homologies, Exp. Math.
15 (2) (2006) 129-159, arXiv:math/0505662.

[18] C.L. Douglas, R. Lipshitz, C. Manolescu, Cornered Heegaard Floer homology, arXiv:1309.0155,
2013.

[19] C.L. Douglas, C. Manolescu, On the algebra of cornered Floer homology, J. Topol. 7 (1) (2014)
1-68, arXiv:1105.0113.

[20] N. Dowlin, A spectral sequence from Khovanov homology to knot Floer homology, arXiv:1811.07848,
2018.

[21] A.P. Ellis, I. Petkova, V. Vértesi, Quantum alypy and tangle Floer homology, Adv. Math. 350 (2019)
130-189, arXiv:1510.03483.

[22] B. Elias, G. Williamson, Soergel calculus, Represent. Theory 20 (2016) 295-374, arXiv:1309.0865.

[23] M. Freedman, R. Gompf, S. Morrison, K. Walker, Man and machine thinking about the smooth
4-dimensional Poincaré conjecture, Quantum Topol. 1 (2) (2010) 171-208, arXiv:0906.5177.

[24] V. Futorny, S. Kénig, V. Mazorchuk, S-subcategories in O, Manuscr. Math. 102 (4) (2000) 487-503.

[25] V. Futorny, S. Konig, V. Mazorchuk, Categories of induced modules for Lie algebras with triangular
decomposition, Forum Math. 13 (5) (2001) 641-661.

[26] J.J. Graham, G.I. Lehrer, Cellular algebras, Invent. Math. 123 (1) (1996) 1-34.

[27] J. Hu, A. Mathas, Graded cellular bases for the cyclotomic Khovanov-Lauda-Rouquier algebras of
type A, Adv. Math. 225 (2) (2010) 598-642, arXiv:0907.2985.

[28] M.P. Holland, P. Polo, K-theory of twisted differential operators on flag varieties, Invent. Math.
123 (2) (1996) 377-414.

[29] A. Juhész, Floer homology and surface decompositions, Geom. Topol. 12 (1) (2008) 299-350, arXiv:
math/0609779.

[30] M. Kashiwara, On crystal bases of the Q-analogue of universal enveloping algebras, Duke Math. J.
63 (2) (1991) 465-516.

[31] B. Keller, Derived categories and tilting, in: Handbook of Tilting Theory, in: London Math. Soc.
Lecture Note Ser., vol. 332, Cambridge Univ. Press, Cambridge, 2007, pp. 49-104.

[32] M. Khovanov, A functor-valued invariant of tangles, Algebraic Geom. Topol. 2 (2002) 665-741,
arXivimath/0103190.

[33] M. Khovanov, Triply-graded link homology and Hochschild homology of Soergel bimodules, Int. J.
Math. 18 (8) (2007) 869-885, arXivimath/0510265.

[34] M. Khovanov, How to categorify one-half of quantum gl(1|2), in: Knots in Poland III, Part III, in:
Banach Center Publ., vol. 103, Polish Acad. Sci. Inst. Math., Warsaw, 2014, pp. 211-232, arXiv:
1007.3517.

[35] M. Khovanov, Hopfological algebra and categorification at a root of unity: the first steps, J. Knot
Theory Ramif. 25 (3) (2016) 1640006, arXiv:math/0509083.

[36] S.J. Kang, M. Kashiwara, Categorification of highest weight modules via Khovanov-Lauda-Rouquier
algebras, Invent. Math. 190 (3) (2012) 699-742, arXiv:1102.4677.

[37] D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (2)
(1979) 165-184.

[38] M. Khovanov, A.D. Lauda, A diagrammatic approach to categorification of quantum groups III,
Quantum Topol. 1 (2010) 1-92, arXiv:0807.3250.

[39] M. Khovanov, Y. Qi, An approach to categorification of some small quantum groups, Quantum
Topol. 6 (2) (2015) 185-311, arXiv:1208.0616.

[40] M. Khovanov, Y. Qi, J. Sussan, p-DG cyclotomic nilHecke algebras, arXiv:1711.07159, 2017.

[41] M. Khovanov, L. Rozansky, Matrix factorizations and link homology, Fundam. Math. 199 (1) (2008)
1-91, arXiv:math/0510265.

[42] L.H. Kauffman, H. Saleur, Free fermions and the Alexander-Conway polynomial, Commun. Math.
Phys. 141 (2) (1991) 293-327.

[43] M. Khovanov, P.S. Quivers, Floer cohomology, and braid group actions, J. Am. Math. Soc. 15 (1)
(2002) 203-271, arXiv:math/0006056.


http://refhub.elsevier.com/S0001-8708(20)30483-7/bibD4F81979BEBB97DA24C67E4E4BFE9B89s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibD4F81979BEBB97DA24C67E4E4BFE9B89s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib758951CAC5E62129E654698C8CA0333Bs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib758951CAC5E62129E654698C8CA0333Bs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib63F35FF049678C3C0E08BCA40F49AA3Ds1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib63F35FF049678C3C0E08BCA40F49AA3Ds1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib9660D26F26ECFCF691596BF1AB60669Cs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib9660D26F26ECFCF691596BF1AB60669Cs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib057FEF57EC7E5380ED4B0FBB6AB520AEs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib057FEF57EC7E5380ED4B0FBB6AB520AEs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib0E28F35877B25B8243CB6FF84BDD61D8s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib0E28F35877B25B8243CB6FF84BDD61D8s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib2ECDA7A0252B442AC6ECF47462119F51s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib2ECDA7A0252B442AC6ECF47462119F51s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib9034A83A98C4E3C91967AC557368BB97s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib9034A83A98C4E3C91967AC557368BB97s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibB9C90F307219597918A2C8A59D9F7C81s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibB9C90F307219597918A2C8A59D9F7C81s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib8CDB36F48677373DBDE5DD7EAD8C731Es1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib8469DDEB401FC654E20D4DF1F6E057D2s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib8469DDEB401FC654E20D4DF1F6E057D2s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibBBA61FE6DDEB9947C548FD058B950BC8s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib9951615279B5D5DDF74576756E63F0EEs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib9951615279B5D5DDF74576756E63F0EEs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibAD70939237C6F0D638FE79884D91449Bs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib36A12A753997A4032C351F4C6A12C416s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib36A12A753997A4032C351F4C6A12C416s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibF05E0E5F5D26624B5F06A10CEB374D68s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibF05E0E5F5D26624B5F06A10CEB374D68s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibC885F203CCF76C5D0EA7F21643153290s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibC885F203CCF76C5D0EA7F21643153290s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib2CA5571824E527D54FD3F458827F0A5Ds1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib2CA5571824E527D54FD3F458827F0A5Ds1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib1C931DE2C44449FBACE3F1024B15F9E9s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib1C931DE2C44449FBACE3F1024B15F9E9s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibCD30BF653F8E913C2EA031C7DCBCA5ECs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibCD30BF653F8E913C2EA031C7DCBCA5ECs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib334701E4B72A7B801D2098C188E57237s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib334701E4B72A7B801D2098C188E57237s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibA5B1C9CACA77AE56999E018C695617C5s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibA5B1C9CACA77AE56999E018C695617C5s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibA5B1C9CACA77AE56999E018C695617C5s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibE4CCBAE28C6D59842E08E88169896FA0s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibE4CCBAE28C6D59842E08E88169896FA0s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib16E4EF534CEC559430E07E05EB71C719s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib16E4EF534CEC559430E07E05EB71C719s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibD512D1723F50E6D9DF869AED7D47D1F0s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibD512D1723F50E6D9DF869AED7D47D1F0s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib55C9A3D90A12D0F53306DE998DE72CA2s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib55C9A3D90A12D0F53306DE998DE72CA2s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibE7D06E530AB8792D58C0EBEF4E0B36A4s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibE7D06E530AB8792D58C0EBEF4E0B36A4s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib97BD9B42CF166D653E21DB22001AEFD5s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib23BE3A29082D27BC19DA21F99F664F0Cs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib23BE3A29082D27BC19DA21F99F664F0Cs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib0FEB46003356F81F24A5A4A34B41F835s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib0FEB46003356F81F24A5A4A34B41F835s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibA32356331CF2A7F56E45306FC6D328D9s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibA32356331CF2A7F56E45306FC6D328D9s1

58 A.D. Lauda, A. Manion / Advances in Mathematics 376 (2021) 107455

[44] R. Lipshitz, P.S. Ozsvath, D.P. Thurston, Bimodules in bordered Heegaard Floer homology, Geom.
Topol. 19 (2) (2015) 525-724, arXiv:1003.0598.

[45] R. Lipshitz, P.S. Ozsvath, D.P. Thurston, Bordered Heegaard Floer homology, Mem. Am. Math.
Soc. 254 (1216) (2018) viii4+279, arXiv:0810.0687.

[46] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Am. Math. Soc. 3 (2)
(1990) 447-498.

[47] L. Manivel, Symmetric Functions, Schubert Polynomials and Degeneracy Loci, SMF/AMS Texts and
Monographs, vol. 6, American Mathematical Society, Providence, RI, 2001, Société Mathématique
de France, Paris; Translated from the 1998 French original by J.R. Swallow, Cours Spécialisés
[Specialized Courses], 3.

[48] C. Manolescu, Link homology theories from symplectic geometry, Adv. Math. 211 (1) (2007)
363-416, arXiv:math/0601629.

[49] A. Manion, Khovanov-Seidel quiver algebras and Ozsvath-Szabd’s bordered theory, J. Algebra 488
(2017) 110-144, arXiv:1605.08082.

[50] A. Manion, On the decategorification of Ozsvath and Szabd’s bordered theory for knot Floer ho-
mology, Quantum Topol. 10 (1) (2019) 77-206, arXiv:1611.08001.

[61] A. Manion, Singular crossings and Ozsvath-Szabd’s Kauffman-states functor, arXiv:1904.10983,
2019.

[62] A. Manion, M. Marengon, M. Willis, Generators, relations, and homology for Ozsvath-Szabd’s
Kauffman-states algebras, arXiv:1903.05654, 2019.

[63] A. Manion, M. Marengon, M. Willis, Strands algebras and Ozsvath-Szabé’s Kauffman-states func-
tor, arXiv:1903.05655, 2019.

[54] A. Manion, R. Rouquier, Higher representations and cornered Heegaard Floer homology, arXiv:
2009.09627.

[65] V. Mazorchuk, C. Stroppel, Translation and shuffling of projectively presentable modules and a
categorification of a parabolic Hecke module, Trans. Am. Math. Soc. 357 (7) (2005) 2939-2973.

[66] V. Mazorchuk, C. Stroppel, A combinatorial approach to functorial quantum sl; knot invariants,
Am. J. Math. 131 (6) (2009) 16791713, arXiv:0709.1971.

[67] C.Y. Mak, I. Smith, Fukaya-Seidel categories of Hilbert schemes and parabolic category O, arXiv:
1907.07624, 2019.

[58] M. Mackaay, B. Webster, Categorified skew Howe duality and comparison of knot homologies, Adv.
Math. 330 (2018) 876-945.

[59] D. Nadler, Microlocal branes are constructible sheaves, Sel. Math. New Ser. 15 (4) (2009) 563-619,
arXiv:math/0612399.

[60] Y. Ni, Knot Floer homology detects fibred knots, Invent. Math. 170 (3) (2007) 577-608, arXiv:
math/0607156.

[61] D. Nadler, E. Zaslow, Constructible sheaves and the Fukaya category, J. Am. Math. Soc. 22 (1)
(2009) 233-286, arXiv:math/0604379.

[62] P.S. Ozsvath, Z. Szabd, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311-334,
arXiv:math/0311496.

[63] P.S. Ozsvath, Z. Szab6, Holomorphic disks and knot invariants, Adv. Math. 186 (1) (2004) 58-116,
arXiv:math/0209056.

[64] P.S. Ozsvath, Z. Szabd, Holomorphic disks and three-manifold invariants: properties and applica-
tions, Ann. Math. (2) 159 (3) (2004) 1159-1245, arXiv:math/0105202.

[65] P.S. Ozsvéath, Z. Szab6, Holomorphic disks and topological invariants for closed three-manifolds,
Ann. Math. (2) 159 (3) (2004) 1027-1158, arXiv:math/0101206.

[66] P.S. Ozsvéth, Z. Szabd, Bordered knot algebras with matchings, arXiv:1707.00597, 2017.

[67] P.S. Ozsvath, Z. Szabd, Kauffman states, bordered algebras, and a bigraded knot invariant, Adv.
Math. 328 (2018) 1088-1198, arXiv:1603.06559.

[68] P.S. Ozsvéth, Z. Szabé, Knot Floer homology calculator, web.math.princeton.edu/~szabo/HFKcalc.
html, 2019.

[69] I. Petkova, V. Vértesi, Combinatorial tangle Floer homology, Geom. Topol. 20 (6) (2016) 3219-3332,
arXiv:1410.2161.

[70] Y. Qi, Hopfological algebra, Compos. Math. 150 (1) (2014) 1-45, arXiv:1205.1814.

[71] Y. Qi, J. Sussan, p-DG cyclotomic nilHecke algebras II, arXiv:1811.04372, 2018.

[72] J. Rasmussen, Floer homology and knot complements, ProQuest LLC, Ann Arbor, MI, 2003, Thesis
(Ph.D.)-Harvard University.

[73] J. Rasmussen, Knot polynomials and knot homologies, in: Geometry and Topology of Manifolds,
in: Fields Inst. Commun., vol. 47, Amer. Math. Soc., Providence, RI, 2005, pp. 261280, arXiv:
math/0504045.


http://refhub.elsevier.com/S0001-8708(20)30483-7/bib9F2B0581148D6FBA730785F58235D7DAs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib9F2B0581148D6FBA730785F58235D7DAs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibECF9A2B80D0A0506189D171899AE8827s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibECF9A2B80D0A0506189D171899AE8827s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib353EA454C878462516312E011756B640s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib353EA454C878462516312E011756B640s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib278D86F5BAE9CEBC582130700FC2AFE2s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib278D86F5BAE9CEBC582130700FC2AFE2s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib278D86F5BAE9CEBC582130700FC2AFE2s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib278D86F5BAE9CEBC582130700FC2AFE2s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib04F55E4CDB6D7FDF7ACB370D1E297DE4s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib04F55E4CDB6D7FDF7ACB370D1E297DE4s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib6320EB7A56878C62E045E3EA90605366s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib6320EB7A56878C62E045E3EA90605366s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibFC50BC9533792E5C618A483400B8508Ds1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibFC50BC9533792E5C618A483400B8508Ds1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib8A62293AFFCF0E12910CEBE9BECC1722s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib8A62293AFFCF0E12910CEBE9BECC1722s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib1729F37D7EC9F61595FB827569A77923s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib1729F37D7EC9F61595FB827569A77923s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibC1998604D41776D6C3235201A1A408B7s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibC1998604D41776D6C3235201A1A408B7s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib0FD979A48D74A42135E14992BFBA0AF6s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib0FD979A48D74A42135E14992BFBA0AF6s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibB8BB10A97783875BA7327AFE1C356E4Es1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibB8BB10A97783875BA7327AFE1C356E4Es1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibFCE8EC54AAC10544380B16118C4A5A7Fs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibFCE8EC54AAC10544380B16118C4A5A7Fs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib3229D7F5A8D8FF76C256AEAD4572B0AAs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib3229D7F5A8D8FF76C256AEAD4572B0AAs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibC52665C245F78F8D4EDC6D27ADB7EC0As1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibC52665C245F78F8D4EDC6D27ADB7EC0As1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib9318F2C192115A5ABBB07A9254F67881s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib9318F2C192115A5ABBB07A9254F67881s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib130D70A36C9B93CAC337249AB717F6AAs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib130D70A36C9B93CAC337249AB717F6AAs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib375B4E214376B8B593BA25839888DEFFs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib375B4E214376B8B593BA25839888DEFFs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibB47238350CF34E2554D8FB96BD73883Cs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibB47238350CF34E2554D8FB96BD73883Cs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib13DD4635EC0250C971084FB5D8CCD388s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib13DD4635EC0250C971084FB5D8CCD388s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib038C6DB1023D5BFF6271A99683B5C093s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib038C6DB1023D5BFF6271A99683B5C093s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibA53D8E4FEBCEEC76706420C16396825Bs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibA53D8E4FEBCEEC76706420C16396825Bs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib8BDCA36A14641235708C093A9E2ED90Ds1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibFD43E46BCFED6AED4FB4D18C6780D86Fs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibFD43E46BCFED6AED4FB4D18C6780D86Fs1
http://web.math.princeton.edu/~szabo/HFKcalc.html
http://web.math.princeton.edu/~szabo/HFKcalc.html
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib5E8A0455AC15B48B586916FCCDCC9A22s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib5E8A0455AC15B48B586916FCCDCC9A22s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib8860370AF76C01DE5337D4626C2678F4s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib97E155146C6F07C215219653E5491012s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibCC23C45B0E553F058E1E3015744EDF7Bs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibCC23C45B0E553F058E1E3015744EDF7Bs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibFBB842A77F4D656D20D188696F2E3E48s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibFBB842A77F4D656D20D188696F2E3E48s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibFBB842A77F4D656D20D188696F2E3E48s1

A.D. Lauda, A. Manion / Advances in Mathematics 376 (2021) 107455 59

[74] R. Rouquier, Categorification of the braid groups, arXiv:math/0409593, 2004.

[75] R. Rouquier, 2-Kac-Moody algebras, arXiv:0812.5023, 2008.

[76] R. Rouquier, Quiver Hecke algebras and 2-Lie algebras, Algebra Colloq. 19 (2) (2012) 359-410,
arXiv:1112.3619.

[77] A. Sartori, The Alexander polynomial as quantum invariant of links, Ark. Mat. 53 (1) (2015)
177-202, arXiv:1308.2047.

[78] A. Sartori, Categorification of tensor powers of the vector representation of Ug(gl(1|1)), Sel. Math.
New Ser. 22 (2) (2016) 669-734, arXiv:1305.6162.

[79] A. Sartori, A diagram algebra for Soergel modules corresponding to smooth Schubert varieties,
Trans. Am. Math. Soc. 368 (2) (2016) 889-938, arXiv:1311.6968.

[80] W. Soergel, Kategorie O, perverse Garben und Moduln tiber den Koinvarianten zur Weylgruppe,
J. Am. Math. Soc. 3 (2) (1990) 421-445.

[81] W. Soergel, The combinatorics of Harish-Chandra bimodules, J. Reine Angew. Math. 429 (1992)
49-74.

[82] P. Seidel, I. Smith, A link invariant from the symplectic geometry of nilpotent slices, Duke Math.
J. 134 (3) (2006) 453514, arXiv:math/0405089.

[83] A. Sartori, C. Stroppel, Categorification of tensor product representations of sl;, and category O, J.
Algebra 428 (2015) 256-291, arXiv:1407.4267.

[84] C. Stroppel, Parabolic category O, perverse sheaves on Grassmannians, Springer fibres and Kho-
vanov homology, Compos. Math. 145 (4) (2009) 954-992, arXiv:math/0608234.

[85] J. Sussan, Category O and sl(k) link invariants, ProQuest LLC, Ann Arbor, MI, 2007, Thesis
(Ph.D.)—Yale University.

[86] S. Sarkar, J. Wang, An algorithm for computing some Heegaard Floer homologies, Ann. Math. (2)
171 (2) (2010) 1213-1236, arXiv:math/0607777.

[87] Y. Tian, A categorification of Ur(sl(1|1)) and its tensor product representations, Geom. Topol.
18 (3) (2014) 1635-1717, arXiv:1301.3986.

[88] Y. Tian, Categorification of Clifford algebras and Ug(sl(1[1)), J. Symplectic Geom. 14 (2) (2016)
541-585, arXiv:1210.5680.

[89] D. Tubbenhauer, P. Vaz, P. Wedrich, Super ¢g-Howe duality and web categories, Algebraic Geom.
Topol. 17 (6) (2017) 3703-3749, arXiv:1504.05069.

[90] B. Webster, Knot invariants and higher representation theory, Mem. Am. Math. Soc. 250 (1191)
(2017) v+141, arXiv:1001.2020.

[91] H. Zhang, The quantum general linear supergroup, canonical bases and Kazhdan-Lusztig polyno-
mials, Sci. China Ser. A 52 (3) (2009) 401-416.

[92] Y.M. Zou, Crystal bases for Uy(sl(2,1)), Proc. Am. Math. Soc. 127 (8) (1999) 2213-2223.


http://refhub.elsevier.com/S0001-8708(20)30483-7/bibF3899BA4A88FFDE0E7FD4EAEF3A6B8C3s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib4FBDED7DBBBB4C8D85D1915415A0F43Fs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibB767D186C41C27491BACBA0746D4D923s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibB767D186C41C27491BACBA0746D4D923s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib7AEC1FDCEB732F3B2C90B281F3DDEE29s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib7AEC1FDCEB732F3B2C90B281F3DDEE29s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib7479F029B49D2BD10659223F6F1D0002s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib7479F029B49D2BD10659223F6F1D0002s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib58A614333F16AF6BF41A92EE7CF8DE50s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib58A614333F16AF6BF41A92EE7CF8DE50s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib676039BF9726CC77A5B15A47EA6982ACs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib676039BF9726CC77A5B15A47EA6982ACs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib88DB2682965AC6B47FD40D8AB67149CFs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib88DB2682965AC6B47FD40D8AB67149CFs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib2DF6EB66D7AF406D5CF50A1A334DE90Bs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib2DF6EB66D7AF406D5CF50A1A334DE90Bs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibD53AEB78ABC83A52AB8982F5C82A3D5Bs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibD53AEB78ABC83A52AB8982F5C82A3D5Bs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibE8ED0546ECC2E7527054AB2D8286255Bs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibE8ED0546ECC2E7527054AB2D8286255Bs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib1898E1F2AE4FD8539D0BA023BE7A091Bs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib1898E1F2AE4FD8539D0BA023BE7A091Bs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib9DCC09DB951784193F5025A5196B290Ds1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib9DCC09DB951784193F5025A5196B290Ds1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib4AD31D08E9A5D1EC5DD49C2B1EB68C7Es1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib4AD31D08E9A5D1EC5DD49C2B1EB68C7Es1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibDE391BFA4E135432EF1D58636E14C29As1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibDE391BFA4E135432EF1D58636E14C29As1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib340CA4171272CB4BD3B380A30CB46A15s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib340CA4171272CB4BD3B380A30CB46A15s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibB55E74D4007B674B329D70F5550028BAs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibB55E74D4007B674B329D70F5550028BAs1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibC9B0CDDF97E425E77F1BCDB586CA7F05s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bibC9B0CDDF97E425E77F1BCDB586CA7F05s1
http://refhub.elsevier.com/S0001-8708(20)30483-7/bib869EE585A40C11620456185526693110s1

	Ozsváth-Szabó bordered algebras and subquotients of category O
	1 Introduction
	1.1 Knot Floer homology and categorification
	1.2 Algebraic categorifications associated with gl(1|1)
	1.3 Relating categorifications
	1.4 Applications
	1.4.1 Bilinear forms on V⊗n
	1.4.2 Categorified action of Uq(gl(1|1))
	1.4.3 Modules over Ozsváth--Szabó’s algebras
	1.4.4 Bimodules for intertwining maps
	1.4.5 Fukaya categories


	2 Ozsváth--Szabó’s algebras
	2.1 Big-step quiver description
	2.2 Small-step quiver description
	2.3 Gradings
	2.4 Basis for the algebra
	2.5 Characterization of generating intervals
	2.6 Anti-automorphism

	3 Sartori’s algebras
	3.1 Polynomial rings and bases for quotient rings
	3.2 Sequences and permutations
	3.3 Soergel modules and their hom spaces
	3.4 Illicit morphisms
	3.5 Definition of Sartori’s algebra
	3.5.1 Connection to BGG category O

	3.6 Anti-automorphism

	4 A surjective homomorphism from Ozsváth--Szabó to Sartori
	5 Characterizing illicit morphisms via generating intervals
	5.1 Generating interval and the Wα submodule
	5.2 Comparison with Sartori’s Theorem 4.17
	5.3 Fork diagrams and the dimension of homs mod illicits
	5.3.1 Oriented fork diagrams
	5.3.2 Counting fork diagrams
	5.3.3 Fork diagrams and maps between Soergel modules

	5.4 A Z lift of Sartori’s algebra

	6 A vanishing ideal in the Sartori algebra
	7 Fork elements and injectivity
	7.1 Deformations
	7.2 Fork elements as a Sym(U)-basis
	7.3 Injectivity

	8 Categorification of bases and bilinear forms
	8.1 Quantum gl(1|1)
	8.2 The canonical basis of V⊗n
	8.3 Categorification of V⊗n via Sartori’s algebras
	8.4 Categorification of V⊗n via Ozsváth--Szabó’s algebras
	8.5 Relating the categorifications by projection and inflation
	8.6 The Sartori bilinear form for V⊗n
	8.7 The Ozsváth--Szabó bilinear form for V⊗n
	8.8 Dual standard and dual canonical bases
	8.9 Sartori’s categorification of standard bases for V⊗n
	8.10 Classes in KC(q)0(Bkl(n,k)) from inflated Sartori modules
	8.11 Compact derived categories
	8.12 Comparison with the conventions of [50]

	9 Bimodules for quantum group generators
	9.1 The Sartori F functor
	9.2 The Ozsváth--Szabó F functor
	9.3 Comparing the Ozsváth--Szabó and Sartori functors
	9.4 Duals of the F functors

	References


