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new modules over Ozsváth–Szabó’s algebra lifting various 
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1. Introduction

Categorification originated with the goal of lifting quantum 3-manifold invariants, 
specifically the Witten–Reshetikhin–Turaev invariants based on Chern–Simons gauge 
theory, to smooth 4-manifold invariants. Within Crane and Frenkel’s original pro-
posal [14], quantum groups associated to semi-simple Lie algebras heavily influenced 
the investigation of categorified quantum 3-manifold invariants. Positive and integral 
structures arising from geometric representation theory and the discovery of canonical 
bases for quantum groups suggested that quantum groups could themselves be categori-
fied. These original insights ultimately birthed the field of higher representation theory 
and the study of categorified quantum groups.

Quantum groups associated to symmetrizable Kac-Moody algebras have been cate-
gorified along with a significant amount of their representation theory [38,75,76,36,90]. 
These categorical representations, or higher representations, govern link homology theo-
ries categorifying the Reshetikhin-Turaev invariants of knots and tangles. Though these 
link homologies such as Khovanov-Rozansky homology can be formulated in many differ-
ent languages like matrix factorizations [41], Soergel bimodules [74,33], coherent sheaves 
on the affine Grassmannian [15], BGG category O [84,85,56], and tensor product 2-
representations [90], higher representation theory unifies these different formulations by 
realizing them all as 2-representations of categorified quantum groups [13,58].

Despite these successes, thus far the higher representation theoretic approach has 
fallen short at categorifying quantum invariants for 3-manifolds, not just links in S3. 
This issue is partly related to the challenges associated with categorification at a root of 
unity, though there has been some progress in this direction [35,39,70,40,71].

1.1. Knot Floer homology and categorification

On the other hand, Heegaard Floer homology [65,64] has proven tremendously suc-
cessful as a 4-dimensional TQFT sensitive to the smooth structure of 4-manifolds. This 
theory has a much different flavor than the quantum invariants discussed above; it is 
a symplectic approach to Seiberg–Witten theory, a more analytically tractable relative 
of the celebrated Donaldson–Floer invariants that initially sparked mathematical inter-



A.D. Lauda, A. Manion / Advances in Mathematics 376 (2021) 107455 3
est in TQFTs in the 1980s. Its definitions rely on moduli spaces of pseudoholomorphic 
curves as in Lagrangian Floer homology. Heegaard Floer theory also provides a categori-
fication of the Alexander polynomial called knot Floer homology (HFK) [63,72], similar 
in its formal properties to Khovanov’s categorification of the Jones polynomial despite 
the significant differences in the definitions. Knot Floer homology determines important 
knot-theoretic information like genus and fiberedness that is only bounded or restricted 
by the Alexander polynomial [62,60,29].

Despite its analytic origins, knot Floer homology can be understood fruitfully from an 
algebraic perspective by making it into a local tangle invariant based on the ideas of bor-
dered Floer homology as studied by Lipshitz–Ozsváth–Thurston [45]. In this framework, 
one associates A∞-algebras (usually dg) to parametrized surfaces and A∞-bimodules 
to certain diagrams for 3d cobordisms. Applying these methods to tangle complements 
viewed as cobordisms between genus-zero surfaces with boundary, Ozsváth–Szabó [67]
recently introduced a computational method for knot Floer homology. They have used 
their theory to write a very fast HFK calculator program [68], capable of computing 
HFK and some related concordance invariants for most knots with 40-50 crossings (and 
some with significantly more, e.g. the 80+ crossing examples1 from [23]).

Ozsváth–Szabó’s theory is similar in its motivation and formal structure to another 
construction due to Petkova–Vértesi [69], which computes HFK using local versions of 
“nice diagrams” in the sense of [86]. Holomorphic curve counts arising from nice diagrams 
can always be understood combinatorially, but the resulting Heegaard Floer invariants 
are typically the homology of complexes with a large (e.g. factorial-sized) number of 
generators. Ozsváth–Szabó [67] gain efficiency by using a diagram giving a small and 
natural number of generators, but in which the curve counts are quite complicated to 
understand; nevertheless, they succeed in describing the counts and their associated A∞
structures algebraically.

The local or bordered approach to knot Floer homology provides a bridge to represen-
tation theory by categorifying the Alexander polynomial as a quantum invariant. From 
the introduction of quantum link invariants in the 1980s, it became a natural question 
to ask if the Alexander polynomial has a definition as a physical observable in some 
3-dimensional Chern–Simons theory. The relevant Chern–Simons theory turns out to be 
the one whose structure group is given by the Lie superalgebra gl(1|1) (or gl(n|n) for 
any n > 0). Indeed, the Alexander polynomial can be understood as the quantum in-
variant associated to the quantum superalgebra Uq(gl(1|1)), where endpoints of a tangle 
correspond to tensor powers of the vector representation V and its dual V ∗, and tangles 
give maps of Uq(gl(1|1))-representations, see e.g. [42,77].

As shown in [50], Ozsváth–Szabó’s theory gives a categorification of these tensor 
powers of V and V ∗, together with tangle maps between them. Closely related results 

1 This claim can be verified by downloading ComputeHFKv1.zip from [68], then compiling the enclosed 
C++ files and running them on the enclosed examples. The files K2b86.txt, K3c83.txt, and K3d91.txt give 
86, 83, and 91-crossing presentations of the knots K2 and K3 from [23]; they can be run in a few minutes 
on a laptop.
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were obtained for Petkova–Vertesi’s theory in [21]; this theory categorifies tensor powers 
of V and V ∗ with one additional factor L(λP ). See [88,87] for still another approach 
using bordered Floer ingredients with more of a contact topology flavor, although Tian 
does not categorify tangle maps. None of these constructions categorify the action on 
V ⊗n of both generators E and F of Uq(gl(1|1)); Ellis–Petkova–Vertesi categorify both E
and F acting on a related representation, Tian works with a different quantum group, 
and actions of quantum group generators are not considered at all in [67,66,50] (we will 
rectify this last issue in the current paper).

1.2. Algebraic categorifications associated with gl(1|1)

Moving to the algebraic side, Sartori [78] defines a categorification of tensor powers 
of V , with intertwining maps and (half of) the action of Uq(gl(1|1)), in the usual spirit 
of algebraic categorification via the Bernstein–Gelfand–Gelfand category O [9]. More 
specifically, categorification is achieved though certain subquotient categories of category 
O(gln), or what are referred to as q-presentable quotients Op,q-pres

0 of the regular block Op

0
of the parabolic subcategory Op ⊂ O (see Section 3.5.1 for more details; such presentable 
quotients were first defined in [24] and studied in relation to categorification in [55]). 
Sartori uses projective functors on these quotients to categorify the Hecke algebra action 
on V ⊗n and Zuckerman’s approximation functors to categorify the action of Uq(gl(1|1))
(more precisely, of the generator F of half of the quantum group and its dual E′ with 
respect to a bilinear form on V ⊗n arising from graded dimensions of morphism spaces 
in Op,q-pres

0 ).
In the sl(n) case, category O is related to geometric categorification via perverse 

sheaves [8] by localization, and related to elementary diagrammatic definitions in the 
original Khovanov style by work of Stroppel [84]. Webster can describe general blocks 
of (parabolic) category O, up to equivalence, as module categories over his diagram 
tensor product algebras from [90]. In this way, Sartori’s categorifications fit naturally 
into traditional structures associated with higher representation theory.

While an explicit description of blocks in parabolic category O can become unwieldy 
in general, Sartori defines diagrammatic algebras whose module categories are equivalent 
to the subquotients Op,q-pres

0 for p, q of Levi type (1, . . . , 1, n − k) and (k, 1, . . . , 1) re-
spectively [79]. The structure of these subquotients is accessed through a combinatorial 
relationship with Soergel modules corresponding to smooth Schubert varieties. Through 
a careful analysis of these Soergel modules and the maps between them, Sartori defines 
algebras An,k we call Sartori algebras. We note the description of multiplication on these 
algebras is not entirely diagrammatic; rewriting products in the basis of the algebra re-
quires significant effort. Sartori goes on to show that his algebras are graded cellular 
and properly stratified, equipping them with explicit classes of modules and filtrations 
lifting the standard and canonical bases for V ⊗n and their duals. Relationships between 
Sartori’s constructions and categorifications of tensor product representations of sl(k)
are studied in [83].
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1.3. Relating categorifications

Both the Oszváth-Szabó algebras Bl(n, k) appearing in [67,66] and the Sartori alge-
bras An,k can be used to categorify the same Uq(gl(1|1))-representations. While higher 
representation theory is often useful for unifying categorifications like these that come 
from different worlds, it has not been developed enough in the case of superalgebras to 
make the path to such a unification clear. New ideas appear necessary for defining cate-
gorified Uq(gl(1|1)) tangle and link invariants from the usual algebraic ingredients (such 
as geometric categorifications and skew Howe duality) and connecting them to HFK. 
Indeed, the elaborate structures invoked by Ozsváth–Szabó to solve this problem (e.g. 
curved A∞ bimodules) may suggest a way forward on the algebraic side, leading to a 
wide range of possible generalizations.

In fact, there are surprising general relationships between bordered Floer homology 
and higher representation theory. Work in preparation [54] of Raphaël Rouquier and the 
second named author will show that in considerable generality, bordered Floer homology 
has close ties to the Uq(gl(1|1)) case of Rouquier’s tensor product operation ⊗ for 
higher representations applied to Khovanov’s categorification U+ of the positive half of 
Uq(gl(1|1)) [34]. This work reinterprets and extends cornered Floer homology [19,18], 
a further extension of bordered Floer homology. The connection with bordered Floer 
homology yields 2-representations of U+ on a very general family of examples, including 
bordered Floer algebras for surfaces of arbitrary genus, together with gluing formulas 
based on ⊗ .

The constructions of [54] simplify considerably when applied via [53] to Ozsváth–
Szabó’s theory [67], and higher morphisms in U+ do not have room to act. On the other 
hand, this particular genus-zero example of a bordered Floer algebra is highly sym-
metric and has an explicit and powerful bimodule theory for tangles. The relationship 
to Sartori’s theory studied in this paper is of particular interest as mentioned above; 
it also provides a window into the structure of Heegaard Floer homology and its rela-
tionship with other areas of mathematics, advancing the general aim of understanding 
4-dimensional gauge theories via categorified quantum invariants.

The first hint that such a relationship might exist came in [49] where the second 
named author related Sartori’s algebra An,1 with Ozsváth–Szabó’s algebra Bl(n, 1); both 
algebras categorify a next-to-extremal weight space of V ⊗n for the Uq(gl(1|1)) action. 
This weight space for gl(1|1) is actually isomorphic to the corresponding weight space of 
the n-th tensor power of the vector representation of sl(2). Sartori’s algebra An,1 for this 
weight space describes Op

0 for p of Levi type (1, n − 1), since the q-presentable quotient 
does nothing here, and correspondingly An,1 is isomorphic to the Khovanov–Seidel quiver 
algebra from [43] (a well-known algebra describing this particular Op

0). It is shown in 
[49] that the Khovanov–Seidel algebra is isomorphic to a quotient of Bl(n, 1).

Our main result generalizes and reframes the quotient description of the Khovanov–
Seidel quiver algebra from [49].
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Theorem 1.1 (cf. Theorem 7.6, Theorem 7.4). For 0 ≤ k ≤ n, Ozsváth–Szabó’s algebra 
Bl(n, k) is a graded flat deformation of Sartori’s algebra An,k.

Explicitly, An,k is isomorphic to the quotient of Bl(n, k) by the ideal generated by 
the elementary symmetric polynomials ei(U1, . . . , Un) for 1 ≤ i ≤ k, where Ui is a 
central element of Bl(n, k) reviewed in Section 2.1. By Remark 6.6, we could include 
ei(U1, . . . , Un) for i > k in this ideal, since these polynomials are already zero in Bl(n, k); 
it follows that An,k is the quotient of Bl(n, k) by all symmetric functions in the Ui

variables. We prove Theorem 1.1 for the Z version of Ozsváth–Szabó’s algebra from [66, 
Section 12] and a Z lift of Sartori’s C-algebra defined here. Flatness of the deformation 
follows from Theorem 7.4, which gives an explicit basis for Bl(n, k) as a free module over 
the polynomial ring Z[ε1, . . . , εk] with εi acting as ei(U1, . . . , Un).

The case k = 1 is the first main theorem of [49], although flatness was not considered. 
For general k, Sartori’s algebras are much more complicated than the Khovanov–Seidel 
algebra, so more intricate arguments are required. By transporting the diagrammat-
ics of Bl(n, k) from [67,52] through this isomorphism, we obtain as a corollary a new 
purely diagrammatic interpretation of Sartori’s algebra with a more natural product 
operation.

The following remarks, written with Heegaard Floer readers in mind, may be helpful 
for those unfamiliar with category O but familiar with Khovanov’s tangle theory involv-
ing the arc algebra Hn [32]. Given known and conjectured spectral sequences relating 
Khovanov and Khovanov–Rozansky homology to HFK [73,17,20], one could try to find 
relationships between Bl(n, k) and Hn. Since Bl(n, k) has 

(
n
k

)
basic idempotents, it is 

natural to replace Hn with the “platform algebras” of [84,16] having Hn as an idempo-
tent truncation. These have 

(
n
k

)
basic idempotents, but they still seem unrelated to the 

idempotents of Bl(n, k).
Representation theory sheds significant light on this question. Idempotents in Bl(n, k)

and the platform algebras both correspond to certain canonical basis elements for a 2n-
dimensional vector space V ⊗n, but the basis elements depend on the quantum group in 
question: the Uq(sl(2)) action gives one canonical basis for V ⊗n while the Uq(gl(1|1))
action gives a different one. When k ∈ {2, . . . , n − 1}, this difference in bases means we 
cannot hope to relate Bl(n, k) with the platform algebras except in a derived sense (when 
k = 1 the bases agree and the platform algebra is Khovanov–Seidel’s algebra).

To make progress, one could ask where the platform algebras come from. Their idem-
potents correspond to indecomposable projectives in parabolic versions Op

0 of category 
O by [84], where p has Levi type (k, n − k). Similarly, Sartori’s idempotents correspond 
to indecomposable projectives in related categories Op,q-pres

0 , where the Levi types are as 
described above; in this case they categorify Uq(gl(1|1)) basis elements, not Uq(sl(2)) ba-
sis elements. A reasonable update of the question about Bl(n, k) and Hn or the platform 
algebras is to ask whether Bl(n, k) is related to Sartori’s algebras. Theorem 1.1 answers 
this question affirmatively by giving a close relationship with immediate applications for 
the structure of Ozsváth–Szabó’s theory [67].
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1.4. Applications

Theorem 1.1 establishes a bridge between modern constructions in Heegaard Floer 
homology and the wider world of mathematics. For example, Theorem 1.1 is, to the 
authors’ knowledge, the first result relating HFK with category O, outside the k = 1
case proved in [49]. We note that other bordered Floer algebras have been related to 
category O in [3], including to the Khovanov–Seidel quiver algebra; these bordered Floer 
algebras appear to be more related to ĤF of branched double covers than to HFK, 
although interesting connections between the two may exist. In general, work of Auroux 
suggests a path from bordered Floer algebras to geometry via Fukaya categories of 
symmetric products; we discuss this connection further in Section 1.4.5 below. First we 
discuss some ramifications for Bl(n, k) of the conceptual framework surrounding An,k.

1.4.1. Bilinear forms on V ⊗n

In general, given a graded categorification of a C(q)-vector space V , one gets a 
sesquilinear pairing on V from graded dimensions of Ext spaces in the categorification, 
which can be made bilinear using algebra symmetries if they exist. In particular, the 
results of [50] imply that projective modules over Ozsváth–Szabó’s algebra Bl(n, k) give 
a bilinear pairing on V ⊗n where V is the vector representation of Uq(gl(1|1)), but this 
pairing is not discussed in [50].

On the other hand, Sartori [78] studies the bilinear form arising from his categorifi-
cation in some detail and shows that this form has a scalar matrix in the standard basis 
of each weight space of V ⊗n. His results suggest analogous conjectures for the Ozsváth–
Szabó bilinear form, which we verify; this form also turns out to be scalar in the standard 
basis of each weight space of V ⊗n, with a different scalar than Sartori’s.

Using the simple relationship between these forms, we revisit the identification of 
indecomposable projectives over Bl(n, k) with basis elements of V ⊗n given in [50]. The 
bilinear forms suggest a change of conventions under which indecomposable projectives 
correspond exactly to Sartori’s canonical basis elements of V ⊗n, rather than the modified 
basis elements introduced in [50].

Theorem 1.2 (cf. Theorem 8.12). Under these conventions, the projection functors

pr: Bk

l (n, k)−proj → An,k−proj

between categories of finitely generated projective graded modules induce isomorphisms 
on Grothendieck groups K0 intertwining the identification of indecomposable projectives 
with canonical basis elements on each side.

1.4.2. Categorified action of Uq(gl(1|1))
The quantum group generator F acting on V ⊗n has a dual E′ with respect to Sartori’s 

bilinear form. This dual is related to the usual generator E by a weight dependent 
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scalar in C(q); as a quantum group element, E′ only makes sense in the idempotented, 
or modified, form U̇q(gl(1|1)) of the quantum group. Sartori categorifies the action of 
E′, F ∈ U̇q(gl(1|1)) via certain Zuckerman functors E ′ and F acting on Op,q-pres

0 . This 
action can be interpreted on the algebra level as tensoring with bimodules E′ = (E′)S

and F = FS where E′ is the left dual of F as a bimodule.
The close relationship between Ozsváth–Szabó’s and Sartori’s algebras suggests anal-

ogous definitions of bimodules E′′ = (E′′)OSz and F = FOSz over Ozsváth–Szabó’s 
algebras.

Theorem 1.3 (cf. Theorem 9.2, Theorem 9.5). The bimodules E′′ and F over Ozsváth–
Szabó’s algebras square to zero and categorify the action of E′′ and F on V ⊗n, where 
E′′ is the dual of F with respect to Ozsváth–Szabó’s bilinear form.

This result fills a gap in the discussion of [50]. The element E′′ = (q−1 − q)EK makes 
sense directly in Uq(gl(1|1)), unlike E′ which can only be defined in the idempotented 
form of Uq(gl(1|1)). We note that the relations satisfied by E′′ and F agree with the 
algebra UT studied by Tian [88] upon setting T = K2.

Theorem 1.4 (cf. Theorem 9.3, Theorem 9.7). The inflation functors

infl: An,k−fmod → Bk

l (n, k)−fmod

between categories of finite dimensional graded modules intertwine (E ′′)OSz and FOSz

with (E ′)S and FS.

The constructions of [54] also yield bimodules that square to zero, defined over a 
bordered strands algebra known by [53] to be quasi-isomorphic to Bl(n, k). The bimodules 
defined here are compatible with the ones from [54] under this quasi-isomorphism.

1.4.3. Modules over Ozsváth–Szabó’s algebras
One important feature of Sartori’s algebra An,k is that it is graded cellular and prop-

erly stratified (for more details, see [79]). The cellular structure gives us a family of 
modules over An,k (cell modules or standard modules) whose classes in an appropri-
ate Grothendieck group correspond to standard tensor product basis elements of V ⊗n. 
Thus, from An,k, Sartori naturally sees both the standard tensor-product basis and the 
canonical basis for V ⊗n.

We can use our quotient map to inflate Sartori’s modules over An,k into modules over 
Bl(n, k) (in other words, an element of Bl(n, k) acts after applying the quotient map). 
Our understanding of the bilinear forms on V ⊗n and how they relate allows us to identify 
these inflated modules with certain basis elements of V ⊗n.
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Theorem 1.5 (cf. Theorem 8.33). The inflations of Sartori’s modules categorify the bases 
of V ⊗n listed in Theorem 8.33, including a multiple of the standard basis as well as the 
Ozsváth–Szabó dual standard basis with no multiple.

To see the standard basis of V ⊗n via modules over Bl(n, k), rather than a weight 
dependent multiple of this basis, it would be desirable to give Bl(n, k) the structure of a 
(graded) affine cellular algebra.

1.4.4. Bimodules for intertwining maps
In [43], Khovanov–Seidel define dg bimodules categorifying maps for braids acting 

on the weight space of V ⊗n categorified by their quiver algebra An,1. It is shown in 
[49] that these bimodules are A∞ homotopy equivalent to Ozsváth–Szabó’s bimodules 
over Bl(n, 1) after applying induction and restriction. Generalizing to k > 1, Sartori has 
a categorical Hecke algebra action, including functors categorifying Uq(gl(1|1))-linear 
maps for singular crossings or “thick edges.” Ozsváth–Szabó have bimodules for tangles 
with arbitrary orientations, but they do not define bimodules for thick edges. Alishahi–
Dowlin’s bimodules from [1] provide one candidate generalization (see also [2]); more 
complicated A∞ bimodules are defined in [51], and both constructions may be relevant 
when trying to define both upward- and downward-pointing thick-edge bimodules. It 
would be desirable to relate any of these bimodules to Sartori’s categorical Hecke action.

1.4.5. Fukaya categories
Sartori’s theory fits into a rich framework of algebraic and geometric constructions, 

and Theorem 1.1 suggests natural deformations of these structures. One can use The-
orem 1.1 to investigate relationships between Heegaard Floer homology and deformed 
category O, Schubert varieties, Soergel modules, and other entities. While these objects 
might seem far afield from the holomorphic curve counts motivating the definition of 
Bl(n, k), general conjectures suggest that geometric categorifications should have Fukaya 
interpretations. For example, Op

0 is equivalent to a category of perverse sheaves on a par-
tial flag variety Xp [7,28], and thereby to a subcategory of a Fukaya category of T ∗(Xp)
[61,59].

Going beyond cotangent bundles, the symplectic Khovanov homology program [82,
48,4,5] formulates standard algebraic categorifications like Khovanov homology in terms 
of Fukaya categories of certain symplectic manifolds. In fact, Khovanov–Seidel’s work in 
[43] can be seen as a progenitor of this program; they interpret their quiver algebra as an 
Ext-algebra of Lagrangians in the Fukaya category of a Milnor fiber. Similar results have 
been obtained for Khovanov’s arc algebra Hn by Abouzaid–Smith [4,5], allowing them 
to prove that the construction of [82] agrees with Khovanov homology. The symplectic 
interpretation of the Khovanov–Seidel algebra and Hn has recently been extended to the 
above-mentioned platform algebras by Mak–Smith [57].

By the results of this paper, Ozsváth–Szabó’s algebras Bl(n, k) for general k are flat de-
formations of algebras describing Op,q-pres

0 for certain p, q. It is reasonable to suspect that 
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Bl(n, k) describes an Op,q-pres
0 -analogue of Soergel’s deformed category Ô [81] (related to 

equivariant rather than ordinary cohomology). When k = 1, so there is no q-presentable 
quotient, one can further speculate that Bl(n, k) is an Ext-algebra of Lagrangians in a 
deformed or equivariant Fukaya category of Khovanov–Seidel’s Milnor fiber. For k > 1
one could hope for a similar story, although it is less clear what symplectic manifolds 
should be involved.

On the other hand, bordered Floer algebras are known by Auroux’s work [6] to be 
related to Fukaya categories of symmetric products. Using the strands interpretation of 
Bl(n, k) given in [53] (and assuming that Auroux’s results extend to this setting), Bl(n, k)
should be an Ext-algebra of certain noncompact Lagrangians in a wrapped Fukaya cat-
egory of the k-th symmetric power of an n-punctured disk. When k = 1, it appears 
that we have two Fukaya interpretations of Bl(n, k); one is presumably equivariant and 
applied to a Milnor fiber, while the other is non-equivariant and applied to a punctured 
disk. It would be desirable to have a Fukaya-theoretical explanation of this apparent 
coincidence, and the quotient results of this paper; the question is especially immedi-
ate when k = 1 but generalized explanations for arbitrary k do not seem implausible. 
Viewing the Milnor fiber as the total space of a Lefschetz fibration following Khovanov–
Seidel, the complement of the singular fibers has a free C∗ action whose quotient is the 
n-punctured plane. Roughly, the above apparent coincidence for k = 1 seems to suggest 
that a suitably C∗-equivariant version of the wrapped Fukaya category of this comple-
ment should be related to an analogous category for the full Milnor fiber; if so, it would 
be informative to understand the relationship geometrically.
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2. Ozsváth–Szabó’s algebras

In [67], Ozsváth–Szabó define an I-state to be a subset x ⊂ {0, . . . , n}; similarly, we 
call a subset x ⊂ {0, . . . , n − 1} a left I-state. We write V (n, k) for the set of I-states 
with |x| = k and Vl(n, k) for the subset of left I-states with |x| = k. For x ∈ V (n, k), 
write x = {x1, . . . , xk} with x1 < · · · < xk.

Convention 2.1. Below we will consider quivers whose vertices are labeled by certain 

I-states or left I-states. If x a−→ y b−→ z are arrows in such a quiver, we will write their 
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product in the path algebra as ab. At times it is also useful to view a and b as mor-
phisms in a category whose objects correspond to the quiver vertices. When taking this 
perspective, we will view a as a morphism from y to x and b as a morphism from z to 
y. The composition ab, without order reversal, also makes sense in the category and is 
interpreted as x a←− y b←− z.

2.1. Big-step quiver description

We begin by giving a “big-step” quiver description of Ozsváth–Szabó’s algebras, fol-
lowing [67] (although we work over Z as in [66, Section 12]).

Definition 2.2. For n ≥ 0, we define the following elements of Zn
≥0 or 

(1
2Z
)n
≥0 associated 

to I-states; in each item below, i ranges from 1 to n.

• If x is an I-state, define vx ∈ Zn
≥0 by vx

i = |x ∩ {i, i + 1, . . . , n}|.
• If x and y are two I-states, define wx,y ∈

( 1
2Z
)n
≥0 by wx,y

i = 1
2 |vx

i −vy
i | for 1 ≤ i ≤ n.

• If x, y, and z are three I-states, define gx,y,z ∈ Zn
≥0 by gx,y,z

i = wy,z
i − wx,z

i + wx,y
i .

The triangle inequality implies that gx,y,z
i ≥ 0, and parity considerations imply that 

gx,y,z
i is in Z rather than just 1

2Z.

Definition 2.3. For n ≥ 0 and 0 ≤ k ≤ n, the Z[U1, . . . , Un]-algebra B0(n, k) is the path 
algebra over Z[U1, . . . , Un] of the quiver whose vertices are I-states with k elements, with 
a unique arrow fx,y from any I-state x to any I-state y, modulo the relations

fx,yfy,z =
n∏

i=1
U

gx,y,z
i

i fx,z.

For x ∈ V (n, k), let Ix = fx,x. The defining relations imply that fx,xfx,y = fx,y =
fx,yfy,y for all x, y; it follows that the elements Ix for I-states x are primitive orthogonal 
idempotents that sum to 1 and that fx,y = Ixfx,yIy.

Next we take a quotient of B0(n, k). For 1 ≤ i ≤ n, define elements Ri and Li of 
B0(n, k) by

Ri =
∑

x :x∩{i−1,i}={i−1}
fx,x\{i−1}∪{i}

and

Li =
∑

x :x∩{i−1,i}={i}
fx,x\{i}∪{i−1}.

Definition 2.4. The Z[U1, . . . , Un]-algebra B(n, k) is the quotient of B0(n, k) by the ideal 
generated by the following elements for 1 ≤ i ≤ n:
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(1) Ri−1Ri and LiLi−1,
(2) UiIx if x is an I-state with x ∩ {i − 1, i} = ∅.

Primitive idempotents Ix of B(n, k) correspond to I-states x. The Z[U1, . . . , Un]-algebra 
Bl(n, k) is defined to be

Bl(n, k) :=
( ∑

x :n/∈x

Ix

)
· B(n, k) ·

( ∑
x :n/∈x

Ix

)
;

equivalently, the sums are over x ∈ Vl(n, k).

Like B0(n, k) and B(n, k), Bl(n, k) is a Z[U1, . . . , Un]-algebra, so we have central ele-
ments

Ui =
∑

x∈Vl(n,k)

UiIx

of Bl(n, k) for 1 ≤ i ≤ n, analogous to the “global” elements Ri and Li above.

2.2. Small-step quiver description

The following quiver description was shown to be equivalent to Definition 2.4 in [52, 
Section 4.4]. The results of [52] are formulated over F2, but they can be lifted to Z as 
in [66, Section 12]. An analogous statement holds for B(n, k), but we will focus on the 
algebra Bl(n, k) most closely related to Sartori’s algebras.

Proposition 2.5 (Proposition 4.19 of [52]). For n ≥ 0 and 0 ≤ k ≤ n, the algebra Bl(n, k)
is isomorphic as a Z[U1, . . . , Un]-algebra to the path algebra over Z of the quiver whose 
vertices are left I-states x with k elements, whose arrows are given as follows:

• for vertices x, y differing in only one element, i.e. such that x = z ∪ {i − 1} and 
y = z ∪ {i} for some 1 ≤ i ≤ n − 1 and some z ∈ Vl(n, k − 1) not containing i − 1
or i, an arrow (called an Ri arrow) from x to y and an arrow (called an Li arrow) 
from y to x

• for each vertex x and each i between 1 and n, an arrow from x to itself (called a Ui

arrow)

and whose relations we now describe. Any linear combination of paths with the same 
source and target in the above quiver has an associated (noncommutative) polynomial in 
the variables Ri, Li, and Ui, and we include such a linear combination as a generator 
of the relation ideal if its polynomial is:
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RiUj − UjRi, LiUj − UjLi, or UiUj − UjUi, (2.1)

RiLi − Ui or LiRi − Ui, (2.2)

RiRj −RjRi, LiLj − LjLi, or RiLj − LjRi for |i− j| > 1, (2.3)

Ri−1Ri or LiLi−1, (2.4)

Ui if the source and target are a left I-state x with x ∩ {i− 1, i} = ∅. (2.5)

Note that from this perspective, the first set of relations gives Bl(n, k) its algebra structure 
over Z[U1, . . . , Un].

The isomorphism of Proposition 2.5 makes the following identifications:

• Ri arrow starting at x ↔ fx,x\{i−1}∪{i}
• Li arrow starting at x ↔ fx,x\{i}∪{i−1}
• Ui loop at x ↔ Uifx,x
• Trivial path (no edges) at x ↔ the idempotent Ix = fx,x.

For any given generator fx,y of Bl(n, k), an explicit path representing fx,y in the Ri, Li, 
and Ui arrows of the quiver is constructed in [52, Definition 2.29]. To see that relations 
of the form (2.2) hold in Bl(n, k), for example, it suffices to note that if x = z ∪ {i − 1}
and y = z ∪ {i} for some z ∈ Vl(n, k− 1) not containing i or i − 1, then gx,y,x

i = 1 while 
gx,y,x
j = 0 for j �= i, so fx,yfy,x = Uifx,x. Similarly, for relations of the form (2.3), both 

quadratic terms of the relation are of the form fx,yfy,z = fx,z with gx,y,z
i = 0 for all i, 

so their difference vanishes.

2.3. Gradings

The algebra Bl(n, k) has a multi-grading by Z2n, but this grading is not preserved by 
the quotient map to Sartori’s algebra we will define in Section 4; Sartori’s algebra has only 
a Z grading. Correspondingly, we will use Ozsváth–Szabó’s single “Alexander grading” 
by 1

2Z, corresponding to the power of t in the Alexander polynomial (for a closed knot 
these powers are always integers, but fractional powers may appear when considering 
tangles). When viewing the Alexander polynomial as a quantum invariant depending on 
a parameter q, the variables are related by t = q2. Thus, in relating Ozsváth–Szabó’s 
algebras to Sartori’s, it will be useful to double the Alexander gradings.

Definition 2.6. Let degt be defined by degt(Ri) = degt(Li) = 1/2 and degt(Ui) = 1; for 
x, y ∈ Vl(n, k), we have degt(fx,y) =

∑n
i=1 w

x,y
i . Let degq be obtained by doubling degt; 

explicitly, degq(Ri) = degq(Li) = 1 and degq(Ui) = 2 while degq(fx,y) = 2 
∑n

i=1 w
x,y
i .

Remark 2.7. In the conventions of [67], this definition of the single Alexander grading 
from the refined grading (together with the absence of Ci variables, a homological grad-
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Fig. 1. Visualizing I-states, fully used coordinates, and crossed lines for n = 8, k = 5, x = {0, 2, 5, 6, 7}, and 
y = {1, 2, 4, 5, 7}.

ing, and a differential) is meant for an algebra associated to n endpoints of a tangle, 
all pointing downwards. When relating Ozsváth–Szabó’s theory with constructions in 
representation theory, various changes of convention are often necessary; see e.g. Sec-
tion 8.12.

2.4. Basis for the algebra

Ozsváth–Szabó’s proof of [67, Proposition 3.7] works over Z and implies that for 
any x, y ∈ V (n, k), IxB(n, k)Iy is a graded free abelian group with a basis we review 
below. In particular, we get a basis for IxBl(n, k)Iy when x and y are left I-states in 
Vl(n, k).

Definition 2.8. If x, y ∈ V (n, k) with |xi − yi| > 1 for some i, then x and y are said to 
be too far.

If x and y are too far then IxB(n, k)Iy = 0. Otherwise, we consider the following 
further definitions.

Definition 2.9. Let x and y be I-states with k elements.

• If 0 ≤ i ≤ n and i ∈ x∩ y, we say that i represents a “fully used region.” Otherwise, 
i represents a “not fully used region.”

• If 1 ≤ j ≤ n and vx
j �= vy

j , we say that j represents a “crossed line.” Otherwise, j
represents an “uncrossed line.”

Remark 2.10. One can visualize the above notions as follows: depict an I-state x by 
drawing n parallel lines, with n +1 regions outside the lines labeled 0, . . . , n, and placing 
a dot in region i if and only if i ∈ x. If x and y are two I-states with k elements, draw 
the dot pattern for x next to that of y, and connect the dots of x to the dots of y in 
the unique order-preserving way. A region is fully used if it has a dot in both x and 
y; otherwise it is not fully used. One of the original parallel lines is crossed if a line 
connecting a dot of x to a dot of y crosses it; otherwise it is uncrossed. See Fig. 1 for an 
illustration.
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Definition 2.11. Given I-states x, y ∈ V (n, k) that are not too far, an interval of coor-
dinates G = [j + 1, j + l] = {j + 1, j + 2, . . . , j + l} ⊂ [1, n] for some l ≥ 1 is called a 
“generating interval” for x and y if:

• regions j and j + l are not fully used,
• regions j + 1, . . . , j + l − 1 are fully used, and
• the lines j + 1, . . . , j + l are all uncrossed.

If G is a generating interval for x and y, we define a monomial pG := Uj+1 · · ·Uj+l ∈
Z[U1, . . . , Un].

Proposition 2.12 (Proposition 3.7 of [67], Z version). Let x, y ∈ V (n, k) be not too far. 
We have an isomorphism

IxB(n, k)Iy ∼= Z[U1, . . . , Un]
(pG : G generating interval)

of Z[U1, . . . , Un]-modules. When x and y are left I-states, the same formula describes 
IxBl(n, k)Iy.

In the big-step quiver description, the element 1 of the above quotient of Z[U1, . . . , Un]
corresponds to fx,y. In the small-step quiver description, a recursive definition of a 
path in the above quiver giving rise to the element of IxBl(n, k)Iy corresponding to 
1 ∈ Z[U1, . . . , Un] is given in [52, Definition 2.28].

Corollary 2.13. Let x, y ∈ V (n, k) that are not far. The graded abelian group IxB(n, k)Iy
is free with a basis given by monomials in U1, . . . , Un that are not divisible by the mono-
mial pG of any generating interval G for x and y.

2.5. Characterization of generating intervals

Definition 2.14. Given an I-state x, define its hole sequence xc to be {0, 1, . . . , n} \ x. 
If |x| = k, then |xc| = n − k + 1 and we write xc = {xc

1, x
c
2, . . . , x

c
n−k, x

c
n−k+1} with 

xc
1 < xc

2 < · · · < xc
n−k+1. For all x ∈ Vl(n, k) we have xc

n−k+1 = n.

In terms of Remark 2.10, say x has a hole in a region if it does not have a dot there; 
then xc

i is the region containing the i-th hole of x (compare with xi which is the region 
containing the i-th dot of x). Notice that j is not fully used if and only if j ∈ xc ∪ yc. If 
xc
i > yci , set j = xc

i ; then vx
j > vy

j .

Lemma 2.15. The I-states x, y ∈ V (n, k) are too far if and only if xc
i ≥ yci+1 or yci ≥ xc

i+1
for some 1 ≤ i ≤ n − k.
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Proof. Set j = xc
i and suppose that xc

i ≥ yci+1. Recall that j = xc
i means that j is the 

position of the ith hole in x, so that of the j possible entries in {0, 1, . . . , j−1} there are 
(i −1) missing entries in x, leaving j−(i −1) filled. Hence xj−i+1 < j. But j = xc

i ≥ yci+1
means that y has at least i holes in the set {0, . . . , j − 1}, implying that yj−i ≥ j. We 
then have

xj−i < xj−i+1 < j ≤ yj−i, i.e. xj−i ≤ xj−i+1 − 1 ≤ j − 2 ≤ yj−i − 2,

so that |xj−i − yj−i| > 1 and x and y are too far. A similar argument shows that if 
yci ≥ xc

i+1 then x and y are too far.
Now suppose that x and y are too far, so that |xi − yi| > 1 for some index i. First, 

assume that yi ≥ xi + 2 and that i is the largest index satisfying this condition. Since 
xi+1 ≥ xi +2 (otherwise yi+1 ≥ yi +1 ≥ xi +3 = xi+1 +2, contradicting the maximality 
of i), we have xi + 1 /∈ x. It follows that xi + 1 = xc

j for some 1 ≤ j ≤ n − k. Since 
yi > xi + 1, the set y∩ {0, . . . , xi + 1} has size at most i − 1, whereas x∩ {0, . . . , xi + 1}
has size i. We see that y has at least one more hole in {0, . . . , xi + 1} = {0, . . . , xc

j} than 
does x, so ycj+1 ≤ xc

j .
If yi ≤ xi + 1 for all i but x and y are too far, then xi ≥ yi + 2 for some minimal i. 

In this case, we can show that xc
j+1 ≤ ycj for some j with a similar argument. �

The following gives an alternative characterization of the generating intervals from 
Definition 2.11.

Lemma 2.16. Suppose x, y ∈ V (n, k) are not too far. An interval [j + 1, j + l] is a 
generating interval for x and y if and only if j = max (xc

i , y
c
i ) and j+l = min

(
xc
i+1, y

c
i+1
)

for some index 1 ≤ i ≤ n − k.

Proof. First, assume that [j + 1, j + l] is a generating interval; we will show that it has 
the described form. We have j, j+ l ∈ xc∪yc and j+1, . . . , j+ l−1 ∈ x∩y. Lemma 2.15
implies that xc

i < yci+1 and yci < xc
i+1 for any 1 ≤ i ≤ n − k.

We claim that j = max (xc
i , y

c
i ) for some i. Indeed, we have j = xc

i or j = yci for some 
i because j is not fully used; assume to derive a contradiction that j = xc

i and xc
i < yci

(the case when j = yci and yci < xc
i is analogous). Since yci < min

(
xc
i+1, y

c
i+1
)
, the first 

non-fully-used coordinate to the right of j is yci , so j+l = yci . Since x and y have differing 
number of holes/dots to the left of line j + l (and thus differing numbers of holes/dots 
to its right), we have vx

j+l �= vy
j+l. Therefore, line j + l is crossed, a contradiction.

Now, since j = max (xc
i , y

c
i ), the first non-fully-used coordinate to the right of j is 

min
(
xc
i+1, y

c
i+1
)
, so j+ l is also equal to this quantity, and we have shown any generating 

interval is of the form described in the statement.
Conversely, for 1 ≤ i ≤ n − k, let j = max (xc

i , y
c
i ) and j + l = min

(
xc
i+1, y

c
i+1
)
. We 

claim that [j + 1, j + l] is a generating interval. Indeed, the coordinates j and j + l are 
non-fully-used because at least one of {x, y} has a hole in coordinates j and j + l, while 
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all coordinates between them are fully used. The I-states x and y have the same number 
of holes/dots to the left of line j + 1 and to the right of line j + l, so all lines between j
and j + l are uncrossed. �
2.6. Anti-automorphism

In [67, Section 3.6], Ozsváth–Szabó define an anti-automorphism of B(n, k) that re-
stricts to an anti-automorphism of Bl(n, k).

Definition 2.17. The anti-automorphism ψOSz : Bl(n, k) → Bl(n, k)opp sends Ri �→ Li, 
Li �→ Ri, and Ui �→ Ui in the small-step quiver description of Bl(n, k).

Remark 2.18. In [67], ψOSz is called o. Ozsváth–Szabó also describe another symmetry R
of B(n, k); restricted to Bl(n, k), it gives an isomorphism from Bl(n, k) to Br(n, k), where 
Br(n, k) is defined by summing over x with 0 /∈ x rather than n /∈ x in the definition of 
Bl(n, k). The symmetry R is not present in the Sartori algebras we review below.

3. Sartori’s algebras

3.1. Polynomial rings and bases for quotient rings

Let R = Z[x1, . . . , xn] and set deg(xi) = 2 so that R is a graded ring. Write RC

for R ⊗ C = C[x1, . . . , xn]. Denote by Sn the symmetric group, RSn the symmetric 
polynomials in R, and RSn

+ the symmetric polynomials of strictly positive degree. The 
coinvariant algebra R/RSn

+ is a graded free abelian group with both a monomial basis 
{x� = x�1

1 . . . x�n
n | 0 ≤ �i ≤ n − i} and a Schubert polynomial basis {Sw | w ∈ Sn}

indexed by permutations w ∈ Sn. It is possible to enumerate the monomial basis by 
permutations by defining ci = #{j < w−1(i) | w(j) > i} for w ∈ Sn and defining

S′
w(x1, . . . , xn) = xc1

1 xc2
2 . . . x

cn−1
n−1 . (3.1)

The monomial S′
w is the leading term of the Schubert polynomial Sw in the lexicographic 

order generated by xn > xn−1 > · · · > x1.
Define the elementary and complete symmetric polynomials by

ej(x1, . . . , xn) =
∑

1≤i1<···<ij≤n

xi1 . . . xij , hj(x1, . . . , xn) =
∑

1≤i1≤···≤ij≤n

xi1 . . . xij ,

for j ≥ 1. Let b = (b1, . . . , bn) ∈ Zn
≥1 be a decreasing sequence that decreases by at most 

1, i.e. we have bi ≥ bi+1 ≥ bi − 1 for all i. Given b, define a homogeneous ideal Ib ⊂ R

by

Ib := 〈hb1(x1), hb2(x1, x2), . . . , hbn(x1, . . . , xn)〉 . (3.2)
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Set Rb = R/Ib and RC
b = Rb ⊗ C. By a Z analogue of [79, Proposition 2.3], the 

quotient ring Rb is a graded free abelian group of rank b1b2 · · · bn, and a basis is given 
by {xj = xj1

1 . . . xjn
n | 0 ≤ ji < bi}.

3.2. Sequences and permutations

Fix 0 ≤ k ≤ n and consider the set D = Dn,k of sequences μ = μ1 . . . μn where each 
μi ∈ {∧, ∨} and there are k ∧’s and (n −k) ∨’s. Given a ∧∨ sequence μ ∈ D, number the 
positions from left to right, the ∧ terms from 1 to k, and the ∨ terms from 1 to n − k. 
Let ∧μ

i be the position of the ith ∧ and ∨μ
j be the position of the jth ∨ in μ. Define 

the b-sequence associated to μ ∈ D to be the sequence bμ = (bμ1 , b
μ
2 , . . . , b

μ
n) with bμi − 1

equal to the number of ∧’s strictly to the right of position i.
By mapping the sequence ∧ · · ·∧∨ · · · ∨ to the identity element e ∈ Sn, each element of 

Dn,k corresponds to a minimal-length coset representative for (Sk×Sn−k)\Sn by letting 
Sn act by permutation of positions. In particular, given μ ∈ Dn,k, the corresponding 
minimal-length coset representative w is specified by w−1(j) = ∧μ

j for 1 ≤ j ≤ k and 
w−1(j + k) = ∨μ

j for 1 ≤ j ≤ n − k. Conversely, a minimal-length representative w ∈
(Sk × Sn−k)\Sn maps to the sequence μ ∈ Dn,k with ∧μ

i = w−1(i) for 1 ≤ i ≤ k and 
∨μ
j = w−1(j+k) for 1 ≤ j ≤ n −k. We will identify a ∧∨ sequence with its corresponding 

permutation.

Remark 3.1. There is a bijection between Dn,k and Vl(n, k) defined by sending a left 
I-state x = {x1, . . . , xk} to the ∧∨ sequence with a ∧ in position xi + 1. Given μ ∈ D, 
we define a left I-state xμ whose ith term xi is ∧μ

i − 1. Sartori’s sequence bμ is obtained 
from Ozsváth–Szabó’s weight vxμ by adding 1 to each coordinate. The hole sequence 
(xμ)c associated to the I-state xμ is expressed in the language of ∧∨ sequences by 
(xμ)ci = ∨μ

i − 1.

Definition 3.2. We say that ∧∨ sequences μ, λ ∈ Dn,k are too far if for some index 
1 ≤ j ≤ n − k − 1 we have ∨μ

j ≥ ∨λ
j+1 or ∨λ

j ≥ ∨μ
j+1.

Lemma 2.15 above shows that the sequences λ and μ are too far if and only if the 
corresponding I-states xλ and xμ are too far in the sense of Definition 2.8; note that for 
x, y ∈ Vl(n, k) it is impossible to have xc

n−k ≥ ycn−k+1 = n or ycn−k ≥ xc
n−k+1 = n.

3.3. Soergel modules and their hom spaces

Soergel modules for the symmetric group Sn are modules Cw over the polynomial 
ring RC = C[x1, . . . , xn] indexed by permutations w ∈ Sn. Set B = RC/(RC,+)Sn and 
for a simple transposition si ∈ Sn let Bsi denote the invariants of B under si. Given 
a reduced expression w = sir . . . si1 , the module Cw is defined as the indecomposable 
direct summand of the module
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B ⊗Bsir B ⊗ · · · ⊗B ⊗B
si1 B ⊗B C

containing 1 ⊗· · ·⊗1. Soergel showed [80] that Cw is the unique indecomposable summand 
of the above tensor-product B-module that is not isomorphic to any Cw′ for w′ ≺ w in 
the Bruhat order on Sn. Up to isomorphism, Cw does not depend on the choice of reduced 
expression for w. This holds more generally for R = Z[x1, . . . , xn]; see [22, Theorem 1.1 
(3)].

Identifying summands giving rise to Soergel modules is in general a difficult task; 
even the dimensions of the modules are computed using Kazhdan-Lusztig polynomials. 
However, things simplify dramatically when the Soergel module is cyclic. Under the 
identification of B with the cohomology of the full flag variety, the condition of a So-
ergel module to be cyclic is equivalent to the rational smoothness of the corresponding 
Schubert variety in the full flag variety [37, Appendix].

Let wk denote the longest element of Sk considered as an element of Sn via the 
inclusion Sk ×S1 × · · · ×S1 → Sn. For μ ∈ Dn,k identified with a coset representative of 
(Sk × Sn−k)\Sn as above, we write wkμ for the product in Sn.

Proposition 3.3. We collect the relevant results from [79] on Soergel modules and the hom 
spaces between them.

(i) For every μ ∈ Dn,k, the module Cwkμ is cyclic ([79, Proposition 4.5]).
(ii) By [79, Theorem 4.10] there is an isomorphism Cwkμ

∼= RC
bμ so that Cwkμ has a 

basis given by

{xd1
1 xd2

2 . . . x
dn−1
n−1 | 0 ≤ di < bμi }.

(iii) The dimension of Cwkμ = RC
bμ is bμ1 · · · bμn.

(iv) Given λ, μ ∈ Dn,k, set di = max(bμi − bλi , 0). By [79, Corollary 4.11], a basis for 
the vector space HomRC

(Cwkλ, Cwkμ) = HomRC
(RC

bλ , RC
bμ) is given by

{1 �→ xj1
1 . . . x

jn−1
n−1 | di ≤ ji < bμi }.

3.4. Illicit morphisms

Let Wk ⊂ Sn be the subgroup generated by s1, . . . , sk−1, and W⊥
k the subgroup 

generated by sk, sk+1, . . . , sn−1. Let D′ be the set of minimal-length coset representatives 
for W⊥

k \ Sn, so that for any μ ∈ Dn,k, we have μ, wkμ ∈ D′ where wk is defined before 
Proposition 3.3.
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Definition 3.4. For λ, μ ∈ Dn,k we say that a morphism Cwkλ → Cwkμ is illicit if it is a 
sum2 of morphisms that each factor through some Cy, where y is a longest coset represen-
tative for Wk \ Sn with y /∈ D′. Let Wλ,μ be the RC-submodule of HomRC

(Cwkλ, Cwkμ)
consisting of illicit morphisms.

Note that the elements wkμ for μ ∈ Dn,k are those permutations which are both 
maximum-length coset representatives for Wk\Sn and minimum-length coset represen-
tatives for W⊥

k \Sn. By contrast, the elements y appearing in the above definition are 
those permutations which are maximum-length coset representatives for Wk\Sn but not 
minimum-length coset representatives for W⊥

k \Sn. The definition of illicit is chosen to 
match with morphism spaces between projective modules in parabolic category O, as 
explained in [79]; the quotient by illicit morphisms is a feature of Soergel module ap-
proaches to Op

0 for general parabolic p, not specific to the categories Op,qpres
0 under 

consideration.
Sartori’s algebras An,k are built from maps between cyclic Soergel modules modulo 

illicit morphisms. For our purposes, it suffices to know a few simple illicit morphisms; then 
the fact that composition with an illicit morphism is illicit (a factorization of a morphism 
through Cy gives such a factorization through any composite with the morphism and 
the same holds for sums) will enable us to completely characterize illicit morphisms in 
Corollary 5.11 below. The following lemma collects Lemmas 4.14-4.16 from [79].

Lemma 3.5 ([79]).

(i) Suppose that μ, λ ∈ Dn,k are identical except in entries (j, j + 1, j + 2)
where (μj , μj+1, μj+2) = ∧ ∨ ∨ and (λj , λj+1, λj+2) = ∨ ∨ ∧. Then Wμ,λ =
HomRC

(RC
bμ , RC

bλ) and Wλ,μ = HomRC
(RC

bλ , RC
bμ).

(ii) For λ ∈ Dn,k with ∨λ
j+1 = ∨λ

j + 1, the endomorphism (1 �→ x∨λ
j
) of RC

bλ is illicit.
(iii) For λ ∈ Dn,k, the morphisms

1 �→ x∨λ
j
x∨λ

j +1 . . . x∨λ
j+1−1

are illicit endomorphisms of RC
bλ for each 1 ≤ j ≤ n − k − 1.

3.5. Definition of Sartori’s algebra

Definition 3.6. Define the Sartori algebra A to be the graded C-algebra

A = An,k =
⊕

λ,μ∈Dn,k

HomRC
(RC

bλ , R
C
bμ)/Wλ,μ. (3.3)

2 Sartori [79, Section 4.3] does not mention such sums explicitly when defining illicit morphisms, but he 
always treats the space of illicit morphisms as being closed under such sums.
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Let 1λ denote the identity map on RC
bλ . The collection {1λ | λ ∈ Dn,k} form a 

system of mutually orthogonal idempotents on the algebra A. We can view A as a 
C[x1, . . . , xn]-algebra by sending xi to 

∑
λ∈Dn,k

xi1λ. In the subsequent sections we will 
review Sartori’s diagrammatic description of the graded vector spaces 1μA1λ and define 
a version of Sartori’s algebra over Z.

3.5.1. Connection to BGG category O
Let Π = {α1, . . . , αn−1} denote the set of simple roots for gln, so that αi = εi − εi+1, 

with εi = (0, . . . , 0, 1, 0 . . . , 0) the standard basis vectors.
Define ZOp,q−pres to be the q-presentable quotient of the p-parabolic subcategory of 

graded category O(gln), where q, p are the standard parabolic subalgebras of gln with 
sets of simple roots Πq = {α1, . . . , αk−1} and Πp = {αk, . . . , αm−1} (so p, q have Levi 
types (1, . . . , 1, n −k) and (k, 1, . . . , 1) as in the introduction). For the relevant definitions 
see [78, Section 6] and the references therein.

The main result of [79, Theorem 6.7] shows that the graded algebra An,k is isomorphic 
to the endomorphism algebra of a minimal projective generator of the block ZOp,q−pres

0
of ZOp,q−pres containing the trivial representation. In particular, there is a graded equiv-
alence

An,k−gmod ∼= ZOp,q−pres
0 , (3.4)

where An,k−gmod is the category of finite-dimensional graded An,k-modules, so that 
the Sartori algebra provides a combinatorial model for ZOp,q−pres

0 .

3.6. Anti-automorphism

There is a symmetry between maps of Soergel modules defined for any λ, μ ∈ Dn,k by

HomRC
(RC

bλ , R
C
bμ) −→ HomRC

(RC
bμ , RC

bλ) (3.5)

(1 �→ p) �−→ (1 �→ xbλ−bμ

p)

with xbλ−bμ := x
bλ1−bμ1
1 . . . x

bλn−bμn
n (the product of this expression with p will have non-

negative exponents). By [79, Lemma 5.14] this map sends Wλ,μ to Wμ,λ and thus extends 
to an anti-automorphism ψS : An,k −→ An,k (Sartori refers to ψS as �).

4. A surjective homomorphism from Ozsváth–Szabó to Sartori

If k is a field, let Bk

l (n, k) denote Bl(n, k) ⊗ k. View An,k as a C[U1, . . . , Un]-algebra 
by relabeling xi as Ui in the C[x1, . . . , xn]-algebra structure.

Proposition 4.1. Let μ = μx, λ = μy denote ∨∧-sequences in Dn,k associated to left I-
states x, y ∈ Vl(n, k) as in Remark 3.1. The map Ξ: BC

l (n, k) → An,k sending Ix to 1μ, 



22 A.D. Lauda, A. Manion / Advances in Mathematics 376 (2021) 107455
sending fx,y to zero if x, y are too far, and otherwise sending fx,y to (the equivalence 
class of) the morphism of Soergel modules

Ξfx,y
:= Ξ(fx,y) : RC

bλ → RC
bμ

1 �→ xd1
1 · · ·xdn

n

where di = max (vx
i − vy

i , 0) = max
(
bμi − bλi , 0

)
, extended linearly over C[U1, . . . , Un], is 

a well-defined surjective homomorphism of Z-graded C[U1, . . . , Un]-algebras.

Note that if x, y, z are pairwise not too far, then Ξfx,y
Ξfy,z

=
∏n

i=1 U
gx,y,z
i

i Ξfx,z
; 

this identity follows from the relationship max(a, b) = a+b+|a−b|
2 between maxima and 

absolute values, since

max(vx
i − vy

i , 0) + max(vy
i − vz

i , 0) − max(vx
i − vz

i , 0)

= vx
i − vy

i + |vx
i − vy

i |
2 + vy

i − vz
i + |vy

i − vz
i |

2 − vx
i − vz

i + |vx
i − vz

i |
2

= |vx
i − vy

i |
2 + |vy

i − vz
i |

2 − |vx
i − vz

i |
2

= gx,y,z
i .

However, to prove Proposition 4.1 along these lines, one would also need to consider 
what happens when some pairs among x, y, z are too far (as well as present Bl(n, k) as 
a quotient of a truncation Bl,0(n, k) of B0(n, k) and show that the quotient relations are 
satisfied).

Instead, to show that Ξ is well-defined and prove Proposition 4.1, we will make use 
of the small-step quiver description of Bl(n, k). In this description, Bl(n, k) is generated 
multiplicatively (over the subalgebra spanned by {Ix|x ∈ Vl(n, k)}) by arrows of the 
quiver labeled Ri, Li, or Ui; we will refer to such elements as small-step quiver generators. 
The small-step quiver generators Ri, Li, and Ui can be viewed as instances of fx,y or 
Uifx,x for certain x and y; below we describe where Ξ sends these generators.

Lemma 4.2. For a small-step quiver generator with label Ri, left idempotent x, and right 
idempotent y, we have

ΞRi
: RC

by → RC
bx

1 �→ 1.

For a small-step quiver generator with label Li, left idempotent x, and right idempotent 
y, we have

ΞLi
: RC

by → RC
bx

1 �→ xi.
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For a small-step quiver generator with label Ui and left and right idempotent x, we have

ΞUi
: RC

bx → RC
bx

1 �→ xi.

Proof. If a small-step generator with label Ri exists with left idempotent Ix and right 
idempotent Iy, then we have x ∩ {i − 1, i} = {i − 1} and y = (x \ {i − 1}) ∪ {i}. It 
follows that vx − vy is the element of Zn with −1 in entry i and zero in all other entries, 
so we have cj = 0 for all j in Proposition 4.1. For small-step generators labeled Li, the 
argument is similar, except that vx − vy has 1 in entry i. It follows that cj = 0 for 
j �= i and ci = 1 in Proposition 4.1. Finally, for small-step generators labeled Ui, the 
claim follows because these generators can be written as Uifx,x, Ξ was defined to be 
C[U1, . . . , Un]-linear, and the action of C[U1, . . . , Un] on the Soergel module morphism 
space has Ui acting as multiplication by xi. �
Lemma 4.3. Extending the values of Ξ from Lemma 4.2 multiplicatively, we get a well-
defined C-algebra homomorphism

Ξ̃ : BC
l (n, k) → An,k.

Proof. We need to check that the relations of Proposition 2.5 are satisfied. The re-
lations (2.1) follow because Soergel module morphisms are assumed to be linear over 
RC = C[x1, . . . , xn]. The relations (2.2) and (2.3) follow from the explicit formulas of 
Lemma 4.2. The relations (2.4) and (2.5) follow from Lemma 3.5, items (i) and (ii)
respectively. �
Lemma 4.4. The ring homomorphism Ξ̃ from Lemma 4.3 is linear over C[U1, . . . , Un]
and satisfies Ξ̃(fx,y) = Ξ(fx,y) for all big-step generators fx,y of BC

l (n, k).

Proof. Since C[U1, . . . , Un] acts on the small-step description of BC
l (n, k) via the small-

step generators with label Ui, Ξ̃ sends these to Soergel module endomorphisms that 
multiply by xi, and C[U1, . . . , Un] acts on An,k by having Ui multiply by xi, the map Ξ̃
is C[U1, . . . , Un]-linear.

To show that Ξ̃ maps fx,y as claimed, first note that if x and y are too far then fx,y
is zero in BC

l (n, k), so Ξ̃ maps it to 0 = Ξ(fx,y) in An,k.
When x and y are not too far, we will proceed by induction on k−|x∩y| using a small-

step path γx,y representing fx,y in Bl(n, k) under the isomorphism of Proposition 2.5. 
We make use of a recursive definition of γx,y from [52, Definition 2.28].

If k − |x ∩ y| is zero, then x = y and the claim follows. Assume that x �= y and that 
the claim holds for all (x, y) with k − |x′ ∩ y′| < k − |x ∩ y|. We consider two cases:

• If xa < ya for some a, let a be the maximal such index. Since x and y are not too 
far, we must have ya = xa + 1, and since a is maximal, we must have xa + 1 /∈ x. 
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Let x′ = (x \ {xa}) ∪ {xa + 1}; by construction, we have γx,y = Rxa+1γx′,y. Thus, 
by the induction hypothesis,

Ξ̃(γx,y) = Ξ̃(Rxa+1)Ξ̃(γx′,y)

= (1 �→ 1) ◦ (1 �→ x
c′1
1 · · ·xc′n

n )

where c′i = max(vx′

i − vy
i , 0). For all i except i = xa + 1, we have vx′

i = vx
i , and we 

have vx′
xa+1 = vx

xa+1 + 1. Since vx
xa+1 − vy

xa+1 = −1, we have vx′
xa+1 − vy

xa+1 = 0. We 
see that for all i, c′i = ci = max(vx

i − vy
i , 0), so that

Ξ̃(γx,y) = (1 �→ xc1
1 · · ·xcn

n )

as claimed.
• If xa ≥ ya for all a, then xa > ya for some minimal a because x �= y. As above, 

ya = xa−1 and xa−1 /∈ x. Letting x′ = (x\{xa}) ∪{xa−1}, we have γx,y = Lxa
γx′,y. 

We get

Ξ̃(γx,y) = Ξ̃(Lxa
)Ξ̃(γx′,y)

= (1 �→ xxa
) ◦ (1 �→ x

c′1
1 · · ·xc′n

n )

where c′i = max(vx′

i − vy
i , 0). For all i except i = xa, we have vx′

i = vx
i , and we have 

vx′
xa

= vx
xa

− 1. Since vx
xa

− vy
xa

= 1, we have vx′
xa

− vy
xa

= 0. We see that for i �= xa, 
we have c′i = ci = max(vx

i − vy
i , 0), while c′xa

= cxa
− 1(= 0). Again, it follows that 

for all i, we have

Ξ̃(γx,y) = (1 �→ xc1
1 · · ·xcn

n )

as claimed. �
Proof of Proposition 4.1. Since BC

l (n, k) is generated over C[U1, . . . , Un] by the elements 
fx,y, and both Ξ and Ξ̃ are C[U1, . . . , Un]-linear, Lemma 4.4 implies that Ξ = Ξ̃. Thus, Ξ
is a well-defined algebra homomorphism; surjectivity of Ξ follows from Proposition 3.3, 
item (iv). �
Proposition 4.5. The surjective homomorphism Ξ: BC

l (n, k) → An,k intertwines the 
anti-automorphism ψOSz from Section 2.6 with the anti-automorphism ψS from Sec-
tion 3.6.

Proof. This is easiest to see in the small-step description of the homomorphism using 
the mappings from Lemma 4.2. Then it is clear that ψOSz, which swaps the roles of Ri

and Li, agrees with the definition of ψS . �
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5. Characterizing illicit morphisms via generating intervals

5.1. Generating interval and the Wα submodule

We now begin to work with Sartori-style constructions over Z rather than C.

Definition 5.1. For μ, λ ∈ Dn,k, let Wα
λ,μ ⊂ HomR(Rbλ , Rbμ) be the R-submodule defined 

by:

(i) if λ and μ are too far in the sense of Definition 3.2, then

Wα
λ,μ = HomR(Rbλ , Rbμ);

(ii) otherwise, define Wα
λ,μ to be the submodule generated by the morphisms

1 �→
(
xα(j), xα(j)+1 . . . xβ(j)

) (
xd1

1 . . . xdn
n

)
for 1 ≤ j ≤ n− k, (5.1)

where di = max
(
bμi − bλi , 0

)
and

α(j) = max
(
∨λ
j ,∨μ

j

)
, β(j) =

{
min

(
∨μ
j+1∨λ

j+1
)
− 1, if j < n− k,

n, if j = n− k.
(5.2)

Proposition 5.2 (cf. Theorem 4.17 [79] ). For all μ, λ ∈ Dn,k, we have Wα
λ,μ⊗C ⊂ Wλ,μ, 

so that the submodule Wα
λ,μ ⊗C contains only illicit morphisms.

Proof. Identify x with μ and y with λ. Observe that ∨μ
j = xc

j + 1. By Lemma 2.16, 
the element of An,k represented by each generator of Wα

λ,μ ⊗ C is the image under the 
homomorphism Ξ of pG(U1, . . . , Un)fx,y for some generating interval G = [j+1, . . . , j+l]
between x and y as defined in Definition 2.11. These elements pG(U1, . . . , Un)fx,y are 
zero in Bl(n, k), so Ξ sends them to zero in An,k. Thus, each generator of Wα

λ,μ ⊗ C

represents zero in An,k and is hence illicit. �
The statement above differs from [79, Theorem 4.17] as we explain in the next section.

5.2. Comparison with Sartori’s Theorem 4.17

In [79, Theorem 4.17], Sartori defines a collection of illicit morphisms W̃λ,μ expressed 
in our terminology as follows. For μ, λ ∈ Dn,k, let W̃λ,μ ⊂ HomR(Rbλ , Rbμ) be defined 
as in Definition 5.1 with α(j) := ∨λ

j in (5.1).
Whenever λ and μ are not too far and ∨μ

j > ∨λ
j for some 1 ≤ j ≤ n −k, this definition 

differs from Definition 5.1. Below we give an example showing that Wα
λ,μ � W̃λ,μ (the 

same is true after complexification), so that W̃λ,μ cannot be equivalent to the submodule 
of illicit morphisms.
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Example 5.3 (Comparing W̃ and Wα). Let λ = ∨ ∧ ∧∨ and μ = ∧ ∨ ∨∧. Then bλ =
(3, 2, 1, 1) and bμ = (2, 2, 2, 1). The submodule W̃λ,μ is generated by (x1x2)(x3) (from 
j = 1) and (x4)(x3) (from j = 2). However, Wα

λ,μ is generated by (x2)(x3) and (x4)(x3).
A Z analogue of Proposition 3.3, item (iv) implies that a Z-basis for the space of 

maps from Rbλ to Rbμ is given by the set

{xj1
1 xj2

2 xj3
3 | 0 ≤ j1 ≤ 1, 0 ≤ j2 ≤ 1, j3 = 1} = {x3, x1x3, x2x3, x1x2x3}

(since c3 = 1 ≤ j3 < bμ3 = 2).
Notice that the j = 1 generators of both W̃λ,μ and Wα

λ,μ are both elements of the 
above basis. The j = 2 generator x3x4 of these ideals is redundant in both cases since

Ibμ = 〈h2(x1), h2(x1, x2), h2(x1, x2, x3), h1(x1, x2, x3, x4)〉

so

x3x4 = −x1x3 − x2x3 − x2
3 = x2

1 + x2
2 + x1x2 = h2(x1, x2) ∈ Ibμ .

It follows that {x3, x1x3, x2x3} is a basis for HomRC
(Rbλ , Rbμ)/W̃λ,μ; in particular, 

x2x3 ∈ Wα
λ,μ \ W̃λ,μ.

5.3. Fork diagrams and the dimension of homs mod illicits

5.3.1. Oriented fork diagrams
Here we recall the notion of (enhanced) fork diagram from [79, Section 5.1]. An m-fork

is a tree with a single root and valency m, with 1-forks called rays. Let H− (resp. H+) 
denote the lower (resp. upper) half plane. A lower fork diagram is a collection of forks 
in H− such the leaves of each m-fork are m distinct points on the boundary ∂H− of 
H−. Upper fork diagrams are defined analogously. Below is an example of an m-fork for 
m = 5 and a lower and upper fork diagram.

root
(5.3)

If c is a lower fork diagram with |c ∩ ∂H−| = n and λ ∈ Dn,k then cλ is a unenhanced 
oriented lower fork diagram if:

• each m-fork for m ≥ 2 is labeled3 with exactly one ∨ and m − 1 ∧’s;
• the diagram begins at the left with a (possibly empty) sequence of rays labeled ∧, 

and there are no other rays labeled ∧ in c.

3 In [79] there is a typo indicating m ≥ 1.
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For example, in the labeled fork diagrams below

∧ ∨ ∧ ∨ ∨ ∨ ∧ ∧ ∧ ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∧ ∧ ∧ ∨ ∧ ∨ ∨ ∨ ∧ ∨ ∧

only the first is an oriented fork diagram. The second has a ∧ labeled ray not appearing 
at the beginning of the diagram, while the third is disallowed because the 4-fork has two 
strands labeled ∨.

A enhanced oriented lower fork diagram cλσ is a unenhanced lower fork diagram 
equipped with a bijection σ between the vertices labeled ∧ in λ and the set {1, . . . , k}. 
Unenhanced and enhanced upper fork diagrams are defined analogously.

By a fork diagram we mean a diagram of the form ab obtained by gluing a lower 
fork diagram a underneath an upper fork diagram b with compatible endpoints on the 
boundaries. An unenhanced oriented fork diagram is a fork diagram aλb in which both 
aλ is an oriented lower fork diagram and λb is an oriented upper fork diagram. Some 
examples of oriented fork diagrams are given below.

∧ ∨ ∧ ∨ ∨ ∨ ∧ ∧ ∧ ∨ ∧ ∧ ∨ ∨ ∧ ∧ ∧ ∨ (5.4)

The degree of an oriented m-fork for m ≥ 2 is defined to be (i − i0) where i is the 
index of the unique ∨ labeling the fork and i0 is the leftmost index in the fork; 1-forks 
have degree zero. The degree of an upper or lower oriented fork diagram is the sum of 
the degrees of its forks; the degree of an oriented fork diagram is the degree of its upper 
part plus the degree of its lower part. Define the degree of a permutation σ ∈ Sn as 
deg(σ) = 2�(σ). Then the degree of an enhanced oriented fork diagram is given by

deg(aλσb) = deg(aλ) + deg(λb) + 2�(σ). (5.5)

For example, the first fork diagram in (5.4) has a degree 1 upper fork diagram and a 
degree zero lower fork diagram for a total degree of 1. In the second example, the upper 
fork diagram has degree 0 + 3 while the lower fork diagram has degree 0 + 0 + 2 for a 
total degree of 5.

For each sequence λ, we denote by λ the unique lower fork diagram such that λλe is an 
oriented lower fork diagram of degree zero. In other words, λ is the fork diagram where 
each ∨ in λ is the first vertex of an m-fork for some m. We write λ̄ for the unique degree 
zero upper fork diagram given by reflecting λ across the horizontal axis. For example, 
the lower fork diagram in (5.3) is μ for μ = ∨ ∧∧ ∨∨ ∨∧ ∧∧ and the upper fork diagram 
in (5.3) is λ̄ for λ = ∧ ∨ ∧ ∨ ∨ ∨ ∧ ∧ ∧. Note that the same lower (resp. upper) fork 
diagram can correspond to ∧∨ sequences in Dn,k for different k. For example, the upper 
fork diagram in (5.3) can also be identified with λ̄ for λ = ∨ ∨ ∧ ∨ ∨ ∨ ∧ ∧ ∧.



28 A.D. Lauda, A. Manion / Advances in Mathematics 376 (2021) 107455
Definition 5.4. Given two sequences μ, λ ∈ Dn,k, define Zμ,λ to be the graded free abelian 
group with homogeneous basis given by{

μησλ̄ | μησλ̄ is an oriented enhanced fork diagram
}
.

5.3.2. Counting fork diagrams
For μ, λ ∈ Dn,k that are not too far, we would like an explicit formula for the graded 

rank of Zμ,λ (if μ and λ are too far then the rank is zero). First, we recall a relevant 
lemma from [79].

Lemma 5.5 (cf. Lemma 5.5(i) of [79]). Given μ, η ∈ Dn,k, the lower fork diagram μη is 
oriented if and only if

∨μ
i ≤ ∨η

i < ∨μ
i+1

for 1 ≤ i ≤ n − k, where we set ∨μ
n−k+1 = n + 1 by convention.4

Proof. Note that μμ has some ∧-labeled rays at the left (say r0 of them), followed by 
n − k “∨-labeled forks” (each with one ∨ label and m − 1 ∧ labels in μ for some m ≥ 1). 
Say μ has r ≥ r0 rays before its first m-fork for m ≥ 2.

Assume that μη is oriented. For 1 ≤ i ≤ n − k, if the i-th ∨-labeled fork of μμ is an 
m-fork for m ≥ 2, then η must have exactly one ∨ that is ≥ ∨μ

i but < ∨μ
i+1. There must 

also be a ∨ in η for every ∨-labeled ray of μμ occurring to the right of an m-fork for 
m ≥ 2. We have accounted for n − k− r + r0 ∨’s in η, and r− r0 of them remain. Since 
μη is oriented, η must have these ∨’s on the rightmost r − r0 out of the initial r rays of 
μ. These are precisely the initial rays of μ on which μ has a ∨, so the condition in the 
statement of the lemma holds.

Conversely, if the condition holds, then each m-fork of μ with m ≥ 2 has exactly one 
∨ in η. Furthermore, μμ starts with a sequence of ∧-labeled rays and no ∧-labeled rays 
appear in μμ outside this sequence, so the condition implies that the same is true for 
μη. Thus, μη is oriented. �
Proposition 5.6. Let μ, λ ∈ Dn,k correspond to left I-states x, y that are not too far as 
in Remark 3.1. Suppose the generating intervals between x and y are [ji + 1, ji + li] for 
1 ≤ i ≤ n − k. There are exactly l1 · · · ln−k choices of η such that μηλ̄ is oriented.

Proof. By Lemma 5.5, a choice of η such that μηλ̄ is oriented amounts to a choice of 
integers 1 ≤ ∨η

1 < · · · < ∨η
n−k ≤ n such that

max(∨μ
i ,∨λ

i ) ≤ ∨η
i < min(∨μ

i+1,∨λ
i+1)

4 In [79] there is a typo incorrectly indicating 1 ≤ i ≤ n − k − 1, rather than 1 ≤ i ≤ n − k. For example, 
take μ = ∧∨ and η = ∨∧.
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for 1 ≤ i ≤ n − k, where we set ∨μ
n−k+1 = ∨λ

n−k+1 = n + 1. Translating ∨-sequences for 
μ and η to hole sequences xc

i = ∨μ
i − 1 and yci = ∨λ

i − 1 (see Remark 3.1), the above 
condition is equivalent to

max(xc
i , y

c
i ) + 1 ≤ ∨η

i ≤ min(xc
i+1, y

c
i+1).

By Lemma 2.16, these inequalities are equivalent to ∨η
i ∈ {ji + 1, . . . , ji + li}. It follows 

that the number of η such that μηλ̄ is oriented is equal to the number of ways to choose 
one element from each set {ji + 1, . . . , ji + li} for 1 ≤ i ≤ n − k, proving the lemma. �

We use the nonsymmetric quantum integers and factorials

[k]0 := 1 + q2 + · · · + q2(k−1) = qk−1[k], [k]0! := [k]0[k − 1]0 . . . [1]0 = qk(k−1)/2[k]!.
(5.6)

Corollary 5.7. For μ, λ ∈ Dn,k that are not too far, corresponding to left I-states x, y as 
in Remark 3.1, the graded rank of the graded free abelian group Zμ,λ is

rkq(Zμ,λ) = qd[k]0! ·
n−k∏
i=1

[li]0,

where d =
∑k

i=1 | ∧λ
i − ∧μ

i | and l1, . . . , ln−k are the lengths of the generating intervals 
between x and y. Thus, the ungraded rank of Zμ,λ is k! 

∏n−k
i=1 li. If μ, λ are too far, then 

Zμ,λ = 0.

Proof. By the remarks at the end of Proposition 5.6, each choice of η ∈ Dn,k such 
that μηλ̄ is oriented corresponds to a choice of one element from each of the generating 
intervals [ji+1, ji+li], 1 ≤ i ≤ n −k, for x and y. Choosing the (ji+1)-st term of η to be 
∨ for all i produces the lowest degree element μηλ̄ which has degree d =

∑k
i=1 | ∧λ

i − ∧μ
i |. 

More generally, if η has a ∨ in index (ji + 1 + γi) for 0 ≤ γi < li, then μηλ̄ has degree 

d +
∑k

i=1 2γi, so the choices in the i-th generating interval contribute a factor of [li]0 to 
the graded rank. The result then follows since∑

σ∈Sk

degq
(
μησλ̄

)
=
∑
σ∈Sk

q2l(σ) degq
(
μηλ̄
)

= [k]0! degq
(
μηλ̄
) �

Example 5.8 (Number of oriented fork diagrams). Let n = 12 and k = 8. Set

λ = (∨,∧,∨,∧,∨,∧,∧,∨,∧,∧,∧,∧), μ = (∨,∧,∧,∨,∧,∨,∧,∧,∧,∨,∧,∧).

We have

λ̄ := μ :=
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so that oriented fork diagrams μηλ̄ look like

∧ ∧ ∧ ∧

x1x2 x4 x6x7 x10x11x12

1 2 3 4

1 2 3 4

(5.7)

where the blue5 circled regions correspond to the generating intervals and represent the 
possible locations of the ∨ in μηλ̄. Note that the i-th generating interval is formed by 
all indices (necessarily consecutive) connecting the i-th ∨-labeled fork (not a ∧-labeled 
ray) of μ to the i-th ∨-labeled fork of λ (both μ and λ have n − k ∨-labeled forks).

5.3.3. Fork diagrams and maps between Soergel modules
Proposition 5.2 gives us a natural surjective morphism of RC-modules from

HomRC
(RC

bλ , RC
bμ)/(Wα

λ,μ ⊗ C) to HomRC
(Cwkλ, Cwkμ)/Wλ,μ. We want to show that 

this map is an isomorphism, so that the explicit submodule Wα
λ,μ ⊗ C describes the 

space of illicit morphisms from Cwkλ to Cwkμ.
Indeed, we know the dimension of HomRC

(Cwkλ, Cwkμ)/Wλ,μ by a result of Sartori. 
Using the connection between An,k and subquotients of category O, Sartori establishes 
the following lemma.

Lemma 5.9 (Lemma 6.6 [79]). We have

dim HomRC
(Cwkλ, Cwkμ)/Wλ,μ = dim(Zμ,λ ⊗C).

To show that Wλ,μ = Wα
λ,μ ⊗C, it therefore suffices to show that

dim HomRC
(RC

bλ , R
C
bμ)/(Wα

λ,μ ⊗C) ≤ dim(Zμ,λ ⊗C).

Lemma 5.10 (cf. Proposition 5.8 of [79], Remark 5.12 below). The map Ψ from 
oriented enhanced fork diagrams for μ and λ (i.e. basis elements for Zμ,λ) to 
HomR(R/Ibλ , R/Ibμ)/Wα

λ,μ sending

μησλ̄ �→
(
1 �→ pμησ

)
+ Wα

λ,μ,

where

pμησ = S′
σ

(
x∧η

1
, . . . , x∧η

k

) n−k∏
j=1

xα(j)xα(j)+1 . . . x∨η
j−1 ∈ R (5.8)

5 For interpretation of the references to color please refer to the web version of this article.



A.D. Lauda, A. Manion / Advances in Mathematics 376 (2021) 107455 31
and α(j) = max(vλj , v
μ
j ), is degree zero and its image generates HomR(Rbλ , Rbμ)/Wα

λ,μ

over Z. Thus, the image gives a homogenous spanning set for HomRC
(RC

bλ , RC
bμ)/(Wα

λ,μ⊗
C) over C.

Proof. One can check that the elements given in Proposition 3.3, item (iv) generate 
HomR(Rbλ , Rbμ) over Z. The set of such elements that are not in Wα

λ,μ is a generating 
set for HomR(Rbλ , Rbμ)/Wα

λ,μ; it suffices to show that this set is contained in the image 
of Ψ.

Indeed, to see that (the class of) any such basis element that is not in Wα
λ,μ is in 

the image of Ψ, one can use the argument in the final paragraph of [79, Proposition 
5.8]. This argument works (replacing ∨μ

j with α(j) = max(vλj , v
μ
j ) in the definition of �j) 

assuming we are given a monomial m that is not in Wα
λ,μ; see Remark 5.12 below for a 

counterexample when we are given m ∈ Wα
λ,μ \ W̃λ,μ. �

Corollary 5.11. Under the identification

HomRC
(Cwkλ, Cwkμ) ↔ HomRC

(RC
bλ , R

C
bμ)

given by Proposition 3.3, item (ii), we have Wλ,μ ↔ Wα
λ,μ ⊗C.

Proof. As mentioned above, Proposition 5.2 shows that the identification of Proposi-
tion 3.3, item (ii) gives a natural surjective linear map of complex vector spaces

HomRC
(RC

bλ , R
C
bμ)/(Wα

λ,μ ⊗C) → HomRC
(Cwkλ, Cwkμ)/Wλ,μ.

By Lemma 5.9 and Lemma 5.10, the dimension of the domain is no greater than the 
dimension of the codomain, so the map is an isomorphism. �
Remark 5.12. The final paragraph of Sartori’s proof of [79, Proposition 5.8] does not 
work if we are only given m that does not lie in W̃λ,μ. For instance, take m = x2x3 in 
Example 5.3. We have x2x3 ∈ Wα

λ,μ \ W̃λ,μ. Since ∨μ
1 = 2 and ∨μ

2 = 3, we have �1 = 4
and �2 = 4. This is a problem because we need �1 < · · · < �n−k for the proof to work.

5.4. A Z lift of Sartori’s algebra

By Corollary 5.11, it is reasonable to define the following Z lift of Sartori’s algebra.

Definition 5.13. Let AZ
n,k be the graded ring

AZ
n,k =

⊕
HomR(Rbλ , Rbμ)/Wα

λ,μ.

λ,μ∈Dn,k
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Corollary 5.11 implies that AZ
n,k ⊗ C ∼= An,k. It is natural to ask whether passing 

from C to Z in this manner introduces any torsion in AZ
n,k; the answer is “no,” as shown 

in the next proposition.

Proposition 5.14. For λ, μ ∈ Dn,k that are not too far, the graded abelian group 
HomR(Rbλ , Rbμ)/Wα

λ,μ is free. Consequently, 1μAZ
n,k1λ is a free graded Z-module with 

homogeneous basis given by the set {1 �→ pμησ} where η ∈ Dn,k, σ ∈ Sk run over all 
choices such that λησμ̄ is an enhanced oriented fork diagram. Furthermore, the graded 
rank rkq(1μAZ

n,k1λ) is equal to rkq(Zμ,λ) from Corollary 5.7.

Proof. Lemma 5.10 gives us a generating set for HomR(Rbλ , Rbμ)/Wα
λ,μ whose size is the 

number of oriented enhanced fork diagrams for λ, μ, i.e. the dimension of Zλ,μ⊗C. This 
number is also the rank of HomR(Rbλ , Rbμ)/Wα

λ,μ by Lemma 5.9 and Corollary 5.11, so 
the generating set is a basis. It follows that HomR(Rbλ , Rbμ)/Wα

λ,μ is free; the graded 
rank follows from Corollary 5.7 and Lemma 5.10. �

Thus, the natural map from AZ
n,k to An,k is injective.

Proposition 5.15. The composition

Bl(n, k) → BC
l (n, k) Ξ−→ An,k

has image in AZ
n,k ⊂ An,k, where Ξ is the homomorphism from Proposition 4.1.

Proof. One can check that each generator of Bl(n, k) ⊂ BC
l (n, k), in either the big-step 

or the small-step description, gets sent by Ξ to an element of AZ
n,k ⊂ An,k. �

Corollary 5.16. We have a commutative square of R-algebra homomorphisms

Bl(n, k) Ξ AZ
n,k

BC
l (n, k)

Ξ
An,k,

where the bottom edge is the map from Proposition 4.1; by slight abuse of notation, we 
call both the top and the bottom edges Ξ. Since each fork monomial pμησ is an R-multiple 
of Ξ(fx,y) where x, y ∈ Vl(n, k) correspond to μ, λ ∈ Dn,k, Lemma 5.10 implies that the 
top edge Ξ of the square is surjective.

The anti-automorphism ψS : An,k → An,k from (3.6) extends to an anti-automorphism 
of the integral form ψS : AZ

n,k → AZ
n,k given on the basis from Proposition 5.14 by
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ψS : AZ
n,k −→ AZ

n,k (5.9)

μησλ̄ �−→ λησμ̄.

6. A vanishing ideal in the Sartori algebra

In this section we identify an ideal that is present in Rbμ for all μ ∈ Dn,k and hence 
is zero in AZ

n,k. Define an ideal in R by

J = Jn,k := 〈e1(x1, . . . , xn), e2(x1, . . . , xn), . . . ek(x1, . . . , xn)〉 . (6.1)

Equivalently, Jn,k is the ideal generated by hi(x1, . . . , xn) for 1 ≤ i ≤ k; we will work 
primarily with the polynomials hi as generators of Jn,k below.

The ideal J admits a further alternate description that we give below after a prelim-
inary lemma.

Lemma 6.1. For 1 ≤ k ≤ n and 1 ≤ p ≤ k, we have hk(x1, . . . , xn−p+1) = hk(x1, . . . , xn)
in the ring R

(h1(x1,...,xn),...,hk−1(x1,...,xn)) .

Proof. Induct on k; the case k = 1 follows from 1 ≤ p ≤ k. For k > 1, we will induct on 
p; the case p = 1 is trivial. Assume p > 1; then

hk(x1, . . . , xn−p+1) = hk(x1, . . . , xn−p+2) − xn−p+2hk−1(x1, . . . , xn−p+2).

By induction on k, we have hk−1(x1, . . . , xn−p+2) = hk−1(x1, . . . , xn) in

R

(h1(x1, . . . , xn), . . . , hk−2(x1, . . . , xn)) .

Thus,

hk(x1, . . . , xn−p+1) = hk(x1, . . . , xn−p+2) = hk(x1, . . . , xn)

modulo (h1(x1, . . . , xn), . . . , hk−1(x1, . . . , xn)) (the second equality follows from induc-
tion on p). �
Corollary 6.2. The elements θi := hi(x1, . . . , xn+1−i) of R, for 1 ≤ i ≤ k, generate the 
ideal J .

Proof. For 1 ≤ i ≤ k, write ηi = hi(x1, . . . , xn). Induct on k; the case k = 1 is clear. If 
k > 1, then

(θ1, . . . , θk) = (θk) + (θ1, . . . , θk−1)

= (θk) + (η1, . . . , ηk−1)
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= (ηk) + (η1, . . . , ηk−1)

= (η1, . . . , ηk),

where we use the inductive hypothesis in the second equality and Lemma 6.1 in the third 
equality. �
Proposition 6.3. The ideal Jn,k acts by zero on AZ

n,k.

Proof. The minimal sequence μ̃ in the Bruhat order generated by ∧∨ � ∨∧ is the 
sequence

μ̃ = ∨n−k∧k, bμ̃ = (k + 1, k + 1, . . . , k + 1, k, k − 1, . . . , 2, 1). (6.2)

All other sequences λ ∈ Dn,k will have b-sequences with bλi ≤ bμ̃i . The result follows by 
a Z analogue of [79, Lemma 2.7] showing that ha(x1, . . . , xi) ∈ Ib for every a ≥ bi, so 
that J ⊂ Ibλ for all λ ∈ Dn,k by Corollary 6.2. �

In other words, the Z[x1, . . . , xn]-module structure on AZ
n,k descends to an action of 

Z[x1,...,xn]
J .

Definition 6.4. Define the quotient Ozsváth–Szabó algebra Bl(n, k) to be the quotient of 
the Z[U1, . . . , Un]-algebra Bl(n, k) by the action of the ideal J defined in (6.1) (with xi

variables relabeled as Ui).

Note that Lemma 6.1 and Corollary 6.2 hold in Bl(n, k) since they hold in 
Z[x1, . . . , xn].

Corollary 6.5. The homomorphism Ξ : Bl(n, k) → AZ
n,k from Corollary 5.16 descends to 

a well-defined homomorphism

Ξ : Bl(n, k) → AZ
n,k.

Remark 6.6. Note that any monomial m in Z[U1, . . . , Un] divisible by at least k + 1
distinct variables is zero in Bl(n, k). Indeed, for any x, y ∈ Vl(n, k), there are n − k

distinct generating intervals between x and y, and for m to be nonzero, there must be 
at least one variable in each generating interval that does not divide m, so there must be 
at least n − k distinct variables not dividing m. In particular, the elementary symmetric 
functions ei(U1, . . . , Un) for i > k vanish in Bl(n, k), so we can equivalently define J (and 
thus Bl(n, k)) using all symmetric functions in U1, . . . , Un, not just the ones of degree at 
most k.
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7. Fork elements and injectivity

7.1. Deformations

Let A be a graded ring, and let U be a finitely generated free Z-module. Following 
the notation of [12, Section 4], we say a graded ring Ã is a graded deformation of A over 
U∗ if Ã is equipped with graded homomorphisms

Sym(U) j−→ Ã
π−→ A

such that im(j) ⊂ Z(Ã) and π induces an isomorphism from Ã
im(j) to A. The deformation 

is called flat if j makes Ã a flat Sym(U)-module.
Let U = Zk with standard basis {ε1, . . . , εk}, so that Sym(U) = Z[ε1, . . . , εk], and de-

fine j : Sym(U) → Bl(n, k) by sending εi to the central element ei(U1, . . . , Un) (one could 
equivalently use complete homogeneous symmetric polynomials hi(U1, . . . , Un) instead 
of elementary symmetric polynomials). If π : Bl(n, k) → AZ

n,k is the homomorphism Ξ
from Corollary 5.16, then Corollary 6.5 tells us that the image of j is contained in the 
kernel of π.

We want to show that π = Ξ induces an isomorphism from Bl(n, k)/ im(j) to AZ
n,k, so 

that we may view Bl(n, k) as a graded deformation of AZ
n,k, and we want to know that 

this deformation is flat. Indeed, we first show that Bl(n, k) is a free Sym(U)-module on 
a basis defined in the next section; we deal with injectivity in Section 7.3.

7.2. Fork elements as a Sym(U)-basis

The Bruhat order generated by ∧∨ � ∨∧ induces a partial order on I-states with size 
k given below.

Definition 7.1. Define a partial order on the set V (n, k) of I-states with |x| = k by x � y
if xi ≤ yi for all 1 ≤ i ≤ k.

Definition 7.2. Let x, y, z ∈ Vl(n, k) and suppose that none of the three are too far from 
one another. Let [ji + 1, ji + li] for 1 ≤ i ≤ n − k be the generating intervals for x and 
y and assume x � z � y (if x, y, z correspond to μ, λ, η ∈ Dn,k, Lemma 5.5 implies that 
this condition is equivalent to μηλ̄ being an oriented fork diagram). For σ ∈ Sk, define 
fork polynomials

p(x,zσ,y) := S′
σ (Uz1+1, . . . , Uzk+1)

(
n−k∏
i=1

Uji+1Uji+2 . . . Uzc
i

)
∈ Z[U1 . . . , Un], (7.1)

where zc is the hole sequence of z defined in Definition 2.14. We have corresponding fork 
elements p(x,zσ,y)fx,y ∈ Bl(n, k).
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Note that p(x,ze,y) = U c1
1 . . . U cn

n with cj = min(vx
j , v

y
j ) − vz

j ∈ {0, 1}, so that 
p(x,ze,y) = 1 if zi = min(xi, yi). Likewise, recall from (3.1) that S′

σ (Uz1+1, . . . , Uzk+1) ∈
{U �1

z1+1 . . . U
�k
zk+1 | 0 ≤ �i ≤ k − i}.

Proposition 7.3. Let μ = μx, λ = μy, and η = μz denote ∨∧-sequences in Dn,k associated 
to left I-states x, y, z ∈ Vl(n, k) satisfying the assumptions in Definition 7.2 (equivalently, 
such that μηλ̄ is oriented). Under the surjective homomorphism Ξ: Bl(n, k) → An,k, we 
have

Ξp(x,zσ,y)fx,y
= (1 �→ pμησ ) (7.2)

with pμησ defined in (5.8).

Proof. Let � ∈ Dn,k be such that μ�eλ̄ is the minimal degree oriented enhanced fork 
diagram with lower fork μ and upper fork λ̄, so that � has all ∨’s maximally to the 
left subject to the constraint that μ�eλ̄ is an oriented fork diagram. Explicitly, we have 
∨	
j = max(∨μ

j , ∨λ
j ). Then since � � η for all oriented fork diagrams μηλ̄ by assumption, 

pμ	 divides pμησ for every oriented enhanced fork diagram μησλ̄. The morphism 1 �→ pμ	
is the image of the generator fx,y of IxB(n, k)Iy under Ξ. Then

Ξp(x,zσ,y)fx,y
(1) := S′

σ (xz1+1, . . . , xzk+1)
(

n−k∏
i=1

xji+1xji+2 . . . xzc
i

)
· Ξfx,y

(1)

= S′
σ

(
x∧η

1
, . . . , x∧η

k

)⎛⎝n−k∏
j=1

x∨�
j
x(∨�

j )+1 . . . x∨η
j−1

⎞⎠ · pμ	

= S′
σ

(
x∧η

1
, . . . , x∧η

k

)⎛⎝n−k∏
j=1

x∨�
j
x(∨�

j )+1 . . . x∨η
j−1

⎞⎠
×

⎛⎝n−k∏
j=1

x∨μ
j
x(∨μ

j )+1 . . . x∨�
j−1

⎞⎠
= S′

σ

(
x∧η

1
, . . . , x∧η

k

)⎛⎝n−k∏
j=1

x∨μ
j
x(∨μ

j )+1 . . . x∨η
j−1

⎞⎠
= pμησ

and the result follows. �
Theorem 7.4. The Ozsváth–Szabó algebra Bl(n, k) is free over Sym(U) with a basis given 
by elements p(x,zσ,y)fx,y where x, y ∈ Vl(n, k) are not too far and {p(x,zσ,y)} are the fork 
polynomials from (7.1).
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Proof. As a Sym(U)-module, Bl(n, k) is the direct sum of IxBl(n, k)Iy for x, y ∈ Vl(n, k). 
Let x, y ∈ Vl(n, k) be not too far; it suffices to show that IxBl(n, k)Iy is a free Sym(U)-
module with a basis given by the above fork elements.

Let i0 ≥ 0 be the maximal index such that xi = yi = i − 1 for all i ≤ i0. We will 
induct on |{i > i0 : xi = yi}|; first suppose this number is zero. We have a crossed line 
between x and y as in Definition 2.9 for each index i0 + 1 ≤ j ≤ k, so k − i0 lines are 
crossed. The n − k generating intervals between x and y must all be contained in the 
(n − i0)-element set {i0 +1, . . . , n}, k− i0 of whose elements correspond to crossed lines, 
so each generating interval must have length 1. There is a unique z ∈ Vl(n, k) that is 
pairwise not too far from x, y and satisfies x � z � y, namely zi = min(xi, yi), and 
IxBl(n, k)Iy is the quotient of Z[U1, . . . , Un] by all variables except Uz1+1, . . . , Uzk+1. 
The fork elements of IxBl(n, k)Iy are given in this quotient by “staircase” monomials 
Ud1
z1+1 · · ·Udk

zk+1 with 0 ≤ di ≤ k − i, and the elements ei(U1, . . . , Un) of Sym(U) act as 
ei(Uz1+1, . . . , Uzk+1). The result now follows from [47, Proposition 2.5.5], which shows 
that the staircase monomials provide a basis for the polynomial ring over the ring of 
symmetric polynomials.

Now suppose that xi = yi for some minimal i > i0. It follows that xi = j +1 for some 
generating interval [j + 1, . . . , j + l] between x and y. We consider four cases.

• If j ∈ x (so j /∈ y) and j+l ∈ x (so j+l /∈ y), let x′ = x and y′ = (y\{j+1}) ∪{j+l}. 
Let x′′ = x and y′′ = (y \ {j + 1}) ∪ {j}.

• If j ∈ x and j + l /∈ x, let x′ = (x \ {j + 1}) ∪ {j + l} and y′ = y. Let x′′ = x and 
y′′ = (y \ {j + 1}) ∪ {j}.

• If j /∈ x and j + l ∈ x, let x′ = x and y′ = (y \ {j + 1}) ∪ {j + l}. Let x′′ =
(x \ {j + 1}) ∪ {j} and y′′ = y.

• If j /∈ x and j + l /∈ x, let x′ = (x \ {j + 1}) ∪ {j + l} and y′ = y. Let x′′ =
(x \ {j + 1}) ∪ {j} and y′′ = y.

In all cases, an element z ∈ Vl(n, k) is pairwise not too far from x′ and y′ and satisfies 
x′ � z � y′ if and only if z is pairwise not too far from x and y, satisfies x � z � y, and 
also satisfies zi = xi(= yi). Similarly, z is pairwise not too far from x′ and y′ and satisfies 
x′ � z � y′ if and only if z is pairwise not too far from x and y, satisfies x � z � y, 
and also satisfies zi = xi − 1(= yi − 1).

For σ ∈ Sk and z as above, we have p(x,zσ,y) = p(x′,zσ,y′) or p(x,zσ,y) = Uj+1p(x′′,zσ,y′′)
as appropriate. We see that the fork polynomials for IxBl(n, k)Iy can be viewed as the 
fork polynomials for Ix′Bl(n, k)Iy′ together with Uj+1 times the fork polynomials for 
Ix′′Bl(n, k)Iy′′ .

Now consider the exact sequence

0 → Ix′′Bl(n, k)Iy′′
·Uj+1−−−→ IxBl(n, k)Iy

·1−→ Ix′Bl(n, k)Iy′ → 0,
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8.1)

8.2)

8.3)
of Sym(U)-modules, interpreting each term as a quotient of Z[U1, . . . , Un]. We have 
|{i > i0 : x′

i = y′i}| < |{i > i0 : xi = yi}| and similarly for x′′, y′′. By induction, the first 
and third terms of the exact sequence are free Sym(U)-modules with bases given by fork 
elements. Since the third term is free, the sequence splits; a basis for the middle term 
is given by fx,y times fork polynomials for the third term together with Uj+1fx,y times 
fork polynomials for the first term. As discussed above, the resulting basis coincides with 
the fork elements of IxBl(n, k)Iy. �
Remark 7.5. The proof of Theorem 7.4, together with [47, Proposition 2.5.3], shows that 
we can replace the leading term S′

σ (Uz1+1, . . . , Uzk+1) of the Schubert polynomial with 
the actual Schubert polynomial Sσ (Uz1+1, . . . , Uzk+1) in the definition of fork polyno-
mials from Definition 7.2 and Theorem 7.4 continues to hold.

7.3. Injectivity

We can now prove injectivity for the algebra homomorphism Ξ from Corollary 6.5.

Theorem 7.6. The map Ξ: Bk

l (n, k) → AZ
n,k from Corollary 6.5 is an isomorphism.

Proof. By Theorem 7.4, the fork elements from (7.1) for all x, y ∈ Vl(n, k) that are not 
too far give a Z-basis for Bk

l (n, k); Proposition 7.3 and Proposition 5.14 show that Ξ
sends these elements to a Z-basis for AZ

n,k. �
8. Categorification of bases and bilinear forms

8.1. Quantum gl(1|1)

Let ε1 = (1, 0) and ε2 = (0, 1) denote the standard basis for the weight lattice Z2

of gl(1|1); let h1 and h2 denote the basis for dual weight lattice with associated pairing 
〈hi, εj〉 = δi,j . We denote the simple root of gl(1|1) by α = ε1 − ε2.

Definition 8.1. The Hopf superalgebra Uq(gl(1|1)) is generated as a superalgebra over 
C(q) by two even generators K±

1 , K±
2 and two odd generators E, F with relations

KiKj = KjKi KiK
−1
i = 1 = K−1

i Ki for i, j ∈ {1, 2} (

KiE = q〈hi,α〉EKi KiF = q−〈hi,α〉FKi (

E2 = F 2 = 0 EF + FE = K −K−1

q − q−1 (

where K = K1K2. The comultiplication is given by Δ(E) = E ⊗ K−1 + 1 ⊗ E and 
Δ(F ) = F ⊗ 1 + K ⊗ F , and Δ(Ki) = Ki ⊗Ki. We will not need explicit formulas for 
the counit or antipode.
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Let V = C(q)〈v0, v1〉 denote the two dimensional simple Uq(gl(1|1))-module with 
highest weight ε1. The super grading is fixed by setting the highest weight space spanned 
by v0 to be even, so that v1 is odd. We write V ⊗n for the n-fold tensor power of V and 
(V ⊗n)k for {v ∈ V ⊗n | Kv = q〈h,kε1,(n−k)ε2〉v}.

8.2. The canonical basis of V ⊗n

We first describe the canonical basis of V ⊗n used by Sartori [78, Section 4.3], following 
Zhang [91] (see also [92,11]).

Remark 8.2. Here we are using “canonical” in the combinatorial or crystal sense of Kashi-
wara [30]. For superalgebras the authors are not aware of a geometric construction in 
the sense of Lusztig [46] giving rise to canonical bases for Uq(gl(1|1))-modules.

For 1 ≤ i ≤ n, let ei be the standard basis element of V ⊗n with v0 in position i and 
v1 in all other positions. Identifying V ⊗n = (C2)n with ⊕n

k=0 ∧k (C2) in the usual way, 
we write the standard basis vector of V ⊗n with v0 in positions ik > · · · > i1 and v1 in 
all other positions as eik ∧ · · · ∧ ei1 . Sartori writes this basis vector as vη where η ∈ Dn,k

has a ∧ in positions i1, . . . , ik and ∨ elsewhere; we will also use this notation.
For 2 ≤ i ≤ n, let �i = ei + qei−1; let �1 = e1. We expand wedge products of the �i as 

usual, with ei ∧ ej = −ej ∧ ei and ei ∧ ei = 0, without any “super” sign rules.

Proposition 8.3. Let η ∈ Dn,k be a ∧∨ sequence with ∧ in positions 1 ≤ ii < · · · < ik ≤ n. 
The canonical basis element v♦η for V ⊗n, defined in [78, Theorem 4.2], is

{�ik ∧ · · · ∧ �i1 : 1 ≤ i1 < · · · < ik ≤ n}.

Proof. First, we notice that if i ≥ j > 1, then

�i ∧ �i−1 ∧ · · · ∧ �j =
i∑

m=j−1
qm−j+1ei ∧ · · · ∧ êm ∧ · · · ∧ ej−1,

while if i ≥ 1 then

�i ∧ · · · ∧ �1 = ei ∧ · · · ∧ e1.

In general, a wedge product element as above is a product of such expressions over its 
consecutive �i intervals.

By [78, Proposition 5.5], the canonical basis element v♦η arises from an evaluation 
of the lower fork diagram of η. In more detail, one views the lower fork diagram as a 
web giving a morphism of Uq(gl(1|1))-representations with target V ⊗n; the canonical 
basis element is the image under this morphism of a certain distinguished element of the 
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domain. The result follows from a comparison of the above formulas with [78, Figure 1], 
which shows how matrix entries of the morphism are built from local pieces. �

If x ∈ Vl(n, k) corresponds to η ∈ Dn,k, we will write v♦x = v♦η . For example, if x = ∅
then v♦x = v1 ⊗ · · · ⊗ v1, while if x = {1, . . . , n} then v♦x = v0 ⊗ · · · ⊗ v0.

Example 8.4. Write ∧∨ sequences η ∈ Dn,k as sequences of zeroes and ones, with ∧
corresponding to zero and ∨ corresponding to one. The canonical basis elements for V ⊗3

are:

v♦000=v000 v♦100=v100 + qv010 + q2v001 v♦010=v010 + qv001 v♦001=v001

v♦110=v110 + qv101 v♦101=v101 + qv011 v♦011=v011 v♦111=v111

One can check that these elements are invariant under the bar involution of V ⊗n

discussed in [78, Section 4.3]. This bar involution is induced from the involution 
q �→ q−1, v0 �→ v0, v1 �→ v1 of V by the formula w ⊗ w′ = Θ′(w̄⊗w′) for tensor products 
of Uq(gl(1|1))-modules with q-antilinear involutions ·, where Θ′ = 1 + (q−1 − q)E ⊗ F ∈
Uq(gl(1|1)) ⊗ Uq(gl(1|1)).

8.3. Categorification of V ⊗n via Sartori’s algebras

Let k be an arbitrary field. Write Ak

n,k := AZ
n,k⊗Zk. For λ ∈ Dn,k, let P (λ) = Ak

n,k1λ, 
and let L(λ) be the one-dimensional irreducible Ak

n,k-module such that 1λL(λ) �= 0. For 
any graded module M and integer i, let qiM denote M with degrees shifted upwards by 
i. The following result is standard.

Proposition 8.5. The Grothendieck group

K0(Ak

n,k) := K(Ak

n,k−proj)

of the abelian category of finitely generated projective graded left Ak

n,k modules is a free 
Z[q, q−1]-module with basis given by the classes of indecomposable projective modules 
[P (λ)] for λ ∈ Dn,k. The action of q±1 is given by q±1[P ] := [q±1P ].

Similarly, the Grothendieck group

G0(Ak

n,k) := K(Ak

n,k−fmod)

of the abelian category of finite dimensional graded left Ak

n,k modules is a free Z[q, q−1]-
module with basis given by the classes of simple modules [L(λ)] for λ ∈ Dn,k.

Remark 8.6. Since Ak

n,k is finite-dimensional over k, we have Ak

n,k−fmod = Ak

n,k−gmod, 
the category of finitely generated graded left Ak

n,k modules. Similarly, all objects of 
Ak

n,k−proj are finite-dimensional over k. Note that all objects of Ak

n,k−proj can be 
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thought of as objects of Ak

n,k−fmod, but not conversely. We will see below that K0(Ak

n,k)
and G0(Ak

n,k) can be identified over C(q).

Write KC(q)
0 (Ak

n,k) := K0(Ak

n,k) ⊗Z[q,q−1] C(q), and similarly for G0. Recall that 
(V ⊗n)k denotes the weight space of V ⊗n defined near the end of Section 8.1.

Definition 8.7 (Theorem 7.13 of [78]). We identify KC(q)
0 (Ak

n,k) with (V ⊗n)k by identi-
fying the basis element [P (λ)] of KC(q)

0 (Ak

n,k) with the canonical basis element v♦λ .

8.4. Categorification of V ⊗n via Ozsváth–Szabó’s algebras

As in Section 4 above, write Bk

l (n, k) := Bl(n, k) ⊗Z k. For x ∈ V (n, k), let P (x) =
Bk

l (n, k)Ix, and let L(x) be the one-dimensional irreducible Bk

l (n, k)-module such that 
IxL(x) �= 0.

Since Bk

l (n, k) is positively graded and semisimple in degree zero, grading shifts of the 
modules P (x) form a complete set of isomorphism classes of indecomposable projective 
graded Bk

l (n, k)-modules, and grading shifts of the modules L(x) form a complete set of 
isomorphism classes of simple graded Bk

l (n, k)-modules. Let Bk

l (n, k)−fmod denote the 
category of finite dimensional graded left Bk

l (n, k)-modules and let Bk

l (n, k)−proj denote 
the category of finitely generated projective graded left Bk

l (n, k)-modules.

Corollary 8.8. The Grothendieck group

K0(Bk

l (n, k)) := K(Bk

l (n, k)−proj)

is a free Z[q, q−1]-module with basis given by the classes of indecomposable projective 
modules [P (x)] for x ∈ Vl(n, k).

Similarly, the Grothendieck group

G0(Bk

l (n, k)) := K(Bk

l (n, k)−fmod)

is a free Z[q, q−1]-module with basis given by the classes of simple modules [L(x)] for 
x ∈ Vl(n, k).

As with Ak

n,k, we will see below that K0(Bk

l (n, k)) and G0(Bk

l (n, k)) can be identified 

over C(q). Write KC(q)
0 (Bk

l (n, k)) := K0(Bk

l (n, k)) ⊗Z[q,q−1] C(q), and similarly for G0.

Definition 8.9. We identify KC(q)
0 (Bk

l (n, k)) with (V ⊗n)k by identifying [P (x)] ∈
K

C(q)
0 (Bk

l (n, k)) with the canonical basis element v♦x .

Remark 8.10. When x = ∅, Definition 8.9 sends [Px] to v1 ⊗ · · · ⊗ v1, in contrast to the 
conventions in [50] where this class [Px] is sent to v0 ⊗ · · · ⊗ v0. We will compare the 
identification of Definition 8.9 with the one given in [50] in Section 8.12.



42 A.D. Lauda, A. Manion / Advances in Mathematics 376 (2021) 107455
8.5. Relating the categorifications by projection and inflation

If P is a finitely generated projective Bk

l (n, k)-module, define the projection pr(P ) of 
P to be the Ak

n,k-module Ak

n,k⊗Bk

l (n,k)P , where Ak

n,k is a right module over Bk

l (n, k) via 
the quotient map Ξ of Section 4.

If M is a finite-dimensional Ak

n,k-module, define the inflation infl(M) of M to be the 
Bk

l (n, k)-module with the same underlying set as M , with an action of Bk

l (n, k) given by 
applying Ξ to get an element of Ak

n,k and then acting on M . We get functors

pr : Bk

l (n, k)−proj → Ak

n,k−proj, infl: Ak

n,k−fmod → Bk

l (n, k)−fmod; (8.4)

note that infl preserves exact sequences, since it acts as the identity on underlying sets 
and functions between them (it replaces actions of the quotient algebra Ak

n,k by actions 
of the larger algebra Bk

l (n, k), such that an element of Bk

l (n, k) acts the way its image in 
Ak

n,k acts, but it leaves modules and morphisms between them unchanged otherwise).

Remark 8.11. Heegaard Floer homologists may be most familiar with pr and infl as 
special cases of the induction and restriction functors discussed in [44, Section 2.4.2], 
which make sense in a general A∞ setting.

Theorem 8.12. The projection functor induces an isomorphism from K0(Bk

l (n, k)) to 
K0(Ak

n,k), compatible with the identifications of both Grothendieck groups over C(q) with 
(V ⊗n)k in Definitions 8.9 and 8.7.

Proof. By the above discussion, the result follows since projection sends basis elements 
[P (x)] to basis elements [P (λ)] where λ ∈ Dn,k corresponds to x ∈ Vl(n, k). �

On the other hand, Sartori defines interesting families of modules over An,k, and one 
can obtain similar families of modules over Bl(n, k) by inflation. Since inflation sends 
simples L(λ) to simples L(x), we have the following result.

Corollary 8.13. The inflation functor gives us an isomorphism from G0(Ak

n,k) to 
G0(Bk

l (n, k)).

As mentioned above, we will be able to identify K0 and G0 over C(q) on both sides. 
From the identification GC(q)

0 (Bk

l (n, k)) ∼= K
C(q)
0 (Bk

l (n, k)) we define below, the inflated 
modules will give us classes in KC(q)

0 (Bk

l (n, k)) and thus elements of (V ⊗n)k by Defini-
tion 8.9.

Warning 8.14. Under the identifications of KC(q)
0 and GC(q)

0 on both sides, the inflation 
isomorphism is not the inverse of the projection isomorphism. Rather, they are related 
by a scalar multiple; see Proposition 8.32 below.
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To understand which elements of V ⊗n we get from the inflated modules, we need to 
study the identifications of KC(q)

0 and GC(q)
0 for Ozsváth–Szabó’s and Sartori’s algebras; 

this task will occupy the next few sections.

8.6. The Sartori bilinear form for V ⊗n

For a finitely generated projective (graded) left module P over Ak

n,k, define ∨PψS to 
be the dual ∨P = HomAk

n,k
(P, Ak

n,k) of P with its action of Ak

n,k twisted by ψS . Since 
∨P is a right Ak

n,k-module, ∨PψS is a left Ak

n,k-module, like P itself. When P = qiP (λ), 
we have ∨Pψ ∼= q−iP (λ).

Definition 8.15. Let [, ]S be the Z[q, q−1]-bilinear pairing

[, ]S : K0(Ak

n,k) ×K0(Ak

n,k) → Z[q, q−1]

[P ], [P ′] �→ dimq(HomAk

n,k
(∨PψS , P ′)).

Note that we have [[P (μ)], [P (λ)]]S = dimq 1μAk

n,k1λ.

Remark 8.16. The form defined in [78, Proposition 7.12], restricted to finitely-generated 
projective modules, is given by

[[P ], [P ′]]S = dimq(HomAk

n,k
(P, (P ′)∗))

where (P ′)∗ = Homk(P ′, k) with

(aφ)(x) = φ(ψ(a)x)

for φ ∈ (P ′)∗, a ∈ Ak

n,k, and x ∈ P ′. The operation (·) is the involution of Z[q, q−1] given 
by q �→ q−1. It follows from [10, Lemma 2.5] that this definition of the form is equivalent 
to Definition 8.15; this can be seen directly by comparing the values on indecomposable 
projectives [P (λ)].

By Definition 8.7, we get a C(q)-bilinear pairing on V ⊗n. We can describe this pairing 
as follows.

Definition 8.17. Sartori’s bilinear form (, )S on V ⊗n has matrix [k]0! times the identity 
in the standard basis of the weight space (V ⊗n)k.

Proposition 8.18. The identification of KC(q)
0 (Ak

n,k) and (V ⊗n)k from Definition 8.7
identifies [, ]S with (, )S.

Proof. This proposition is a consequence of [78, Proposition 7.12] and Remark 8.16. �
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It follows from Proposition 8.18 that [, ]S is perfect after tensoring with C(q), so it 
gives us an identification of KC(q)

0 (Ak

n,k) with its dual (KC(q)
0 (Ak

n,k))∗.
We can also consider the Z[q, q−1]-bilinear pairing

K0(Ak

n,k) ×G0(Ak

n,k) → Z[q, q−1]

[P ], [M ] �→ dimq(HomAk

n,k
(∨PψS ,M)).

The matrix for this pairing in the bases of projectives for K0 and simples for G0 is 
the identity matrix, so the pairing allows us to identify K0 and G∗

0 (or vice-versa) 
over Z[q, q−1], and thus over C(q). Combining this identification with the isomorphism 
K

C(q)
0 (Ak

n,k) ∼= (KC(q)
0 (Ak

n,k))∗ from [, ]S , we get an identification of KC(q)
0 (Ak

n,k) with 

G
C(q)
0 (Ak

n,k). The pairing on GC(q)
0 (Ak

n,k) induced by [, ]S can be described by

[M,N ]S = χq

(
Ext∗Ak

n,k
(M,N∗)

)
where N∗ is defined as in Remark 8.16 and χq is the q-graded Euler characteristic.

The basis of simples {[L(λ)]} for GC(q)
0 (Ak

n,k) gives us a basis for KC(q)
0 (Ak

n,k) under 
the above identification. Under the identification of this latter space with V ⊗n, the basis 
of simples corresponds to Sartori’s dual canonical basis, as we review in Section 8.8
below.

The change-of-basis matrix from projectives to simples on KC(q)
0 (Ak

n,k) is the matrix 

for [, ]S on KC(q)
0 (Ak

n,k) in the basis of projectives. We compute this matrix below; 
equivalently, we compute the matrix for (, )S in the canonical basis of V ⊗n.

Recall the nonsymmetric quantum integers defined in (5.6).

Proposition 8.19. For μ, λ ∈ Dn,k, we have (v♦μ , v♦λ )S = 0 if μ and λ are too far. If μ, λ
are not too far and correspond to x, y ∈ Vl(n, k), we have

(v♦μ , v♦λ )S = qd[k]0!
n−k∏
i=1

[li]0

where l1, . . . , ln−k are the lengths of the generating intervals between x and y and d =∑k
i=1 | ∧λ

i − ∧μ
i |.

Proof. This proposition follows from Corollary 5.7 and Proposition 8.18. �
Example 8.20. The matrix for (, )S on (V ⊗3)k for 0 ≤ k ≤ 3 is given below.
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(V ⊗3)3 (V ⊗3)2 (V ⊗3)1 (V ⊗3)0

[3]0!

⎛⎝ [
v♦
000

v♦
000 1 ]

⎞⎠ [2]0!

⎛⎜⎜⎜⎜⎜⎝
⎡⎢⎣

v♦
100 v♦

010 v♦
001

v♦
100 1 + q2 + q4 q + q3 q2

v♦
010 q + q3 1 + q2 q

v♦
001 q2 q 1

⎤⎥⎦
⎞⎟⎟⎟⎟⎟⎠

⎡⎢⎣
v♦
110 v♦

101 v♦
011

v♦
110 1 + q2 q 0

v♦
101 q 1 + q2 q

v♦
011 0 q 1

⎤⎥⎦ [
v♦
111

v♦
111 1 ]

8.7. The Ozsváth–Szabó bilinear form for V ⊗n

We can define a similar bilinear pairing [, ]OSz on K0(Bk

l (n, k)).

Definition 8.21. Let [, ]OSz be the Z[q, q−1]-bilinear pairing

[, ]S : K0(Bk

l (n, k)) ×K0(Bk

l (n, k)) → Z[q, q−1]

[P ], [P ′] �→ dimq(HomBk

l (n,k)(∨PψOSz , P ′)).

Note that we have [[P (x)], [P (y)]]OSz = dimq IxBk

l (n, k)Iy. By Definition 8.9, we 
get another C(q)-bilinear pairing on V ⊗n. This pairing has a simple description in the 
standard basis, analogous to Sartori’s. To see this, we compute its matrix in the canonical 
basis, or equivalently the matrix for [, ]OSz in the basis of projectives. This amounts to 
computing dimq IxBk

l (n, k)Iy for x, y ∈ Vl(n, k).

Proposition 8.22. For x, y ∈ V (n, k) that are not too far, the graded dimension of 
IxBk

l (n, k)Iy is qd
∏n−k

i=1 [li]0
(1−q2)k , where l1, . . . , ln−k are the lengths of the generating intervals 

between x and y and d =
∑k

i=1 |xi − yi|. If x and y are too far, this graded dimension 
is zero.

Proof. Since IxBk

l (n, k)Iy can be viewed as k[U1, . . . , Un] modulo the ideal generated by 
monomials of generating intervals between x and y, its graded dimension is some power 
qd (where d is the degree of the minimal generator) times 

∏n−k
i=1 (1−q2li )
(1−q2)n , which equals ∏n−k

i=1 [li]0
(1−q2)k . The degree d of the minimal generator is 

∑k
i=1 |xi − yi|. �

Example 8.23. The matrices for [, ]OSz on K0(Bk

l (n, k)) are given in the following table.

K0(Bk

l (n, 3) K0(Bk

l (n, 2)) K0(Bk

l (n, 1) K0(Bk

l (n, 0))

1
(1−q2)3 [1] 1

(1−q2)2

⎛⎜⎜⎜⎝
[ [P1,2] [P0,2] [P0,1]

[P1,2] 1 + q2 + q4 q + q3 q2

[P0,2] q + q3 1 + q2 q

[P0,1] q2 q 1

]⎞⎟⎟⎟⎠ 1
1−q2

⎛⎜⎜⎜⎝
[ [P2] [P1] [P0]

[P2] 1 + q2 q 0
[P1] q 1 + q2 q
[P0] 0 q 1

]⎞⎟⎟⎟⎠ [1]

where the first matrix is in the basis [P0,1,2] and the last matrix is in the basis P[∅].



46 A.D. Lauda, A. Manion / Advances in Mathematics 376 (2021) 107455
Corollary 8.24. We have

[[pr(P )], [pr(P ′)]]S = [k]0!(1 − q2)k[[P ], [P ′]]OSz

for all objects P, P ′ of Bk

l (n, k)−proj.

Alternatively, one could note that [k]0!(1 −q2)k =
∏k

i=1
(
1 − q2i), which is the graded 

dimension of Sym(U) from Section 7. Thus, Theorem 7.4 implies Corollary 8.24 (and 
thus Proposition 8.22) directly.

The above corollary motivates the following definition.

Definition 8.25. The Ozsváth–Szabó bilinear form (, )OSz on V ⊗n has matrix 1
(1−q2)k

times the identity in the standard basis of the weight space (V ⊗n)k.

Corollary 8.26. The identification of KC(q)
0 (Bk

l (n, k)) and (V ⊗n)k from Definition 8.9
identifies [, ]OSz with (, )OSz.

Proof. We have

[[P (x)], [P (x′)]]OSz = 1
[k]0!(1 − q2)k [[pr(P (x))], [pr(P (x′))]]S

= 1
[k]0!(1 − q2)k (v♦x , v♦x′)S = (v♦x , v♦x′)OSz;

the first equality follows from Corollary 8.24, the second follows from Proposition 8.18, 
and the third follows from the definitions of (, )S and (, )OSz. �

By Corollary 8.26, [, ]OSz is perfect over C(q). Thus, as above, we get an identification 
of KC(q)

0 (Bk

l (n, k)) with (KC(q)
0 (Bk

l (n, k)))∗ and thereby with GC(q)
0 (Bk

l (n, k)). Via this 
identification, the basis of simples for GC(q)

0 (Bk

l (n, k)) gives us as basis of KC(q)
0 (Bk

l (n, k))
and thus of V ⊗n; the change of basis matrix from the basis of projectives (or canonical 
basis) to this basis is the matrix for [, ]OSz in the basis of projectives. Below we will 
identify the basis of simples for KC(q)

0 (Bk

l (n, k)) with the Ozsváth–Szabó dual canonical 
basis of V ⊗n (to be defined).

The pairing on GC(q)
0 (Bk

l (n, k)) induced by [, ]OSz can be described by

[M,N ]OSz = χq

(
Ext∗Bk

l (n,k)(M,N∗)
)
;

again, N∗ is defined as in Remark 8.16 and χq is the q-graded Euler characteristic.

8.8. Dual standard and dual canonical bases

Definition 8.27. From the standard and canonical bases for V ⊗n, we obtain four bases by 
dualizing with respect to the above two bilinear forms (, )S and (, )OSz. We will call these 
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the Sartori dual standard, Sartori dual canonical, Ozsváth–Szabó dual standard, and 
Ozsváth–Szabó dual canonical bases. We will use the following notation; let x ∈ Vl(n, k).

• The Sartori dual standard basis element associated to x will be denoted v♣x .
• The Sartori dual canonical basis element associated to x will be denoted v♥x .
• The Ozsváth–Szabó dual standard basis element associated to x will be denoted 

v♣♣
x .

• The Ozsváth–Szabó dual canonical basis element associated to x will be denoted 
v♥♥
x .

The matrices for the bilinear forms in these dual bases are the inverses of the matrices 
in the original bases.

Example 8.28. Labeling ∧∨ sequences as in Example 8.4, Sartori’s dual canonical basis 
for V ⊗3 is

v♥000=
1

[3]0!
v000 v♥100=

1
[2]0!

v100 v♥010=
1

[2]0!
(v010 − qv100) v♥001=

1
[2]0!

(v001−qv010)

v♥110=v110 v♥101=v101−qv110 v♥011=v011−qv101+q2v110 v♥111=v111

The Ozsváth–Szabó dual canonical basis elements v♥♥
x are obtained by replacing the 

coefficients 1
[k]0! with (1 − q2)k. We have v♣x = 1

[k]0!vx and v♣♣
x = (1 − q2)kvx.

Our identification of KC(q)
0 (Ak

n,k) and GC(q)
0 (Ak

n,k) goes via (KC(q)
0 (Ak

n,k))∗; the basis 
of simples for G0 naturally corresponds to the dual basis to the basis of projectives for 
K0. Under the further identification of KC(q)

0 with its dual, this dual basis gets sent to 
the dual to the basis of projectives for KC(q)

0 under the bilinear form [, ]S. Identifying 
(KC(q)

0 , [, ]S) with (V ⊗n, (, )S) by Definition 8.7, we see that the basis of simples for G0

gets sent to the basis of V ⊗n that is dual to the canonical basis under (, )S, i.e. the Sartori 
dual canonical basis. Similar reasoning applies in the Ozsváth–Szabó case, proving the 
following corollary.

Corollary 8.29. Under the identification KC(q)
0 (Ak

n,k) ∼= (V ⊗n)k of Definition 8.7, we 
have

{indecomposable projective modules P (λ)} ↔ canonical basis elements v♦λ

{simple modules L(λ)} ↔ Sartori dual canonical basis elements v♥λ .

Under the identification KC(q)
0 (Bk

l (n, k)) ∼= (V ⊗n)k of Definition 8.9, we have
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{indecomposable projective modules P (x)} ↔ canonical basis elements v♦x

{simple modules L(x)} ↔ Ozsváth–Szabó dual

canonical basis elements v♥♥
x .

8.9. Sartori’s categorification of standard bases for V ⊗n

Adding to Corollary 8.29, Sartori also defines classes of modules over An,k categori-
fying standard and (Sartori) dual standard basis elements. We review these modules 
below.

Sartori shows [79, Proposition 5.18 and Theorem 5.24] that the algebras An,k are 
graded cellular [26,27] and properly stratified [25]. These properties can be formally de-
duced from the algebras’ connection with category O, but Sartori gives an independent 
proof with an explicit description of projective modules P (μ), standard modules Δ(μ), 
cellular modules (including proper standard modules Δ̄(μ)), and simple modules L(μ)
for μ ∈ Dn,k.

In addition, projective modules have explicit filtrations whose subquotients are stan-
dard modules [79, Proposition 5.19]. Standard modules admit filtrations by proper 
standard modules [79, Proposition 5.21], and proper standard modules admit filtrations 
by simples [79, Proposition 5.22]. These modules and filtrations give rise to various bases 
and change of basis formulas in the Grothendieck group of An,k.

Proposition 5.14 gives a basis for AZ
n,k as a free Z-module. Consequently, it is im-

mediate from [79, Proposition 5.18] that AZ
n,k is graded cellular over Z. Furthermore, 

the four classes of modules L(λ), Δ(λ), Δ̄(λ), and P (λ) for λ ∈ Dn,k all can be defined 
integrally, giving modules for AZ

n,k. It follows that, working over an arbitrary field k, the 
algebras AZ

n,k ⊗Z k are properly stratified algebras.
The filtrations described above along with the properly stratified structure on Ak

n,k

give rise to identities in G0(Ak

n,k):

[P (λ)] =
∑

μ∈Dn,k

dλ,μ[Δ(μ)], [Δ̄(μ)] =
∑

μ∈Dn,k

dλ,μ[L(λ)], [Δ(μ)] = [k]0![Δ̄(μ)]

(8.5)
where

dλ,μ :=
{

qdeg(λμ), if λμ is an oriented lower fork diagram
0, otherwise,

and

[k]0 = q2k − 1
q2 − 1 and [k]0! := [k]0[k − 1]0 . . . [1]0.

Remark 8.30. A priori, one can get a class in G0(Ak

n,k) from a finitely generated projec-
tive module P in two ways. Since Ak

n,k and thus P is finite-dimensional, P is an object of 
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Ak

n,k−fmod and thus gives a class in its Grothendieck group. On the other hand, one can 

use the above isomorphism KC(q)
0 (Ak

n,k) ∼= G
C(q)
0 (Ak

n,k) to get a class in GC(q)
0 (Ak

n,k). In 
fact, this class makes sense in G0(Ak

n,k), and it agrees with the class of P defined in the 
first way since they both have the same expansion in the basis of simples.

The cellular structure can be used to show that the matrices dλ,μ are upper triangular 
with determinant 1, so that they are invertible over Z[q, q−1] and the classes of proper 
standard modules {Δ̄(λ) | λ ∈ Dn,k} also form a basis for G0(Ak

n,k). Since [k]0! is not 
invertible over Z[q, q−1] in general, the classes of projective modules {P (λ) | λ ∈ Dn,k}
and standard modules {Δ(λ) | λ ∈ Dn,k} do not generate G0(Ak

n,k) over Z[q, q−1].
The situation improves if we pass from Z[q, q−1] to C(q). Each of the four classes of 

modules above gives a basis for GC(q)
0 (Ak

n,k) over C(q). In particular, the classes [P (λ)]
give a basis; thus, we can identify GC(q)

0 (Ak

n,k) with KC(q)
0 (Ak

n,k) by identifying [P (λ)]
with [P (λ)] on either side, agreeing with our previous identification as in Remark 8.30. 
We have four bases for KC(q)

0 (Ak

n,k) corresponding to the four bases for GC(q)
0 (Ak

n,k).

Theorem 8.31 (Theorem 7.13 of [78]). Under the identification KC(q)
0 (Ak

n,k) ∼= (V ⊗n)k
of Definition 8.7, we have

{indecomposable projective modules P (λ)} ↔ canonical basis elements v♦λ

{standard modules Δ(λ)} ↔ standard basis elements vλ

{proper standard modules Δ(λ)} ↔ Sartori dual standard basis elements v♣λ

{simple modules L(λ)} ↔ Sartori dual canonical basis elements v♥λ .

8.10. Classes in KC(q)
0 (Bk

l (n, k)) from inflated Sartori modules

As in Corollary 8.13, inflation gives an isomorphism from G0(Ak

n,k) to G0(Bk

l (n, k)). 
Passing to C(q), we can compare inflation with the isomorphism

Φ : GC(q)
0 (Ak

n,k)
∼=−→ K

C(q)
0 (Ak

n,k)
pr−1

−−−→ K
C(q)
0 (Bk

l (n, k))
∼=−→ G

C(q)
0 (Bk

l (n, k)).

Proposition 8.32. With Φ defined as above, we have infl = [k]0!(1 − q2)kΦ.

Proof. The formula follows from the fact that the Sartori bilinear form (, )S is [k]0!(1 −
q2)k times the Ozsváth–Szabó form (, )OSz. �

The finite-dimensional modules over Bk

l (n, k) defined above give us classes in 
K

C(q)
0 (Bk

l (n, k)) via the identification of KC(q)
0 (Bk

l (n, k)) with GC(q)
0 (Bk

l (n, k)). By Defi-
nition 8.9, we get elements of (V ⊗n)k.
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Theorem 8.33. Let λ ∈ Dn,k. Under the above identification, the modules over Bk

l (n, k)
obtained by inflating Sartori’s indecomposable projective, standard, proper standard, and 
simple modules P (λ), Δ(λ), Δ(λ), and L(λ) categorify

• [k]0!(1 − q2)k times the canonical basis element v♦λ ,
• [k]0!(1 − q2)k times the standard basis element vλ,
• the Ozsváth–Szabó dual standard basis element v♣♣

λ , and
• the Ozsváth–Szabó dual canonical basis element v♥♥

λ

of (V ⊗n)k respectively.

Proof. Proposition 8.32 implies that infl: G0(Ak

n,k) → G0(Bk

l (n, k)), viewed a map 

from KC(q)
0 (Ak

n,k) to KC(q)
0 (Bk

l (n, k)), is equal to [k]0!(1 − q2)k times the isomorphism 

pr−1 : KC(q)
0 (Ak

n,k) → K
C(q)
0 (Bk

l (n, k)) that we have chosen. Thus, inflating a Sartori 
module and using Definition 8.9 to get a class in (V ⊗n)k amounts to using Theorem 8.31
to get a class in (V ⊗n)k directly, then multiplying the result by [k]0!(1 − q2)k. The claim 
follows from Theorem 8.31 plus the fact that multiplying the Sartori dual standard and 
dual canonical bases by [k]0!(1 − q2)k gives the Ozsváth–Szabó dual standard and dual 
canonical bases. �
8.11. Compact derived categories

As discussed in [31, Section 5.1], the homotopy category of bounded complexes of 
finitely generated projective (graded) Bk

l (n, k)-modules Hb(Bk

l (n, k)−proj) is equivalent 
to the compact derived category Dc(Bk

l (n, k)), i.e. the full subcategory of the unbounded 
derived category D(Bk

l (n, k)) on compact objects. An object x of an additive category C
is compact if whenever the coproduct 

∐
s∈S s exists for some set S of objects of C, the 

natural map

∐
s∈S

HomC(x, s) → HomC

(
x,
∐
s∈S

s

)

is an isomorphism. We have

K(Hb(Bk

l (n, k)−proj)) ∼= K0(Bk

l (n, k))

and thus

K0(Bk

l (n, k)) ∼= K(Dc(Bk

l (n, k))).

Passing to C(q), we can use Definition 8.9 to identify KC(q)(Dc(Bk

l (n, k))) with (V ⊗n)k
(we could do the same with the Sartori algebra).



A.D. Lauda, A. Manion / Advances in Mathematics 376 (2021) 107455 51
Corollary 8.34. Under the above identification, we have classes in KC(q)(Dc(Bk

l (n, k)))
categorifying

• the canonical basis,
• [k]0!(1 − q2)k times the canonical basis,
• [k]0!(1 − q2)k times the standard basis,
• the Ozsváth–Szabó dual standard basis, and
• the Ozsváth–Szabó dual canonical basis

of (V ⊗n)k.

8.12. Comparison with the conventions of [50]

In [67,66], Ozsváth–Szabó give Bl(n, k) different gradings based on a choice of orienta-
tions for n points. Our quotient map from Ozsváth–Szabó’s algebra to Sartori’s algebra 
is a degree-zero map when Ozsváth–Szabó’s algebra is given the gradings for all n points 
oriented negatively.

In [50], Ozsváth–Szabó’s algebra with these gradings was used to categorify tensor 
powers of V ∗, rather than of V . Since Sartori uses his algebra to categorify tensor powers 
of V , our conventions cannot match those of [50] exactly.

One way to relate the conventions is as follows. The “right modified basis” for (V ∗)⊗n

defined in [50] can be described (up to a power of q that we will change for convenience) 
by letting wi be the standard basis element with v∗0 in position i and v∗1 in all other 
positions; then �′i := wi + qwi+1 for 1 ≤ i ≤ n − 1, while �′n := wn. Wedge products of 
the elements �′i (taken with i in increasing order in [50]) form the right modified basis 
for (V ∗)⊗n.

As vector spaces, identify V ⊗n with (V ∗)⊗n by sending the standard basis element 
vj1 ⊗ · · · ⊗ vjn to the dual basis element v∗jn ⊗ · · · ⊗ v∗j1 where ji ∈ {0, 1}. Then �′n gets 
sent to �1 = e1 while �′i gets sent to �n+1−i = en+1−i + qen−i for 1 ≤ i ≤ n − 1. More 
generally, wedge products of the �′i are sent to the canonical basis for V ⊗n. One can 
check that this identification intertwines the braiding on V with the braiding on V ∗.

In [50], for an I-state x with 0 /∈ x (a right I-state), the element [P (x)] of K0(Bk

r(n, k))
was identified with the right modified basis element �′x1+1 ∧ · · · ∧ �′xk+1 of (V ∗)⊗n, where 
Bk

r(n, k) is defined as in Remark 2.18. Translating to an element of V ⊗n as in the above 
paragraph, we get �n−x1 ∧ · · · ∧ �n−xk

. This is the canonical basis element v♦x′ associated 
to the left I-state R(x) (and thus [P (R(x))]) in Definition 8.9, where R is the Ozsváth–
Szabó symmetry mentioned in Remark 2.18 and R(x) = {n − xi | 1 ≤ i ≤ k}. It now 
follows from [67, Lemma 10.1], [50, Theorem 1.4.2], and the previous paragraph that 
under the conventions of Definition 8.9, Ozsváth–Szabó’s positive-crossing bimodule Pi

over Bl(n, k) categorifies the braiding acting on factors (i, i +1) of V ⊗n for 1 ≤ i ≤ n −1. 
Similarly, Ozsváth–Szabó’s negative-crossing bimodule Ni categorifies the inverse of the 
braiding acting on factors (i, i + 1).
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9. Bimodules for quantum group generators

9.1. The Sartori F functor

Let Γ∨
k denote the set of ∨∧-sequences in Dn,k whose leftmost symbol is a ∨, and let 

Γ∧
k be the set of λ ∈ Dn,k whose leftmost symbol is a ∧. Define idempotents

e∨k =
∑
λ∈Γ∨

k

1λ, e∧k =
∑
λ∈Γ∧

k

1λ. (9.1)

For λ ∈ Γ∨
k , set λ(∧) ∈ Γ∧

k+1 to be the sequence obtained from λ by swapping the lead 
term from ∨ to ∧. Similarly, for μ ∈ Γ∧

k+1 define μ∨ ∈ Γ∨
k by swapping the first symbol 

from ∧ to ∨. This operation defines a bijection Γ∨
k → Γ∧

k+1.
For any λ, μ ∈ Γ∧

k+1, there is a natural surjective map 1μAZ
n,k+11λ −→ 1μ(∨)AZ

n,k1λ(∨) . 
We thus get a surjective algebra homomorphism

Ψ: e∧k+1AZ
n,k+1e

∧
k+1 −→ e∨kAZ

n,ke
∨
k (9.2)

and thereby a well-defined surjective homomorphism (see [79, Proposition 5.36])

AZ
n,k+1/AZ

n,k+1e
∨
k+1AZ

n,k+1 → e∨kAZ
n,ke

∨
k

[a] �→ Ψ(e∧k+1ae
∧
k+1). (9.3)

Consider the projective module P∨
k := AZ

n,ke
∨
k . Sartori shows in [79, Section 5.5] that 

P∨
k is the sum of all the indecomposable projective-injective left AZ

n,k-modules. The left 
AZ

n,k-module P∨
k has a right AZ

n,k+1-module structure induced by the map

AZ
n,k+1 −→ AZ

n,k+1/AZ
n,k+1e

∨
k+1AZ

n,k+1 −→ e∨kAZ
n,ke

∨
k (9.4)

where the first arrow is the quotient map and the second is the surjective map (9.3). 
This gives P∨

k the structure of an (AZ
n,k, AZ

n,k+1)-bimodule; call this bimodule Fk = FS
k . 

One can define a right-exact functor

Fk = FS
k : AZ

n,k+1−gmod
Fk⊗AZ

n,k+1
·

An,k−gmod. (9.5)

We have Fk−1 ◦Fk = 0. Applying Fk to an indecomposable projective P (μ) = AZ
n,k+11μ

gives either an indecomposable projective or zero:

Fk(P (μ)) := Fk ⊗AZ
n,k+1

AZ
n,k+11μ =

{
AZ

n,k1λ, if λ(∧) = μ for some λ ∈ Γ∨
k ;

0, otherwise.
(9.6)

Sartori views F as inducing a map on a topological Grothendieck group of a derived 
analogue of G0(Ak

n,k). On K0(Ak

n,k), derived categories and topological completions are 
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not required for F to induce a map; any additive functor between categories of finitely 
generated projective modules induces a map on K0(Ak

n,k).

Corollary 9.1 (cf. Proposition 5.8 of [78] and equation (9.6) above). The map from 
K0(Ak

n,k+1) to K0(Ak

n,k) induced by FS
k agrees with the map F : (V ⊗n)k+1 → (V ⊗n)k

under the identification of Definition 8.7.

9.2. The Ozsváth–Szabó F functor

As done above for the Sartori algebras, define idempotents in Bl(n, k) by

e∨k =
∑

x∈Vl(n,k) : 0/∈x

Ix, e∧k =
∑

x∈Vl(n,k) : 0∈x

Ix. (9.7)

For x ∈ Vl(n, k) with 0 /∈ x, let x(∧) = x ∪ {0}; for x ∈ Vl(n, k) with 0 ∈ x, let 
x(∨) = x \ {0}. If 0 ∈ x ∩ y, the structure of generating intervals gives us a natural 
surjective map

IxBl(n, k + 1)Iy → Ix(∨)Bl(n, k)Iy(∨)

giving us a surjective ring homomorphism

Ψ′ : e∧k+1Bl(n, k + 1)e∧k+1 → e∨kBl(n, k)e∨k

Thus, analogous to [79, Prop 5.36], we have a well defined surjective map

Bl(n, k + 1)/Bl(n, k + 1)e∨k+1Bl(n, k + 1) → e∨kBl(n, k)e∨k
[b] �→ Ψ′(e∧k+1be

∧
k+1).

Let P∨
k = Bl(n, k)e∨k . As in the Sartori case, the above homomorphism gives P∨

k the struc-
ture of a right module over Bl(n, k+1); thus, P∨

k is a bimodule over (Bl(n, k), Bl(n, k+1)). 
Call this bimodule Fk = FOSz

k . We define

Fk = FOSz
k : Bl(n, k + 1)−proj → Bl(n, k)−proj

to be the tensor product with FOSz
k . We have Fk−1 ◦ Fk = 0 and

Fk(P (x)) =
{
P (x \ {0}) 0 ∈ x
0 otherwise.

Theorem 9.2. The map from K0(Bk

l (n, k + 1)) to K0(Bk

l (n, k)) induced by FOSz
k agrees 

with the map F : (V ⊗n)k+1 → (V ⊗n)k under the identification of Definition 8.9.

Proof. The result follows from [78, Proposition 5.8] and Definition 8.9. �
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9.3. Comparing the Ozsváth–Szabó and Sartori functors

As above, let FS
k and FOSz

k denote the bimodules giving rise to the Sartori and 
Ozsváth–Szabó functors FS

k and FOSz
k . We write pr(FOSz

k ) and (FS
k )infl for the bimod-

ules over (AZ
n,k, Bl(n, k+1)) obtained by projecting the left action of FOSz

k and inflating 
the right action of FS

k respectively.

Theorem 9.3. The bimodules pr(FOSz
k ) and (FS

k )infl are isomorphic.

Proof. We just need to show that the right actions agree, which follows from commuta-
tivity of the square

Bl(n, k + 1)/Bl(n, k + 1)e∨k+1Bl(n, k + 1) Ψ′

Ξ

e∨kBl(n, k)e∨k

Ξ

AZ
n,k+1/AZ

n,k+1e
∨
k+1AZ

n,k+1 Ψ
e∨kAZ

n,ke
∨
k

.

To see that the square commutes, note that the generator fx,y at the top left (with 
0 ∈ x ∩ y) gets sent by the left edge to the basis element of the minimal oriented fork 
diagram between x and y, which starts with at least one ∧-labeled ray. The bottom 
edge “forks together” all these ∧-labeled rays and sends this basis element to the basis 
element of the minimal oriented fork diagram on the bottom right, which has one extra 
∨ at the left of the new fork. On the other hand, the top edge sends fx,y to fx(∨),y(∨) , 
whose associated unoriented fork diagram also “forks together” the initial sequence of 
∧-labeled rays in the fork diagram for fx,y, and the right edge sends fx(∨),y(∨) to the 
basis element of the minimal oriented fork diagram for this unoriented fork diagram. The 
result now follows from Z[U1, . . . , Un]-linearity of all the edges. �

It follows that the functors FS
k and FOSz

k intertwine the projection functors from 
Bl(n, k + 1)−proj to AZ

n,k+1−proj and from Bl(n, k)−proj to AZ
n,k−proj.

9.4. Duals of the F functors

Let

E′
k = (E′)Sk := ∨FS

k = HomAZ
n,k

(FS
k ,AZ

n,k)

(see [79, Section 5.6]) and

E′′
k = (E′′)OSz

k := ∨FOSz
k = HomBl(n,k)(FOSz

k ,Bl(n, k)).
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As before, these bimodules square to zero. The functors

E ′
k := E′

k ⊗− : AZ
n,k−fmod → AZ

n,k+1−fmod

and

E ′′
k := E′′

k ⊗− : Bl(n, k)−fmod → Bl(n, k + 1)−fmod

are exact since E′
k and E′′

k are projective as right modules, so they induce maps on G0
after tensoring with k.

The matrix for G0(E ′
k) in the basis of simples is the transpose of the matrix for 

K0(FS
k ) in the basis of projectives. Identifying GC(q)

0 (Ak

n,k) with (V ⊗n)k via KC(q)
0 (Ak

n,k)
as in Definition 8.7, G0(E ′

k) sends Sartori dual canonical basis elements to Sartori dual 
canonical basis elements or zero. Analogous claims hold for E ′′

k in the Ozsváth–Szabó 
setting.

Proposition 9.4 (cf. Theorem 7.19 of [78]). The map from (V ⊗n)k to (V ⊗n)k+1 induced 
by the Sartori functor E ′

k agrees with the action of the quantum group element6

E′ := qn−1

[k + 1]0
E = q−1 1

[k + 1]0
EK. (9.8)

Below we describe the decategorification of the Ozsváth–Szabó functor E ′′
k , which is 

similar.

Theorem 9.5. The map from (V ⊗n)k to (V ⊗n)k+1 induced by E ′′
k agrees with the action 

of the quantum group element

E′′ = q−1(1 − q2)EK = (q−1 − q)EK.

Proof. We claim that the map [E ′′
k ] induced by E ′′

k equals 1 − q2(k+1) times the map 
[E ′

k] induced by E ′
k; the result then follows from Proposition 9.4. Indeed, [E ′′

k ] acts on 
Ozsváth–Szabó dual canonical basis elements the way [E ′

k] acts on Sartori dual canonical 
basis elements. For x ∈ Vl(n, k) we have v♥♥

x = [k]0!(1 − q2)kv♥x , and for y ∈ Vl(n, k+1)

6 Sartori defines E′ in an arbitrary weight space by

E = q
(1 − q2K1 )
(1 − q2)

E
′
K

−1
,

which can be interpreted as defining E′ in the modified (or idempotent form) U̇q(gl(1|1)) of Uq(gl(1|1))
defined in [89, Definition 3.2] by

E
′1(a,b) = q

a+b−1
/[a + 1]0E1(a,b).
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we have v♥♥
y = [k + 1]0!(1 − q2)k+1v♥y . Thus, [E ′′

k ] sends a Sartori dual canonical basis 
element for (V ⊗n)k to

[k + 1]0!(1 − q2)k+1

[k]0!(1 − q2)k = [k + 1]0(1 − q2) = 1 − q2(k+1)

times where [E ′
k] sends this basis element. �

Remark 9.6. The generators E′′ and F satisfy the anticommutation relation E′′F +
FE′′ = 1 − K2; compare with [87, Section 1.2]. We set T = K2, a slight change of 
conventions from what Tian writes.

Define infl(E′
k) and (E′′

k)pr by inflating the left action on E′
k and projecting the right 

action on E′′
k .

Theorem 9.7. The bimodules infl(E′
k) and (E′′

k)pr over (Bl(n, k+1), AZ
n,k) are isomorphic.

Proof. This result is a consequence of Theorem 9.3 because infl(E′
k) = infl(∨FS

k ) ∼=
∨((FS

k )infl) and (E′′
k)pr = (∨FOSz

k )pr = ∨(pr(FOSz
k )). �

It follows that the functors E ′
k and E ′′

k intertwine the inflation functors from 
AZ

n,k+1−fmod to Bl(n, k + 1)−fmod and from AZ
n,k−fmod to Bl(n, k)−fmod.
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