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Abstract salt marshes are valuable ecosystems that must trap sediments and accrete in order to
counteract the deleterious effect of sea level rise. Previous studies have shown that the capacity of
marshes to build up vertically depends on both autogenous and exogenous processes including
ecogeomorphic feedbacks and sediment supply from in-land and coastal ocean. There have been numerous
efforts to quantify the role played by the sediments coming from marsh edge erosion on the resistance of
salt marshes to sea level rise. However, the majority of existing studies investigating the interplay between
lateral and vertical dynamics use simplified modeling approaches, and they do not consider that marsh
retreat can affect the regional-scale hydrodynamics and sediment retention in back-barrier basins. In this
study, we evaluated the fate of the sediments originating from marsh lateral loss by using

high-resolution numerical model simulations of Jamaica Bay, a small lagoonal estuary located in New York
City. Our findings show that up to 42% of the sediment released during marsh edge erosion deposits on
the shallow areas of the basin and over the vegetated marsh platforms, contributing positively to the
sediment budget of the remaining salt marshes. Furthermore, we demonstrate that with the present-day
sediment supply from the ocean, the system cannot keep pace with sea level rise even accounting for

the sediment liberated in the bay through marsh degradation. Our study highlights the relevance of multiple
sediment sources for the maintenance of the marsh complex.

1. Introduction

Salt marshes provide critical ecosystem services to coastal communities (Costanza et al., 1997). The eco-
nomic value of these services has been estimated up to 5 million USD per km? in the United States and
1 billion USD per year for all U.K. marshes (Costanza et al., 2008; Leonardi et al., 2017). Salt marshes are
inherently unstable along the horizontal direction as they can retreat or expand in response to sediment
supply and hydrodynamics (Fagherazzi et al., 2013; Tommasini et al., 2019). Lateral marsh dynamics are
strongly related to the rate of sea level rise and to the extension of nearby tidal flats (Fagherazzi
et al., 2013; Mariotti & Fagherazzi, 2013a). In fact, waves are locally generated by winds in tidal basins,
and large tidal flats increase wave heights and promote high erosion rates (Fagherazzi & Wiberg, 2009).
Lateral marsh erosion is recognized as the chief mechanism by which salt marshes are being lost in many
estuaries and coastal lagoons around the world (e.g., Marani et al., 2011; Mariotti & Fagherazzi, 2010;
Schwimmer, 2001). On the contrary, salt marshes are thought to be stable in the vertical direction due to
positive feedbacks between depth of tidal inundation, vegetation biomass production, and sediment
trapping efficiency (Marani et al., 2007, 2010; Morris et al., 2002; Pasternack et al., 2000). Projections of
coastal wetland response to sea level rise suggest a 20% to 50% reduction of the present-day marsh area by
2100 (Craft et al., 2009; McFadden et al., 2007). These predictions raise concerns about the adaptive
capacity of salt marshes to environmental change. Hence, a better understanding of the mechanisms
governing salt marsh evolution is crucial to predict the future impact of sea level rise in coastal areas
(Orson et al., 1985; Reed, 1995; Stevenson et al., 1985).

Coastal bays must trap sediments to adapt to rising sea level (Fagherazzi et al., 2014; Zhang et al., 2019).
Indeed, a positive sediment budget is necessary for the survival of salt marshes and tidal flats
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Figure 1. Study area. Long Island (New York City [NYC]) and Jamaica Bay location (a), bathymetry of Jamaica Bay (b), and present-day salt marsh distribution
(green areas) and locations of measurements (c). Points 1 and 2 represent the USGS stations (01311875 and 01311850) where water level and SSC data are
collected; Point 3 represents the location of the flow velocity measurements; and green lines represent the boundaries of the numerical domain.

(Donatelli, Ganju, Fagherazzi, et al., 2018; Fagherazzi et al., 2014; Ganju et al., 2015). Ganju et al. (2017)
demonstrated the existence of a relationship between sediment budget and the unvegetated-vegetated
marsh ratio (the unvegetated area consists of ponds, channels, and tidal flats), indicating that sediment
deficits are linked to the conversion of vegetated marsh portions into open water. Marsh loss might in
turn affect the ability of estuarine systems to retain sediments and cause further deterioration of salt
marshes through a positive feedback loop (Donatelli et al., 2020; Donatelli, Ganju, Zhang, et al., 2018).
Recent studies indicate that the capacity of salt marshes to keep pace with sea level rise strongly depends
on the local tidal range and on the suspended sediment concentration (SSC) in the water that floods the
marsh complex during each tidal cycle (Kirwan et al., 2010, 2016). At present, marsh vertical accretion
has been rarely analyzed along with horizontal erosional processes (Carniello et al., 2009; Mariotti &
Canestrelli, 2017), although the source of sediments generated by edge erosion has been experimentally
demonstrated to further increase threshold rates of sea level rise (Ganju et al., 2015; Hopkinson
et al., 2018). Simplified marsh-mudflat models have included sediment recycling in salt marsh evolution
(e.g., Mariotti & Carr, 2014), but this contribution has been evaluated only in idealized test cases (Mariotti
& Canestrelli, 2017). Herein, we use Jamaica Bay as test case to show how the amount of sediments derived
from marsh deterioration is redistributed within this highly urbanized estuarine embayment in New York
City (USA). We present results of numerical model experiments for the hydrodynamics and sediment trans-
port of Jamaica Bay, using the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST)
modeling system (Warner et al., 2010) and the associated flow-vegetation module (Beudin et al., 2017). A
new routine recently implemented in COAWST was used, which explicitly computes marsh lateral
erosion based on wave thrust acting on the marsh boundary (Leonardi et al., 2016).

Jamaica Bay watershed hosts more than 2 million people, and its high level of urbanization strongly limits
the capacity of this estuary to adapt to external disturbances. Hence, many concerns are rising about the resi-
lience of the bay. The sediment budget of an estuary is an important resilience indicator because it controls
the evolution of intertidal areas and their vulnerability to storms and sea level rise. Marine-derived sediment
has historically been a crucial component of the sediment budget of the bay (Renfro et al., 2016), but human
interventions at Rockaway Inlet have drastically reduced the movement of offshore sediments into the back-
barrier basin (Hartig et al., 2002). Peteet et al. (2018) demonstrated, studying two sediment cores taken from
marshes located in the eastern and western parts of the bay, that the inorganic fraction is strongly reduced
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Table 1

Sediment Characteristics: Sediment Class, Origin, Settling Velocity (mm/s), and Critical Shear Stress for Erosion (N/mz)
Sediment class Origin Settling velocity (mm/s) Critical stress for erosion (N/mz)

1 Medium sand Bed 40 0.5

2 Fine sand Bed 5 0.1

3 Silt Bed 1.5 0.05

4 Mud Marsh boundary 0.1 0.05

5 Mud Offshore 0.005 0.05

with respect to the past and only the increase in organic matter flux has allowed Jamaica Bay marshes to

keep pace with sea level rise. The lower mineral content due to the reduction in sediment supply has also
caused marsh structural weakness and edge failure (Peteet et al., 2018). In this study, we attempt to investi-
gate the fate of the sediments released during marsh edge erosion in Jamaica Bay and analyze the mechan-
isms governing the sediment dynamics in shallow tidal lagoons.

2. Study Site

Jamaica Bay is a small and highly urbanized coastal lagoon estuary located in Brooklyn, New York City
(NYC, Figure 1a). The bay has a total basin area of 50 km?, with a marsh/basin ratio of ~0.1. The system
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Figure 2. Volume fractions of medium sand (a), fine sand (b), and silt
(c) initially distributed on the seabed at the beginning of the simulation.

is connected to the Atlantic Ocean through Rockaway Inlet. The inlet
dimensions are limited by the former airport Floyd Bennett Field at the
north side and the Rockaway Peninsula at the south side. Waves are
locally generated, and tides are mainly semidiurnal, with a mean tidal
range of ~1.6 m. The system is flood dominated with a net import of sedi-
ment from offshore (Renfro et al., 2016). Deep navigating channels (aver-
age depth of 10 m) border the basin, while the central region is shallower
and characterized by extensive salt marshes and mudflats (Figure 1b),
which provide critical ecosystem services in terms of coastal protection
(Marsooli et al., 2017). Furthermore, these wetlands host 324 species of
migratory and resident birds and over 90 fish species and are deemed
important for horseshoe crabs and diamondback terrapins (New York
City Department of Environmental Protection, 2007). As documented by
the New York City Department of Environmental Protection (2007), over
75% of salt marshes in Jamaica Bay have been lost since the mid-1800s,
and up to a 50% of the marsh deterioration has occurred in the last few
decades. The main causes of salt marsh decline have been related to an
elevated wave activity associated with ship wakes (Black, 1981; New
York City Department of Environmental Protection, 2007), rising sea
level (Gornitz et al., 2001; Hartig et al., 2002), increased tidal range
(Swanson & Wilson, 2008), and excess nutrients (Wigand et al., 2014).
Furthermore, human interventions may have exacerbated marsh loss
through alteration of the circulation patterns and sediment budget
(Renfro et al., 2016). The present-day salt marsh distribution is depicted
in Figure 1c, and Spartina alterniflora is the dominant vegetation
species in the area.

3. Methods

The hydrodynamics of the system has been simulated using the COAWST
modeling framework (Warner et al., 2010). In this study, the circulation
model ROMS (Regional Ocean Modeling System) (Shchepetkin &
McWilliams, 2005; Warner et al.,, 2008) and the wave model SWAN
(Simulating WAves Nearshore) (Booij et al., 1999) have been fully coupled
on the same computational grid. ROMS is a three-dimensional, free sur-
face, finite-difference, terrain following model that solves the Reynolds-
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Figure 3. Wind speed (m/s, a), water level (m, b), and SSC (mg/L, c) measurements collected at the NOAA Buoy 44065
and at the inlet mouth between August and October 2015.

averaged Navier-Stokes (RANS) equations using the hydrostatic and Boussinesq assumptions (Haidvogel
et al., 2008). SWAN is a third-generation spectral wave model based on the action balance equation (Booij
et al., 1999). The model simulates the generation and propagation of wind waves accounting for shifting
in relative frequency due to variations in water depth and currents, depth-induced refraction, wave-wave
interactions, and dissipation (white capping, depth-induced breaking, and bottom friction). The
flow-vegetation interaction is computed by employing the vegetation module implemented by Beudin
et al. (2017), which includes plant posture-dependent three-dimensional drag, in-canopy wave-induced
streaming, and production and dissipation of turbulent kinetic energy for the vertical mixing
parameterization. The spatially averaged vegetation drag force is calculated using a quadratic law, and the
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Figure 4. Wind rose for the study area in August-October 2015 (wind station: NOAA Buoy 44065, a); distribution of the mean wave height (cm) and standard
deviation (cm) for each subbasin (b). Wave height data are binned every 1 cm.

reduction in drag due to plant flexibility is computed following Luhar and Nepf (2011). The selected
turbulence model is the k-¢ scheme, which accounts for extra dissipation and turbulence kinetic energy
production due to vegetation (Uittenbogaard, 2003). Similarly, wave dissipation due to vegetation is
accounted for in the model by modifying the source term of the action balance equation following the
formulation of Mendez and Losada (2004). The friction exerted by the bed on the flow is computed using
a bottom boundary layer formulation (Warner et al., 2008) that includes enhanced wave-based apparent
roughness (Madsen, 1994). Wind data are based on observations collected every 6 min at the NOAA Buoy
40065 and applied uniformly on the numerical domain (Figures 3a and 4a).

The number of interior cells is 997 x 387, with cell size varying from 20 to 40 m in the along-bay and
cross-bay directions; seven equally spaced layers are defined in the vertical direction. The model is forced
at the seaward boundaries with tides, based on observations from the USGS station (USGS 01311875) located
at the Rockaway Inlet (Station 1, Figure 1c); a reduction factor is applied to the measured water elevations to
consider the effects of convergent topography on the tide when the signal is applied on the boundaries of the
numerical domain (Marsooli et al., 2016). The results of the model are compared with water level data col-
lected during 2 weeks in August 2015 at two USGS stations (USGS 01311875 and USGS 01311850, Points 1
and 2 in Figure 1c) and with flow velocities data measured at the North Channel (Point 3, Figure 1c). The
model performance is evaluated using root-mean-square error (RMSE), bias, and skill scores (supporting
information Table S1). The sediment model incorporates five sediment classes: two noncohesive and three
cohesive (Table 1). Cohesive sediment transport is not modeled in ROMS, even though erosion is specified
using a flux equation, as it is commonly done for cohesive sediment. Sediment deposition and erosion fluxes
at the bottom boundary are formulated as in Warner et al. (2008). One bed layer is implemented with a thick-
ness of 0.25 m and a uniform porosity of 0.5. Three sediment types are initially uniformly distributed over the
bed (medium sand, fine sand, and medium silt). A simulation with the initial bed sediment distribution is
run for 200 days using only tides. A morphological factor (200) is applied to speed up the sediment dynamics
process (e.g., Van der Wegen et al., 2010). Two cohesive sediment classes are used to simulate the material
eroded from the marsh boundary (Fagherazzi et al., 2013) and the sediments imported from offshore, respec-
tively (Table 1). The input of sediment coming from the ocean is defined imposing a constant SSC at the wes-
tern boundary of the numerical domain. The sediment parameters (Table 1) are chosen comparing the
modeled signal with the SSC data collected at the USGS station in Rockaway inlet for 2 weeks in August
2015 (Figures S1 and 3c). The modeled SSC time series exhibit a good agreement with measurements
(Table S1 and Figure S1). Salt marsh coverage data were derived from the Center for Remote Sensing and
Spatial Analysis (CRSSA) geographic information systems database. Vegetation parameters are set as fol-
lows: stem height of 0.8 m, diameter of 0.6 cm, and density of 250 shoots/ m? (Marsooli et al., 2016). A simu-
lation with duration of 80 days (29 July to 16 October 2015) is performed using realistic forcing (e.g., tides
and winds) and five sediment classes (Table 1). In this numerical experiment the sediment bed resulting
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Figure 5. Sea surface amplitude ratio (a) and sea surface phase

(b) of My relative to M, for the present-day bay morphology. Slack water
period asymmetry (min, c) and difference in peak velocities (m/s, d) in
Jamaica Bay.

from the 200 day run (Figure 2) is used as initial condition (Ralston
etal., 2012). The sediments are classified depending on the location where
they are initially released in the numerical domain. For instance,
marine-derived materials deposited within the basin are still considered
offshore sediments, even though they might be resuspended and trapped
by salt marshes during the model's run. To better understand the
mechanisms governing the sediment dynamics in Jamaica Bay, an
idealized simulation forced only by tides was run for a spring-neap tidal
cycle to quantitatively evaluate whether fine sediments (settling
velocity = 0.01 mm/s and critical shear stress for erosion = 0.05 Pa) can
accumulate in the deep channels bordering the basin until their removal
by dredging, or whether these sediments can be reworked and eventually
be deposited on marsh platforms as well. More specifically, we defined an
initial bed thickness of 0.2 m within the channels of the eastern basin
where the bay experiences the lowest shear stress level. In our numerical
experiments, we defined as shallow area the entire bay excluding the deep
channels bordering the basin.

3.1. Wave Thrust and Marsh Boundary Erosion Calculations

The wave thrust (the integral along the vertical of the dynamic pressure
of waves) is explicitly computed by the model following Leonardi
et al. (2016) and Tonelli et al. (2010). The total wave thrust (LWT) is given
by the sum of two terms:

LWT = LWT s, + LWTpsr, @®

The above mean sea level component (LWT,s;,) accounts for the hydro-
static pressure from wind waves and is calculated as follows:

LWTas, = 0.508H2,., )

where p is the density of water, g is the acceleration due to gravity, and
H,ave is the significant wave height. The below sea level component
(LWTjgs;) accounts for the dynamic pressure of wind waves and includes
the effect of changing water level:

LWTgsy = pngHwave (3)

where K, is the pressure-response factor, and it is computed following
Dean and Dalrymple (1991):

_sinh(k(h +¢))

P cosh(kh) “

where h is the marsh elevation with respect to mean sea level, ¢ is the
water level, and k is the wave number.

Based on the direction of the waves and grid orientation, the fraction of
total thrust that is normal to the marsh-cell face is computed. The effect
of water level is considered by reducing exponentially the wave thrust as
water level increases above the marsh scarp (Tonelli et al., 2010). After
modifying the wave thrust based on water level, the resulting wave thrust
from all the cell faces is calculated to obtain a total thrust at each cell cen-
ter. When the thrust acts on the marsh boundary, marsh erosion takes
place generating a sediment bed load on the adjacent cell. The mass of
sediment released from marsh cells (M0 in kg) depends on wave
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Marsh erosion occurs through a change in bed mass by taking the eroded
material from the marsh cell and adding it to the adjacent open-water cell
where the wave parameters were computed. The marsh erodibility coeffi-
cient, which is inversely proportional to the marsh retreat rate, is chosen

to match a marsh erosion rate of 2 m/year. An initial sediment mass was

. . . ;. defined over the vegetated surfaces. The sediment parameters are listed

Water depth [m] in Table 1.

Basin W

3.2. Evaluation of Tidal Asymmetry

The distortion of the tidal wave is evaluated using the Friedrichs and
Aubrey (1988) formulation. Asymmetric tides are important for the trans-
port and deposition of sediment in shallow estuaries (Aubrey &
— | Speer, 1985; Gerkema, 2019). The amplitude and phase ratios between
B — the fourth-diurnal M, and the semidiurnal M, components were com-
puted within the entire back-barrier basin using T_TIDE (Pawlowicz
et al., 2002). The ratio between the amplitude of the overtide and the M,
component shows the magnitude of the asymmetry, while the relative
phase difference (¢ = 2 - 8y, — 9y, ) reveals the sense of the asymmetry

Basin £ (0° < ¢ < 180°: flood dominant; 180° < ¢ < 360°: ebb dominant; and

Figure 6. Mean shear stress (Pa) distribution as a function of the water ¢ = 0°, 180°: symmetric tidal wave). An examination of slack duration
depth (m) for each subbasin (a). Water depth data are binned every and maximum velocity is performed following Dronkers (1986). An asym-
0.2 m. Time of marsh submergence relative to a spring-neap tidal cycle in - metry in the slack water periods may affect the residual transport of fine

each subbasin (b).

Table 2

sediments, while a difference in the peak velocities during ebb and flood

may influence the residual transport of coarse material. Flood-dominant
slack-period asymmetry occurs when the time derivative of the velocity at high water is smaller than the
velocity variation at low water. The water slack period has been defined as the time where the
depth-averaged flow velocity is below the critical value proposed by Vermeulen (2003). The average periods
of high (HWS) and low (LWS) slack water have been calculated for the entire bay for a spring-neap tidal
cycle and used to compute the tidal averaged slack water dominance (AWS = HWS — LWS). A positive
AWS value indicates that fine sediments have a longer time to deposit during the slack period after the flood
phase than after the ebb phase.

3.3. Estimation of Sediment Budget

The minimum sediment supply (B) required for the entire bay to keep pace with sea level rise can be calcu-
lated as follows (Chant et al., 2020; Ganju et al., 2020):

B = slr (Amp,, + AsppSp) (6)

where slr is the rate of sea level rise, p,,, and ps;, are the bulk densities for marshes and subtidal areas, and
A, and As), represent the marsh extent and the subtidal area. The local sea level rise is estimated following
assessments based on monthly mean sea level observations taken at The Battery (New York) in the period

Fate of marine-derived sediments within Jamaica Bay after 80 days. Values (i,j) in the table indicate the percentage of sediments stored on salt marshes, shallow areas,
and deep channels with respect to the sediment imported into the bay. The sediment mass imported from offshore is 2.0 x 10° kg/month.

Deposition/Trapping Suspension
Marshes Shallow areas Deep channels Shallow areas Deep channels
W-B 1% 43% 6.4% 15.8% 10%
E-B 0.6% 12.8% 2.6% 4.5% 3%
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Figure 7. Sediment deposition (a) and suspended sediment concentrations
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(b) after 80 days (marine-derived sediments only).
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1856-2019. These measurements, available on the NOAA site, show a
local relative sea level trend of 2.87 mm/year with a 95% confidence
interval of +0.09 mm/year. Studies based on more recent periods
demonstrate how sea level trend has been accelerating in this region,
estimating rates of sea level rise up to 4.70 mm/year (e.g., Miller
et al., 2013). Bulk density values are chosen following Morris et
al. (2016) for marshes (373 + 214 kg/m?) and Renfro et al. (2010) for sub-
tidal areas (700 kg/m3). Table S2 depicts the values of the parameters in
Equation 6.

4. Results

The convergent shape of the inlet increases tides in the bay resulting in
water oscillations greater than the offshore tidal amplitude (Aretxabaleta
et al., 2014). The tidal wave experiences a distortion due to the basin
morphology, altering its symmetric shape. The system is flood dominated
as showed in Figure 5. The sea-surface phase (Figure 5b) is between 0°
and 180° within the entire system, and the rate of tidal distortion
increases from the mouth to the interior part of the estuary, with peaks
over the shallow area in the central part of the basin (Figure 5a).
Furthermore, our findings demonstrate how the asymmetry in the slack
water duration is pronounced only in shallow areas of the basin, while in
the deep channels, it is negligible (Figure 5c). Figure 5d presents the dif-
ference in the depth-averaged peak velocity currents during the flood
and ebb phases; this result is in agreement with Figure 5b and shows
the overall flood dominance of the estuary, although this behavior is
not observed in the areas of the basin where water depth exceeds 8 m.
This discrepancy is attributed to the fact that the Friedrichs and
Aubrey (1988) formulation is built for shallow well-mixed channels/estu-
aries. Furthermore, comparing the asymmetry in tidal velocity for differ-
ent parts of the water column might give a better metric of flood/ebb

dominance and its influence on sediment transport.

The distribution of mean bottom shear stress as a function of water depth shows that in the western part of
the basin bottom shear stresses increase monotonically with water depth, while intermediate water depths
experience the maximum value in bottom shear stress in the eastern part of the estuary (Figure 6a). The two

T

Water depth > 8m

Figure 8. Variability of shear stress in deep channels during a spring-neap

tidal cycle.

Basin W

Basin E

subbasins have different fetch values and therefore different wave heights
(Figure 4b). The peak in shear stress distribution in the eastern part of the
basin is related to the fact that shear stresses are limited both in shallower
areas because of dissipative processes and in deeper areas because the bot-
tom is too deep to be affected by wind waves (Fagherazzi et al., 2006).
Figure 6b shows the time of marsh submergence in each subbasin.
Marshes located in the eastern subbasin have a shorter time of submer-
gence and consequently a shorter time to trap sediments during each tidal
cycle.

Table 2 depicts how marine-derived sediments are distributed over the
subtidal flats after 80 days. This table shows that a big fraction of the sedi-
ment coming from offshore is trapped by the western subbasin. Indeed,
lower sediment concentrations and deposition are observed in the eastern
part of the system. Spatial distributions of sediment deposition and SSCs
are shown in Figures 7a and 7b, respectively. Table 2 presents how off-
shore sediments are stored in the bay and shows that only a small fraction
(<2%) deposit over salt marshes, although more than 35% of this sediment
mass is kept in suspension and remains available to be potentially trapped
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by vegetation at a later time. Furthermore, we evaluated the average sediment mass imported from offshore
in a month as 2 x 10° kg.

The box plot of shear stresses induced by only tides, calculated in a spring-neap tidal cycle, shows that the
deep channels in the eastern subbasin are more likely to serve as potential sediment sinks given their low
shear stress levels (Figure 8). Figure 9b demonstrates that shear stresses are higher or equal to 0.05 Pa for
the 18% of the spring-neap tidal cycle during which silt and mud can be resuspended and potentially trapped
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Values (i,j) in the table indicate the percentage of sediments stored on salt
marshes,shallow areas, and deep channels with respect to the total mass of
sediments released by wave-induced lateral erosion.

by salt marshes in the eastern subbasin. We computed the sediment
mass stored over marshes and the mass still present in the channels
(given the setup in the idealized simulations, no other sediments
can be remobilized except those in the channels). Our numerical
experiment shows that fine sediments deposited in deep channels
can be remobilized during spring tides (Figure 9c) and trapped in salt
marshes (Figure 9d). It is worth noticing that the sediment deposition
is higher over the salt marshes in the eastern subbasin, because the
initial bed thickness was defined only within the channels of the east-
ern part of the bay.

The impact of wind waves along the marsh boundaries is evaluated in
terms of wave thrust per unit width. The average wave thrust for the
period August-October 2015 is depicted in Figure 10 for marshes
located in the western (W-B), central (C-B), and eastern (E-B) part
of the bay. The variability of the averaged wave thrust is higher in
the eastern subbasin, while the mean wave thrust is lower for salt
marshes located in the central part of the bay. However, differences
are not significant. Figure 11a shows the simulated mass eroded from
salt marshes in 80 days. As the shear stresses are higher in the wes-
tern part of the basin (Figure 6a), sediment deposition over the shal-
low area is very limited and marsh-derived sediments are trapped
more efficiently by the vegetated surfaces (Figure 11b). On the con-
trary, the sediments eroded from salt marshes mainly deposit over
the shallow area in the eastern subbasin (Figure 11b). The remaining
sediment is kept in suspension by waves and tides in the water col-
umn or lost to the ocean. Figures 11c and 11d present maximum
and average values of SSCs over the last tidal cycle, respectively.
These figures show how the sediment eroded from salt marshes is dis-
tributed rapidly within the entire basin. Table 3 summarizes these
results and shows that 19% of the sediment released by salt marshes
during edge erosion (1.0 x 10° kg/month) is trapped by vegetated sur-
faces. Around 50% of the eroded material deposits over the vegetated
surfaces, deep channels, and shallow parts of the bay. The remaining
fraction is lost to the ocean. Furthermore, our numerical experiments
revealed that offshore and marsh-derived sediments contribute
almost equally to marsh vertical accretion (32 x 10° and
19 x 10° kg/month, respectively).

5. Discussion

In this study, we aim to highlight the relative contribution of different
sediment sources to the accretion rate of salt marshes by focusing on
sediments derived from salt marsh erosion. Results are based on a lin-
ear relationship between wave thrust acting on marsh edges and the
amount of sediment liberated in the basin through marsh retreat
(Leonardi & Fagherazzi, 2014). A shortcoming of this modeling
approach is related to the choice to use a uniform marsh erodibility
coefficient for the entire domain (Equation 5). In reality, this coeffi-
cient can vary widely in coastal settings depending on the local shore-
line characteristics (Schwimmer, 2001). Furthermore, the marsh
erodibility coefficient is a fixed user input. In this test case, we chose
the coefficient based on a marsh retreat of 2 m/year, which is consis-
tent with marsh erosion rates in Jamaica Bay (Hartig et al., 2002).
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Table 3
Sediment eroded from marsh boundary (kg) after 80 days (a). Sediment deposition (b), maximum suspended sediment concentrations (c), and average suspended
sediment concentrations (d) over the last tidal cycle (only marsh-derived sediments). The sediment mass liberated through marsh lateral erosion is 1.0 x 1 0’ kg/month.

Deposition/Trapping Suspension
Marshes Shallow areas Deep channels Shallow areas Deep channels
W-B 12% 5% 1% 5% 1.7%
E-B 7% 18% 7% 1.5% 1%

Our findings (Figure 11 and Table 3) show that up to 42% of the sediment released from marshes during edge
erosion deposits on the shallow areas of the basin (23%) or is trapped by vegetated surfaces (19%). Moreover,
as the system is flood dominated (Figure 5), the stronger tidal currents during the flood phase favor the
retention of the sediment coming from marsh deterioration, increasing the sediment supplied to the remain-
ing salt marshes. Long-term numerical simulations would provide a comprehensive view of how
marsh-derived sediments are redistributed within the estuary under a wider range of forcings and allow
us to better understand the interplay between marsh lateral erosion and marsh vertical accretion. Indeed,
interseasonal and interannual variability in the wind field could drive large changes in the sediment trans-
port in back-barrier estuaries (e.g., Duran-Matute et al., 2016).

Recent outcomes indicate that the resilience of salt marshes is linked not only to the sediment budget of the
vegetated surfaces but also of surrounding tidal flats, sea bed, and tidal channels (Fagherazzi, 2014; Lauzon
et al., 2018). Therefore, even though 23% of sediments deposit on the shallow areas of the basin, our findings
suggest that marsh-derived sediment can increase the resistance of salt marshes to sea level rise by contribut-
ing to the marsh sediment budget, in agreement with previous works (Ganju et al., 2015; Hopkinson
et al., 2018).

As suggested by Mariotti and Fagherazzi (2013b), the equilibrium depth of tidal flats is defined by a balance
between erosion from wave-generated shear stress and deposition proportional to sediment concentration,
modulated by sea level rise. Hence, accumulation of sediments released during marsh edge erosion over
shallow areas may reduce their depth, inducing subsequent erosion and higher suspended sediment concen-
trations in the water column. Since the suspended sediment in the water column increases, the efficiency of
salt marshes in trapping sediments generated by their own degradation might raise once changes in bathy-
metry associated with the deposition of marsh-derived sediments become important (Figure 12).

Several insightful studies have investigated the resistance of salt marshes to sea level rise under different
sediment supply conditions. However, many of these studies use simplified approaches prescribing constant
suspended sediment concentration and do not account for the hydromorphodynamic feedbacks regulating
the redistribution of sediments derived from the erosion of marsh boundaries (Kirwan et al., 2010; Morris
et al., 2002). For example, Kirwan et al. (2010) estimate threshold rates of sea level rise by imposing various
suspended sediment values, ignoring the origin of the sediment, their spatiotemporal variability, and the
impact of marsh disappearance on the regional-scale hydrodynamics (Donatelli, Ganju, Zhang, et al., 2018;
Ganju et al., 2015; Hopkinson et al., 2018). We have demonstrated that salt marsh resistance to sea level rise
can benefit from marsh degradation as the latter can contribute to the local sediment budget, albeit in this
specific test case marsh lateral erosion results in loss of habitat, as salt marshes cannot migrate landward
given the high level of urbanization of the watershed.

Although salt marsh erosion would positively affect the sediment budget of the marsh complex in the short
term (marsh erosion does not alter significantly the estuarine morphology and in particular the marsh/basin
area ratio), the increase in the flushing capacity of the system associated with extensive marsh loss might
compromise the fate of the estuary, and marshes themselves, over long timescales (when changes in estuar-
ine morphology induced by marsh loss significantly modify the hydrodynamics of the back-barrier basin)
(Donatelli et al., 2020). Indeed, large-scale marsh deterioration increases the intertidal storage volume of
the back-barrier basin, fetch values, and bottom shear stresses, reducing the sediment stock in the entire sys-
tem. As a consequence, the sediment trapping capacity of marsh platforms decreases nonlinearly with marsh
decline, and this may reduce their ability to counteract sea level rise even accounting for sediment recycling
(Donatelli et al., 2020; Donatelli, Ganju, Zhang, et al., 2018). In the long term, changes in sediment
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Figure 12. Efficiency of salt marshes in trapping marsh-derived sediment over short and long timescales.

availability associated with marsh loss might also influence erosional processes. More specifically, a
simplified model proposed by Mariotti and Fagherazzi (2013a) demonstrates that the ratio between marsh
and open-water area in a bay is controlled by the amount of sediment stored within the basin, showing
how sea level rise can speed up marsh lateral erosion by reducing the overall sediment storage. Moreover,
lower marsh to open water ratios might trigger a positive feedback loop with further marsh deterioration
(Mariotti & Carr, 2014; Tambroni & Seminara, 2012), but erosion rates would decrease with the widening
of tidal flats (Mariotti & Canestrelli, 2017). The interplay between marsh erosion and sediment trapping
on marsh platforms might be also influenced by the bottom characteristics of the basin. As proposed by
the exploratory model of Donatelli et al. (2019), submerged aquatic vegetation reduces wave thrust values
along marsh boundaries and alters the sediment exchange between tidal flats and marshes, enhancing
deposition on vegetated beds rather than resuspension and deposition on marsh platforms (Donatelli,
Ganju, Fagherazzi, et al., 2018; Nardin et al., 2018). Our research underlines the role of autogenous
processes on the stability and evolution of salt marshes and determines the fate of the sediments derived
from marsh edge erosion in shallow estuaries.

6. Conclusions

Marine-derived sediments represent an important sediment source to Jamaica Bay, contributing signifi-
cantly to the elevation gain of marshes and tidal flats. However, human interventions at the inlet have dra-
matically decreased the sediment supply from offshore (Hartig et al., 2002) and altered the physical response
of the back-barrier basin to tides and low-frequency disturbances (e.g., Orton et al., 2015; Talke & Jay, 2020).
Using a numerical modeling approach, we quantified the sediment flux at the mouth of the estuary, evalu-
ating the fate of sediments within the bay (Table 2 and Figure 7). Our findings show a strong agreement with
previous sediment budget estimations carried out by Chant et al. (2020) and Renfro et al. (2016).

A simplified approach based on Equation 6 indicates that the sediment necessary for the estuary to keep pace
with sea level rise (~8 x 10° kg/month: 0.38 x 10° kg/month for marshes and 7.62 x 10° kg/month for sub-
tidal areas) is larger than the present-day supply of sediment from the ocean estimated in this study
(~2 x 10° kg/month). However, our analysis may underestimate the actual sediment mass imported from
offshore, as we do not consider the effect of storm surges (e.g., Castagno et al., 2018). This study demonstrates
that sediments liberated in the basin through marsh degradation are not sufficient to offset the deficit of the
entire system. Nevertheless, we argue that marsh erosion can play an important role in limiting the disap-
pearance of the remaining salt marshes with rising sea level. Indeed, we revealed that the net sediment
eroded from marshes (1.0 X 10° kg/month) is trapped mainly by vegetated surfaces and shallow areas,
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positively contributing to the sediment budget of the marsh complex. From a management perspective, we
conclude that (1) protection of marsh edges from lateral retreat would decrease the sediment released
through lateral erosion, further compromising salt marshes under future sea level rise scenarios.
Nevertheless, without protection, salt marshes will disappear due to lateral erosion, and therefore, further
studies are necessary to evaluate the best solution to preserve this vegetated ecosystem. (2) The new marsh
erosion modeling routines of COAWST provide an important tool for coastal managers: It can localize poten-
tial hotspots of marsh degradation and might help prioritize investments. (3) Management actions should be
evaluated at the basin scale, by taking into account natural physical processes associated with wetland edge
erosion, and sedimentation/erosion on tidal flats and main channels.
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