
Robots in the huddle: Upfront computation to reduce global

communication at run-time in multi-robot task allocation

Changjoo Nam, and Dylan A. Shell∗†‡

September 25, 2019

Abstract

We study multi-robot task allocation problems where task

costs vary. The variation may be, for example, due to the

revelation of new information or other dynamic circum-

stances. As robots update their cost estimates, typically

they will update task assignments to reflect the new infor-

mation using additional communication and computation.

In dynamic settings, the robots are continually repairing

the optimality of the system’s task assignments, which can

incur substantial communication and computation.

We investigate how one can reduce communication and

centralized computation expense during execution by us-

ing a prior model of how costs may change and perform-

ing upfront computation of possible robot–task assign-

ments. First, we develop an algorithm that partitions a

team of robots into several independent sub-teams that are

able to maintain global optimality by communicating en-

tirely amongst themselves. Second, we propose a method

for computing the worst-case cost sub-optimality if robots

persist with the initial assignment and perform no further

communication and computation. Lastly, we introduce an

algorithm to assess whether cost changes affect the op-

timality of the current assignment through a succession

of local communication exchanges. Experimental results

show that the proposed methods are helpful in reducing

the degree of centralization needed by a multi-robot sys-

tem (e.g., the third method gave at least 45% reduction of

global communication across all scenarios studied). The

methods are valuable in transitioning multi-robot tech-

niques which have met with success in structured applica-

tions (like factories and warehouses) to the broader, wilder

world.

∗This work was supported in part by National Science Foundation

(Awards #IIS-1453652 and #ECCS-1637889) and the KIST Institutional

Program (project number 2E28670, Task planning and decision making

for multi-robot teams interacting with humans).
†C. Nam is with Robotics and Media Institute at Korea Institute of

Science and Technology and D. Shell is with Department of Computer

Science and Engineering at Texas A&M University.
‡Manuscript received Dec 19, 2018; revised Aug 20, 2019.

1 Introduction

Currently multi-robot task allocation (MRTA) methods

are among the best established ways for coordinating

teams of robots. Task assignment and task allocation algo-

rithms fall under the broad banner of task planning meth-

ods, and address the specific concern of which robots (i.e.,

who) should do which tasks (i.e., what). They seek to

maximize some notion of collective performance. Gener-

ally, each robot maintains an estimate of the cost of per-

forming the available tasks. The robots share their esti-

mates over a communication network and, depending on

the approach involved, this information might be used lo-

cally or aggregated centrally. In the most common case, a

centralized system, an optimal assignment is computed by

a server or a distinguished robot: approaches to compute

this include the Hungarian method [14], an auctioneer [7],

or a linear programming framework. Despite being opti-

mal on the basis of the initial information, the robot–task

assignment may turn out to be unfavorable while execut-

ing the tasks. For example, the environment may change,

robots may fail, or a variety of other unexpected situations

may arise. One way to retain optimality is to compute

new assignments to reflect the most recent cost estimates.

Regular re-computation may be necessary to ensure flu-

idity, but this incurs computational and communication

expense proportional to the desired responsiveness.

In this paper, we consider the MRTA problem of find-

ing the optimal assignment of a set of tasks to a team of

robots when the associated costs may vary at run-time.

We propose a cost representation which incorporates un-

certainty by generalizing a single cost value to a range of

possible values. Take for example the robot in Fig. 1: it

is able to estimate its shortest and longest driving times to

a destination by considering information about its route.

The lower bound would be merely the time spent on driv-

ing (distance divided by the maximum speed); adding the

maximum waiting time for traffic signals gives an upper

1

could feasibly change.

The following are contributions of this paper:

• We propose a region-based cost representation that

captures the uncertainty in the states of robots, tasks,

or the environment. This representation is rather

rich: it does not make the simplifying assumption

that costs of different tasks are independent, and

it is capable of modeling tightly interrelated costs

(Sec. 4).

• We develop an algorithm that analyzes the cost struc-

ture for a given assignment to seek sub-teams within

the overall team. It partitions the group into sub-

teams that are able to work independently, forgo-

ing global communication by communicating only

amongst the members of the sub-teams, but retain-

ing optimality (Sec. 6.3).

• We consider the problem of deciding whether it

is beneficial to persist with the current assignment

even if cost changes mean that it is no longer opti-

mal. We develop a method for computing the worst-

case cost sum if the robots retain their current as-

signment, allowing one to decide whether to persist

with the current assignment because the computa-

tional/communication expense needed for reassign-

ment is prohibitive (Sec. 6.4).

• We examine how, once costs change, the robots can

determine whether the current task assignments are

sub-optimal with minimal communication. Each

robot may compute an interval of cost within which

any cost variation does not affect optimality. But

even if a cost violates these bounds, other costs may

have changed too, and optimality may still be re-

tained when the cost changes have been considered

too. We introduce a method that incrementally in-

creases the dimensionality of the bounding region,

growing the number of costs considered by commu-

nicating with additional robots (Sec. 6.5).

2 Related Work

Some researchers have proposed re-optimization schemes

for multi-robot systems, allowing updated assignments to

be computed more efficiently than a naı̈ve re-computation

from scratch. Mills-Tettey et al. [19] describe a dynamic

(or incremental) Hungarian method that repairs initial

optimal assignment to obtain a new optimal assignment

when costs have changed. Shen and Salemi [28] give a

decentralized dynamic task allocation algorithm that uses

an heuristic search. These methods still use computational

resources for those cost modifications which end up with

the same assignment.

Parker et al. [23] proposed a decentralized algorithm

to minimize the maximum cost where costs change over

time. They represent a cost as a monotonically increasing

function as time passes (e.g., fire spreading). Each agent

assigned to a task decreases the cost (i.e., performs the

task) with a fixed rate. They propose a modified MAX-

SUM algorithm which optimizes a global utility function

greedily, where the modification of the original algorithm

is made to incorporate uncertainty of the global utility.

They model varying costs precisely and add Gaussian

noise to the costs where the noise represents the errors

in the cost function modeling or empirically evaluated pa-

rameters. Since their method is intended only for circum-

stances where costs change with a constant rate, it is not

applicable for costs which cannot be modeled by a linear

function.

In [24, 25], nonlinear models of changing cost are pro-

posed where the growth of cost is monotonically accel-

erating or decelerating. Although these models provide

wider applicability for the cases where the evolution of

costs is not simple as linear, constructing such models re-

quires additional domain-specific information. Also, such

models represented as functions may be outdated so can-

not describe costs accurately in dynamic environments

where the models should be updated to reflect changes

in the environments.

Another model of changing costs is proposed in [1] for

formation control problems of multiple robots. The scaled

goal formation problem considers a transition from an

original formation to a goal formation where the goal for-

mation is scaled from the initial formation. The model of

costs is described by nonlinear functions of a scaling fac-

tor (i.e., ratio) between the original and the goal formation

changes. To find the global optimal assignment, the pro-

posed method finds intervals of the scaling factor in which

each interval has one optimal assignment. In other words,

each optimal assignment remains optimal within its cor-

responding interval of the scaling factor. This approach is

similar to our method employing sensitivity analysis de-

veloped in Sec. 6.2 that finds the ranges of costs in which

any cost value in each range produces the same optimal

assignments. However, the model of costs could be out-

dated in dynamically changing environments, so the in-

tervals found from upfront computation using the model

could be invalid during execution owing to new run-time

changes that may make the model obsolete.

In [21], the present authors consider multi-robot teams

operating in probabilistic domains. In that work we repre-

3

sented costs as random variables where distributions ex-

press uncertainty in the environment and which also in-

corporate inter-robot couplings as the probabilistic repre-

sentation does not assume that costs are statistically inde-

pendent. Although that representation is richer than the

interval-based model in dealing with a variety of forms of

uncertainty, the algorithm proposed in that work neither

takes dynamic changes in costs into account nor considers

the system overhead caused in handling uncertain costs.

Liu and Shell [17] proposed the interval Hungarian

method (IHM) to permit uncertainties in costs. Given

an optimal assignment, the algorithm computes the max-

imum interval around each cost in which its perturbation

does not affect the current optimal assignment. Thus, the

robots can determine how a cost change affects the opti-

mality of the current solution. However, that formulation

treats the problem of multiple simultaneous cost modifi-

cations, which do occur naturally in multi-robot systems

(e.g., a single robot failure affects n costs), in an ad hoc

fashion.

The same authors also proposed a sparsification and

partitioning method to distribute the assignment problem

to reduce global communication and reassignment [18].

That method coarsens the utility matrix by using locality

and sparsity of tasks. Once the matrix has been partitioned

into several clusters, each cluster is able to compute an

assignment independently. This method for decentraliz-

ing the work mitigates difficulties of the centralized ap-

proach such as maintaining global connectivity and per-

forming heavy computations by a single unit. Inspired

by that work, here we propose a partitioning method for

problems where single time-step sparsity is insufficient.

Chopra et al. [6] propose a distributed version of the

Hungarian method. Robots exchange messages contain-

ing state information in a peer-to-peer fashion to update

their own states. They run the Hungrian method locally

with a (possibly incomplete) graph in order to get close

to the state producing an optimal assignment. Once an

assignment is found through the repeated local commu-

nication and computation, it is propagated to all robots.

An earlier work [5] proposes a distributed simplex method

solving an MRTA problem but computationally more ex-

pensive than [6]. Although the both methods and ours aim

to reduce global communication and computation, there

are several distinctions. First, the previous methods do

not consider any central processor whereas our methods

aim to reduce computations when centralized methods are

used. Second, the previous methods consider costs that

are deterministic while our costs could change during ex-

ecution. Third, the methods assume a strongly connected

communication network. A relaxation is suggested in [6]

that assumes only a jointly strongly connected network

over some time period. However, the necessary condition

of our upfront analyses is maintaining just a connected

network (not necessarily strong) before the robots are dis-

patched while the upfront computation is performed. Dur-

ing execution, our methods may need a connected net-

work (still not strongly) but disconnected networks could

be allowed based on the result of the analyses.

A preliminary result of this present paper has published

in [20]. We extend the prior study to include (i) a richer

representation of the region-based cost that models in-

terrelationships between costs (Sec. 4), (ii) an additional

experiment that shows the benefit from using the richer

representation (Sec. 7), (iii) a new randomized algorithm

(Alg. 1) that runs faster than the previous one in [20],

(iv) an additional experiment showing the running time

of the new randomized algorithm (Sec. 7), (v) an addi-

tional proof that shows the computational complexity of

Alg. 2 if the cost region is nonlinear and convex (The-

orem 5.2), (vi) an appendix that helps understand Theo-

rem 5.2, and (vii) a major revision for the organization,

detailed descriptions of the problem, the algorithms, the

experiments, and the future work.

3 Preliminaries

This section provides a mathematical formulation of the

MRTA problem and introduces sensitivity analysis of an

optimal assignment. The analysis computes a region of

costs where changes within the region preserve the opti-

mality of the current assignment.

3.1 Multi-robot task allocation

The MRTA problem can be posed as an Optimal Assign-

ment Problem (OAP). For n robots and m tasks, we as-

sume we are given costs cij ∈ R
≥0 that represent the

cost of the ith robot Ri performing the jth task Tj for

i ∈ {1, · · · , n} and j ∈ {1, · · · ,m}. The robots should

be allocated to tasks with the minimum cost sum. Let xij

be a binary variable that equals to 0 or 1, where xij = 1
indicates that the Ri performs Tj . Otherwise, xij = 0.

For simplicity here we have assumed that n = m. (This is

without loss of generality, since if n 6= m, dummy robots

or tasks would be inserted to make n = m.) Then a math-

ematical description of the MRTA problem is

min

n
∑

i=1

n
∑

j=1

cijxij (1)

4

subject to

n
∑

j=1

xij = 1 ∀i, (2)

n
∑

i=1

xij = 1 ∀j, (3)

0 ≤ xij ≤ 1 ∀{i, j}, (4)

xij ∈ Z
+ ∀{i, j}. (5)

We make use of matrix representations C and X
∗ that are

n× n matrices representing a cost matrix and an optimal

assignment of the problem, respectively. Matrix X
∗ is one

among a larger set of matchings, which are all matrices

satisfying (2)–(5).

3.2 Sensitivity analysis of optimal assign-

ments

Sensitivity analysis (SA) has been studied for several

decades in Operations Research to assess the robustness

of optima for an optimization problem to perturbations in

the input specification [10,16,30]. Analysis of an optimal

assignment must compute a region where costs within that

region preserve the optimality of the current assignment.

The OAP can be relaxed to a linear programming prob-

lem (LP) by removing the integral constraint. The LP for-

mulation of MRTA may make use of SA of an optimal

assignment to yield a safe region of costs where the as-

signment remains optimal if all costs stay in the region.

We provide a brief interpretation of the analysis for the

MRTA problems, based on a comprehensive study of [30].

An LP problem corresponding to an MRTA problem

can have more than one feasible solution. For each feasi-

ble solution, the decision variables xij (i, j ∈ {1, · · · , n})

can be divided into basic variables and nonbasic variables

where a variable is basic if it corresponds to one of the

vectors in the basis, given a feasible basis to a linear-

programming problem. If k is an index of a feasible so-

lution, then for each k, critical region CRk, a set of costs

where an MRTA problem has the same optimal assign-

ment for any cost c ∈ CRk. Thus,

CRk = {c ∈ R
(n2) : cNk

− cJk
B

−1
k ANk

≥ 0}, (6)

where Jk and Nk indicate basic and nonbasic variables of

the kth feasible solution, respectively. In other words, any

costs within CRk do not alter the feasible (optimal) solu-

tion of k. The matrices Bk and ANk
are the constraints

of basic variables and nonbasic variables.2 Here cJk
and

2A constraint matrix of an optimization problem consists of coeffi-

cNk
are cost vectors of basic and nonbasic variables. The

critical region CRk is formed by linear boundaries with

nonempty interiors.

However, there is an additional source of complexity

because the MRTA problem is degenerate. One easy way

to understand degeneracy is using a polytope defined by

the constraints of the optimization problem (2) and (3).

In non-degenerate cases, an extreme point of a polytope

corresponds to one feasible solution. In degenerate cases,

one extreme point corresponds to many different degener-

ate solutions [11, 13].

Consequently, the critical region CRk of one feasible

solution k is not a complete description of the region that

preserves optimality. The complete set is

θ(X∗) =
⋃

k∈H

CRk, (7)

which is the union of critical regions of all feasible solu-

tions where H = {k : X∗
Jk

= B
−1
k ,X∗

Nk
= 0}, which is

the set of indices of feasible solutions. Note that θ(X∗) is

also a polyhedral set [30, Theorem 17] consisting of linear

boundaries that cross the origin.

An n × n MRTA problem has 2n − 1 basic variables

and (n−1)2 nonbasic variables. To compute (7), we must

identify the basic and nonbasic variables of the kth feasi-

ble solution. The n variables corresponding to costs in

the optimal assignment are basic variables, but the degen-

eracy means that the remaining n− 1 basic variables (i.e.,

degenerate basic variables) cannot be identified directly.

We choose the n − 1 basic variables from the remaining

n2 − n variables, yielding a total of
(

n2−n
n−1

)

choices. Not

all
(

n2−n
n−1

)

sets of variables can be feasible solutions be-

cause the set H indicates X∗
Jk

= B
−1
k which means that

Bk must be nonsingular. If Bk with the set of those n
basic variables and chosen n− 1 variables is of full rank,

then the set is one of the feasible solutions in H .

4 The cost representation: bounded

regions and interrelated values

In this section, we formalize the cost representation in

terms of a bounded region. We also show how the model

of interrelationships gives a better understanding of an as-

signment problem subject to uncertain costs.

Suppose that the costs belong to a finite region C where

C ⊆ R
(n2), so any particular matrix of costs C ∈ C. We

cients of variables. Here, Bk is a set of columns corresponding to basic

variables. Similarly, ANk
corresponds to the coefficients of nonbasic

variables.

5

they depend the precise values involved, the realizations

of random variables, and so forth. This makes the notion

of a sub-team as well as the preceding criterion both more

interesting and more useful.

If such sub-teams exist they need never communicate

with robots outside their own sub-team (or even take the

other sub-teams into account) when computing their task

allocations. 4 Moreover, each sub-teams computation will

construct the globally optimal allocation. Partitioning the

team of robots into multiple sub-teams yields the benefit

reducing communication range and computation load (op-

timal assignment algorithms have super-linear running-

time) when costs could change without sacrificing opti-

mality. Partitioning teams where tasks have spatial local-

ity [26] and sparsity [18] has been studied previously, but

we make no assumptions about the particular properties.

Then, when sub-teams exist, the important question be-

comes one of whether such sub-teams can be found. With

cost region C, the possible assignments depend on the cost

matrix C ∈ C. If all N optimal assignments within the

region can be found, one can determine whether the team

can be partitioned by basic matrix operations (described in

Sec. 6.3). Since costs are nonnegative real numbers, com-

puting assignments for all possible costs is intractable.

The problem is to find a set of all possible assignments

X
∗
q for q ∈ {1, · · · , N} quickly so that finding partitions

can be done efficiently.

5.2 When should the robots stick with their

initial assignment?

Important research has examined how to maintain global

connectivity in networks of robots, including, for exam-

ple, control-based schemes [27] or multi-hop routing pro-

tocols [8]. But when is the expense incurred by these

methods for maintaining global connectivity prohibitive?

Clearly this is a question that can must be answered in a

contextually specific way. In the task allocation setting

one can assess the difference in assignment quality with

and without further communication. Then, with some

measure of cost incurred in sending messages, one can

make a determination for the particular domain at hand.

Specifically, the cost difference between the worst-case

cost sum—if the robots commit to their initial assignment

and use no run-time communication—and the best-case

cost sum—if they update costs and reallocate—can be

4Being in the same sub-team does not necessarily mean that they

are always connected directly. Thus, robots in the same sub-team may

need multi-hop communication at some time frames during execution.

However, finding sub-teams still reduces communication and computa-

tion by splitting the whole communication network into multiple small

networks.

used to make the decision. A small cost difference means

that the cost reduction obtained by maintaining global

connectivity is minor. If the expense for global commu-

nication5is larger than this reduction, the team does not

profit from updating costs and recomputing assignments.

Once optimal assignments X
∗
q and their θ(X∗

q) for

q ∈ {1, · · · , N} are computed, the cost difference is com-

puted by finding the minimum cost matrix Cminq
in each

θ(X∗
q) and computing

max(C̄⊙X
∗
1 −Cminq

⊙X
∗
q), (8)

for q ∈ {1, · · · , N} where X
∗
1 is the initial (or current)

assignment, and the ⊙ symbol is an operator which de-

notes the sum of all elements in the Hadamard product of

two matrices, that is, A ⊙ B ≡ 1
T (A ◦ B)1. In other

words, (8) is the cost difference between the minimum

among cost sums (where robots change their assignments)

and the maximum cost sum (if robots maintain their initial

assignment).

5.3 When costs change, how do you notify

only those for whom it matters?

Even if a team or a sub-team of robots decide to respond

to every cost change according to the decision made in

Sec. 5.2, there are still opportunities to curtail unnecessary

communication. Suppose that robots have some knowl-

edge about their own costs (e.g., robot Ra manages a sub-

set of costs cij for i = a, j ∈ {1, · · · , n}) that is a set of

tolerable ranges of the costs that preserve the current opti-

mal assignment, irrespective of how costs of other robots

change. Any cost changes within the ranges incur no com-

munication as those changes are guaranteed not to break

global optimality. With this knowledge, the robots can

work independently until any of the robots has a cost(s)

that deviates from its range.

The robots may have to begin communicating with

other robots if a violation occurs. Suppose that the costs

of Ra change according to a new information (e.g., a door,

which Ra had previously assumed to be open, is found to

in fact be locked). This new information may incur vi-

olations of the tolerable cost ranges associated with Ra.

We describe two cases: (i) only one robot at each time

step experiences the violations and (ii) multiple robots

could have violations simultaneously. The case (i) could

be reasonable in environments with local or infrequent dy-

namic changes whereas (ii) is more appropriate when en-

vironmental changes occur frequently and likely have a

5In this paper, we are not explicit about the expense of communica-

tion since it depends on the method used. A common measure might be,

e.g., time (with delays incurred by multi-hop routing), or total energy

expended.

8

global influence. In both cases, the first problem is to ob-

tain the knowledge about the tolerance ranges of costs.

Geometrically, the cost ranges construct an n2-orthotope

Tij = [cij−τij , cij+τij] for all i and j for the current as-

signment where a low-dimensional projection of Tij rep-

resents a 1-D interval for each cost. Once the intervals of

the costs are calculated, the two cases have different ways

of using them to reduce communication.

The robot can assess for itself (without communica-

tion) whether the new information incurs cost changes

that break global optimality. If the knowledge is not suf-

ficient for the self-assessment, the robot would need ad-

ditional information about how the costs of other robots

have changed. This is the point at which Ra should com-

municate locally with some other (nearby) robot, say Rb,

to know the costs of Rb. Notice that the nearby robot to

be included in the local communication could be deter-

mined depending on the ease of establishing communica-

tion. With Ra and Rb together, it may be the case that

the assignment remains optimal. If this is not, then the

process should be repeated by bringing some new robot

Rc into the fold. There might be some other robots that

perceive the locked door and update their costs. Each of

those robots could perform the local checking process for

itself simultaneously while others do.

The problem is to obtain the prior knowledge of about

the tolerance of the current assignment. Geometrically, it

is to find an n2-orthotope Tij = [cij−τij , cij+τij] for all i
and j for the current assignment where a low-dimensional

projection of Tij represents a 1-D interval for each cost.

With θ(X∗
q), the validity of the current optimal assign-

ment should be checked by incorporating all costs. This

is checking whether the current costs, which is a point in

the n2-dim cost space, reside in θ(X∗
q). This process re-

quires a collection of current costs through some central-

ized structure. With the 1-D intervals from Tij , each cost

can be checked independently from other costs whether

the cost is in its interval. When a robot knows the intervals

for its costs, the robot can work independently until any

of updated costs leave the intervals. However, distributing

the checking process does not come free; the n2-orthotope

Tij is “conservative” than θ(X∗
q) (i.e., Tij ⊂ θ(X∗

q)).
If cost changes do not violate any of intervals, nothing

need be done since the current assignment is preserved

as θ(X∗
q) is not violated. Since a violation of Tij does

not necessarily violate θ(X∗
q), a robot with costs violat-

ing Tij needs to know the costs of other (nearby) robots

to check whether a subspace of θ(X∗
q) constructed by the

costs of the robots involved is violated. For example, sup-

pose that C is the cost matrix at an arbitrary time step.

In the next step, a cost of one robot changes so C be-

comes C
′violating /∈ θ(X∗

q). It is entirely possible for

the cost change of another robot to produce C
′′ which is

in θ(X∗
q). If even just these two robots communicate, the

current assignment is preserved, and the conclusion has

been reached via local communication.

5.4 An illustrative example

We give an example multi-robot navigation problem to

show how the proposed methods can be used together.

Suppose we have three autonomous robots (R1,2,3) and

three destinations (T1,2,3) as shown in Fig. 5(a). The goal

is to have one robot at each destination while minimizing

the total sum of traveling times (in seconds). The reader

might like to think of it in terms of self-driving taxis pick-

ing up customers while the taxi company aims to mini-

mize the total fuel cost (which is proportional to the total

traveling time). We assume that the robots drive through

the shortest path, and each intersection has a traffic signal.

The waiting time at each signal is tw ∈ [0, 10]. Again, we

assume that robots drive at the maximum speed (10 m/s)

when they move and, for simplicity, we model neither de-

lays from congestion nor acceleration/deceleration. The

corresponding cost matrix is shown in Fig. 5(b).

The initial optimal assignment is X
∗
1 =

(1 0 0

0 1 0

0 0 1

)

sup-

posing green lights. First, the robots use the method de-

scribed in Sec. 5.2 that computes the maximum cost dif-

ference (8) to decide whether the robots respond to every

cost change. The highest cost sum if the robots keep the

initial assignment is 100 (when c11, c22, c33 are at the up-

per bounds). There is no run-time communication and

task reassignment with this assignment. If they are com-

mitted to update every cost change and recompute the as-

signment with updated costs, the lowest possible cost sum

is 50 (i.e., when X
∗ =

(0 0 1

0 1 0

1 0 0

)

and the costs are at the

lower bounds). If the expense for global communication

is smaller than the difference, the robots keep communi-

cating with the central unit to update cost changes. Other-

wise, they simply stick with the initial assignment.

In the case where the robots communicate with each

other, the robots try to partition the team into sub-teams

using the method described in Sec. 5.1. When such par-

titions are found, the sub-teams can work independently

while not communicating with those robots in other sub-

teams. The method for escalating local communication

described in Sec. 5.3 can be used within a sub-team or the

entire team as and when each robot detects changes in its

costs (such as a new speed limit or road closure, in this

example).

9

6 Algorithms

As it is essential to compute (7), in this section we first de-

scribe an inexact randomized method for sensitivity anal-

ysis that runs much faster than the exact method described

in Sec. 3.2. Next, we describe the algorithm employ-

ing the randomized (or the exact) sensitivity analysis that

computes all N possible assignments X∗
q and their θ(X∗

q)
for q ∈ {1, · · · , N}. This algorithm is executed upfront

before the robots start performing tasks, then finally, us-

ing the result of this prior computation, we propose three

algorithms for the problems described in Sec. 5.

6.1 A randomized sensitivity analysis

Any cost C within the set of linear boundaries θ(X∗
q) pro-

duces the same optimal assignment X∗
q for an arbitrary

q. The exact method of computing the set is described

in Sec. 3.2 which computes (7) by enumerating a facto-

rial number of feasible solutions. Specifically, a feasible

solution must include n basic variables (corresponding to

the optimal assignment) out of all n2 variables. Among

the remaining n2 − n variables, n − 1 non-degenerate

basic variables need to be chosen to complete a feasible

solution which consists of 2n − 1 basic variables. The

exact method SA(X∗
q ,Cq) enumerates all k =

(

n2−n
n−1

)

choices. The running time grows exponentially with the

input size. Though this computation is done off-line, the

method cannot produce a solution in tolerable time unless

the instances are small (we show in the section describing

experiments that it takes a few minutes for n < 7). A

faster method is needed for larger instances.

We develop a randomized algorithm,

RANDSA(X∗
q ,Cq), to facilitate a faster computa-

tion of θ(X∗
q). Let H ′ be a partial set of all feasible

solutions’ indices (recall that H is the complete set). A

partial enumeration of the variables brings an incomplete

set of linear boundaries, which is θ′(X∗) =
⋃

k∈H′ CRk,

but the incomplete set often covers a large portion of

θ(X∗
q). From this observation, we implement Alg. 1.

With the given n basic variables, the additional n − 1
variables are randomly chosen. A feasible solution with

the 2n − 1 basic variables makes a coefficient matrix

Bk; one of full rank (i.e., nonsingular) is needed since

(6) computes the inverse of Bk (line 12). The algorithm

iterates the while loop (lines 4–15) until the randomly

chosen variables complete the basic variables of a feasi-

ble solution. If a feasible solution is found, it produces

(n − 1)2 linear boundaries (line 17). We experimentally

verified that even a single feasible solution is enough to

produce high-quality solutions. Should a single feasible

solution be insufficient, line 4 can be modified to add

more feasible solutions to F (along with the addition of a

check before line 13 to determine whether J is already in

F will avoid duplicating work).

Algorithm 1 RANDSA

Input: The n × n cost matrix Cq and its optimal assignment X∗
q for

an arbitrary q

Output: A partial set of linear boundaries θ′(X∗
q)

1 F = ∅

2 S∗ = {s : s is an index of a variable in X∗
q whose assignment is 1}

3 S = {1, 2, · · · , n2} \ S∗

4 while empty(F)

5 SR = ∅

6 for l in 1 to n− 1 // choose n− 1 additional basic variables from

S

7 i← a randomly chosen index from S

8 SR = SR ∪ i

9 S = S \ i

10 end for

11 J = S∗ ∪ SR // index set of basic variables in a feasible solution

12 if Bk is full rank //Bk in (6) should be invertible

13 F = F ∪ J

14 end if

15 end while

16 H′ = {1, 2, · · · , |F |}

17 θ′(X∗) =
⋃

k∈H′ CRk //CRk computed by (6)

18 return θ′(X∗
q)

6.2 Finding all optimal assignments and

θ(X∗) in C

A cost region C may contain multiple optimal assign-

ments. By employing sensitivity analysis (either the ex-

act method or Alg. 1), we develop an algorithm that finds

θ(X∗
q) for all X∗

q where q ∈ {1, · · · , N}.

An assignment problem has at least 4-dimensions (two

robots and two tasks) so hard to visualize the geome-

try. A cartoon 2-D representation appears in Fig. 6(a)

for pedagogical purposes. One difference from higher di-

mensional cases is that all linear equations in θ(X∗) are

greater or equal to zero (see (6)), but the upper boundary

of θ(X∗) in Fig. 6(a) has the opposite inequality.

We have an initial optimal assignment X∗
1 for an initial

cost matrix C1 and its θ(X∗
1) (Alg. 2, lines 2–3 where

HUNGARIAN is the standard Hungarian method [14]).

Let l be an arbitrary linear boundary in θ(X∗). If the

objective value is greater than or equal to zero when l is

maximized over the shaded area6 (line 6), l contains the

entire cost set (the shaded area C in Fig. 6a). Otherwise,

6All l should be maximized because of the inequalities in (6).

11

Algorithm 2 FINDTHETA

Input: An n× n cost matrix C1, C, and C̄

Output: A set of assignments X∗
q and θ(X∗

q) for q ∈ {1, · · · , N}

1 i = 0, q = 2

2 X∗
1
= HUNGARIAN(C1)

3 θ(X∗
1
) = SA(X∗

1
,C1) . // compute (7)

4 θ(X∗) = θ(X∗
1
)

5 do forever

6 (c′i, obji) = LINPROG(li,C, C̄,max) // max li over the bounds

. // where li is the ith linear boundary in θ(X∗)

7 if obji ≥ 0 . // if C does not satisfy li ≥ 0

8 i = i+ 1

9 if i = |θ(X∗)| // if all linear boundaries in θ(X∗) checked

10 break

11 end if

12 else // perturb a point on li toward c′ to find a new X∗ and θ(X∗)

13 p = c
′·vi

|vi|2
vi //p is a projection of Xi onto li

14 ǫ =
|p|
n

15 pnew = p+ ǫ(c′ − p)

16 Cq = RESHAPE(pnew, n) . // reshape vector into n× n matrix

17 X∗
q = HUNGARIAN(Cq)

18 θ(X∗
q) = SA(X∗

q ,Cq)

19 θ(X∗) = θ(X∗) ∪ θ(X∗
q)

20 i = 0

21 q = q + 1

22 end if

23 end do

24 return {X∗
1
, · · · ,X∗

N
} and {θ(X∗

1
), · · · , θ(X∗

N
)}

tion of a linear objective function subject to a nonlinear

convex constraint set (which we call LONC) if the fea-

sible region is convex but nonlinear (as in the example

in Fig. 3c). To show that Alg. 2 still has the same time

complexity with the convex linear feasible region case,

we prove that LONC is in P . We show a polynomial-time

reduction from LONC to the optimization of a nonlinear

convex objective function subject to a linear convex set

(NOLC), which is proven to be in P [3].

Theorem 5.2 LONC is in P .

Claim. If LONC ≤P NOLC, LONC is in P since NOLC is

in P .

Proof. In line 6 of Alg. 2, the objective function of the lin-

ear programming is separable. If both the objective func-

tion and the set of constraints are separable, LONC is eas-

ily transformed to NOLC in polynomial time by variable

substitution (an example of the substitution is given in the

Appendix). If the constraint set is represented by non-

separable functions, some known methods in Table 13.1

of [4] can transform nonseparable functions to separable

in polynomial time. Therefore, LONC ≤P NOLC. �

However, the problem becomes NP-hard if the feasible

region is nonconvex [2]. In this case, we can find a mini-

mum convex region that includes the nonconvex region as

we discussed briefly in Sec. 4. Alternatively, we can re-

place the linear programming solver (line 6 in Alg. 2) by a

solver appropriate to the shape of the feasible region, us-

ing a suitable polynomial-time approximation algorithm

for nonconvex optimization problems (see the review of

optimization solvers in [15]). For the cost regions with k
isolated convex regions, one may still use Alg. 2 apply-

ing it k times for each sub-region. Each run produces the

result for that sub-region, and the last step involves elimi-

nating duplicated pieces among the results.

The preceding discussion of hardness results show that

the analysis of the assignment optimality can include in-

terrelated costs essentially for free if they are linear, but

are tractable even for costs related to problems like that of

Zermelo’s (Fig. 3c). This is important for experimental re-

sults in Sec. 7.6 which will show that treating interrelated

costs as independent significantly decreases the value of

the analysis.

6.3 Partitioning the team of robots

Partitioning a team of robots into sub-teams, as discussed

in Sec. 5.1, is performed via elementary matrix operations

on all the assignment matrices computed from Alg. 2.

First, the sum of the assignments XC =
∑N

q=1 X
∗
q is

computed. Zero elements in XC mean that the associ-

ated robot–task pairs will be never assigned. The matrix

13

columns and rows are exchanged to find a block diago-

nal matrix, where a polynomial time method exists. For

example, a method converts XC to a 0-1 matrix (nonzero

values of XC becomes 1 while zero values do not change),

which takes O(n2), and uses a O(n log n) quicksort twice

(row-wise and column-wise) using the binary values of

rows and columns. Then the time complexity of the

method is O(n2). If a block diagonal matrix can be found,

the main diagonal blocks represent sub-teams. Given such

an input matrix, clearly communication and computation

localized to within each sub-team suffices for the robots

to achieve global optimality.

We show an example of finding sub-teams from the out-

put of Alg. 2. Suppose Alg. 2 returns three assignments

whose sum is

XC =
(

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

)

+
(

0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

)

+
(

0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0

)

=
(

1 2 0 0

0 0 2 1

2 1 0 0

0 0 1 2

)

.

Then XC is converted to a 0-1 matrix where each row

(and column) has a binary string. Sorting the rows in a de-

scending order followed by a column-wise sorting yields

a block diagonal matrix as shown below.

(

1 2 0 0

0 0 2 1

2 1 0 0

0 0 1 2

) conversion−−−−−→
(

1 1 0 0

0 0 1 1

1 1 0 0

0 0 1 1

) sort−−−→
(

1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

)

Practically, the diagonalization is simply done using a

MATLAB function blkdiag. The two diagonal blocks

represent two sub-teams because the two robots corre-

sponding to the first two rows do not share any tasks with

the other two robots.

6.4 Choosing to persist with the initial as-

signment

The idea proposed in Sec. 5.2 to analyze the impact of to-

tally forgoing further communication despite cost changes

is implemented in Alg. 3. All assignments X∗
q and θ(X∗

q)
for q ∈ {1, · · · , N} are given by Alg. 2 (line 1). For

each θ(X∗
q), we seek the minimum costs Cq over θ(X∗

q)

within the bounds C, and C̄ (line 3). For each q, we have

an assignment X∗
q and the minimum cost Cminq

. In line 6,

min(Cminq
⊙X

∗
q) returns the minimum cost sum among

the N assignments. On the other hand, we can compute

the maximum cost sum if robots never change from their

initial assignment with C̄ ⊙ X
∗
1. Thus, line 6 gives the

maximum cost loss when robots persist with the initial as-

signment and opt to avoid communication and reassign-

ment.

As described in Sec. 5.4, one can decide with cworst

whether to persist with the initial assignment by consider-

ing the communication/computational expense of a reas-

signment.

Algorithm 3 MAXLOSS

Input: An n× n cost matrix C1, C, and C̄

Output: A maximum cost difference cworst

1 (X∗
q , θ(X

∗
q)) = FINDTHETA(C1,C, C̄) for q ∈ {1, · · · , N}

2 for q = 1 to N

3 (c′q , objq) = LINPROG(c, θ(X∗
q),C, C̄,min)

. // minimize costs over θ(X∗
q) with the bounds

4 Cq = RESHAPE(c′q , n)

5 end if

6 cworst = max{C̄⊙X∗
1
−min(Cminq

⊙X∗
q)}

7 return cworst

6.5 Incremental communication

We develop an algorithm for determine whether cost

changes destroy the optimality the current assignment

through escalation of the communication neighborhood,

the idea discussed in Sec. 5.3. A set of boundaries θ(X∗)
can be summarized in different ways to show relevant

information about the effect of cost changes. A one-

dimensional cut provides a lower and an upper bound for

each cost. This interval is valid if all other costs remain

unchanged. The generalization, α-dimensional cuts, al-

low simultaneous changes of α costs, but n2 − α costs

must remain unchanged. Tolerance approaches, such as

that of [9], find a single value (tolerance percentage) to

represent the maximum cost perturbation which can be

applied simultaneously and independently without affect-

ing optimality. The current cost matrix C is expanded in

all dimensions to have the margins as much as the tol-

erance percentage. It produces a tolerance cost region,

essentially an n2-orthotope in which each dimension is

bounded by an interval cij − τij ≤ cij ≤ cij + τij where

τij ∈ R
≥0.

These intervals (call them τ -intervals to distinguish

them) are not larger than the 1-D cuts of θ(X∗), but their

validity is completely independent of changes in other

costs. This is attractive in multi-robot systems because

communication is not needed for cost changes inside the

associated τ -intervals. On the other hand, even when a

robot’s cost has violated its τ -interval, other costs may

have changed to counter-balance the effect so that the op-

timality of the present assignment is retained, i.e, remain-

ing inside θ(X∗). The algorithm shown in Alg. 4 checks

for a violation incrementally, starting from the robot it-

self and then, if necessitated by the results of the earlier

checks, by growing to incorporate information from other

robots.

The set of boundaries θ(X∗) and τ -intervals of the ini-

tial assignment are computed and distributed to robots

(lines 2–5). Then the following procedure runs on each

14

robot Ri concurrently. If cij violates its τ -interval, the

costs are collected in a set Cvi (lines 6–11). Robot Ri

checks cij ∈ Cvi
altogether whether they satisfy θ(X∗).

The checking returns Vi ∈ {0, 1} where Vi = 0 means

that the cost changes turn out not to violate θ(X∗) and

otherwise Vi = 1. This is done by substituting cost vari-

ables in θ(X∗) for the initial and changed costs (line 13).

If Vi = 0, the algorithm terminates. Otherwise, Ri finds

another robot, initiates communication to it, first request-

ing and then receiving changed cost set Cva
. We assume

there is at least one robot in communication range. If there

is no such robot, Ri can increase transmit power, navigate,

or wait until a robot is found. If any Ri ultimately re-

turns Vi = 1, global communication is necessary; if none

of the Ri return Vi = 1, their cost changes do not alter

the current assignment, and this fact has been determined

without requiring global communication.

Algorithm 4 INCREMENTALCOMM

Input: The current n× n cost matrix C, C, and C̄

Output: Indicator variables {V1, · · · , Vn}

1 l = 1, V1, · · · , Vn = 0, Cvi = ∅

2 X∗ = HUNGARIAN(C)

3 θ(X∗) = SA(X∗,C)

4 T = TA(θ(X∗),C) . // compute τ -intervals:

. //Tij = [cij − τij , cij + τij]

5 Distribute θ(X∗) and Tij to corresponding Ri

. // Below runs on each robot Ri concurrently //

6 for j = 1 to n . // i is fixed to each robot’s index

7 if cij < cij − τij and cij + τij > c̄ij // if Tij is violated

8 Vi = 1 // there is at least one violation in Ri’s cost

9 Cvi = Cvi ∪ cij . // collect violated costs

10 end if

11 end for

12 while |Cvi | ≤ n2 // while not all costs are included

13 Vi = CHECK(θ(X∗), Cvi ,C) // check Cvi altogether

14 if Vi = 0

15 break

16 end if

17 (Ra, Cva) = FINDADJACENT(Ri) . . . //Ra is an adjacent robot

18 Cvi = Cvi ∪ Cva

19 end while

20 return Vi //Vi = 1 if global comm. needed, otherwise Vi = 0

6.6 Complexity analysis

Computing θ(X∗) via the exact SA has O(kn2) time

complexity where k is the number of feasible solutions.

Each feasible solution has (n − 1)2 linear boundaries so

there are at most k(n − 1)2 boundaries. Alg. 1 computes

the boundaries for one feasible solution thus it has O(n2)
time complexity. Alg. 2 is dominated by the SA compu-

tation (i.e., determining θ(X∗)) which is repeated in the

while loop (line 18). Iteration continues as new θ(X∗)s
are found. The time complexity is, thus,, thus,, thus,, thus,

O((kn2)N) where N is the number of possible assign-

ments in C.

The time complexity of the partitioning method de-

pends on the number of row/column exchanges in the

n × n matrix (which is the sum of all N assignments).

In the worst case, all rows and columns are exchanged so

the complexity is O(n2). Alg. 3 executes Alg. 2 first, and

an O(n3) LP runs N times, giving O((kn2)N +Nn3) =
O((kn2)N). If the output of Alg. 2 has already been com-

puted, the complexity of Alg. 3 is O(Nn3). Alg. 4 in-

cludes SA so is dominated by it, but the remainder of the

procedure, which runs on each robot has O(n) time com-

plexity.

Except for Alg. 1, all the algorithms do not have poly-

nomial time complexity because they employ SA. How-

ever, RANDSA (Alg. 1) runs fast while producing high-

quality solutions (which will be shown in Sec. 7.1) so it

serves as a useful replacement for SA. Even with SA, the

algorithms work well for small instances since the costs

are incurred prior to task execution. So long as the robots

have a few minutes in the “huddle” they are able to com-

plete the computation.

7 Experiments

We consider two scenarios where cost—traveling time—

would change depending on the situation. Both employ

the same assumptions as the example in Sec. 5.4. The first

one is a rescue scenario shown in Fig. 7(a). In a city cen-

ter, 10 victims (red stars) are inside a disaster site (black

polygon) and 10 robots (blue circles) are outside. The

robots navigate into the site while pushing debris. The

robots move with 1 m/s speed and meet debris every 10 m.

The time to push one object is tw ∈ [0, 1]. The second

scenario is a multi-robot navigation problem in an urban

area shown in Fig. 7(b), where 30 Robots and 30 tasks

are uniformly distributed in a bounded area. The robots

move at 10 m/s and encounter a traffic signal every 300 m.

The waiting time for the signal is tw ∈ [0, 30]. Distances

from the robots to the tasks are collected using the Google

API [12]. The raw data are in meters but converted to time

(sec) by considering the moving speeds of the robots. The

system is with Intel Core i5, 8G RAM and MATLAB.

15

Table 2: Comparisons of different approaches with respect to cost changes. (HUNGARIAN, 1-D intervals, SA.)

n = 3 n = 4 n = 5
Method Attempts Success Rate Attempts Success Rate Attempts Success Rate

HUNGARIAN 50 15 30.00% 50 14 28.00% 50 15 30.00%
1-D 36 15 43.59% 36 14 38.88% 42 15 35.71%
SA 15 15 100% 14 14 100% 15 15 100%

Table 3: The result of partitioning. Frequency means the

number of sub-teams found in 20 trials.

Sub-team size
Frequency

Rescue Navigation Locality

1R’s only 0 0 0

1R:3R 4 2 0

1R:1R:2R 0 0 0

2R:2R 4 2 20

No sub-team 12 16 0

Table 4: The maximum loss of persisting with assign-

ment. Some examples of execution results are shown

(navigation scenario). The three columns shows cost sums

(sec).

Size PERSIST CHANGE MAX LOSS

3R 970.2 424.7 545.5

4R 1385 730.2 655.4

5R 716.8 402.3 314.5

cost loss information. If the communication/computation

expenses are prohibitive, it would be beneficial to per-

sist with the initial assignment. For example, if the to-

tal execution time of tasks including the time for addi-

tional communication and computation for dealing with

cost changes takes longer than the suboptimal execution

time of the initial assignment, it is more beneficial for the

robots not to use their time for updating the optimal as-

signment. The the average running times of the algorithm

(including Alg. 2 with the exact SA) are 0.6140, 9.830,

and 262.6 sec (20 repetitions) for n = 3, 4, 5 (standard de-

viations are 0.2941, 2.811, and 97.75, respectively). The

large standard deviations result from the varied N which

is the number of possible assignments in the cost region.

Since we choose the initial cost randomly, some repeti-

tions could have many possible assignments whereas oth-

ers do not. The range of N is [1, n!] so the variance be-

comes larger as n increases.

7.5 Incremental communication

Finally, we show how few communication messages are

actually needed to detect whether optimality has been vi-

olated by cost changes. For each scenario, we compute

the τ -intervals and distribute them to the robots. Each

robot independently performs its task unless its costs vio-

late the τ -intervals. Once a violation is detected, the robot

runs the individual procedure in Alg. 4. For each changed

set of costs, each robot needs to check the violation by

self-assessment (i.e., checking its own costs for all tasks)

or with nearby robots. We record how many robots are

involved with this process for each robot and how many

times such the process occurs until tasks are completed.

A team may have several local communications, but one

robot may require global communication. To understand

such cases, we record the size of the largest neighborhood

needed for communication among the robots. For exam-

ple, the previous case needs global communication even

though only one robot needs it while other robots do lo-

cal checks. Note that we ensure every robot has at least

one violation so all robots execute Alg. 4. We randomly

choose robots and tasks from the data sets. Our experi-

ment varies the team size from three to five. Fig. 11 and

Table 5 show the results (for 20 repetitions). In the follow-

ing, we give an example interpretation of the result in the

navigation scenario (the leftmost bars in Fig. 11b) with

three robots. Among all 20 trials, the self-assessment is

enough until the end of the mission in nine trials, 2-robot

communication is the maximum range in seven trials, and

global communication is needed in the rest four trials. As

the result shows, local communication suffices in many

trials (bold numbers in Table 5). The reported running

time includes the computation time for the τ -intervals and

Alg. 2 with SA.

7.6 Interrelated costs

Since we propose the region-based cost that can represent

interrelationships between costs, we examine the benefit

of using the richer model compared to a simple bounded

cost (like Fig. 2a). We assume that costs have linear re-

lationships and, like Fig. 3(a), the robots share one re-

18

Table 5: Frequency of communication ranges. The bold numbers indicate the frequencies of local communications.

For example, in the rescue scenario with three robots (3R), six trials out of 20 only require self-assessment (no inter-

robot communication) until tasks are completed.

Rescue Navigation

Team size

Range
Self 2 3 4 5

Time (sec)
Self 2 3 4 5

Time (sec)

Mean Var Mean Var

3R 5 10 5 N/A N/A 0.0475 0.0023 9 7 4 N/A N/A 0.0495 0.0018

4R 4 5 5 6 N/A 0.5710 0.0352 5 6 2 7 N/A 0.4685 0.0273

5R 2 6 4 3 5 7.468 11.07 5 7 0 1 7 6.635 14.56

3-Robot 4-Robot 5-Robot
0

5

10

F
re
q
u
e
n
c
y Self 2 3 4 5

(a) The rescue scenario.

3-Robot 4-Robot 5-Robot
0

5

10

F
re
q
u
e
n
c
y Self 2 3 4 5

(b) The navigation scenario.

Figure 11: Frequency of communication ranges. For

each team size, the left most bar means self-assessment

whereas the right most bar mean global communication.

Local communication is more frequent with Alg. 4.

source to perform tasks. Thus, any vicissitude affecting

the resource changes all costs by the same amount. For

example, if there is a delay on a common route to reach

tasks, all traveling times increase accordingly by the same

amount. We randomly choose an n × n cost matrix and

a scalar value of delay from U(0, 10). We model the re-

lationships of costs through a set of linear equations (e.g.,

cij − cpq = tij − tpq for ij 6= pq where t is a nominal

cost without delay). We first run Alg. 2 to compute all op-

timal assignments under the cost boundary modeling in-

terrelationships of costs. We also run the algorithm with a

simple bounded region for the same instance, which does

not model the interrelationship arising from the shared re-

source.

By modeling costs more accurately considering inter-

relationships, the resulting cost region could be smaller

than the simple bounded cost. This smaller cost region

produces a smaller number of output assignments from

Alg. 2. Thus, the richer model prunes away some scenar-

ios (possible assignment alterations) that the robots do not

have to prepare for. The results (Fig. 12 and Table 6) show

that the number of output assignments is greatly reduced

when interrelationships are modeled (averagely from 9.95

to 1.85 for n = 4). From this analysis, we are able to find

more sub-teams. For example, with the simple bounded

cost, there is only one trial where sub-teams are found. In

the rest 19 trials, no sub-team is found. On the other hand,

1R 1R:3R1R:1R:2R2R:2R None
0

20

F
re
q
u
e
n
c
y

(a) No interrelationship modeled.

1R 1R:3R1R:1R:2R2R:2R None
0

20

F
re
q
u
e
n
c
y

(b) Interrelationships modeled.

Figure 12: The results of partitioning a team of robots

without and with interrelationship modeling (20 trials).

Modeling interrelationships reduces false positives in

computing all possible assignments within a cost region.

Thus, more sub-teams can be found with the smaller num-

ber of assignments.

the richer cost model enables the partitioning method to

find more sub-teams (18 out of 20 trials). In addition, the

reduced N by having a smaller cost region decreases the

running time of the algorithms that iterate their procedure

N times.

8 Conclusion

In this paper, we propose a cost representation that incor-

porates uncertainty in costs and is also capable to express-

ing some interrelationships between costs. The represen-

tation assumes that costs are bounded by a finite region.

We employ a sensitivity analysis approach for multi-robot

task allocation and compare it with other methods, show-

ing that is advantageous when costs change. We also pro-

posed three methods that reduce centralization of multi-

robot systems alongside the basic routine for computing

θ(X∗) and a fast approximate version, which is a random-

ized algorithm. We examined our algorithms with two re-

alistic scenarios and data, not merely randomly generated

matrices. We also show that modeling interrelationships

yields tighter cost regions and hence better predictions for

how the optimality of the task allocation under interre-

lated and uncertain costs.

19

Table 6: The results when cost interrelationships are mod-

eled (20 repetitions).

(a) The number of assignments from given cost regions.

Interrelationship Not modeled Modeled

Mean 9.9500 1.8500

Std. dev. 4.2855 1.0984

(b) Frequency of sub-teams found when n = 4.

Partition type
Interrelationship

Not modeled Modeled

1R’s only 0 13

1R:3R 0 3

1R:1R:2R 1 1

2R:2R 0 1

No sub-team 19 2

Finally, it is worth noting that the algorithms and re-

sults that are reported work even if an overestimation of

the region of feasible costs is given. More generally, if

robots are permitted to generate global synchronization

events, then even an underestimated version of the region

could be useful. For example, when some cost variation is

found to violate the presumed model, the robot could trig-

ger synchronization with a more pessimistic region. Do-

ing so is analogous to the way most MRTA approaches

operate today: they simply replan when things change.

With region-based models one can hope to find regions

which force replanning less frequently.

Our future work includes the problems occurring if a

modeled cost region is no longer valid owing to some un-

foreseen circumstances. As a result, all the upfront com-

putations done with the outdated cost region might be in-

effective. In this case, the cost region should be updated

with new information collected from observations, and the

upfront computation needs to follow for the updated re-

gion. We are interested in developing methods that find

and use some reusable pieces from the previous results if

such an outdated cost region is detected. Unless there is a

holistic change in the environment which is rare, only few

of costs need remodeling at one point (of course there may

be a series of such cost remodelings as the robots observe

more dynamic changes). We will investigate how we can

prevent a complete restart of the upfront computation if

partial changes in the cost region occur.

A An example transformation from

NOLC to LONC

An example of LONC is maxx1 + x3 − x4 subject to

x2
1 + x4

3 ≥ 1 and x2
2 + x2

4 ≥ 1. This can be transformed

to max
√
y1 + 4

√
y3 − √

y4 subject to y1 + y3 ≥ 1 and

y2 + y4 ≥ 1 by substituting yi = x2
i for i ∈ {1, · · · , 4}.

Now the transformed objective function is convex and the

constraints are linear, which is NOLC.

References

[1] Srinivas Akella. Assignment algorithms for vari-

able robot formations. In Proceedings of Interna-

tional Workshop on the Algorithmic Foundations of

Robotics, 2016.

[2] Charles Audet, Pierre Hansen, Brigitte Jaumard, and

Gilles Savard. A branch and cut algorithm for

nonconvex quadratically constrained quadratic pro-

gramming. Mathematical Programming, 87:131–

152, 2000.

[3] Aharon Ben-Tal and Arkadi Nemirovski. Lectures

on modern convex optimization: analysis, algo-

rithms, and engineering applications. Siam, 2001.

[4] Stephen Bradley, Arnoldo Hax, and Thomas Mag-

nanti. Applied mathematical programming. 1977.

[5] Mathias Bürger, Giuseppe Notarstefano, Francesco

Bullo, and Frank Allgöwer. A distributed simplex

algorithm for degenerate linear programs and multi-

agent assignments. Automatica, 48(9):2298–2304,

2012.

[6] Smriti Chopra, Giuseppe Notarstefano, Matthew

Rice, and Magnus Egerstedt. A distributed ver-

sion of the hungarian method for multirobot assign-

ment. IEEE Transactions on Robotics, 33(4):932–

947, 2017.

[7] Bernardine Dias, Robert Zlot, Nidhi Kalra, and An-

thony Stentz. Market-based multirobot coordina-

tion: A survey and analysis. Proceedings of the

IEEE, 94:1257–1270, 2006.

[8] Nakju Lett Doh, Changjoo Nam, Suk-Kyu Lee, and

Hwang-Nam Kim. Particle filter-assisted ad hoc

routing in a multi-hop wireless ad hoc network for

multi-robots. Journal of Institute of Korean Elec-

trical and Electronics Engineers, 14(4):312–316,

2010.

20

[9] Carlo Filippi. A fresh view on the tolerance ap-

proach to sensitivity analysis in linear programming.

European Journal of Operational Research, 167:1–

19, 2005.

[10] Tomas Gal. Postoptimal analyses parametric pro-

gramming and related topics. McGraw-Hill, 1979.

[11] Tomas Gal, Hermann-Josef Kruse, and Peter Zörnig.

Survey of solved and open problems in the degener-

acy phenomenon. Springer, 1988.

[12] Google. The Google Directions API.

https://developers.google.com/

maps/documentation/directions/, 2013.

[13] Harvey Greenberg. An analysis of degeneracy.

Naval Research Logistics Quarterly, 33:635–655,

1986.

[14] Harold Kuhn. The hungarian method for the assign-

ment problem. Naval Research Logistic Quarterly,

2(1-2):83–97, 1955.

[15] Sven Leyffer and Ashutosh Mahajan. Nonlinear

constrained optimization: methods and software.

Argonne National Laboratory, Illinois, 2010.

[16] Chi-Jen Lin and Ue-Pyng Wen. Sensitivity analysis

of objective function coefficients of the assignment

problem. Asia-Pacific Journal of Operational Re-

search, 24:203–221, 2007.

[17] Lantao Liu and Dylan Shell. Assessing optimal as-

signment under uncertainty: An interval-based algo-

rithm. International Journal of Robotics Research,

30(7):936–953, 2011.

[18] Lantao Liu and Dylan Shell. Large-scale multi-robot

task allocation via dynamic partitioning and distri-

bution. Autonomous Robots, 33:291–307, 2012.

[19] Ayorkor Mills-Tettey, Anthony Stentz, and Bernar-

dine Dias. The dynamic hungarian algorithm for

the assignment problem with changing costs. Tech-

nical Report CMU-RI-TR-07-27, Carnegie Mellon

University, 2007.

[20] Changjoo Nam and Dylan Shell. When to do your

own thing: Analysis of cost uncertainties in multi-

robot task allocation at run-time. In Proceedings of

IEEE International Conference on Robotics and Au-

tomation, pages 1249–1254, 2015.

[21] Changjoo Nam and Dylan A Shell. Analyzing the

sensitivity of the optimal assignment in probabilis-

tic multi-robot task allocation. IEEE Robotics and

Automation Letters, 2(1):193–200, 2017.

[22] Michael Otte and Nikolaus Correll. The any-com ap-

proach to multi-robot coordination. In IEEE Inter-

national Conference on Robotics and Automation:

Network Science and Systems Issues in Multi-Robot

Autonomy, 2010.

[23] James Parker, Alessandro Farinelli, and Maria Gini.

Decentralized allocation of tasks with costs chang-

ing over time. IJCAI Workshop on Synergies be-

tween Multiagent Systems, Machine Learning and

Complex Systems, pages 62–73, 2015.

[24] James Parker and Maria Gini. Tasks with cost grow-

ing over time and agent reallocation delays. In Pro-

ceedings of the 2014 international conference on

Autonomous agents and multi-agent systems, pages

381–388. International Foundation for Autonomous

Agents and Multiagent Systems, 2014.

[25] James Parker and Maria L Gini. Controlling grow-

ing tasks with heterogeneous agents. In Proceedings

of International Joint Conference on Artificial Intel-

ligence, pages 461–467, 2016.

[26] James Parker, Ernesto Nunes, Julio Godoy, and

Maria Gini. Exploiting spatial locality and hetero-

geneity of agents for search and rescue teamwork.

Journal of Field Robotics, 2015.

[27] Lorenzo Sabattini, Nikhil Chopra, and Cristian

Secchi. Decentralized connectivity maintenance

for cooperative control of mobile robotic systems.

The International Journal of Robotics Research,

32(12):1411–1423, 2013.

[28] Wei-Min Shen and Behnam Salemi. Distributed and

dynamic task reallocation in robot organizations. In

Proceedings of IEEE International Conference on

Robotics and Automation, volume 1, pages 1019–

1024, 2002.

[29] Peter Stone and Manuela Veloso. The cmunited-

97 simulator team. In RoboCup-97: Robot Soccer

World Cup I, pages 389–397. Springer, 1998.

[30] James Ward and Richard Wendell. Approaches to

sensitivity analysis in linear programming. Annals

of Operations Research, 27:3–38, 1990.

21

[31] Ernst Zermelo. Über das navigationsproblem

bei ruhender oder veränderlicher windverteilung.

ZAMM-Journal of Applied Mathematics and Me-

chanics/Zeitschrift für Angewandte Mathematik und

Mechanik, 11(2):114–124, 1931.

22

