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Abstract—We consider a scenario in which a process of interest,
evolving within an environment occupied by several agents, is
well-described probablistically via a Markov model. The agents
each have local views and observe only some limited partial
aspects of the world, but their overall task is to fuse their data to
construct an integrated, global portrayal. The problem, however,
is that their communications are unreliable: network links may
fail, packets can be dropped, and generally the network might
be partitioned for protracted periods. The fundamental problem
then becomes one of consistency as agents in different parts
of the network gain new information from their observations
but can only share this with those with whom they are able to
communicate. As the communication network changes, different
views may be at odds; the challenge is to reconcile these
differences. The issue is that correlations must be accounted for,
lest some sensor data be double counted, inducing overconfidence
or bias.

As a means to address these problems, a new recursive
consensus filter for distributed state estimation on Hidden
Markov Models (HMMs) is presented. It is shown to be well-
suited to multi-agent settings and associated applications since
the algorithm is scalable, robust to network failure, capable of
handling non-Gaussian transition and observation models, and
is, therefore, quite general. Crucially, no global knowledge of
the communication network is ever assumed. We have dubbed
the algorithm a Hybrid method because two existing pieces are
used in concert: the first, Iterative Conservative Fusion (ICF) is
used to reach consensus over potentially correlated priors, while
consensus over likelihoods, the second, is handled using weights
based on a Metropolis Hastings Markov Chain (MHMC). To
attain a detailed understanding of the theoretical upper limit
for estimator performance modulo imperfect communication, we
introduce an idealized distributed estimator. It is shown that
under certain general conditions, the proposed Hybrid method
converges exponentially to the ideal distributed estimator, despite
the latter being purely conceptual and unrealizable in practice.
An extensive evaluation of the Hybrid method, through a series
of simulated experiments, shows that its performance surpasses
competing algorithms.

I. INTRODUCTION

Mobile and robotic-sensor networks have many valuable ap-

plications and the problem of estimation within such networks

has, consequently, been a topic of extensive study in recent

years [1], [2], [3]. In a robotic-sensor network, robots carry

sensors that make noisy observations of the state of an system

of interest. Many tasks require that the agents construct some

overall portrayal of the system’s state. This requires that the

agents fuse their individual information, ideally in some way

that forms a cohesive whole. More precisely, we have to devise

methods to estimate the state of the system based on collective

information of the agents.
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The estimation process is said to be centralized if all the

agents send their raw observations to a central node that is

responsible for calculating an estimate based on the collective

information [4]. But this is not always possible owing to link

failures as well as bandwidth and energy constraints [5]; nor is

it always desirable because doing so also introduces a single

point of failure.

The alternative —termed distributed state estimation (DSE)—

is to adopt a message passing protocol between agents and

strive to achieve the same result as the centralized estimation

via a distributed process. In order to be viable, if messages are

to contain raw information, the fundamental challenge is to

identify and account for mutual information before passing a

message from one agent to another. To better understand this

notice that a node’s knowledge of the process being estimated

is based on its own observations and also those of the nodes

with whom it has communicated in the past. Because, in real

problems, network connectivity may change over time, even two

nodes who are exchanging messages with each other for the first

time, may both already have incorporated the observations of

a common third node, perhaps with whom each communicated

individually only in the distant past. Fusion for those two nodes

is now a delicate matter as their information is correlated;

overconfidence would result if the shared provenance of their

estimates is not accounted for properly.

Most DSE research in recent years has focused on approaches

that rely on consensus methods. The objective then becomes

to design both a protocol for message passing between nodes

and local fusion rules so that the nodes reach a consensus

over their collective information. Although DSE algorithms

are not guaranteed to match the performance of the centralized

estimator all the time, their scalability, modularity, and robust-

ness to network failure have fueled interest in the approach.

These features are important in the applications envisioned

for robots employing such algorithms, such as multi-agent

localization [6].

Consistent with this recent line of work, the present paper

studies a new algorithm for estimation of Hidden Markov

Models over an unreliable network, which we dub the Hybrid

method. The algorithm’s primary feature is that it achieves

attractive performance, in terms of estimate quality, across a

wide range of network behavior.

The value and innovation of the Hybrid method is perhaps

most easily understood by contrasting it with existing ap-

proaches visually. Figure 1 shows different estimation methods

and illustrates how the proposed Hybrid method compares.

The horizontal axis in the diagram is the probability of link

failure: p = 0 means that two agents that try to establish a

communication link will always succeed and p = 1 means they

will always fail. The vertical axis represents a performance
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Fig. 1: A graphical synopsis of the paper’s contribution. Though

a centralized method (in green) yields estimates of highest

possible quality, it can only operate when the network remains

fully connected for all time. In contrast, Iterative Conservative

Fusion (a constant time recursive approach, depicted in red) is

practicable with intermittent connectivity, but its conservative

nature means that information is diluted, degrading estimation

performance. The method studied herein (shown in blue) is a

hybrid of both, realizing the “best of both worlds” in that it

achieves excellent performance across a wide range of network

conditions, including recovering centralized performance in the

connected regime.

measure, yet to be defined, that quantifies the similarity of

the estimated PMF (Probability Mass Function) to the PMF

of an omniscient estimator with access to all observations

made by nodes independent from network topology. When

the network is connected, this is equivalent to the centralized

estimator. However, there is a threshold p0 (which may in

general depend on the network topology) beyond which the

centralized estimator cannot operate. Once that threshold

has been crossed, the network will likely have more than

one connected component and such components will change

over time. This is the area where the proposed method has

unmistakable superiority over competitors. The threshold p0
may be small for simple network topologies, resulting in

a large area that corresponds to connections of intermittent

connectivity.

In the event of intermittent network disconnection, estimator

performance inevitably falls below the omniscient estimator.

Even if no memory and computational limit is imposed and

nodes are allowed to keep the full history of their observations

and share such a history with other path connected nodes on

the network, there is always an upper bound on the proximity

measure. We show that our method’s performance approaches

the upper bound, resulting in a large performance improvement

compared with Iterative Conservative Fusion, an au courant

method capable of tolerating erratic communications.

A. The Structure of this Article

The remainder of the paper is organized as follows. The

very next section gives the broad outlines of prior work on

distributed state estimation and serves to help familiarize the

reader who has come to these problems only lately; it also

draws connections, both similarities and points of departure,

from the closest existent work. Then, in Section III, the notation

used in this paper is explained. That section also identifies

the assumptions and describes the system model. Section IV

gives some preliminaries on distributed state estimation, paving

the way for the presentation of the new Hybrid method. The

method itself is presented in Section V and, finally, we evaluate

its performance in Section VI.

II. RELATED WORK

A. Common Modeling Assumptions: A Panoramic View

Categorizing Distributed State Estimation (DSE) algorithms

on the basis of the modeling assumptions they make gives a

useful miniature taxonomy of the methods. Any DSE method

makes assumptions about one or more of the following aspects:

the state (static [7] vs. dynamic [6]), the state transition

model (linear [8] vs. nonlinear [9], [10], [11]), type of noise

(Gaussian [7], [8] vs. non-Gaussian [12]), topology of the

network (constant vs. changing [13], [7]), connectivity of the

network (persistent [9] vs. intermittent [13], [7]), the agents’

knowledge of the network topology (global vs. local [13],

[7], [9]) and, finally, the treatment of mutual information

between estimates (exact solution through bookkeeping [1]

vs. conservative solutions that avoid double counting [14],

[15]).

The research on DSE for linear systems with Gaussian

noise is extensive (see [8] and [16] for reviews). For nonlinear

systems with Gaussian noise, the distributed versions of

Extended Kalman Filters (EKF) [17], [9], Extended Information

Filters (EIF) [18] and Unscented Kalman Filter (UKF) [19]

have been proposed. For nonlinear systems with non-Gaussian

noise, different variants of Distributed Particle Filter (DPF)

methods have also been studied [20].

B. Bookkeeping versus Conservative Fusion

The Channel Filter [1], a classic DSE method, presupposes

a directed communication network topology and relies on

bookkeeping to make sure no information is double counted

during message passing. The Channel Filter can recover

the performance of the centralized estimator fully so long

as the network is entirely connected and time invariant.

A similar bookkeeping-based approach, which relaxes the

directed communication graph requirement, was proposed by

Bahr, Walter and Leonard [21]. Their method keeps track of

the provenance of individual measurements to avoid double

counting. The final estimates produced are conservative and

consistent approximations of the centralized approach and

their method outperforms other conservative fusion DSE

approaches that do not perform bookkeeping. However, the

basic problem with DSE methods that rely on bookkeeping is

their inability to scale. The information being maintained is

inherently combinatorial in nature, so they are unsuitable for

large-scale networks and their resource requirements (usually

for CPU or memory, but possibly communication as well) can

be prohibitive even in networks of moderate size.

For dynamic state systems within time-varying networks,

the connectivity constraint is a determining factor for choosing
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the proper DSE method. If the network remains connected,

DSE methods can maintain equality of each node’s priors and

then keep the likelihoods identical by performing consensus

on the likelihoods [22], [23]. We refer to this approach as

Consensus on Likelihoods (CL). The advantage of CL is that,

given sufficient time to reach consensus, it can match the

centralized estimator’s performance. However, if the network

becomes disconnected, or if the consensus steps are limited,

the priors start to depart from one another. Once the priors

differ across nodes, CL methods will fail.

In the case of disparities between priors owing to network

disconnection, the prevailing fix is an approach where the agents

perform Iterative Conservative Fusion (ICF) on node posteri-

ors [24], [14], [15]. Such ICF methods have a conservative

fusion rule that avoids double counting at the expense of down

weighting the uncorrelated information. As a consequence

they are inherently sub-optimal. In the case of disparities

between priors owing to early termination of a consensus

process, [9] and [17] proposed to use a combination of CL and

ICF. To justify their method they refer to the complementary

features of CL and ICF. They claim that ICF underweights

the new information and showed better performance when

very few consensus iterations have been executed. On the

other hand, CL takes longer to converge but can recover

the centralized estimator’s performance. Therefore, when the

number of consensus iterations are limited, they proposed that

the combination would gain the benefits of both.

C. Distributed Calculation of Network Cardinality

For the CL methods to recover the Centralized Estimator’s

performance fully, they need knowledge of the total number

of sensor nodes in the network. This is required because the

distributed averaging approach used in CL methods provides

the average value of the collective information and, crucially,

the sum of the information equals the average value multiplied

by the number of nodes.

Fortunately, several distributed methods already exist for

computing the cardinality of a network. For example [25]

uses the statistical properties of the Bernoulli trials and max

consensus to estimate the network cardinality. A review of

the prominent methods for distributed node counting can be

found in [26] along with a distributed method suitable for

dynamic networks. In [27], the authors use randomly generated

identifiers (IDs) and propose an algorithm that can estimate

the network cardinality with minimal communication cost.

D. Situating this Article’s Contribution

Above, the precedence of [9] and [17] in their amalga-

mation of CL and ICF has been recognized and is openly

acknowledged—the present authors were working on the

method described herein in order to realize an efficient approach

that can cope with conditions of severe network degradation.

We encountered their work only after our first publication on

the subject [13]. It is worth clarifying the difference between

the method in this paper and that of [9] so that, from an

application point of view, one should know when to opt for

which. At their core both methods follow the same fusion rules

for independent and correlated sources of information. This

paper describes fusion rules for the discrete case, while [9]

details the implementation for continuous linear and non-linear

systems with a uni-modal assumption on posterior probability

distributions. Save for the typical reasons to prefer a continuous

over a discrete representation (i.e., compactness and accuracy),

one uses the discrete realization specially when either the (near)

Gaussian or uni-modal assumptions no longer hold. Robotics

problems violating these assumptions are, of course, known to

be abundant.

In essence, our assumptions about the network’s behavior

differs and the analysis and final results are, consequently,

distinct from [9], [17]. (In detail: Proposition 1 gives the quality

of network needed to achieve some desired performance—a

question that is not meaningful when the network is assumed as

in [9] and [17].) Our viewpoint is that network disconnection

will inevitably result in unequal priors and using ICF alone

will mean that much of the new information, despite being

uncorrelated, will be diluted in the consensus process. Handling

priors with ICF and new information with CL gives outstanding

performance in settings where the communication network is

unreliable—so good in fact as to eclipse previously envisioned

domains of applicability.

In this paper we analyze the Hybrid method to quantify the

relationship between network connectivity and the performance

gap with respect to an ideal (yet impractical) distributed estima-

tor. From [9], a complementary aspect is known, namely that

the Hybrid method requires few consensus steps to still remain

stable under perpetual connectivity. Thus, using our results,

the practitioner who has control over the network topology

can compare two competing design solutions: balancing the

effort to keep the network connected against the loss of some

performance with intermittent connectivity. The core proof of

this paper, supplementing the discussion in our earlier work

[13], helps form a deeper understanding of [9], [17]. One now

sees that a hybrid of CL and ICF yields superior performance in

networks with either perpetual or intermittent connectivity, for

systems where the posteriors are either discrete or continuous

and uni-modal, and the motion/observation models are either

linear or non-linear. Finally, we point out that the discussion

in [9] about the choice of consensus weights when the number

of agents in the network is unknown may be applied mutatis

mutandis to our method as well.

This article is an improved and extended version of the

conference paper [28], where the method of [13] was gen-

eralized to finite-state systems with non-Gaussian noise. In

extending [28] this article has added a mathematical analysis

and proof for superiority of the proposed method over ICF.

We also show, through systematic examination and extensive

simulations, that the performance improvement is significant

in situations with any of these traits: large number of agents,

significant observation uncertainty, dynamic state systems with

several states, and in time-varying networks that face intermit-

tent disconnection. The method handles non-Gaussian noise

models, being particularly useful for collaborative tracking and

localization. Taken together this supports the claim that the

method should be the first choice in many applications.
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III. NOTATION AND MODEL

A. The Network Topology

Assume that we have n homogeneous agents associated

with the nodes of a graph. These agents can communicate with

one another under a time-varying undirected network topology

Gk = 〈V, Ek〉 where V and Ek are, respectively, the set of graph

nodes and edges at step k. The node corresponding to the ith

agent is denoted by vi. If agents i and j can communicate

directly at step k then (vi, vj) ∈ Ek. The set N i represents

the neighbors of node vi that are connected by an edge to

vi. The set Ni,k = N i,k ∪ {vi} will also be used in some of

the equations. The set CC
i
k represents the set of agents that

are path-connected to agent i at step k (the mnemonic being

Connected Component).

For a time-varying network, there exist connected component

sets (or, more briefly, components) that persist over time.

By this we mean that the subset of nodes comprising the

component remains constant, though the internal topology of

the graph within the component may vary. A component can be

uniquely identified by its members, the time of its formation,

and its lifetime, i.e., the duration that the set of nodes remains

unchanged. Then, at time step k, a network NETk can be

represented by a set of components paired with their formation

times:

NETk = (CC
1
k, tCC1

k
), . . . , (CC

M
k , tCCM

k
), M ≤ |V|. (1)

Agent i is said to be part of a component CC
j
k if vi ∈ CC

j
k,

where the j is used to denote an entry from the pairs in NETk,

this being an extrinsic view. We will also find it convenient

to talk of agent i being part of component CC
j
k, again simply

meaning vi ∈ CC
j
k. This latter notation refers to the same

component (as agent i is only in one component at time k)

but it emphasizes a component associated with an individual

node, in this particular case, stating that agent i is connected

(via some path) to agent j.

The set Tcc = {t0, t1, . . . } contains the timestamps in which

a change occurs in the composition of NETk. Additionally, let

tc,k = tk+1 − tk denote the duration for which all network

components comprising NETk persist. Note that the lifetime of

a single component in NETk can be greater than tc,k if it was

formed before tk or if it continues to exist beyond tk+1.

For an arbitrary set with members b = {bi1 , · · · , bis},
the index set Ib = {i1, · · · , is} contains the indices of b’s

members (and s ∈ N). We will use the abbreviated form

In = {1, 2, · · · , n}, and Ik = {1, 2, · · · , k} to index the

agents and time steps, respectively.

B. System Model

Consider a finite state HMM specified as follows:

• The HMM has ns possible states X = {S1, · · · , Sns
}

and also, there are nz possible observation symbols

Z = {O1, · · · , Onz
}.

• The random variables xk ∈ X and z
i
k ∈ Z represent the

state at step k and the observation made by agent i at

step k, respectively.

• The transition model is an ns × ns matrix written

Pk|k−1 , p(xk|xk−1). All the agents possess this model.

• Each agent has an observation model, which is an ns ×
nz matrix written as p(zik|xk), i ∈ In. The observation

models of different agents may differ.

• The prior, prediction, and posterior probabilities are 1×ns
random vectors

πk−1 , p
(

xk−1|{z
i
k}
i∈In

k∈Ik−1

)

,

π̃k , p
(

xk|{z
i
k}
i∈In

k∈Ik−1
,xk−1

)

,

πk , p
(

xk|{z
i
k}
i∈In

k∈Ik

)

,

respectively.

The above HMM is a well-defined and useful description

for many distributed estimation applications including ones

with dynamic state and time-varying observation models. For

example, the following transition and observation models can

be represented in the above form:

xk+1 = f(xk+1,wk) wk ∼ p(vk), (2)

z
i
k+1 = hi(xk+1,vk) vk ∼ p(vk), (3)

in which, wk and vk are random variables representing

dynamics and observation noise.

Further, we assume that each agent has a processor and a

sensor on-board. Sensors make observations every ∆t seconds

and the processors and the network can handle calculations

based on message passing among agents every δt seconds. We

assume that δt≪ ∆t. We also assume that the agents exchange

their information over a communication channel that is free of

both delay and error. Communication links are assumed to be

symmetric.

The specification above can be extended to include control

inputs but they are omitted as they are not the focus of this

paper.

Henceforward {zik}
i∈In

k∈Ik
is the indexed family of all the

observations made by all the agents up to step k. For each agent

i, the variable R
ij
k denotes the information that node i receives

from node j, its neighbor at time k (i.e., j ∈ N i,k). The set Ri
k

contains all the information that node i has received from its

neighbors up to step k and I
i
k = R

i
k ∪ {z

i
k} represents all the

information content that is available to agent i at time k. (In

general, in this paper, the information in the variable that bears

the superscript i is a version local to the ith agent. Moreover,

symbol η with or without any sub/superscript is a normalization

constant.)

IV. DISTRIBUTED STATE ESTIMATION

In this section we will review some concepts in Distributed

State Estimation that help us better understand the details

of the method developed in the next section. We first define

Recursive State Estimation in the context of HMMs. Then,

we discuss what is meant by Centralized Estimation in the

context of networked systems, as this notion has been used only

informally up till now. We proceed to define a method, within

the Consensus on Likelihoods (CL) class, called Distributed

Consensus Based Filtering that is particular to systems where

agents have identical prior information. Given that network

disconnection and early stopping of the consensus process
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yields priors among the agents that are not identical, we review

Conservative Fusion and its iterative version as a remedy for

such cases.

In the context of HMMs, Recursive State Estimation is

the process of recursively computing the posterior probability

of a random dynamic process xk conditioned on a sequence

of measurements {zik}
i∈In

k∈Ik
. Bayesian recursive filtering, in a

process with the Markov assumption, has the form

p(xk|zk) =
1

η
p(zk|xk)p(xk|zk−1,xk−1) (4)

=
1

η

n∏

i=1

p(zik|xk)

∫

p(xk|xk−1)p(xk−1|zk−1)dxk−1
,

where zk = {zik}
i∈In . Recursive estimation in a sensor

network setting for an HMM can be carried out in the following

ways:

A. Centralized Estimation

Centralized Estimation (CE) involves a single distinguished

node in the network that receives observations zIn

k , {zik}
i∈In

from the rest. The above Bayesian filtering recursion for step k

of a finite state HMM consists of first calculating the prediction

π̃k according to

π̃k = πk−1Pk|k−1, (5)

then updating via

πk =
1

η
π̃kOk, (6)

where Ok is an ns × ns diagonal matrix of likelihoods,

p(zIn

k |xk).

Remark 1. Under CE, for a connected component set CC

containing nc nodes, the state Probability Mass Function (PMF)

at step k and the initial PMF π0 are related by

CEπk =
1

π0T
CE

1:k1N
π0T

CE

1:k, (7)

where

T CE

1:k = P1|0O1 · · · Pk|k−1Ok. (8)

B. Consensus on Likelihoods

Consensus on Likelihoods (CL) is based on the following in-

sight. In (4), if all agents share the same prior information, they

will recover the centralized estimator’s performance provided

they can reach consensus over the product of measurement

probabilities. Distributed averaging methods can be applied

here as the nodes need to reach a consensus over the log of

the joint measurement likelihoods (log-likelihood), that is,

l̃k =
1

n
log

n∏

i=1

Oik =
1

n

n∑

i=1

logOik =
1

n

n∑

i=1

l̃ik, (9)

in which Oik is the ith agent’s likelihood. Once consensus has

been achieved, the updated estimate is

πk =
1

η

prediction
︷ ︸︸ ︷

πk−1
︸ ︷︷ ︸

prior

Pk|k−1 enl̃k
︸︷︷︸

likelihood

. (10)

Coming to some consensus over likelihoods can be achieved

for the discrete state variables using a distributed averag-

ing method based on Metropolis-Hastings Markov Chains

(MHMC). To avoid confusion we will use m to indicate

consensus iterations throughout this paper. On a communication

graph G〈V, E〉 one can use a message passing protocol of the

form

ψi(m+ 1) =
∑|Ni|
j=1γij(m)ψj , (11)

such that
∑

j

γij(m) = 1, ∀i and ψi(0) = l̃ik,

to calculate the average of the values. On the graph nodes in

which di(m) = |N i| is the degree of the node vi, one sets

γij(m) =







1
1+max{di(m),dj(m)} if (i, j) ∈ E ,

1−
∑

(i,n)∈E

γin if i = j,

0 otherwise.

(12)

With this message passing protocol

lim
m→∞

ψi(m) = l̃k.

Note that for each node i, the γijs only depend on the degrees

of its neighboring nodes. As stated earlier, once consensus has

been reached over likelihoods, the centralized estimate will

be recovered. A prerequisite for this method to work is that

the network remains connected, a requirement which is too

restrictive for many applications.

Remark 2. For a connected component set CC containing nc
nodes the CL method’s likelihood after consensus is equivalent

to the likelihood of collective information of the nodes in CC.

Introducing the concise notation

O
{ω1:nc}k

k =

nc∏

j=1

[
Ojk]

ωj,k , (13)

in which ωj,k is the converged value for the power of Ojk in

the consensus variable, we see that, if the consensus process

converges,

O
{ncω

CL
1:nc

}
k

k = O
{nc

1
nc

}
k

k = Ok. (14)

Even if the topology of the network changes, as long as the

nodes that comprise CC remain unchanged, the state PMF at

step k and the initial PMF π0 are related by

CLπk =
1

π0T
CL

1:k1N
π0T

CL

1:k, (15)

where

T CL

1:k = P1|0O
{ncω

CL
1:nc

}
1

1 · · · Pk|k−1O
{ncω

CL
1:nc

}
k

k . (16)

The expression in (14) guarantees that after convergence, from

the same initial condition, the posterior of CL is equal to CE

and

T CE

1:k = T CL

1:k = P1|0O1 · · · Pk|k−1Ok. (17)

The formal requirement for the above expression to hold is

that the consensus process converges with a network dependent

rate σCC and, for δt and ∆t defined as before, σCCδt≪ ∆t.
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6

Success of this method is contingent upon the node pri-

ors being equal. Next, we discuss the conventional method

employed for cases with node priors that may be unequal.

C. Iterative Conservative Filtering

Iterative Conservative Filtering (ICF) is an approach where,

instead of putting effort into ascertaining the dependencies

between agents’ information, a fusion rule is designed to

guarantee that no double counting of mutual information can

occur. This usually results in the replacement of independent

information with some form of approximation that is con-

servative. Such a treatment dilutes the information available

from observations, resulting in performance that is inferior to

distributed filters which do not suffer the degradation introduced

by this approximation.

Since, in general, Conservative Approximate Distributed

Filtering relies on fusion rules that combine conservative

approximation of local PMFs, we need to clarify what consti-

tutes a conservative approximation for a PMF. Mechanisms of

conservative fusion follow conveniently therefrom.

Conservative approximation of a PMF is only possible

under certain conditions. Bailey, Julier, and Agamennoni [29]

introduced a set of sufficient conditions for a PMF, p̃(x), to

satisfy in order to be deemed a conservative approximation of

a second PMF, p(x). The conditions are:

(P1) The property of non-decreasing entropy:

H(p(x)) ≤ H(p̃(x));

(P2) The order preservation property:

p(xi) ≤ p(xj) iff p̃(xi) ≤ p̃(xj), ∀xi,xj ∈ X .

Then Conservative Fusion (CF) of two PMFs can be

achieved for two probability distribution functions pa(x|Ia)
and pb(x|Ib), with the Geometric Mean Density Rule (GMD):

pc(x) =
1

ηc
pa(x|Ia)

ωpb(x|Ib)
1−ω

=
1

ηc
pa(x|Ia \ Ib)

ωpb(x|Ib \ Ib)
1−ωpa(x|Ia ∩ Ib),

(18)

in which, 0 ≤ ω ≤ 1. Ib and Ib represent two sources of

information. Note that in the above equation the PMFs are

raised to the power of ω and multiplied together element-wise.

This rule never double counts mutual information, replacing

independent components with a conservative approximation.

The interesting property of this fusion rule is that it works

without the knowledge of the dependence of the two initial

PMFs. This rule can also be generalized to more than two PMFs.

For example, in the context of this paper, node i calculates

a conservative approximation of the centralized estimate and

stores it in πi. The GMD fusion of these estimates, denoted

by π̄k is also a conservative approximation of the centralized

estimate, πk.

π̄k =
1

η

n∏

i=1

(πik)
ωi
, such that

∑n

i=1 ωi = 1. (19)

Note that for the vector πik, the expression (πik)
ωi

implies

an element-wise calculation where elements of the vector are

raised to the power of ωi.

Remark 3. Several criteria have been proposed to choose the

ωi. One such criterion is [30]:

π̄ = argmin
π

max
i
{D(π‖πi)}, (20)

where the D(π‖πi) is the Kullback-Leibler divergence between

π and πi.

Remark 4. It has been shown in [29] that raising a PMF to

some power of ω ≤ 1 reduces its entropy. From (19) it can

be seen that applying the GMD rule reduces the entropy of

the likelihood probabilities that are independent. In general,

doing so is undesirable and the likelihood probabilities can be

treated separately to avoid this.

Iterative CF (ICF) is achieved as follows. At the first iteration

of consensus, m = 0, for each agent j, take the current local

estimate π
j
k−1 and calculate the prediction π̃

j
k. Initialize the

local consensus variable to be

φj(0) =
1

ηi
π̃
j
kO

j
k.

Let ω = {ωj}
j∈I

Ni(m) and find ω∗ such that

ω∗ = argmin
ω
J
(1

η

∏

j∈N i(m)

[
φj(m)

]ωj
)
,

and
∑

j∈N i(m)

ωj = 1 and ωj ≥ 0, ∀j,
(21)

where η is the normalization constant and J (·) is an optimiza-

tion objective function. Specifically it can be entropy H(·) or

the criterion in (20). The φis are then updated locally for the

next consensus iteration with

φi(m+ 1) =
1

η∗

∏

j∈N i(m)

[
φj(m)

]ω∗
j . (22)

It is straightforward to show that after repeating this process,

for all j ∈ CC
i
k, the local variables φj(m) converge to a

unique φ∗. Moreover, φ∗ is a convex combination of the initial

consensus variables of all the agents in the set CC
i
k, that is,

for all j ∈ I
CC

i
k
, where I

CC
i
k

is the index set of CC
i
k as defined

in notation section,

lim
m→∞

φi(m) = φ∗ =
1

η

∏

j∈I
CCi

k

[
φj(0)

]ω∗
j (23)

=
1

η

∏

j∈I
CCi

k

[
π
j
k−1Pk|k−1O

j
k

]ω∗
j . (24)

To repeat the process iteratively, set π
j
k+1 = φ∗, ∀j ∈ I

CC
i
k

and

repeat the whole process for step k + 1.

Remark 5. For a connected component CC containing nc nodes,

once the consensus process has converged, we can write the

one step estimate update as

ICFπk = τ
(

ICFπk−1

)

=
1

η

nc∏

j=1

[
ICFπk−1Pk|k−1O

j
k

]ωj,k
. (25)

The expression relating initial PMF and state PMF at step k,

unlike previous methods, is a nested expression

ICFπk = τk
(
π0

)
= τ

(
τ
(
· · · τ

(
π0

)
· · ·

))
. (26)
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This shows that under general conditions, even with the same

initial PMF, the ICF method will not generate the same estimate

over time as CE or CL will. The only exception is the trivial

case of a fully disconnected network where, of course, all

methods become equivalent.

Remark 6. In ICF the nodes’ priors are allowed to be different.

For the CC described in the previous remark, it only takes one

consensus process for all the nodes to have the same prior and

to be able to update their state using (25). For a connected set

an alternative can be considered: one can use ICF on the priors

and, once consensus has been reached, use CL to update the

state PMF. This is equivalent to first calculating

ICFπ̄0 =
1

η

nc∏

j=1

[
ICFπ

j
0

]ωj,0
, (27)

and then using (15) and (16) with π0 = ICFπ̄0. It is striking

that one benefit is that we recover the posterior of CE.

In the previous remark we illustrated how mixing ICF and

CL could be beneficial for a connected set of nodes with priors

that differ. This is the first indication of the potential for some

hybrid between ICF and CL that would be especially useful

for networks with intermittent connections, where connected

components change over time and it is necessary to handle

unequal priors repeatedly. The next section describes such

a method. Under the connectivity constraints just mentioned

(intermittent communication with connected components that

churn) we are able to show that when the lifetime of the

connected components in the network is long enough, one can

asymptotically recover CE’s performance.

V. HYBRID ICF AND CL

We propose a hybrid approach that uses ICF to reach

consensus over priors and the CL for distributed averaging

of local information updates. This is presented in detail as

pseudo-code in Algorithm 1 where it is given the designation

‘Hybrid method.’

Explanation of the method is aided by having a concrete

setting. Imagine a scenario consisting of n agents observing

parts of a system at time k and estimating the Markov chain’s

state xk collectively by communicating with one another over a

network which has a time-varying topology. Initially the agents

start with priors {πi0}
i∈In . At step k the chain transitions to

the new state xk and the agents calculate their own local

prediction {π̃ik}
i∈In (line 1 in the algorithm). They then

make observations {zik}
i∈In , and compute the local likelihood

matrices {Oik}
i∈In (line 1 in the algorithm).

In the rest of the algorithm, the ICF approach is used to

reach consensus over the priors using (21) recursively. The CL

approach is used to reach consensus over the new information

available to agent i from other agents that it is path-connected

to, i.e.,
∑

j∈I
CCi

k

l̃ik. In line 12 of the algorithm, |CC
i
k| is the

number of agents that form a connected component with agent i,

and can be determined by assigning unique IDs to the agents

and passing these IDs along with the consensus variables. Each

agent keeps track of the unique IDs it receives, passing them

to its neighbors.

Input : πik−1

1 Collect local observation z
i
k and calculate Oik and l̃ik

2 Initialize consensus variables:

φi(0) = πik, ψi(0) = l̃ik

3 m = 0
4 while not converged do

5 BROADCAST[ψi(m), φi(m)]
6 RECEIVE[ψj(m), φj(m)] ∀j ∈ N i

7 Collect received data

Ci(m) = {φj∈N i

(m)}, Mi(m) = {ψj∈N i

(m)}.

8 Do one iteration of ICF on consensus variables for

local prior information Cim:

φi(m+ 1) = ICF
[
Ci(m)

]
.

9 Do one iteration of MHMC on consensus variables

for new information:

ψi(m+ 1) = MHMC
[
Mi(m)

]
.

10 m← m+ 1
11 end

12 Calculate posteriors according to:

πik = φi(m)Pk|k−1e
|CC

i
k|ψ

i(m).

Algorithm 1: The Hybrid method

A. Performance Analysis

To understand the performance of the Hybrid method, we

introduce an estimator variant that, though impractical in itself,

serves as a useful benchmark for comparison. We use it to

conduct an analysis of the comparative performance of the ICF

and Hybrid methods.

As was illustrated in Figure 1, beyond a certain point,

degradation of the network connectivity causes a catastrophic

failure of a centralized estimator. This poses a dilemma if one

wishes to analyze the performance of an estimator by comparing

its efficiency to an ideal estimator. Comparing against the

centralized estimator can hardly be deemed to be meaningful

when it must be granted the ability to fuse observations that

are inaccessible to a decentralized estimator (e.g., owing to

observations being on the opposite side of a network partition).

Doing so causes performance measures to be skewed by the

unavailability of data rather than the actual estimation process

itself.

This motivates consideration of an estimator with perfor-

mance that is more realistic. As will become apparent shortly,

a Full History Sharing Estimator (FHS) (see next paragraph)

incorporates all the information possible while respecting

network topology constraints and, thus, constitutes the proper

upper limit for estimator performance.

Full History Sharing Estimator (FHS): Under FHS, at

each step k, every agent i has access to the full history of

observations of all the agents that it is path connected to at

the current step. Then FHSπk is obtained by going back to the
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initial step, k = 0, and updating the state PMF sequentially.

The update at each step uses all the available observations

drawn from the full history. Obviously such calculations quickly

become infeasible, but we ignore the computational complexity

and only use FHSπk to establish a reference performance.

Note that under FHS, even though the whole PMF history

is recalculated at each step, the comparison between FHSπk and

alternative estimates only involves the PMF at the current point

in time.

For our theoretical analysis, we focus on periods of time

where the connected components in the network remain

unchanged. Note that this assumption allows for change in

the network topology so long as it does not result in any

change in the connected component sets CCk. We also make

the assumption that consensus processes, of any type, run for

enough time to converge for every estimation step.

With these assumptions, the expression relating FHSπk+1 and

the initial PMF, π0, is

FHSπk+1 =
1

π0T
FHS

1:k1N
π0T

FHS

1:k , (28)

where

T FHS

1:k = P1|0O1 · · · Pk|k−1Ok. (29)

Lemma V.1. Consider the Distributed State Estimation prob-

lem of a HMM with a time-varying network topology Gk =
〈V, Ek〉 as described in Section III. At time k0 let CC

m be

the mth connected component containing |CC
m| = nm nodes.

Further assume that CC
m remains unchanged for the next k

steps. Then, during the time k0 ≤ t ≤ k0 + k, and for all the

nodes in CC
m, the Hybrid method converges at a geometric

rate to the FHS estimator, when the following conditions are

satisfied:

• The consensus process converges with a network depen-

dent rate σCCm . For δt, the consensus update rate, and

∆t, the time interval between consecutive observations,

we have σCCmδt≪ ∆t.
• The resultant matrix product of the pairs H(t) ,

Pt|t−1Ot is an allowable non-negative matrix, i.e., each

row and column of H(t) has at least one positive element.

• For a fixed t0 ≥ k0, all the elements of the product chains

of both estimators are strictly positive, i.e. T FHS

k0:t0
> 0 and

T HYB

k0:t0
> 0.

• For a fixed γ, independent of t,

min
i,j

+hi,j(t)

max
i,j

hi,j(t)
≥ γ > 0, (30)

where, hi,j(t) is the (i, j) element of H(t) , Pt|t−1Ot,
and min+ is the minimum over the positive elements.

Proof. We have already established the main part of the

proof by showing that, if the consensus process converges,

the inhomogeneous chain of matrix products in (17) and

(29) for a connected component are identical. Full history

sharing among agents results in a common prior for CC
m

as FHSπCCm,k0 . Under the Hybrid method the agents perform

conservative fusion of their priors which converges to a unique

prior denoted HYBπCCm,k0 . The priors for the two estimators

are not the same in general. However, from the moment of

connection onwards, as long as CC
m remains unchanged,

the inhomogeneous chain of matrix products that results in

posterior estimates is equivalent for both methods as shown

by (17) and (29), specifically

T ∗
k0:k , T FHS

k0:k = T HYB

k0:k.

Hence, based on Theorem 3.3 of [31], for which the last

three conditions given are required, T ∗
k0:k

converges to a rank 1

matrix, which consequently renders the initial priors FHSπCCm,k0 ,

and HYBπCCm,k0 irrelevant. Therefore the posterior of both

estimators converge to the same stationary distribution of T ∗
k0:k

and, furthermore, they do so at a geometric rate.

Remark 7. The convergence of T ∗
k0:k

to a rank 1 matrix is

termed weak ergodicity [31], [32]. Moreover, one can use

the results of [33] to show that there exists some ρt0 < 1
and rt0 ≤ ∞ so that the decay of the L1 norm between the

posteriors of the two methods is bounded by
∥
∥
∥

FHSπ
j
t0
T ∗
t0:t0+n −

HYBπ
j
t0
T ∗
t0:t0+n

∥
∥
∥
1
≤ rt0ρ

n
t0
.

The above expression is the basis for the next lemma. It

is also worth pointing out that the geometric nature of this

convergence will be clearly visible in the plots showing the

method’s empirical performance (presented in the following

section).

The analysis so far shows that the formation of connected

components, and their lifetime, plays an important role in

the performance of DSEs. This, in addition to the weak

ergodicity property of T ∗
k0:k

, provides practical insight for

system designers. One can link the lifetime of a component to

L1 convergence of Hybrid’s PMF to FHS’s estimates. Also, one

might establish some other performance measure for estimate

quality and wish to know the requirements on tc,k needed

to ensure that the gap between FHS and Hybrid average

performance over time is smaller than some desired tolerance.

In order to examine these design choices, we need the following

definitions.

Let C(·) be a Lipschitz continuous performance metric that

assigns a scalar to a PMF. By definition

‖C(π1)− C(π2)‖1 ≤ L‖π1 − π2‖1 (31)

where L is the Lipschitz constant.

Lemma V.2. Let CC
m be a component that was formed at

time t0 and persists for n steps. Let T ∗
t0:t0+n represent the

inhomogeneous chain of matrix products that describe the FHS

and Hybrid methods for this period. Suppose that FHS and

Hybrid priors at time t0 are FHSπ
j
t0

and HYBπ
j
t0

, respectively.

For any desired convergence, specified via ǫ1 such that
∥
∥
∥

FHSπ
j
t0
T ∗
t0:t0+n −

HYBπ
j
t0
T ∗
t0:t0+n

∥
∥
∥
1
≤ ǫ1. (32)

CC
m should persist for at least n = Nǫ1 steps where

Nǫ1 = (logρt0 ǫ1 − logρt0 rt0) (33)

and ρt0 and rt0 are constants defined in Remark 7.
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The lemma is easily proved by taking the logarithm from

both sides of inequality (32) and using Remark 7.

Proposition 1. Consider the behavior of agent j over period

of time T , and its connected components for that duration

CC
j
t0
, CC

j
t1
, . . . CC

j
tm

. Let the average performance measure of

agents j for FHS and Hybrid methods be FHSJj and HYBJj ,

respectively. For a given ǫ1 that satisfies (32) and for a desired

ǫ2 > Lǫ1 gap between the average performance of FHS and

Hybrid so that
∥
∥FHSJj − HYBJj

∥
∥
1
≤ ǫ2, (34)

the components CC
j
t , t ∈ {t0, t1, . . . , tm} should persist at

least Nǫ2 steps, where

Nǫ2 =
LNǫ1(2− ǫ1)

(ǫ2 − Lǫ1)
(35)

in which Nǫ1 is calculated based on (33) and L is the Lipschitz

constant for function C(·)

Proof. By definition, FHSJj and HYBJj are

FHSJj ,
1

T

t0+T∑

t=t0

C(FHSπ
j
t ),

HYBJj ,
1

T

t0+T∑

t=t0

C(HYBπ
j
t ). (36)

Then we have

∥
∥FHSJj − HYBJj

∥
∥
1
=

1

T

∥
∥
∥
∥
∥

t0+T∑

t=t0

C(FHSπ
j
t )− C(

HYBπ
j
t )

∥
∥
∥
∥
∥
1

(37)

≤
1

T

t0+T∑

t=t0

∥
∥
∥C(FHSπ

j
t )− C(

HYBπ
j
t )
∥
∥
∥
1

(38)

≤
L

T

t0+T∑

t=t0

∥
∥
∥

FHSπ
j
t −

HYBπ
j
t

∥
∥
∥
1
. (39)

Now consider that during the time period from tk to tk+1 the

jth agent belongs to a connected component whose members

are fixed. Then, from Lemma V.1, for some ρtk < 1 and some

rtk <∞, we have
∥
∥
∥

FHSπ
j
tk
T ∗
tk:tk+n

− HYBπ
j
tk
T ∗
tk:tk+n

∥
∥
∥
1
≤ rtkρ

n
tk
, (40)

for all n ≤ tk+1 − tk.

For the given ǫ1 > 0, consider all connected components

that agent j belongs to in time interval [t0, t0 + T ] and take

Nǫ1 = max
k

(logρtk
ǫ1 − logρtk

rtk). Then, for all n ≥ Nǫ1 :

∥
∥
∥

FHSπ
j
tk
T ∗
tk:tk+n

− HYBπ
j
tk
T ∗
tk:tk+n

∥
∥
∥
1
≤ ǫ1. (41)

Next we denote the duration that the component is connected

with tc,k = tk+1− tk and we introduce a constant that bounds

the estimation operation. Let

Nǫ1
tc,k
≤ δ =⇒ (tk+1 − tk)δ ≥ Nǫ1 (42)

for all connected periods k and all agents. Then we have

t0+T∑

t=t0

∥
∥
∥

FHSπ
j
t −

HYBπ
j
t

∥
∥
∥
1
=

∑

k

tk+1∑

t=tk

∥
∥
∥

FHSπ
j
t −

HYBπ
j
t

∥
∥
∥
1
. (43)

Which can be further expanded into

tk+1∑

t=tk

∥
∥
∥

FHSπ
j
t −

HYBπ
j
t

∥
∥
∥
1
=

tk+Nǫ1∑

t=tk

‖FHSπ
j
t −

HYBπ
j
t ‖1

+

tk+1∑

t=tk+Nǫ1
+1

‖FHSπ
j
t −

HYBπ
j
t ‖1

≤ 2Nǫ1 + (tc,k −Nǫ1)ǫ1. (44)

The constant appears in the first term of the last expression

because the L1 norm of two probability distributions can never

exceed 2.

Then using (42) and (44),

1

T

t0+T∑

t=t0

∥
∥
∥

FHSπ
j
t −

HYBπ
j
t

∥
∥
∥
1
≤

1

T

∑

k

(2tc,kδ + tc,k(1− δ)ǫ1)

=
1

T

∑

k

tc,k(2δ + (1− δ)ǫ1)

= (2δ + (1− δ)ǫ1)
1

T

∑

k

tc,k

= 2δ + (1− δ)ǫ1. (45)

Thus,

‖FHSJj − FHSJj‖1 ≤ L(2δ + (1− δ)ǫ1). (46)

Substituting δ from inequality (42) and using (34) one arrives

at Nǫ2 as calculated in (35).

VI. EXPERIMENTS

We conduct an analysis of the comparative performance

of our method in two ways. First, we examine two case

studies (Sections VI-A and VI-B) which, though abstract, are

representative of robotic-sensor network applications. Secondly,

we carried out experiments where we isolated and controlled

various parameters, examining the effect they have on the

average performance.
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Fig. 2: A schematic of the model used in case study in

Section VI-A. The Markov Model has 21 states and is observed

by five agents over an unreliable network.
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(a) Average performance for chessboard tracking example
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(b) Average performance for system with three states and twenty
observers

Fig. 6: Performance comparison between the Hybrid method and ICF. The horizontal axis is the probability of link failure,

moving from left to right shows the network changing from ideal, through fragmentation, to complete failure. The vertical axis

is a metric of estimator performance computed as follows: at each time, for every agent, the total variation distance of the

estimator’s PMF and the output from a hypothetical, omniscient centralized estimator (as if it were operating on a perfect

network) is computed. The mean of this is taken over agents and over all times, and then normalized between 0 and 1, where 1

coincides with the fully connected network and 0 the fully disconnected one.

performs three estimation processes. In one instance it uses

our Hybrid method to fuse its prior along with the received

priors. In the second instance it uses the ICF method to fuse

its posterior along with the received posteriors, and the third

instance is the FHS method, to give a baseline for comparison.

Again, L1 norm difference is used to make the comparison.

Figure 5 compares the performance of the Hybrid and ICF

methods, showing that the proposed method outperforms ICF

and is able to recover performance very close to FHS solution

after reconnection. Using the same visual presentation as before,

the shaded areas mark the lifetime of components and agents

with the same shade color belong to the same component. Based

on the L1 distance, both decentralized estimates converge to

FHS during the interval of network partition. This is expected,

since observers do not have access to each others information

and hence, due to the forgetting property of the system, all

three estimators become indistinguishable—each separate agent

independently performing its own Bayesian update. However,

while the Hybrid method is able to start to recover immediately

after reconnection, ICF continues with degraded performance

even after reconnection. This latter fact is because it ignores

the correlations.

C. Focused Performance Evaluation

Next we study the robustness of our method more system-

atically with respect to network failure. This permits some

reflection on the factors that affect the gap between the average

performance of our Hybrid method and FHS. The experiments

reported in this subsection were performed as follows.

We take the HMM and construct a path connected commu-

nication network that is a ring lattice with degree four. This is

the base network topology. We then assign a probability of link

failure p to all the links in the communication graph and run

FHS, HYB, and ICF methods for 50 steps. At each step we

randomly disconnect links in the base graph, with probability p

and perform the consensus processes on the resulting graph. For

π
j
k, the local estimate of agent j at time k, and π∗

k, the estimate

from the omniscient estimator, we compute the instantaneous

performance score as

1−
1

2

∥
∥
∥π

j
k − π

∗
k

∥
∥
∥
1
, (47)

which ensures that scores are within the [0, 1] interval, where

1 connotes the best performance and 0 the worst. We tally the

results for each DSE variant. Since even in a fully disconnected

network, agents have access to their own observations, the

lowest score is seldom zero. To account for the specific effects

of network degradation (rather than observability of the HMM

itself), we then re-normalize the results to [0, 1] interval. In the

end, we plot the average normalized performance vs. probability

of link failure. The diagram that results gives insight into the

robustness of the DSE method with respect to network failure
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many cases, this is by a significant margin. Evaluating the

proposed method in a series of experiments showed consider-

able performance improvement compared to the state of the art

in practice. The experiments also validated the mathematical

analysis, showing exponential convergence under L1 very

clearly.

For future work, it would be interesting to examine the

effect that topology of the network has on the performance

and the gaps between ICF, HYB, and FHS. Another direction

is to investigate a mixture of raw information sharing in small

sub-groups of agents and conducting consensus on sub-groups.
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