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Abstract. In studying robots and planning problems, a basic question is what is

the minimal information a robot must obtain to guarantee task completion. Erd-

mann’s theory of action-based sensors is a classical approach to characterizing

fundamental information requirements. That approach uses a plan to derive a type

of virtual sensor which prescribes actions that make progress toward a goal. We

show that the established theory is incomplete: the previous method for obtain-

ing such sensors, using backchained plans, overlooks some sensors. Furthermore,

there are plans, that are guaranteed to achieve goals, where the existing methods

are unable to provide any action-based sensor. We identify the underlying feature

common to all such plans. Then, we show how to produce action-based sensors

even for plans where the existing treatment is inadequate, although for these cases

they have no single canonical sensor. Consequently, the approach is generalized

to produce sets of sensors. Finally, we show also that this is a complete char-

acterization of action-based sensors for planning problems and discuss how an

action-based sensor translates into the traditional conception of a sensor.
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1 Introduction

In his paper Understanding Action and Sensing by Designing Action-Based Sen-

sors [5], Erdmann1 defines a class of abstract sensor that describes the information a

sensor ought to provide a robot; his paper identifies a sort of canonical choice for such

sensors. Summarizing that classic contribution to the literature, Donald [4] writes:

In [5] Erdmann demonstrates a method for synthesizing sensors from task

specifications. The sensors have the property of being “optimal” or “minimal”

in the sense that they convey exactly the information required for the control

system to perform the task.

But, as we will show, Erdmann’s treatment may overlook certain sensor choices;

indeed there may be multiple sensors which are equally “minimal”, but only some of

which have been considered in the past.

1 For clarity when reading, we often refer to Erdmann by name when making reference to his

theory of action-based sensors. Unless otherwise indicated, this is a reference to [5].
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(a) A basic world, with two obstacles

(shaded) and a single goal region G.

(b) A plan derived via backchaining

from the goal.

(c) A slightly odder plan.

Fig. 1: A world and two different kinds of plans on that world. Fig. 1b uses backchaining from

the goal to form a plan, while Fig. 1c uses a Z-shaped path. This world and plans that solve it

will be the basis for our discussion on the variety of plans and how this ultimately impacts sensor

design. These plans can start in any region in the world, and each has a set of actions (in this case,

singletons) that move them from state to state. Both plans terminate at G. The observations for

each state are not included here, but are assumed to be distinct.

Generally, analyzing the information requirements of robotic tasks has yielded fun-

damental scientific insights in the past (cf. [1, 4, 6]). But making choices about sensors

that are informed by information requirements is also important for practitioners, who

need to balance considerations of cost, manufacturability, and reliability [3]. Whether

one’s concern is purely theoretical or primarily practical, incompleteness is irksome.

Erdmann’s sensors are defined using progress measures, which are real-valued func-

tions on the state space of a planning problem that indicate how movement between

states leads toward a goal. Given such a function, for each action, one labels regions of

state space where that action makes progress, forming what are called progress cones.

These regions must be distinguished sufficiently for the robot to determine which action

to execute. This can be realized via action-based sensors, sensors that output actions

guaranteed to make progress, which describe a subset of the progress cones contain-

ing the current state. As an abstraction of information attainment, such sensors do not

specify which environmental features or associated technologies are actually used to

compute (or evaluate) these functions. Erdmann formalizes the idea that information an

agent needs is precisely and solely that which is needed to determine how to act now.

Action-based sensors embody the philosophy that sensors should be designed not

to recognize states, only what actions must be taken to reach a goal. Utility in reaching

goals is codified via progress measures and associated cones. These notions of progress

are themselves computed from plans. The sequence goes like this: problems/tasks re-

quire plans to the solve them, plans give progress measures, measures give cones, and

cones lead to sensors. But Erdmann focuses on backchained plans, a specific subclass

of plans. It would seem that there could be broader sets of progress measures than he

identifies. In fact, the situation is more dire, there are plans guaranteed to solve certain

problems, but for which no Erdmann-like progress measure can be produced.

Figure 1a shows an example world. In this world, there are seven regions, each of

which can be uniquely identified by the agent. Even in such a simple world, there are

numerous ways an agent can get from any location to a goal, such as the two methods

presented in Figure 1. We will soon see that, despite the small world and simple plans,

the question of how to develop action-based sensors is not quite so straightforward!
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This paper extends the work done by Erdmann in several ways. First, we define a

subset of planning problems and plans and show that within this subset, there are certain

features, crossovers, that preclude the existence of progress measures. We precisely

define these features and introduce a function, CLIP, that can transform a plan without a

progress measure into multiple plans that do. We then show that these plans are capable

of being used to define progress cones, which in turn can define action-based sensors.

This obtains all action-based sensors, and we discuss how action-based sensors relate

to more traditional concepts of sensing.

1.1 Broader Motivation

Our motivation for revisiting2 action-based sensors stems from an interest in what

sensing, fundamentally, is. Often we take sensors for granted: as a distance sensor,

or wall sensor, and so on. But as Brooks and Matarić [2] note: “The data delivered

by sensors are not direct descriptions of the world. They do not directly provide high

level object descriptions and their relationships.” How we use the word “wall” with

easy abandon! These mental categories are ingrained so deeply as to have a pernicious

influence on our thinking.

In conceiving his theory, Erdmann asked the question of what sensors are for. The

action-based sensor, then, relates what a robot should do with what it needs to perceive.

The approach conceptualizes sensors as abstractions which entirely sidestep issues with

the representation of information to provide what is required: what action to take next.

His definition appeared to give the utmost leeway in its requirements, being most re-

laxed or unconstrained so the set of sensors seems to be maximally inclusive — forming

a sort of ‘free object’ for sensors. It is hardly surprising, then, that little work has sought

to expand directly upon Erdmann’s highly-original paper, for it looks to be the final

word on the subject.

2 Preliminaries

To start, two mathematical objects are introduced: planning problems and plans,

where the former models tasks that entail arriving in some state in the world, while

the latter prescribes actions for particular circumstances, potentially governed by inter-

nal state, to solve planning problems. The definitions have symmetric forms reflecting

how plans interleave actions with observations—actions being stipulated by the plan,

observations dictated by the world’s structure.

The planning problem, or world for short, is a tuple W = (V, V0, Vgoal, Y, U,E)
that consists of the following:

• The finite vertex set V , which is the set of states in the world.

• A set of initial states, V0 ⊆ V , from where an agent may start.

• A set of goal states, Vgoal ⊆ V .

• A set of observations Y which label each vertex in V .

• A set of actions U .

• A set of edges E, each of which are labeled with {u0, u1, . . . , uk} ⊆ U .

2 Or perhaps resurrecting?
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An agent receives an observation y ∈ Y which tells the agent where it is in the

world. The agent then makes a choice of action that takes it (via an edge in E) from

state to state, at which point it receives another observation and the process repeats. The

agent begins in a state in V0. Solving a planning problem demands that we develop a

strategy for the agent that guarantees it will arrive in the goal region, i.e., some state in

Vgoal, when starting from any state in V0.

A plan P = (V, V0, Vterm, U, Y,E) to solve a planning problem consists of:

• The finite vertex set V , which is the set of states in the plan.

• A set of initial states V0 ⊆ V , from where an agent may start.

• A set of terminating states, Vterm ⊆ V .

• A set of actions U , subsets of which label each vertex in V .

• A set of observations Y .

• A set of edges E, which are labeled with {y0, y1, . . . , yk} ⊆ Y .

When discussing planning problems and plans simultaneously, we will use (W) and

(P) to identify to which tuple an element belongs, e.g. V (W ), V0(P ).
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Fig. 2: The example world from Fig. 1a as a connected graph. Vertices are labeled with observa-

tions a–g, while the actions include movement in the cardinal and intercardinal directions.

The preceding formalization of worlds and plans allows us to depict them as finite

connected graphs. Figures 2 and 3 show this for our earlier example. Plans possess

terminating states Vterm, while worlds have goal states Vgoal. A vital difference is that

plan edges bear observations and vertices are labeled with sets of actions; world edges

carry actions and vertices have a single observation. An agent following a plan tracks

its plan state and may take any action in the set labeling the current state. After taking

an action, it receives an observation from the world, and transitions to a new vertex,

itself labeled with actions, and so on. Every plan’s initial vertices V0 are labeled with

the empty set, as the agent obtains a first observation to establish information about the

world before taking its first action. Only elements in V0 and Vterm have the empty set.

For a plan P to be a solution to planning problem W , the plan must satisfy a few

constraints: it must be safe, in that it never attempts to take an action at a plan state if that

action is unavailable at the current world state. Further, the plan must be ready to receive

any observation that arises consistent with possible paths from the V0 of the world. An

execution is a sequence of alternating observations and actions, beginning and ending

with an observation. They describe the interaction between a plan and world, giving rise
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(a) A plan derived via backchaining from the goal.
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(b) A slightly odder plan.

Fig. 3: Our two plans from earlier, now as connected graphs. Here and in graphs that follow:

lighter arrows serve as shorthand for an (elided) V0 that takes no action before receiving an initial

observation, whereupon it transitions to a consistent state in the plan. The lighter color rendering

also serves to make the overlay of plans clearer.

to a path. Either this path must lead to states that are in Vterm on the plan and in Vgoal

on the world, or the execution must be a prefix of a longer execution which does. If an

execution is possible on both plan and world, it is a joint-execution. The plan must also

be finite on the world, in that all joint-executions must have bounded length.

The language of a plan and world pair is the set of all joint-executions. Occasionally,

we are interested in where a given execution will take us in the world. We trace an

execution s = y0u1y1u2y2 . . . over the world by beginning at the vertex in V0 labeled

with y0 and following the edges consistent with the actions in the execution. In the

event of non-determinism in actions leading to multiple possible states, the following

observation in the execution clarifies the resulting state in the world.

The world state reached by this method is the vertex in the world obtained by tracing

a sequence s on W , designated VW
s . (We will also consider tracing on a plan, and it is

defined analogously.)

2.1 Scope

Consistent with Erdmann’s treatment, in this paper, we examine planning problems

that have a single goal state (|Vgoal| = 1) and for which V0 = V , i.e., they may start

from any state.3Also like Erdmann, we begin by considering the underlying state space

and then derive action-based sensors via a method that coarsens perceptual classes.

The result that this yields itself expresses a degree of tolerance to partial observability.

Formally, this coarsening is of an original observation set, thus we begin with an obser-

vation set that gives direct access to the underlying states—this involves starting with

planning problems that are fully observable.

Though beyond the scope of the current treatment, a separate interesting problem

is to start with an original observation set that is itself partially observable, perhaps to

model some states being confounded by technological limitations, and hence implicitly

expressing information about how the world must be divided by the sensors. Since

we wish to enumerate the full set of sensors, not merely those up to some prescribed

indistinguishablity, the input is a fully observable planning problem.

Some of the definitions and theory discussed throughout have overhead for handling

more complicated planning problems than those just defined. Though we maintain defi-

3 In particular, knowledge of the starting location provides information in the form of context to

incoming observations, allowing an agent to gather information it might not otherwise have.
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nitional generality, restricting our set of planning problems simplifies discussion signif-

icantly. We show later that this subset is sufficient to capture all action-based sensors.

Relaxing these restrictions often results in problems that result in objects that are not

quite action-based sensors in Erdmann’s sense or which require additional interpreta-

tion to be meaningful, and are therefore beyond the scope of this paper.

3 What it Means to Make Progress: the Progress Measure

To determine how plans make progress toward a goal, we start with defining what

it means to make progress. Erdmann uses a framework of progress measures to develop

progress cones. Given a task, to get from planning problems via progress to sensors,

Erdmann [5] prescribes:

“ 1a. Determine a sequence of actions that accomplishes the task.

1b. Define a progress measure on the state space that measures how far the

task is from completion, relative to the plan just developed.

1c. For each action, compute the region in state space at which the action

makes progress. ”

The first step requires one to construct a sequence of actions, and subsequently in

his paper Erdmann uses a very specific kind of plan when discussing progress mea-

sures — those obtained via backchaining from the goal. However, plans created using

backchaining yield a unique progress measure corresponding to the fastest strategy

which Erdmann calls “very special”. Our agenda is to broaden this set of plans, and

doing so has implications for progress measures. In particular, we require a little more

nuance, which manifests as two separate definitions in what follows.

Definition 1 (execution progress measure). A progress measure over executions on a

solution P to a planning problem W is a function φ : 2V (W )→ R
+ such that:

a) φ(V ) = 0 =⇒ V ⊆ Vgoal;

b) at least one V ⊆ Vgoal satisfies φ(V ) = 0;

c) for any two joint-executions p and q, if p is a prefix of q, then φ(VW
p ) > φ(VW

q ).

The execution progress measure applies to sets of vertices in the world. All sets that

take the value of 0 are required to have only goals within them. There must also be at

least one goal with value 0. We restrict joint-executions, requiring that if one is a prefix

of another, its value must be strictly greater. In this way, the executions of the plan visit

states in the world such that the resulting progress measure is strictly decreasing.

Definition 2 (vertex progress measure). A progress measure over vertices on a solu-

tion P to a planning problem W is a function g : V (W ) → R
+ such that φg(V ) :=

max
w∈V

{g(w)} is an execution progress measure.

The intuition here is to give a measure on singleton states and require that we get an

execution progress measure when it is lifted, in a natural way, to sets. For the purposes

of this paper, the distinction between execution and vertex progress measures is irrele-

vant as we focus on small set of plans (see Section 2.1) due to space limitations. The
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(a) The mirror image of the Z-shaped plan:

the S-shaped plan.
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(b) The new plan, as connected graph.

Fig. 4: A new plan, similar to the one seen in Figure 1c. Although the S-shaped plan takes the

same action as the Z-shaped plan at numerous states in the world, there are some states for which

they are moving in opposite directions from each other.

overhead of two separate definitions hints toward the generalization, so we have deemed

to retain the distinction.4 In light of this, we write execution progress measure or ver-

tex progress measure as just progress measure, and context will resolve any ambiguity

when necessary.

Progress measures can be seen in the red numerals in Figures 1b and 1c. Progress

measures are defined in terms of the plan’s actions on the world, which can lead to a

measure in which making progress leads away from the goal (in terms of distance) be-

fore reaching it. Such an example can be seen in Figure 1c, exemplifying the difference

between a progress measure and a distance metric from the goal.

3.1 Lack of Uniqueness in Progress Measures and Crossovers

Figure 4 shows the mirror twin of a familiar plan. These two plans have some states

where they take the same action, and some where they differ, creating different progress

measures. There is no reason to prefer one of these plans over the other. We could even

have a plan that considers both of the routes such as the plan in Figure 5, which chooses

one of the two paths at random and commits to that path once it has been selected.

However, an issue arises when we attempt to develop a progress measure for this plan.

The issue stems from the fact that, though the plan informs our definition of progress,

the progress measure is based on states in the world.

Figure 5’s plan contains executions that go in opposite directions from each other;

for example, one path visits the state labeled d before the state labeled e, while an-

other path visits the state e before d. While the plan is not structured such that the

agent could actually cycle infinitely between states d and e, the progress measure,

considering only the corresponding world states, has the impossible task of satisfying

φ(d) < φ(e) < φ(d).
Progress measures fail to exist when there are contradictory requirements on the

values that the execution progress measure must take. We refer to this issue as the

4 In this paper, we are considering fully observable planning problems and plans which may be

at only one state in the world during any point of execution, for which an execution progress

measure and vertex progress measure are equivalent. However, there exist plans in which an

agent may be in multiple potential world states, for which both the execution progress measure

and vertex progress measure are required to define progress-making actions.
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Fig. 5: The S-shaped and Z-shaped plans, presented together. This plan has numerous crossovers

within it. The lack of a global ordering on when states are visited is what defines a crossover.

crossover conflict, or simply as the existence of crossovers, due to the fact that the lack

of progress measure extends from the fact that plan executions “cross over” each others’

paths when traced over the world. In this way, crossovers can be thought of as cycles

induced on the world by the plan. A plan can distinguish between multiple visits to a

single world state by having multiple distinct plan states. However, the progress mea-

sure’s definition considers all potential paths to and from a world state when defining

values. Therefore, executions that visit states in differing orders create these cycles,

resulting in a malformed progress measure.

Definition 3 (crossover conflict). A plan P on a planning problem W has a crossover

conflict if it has two executions s1, s2 in the language of the plan LP such that:

1. s1 and s2 both, during their execution on P , visit the states S and S′ in W , and

2. s1 requires an execution progress measure where φ(S) > φ(S′), while s2 requires

an execution progress measure where φ(S′) > φ(S).

To identify crossovers, the relationship between plan states, plan executions, and

world states must be made explicit. One method for this is through enumeration of a

plan’s language and tracing that language on the world. In Section 4, we discuss the use

of a graph to identify crossovers and to avoid the need to enumerate the entire language

of the plan. We are interested in identifying crossovers as their presence is the necessary

and sufficient condition for the non-existence of a progress measure.

Theorem 1. A progress measure exists iff there is no crossover within the plan.

Proof:

⇐= A Crossover Implies no Progress Measure Exists. The previous discussion

has shown that the existence of a crossover induces an unsatisfiable condition on

the progress measure.
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=⇒ The Lack of a Progress Measure Implies a Crossover Exists. Consider a

plan P that solves a planning problem W , and which lacks a progress measure.

Then, by definition of the execution progress measure, one of the following must

be true:

(a) φ(V ) = 0, V 6⊆ Vgoal.

(b) There is no V ⊆ Vgoal where φ(V ) = 0.

(c) There exist joint-executions p and q with p a prefix of q, and φ(VW
p ) ≤ φ(VW

q ).

Think of the progress measure not in terms of a function, but instead as an ordering

on the states of the world. At least one goal must come last in the ordering, taking

the value of 0. For executions, the requirement of prefixes having a higher measure

than sequences which they precede imposes an ordering on those states, as well.

If we start trying to fix the progress measure, we first assign the goal (the final

element in the ordering) to value 0 and increment up as we go earlier in the order.

This resolves the issues presented by (a) and (b), should they exist.

Assume we try to correct (c) in such a way. If we are able to do so, obeying the

induced ordering and assigning values to the states reached by p and q such that

they no longer fulfill the condition of (c), then a progress measure does in fact exist.

However, if it does not, then, because we were assigning values to the ordering of

states based on back-tracking from the goal, we must have seen the state reached by

p in the ordering before the state reached by q and assigned it a value accordingly.

If p is a prefix, that means the state reached by p is visited by an execution both

before and after it visits the state reached by q. Therefore, there is an unsatisfiable

requirement of φ(VW
p ) ≤ φ(VW

q ) ≤ φ(VW
p ), which is a crossover. �

Crossovers therefore are the cause of failure in a plan that does not produce a

progress measure, impeding our ability to craft action-based sensors. Recall in our ex-

ample that the plan without a progress measure is created by combining two plans that

do. In fact, the choice of action is what permits crossovers in the plan, but not all choices

in the plan lead to crossovers. In Section 4, we present an algorithm that identifies such

choices and generates plans with progress measures when given a plan without.

4 Removing Crossovers and Enumerating Progress Measures

Given a plan P that solves a planning problem W and which has no progress mea-

sure, we now discuss a method to produce the set of all plans which can be derived

from this initial plan, which have progress measures, and which are also solutions to

the planning problem. To make precise what we mean when we say one plan is derived

from another, we define a set of actions from the world called the operative action set.

Definition 4 (operative action set). For a plan P that solves W , we define the opera-

tive action set of P as a function uP : V (W ) → 2U(W ) such that uP (v) includes an

action uk if and only if P and W have a joint-execution j = y1u1y2 . . . uk−1yk for

which: j arrives at v when traced on W ; action uk is a label on an outgoing edge from

v; j arrives at a state labeled with uk when traced on P .
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Definition 5 (derived plan). A plan P ′ is derived from another plan P if the operative

action set of P ′ is contained in the operative action set of P , that is for all v ∈ V (W ),
uP ′(v) ⊆ uP (v).

The operative action set for a plan associates each world state with a subset of that

state’s outgoing actions — those that are potentially used by the plan. Crossovers imply

a cyclical dependency between world states, and therefore to identify them we need

to find the correspondence between plan states and world states and clip away these

cycles. A solution is to take the entire set of operative actions and generate all possible

combinations, rejecting options that aren’t solutions to the planning problem or which

do not have progress measures. This is a naïve approach because we don’t need to

consider every possible edge in the plan to remove crossovers, but only those edges that

are involved in the crossover itself. For edges that are not involved in any crossover,

we may take any subset of them so long as we abide by our constraints. Therefore,

we propose an algorithm to generate representatives for the plan that show all possible

ways of breaking crossovers without regard to the other edges.

To accomplish this, we present the algorithm CLIP. It has two parts: first, given a

plan and a planning problem, it creates a new graph structure based on the executions of

the plan and the corresponding world states. We call this structure the Plan-World Inter-

action Graph, or simply the I-Graph. The I-Graph merges plan with planning problem

to yield insight into the plan’s movement through the world. Unlike the ‘flat’ notion

of the operative action set, the I-Graph provides this information in a more structured

manner. By finding where multiple plan states act on the same world state, it directly

expresses how the plan transitions between world states. This sequential structure helps

encode the search space for edges to be removed. In addition, because plan states that

were distinct correspond to a single vertex in the I-Graph, cycles that previously existed

only in terms of the progress measure now become explicit.

The I-Graph is a graph consisting of three layers: the initiating layer, the plan layer,

and the world layer. The initiating layer is a single vertex. The edges of the initiating

layer transition to the plan layer. They are labeled with observations that the agent may

receive upon beginning execution. Each vertex in the plan layer is labeled with a pair,

the first element being a subset of plan states and the second being the single world

state to which they all correspond. This layer is called the plan layer because, from this

start

{pa} {pg}
wa wb

{pb, p
′

b}
we wf wg

{pf, p
′

f}{pc, p
′

c} {pe, p
′

e}{pd, p
′

d}
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wb wewc wd wgwf

dcb f ge

a b c d gfe

SENE E SW

SE NW
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NW
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Fig. 6: An I-Graph for the plan seen previously in Figure 5. Plans may have multiple vertices that

correspond to the same state in the world. The I-Graph merges these into a single vertex.



Every Action-Based Sensor 11

Algorithm 1: Construction of the Interaction Graph

Require: Inputs: World W, Plan P

I-Graph← New Graph()

association_queue← 〈P.init_states, W.init_states〉
while association_queue is not empty do

current_state← association_queue.dequeue()

plan_states← current_state[0]

world_states← current_state[1]

for each p in plan_states do

new_plan_states← {}

new_world_states← {}

for each outgoing_edge in p do

if outgoing_edge has equivalent action from world_states on world_edge then

new_plan_states.add(outgoing_edge.target)

new_world_states.add(world_edge.target)

end if

if new_world_states is a set already in the I-Graph as q then

add edge to I-Graph: current_state, outgoing_edge, q

else

add new vertex to I-Graph: new_world_states

add edge to I-Graph: current_state, outgoing_edge, new_world_states

end if

association_queue.enqueue(〈new_plan_states, new_world_states〉)
end for

end for

end while

return I-Graph

layer, the outgoing edges are actions: this is the layer of the I-Graph for which the plan

makes a choice. These edges go to the world layer, which corresponds to the world’s

choice. A single action from a state in the world may result in several different obser-

vations depending on the outcome. The world ‘chooses’ which of these observations is

obtained. The edges from this layer go back to the plan layer to a new set of plan and

world states. An example appears in Figure 6.

Lemma 1. The set of all actions for I-Graph I generated from plan P has the same

operative action set as P on the original planning problem W .

Proof: The construction associates world states by tracing P ’s executions. �

Our goal, and the function of the second part of CLIP, is to use this I-Graph to

develop plans with progress measures. We define the comes-before relation, which in-

dicates which world states precede each other during execution of the original plan P .

Crossovers are now easily identified as cycles in the graph of the I-Graph, and we can

both determine which world states are involved in crossovers and how many crossovers

exist. For each crossover found, the cycle in the I-Graph must be clipped. However,

there are many ways to clip a cycle, and cycles may even overlap with each other. We

wish to enumerate all possible ways to resolve these crossovers.
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CLIP constructs a search tree starting from the original I-Graph. For each crossover

found, CLIP generates a set of candidate edges. Candidate edges are those that transition

between world states in the cycle and come from a world state that has more than one

outgoing action. This second requirement is because, should we remove all outgoing

actions from a world state, any resulting plan cannot reach the goal from that state and

therefore is not a solution.

The search tree considers the powerset of the candidate edge set for removal. For

each set of edges from the powerset, we create a new child where these edges have been

removed from the I-Graph and move on to the next cycle. The empty set is included in

this search as cycles may share edges or states in common, and therefore the choice

of removing no edges by a single cycle effectively defers the choice of which edges

to remove to later. Because CLIP only removes edges, any I-Graph that has isolated a

world state is invalid and is removed from consideration. To improve the search, nodes

in the search tree are checked to see if they are invalid before CLIP generates their

children.

We now examine the output of CLIP. CLIP produces numerous subgraphs of the

I-Graph, each of which has its own method of resolving the crossovers. We use these

to define a set of plans: the representative plan for an I-Graph is the plan which has the

same operative action set as the I-Graph used to generate it.

Theorem 2. All plans generated by CLIP using a plan P are derived from P , have

progress measures, and solve the planning problem W .

Proof:

1. All plans generated by CLIP are derived from the plan P .

CLIP only removes edges from an input plan, and cannot add actions to output plans

that are not part of the input. CLIP creates an I-Graph, which via Lemma 1 has the

same operative action set as P , and then generates plans from subgraphs. Therefore,

any plan CLIP generates must have an operative action set that is equivalent to P ,

or a subset.

2. All plans generated by CLIP have a progress measure.

By the comes-before relation, CLIP verifies that no cycles in the world exist before

acceptance. As lack of cycles is indicative of a lack of crossovers and therefore

sufficient to indicate existence of a progress measure, all plans generated by CLIP

have a progress measure.

3. All plans generated by CLIP solve the planning problem.

By definition, before accepting any solution, CLIP calculates the comes-before rela-

tion. If, for any world state, that state does not ‘come before’ at least one goal state,

CLIP rejects it. CLIP also rejects any plans with cycles still present. Therefore, any

plan CLIP accepts is a solution.

We call the output plans of CLIP the representatives of the set of all solutions, so

named because any plan in this set of desired solutions that is not generated by CLIP

directly can be derived from a representative itself.
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Theorem 3. All plans derived from CLIP’s representatives are in the solution set.

Proof: We define plans derived from CLIP’s results as any plans constructed from

a subset of edges from a result produced by CLIP. Excepting such plans that are not a

solution to the planning problem, a plan with some of its edges removed will remain

a solution. In addition, as removing action edges cannot induce a cycle on a plan that

does not have one, the resulting plan keeps a progress measure, ensuring that it is also

part of the solution set. �

Theorem 4. Every plan in the solution set can be derived from a representative plan.

Proof: Assume that there is a plan P ′ that is not generated by CLIP nor derived from

CLIP’s solutions. Then P ′ must solve the original planning problem W , use actions

found only in the operative action set of P , have a progress measure, and not be a

representative produced by CLIP or derived from these results.

We define two sets: Ecycle and Estatic. Ecycle is the set of edges in the world that

are part of the operative action set of all cycles in the I-Graph. By definition, CLIP

considers Ecycle as candidates for removal. Estatic is the set of all other action edges in

the operative action set. As P ′ uses the operative action set that is also used to generate

the solutions of CLIP, it must differ from any given plan provided by CLIP in Estatic or

Ecycle (or both).

If P ′ differs in Estatic, it can be in one of two ways: either it contains an element not

in any representative produced by CLIP, or it is a subset of any given representative’s

Estatic. If it is a subset, then P ′ is actually derived from that representative. If it contains

an element not in a representative, then that element is not from the operative action set,

and P ′ is not truly in the solution set, as CLIP does not remove any edges from Estatic.

Therefore all representatives generated by clip contain the entire set of Estatic from the

original plan P .

If P ′ differs from Ecycle, it can be in one of two ways: if it has an extra edge, then it

either contains an action not from the operative action set or it still contains a cycle that

causes its language with the world to not to be finite. If it is smaller than any representa-

tive, than it implies CLIP does not enumerate all possible values of the cycle edges. As

CLIP enumerates all cycle edge possibilities (through generating the powerset), it must

enumerate all possible values of the cycle edges, so this is a contradiction. �

The input plan therefore yields numerous representatives, all of which have progress

measures and which can be used to generate the entire set of plans of interest. Having

resolved the issue of plans without progress measures, we next turn to the question of

how to use progress measures to obtain sensors.

5 Translating Progress Measures into Sensors

Once we have obtained a plan with a progress measure, we want to use it to link

actions with how to make progress. We achieve this through defining a progress cone,

a term inherited from Erdmann. Every action u ∈ U has an associated progress cone.

This progress cone is a set of observations. At any state in the world labeled with an

observation in this set, the action u makes progress toward the goal (transitioning from

a higher-valued state to a lower-valued state) according to the progress measure.
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Definition 6 (progress cone). For a planning problem W and plan P with a progress

measure φ, the progress cone of an action u ∈ U(W ) is the largest subset of Y (W ),
{y1, y2, . . . , yk} where u makes progress under φ, from all states labeled with some yi.

Two views of the cones are possible. The first, which is natural from the preceding

definition, maps from actions to states (or, equivalently, observations); the second asks

which actions make progress at a state (or given an observation). Since both views are

useful, we consider the progress cone to be a relation between observations and actions

so that each observation has an associated set of actions that make progress.

Definition 7 (cone relation). For a planning problem W and plan P with a progress

measure φ, the cone relation C ⊆ Y (W ) × U(W ) contains (y, u) if there exists a

progress cone for the action u containing y. We will also write y ∼
C

u, when (y, u) ∈ C.

As the planning problem must be solved from any location in the world, any obser-

vation y that is used as a label of a state in V (W ) must have at least one action u where

y ∼
C

u. This forms a covering over the set of observations Y (W ).

For an observation, there are potentially many progress-making actions. However,

only one action is needed for any given y to guarantee that the agent will eventually

arrive at the goal. We can define a class of functions that, for each observation y, return

a single action u, transforming the covering into a collection of partitions. We call these

functions singleton action-based sensors.

Definition 8 (singleton action-based sensor). A function f : Y (W ) → U(W ) is a

singleton action-based sensor if y ∼
C

f(y) for every y.

The connection between singleton action-based sensors and real sensors is not im-

mediately apparent. A “traditional” sensor can be represented as a function s : V (W ) →
Y (W ), taking world states as inputs and returning some observation.

To bridge the gap we define a new set of observations Y ′ = {y′u | u ∈ U(W )} by

making a correspondence of each element to an action, as indicated by the subscript.

For an element y ∈ Y (W ), y 7→ y′u if f(y) = u according to a singleton action-based

sensor. Recall that in our framework, each element in Y mapped to a single state in the

world, so we can think of the elements of Y as a kind of stand-in for the world states of

W . W → Y → Y ′ is therefore equivalent to W → Y ′, and takes in states in the world

and maps them to this new set.

The process above transformed a covering into a partition through use of a function.

However, perhaps we would like multiple (or even all) possible progress-making actions

for a single observation. To achieve this, we define permissive action-based sensors.

Definition 9 (permissive action-based sensor). A function f : Y → 2U \ {∅} is a

permissive action-based sensor if, for every u ∈ f(y), y ∼
C

u.

The relationship of this object to more traditional sensors is less clear than for a sin-

gleton action-based sensor. We can construct a Y ′ as before, where now each element y′

corresponds to some subset of U , but the semantics of actions within multiple different

sets becomes a matter of interpretation.
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6 Example

Fig. 7: A world in which we may have confusion

in states that precludes Erdmann’s sensors be-

ing functional. States C and D both are in mid-

range lighting and can see the landmark L, mak-

ing them indistinguishable. For such a sensing

setup, the partition required by the backchained

plan cannot be realized.

By defining action-based sensors for

a larger family of plans, CLIP pro-

duces novel sensor options compared to

those obtained by backchaining. Addi-

tional outputs can be important in prac-

tical implementations where factors like

sensing technology and cost must be con-

sidered. We illustrate this by adding to

the running example. Figure 7 shows our

example environment in a bit more detail.

Windows (in blue) allow light to enter

and result in varying light levels through-

out the space. A landmark (L) can be

seen from states C, D, and G, but not

elsewhere. Consider a scenario in which

a robot can only recognize brightness

levels and the presence of a nearby land-

mark. Such a robot cannot distinguish states C and D. This presents a problem for the

action-based sensor obtained from a backchained plan such as that in Figure 1b, which

requires these states be distinguished. The plan in Figure 1c, however, takes the same

actions in states C and D, and therefore describes a partition of the world that can be re-

alized with this setup. The action-based sensors defined by the extended family of plans

we consider allow one to better respect the constraints that designers may actually face.

7 Completeness

We have presented the limitations of the existing theory of action-based sensors

and extended it to cover a broader group of plans. As this paper attempts to fill a gap

in Erdmann’s treatment of action-based sensors, there is the question of whether the

proposed method is itself comprehensive. We claim that the method presented here

captures all action-based sensors obtainable for any given plan P that solves a planning

problem W satisfying the criteria in Section 2.1.

We Capture All Action-Based Sensors. Proof: Assume there is some action-based

sensor that is not obtained by the method described above. This action-based sensor

maps from the set of observations Y to sets of actions 2U \ {∅}. This sensor must

be usable to solve the planning problem. Therefore, this sensor must give an action

that proceeds toward the goal from each state in the world. This induces an ordering

on the states, which means that a progress measure can be created on the world using

this sensor. As this progress measure gives an action from each state in the world, it

prescribes a plan that is capable of starting from any location. But then it is included in

the set of plans that we consider. Therefore, this action-based sensor is obtainable.
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Having extended the work done by Erdmann we can now obtain not only the sensors

that correspond to the backchained solution, but the complete set of all action-based

sensors. Given a library of components, this set of sensors can guide practitioners in

determining what is simultaneously realizable, respectful of environmental constraints,

and sufficiently powerful to accomplish the task. Design and selection of sensors then

becomes just a question of intersecting constraints.

One caveat to this notion of completeness is that progress measures, by their na-

ture, do not make use of state. Our example plan with crossovers chooses a path at the

start of its execution, a choice that is encoded within the plan structure itself through

additional vertices. Such additional structure is required for this plan to succeed. Rather

than thinking of crossovers as simply cycles to untangle, they imply that execution of

a given plan requires some internal memory in order to make progress toward the goal.

The idea of sensors that memorize information in order to give relevant actions goes

well beyond what we typically consider when discussing a sensor. The authors are in-

terested in pursuing how to define and make use of these “stateful” sensors for more

complex behavior. This hints that adopting a sensor-based perspective may give new

ways to understand plans.
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