

Non-linear Least Squares Fitting Technique for the Determination of Field Line Resonance Frequency in Ground Magnetometer Data: Application to Remote Sensing of Plasmaspheric Mass Density

A. Boudouridis ^{•3}, E. Yizengaw¹, M. B. Moldwin¹, and E. Zesta²

¹Space Sciences Institute, Boulder, CO, USA, ²Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA, ³National Center for Environmental Information, National Oceanic and Atmospheric Administration, Boulder, CO, USA, ⁴The Aerospace Corporation, El Segundo, CA, USA, ⁵University of Michigan, Ann Arbor, MI, USA, ⁶NASA Goddard Space Flight Center, Greenbelt, MD, USA

Corresponding author: Athanasios Boudouridis (thanasis@space-science.org)

Key Points:

- We introduce a new physics-based non-linear least squares fitting technique for the determination of Field Line Resonance (FLR) frequencies
- The new technique is based on non-linear least squares fitting of the analytical Ultra-Low Frequency resonant wave equations
- We calculate physics-based errors of FLR frequencies and the equatorial plasmaspheric mass density

20 **Abstract**

21 The accurate determination of the Field Line Resonance (FLR) frequency of a resonating
 22 geomagnetic field line is necessary to remotely monitor the plasmaspheric mass density during
 23 geomagnetic storms and quiet times alike. Under certain assumptions the plasmaspheric mass
 24 density at the equator is inversely proportional to the square of the FLR frequency. The most
 25 common techniques to determine the FLR frequency from ground magnetometer measurements
 26 are the amplitude ratio and phase difference techniques, both based on geomagnetic field
 27 observations at two latitudinally separated ground stations along the same magnetic meridian.
 28 Previously developed automated techniques have used statistical methods to pinpoint the FLR
 29 frequency using the amplitude ratio and phase difference calculations. We now introduce a
 30 physics-based automated technique, using non-linear least squares fitting of the ground
 31 magnetometer data to the analytical resonant wave equations, that reproduces the wave
 32 characteristics on the ground, and from those determine the FLR frequency. One of the
 33 advantages of the new technique is the estimation of physics-based errors of the FLR frequency,
 34 and as a result of the equatorial plasmaspheric mass density. We present analytical results of the
 35 new technique, and test it using data from the Inner-Magnetospheric Array for Geospace Science
 36 (iMAGS) ground magnetometer chain along the coast of Chile and the east coast of the United
 37 States. We compare the results with the results of previously published statistical automated
 38 techniques.

39 **1 Introduction**

40 The Earth's plasmasphere is an important plasma region of the terrestrial magnetosphere-
 41 ionosphere system, playing a significant role in the dynamics of the magnetosphere-ionosphere
 42 coupling during quiet and active periods alike (Lemaire & Gringauz, 1998; Goldstein et al.,
 43 2004; Yizengaw & Moldwin, 2005; Kotova, 2007; Darrouzet et al., 2009; Masson et al., 2009;
 44 Reinisch et al., 2009; Moldwin et al., 2016). During magnetic storms the mass loading and
 45 unloading of the plasmasphere is an integral part of the storm process, with widespread
 46 implications for a variety of processes in the magnetosphere and/or ionosphere (Sheeley et al.,
 47 2001; Yizengaw et al., 2005a). Earthward looking Extreme-UltraViolet (EUV) imagers on
 48 spacecraft high above the magnetic pole have yielded valuable information of the structure of the
 49 plasmasphere in recent decades (e.g., Goldstein, 2006; Goldstein et al., 2003, and references
 50 therein).

51 The equatorial plasmaspheric mass density, P_{eq} , is a key parameter that tracks the
 52 evolution of the plasmasphere during a magnetic storm or quiet periods. A simple, cost effective
 53 technique that can measure P_{eq} at a specific L value (and provide large scale temporal coverage),
 54 relies on the remote sensing of the plasmasphere using a pair of longitudinally aligned ground
 55 magnetometers. This method is based on the relation between the wave period, T , of a resonating
 56 magnetic field line and the mass density along this field line (Dungey, 1954), assuming
 57 theoretically determined properties of wave amplitude and phase across the latitudinal spread of
 58 the resonating bundle of fluxtubes. The standing waves on a closed magnetic field line are
 59 referred to as a Field Line Resonance (FLR). FLR frequencies belong to the Ultra-Low
 60 Frequency (ULF) range, typically in the $Pc5$ frequency range (1-10 mHz) within the auroral
 61 zone, and in the $Pc3/4$ range (7-100 mHz or periods of 10-150 s) within the sub-auroral and
 62 plasmasphere regions.

63 According to the Wentzel-Kramers-Brillouin (WKB) time of flight approximation in the
 64 solution of the standing wave equation (Gul'yel'mi, 1967; Kitamura & Jacobs, 1968; Schulz,
 65 1996; Menk et al., 1999; Denton & Gallagher, 2000, and references therein), the period of the
 66 standing wave along a magnetic fluxtube is given by

$$\tau = \frac{2}{\omega} \int \frac{ds}{n^2} \mathbf{f} \cdot \mathbf{B} \mathbf{f} \quad (1)$$

67 where n is the wave mode number, V , the Alfvén speed, s the distance along the magnetic field
 68 line, B the magnetic field, ρ the mass density all along the field line, and μ_0 , the permeability of
 69 free space. The mass density ρ along the field lines is usually represented as a power law
 70 decrease with radial distance R

$$\rho = \rho_{eq} \left(\frac{LR_E}{R} \right)^m \quad (2)$$

71 where R is the radial distance from the center of the Earth, L is the equatorial radial distance of a
 72 fluxtube in Earth radii R_E , and m is the power law index of the density decrease along the field
 73 lines. Following Schultz (1996), and assuming a dipole magnetic field, equations (1) and (2)
 74 yield the value of the equatorial plasmaspheric mass density as

$$= 4.4794 \times 10^8 \sin \theta \sqrt{L} \quad (3)$$

$$I_L = \cos^{-1} \left(\sqrt{\frac{1}{L}} \right) \quad (4)$$

$$I_{eq} = \frac{(3I_{eq} + L - 3)(3L + 2) \sin \theta}{8} \quad (5)$$

75 where ω_{FLR} is the FLR frequency. The above equations show that knowledge of the FLR
 76 frequency can yield I_{eq} at the L value of the observing ground station.

77 Observations have shown that FLRs are present in the inner magnetosphere down to L
 78 values of 1.5 (Menk et al., 1994, 2000). For L values lower than that, most of the magnetic field
 79 line lies within the dense ionosphere, and thus the ULF oscillations on that field line are strongly
 80 damped. Many techniques have been developed to obtain the FLR frequency of the resonating
 81 field lines (Baransky et al., 1985, 1990; Waters et al., 1991, 1994; Pilipenko & Fedorov, 1994;
 82 Menk et al., 1999, 2000). In the current study we will use the amplitude ratio (AR), and cross-
 83 phase or phase difference (CP or PD) techniques. Both techniques rely on measurements from
 84 two adjacent ground stations, at approximately the same magnetic longitude, and separated by
 85 less than 200 km in magnetic latitude.

86 The techniques are described in detail in Boudouridis & Zesta (2007), and illustrated in
 87 Figure 1. Briefly, assuming a latitudinally uniform distribution of resonating field lines according
 88 to (1), the FLR frequency of the waves decreases as the field line length increases, therefore the
 89 FLR frequency is decreasing with increasing latitude (Menk et al., 1994). At every latitude, the
 90 wave amplitude exhibits a maximum at the FLR frequency of that field line (Figure 1, panel 1
 91 from top), while the wave phase reverses, shifts by 180° (panel 2 from top) across the latitude of
 92 the resonance. For two adjacent in latitude magnetometer stations, the ratio of their wave

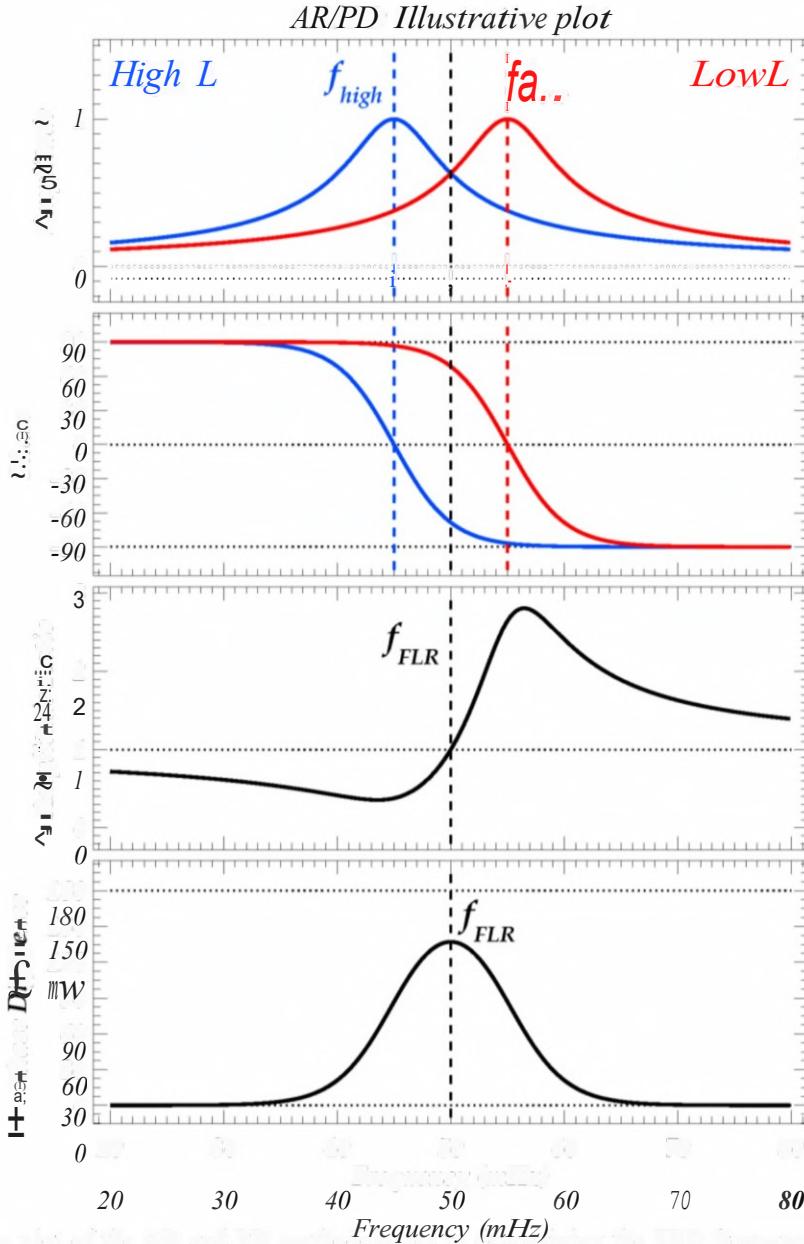


Figure 1. Illustrative plot of the AR and PD methodologies in determining the FLR frequency of the waves at the mid-point of a longitudinally aligned station pair. From top to bottom the four panels show the wave amplitude at the two stations, the wave phase, the amplitude ratio, and the phase difference.

amplitudes (AR) has a transition through 1 (panel 3 from top), while the difference of their wave phases (PD) demonstrates a maximum value (panel 4 from top), at the frequency half way between the peak amplitude frequencies of the two stations. Since for two stations in close proximity to each other the frequency decreases almost linearly with increasing latitude, the mid-point frequency is the FLR frequency at the mid-point latitude between the stations. The two frequency values, one from AR and one from PD, yield two independent measurements of the FLR frequency for the L value of the mid-point between the two stations. A chain of longitudinally aligned magnetometers can thus observe the FLR frequency at a range of L values, as many as the number of pairs of stations that can be formed between the existing stations of the chain. As the Earth rotates the chain measures the latitudinal distribution of the FLR frequency at

103 all magnetic local times (MLTs), as long as there are waves present in the magnetosphere. This
 104 ultimately yields the radial distribution of the equatorial plasmaspheric mass density (Chi et al.,
 105 2013).

106 2 Analytical FLR Determinations

107 The two FLR detection techniques mentioned above have been automated, using
 108 statistical methods to pinpoint the FLR frequency (Berube et al., 2003; Boudouridis & Zesta,
 109 2007). The first steps involve generation of the dynamic spectra of the magnetic observations
 110 from the two stations, and calculation of the AR and PD for the station pair, for the frequency
 111 range around resonances, typically the Pc3/4 ULF range for the plasmasphere. Subsequent steps
 112 (detailed in Boudouridis & Zesta (2007)) include smoothing of the AR and PD in two
 113 dimensions (frequency vs time), and application of various statistical manipulations of the data,
 114 such as the t-test to estimate a meaningful maximum of the PD, or time-constant ratio of the
 115 average amplitude at two frequency ranges to estimate the transition through 1 of the AR, at the
 116 desired time step through the data. The end result is two curves, one for AR and one for PD, of
 117 derived FLR frequencies as a function of time during the period of ULF wave presence, typically
 118 in the dayside magnetosphere (Boudouridis & Zesta, 2007, their figures 2 and 3).

119 The statistical methods used for the FLR frequency determination yield reasonably good
 120 results whenever there is sufficient Pc3/4 ULF wave power present. This occurs mostly on the
 121 dayside magnetosphere. Despite their success in pinpointing the FLR frequency in magnetometer
 122 data from a pair of ground stations, the statistical techniques use ad hoc detection criteria that
 123 lack the robustness of a physics-based technique. The analytical, physics-based technique that we
 124 present in this paper uses the analytical standing wave equations to calculate the expected AR
 125 and PD for the station pair, and then fit them to the data at the desired time resolution. At each
 126 time step the transition through 1 of the AR, and the maximum of the PD can be calculated from
 127 the resulting analytical curves, yielding the time evolution of the FLR frequency for the two FLR
 128 determination techniques. The additional advantage of the new analytical technique is the
 129 estimation of physics-based errors of the FLR frequency and the equatorial plasmaspheric mass
 130 density.

131 2.1 ULF wave equations and AR/PD fitting

132 Following Kawano et al. (2002), the wave phase, **Pow.** and amplitude, H_{0W} , of a
 133 standing wave at the lower latitude station of the station pair, as a function of frequency, are
 134 given by

$$135 \tan^{-1} \frac{f}{a} = \text{atan} \frac{f}{a} \quad (6)$$

$$136 H_0 = \frac{b}{\sqrt{1 + \frac{(f - b_2)^2}{b_1}}} \quad (7)$$

137 where f is the wave frequency, and the parameters $[a, b, b_1]$ define the wave characteristics as
 138 follows (refer to Figure I): a , represents the phase reversal frequency, a_0 is a measure of the
 139 phase reversal rate with frequency, b represents the frequency of the peak amplitude, b_1 is a

138 measure of the amplitude change rate with frequency, and b is the peak wave amplitude.
 139 Similarly, the wave equations for the higher latitude station are given by

$$Pa = \tan^{-1} \left(\frac{f}{a} \right) \quad (8)$$

$$H_{high} = \frac{b}{\sqrt{1 + \left(\frac{f}{a} \right)^2}} \quad (9)$$

140 The phase difference ΔP , and amplitude ratio H_{high} , for the station pair are given, respectively, by
 141 equations

$$\Delta P = d\phi - \theta_{nan} \quad (10)$$

$$H_{high} = \frac{H_{O}}{H_{nan}} \quad (11)$$

142 This convention yields a maximum PD at the midpoint between stations, and a transition from
 143 lower to higher than 1 value for the AR at the same location, since the frequency of the standing
 144 waves decreases with increasing latitude as mentioned earlier (Menk et al., 1994). With this
 145 parameterization, equation (10) has 4 free parameters, a ($i = 0, \dots, 33$), and equation (11) has 6
 146 free parameters, b ($i = 0, \dots, 5$). These free parameters can be determined by non-linear least
 147 squares fitting of the PD and AR data as a function of frequency at every step in time, using the
 148 analytical equations (6)-(11).

149 Figure 2 demonstrates the application of the analytical technique to a station pair located
 150 at Puerto Natales (PNT) and Punta Arenas (PAC) in Southern Chile. Comparison with the
 151 statistical results of Boudouridis & Zesta (2007) are also shown in Figure 2. Panels 1 and 3 from
 152 the top show the PD and AR of the pair for the time period 1300-1600 UT on 21 December
 153 2003, as a function of time and frequency, color coded with the scales on the right of each panel.
 154 These are calculated from the ground magnetic field data observed at PNT and PAC. The
 155 horizontal black lines in panels 1 and 3 denote the maximum PD and AR transition through 1,
 156 respectively, determined with the statistical methods of Boudouridis & Zesta (2007) at 1-min
 157 intervals.

158 Panels 2 and 4 from the top show the results of the non-linear least squares fitting of
 159 equations (10) and (11) to the observed PD and AR, respectively, for one such 1-min interval,
 160 1348-1349 UT, denoted by the vertical white lines in panels 1 and 3. The black lines in panels 2
 161 and 4 are the corresponding measured PD and AR (from the color-coded displays of panels 1 and
 162 3) plotted as a function of frequency for this 1-min interval. The orange lines are the
 163 corresponding non-linear least squares fits of the black curves with the functions of equations
 164 (10) and (11). The red diamonds in the two panels mark the statistical PD maximum/AR
 165 transition through 1 using the methodology of Boudouridis & Zesta (2007). The blue diamonds
 166 denote the fitted PD maximum/AR transition through 1, using the new analytical technique. The
 167 vertical dashed lines and captions on the right of the panels, of the same colors, show the FLR
 168 frequencies determined with the two methods. The same procedure is applied for every minute of
 169 the interval shown, 1300-1600 UT. This yields the analytical equivalent of the statistical FLR
 170 frequency determinations (black horizontal lines) of panels 1 and 3. Figure 3, top panel, shows
 171 the statistically and analytically determined FLRs for both the PD and AR techniques at 1-min

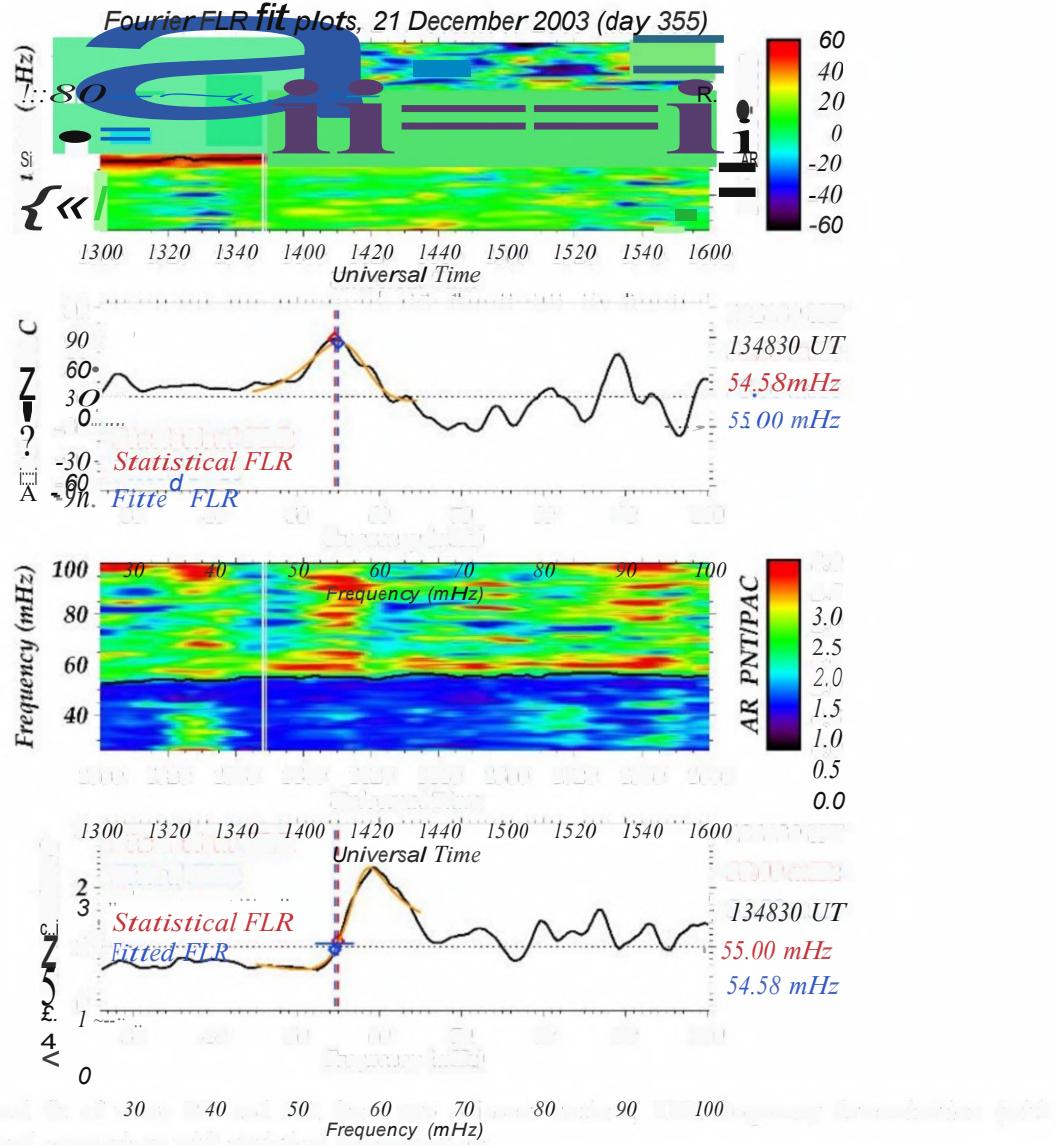


Figure 2. Analytical fit of wave PD and AR from two adjacent stations, FLR frequency determination (with estimated errors), and comparison with statistical determinations.

intervals across the same time period as in Figure 2. We discuss these results in more detail below.

2.2 FLR errors

A further advantage of the new technique is the estimation of physics-based errors of the FLR frequency, which can yield physics-based errors of the equatorial plasmaspheric mass density. These are the result of error propagation from the fitting parameter errors. Considering that the two stations are in close proximity, the change of FLR frequency with latitude between them is approximately linear. Therefore, the resulting midpoint PD and AR FLR frequencies, respectively, are given by the average of the corresponding fitted parameters that represent the FLR frequencies in equations (6)-(9)

$$f_{\text{fit}} = \frac{a_1 + a_2}{2} \quad (12)$$

$$\mathcal{F}^{fe} = \frac{\mathbf{b} + \mathbf{b}_*}{2}, \quad (13)$$

182 The fitting parameter errors, $\mathcal{A}\mathbf{a}$ and \mathbf{b}_* , are determined by the nonlinear least squares fitting
 183 technique. As a result, the respective errors, $\mathcal{A}\mathbf{f}pp$ and $\mathcal{A}\mathcal{F}pp$, can be defined as

$$\mathcal{A}\mathbf{f}ro = \frac{\mathbf{1}\mathbf{a}_* + \mathbf{1}\mathbf{a}_g}{2} \quad (14)$$

$$\mathcal{A}\mathcal{F} = \frac{\mathbf{b}_* + \mathbf{b}_g}{2} \quad (15)$$

184 The resulting errors are shown as blue horizontal bars on the fitted FLR frequencies (blue
 185 diamonds), on panels 2 and 4 from the top of Figure 2. (Note that the error of the PD technique
 186 (panel 2) is present but not visible as it is very small).

187 3 Plasmaspheric Mass Density

188 Once the FLR frequency is known, the plasmaspheric mass density can be calculated
 189 through equations (3)-(5). Equation (3) also yields the error in P_{eq} as

$$OP_{eq} = \frac{-20\mathbf{e}\mathcal{F}}{r} \quad (16)$$

190 where \mathcal{F} is either $\mathcal{A}\mathbf{f}pp$ or \mathcal{F} from equations (14) and (15), respectively. The results for the
 191 interval 1300-1600 UT on 21 December 2003, and station pair PNT/PAC are shown in Figure 3.
 192 The top panel shows the FLR frequencies, old statistical CP (red), old statistical AR (blue), new
 193 fitted CP (black), and new fitted AR (orange). The bottom panel shows the corresponding mass
 194 density determinations in amu/cc. The errors of the new technique are shown as vertical orange
 195 bars for the AR method, and black bars for the CP method (barely visible in most instances). The
 196 FLR frequency CP error is <1% while the AR error is in the range of 10-15%. Clearly the CP
 197 method has much smaller errors. The corresponding mass density errors are 0.1-1% for the CP
 198 method, and 5-18% for the AR method.
 199

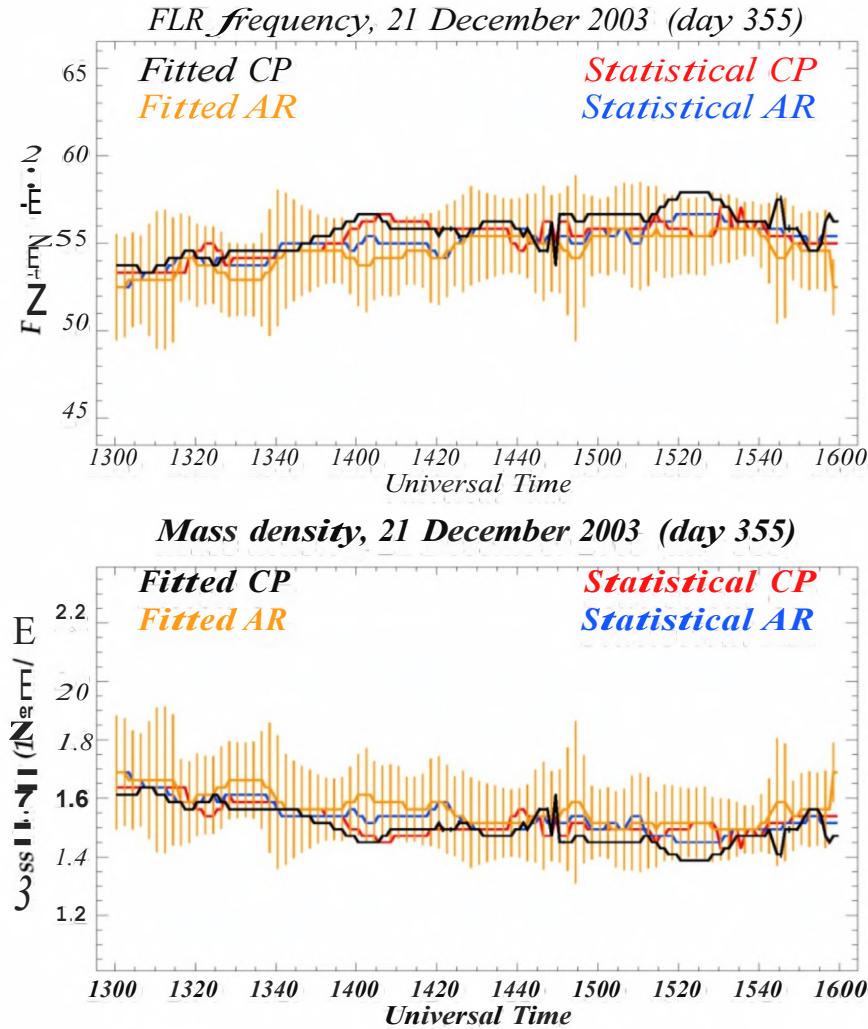


Figure 3. Application of the fit for 1300-1600 UT on 21 December 2003.

200 Previous methods of determining field line eigenfrequencies using pairs of ground
 201 stations result in an uncertainty in mass density of 25% or less (Berube et al., 2003). The choice
 202 of magnetic field model can lead to as large or larger uncertainties as well, especially during
 203 moderate to severe geomagnetic activity. For example, Berube et al. (2006) found the difference
 204 in density between a dipole and a Tsyganenko TOI model can be much greater than 25%. More
 205 importantly for this study, reducing the uncertainty of the FLR frequency helps constrain the
 206 composition estimates of heavy ions such as helium and oxygen. Using traditional FLR
 207 identification methods provides wide estimates of mass composition (e.g., Berube et al. (2005)
 208 found that He^+/H^+ ratios can range from 3% to 40% at $L = 2$ for quiet conditions). By
 209 narrowing the uncertainties of the mass density at a given L shell and geomagnetic disturbance
 210 level, the constraints on heavy ion composition can significantly improve, helping to understand
 211 ion outflow dynamics (e.g., Welling & Liemohn, 2016; Varney et al., 2016; Gkioulidou et al.,
 212 2019).

213 **4 Application to the Halloween storms**

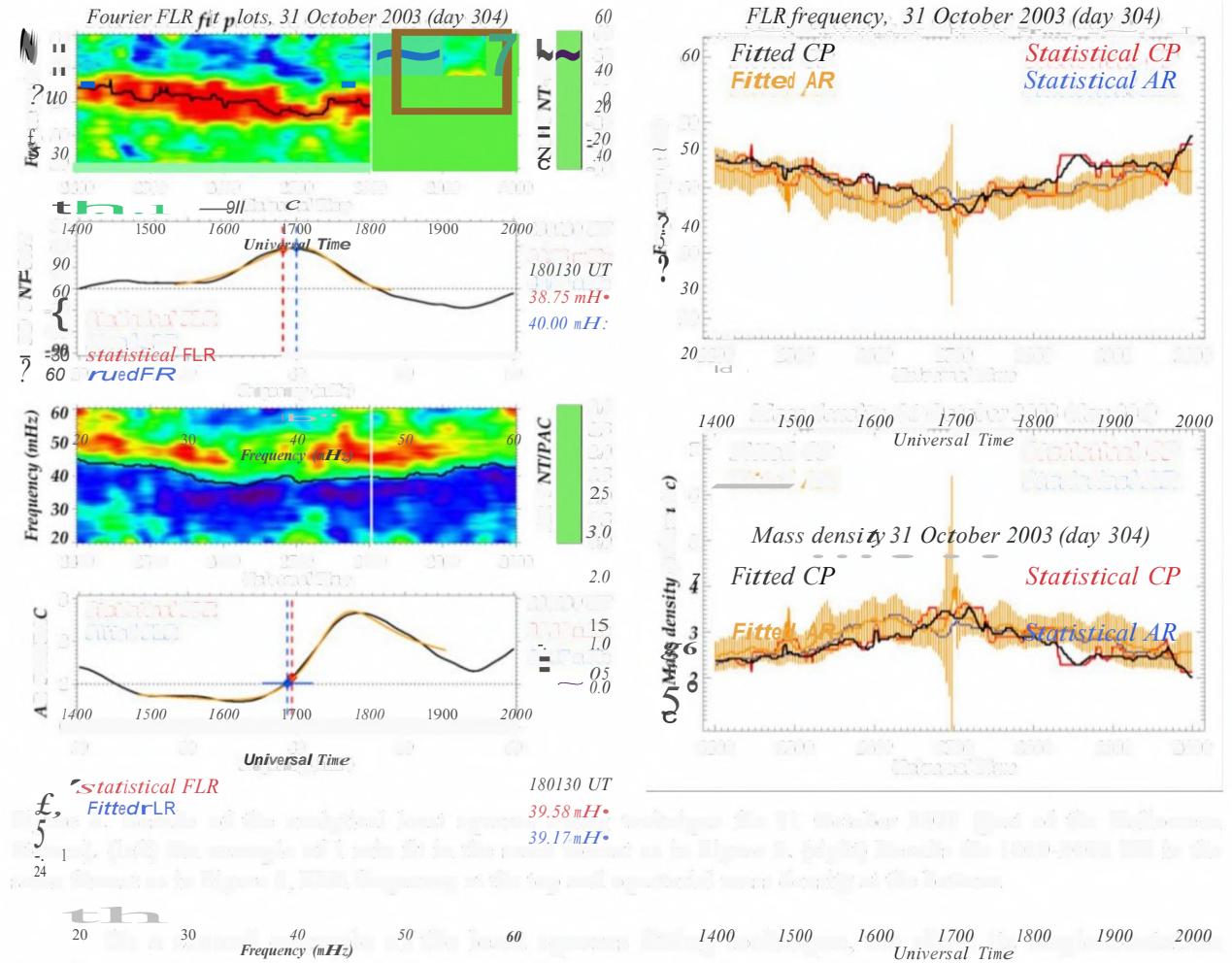


Figure 4. Results of the analytical least squares fitting technique for 31 October 2003 (part of the Halloween Storms). (left) An example of 1 min fit in the same format as in Figure 2. (right) Results for 1400-2000 UT in the same format as in Figure 3, FLR frequency at the top and equatorial mass density at the bottom.

As a second example of the least squares fitting technique, we show its implementation for the PNT/PAC station pair data on 31 October 2003, part of the Halloween Storms (e. g., Yizengaw et al., 2005b). Figure 4 shows the results for the time period 1400-2000 UT when strong ULF waves were present in the magnetosphere. On the left panel we demonstrate the application of the fit to 1 min of data during this period, in the same format as in Figure 2. The FLR frequencies during the storm are lower than the previous case, signifying higher plasmaspheric equatorial mass densities. This is clear in the plots on the right for the FLR frequency (top), and the mass density (bottom) during this storm (in the same format as in Figure 3). The FLR frequency is seen decreasing with time from ~ 45 mHz at 1400 UT to below 40 mHz at 1700 UT (which corresponds to noon MLT at the stations location in Chile), and returning back to 45 mHz at the end of the interval, at 2000 UT. The plasmaspheric equatorial mass density has the opposite behavior, reaching nearly 35000 amu/cc near local noon, more than twice the values observed during the 21 December 2003 example.

In terms of the least squares fitting technique performance, the results exhibit higher variability, especially for the PD technique. This is due to the much higher variability of the input PD image data. We should mention that to obtain the results of Figure 4 we applied higher image smoothing to the PD and AR images before we apply the technique. In addition, in order to achieve more stable AR fitting, we extended the fit interval around the initial guess of the FLR frequencies (b and b_s) to 14 mHz from 10 mHz that was applied in the case of Figure 2. These internal model parameters can affect the results, and eventually have to be determined

234 interactively for a fully automated technique, together with the initial guesses used for the a ; and
 235 b fitted parameters (see discussion in the following section).

236 The right panels of Figure 4 show that the errors of the AR technique still exhibit high
 237 variability. Close inspection of all the 1-min AR fits shows that the high errors observed are
 238 always the result of failed least squares AR fit. These abnormalities of the AR fit (and much
 239 more rarely of the PD fit) need to be addressed in a comprehensive way in the future, in order to
 240 develop a more robust and reliable technique (see additional discussion below). In this case, the
 241 PD technique errors for $fprn$ and pa were both $\leq 1\%$. The errors for the AR technique, whenever
 242 the least squares fit converged, were $\leq 10\%$ for $fern$ and $\leq 20\%$ for pa .

243 5 Conclusions and Future Directions

244 In this work we described two physics-based, AR and PD, FLR frequency determination
 245 techniques. At the heart of the new methods is the non-linear least squares fitting of the AR and
 246 PD data, as opposed to statistical manipulations of this data. The analytical approach introduces
 247 physics-based errors of the FLR frequency and the equatorial plasmaspheric mass density. The
 248 results show that these errors are much smaller for the PD technique compared to the AR
 249 technique, both for the FLR frequency and the equatorial plasmaspheric mass density.

250 The application of the technique to the same station pair for two different days, 21
 251 December 2003 and 31 October 2003 (part of the Halloween Storms), shows that for a fully
 252 automated technique further improvements need to be made. Some future directions are the
 253 following:

- 254 1. Introduction of criteria for the convergence or not of the non-linear least squares fitting for
 255 the two techniques, AR and PD, in order to eliminate erroneous results.
- 256 2. Use of criteria for the comparison of the AR and PD methods, in order to exclude frequencies
 257 for which the two techniques yield very different results.
- 258 3. The results of the analytical non-linear least squares fitting technique depend on the initial
 259 choice of the fit parameters a ; and b . This is especially true for the AR technique, but to a
 260 lesser extent for the PD technique as well. Currently these parameters are chosen manually at
 261 the beginning of the automated procedure, and are applied at every minute of the entire test
 262 interval. Instead, these parameters can be selected interactively, different at every minute of
 263 the test interval, in an effort to minimize the errors of the fit, and thus the errors of the FLR
 264 frequency and equatorial plasmaspheric mass density.
- 265 4. Internal modeling parameters, such as the extent of PD and AR image smoothing and the
 266 frequency range of the application of the least squares fitting technique, need to be
 267 determined interactively in order to achieve the best results with no user input. One way to
 268 do this is to perform the fitting for a multi-variable matrix of internal input parameters, and
 269 choose the internal parameter values that minimize a metric of the resulting FLR frequency
 270 errors.
- 271 5. Use of a more realistic magnetic field model, such as the Tsyganenko TOI model (Berube et
 272 al., 2006).
- 273 6. Devise a statistical FLR frequency model that will fill the gaps for the times when the least
 274 squares fitting technique fails, or the times when PD and AR yield results that are far apart.
 275 This could be done by building a database of FLR frequencies correlated with various solar
 276 wind and IMF parameters and/or geomagnetic indices. Then, using the statistical model
 277 based on this database, fill the gaps in FLR frequency when the technique fails with
 278 reasonable values that take into account the neighboring successful fits.

279 **Acknowledgments, Samples, and Data**

280 The work by Athanasios Boudouridis at the Space Science Institute (SSI) was supported
 281 by NSF awards AGS-1450512 and AGS-1848730. Mark Moldwin was supported by NSF
 282 awards AGS-1450512 and AGS-1654044. The ground magnetometer data are available at
 283 <http://magnetometers.bc.edu>

284 **References**

285 Baransky, L. N., Borovkov, Y. E., Gokhberg, M. B., Krylov, S. M., & Troitskaya, V. A. (1985).
 286 High resolution method of direct measurement of the magnetic field lines'
 287 eigenfrequencies. *Planet. Space Sci.*, 33, 1369–1374.

288 Baransky, L. N., Belokris, S. P., Borovkov, Y. E., & Green, C. A. (1990). Two simple methods
 289 for the determination of the resonance frequencies of magnetic field lines. *Planet. Space*
 290 *Sci.*, 38, 1573–1576.

291 Boudouridis, A., & Zesta, E. (2007). Comparison of Fourier and wavelet techniques in the
 292 determination of geomagnetic field line resonances. *J. Geophys. Res.*, 112, A08205.
 293 <https://doi.org/10.1029/2006JA011922>

294 Berube, D., Moldwin, M. B., & Weygand, J. M. (2003). An automated method for the detection
 295 of field line resonance frequencies using ground magnetometer techniques. *J. Geophys.*
 296 *Res.*, 108(A9), 1348. <https://doi.org/10.1029/2002JA009737>

297 Berube, D., Moldwin, M. B., Fung, S. F., & Green, J. L. (2005). A plasmaspheric mass density
 298 model and constraints on its heavy ion concentration. *J. Geophys. Res.*, 110, A04212.
 299 <https://doi.org/10.1029/2004JA010684>

300 Berube, D., Moldwin, M. B., & Ahn, M. (2006). Computing magnetospheric mass density from
 301 field line resonances in a realistic magnetic field geometry. *J. Geophys. Res.*, 111,
 302 A08206. <https://doi.org/10.1029/2005JA011450>

303 Chi, P. J., et al. (2013). Sounding of the plasmasphere by Mid-continent MAgnetoseismic Chain
 304 (McMAC) magnetometers. *J. Geophys. Res. Space Physics*, 118, 3077–3086.
 305 <https://doi.org/10.1002/jgra.50274>

306 Darrouzet, F., Gallagher, D. L., Andr~, N., Carpenter, D. L., Dandouras, I., D~cr~au, P. M. E.,
 307 De Keyser, J., Denton, R. E., Foster, J. C., Goldstein, J., Moldwin, M. B., Reinisch,
 308 B.W., Sandel, B. R., & Tu, J. (2009). Plasmaspheric density structures and dynamics:
 309 Properties observed by the CLUSTER and IMAGE missions. *Space Sci. Rev.*, 145, 55–
 310 106. <https://doi.org/10.1007/s11214-008-9438-9>

311 Denton, R. E., & Gallagher, D. L. (2000). Determining the mass density along magnetic field
 312 lines from toroidal eigenfrequencies. *J. Geophys. Res.*, 105, 27,717–27,725.

313 Dungey, J. W. (1954). The attenuation of Alfv~n waves. *J. Geophys. Res.*, 59(3), 323–328.
 314 <https://doi.org/10.1029/JZ059i003p00323>

315 Gkioulidou, M., Ohtani, S., Ukhorskiy, A. Y., Mitchell, D. G., Takahashi, K., Spence, H. E., et
 316 al. (2019). Low-energy (<keV) O⁺ ion outflow directly into the inner magnetosphere:
 317 Van Allen Probes observations. *Journal of Geophysical Research: Space Physics*, 124,
 318 405–419. <https://doi.org/10.1029/2018JA025862>

319 Goldstein, J. (2006). Plasmasphere response: Tutorial and review of recent imaging results.
320 *Space Sci. Rev.*, 124, 203–216. <https://doi.org/10.1007/s11214-006-9105-y>

321 Goldstein, J., Spasojević, M., Reiff, P. H., Sandel, B. R., Forrester, W. T., Gallagher, D. L., &
322 Reinisch, B. W. (2003). Identifying the plasmapause in IMAGE EUV data using IMAGE
323 RPI in situ steep density gradients. *J. Geophys. Res.*, 108(A4), 1147.
324 <https://doi.org/10.1029/2002JA009475>

325 Goldstein, J., Sandel, B. R., Hairston, M. R., & Mende, S. B. (2004). Plasmapause undulation of
326 17 April 2002. *Geophys. Res. Lett.*, 31, L15801. <https://doi.org/10.1029/2004GL019959>

327 Gul'yel'mi, A. V. (1967). Theory of hydromagnetic sounding of plasma concentration in the
328 exosphere. *Geomagn. Aeron.*, 7, 357–363.

329 Kawano, H., Yumoto, K., Pilipenko, V. A., Tanaka, Y.-M., Takasaki, S., Iizima, M., & Seto M.
330 (2002). Using two ground stations to identify magnetospheric field line eigenfrequency as
331 a continuous function of ground latitude. *J. Geophys. Res.*, 107(A8), 1202.
332 <https://doi.org/10.1029/2001JA000274>

333 Kitamura, T., & Jacobs, J. A. (1968). Determination of the magnetospheric plasma density by the
334 use of long-period geomagnetic micropulsations. *J. Geomagn. Geoelectr.*, 20, 33–44.

335 Kotova, G. A. (2007). The Earth's Plasmasphere: State of Studies (a Review). *Geomagn. Aeron.*,
336 47, 409–422.

337 Lemaire, J. F., & Gringauz, K. I. (1998). *The Earth's Plasmasphere*. Cambridge University
338 Press, New York.

339 Masson, A., Santolik, O., Carpenter, D. L., Darrouzet, F., D'cr'au, P. M. E., El-Lemdani
340 Mazouz, F., Green, J. L., Grimald, S., Moldwin, M. B., Nemec, F., & Sonwalkar, V. S.
341 (2009). Advances in plasmaspheric wave research with CLUSTER and IMAGE
342 observations. *Space Sci. Rev.*, 145, 137–191. <https://doi.org/10.1007/s11214-009-9508-7>

343 Menk, F. W., Fraser, B. J., Waters, C. L., Ziesolleck, C. W. S., Feng, Q., Lee, S. H., & McNabb,
344 P. W. (1994). Ground measurements of low latitude magnetospheric field line
345 resonances. In *Solar Wind Sources of Magnetospheric Ultra-Low Frequency Waves*,
346 *Geophys. Monogr. Ser.*, vol. 81, edited by M. J. Engebretson, K. Takahashi, and M.
347 Scholer, pp. 299–310, AGU, Washington D. C.

348 Menk, F. W., Orr, D., Clilverd, M. A., Smith, A. J., Waters, C. L., Milling, D. K., & Fraser, B. J.
349 (1999). Monitoring spatial and temporal variations in the dayside plasmasphere using
350 geomagnetic field line resonances. *J. Geophys. Res.*, 104, 19,955–19,969.

351 Menk, F. W., Waters, C. L., & Fraser, B. J. (2000). Field line resonances and waveguide modes
352 at low latitudes: 1. Observations. *J. Geophys. Res.*, 105, 7747–7761.

353 Moldwin, M. B., Zou, S., & Heine, T. (2016). The story of plumes: the development of a new
354 conceptual framework for understanding magnetosphere and ionosphere coupling. *Ann.
355 Geophys.*, 34, 1243–1253. <https://doi.org/10.5194/angeo-34-1243-2016>

356 Pilipenko, V. A., & Fedorov, E. N. (1994). Magnetotelluric sounding of the crust and
357 hydrodynamic monitoring of the magnetosphere with the use of ULF waves. In *Solar
358 Wind Sources of Magnetospheric Ultra-Low Frequency Waves*, *Geophys. Monogr. Ser.*,

359 vol. 81, edited by M. J. Engebretson, K. Takahashi, and M. Scholer, pp. 283–292, AGU,
360 Washington D. C.

361 Reinisch, B. W., Moldwin, M. B., Denton, R. E., Gallagher, D. L., Matsui, H., Pierrard, V., &
362 Tu, J. (2009). Augmented empirical models of plasmaspheric density and electric field
363 using IMAGE and CLUSTER Data. *Space Sci. Rev.*, 145, 231–261.
364 <https://doi.org/10.1007/s11214-008-9481-6>

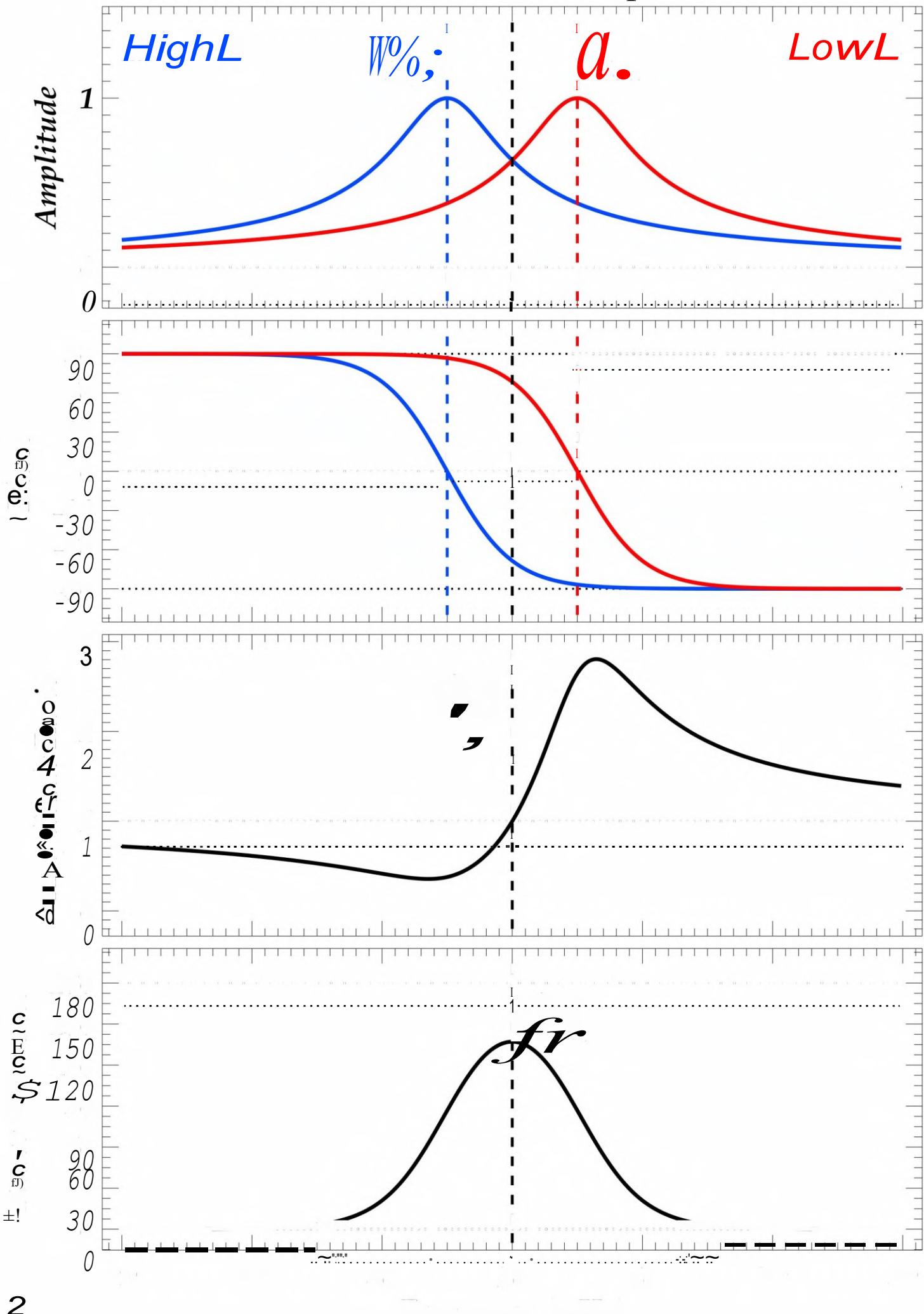
365 Schulz, M. (1996). Eigenfrequencies of geomagnetic field lines and implications for plasma-
366 density modeling. *J. Geophys. Res.*, 101, 17,385–17,397.

367 Sheeley, B. W., Moldwin, M. B., Rassoul, H. K., & Anderson, R. R. (2001). An empirical
368 plasmasphere and trough density model: CRRES observations. *J. Geophys. Res.*, 106,
369 25,631–25,641.

370 Varney, R. H., Wiltberger, M., Zhang, B., Lotko, W., & Lyon, J. (2016). Influence of ion
371 outflow in coupled geospace simulations: 1. Physics-based ion outflow model
372 development and sensitivity study. *J. Geophys. Res. Space Physics*, 121, 9671–
373 9687. <https://doi.org/10.1002/2016JA022777>

374 Waters, C. L., Menk, F. W., & Fraser, B. J. (1991). The resonance structure of low latitude Pc3
375 geomagnetic pulsations. *Geophys. Res. Lett.*, 18, 2293–2296.

376 Waters, C. L., Menk, F. W., & Fraser, B. J. (1994). Low latitude geomagnetic field line
377 resonance: Experiment and modeling. *J. Geophys. Res.*, 99, 17,547–17,558.


378 Welling, D. T., & Liemohn, M. W. (2016). The ionospheric source of magnetospheric plasma is
379 not a black box input for global models. *J. Geophys. Res. Space Physics*, 121, 5559–
380 5565. <https://doi.org/10.1002/2016JA022646>

381 Yizengaw, E., & Moldwin, M. B. (2005). The altitude extension of the mid-latitude trough and
382 its correlation with plasmapause position. *Geophys. Res. Lett.*, 32, L09105.
383 <https://doi.org/10.1029/2005GL022854>

384 Yizengaw, E., Wei, H., Moldwin, M. B., Galvan, D., Mandrake, L. L., Mannucci, A., & Pi, X.
385 (2005a). The correlation between mid-latitude trough and the plasmapause. *Geophys.*
386 *Res. Lett.*, 32, L10102. <https://doi.org/10.1029/2005GL022954>

387 Yizengaw, E., Moldwin, M. B., Dyson, P. L., & Immel, T. J. (2005b). Southern Hemisphere
388 ionosphere and plasmasphere response to the interplanetary shock event of 29–31
389 October 2003. *J. Geophys. Res.*, 110, A09S30, <https://doi.org/10.1029/2004JA010920>

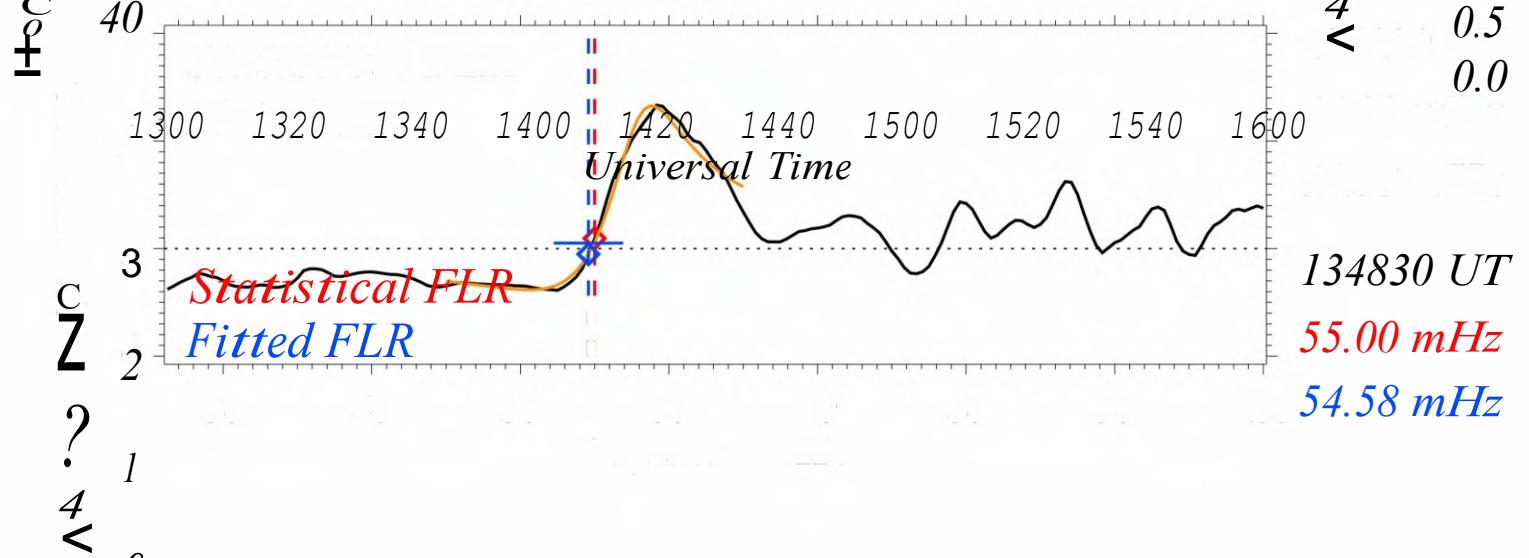
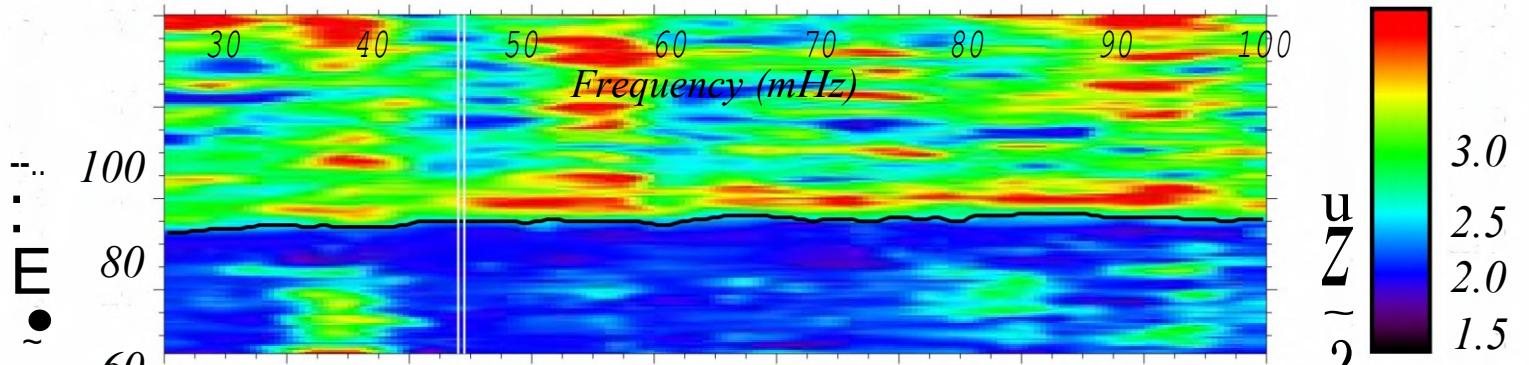
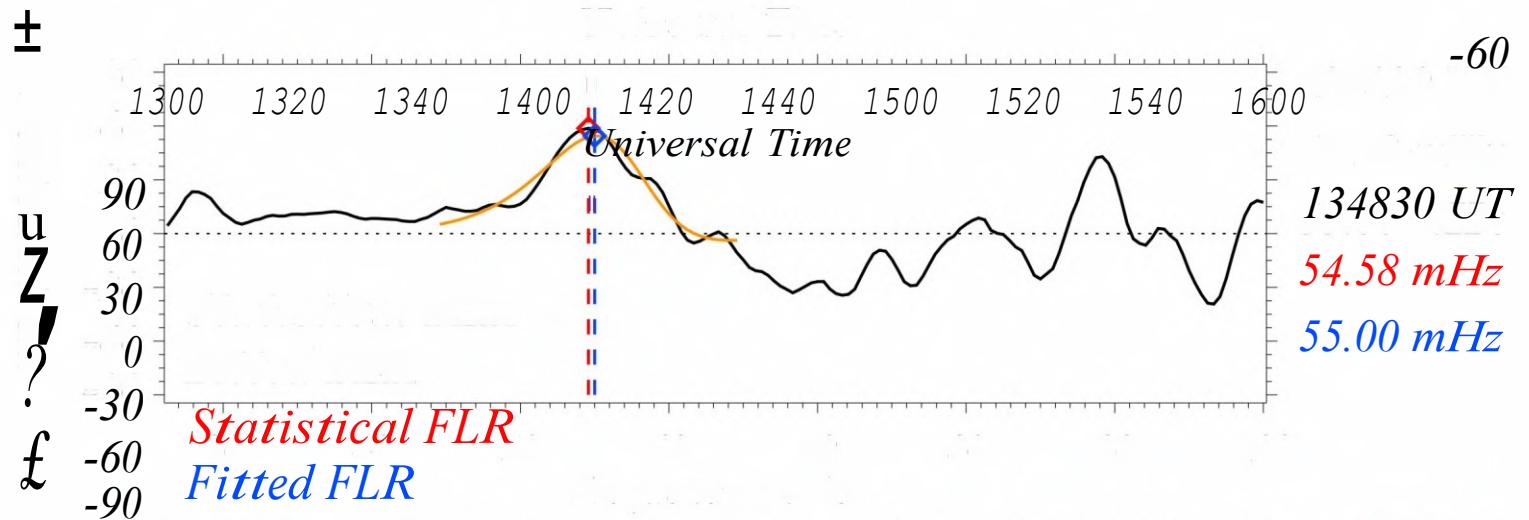
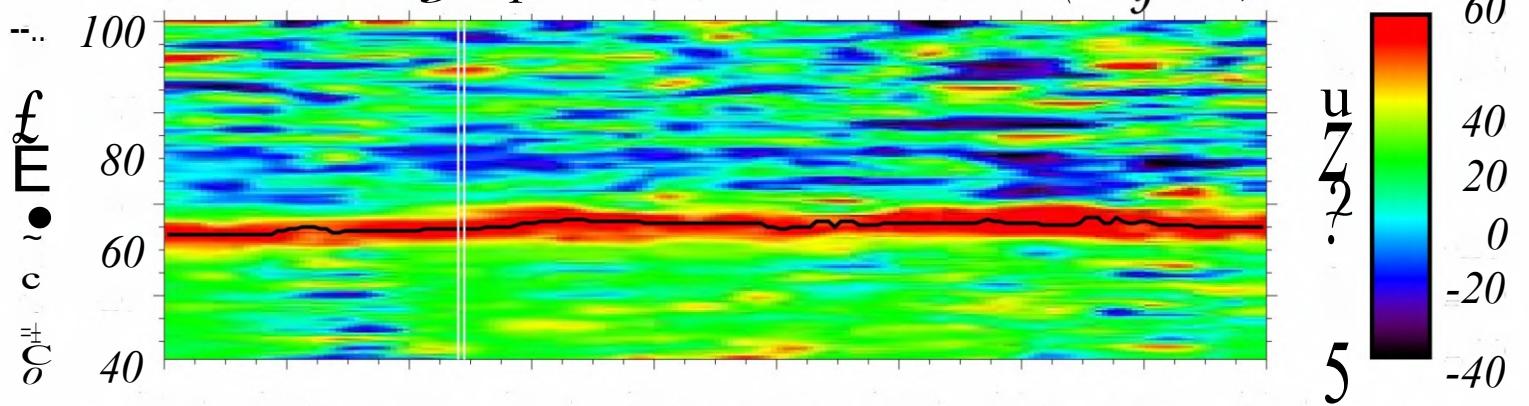
AR/PD Illustrative plot

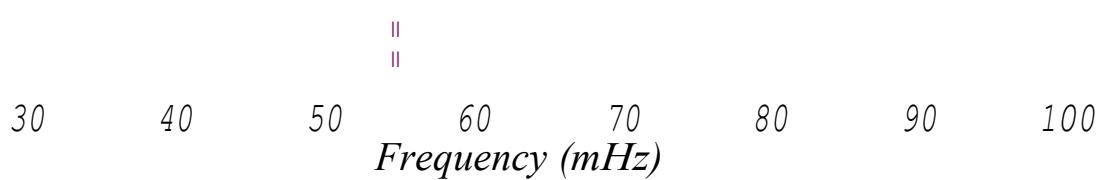
20

30

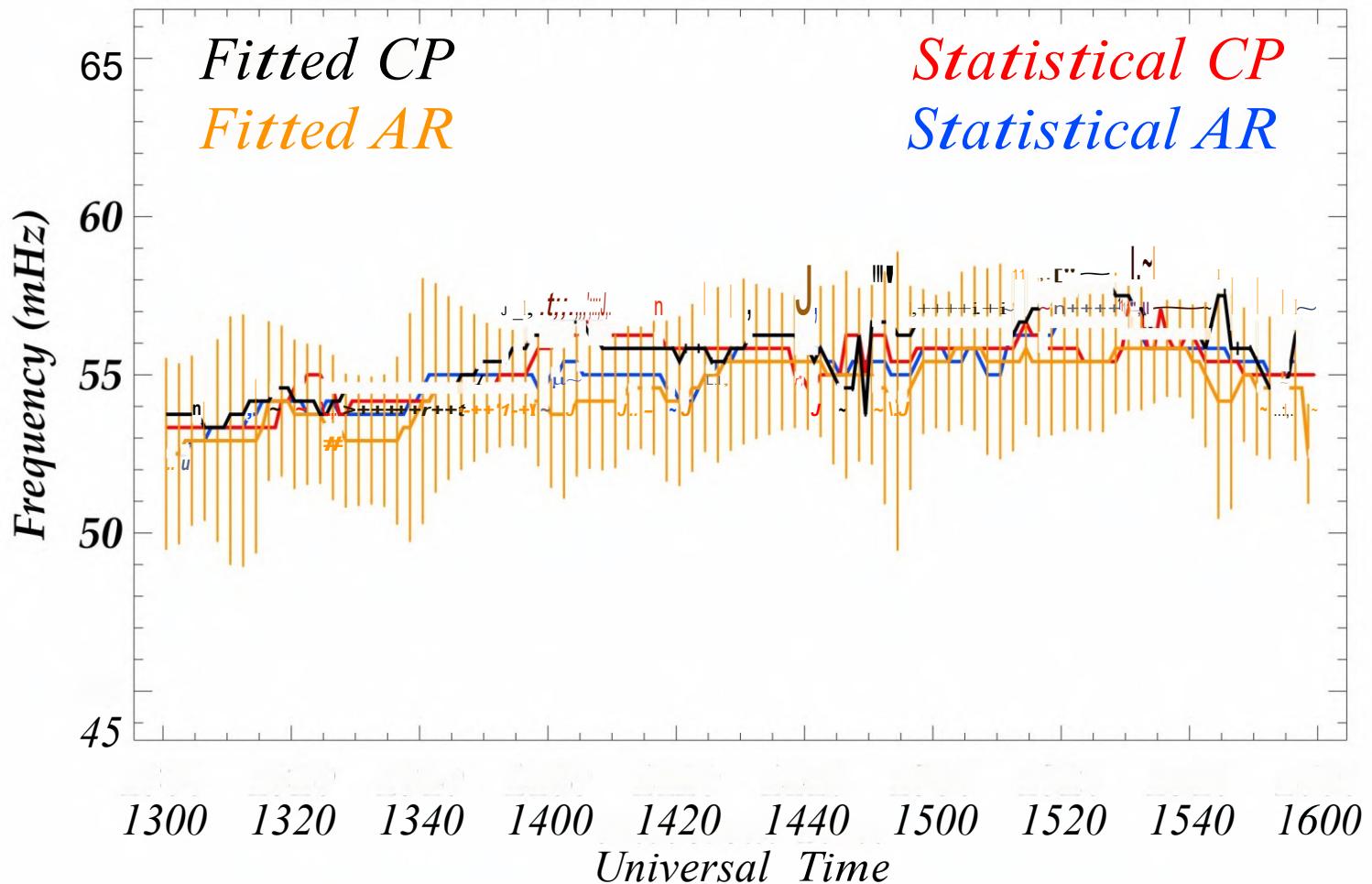
40

50

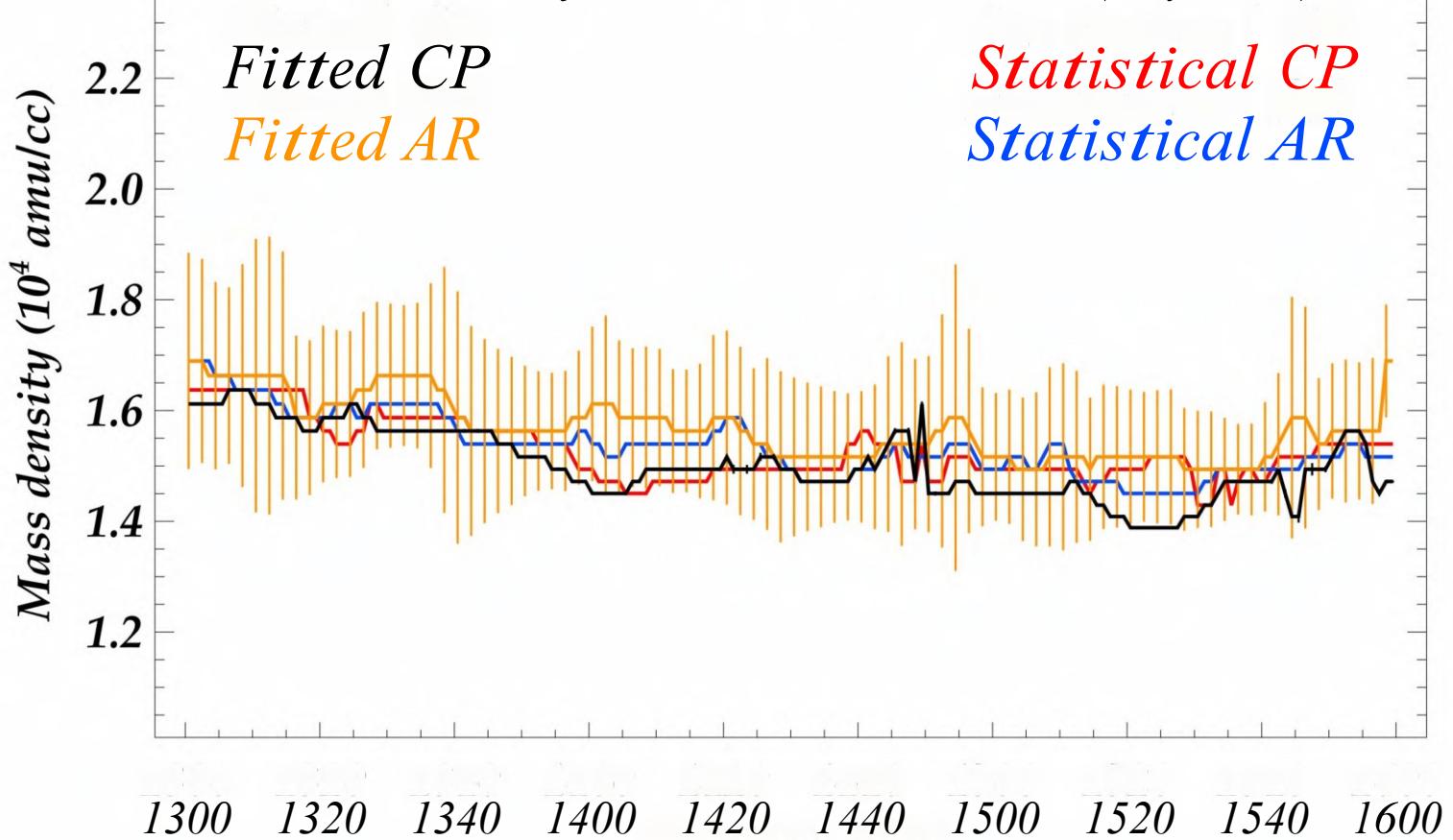




60


70

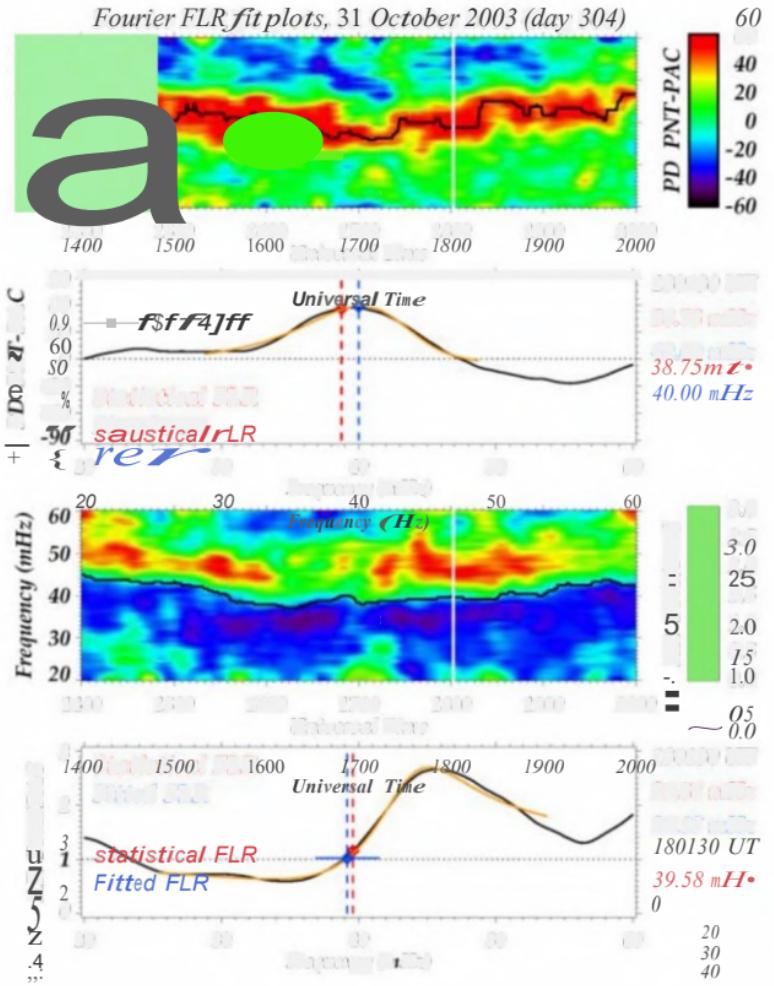
80


Frequency (mHz)

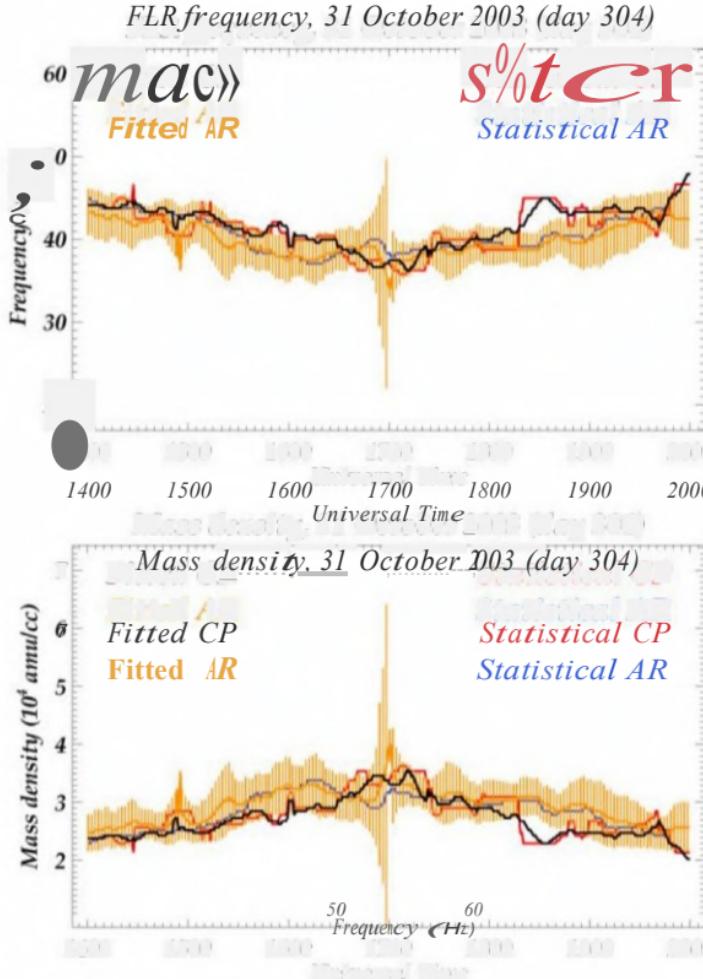
Fourier FLR fit plots, 21 December 2003 (day 355)



FLR frequency, 21 December 2003 (day 355)



Mass density, 21 December 2003 (day 355)



Universal Time

Fourier FLR fit plots, 31 October 2003 (day 304)

FLR frequency, 31 October 2003, (day 304)

39.17
mH:

1400 1500 1600 1700 1800 1900
2000
*Univers
al Time*