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Abstract. Recent research has examined algorithms to minimize robots’
resource footprints. The class of combinatorial filters (discrete variants
of widely-used probabilistic estimators) has been studied and methods
for reducing their space requirements introduced. This paper extends ex-
isting combinatorial filters by introducing a natural generalization: cover
combinatorial filters. In addressing the new —but still NP-complete—
problem of minimization of cover filters, we show that multiple concepts
previously believed about combinatorial filters (and actually conjectured,
claimed, or assumed to be) are in fact false. For instance, minimization
does not induce an equivalence relation. We give an exact algorithm for
the cover filter minimization problem. Unlike prior work (based on graph
coloring) we consider a type of clique-cover problem, involving a new
conditional constraint, from which we can find more general relations. In
addition to solving the more general problem, the algorithm also corrects
flaws present in all prior filter reduction methods. In employing SAT, the
algorithm provides a promising basis for future practical development.

1 Introduction

As part of the long history of research in robotic minimalism, a recent thread
has devised methods that aim to automatically reduce and reason about robots’
resource footprints. That work fits within the larger context of methodologies
and formalisms for tackling robot design problems, being useful for designing
robots subject to resource limits[1,2,3]. But, more fundamentally, the associ-
ated algorithms also help identify the information requirements of certain robot
tasks. The methods have the potential to provide insights about the interplay of
sensing, state, and actuation within the context of particular tasks. One class of
objects where the problem of resource minimization can be clearly posed is in
the case of combinatorial filters [4]. These are discrete variants of the probabilis-
tic estimators and recursive Bayesian filters widely adopted for practical use in
robots. Combinatorial filters process a stream of discrete sensor inputs and inte-
grate information via transitions between states. The natural question, studied
in [5], then is: How few states are needed to realize specified filter functionality?
In this paper, we define a more general class of filters and ask the same question.
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Fig. 1: A hybrid drone with a light sensor monitors a home. The robot is capa-
ble of driving or flying: the grass outdoors (F and v) and liquids (P) necessitate
that it be airborne; the noise requirement means it may only drive within the
bedroom (B). It has a light sensor that distinguishes three levels of ambient
brightness. Changes in brightness (increasing ‘+’, decreasing ‘—’, same ‘=") pro-
vide the robot cues about its location.

We start with a simple motivating scenario where the generalization we in-
troduce is exactly what is needed. Figure 1 shows a driving drone patrolling a
house.! The drone can either drive or fly, but its choice must satisfy navigabil-
ity constraints. Its wheels can’t drive on grass (F and v) nor in the pantry (p),
owing to spills. Spinning propellers, on the other hand, will disturb the tran-
quil bedroom (). Otherwise, either means may be chosen (see inset map pair
marking regions in brown/blue for driving/flying). The robot is equipped with
an ambient light sensor that is useful because the living room and kitchen are
lighter than the bedroom and pantry, while the outdoors is lightest of all.

(b) A minimal Afilter (¢) A minimal filter when

(a) A naive filter, with one when choosing to fly in opting to fly in the liv-
state per region, codifies the living room (L) and ing room (L) but not the
all valid choices. kitchen (k). kitchen (K).

Fig. 2: Combinatorial filters that tell the hybrid drone how to locomote. The
sequence of symbols {+,—,=} is traced on the graph, and the color of the resultant
state is the filter's output (blue for flight, brown for driving mode).

We wish to construct a filter for the drone to determine how to navigate,
with the inputs being brightness changes, and the filter's output providing some
valid mode of locomotion. It is easy to give a valid filter by using one state for
each location — this naive filter is depicted in Figure 2a. In the living room and
kitchen, the filter lists two outputs since both modes are applicable there (both

! Such bizarre chimera robots are not our invention, e.g., see the Syma X9 Flying Car.
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locations are covered by the brown and blue choices). Now consider the question
of the smallest filter. If we opt to fly in both the living room and kitchen, then
the smallest filter is shown in Figure 2b with 4 states. But when choosing to fly
in the living room but drive in the kitchen, the minimal filter requires only 3
states (in Figure 2c).

This last filter is also the globally minimal filter. The crux is that states with
multiple valid outputs introduce a new degree of freedom which influences the
size of the minimal filter. These arise, for instance, whenever there are ‘don’t-
care’ options. The flexibility of such states must be retained to truly minimize
the number of states.

2 Preliminary Definitions and Problem Description

To begin, we define the filter minimization problem in the most general form,
where the input is allowed to be non-deterministic and each state may have mul-
tiple outputs. This is captured by the procrustean filter (p-filter) formalism [6].

2.1 P-filters and their minimization

We firstly introduce the notion of p-filter:

Definition 1 (procrustean filter [6]). A procrustean filter, p-filter or filter for

short, is a tuple (V, V,, Y, 7, C, ¢) with:

1) a finite set of states V, a non-empty initial set of states Vo C V, and a set
of possible observations Y,

2) a transition function 7: V x V — 2Y,
3) a set C, which we call the output space, and
4) an output function c: V — 29\ {@}.

The states, initial states and observations for p-filter F' will be denoted V' (F),
Vo(F) and Y (F). Without loss of generality, we will also treat a p-filter as a graph
with states as its vertices and transitions as directed edges.

A sequence of observations can be traced on the p-filter:

Definition 2 (reached). Given any p-filter F = (V,V;,Y, 7, C, ¢), a sequence of
observations s = y; ...y, € Y, and states wg, w,, € V, we say that w,, is a state
reached by some sequence s from wy in F' (or s reaches w,, from wy), if there exists
a sequence of states w, ..., w, in F, such that Vi € {1,...,n},y; € 7(w;—1,w;).
We denote the set of all states reached by s from state wg in F' as V,,, (F, s). For
simplicity, we use V(F,s), without the subscript, to denote the set of all states
reached when starting from any state in Vg, i.e., V(F, s) = Uyevy Voo (F) s). Note
that V(F, s) = @ holds only when sequence s crashes in F starting from V.

For convenience, we will denote the set of sequences reaching state v € V
from some initial state by SE'.

Definition 3 (extensions, executions and interaction language). An extension
of a state v on a p-filter F' is a finite sequence of observations s that does not
crash when traced from v, i.e., V,(F,s) # @. An extension of any initial state
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v € Vo(F) is also called an ezecution or a string on F. The set of all extensions
of a state v on F' is called the extensions of v, written as L (v). The extensions
of all initial vertices on F' is also called the interaction language (or, briefly, just
language) of F, and is written L(F) = Uy, ev,(r)LF(v0).

Note in particular that the empty string € belongs to the extensions of any
state on the filter, and belongs to the language of the filter as well.

Definition 4 (filter output). Given any p-filter F' = (V,V;,Y,7,C,¢), a string
s and an output o € C, we say that o is a filter output with input string s, if o
is an output from the state reached by s, i.e., 0 € UUGV(RS)C(U). We denote the
set of all filter outputs for string s as C(F, s) = U,ey(p,s)c(v).

Specifically, for the empty string €, we have C(F,€) = Uy, v, (r)c(vo)-

Definition 5 (output simulating). Given any p-filter F', a p-filter F’ output
simulates F if Vs € L(F), C(F',s) # & and C(F’,s) C C(F,s).

Plainly in words: for one p-filter to output simulate another, it has to generate
some of the outputs of the other, for every string the other admits.
We are interested in practicable p-filters with deterministic behavior:

Definition 6 (deterministic). A p-filter F = (V, Vo, Y, 7,C,¢) is deterministic
or state-determined, if |Vo| = 1, and for every vi,ve,v3 € V with v # vs,
7(v1,v2) N T(v1,0v3) = @.

Any non-deterministic p-filter F' can be state-determinized, denoted SDE(F),
following Algorithm 2 in [7].
Then the p-filter minimization problem can be formalized as follows:

Problem: P-filter Minimization (PFM)

Input: A deterministic p-filter F'.
Output: A deterministic p-filter F't with fewest states, such that F' output
simulates F'.

‘PF’ denotes that the input is a p-filter, and ‘M’ denotes that we are interested
in finding a deterministic minimal filter as a solution.

2.2 Complexity of p-filter minimization problems

Definition 7 (state single-outputting and multi-outputting). A p-filter F' =
(V,Vo,Y,1,C,¢) is state single-outputting or single-outputting for short, if ¢ only
maps to singletons, i.e., |c(v)] = 1,Vv € V(F). Otherwise, we say that F is
multi-outputting.

Depending on whether the state in the input p-filter (PF) is single-outputting
(so) or multi-outputting (MO), we further categorize the problem PFM into the
following problems: SO-FM and MO-FM.

Lemma 8. The filter minimization problem FM of [5] is SO-FM, and SO-FM is
NP-Complete (Theorem 2 in [5]).
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Theorem 9. MO-FM is NP-Complete.

Proof. Firstly, SO-FM is a special case of MO-FM problems. These MO-FM prob-
lems are at least as hard as SO-FM. Hence, MO-FM are in NP-hard. On the other
hand, a solution for MO-FM can be verified in polynomial time. (Change the
equality check on line 7 of Algorithm 1 in [5] to a subset check.) Therefore,
MO-FM is NP-Complete. O

Next, we examine related prior work on SO-FM closely as a means to develop
new insights for our algorithms, first for so-FM (Section 4), and then MO-FM
(Section 5).

3 Related work: Prior filter minimization ideas (SO-FM)

Several elements come together in this section and Figure 3 attempts to show
the inter-relationships graphically. The original question of minimizing state in
filtering is first alluded to by LaValle [4] as an open problem, who suggested that
it is ‘similar to Nerode equivalence classes’. The problem of filter reduction, i.e.,
SO-FM in our terms, was formalized and shown to differ in complexity class from
the automata problem in [5]. That paper also proposed a heuristic algorithm,
which served as a starting point for subsequent work. The heuristic algorithm
uses conflict graphs to designate which vertices cannot be merged (are conflict-
ing). It starts with a conflict relation where two vertices are in conflict when they
have different outputs, then iteratively refines the conflict relation. Refinement
has two steps: () introducing edges: two vertices are determined to be conflicting
or not via a graph coloring subroutine, and edges are added between conflicting
vertices; (ii) propagating conflicts upstream: filter states are marked as conflicted
when they transition to conflicted states under the same observation. An exam-
ple input filter, shown in Figure 4a, is reduced by following this procedure, which
is depicted step-by-step in Figures 4b—4e.

A conjecture in [5] was that this algorithm is guaranteed to find a minimal
filter if the graph coloring subroutine gives a minimal coloring. (Put another
way: the inexactness in arriving at a minimal filter can be traced to the graph
coloring giving a suboptimal result.) But this conjecture was later proved to be
false by Saberifar et al. [8]. They show an instance where there exist multiple
distinct optimal solutions to the graph coloring subproblem, only a strict subset
of which lead to the minimal filter. One might naturally ask, and indeed they do
ask, the question of whether some optimal coloring is sufficient to arrive at the
optimal filter. Following along these lines (see §7.3 in [8]), one might sharpen
the original conjecture of [5] to give the following statement:

Idea 1. In the step-wise conflict refinement procedure of O’Kane and Shell’s
heuristic algorithm [5], some optimal coloring is sufficient to guarantee a minimal
filter for SO-FM.

Lemma 10. Idea 1 is false.

Proof. This is simply shown with a counterexample. Consider the problem of
minimizing the input filter shown in Figure 4a, the heuristic algorithm will first
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. O’Kane and Shell’s ‘minimal deterministic’
deterministic p-filter - heuristic algorithm — pefilter
idV lidea 2 idea 3
Step-wise conflict refinement Merging compatible states Some equivalence relation
produces a minimal p-filter. induces a deterministic p-filter. induces a minimal p-filter.
(Some optimal coloring is sufficient, (8, §7.3]) (Implicitly in [5, 8, 9]) (Lemma 5 in [8, 9])
This is shown to be false. This is shown to be false. This is shown to be false.
(Lemma 10) (Lemma 13) (Lemma 16)
linspircs inspires inspires
Single-step compatibility relation Zipper constra{llF to sonle mmunal‘ cl}que cover
i L. ’ enforce determinism in the compatiblity graph
(Definition 11) (Definition 14) induces a deterministic p-filter.

(Section 4)

T l —

Minimum clique cover minimal deterministic
with zipper constraints p-filter

deterministic p-filter m———p

Fig.3: Three distinct insights led to the development of a new algorithm (de-
scribed in Section 4) for sO-FM. This roadmap shows the provenance of those
insights in terms of previous ideas in SO-FM, which we examine carefully.

initialize the colors of the vertices with their output. Next, it identifies the ver-
tices that disagree on the outputs of extensions with length 1 as shown in Fig-
ure 4b, and then refines the colors of the vertices as shown in Figure 4c following
a minimal graph coloring solution on the conflict graph. Then it further iden-
tifies the conflicts on extensions with length 2, via the conflict graph shown in
Figure 4d, and the vertex colors are further refined as shown in Figure 4e. Now,
no further conflicts can be found. A filter, with 6 states, is then obtained by
merging the states with the same color. However, there exists a minimal filter,
with 5 states, shown in Figure 4f, that can be found by choosing coloring solution
for the conflict graph shown in Figure 4b. That coloring is suboptimal. O

This appears to indicate a sort of local optimum arising via sub-problems
associated with incremental (or stepwise) reduction. Since optimal colorings for
individual steps are seen to be insufficient to guarantee a minimal filter, to
find a minimal filter, we would have to enumerate all colorings (suboptimal or
otherwise) at each iteration. That is, however, essentially a brute force algorithm.
A more informed approach is to compute implications of conflicts more globally,
in a way that doesn’t depend on earlier merger decisions. In our algorithm,
rather than tracking vertices which are in conflict, we introduce a new notion of
compatibility between vertices that may be merged. This notion differs from the
one recursively defined in [9], as our compatibility relation is computed in one
fell swoop, before making any decisions to reduce the filter:

Definition 11 (compatibility). Let F be a deterministic p-filter. We say a pair
of vertices v,w € V(F) are compatible, denoted v ~. w, if they agree on the
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outputs of all their extensions, i.e., Vs € Lp(v) N Lp(w),Yv' € V,(F,s),Vw' €
Vi (F, 8),c(v") = e(w'). A mutually compatible set consists of vertices where all
pairs are compatible.

Via this notion of compatibility, we get an undirected compatibility graph:

Definition 12 (compatibility graph). Given a deterministic filter F, its com-
patibility graph KC(F') is an unlabeled undirected graph constructed by creating
a vertex associated with each state in F', and building an edge between the pair
of vertices associated with two compatible states.

This compatibility graph can be constructed in polynomial time. As every
filter state and associated compatibility graph state are one-to-one, to simplify
notation we’ll use the same symbol for both and context to resolve any ambiguity.

@7@?.

@

(b) Graphs of initial conflicts for
(a) Example input p-filter. all vertices with the same output.

@—o —6@ e

@»w @@ ® e @

(c) The first refinement of the filter following an (d) Reduced conflict graphs.
optimal coloring of the conflict graphs.

(e) Second refinement of filter following an ~ (f) The coloring that gives the minimal
optimal coloring of the conflict graphs. filter.

Fig.4: An example run of the heuristic minimization algorithm in [5] (a)—(e).
This particular input also shows that optimal step-wise conflict refinement may
fail to yield a minimal filter (Lemma 10).
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The second idea relates to the type of the output one obtains after merging
states that are compatible or not in conflict. Importantly, the filter minimization
problem SO-FM requires one to give a minimal filter which is deterministic.

Idea 2. By merging the states that are compatible, the heuristic algorithm
always produces a deterministic p-filter.

The definition of the reduction problems within [5,8,9] are specified so as
to require that the output obtained be deterministic. But this postcondition is
never shown or formally established. In fact, it does not always hold.

Lemma 13. Idea 2 is false.

Proof. We show that the existing algorithm may produce a non-deterministic
filter, which does not output simulate the input filter, and is thus not a valid
solution. Consider the filter shown in Figure 5a as an input. The vertices with the
same color are compatible with each other, with the following exception for ws,
wg and wr. Vertex ws is compatible with wg, vertex wg is compatible with wr, but
ws is not compatible with w7. The minimal filter found by the existing algorithm
is shown in Figure 5b. The string aac suffices to shows the non-determinism,
reaching both orange and cyan vertices. It fails to output simulate the input
because cyan should never be produced. O

If determinism can’t be taken for granted, we might constrain the output to
ensure the result will be a deterministic filter. To do this, we introduce a zipper
constraint when merging compatible states:

Definition 14 (zipper constraint). In the compatibility graph G = K(F') of filter
F, if there exists a set of mutually compatible states U = {uy,ua, ..., un}, then
they can only be selected to be merged if they always transition to a set of states
that are also selected to be merged. For any sets of mutually compatible states
U, W C V(@) and some observation y, we create a zipper constraint expressed
as a pair (U, W), if W = {w € V(G) | y € 7(u,w) for some u € U}. We denote
the set of all zipper constraints on compatibility graph G = K(F) by Z(F).

The zipper constraints for the input filter shown in Figure 5a consist of
({w1, w2}, {ws, we})s and ({ws, wa}, {wes, w7 })s. Constraint ({wy, w2}, {ws, we})q
is interpreted as: if w; and wo are selected for merger, then ws and wg (reached
under a) should also be merged. We call it a zipper constraint owing to the
resemblance to a zipper fastener: merger of two earlier states, merges (i.e., pulls
together) later states. In the worst case, the number of zipper constraints can
be exponential in the size of the input filter.

A third idea is used by O’Kane and Shell’s heuristic algorithm and is also
stated, rather more explicitly, by Saberifar et al. (see Lemma 5 in [8] and
Lemma 5 in [9]). It indicates that we can obtain a minimal filter via merg-
ing operations on the compatible states, which yields a special class of filter
minimization problems. For this class, recent work has expoited integer linear
programming techniques to compute exact and feasible solutions efficiently [10].
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{a} . jck. .

(b) The non-deterministic minimal fil-
(a) An input filter. ter found by the existing algorithm.

Fig.5: A counterexample showing how compatible merges may introduce non-
determinism (Lemma 13). The input filter also illustrates a violation of the
presumption that an equivalence relation can yield a minimum filter (Lemma 16).

Idea 3. Some equivalence relation induces a minimal filter in SO-FM.

Before examining this, we rigorously define the notion of an induced relation:

Definition 15 (induced relation). Given a filter F' and another filter F’, if
F’ output simulates F', then F’ induces a relation R C V(F) x V(F), where
(v,w) € R if and only if there exists a vertex v’ € V(F’) such that SF NSE # &
and SE' N 85/ # &. We also say that v and w corresponds to state v'.

Lemma 16. Idea 3 is false.

Proof. It is enough to scrutinize the previous counterexample closely. The min-
imization problem SO-FM for the input filter shown in Figure 5a, is shown in
Figure 6a. It is obtained by (i) splitting vertex wg into an upper part reached by
a and a lower part reached by b, (i4) merging the upper part of wg with ws, the
lower part of wg with w7, and other vertices with those of the same color. This
does not induce an equivalence relation, since wg corresponds to two different
vertices in the minimal filter. O

v®' >

& >

(a) A minimal filter for Figure 5a. (b) Cliques from the minimal filter.

Fig.6: A minimal filter for Figure 5a and its induced cliques.

In light of this, for some filter minimization problems, there may be no quo-
tient operation that produces a minimal filter and an exact algorithm for mini-
mizing filters requires that we look beyond equivalence relations.

Some strings that reach a single state in an input filter may reach multi-
ple states in a minimal p-filter (e.g., ba and ¢b on Figure 5a and 6a). On the
other hand, strings that reach different states in the input p-filter may reach
the same state in the minimal filter (e.g., @ and b on those same filters). We say
that a state from the input filter corresponds to a state in the minimal filter if
there exists some string reaching both of them and, hence, this correspondence is
many-to-many. An important observation is this: for each state s in some hypo-
thetical minimal filter, suppose we collect all those states in the input filter that
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correspond with s. When we examine the associated states in the compatibility
graph for that collection, they must all form a clique. Were it not so, the mini-
mal filter could have more than one output associated for some strings owing to
non-determinism. But this causes it to fail to output simulate the input p-filter.

After firming up and developing these intuitions, the next section introduces
the concept of a clique cover which enables representation of a search space that
includes relations more general than equivalence relations. Based on this new
representation, we propose a graph problem use of zipper constraints, and prove
it to be equivalent to filter minimization.

4 A new graph problem that is equivalent to SO-FM

By building the correspondence between the input p-filter in Figure 5a and the
minimal result in Figure 6a, one obtains the set of cliques in the compatibility
graph shown visually in Figure 6b. Like previous approaches that make state
merges by analyzing the compatibility graph, we interpret each clique as a set
of states to be merged into one state in the minimal filter. The clique containing
ws and wy in Figure 6b gives rise to mg4 in the minimal filter in Figure 6a (and
wy and wo yields myo, and so on). However, states may further be shared across
multiple cliques. We observe that wg was merged with ws in the minimal filter to
give msg, and wg also merged with w; to give mgrz. The former has an incoming
edge labeled with an a, while the latter has an incoming edge labeled b. The
vertex wg, being shared by multiple cliques, is split into different copies and
each copy merged separately.

Generalizing this observation, we turn to searching for the smallest set of
cliques that cover all vertices in the compatibility graph. Further, to guarantee
that the set of cliques induces a deterministic filter, we must ensure they respect
the zipper constraints. It will turn out that a solution of this new constrained
minimum clique cover problem always induces a minimal filter for SO-FM, and
a minimal filter for SO-FM always induces a solution for this new problem. The
final step is to reduce any MCCZC problem to a SAT instance, and leverage SAT
solvers to find a minimal filter for SO-FM.

4.1 A new minimum clique cover problem

To begin, we extend the preceding argument from the compatibility clique asso-
ciated to single state s, over to all the states in the minimal filter. This leads one
to observe that the collection of all cliques for each state in the minimal p-filter
forms a clique cover:

Definition 17 (induced clique cover). Given a p-filter F' and another p-filter
F', we say that a vertex v in F' corresponds to a vertex v} in F’ if SF' N 85_, # .
Then, denoting the subset of vertices of F corresponding to v} in F' with
K,, = {v € V(F)|v corresponds to v;}, we form the collection of all such
sets, Q(F, F') = {Ky,Ky,..., Ky }, for i € {1,...,n} where n = |[V(F")].
When F’ output simulates F, then the Ky, form cliques in the compatibility
graph K(F). Further, when this collection of sets Q(F, F”) covers all vertices in
F,ie., Ug,equrr) = V(F), we say that Q(F, ') is an induced clique cover.
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It is worth repeating: the size of filter F’ (in terms of number of vertices)
and the size of the induced clique cover (number of sets) are equal.

Without loss of generality, here and henceforth we only consider the p-filter
with all vertices reachable from the initial state, since the ones that can never
be reached will be deleted during filter minimization anyway.

Each clique of the clique cover represents the states that can be potentially
merged. But the zipper constraint, to enforce determinism, requires that the set
of vertices to be merged should always transition under the same observation to
the ones that can also be merged. Hence, the zipper constraints (of Definition 14)
can be evaluated across whole covers:

Definition 18. A clique cover K = {Ky, K3, ..., K, } satisfies the set of zipper
constraints Z1p = {(Uy, Wh)y,, (U2, Wa)y,, . .. }, when for every zipper constraint
(Ui, W)y, if there exist a clique K, € K, such that U; C K, then there exists
another clique K; € K such that W; C K.

Now, we have our new graph problem, McczcC.

Problem: Minimum clique cover with zipper constraints (MCCzC)

Input: A compatibility graph G, a set of zipper constraints Zip.
Output: A minimal cardinality clique cover of G satisfying Zip.

4.2 From minimal clique covers to filters

Given a minimal cover that solves MCCZC, we construct a filter by merging the
states in the same clique and choosing edges between these cliques appropriately:

Definition 19 (induced filter). Given a clique cover K on the compatibility
graph of deterministic p-filter F, if K satisfies all the zipper constraints in 2°(F),
then it induces a filter F' = M(F,K) by treating cliques as vertices:

1. Create a new filter F/ = (V',Vy,Y,7',C,¢') with |K| vertices, where each
vertex v’ is associated with a clique K, in K;

2. Add each vertex v' in F’ to Vj iff the associated clique contains an initial
state in F;

3. The output of every v’ in F’, with associated clique K, is the set of common
outputs for all states in K, i.e., ¢/(v') = Nyex,, c(v).

4. For any pair of v/ and w’ in F”, inherit all transitions between states in the
cliques of v" and w', i.e., 7(v',w’) = Upek,, wek,, 7(v, w).

5. For each vertex v’ in F’ with multiple outgoing edges labeled y, keep only
the single edge to the vertex w’, such that all vertices K,/ transition to under
y are included in K,,. This edge must exist since K satisfies all Z(F).

The size of the cover (in terms of number of sets) and size of the induced
filter (number of vertices) are equal.

Notice that the earlier intuition is mirrored by this formal construction: states
belonging to the same clique are merged when constructing the induced filter;
states in multiple cliques are split when we make the edge choice in step 5. Next,
we establish that the induced filter indeed supplies the goods:
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Lemma 20. Given any clique cover K on the compatibility graph IC(F) of a
deterministic p-filter F', if K satisfies the zipper constraints Z'(F') and covers
all vertices of IC(F'), then the induced filter F/ = M (F,K) is deterministic and
output simulates F'.

The proof can be found in the extended version [11].

A surprising aspect of the preceding is how the zipper constraints —which
are imposed to ensure that a deterministic filter is produced— enforce output-
simulating behavior, albeit indirectly, too. One might have expected that this
separate property would demand a second type of constraint, but this is not so.

On the other hand, needing to satisfy the zipper constraints of the input
filter does not entail the imposition of any gratuitous requirements:

Lemma 21. Given any deterministic p-fillers F and F’, if F’ output simu-
lates F', then the induced clique cover Q(F, F’) on the compatibility graph of F'
satisfies all zipper constraints in 2°(F').

The proof can be found in the extended version [11].

4.3 Correspondence of MCCzC and SO-FM solutions

To establish the equivalence between MCCZC and SO-FM, we will show that the
induced filter from the solution of MCCZzC is a minimal filter for SO-FM, and the
induced clique cover from a minimal filter is a solution for MCcCzcC.

Lemma 22. Minimal clique covers for MCCZC induce minimal filters for SO-FM.

The proof can be found in the extended version [11].

Lemma 23. A minimal filter for so-FM with input F' induces a clique cover
that solves MCcCzC with compatibility graph and zipper constraints of F'.
The proof can be found in the extended version [11].

Together, they establish the theorem.

Theorem 24. The solution for McczC with compatibility graph and zipper
constraints of a filter F' induces a solution for SO-FM with input filter F', and
vice versa.

Proof. Lemma 22 and Lemma 23 comprise the complete result. O

Having established this correspondence, any SO-FM can be solved by tackling
its associated MCCZC problem, the latter problem being cast as a SAT instance
and solved via a solver (see Section 6 for further details).

5 Generalizing to MO-FM

Finally, we generalize the previous algorithm to multi-outputting filters. In MO-
FM problems, the input p-filter is deterministic but states in the p-filter may
have multiple outputs. One straightforward if unsophisticated approach is to
enumerate all filters under different output choices for the states with multiple
outputs, and then solve every one the resulting deterministic single-outputting
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Fig. 7: A multi-outputting filter minimization problem.

filters as instances of sO-FM. The filter with the fewest states among all the
minimizers could then be treated as a minimal one for the MO-FM problem.

Unfortunately, this is too simplistic. Prematurely committing to an output
choice is detrimental. Consider the input filter shown in Figure 7a, it has two
multi-outputting states (w4 and ws). If we choose to have both wy and ws give
the same output, the SO-FM minimal filter, shown in Figure 7b, has 4 states. If
we choose distinct outputs for wy and ws, the SO-FM minimal filter, shown in
Figure 7c, now has 7 states. But neither is the minimal MO-FM filter. The true
minimizer appears in Figure 7d, with only 3 states. It is obtained by splitting
both w4 and ws into two copies, each copy giving a different output.

The idea underlying a correct approach is that output choices should be made
together with the splitting and merging operations during filter minimization.
Multi-outputting vertices may introduce additional split operations, but these
split operations can still be treated via clique covers on the compatibility graph.
This requires that we define a new compatibility relationship—it is only slightly
more general than Definition 11:

Definition 25 (group compatibility). Let F' be a deterministic p-filter. We say
that the set of states U = {uj,ua,...,u,} are group compatible, if there is a
common output on all their extensions, i.e.,

Vs € U Lrp(u), ﬂ c(w') # @, where W' =V, (F, $)UVy, (F, s)U- -V, (F,s).

uelU w' eW’

With this definition, the minimization of a deterministic multi-outputting
filter can also be written and solved as a slightly generalized MCCZzC problem,
where (¢) the compatibility graph is generalized toward a compatibility simpli-
cial complex; (i) to capture the set of vertices that can be merged, the clique in
the McCzcC problem is generalized to be a simplex in the compatibility simplicial
complex; (ii1) the zipper constraints are redefined by replacing “mutually com-
patible” with the “group compatible” states; (iv) the objective is to find the set
of simplices that covers all vertices in the compatibility simplicial complex. This
generalized MCCZC problem, termed GMCzC, will be solved in the next section.
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6 Reduction from Mcczc and GMCzZC to SAT

Prior algorithms for filter minimization used multiple stages to find a set of ver-
tices to merge, solving a graph coloring problem repeatedly as more constraints
are identified. In contrast, an interesting aspect of MCCZC and its generalized ver-
sion is that it tackles filter minimization as a constrained optimization problem
with all constraints established upfront. Thus the clique (simplex) perspective
gives an optimization problem which is tangible and easy to visualize. Still, being
a new invention, there are no solvers readily available for direct use. But reducing
MCCOZC (GMCZC) to Boolean satisfaction (SAT) enables the use of state-of-the-art
solvers to find minimum cliques (simplices).

We follow the standard practice for treating optimization problems via a
decision problem oracle, viz. define a k-McczC (k-GMCzC) problem, asking for
the existence of a cover with size k satisfying the zipper constraints; one then
decreases k to find the minimum cover. Each k-mcczc (k-GMCZC) problem can
be written as a logic formula in conjunctive normal form (CNF), polynomial in
the size of the k-Mcczc (k-GMczC) instance, and solved. Detailed explanation
of the CNF generation from the k-mcczc (k-GMCZcC) problem must be deferred
to the extended version [11].

7 Experimental results

The method described was implemented by leveraging a Python implementation
of 2018 SAT Competition winner, MapleLCMDistChronoBT [12,13]. Their solver
will return a solution if it solves the k-MCCZC problem before timing out. If it
finds a satisfying assignment, we decrease k, and try again. Once no satisfying
assignment can be found, we construct a minimal filter from the solution with
minimum k.

First, as a sanity check, we examined the minimization problems for the
inputs shown in Figure 2a, Figure 5a and Figure 7a. Our implementation takes
0.05s, 0.06 s and 0.26 s, respectively, to reduce those filters. All filters found have
exactly the minimum number of states, as reported above.

Next, designed a test where we could examine scalability aspects of the
method. We generalized the input filter shown in Figure 7a to produce a family
of instances, each described by two parameters: the n X m-input filter has n rows
and m states at each row. (Figure 7a is the 2 x 3 version.) Just like the original
filter, the states in the same row share the same color, but the states in different
rows have different colors. The initial state wg outputs a single unique color; the
last two states, w4 and ws, output any of the n colors. In this example, the states
in the same row, together with w4 and ws, are compatible with each other.

The time to construct the zipper constraints, prepare the formulas and the
time used by the SAT solver were recorded. We also measured the number of
zipper constraints found by our algorithm. Figure 8 summarizes the data for
(n,m) € {4,5,6} x {4,5,6}. The result shows that about 70% of the time is
used in preparing the logical formula, with the SAT solver and construction of
the zipper constraints accounting for only a very small fraction of time.
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In light of this, to further dissect the computational costs of different phases,
we tested a robot in the square grid environment shown in Figure 9a. The robot
starts from the bottom left cell, and moves to some adjacent cell at each time
step. The robot only receives observations indicating its row number at each step.
We are interested in small filter allowing the robot to recognize whether it has
reached a cell with an exit (at the inner side or outer side). States with both inner
and outer exits have multiple outputs. To search for a minimal filter, we firstly
start with deterministic input filters for a grid world with size 6 x 6, 8 x8, 10 x 10,
12 x 12, 14 x 14, 16 x 16, and then minimize these filters. We collected the total
time spent in different stages of filter minimization, including the construction
of zipper constraints, SAT formula generation and resolution of SAT formula by
the SAT solver. The results are summarized visually in Figure 9b.

In this problem, the number of states in the input filter scales linearly with
the size of the square. So does the minimal filter. But the particular problem
has an important additional property: it represents a worst-case in a certain
sense because there are no zipper constraints. We do not indicate this fact to
the algorithm, so the construction of zipper constraints examines many cliques,
determining that none apply. The results highlight that the construction of the
zipper constraints quickly grows to overtake the time to generate the logical
formula— even though, in this case, the zipper constraint set is empty.

The preceding hints toward our direction of current research: the construc-
tion of Z(F) by naively following Definition 14 is costly. And, though the SAT
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formula is polynomial in the size of the MCCZC instance, that instance can be
very large. On the other hand, the need for a zipper constraint can be detected
when the output produced fails to be deterministic. Hence, our future work will
look at how to generate these constraints lazily.

8 Conclusion

With an eye toward generalizing combinatorial filters, we introduced a new class
of filter, the cover filters. Then, in order to reduce the state complexity of such
filters, we re-examined earlier treatments of traditional filter minimization; this
paper has shown some prior ideas to be mistaken. Building on these insights, we
formulate the minimization problem via compatibility graphs, examining covers
comprised of cliques formed thereon. We present an exact algorithm that gener-
alizes from the traditional filter minimization problem to cover filters elegantly.
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