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Abstract

Sparse superposition codes, also referred to as sparse regression codes (SPARCs), are a class
of codes for efficient communication over the AWGN channel at rates approaching the channel
capacity. In a standard SPARC, codewords are sparse linear combinations of columns of an
i.i.d. Gaussian design matrix, while in a spatially coupled SPARC the design matrix has a
block-wise structure, where the variance of the Gaussian entries can be varied across blocks.
A well-designed spatial coupling structure can significantly enhance the error performance of
iterative decoding algorithms such as Approximate Message Passing (AMP).

In this paper, we obtain a non-asymptotic bound on the probability of error of spatially
coupled SPARCs with AMP decoding. Applying this bound to a simple band-diagonal design
matrix, we prove that spatially coupled SPARCs with AMP decoding achieve the capacity of
the AWGN channel. The bound also highlights how the decay of error probability depends on
each design parameter of the spatially coupled SPARC.

An attractive feature of AMP decoding is that its asymptotic mean squared error (MSE) can
be predicted via a deterministic recursion called state evolution. Our result provides the first
proof that the MSE concentrates on the state evolution prediction for spatially coupled designs.
Combined with the state evolution prediction, this result implies that spatially coupled SPARCs
with the proposed band-diagonal design are capacity-achieving. Using the proof technique
used to establish the main result, we also obtain a concentration inequality for the MSE of
AMP applied to compressed sensing with spatially coupled design matrices. Finally, we provide
numerical simulation results that demonstrate the finite length error performance of spatially
coupled SPARCs. The performance is compared with coded modulation schemes that use LDPC
codes from the DVB-S2 standard.
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1 Introduction

We consider communication over the memoryless additive white Gaussian noise (AWGN) channel,
where the output symbol y is generated from input symbol v as y = u+w. The noise w is Gaussian

with zero mean and variance o2. The input has an average power constraint P: for a codeword
T = x1,T9,...,T, transmitted over n uses of the channel,
1 n
— E z? < P. (1)
n-
=1

The Shannon capacity of the channel is C = %ln (1 + U—Pg) nats/transmission.

Sparse superposition codes, or sparse regression codes (SPARCs), were introduced by Joseph
and Barron [1,2] for efficient communication over the AWGN channel. These codes have been
proven to be reliable at rates approaching C with various low complexity iterative decoders [2-4].
As shown in Fig. I a SPARC is defined by a design matrix A of dimension n x M L, where n is the
code length and M, L are integers such that A has L sections with M columns each. Codewords
are generated as linear combinations of L columns of A, with one column from each section. Thus
a codeword can be represented as = A3, with 3 being an ML x 1 message vector with exactly
one non-zero entry in each of its L sections. The message is indexed by the locations of the non-zero
entries in 3. The values of the non-zero entries are fixed a priori.

Since there are M choices for the location of the non-zero entry in each of the L sections, there
are M* codewords. To achieve a communication rate of R nats /transmission, we therefore require

ME=e" or nR=LlnM. (2)
The decoding task is to recover the message vector 8 from the received sequence y € R” given by
y=AB+w. (3)

In the standard SPARC construction introduced in [1,2], the design matrix A is constructed
with i.i.d. standard Gaussian entries. The values of the non-zero coefficients in the message vector
B then define a power allocation across sections. With an appropriately chosen power allocation
(e.g., one that is exponentially decaying across sections), the feasible decoders proposed in [2-4]
have been shown to be asymptotically capacity-achieving. The choice of power allocation has also
been shown to be crucial for obtaining good finite length performance with the standard SPARC
construction [5]. A detailed discussion of the error rates of optimal versus feasible decoders for
standard SPARCs can be found in [6].

In a spatially coupled SPARC, the design matrix A is composed of blocks with different vari-
ances, i.e., the entries of A are still independent and Gaussian but not identically distributed.
Spatially coupled SPARCs were introduced by Barbier and co-authors in [7-10]. In these works, an
approximate message passing (AMP) algorithm was used for decoding, whose performance can be
predicted via a deterministic recursion called state evolution. Empirical results indicate that spa-
tially coupled SPARCs can have better error performance than power allocated SPARCs at finite
code lengths (see, e.g., [9,11]). Moreover, both standard SPARCs and power allocated SPARCs can
be viewed as special cases of spatially coupled SPARCs (see Section . It is therefore of interest to
rigorously characterize the achievable rates and the decay of error probability for spatially coupled
SPARCs.
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Figure 1: A is an n x ML design matrix and 3 is an ML x 1 message vector with one non-zero entry in
each of its L sections. Codewords are of the form AB. The non-zero values a1, ...,ar are fixed a priori.

Two key steps are required to prove that spatially coupled SPARCs achieve vanishingly small
error probability with AMP decoding for rates R < C:

1. Prove that in a suitable limit (corresponding to increasing code length), the fixed point of the
state evolution recursion is one that corresponds to vanishing probability of decoding error;

2. Prove that the error rate of the AMP decoder is closely tracked by the state evolution pa-
rameters for sufficiently large code length.

The first step was proved by Barbier et al. [8], using the potential function method [12]. The
result in [8] shows ‘threshold saturation’ for a class of spatially coupled SPARCs with AMP de-
coding. For any fixed rate R < C, this implies that state evolution predicts vanishing probability
of decoding error in the large system limit. (Throughout, the terminology ‘large system limit’ or
‘asymptotic limit’ refers to (L, M, n) all tending to infinity with LIn M = nR.)

In this paper, we rigorously prove the second step. We also provide an alternative proof of
the first step which gives insight into how the parameters defining the spatially coupled matrix
influence the decoding progression. These two steps together yield the main result (Theorem ,
which is a non-asymptotic bound on the probability of decoding error of the AMP decoder. To our
knowledge, this is the first complete proof that spatially coupled SPARCs are capacity-achieving
with efficient decoding.

Related work: Approximate message passing (AMP) refers to a class of iterative algorithms for
statistical estimation in models corresponding to dense factor graphs. AMP algorithms, which are
obtained via Gaussian and quadratic approximations of standard message passing techniques like
belief propagation, have been successfully applied to compressed sensing [13H16] and its applications
in communications such as MIMO detection [17] and unsourced random access [18]. Other appli-
cations of AMP include estimation in generalized linear models [19,[20], robust estimation [21}22],
and several variants of low-rank matrix estimation [23-28].

The idea of spatial coupling was introduced in the context of LDPC codes [29H34], and first
used for compressed sensing in [35]. AMP algorithms for compressed sensing with spatially coupled
matrices were first proposed by Krzakala et al. in [15,36]. Takeuchi et al. [37,[38] proposed a method
for analyzing the state evolution recursion of spatially coupled systems using a potential function
defined for the uncoupled system. This method characterizes the fixed points of the spatially
coupled state evolution in terms of the stationary points of the potential function. The potential
function method was made rigorous by Yedla et al. in [12]. In [39], Donoho et al. proved that



a class of spatially coupled Gaussian designs achieve the optimal information-theoretic limit for
compressed sensing by analyzing the spatially coupled state evolution recursion in the continuum
limit. In a complementary work [40], Javanmard and Montanari proved that the mean-squared
error of AMP algorithm for spatially coupled compressed sensing converges (almost surely) to the
state evolution prediction in each iteration.

Though the SPARC model is similar to compressed sensing, the result of [40| cannot be directly
applied to AMP decoder since the SPARC message vector has a section-wise i.i.d. structure, with
a growing section size M in the large system limit. Moreover, our result is non-asymptotic and
generalizes the proof technique developed for power-allocated SPARCs [41] to the present setting
of spatially coupled designs.

1.1 Structure of the paper and main contributions

After describing the construction of spatially coupled SPARCs (SC-SPARCs) in Section [2, we
explain the AMP decoder and the associated state evolution recursion in Section |3, In Section
we obtain upper and lower bounds on the state evolution parameters (Lemma which help
explain the decoding progression of the AMP decoder for large M (Proposition . The main
theoretical results of the paper are stated in Section

e Theorem [I]|gives a non-asymptotic bound on the probability of excess section error rate of the

AMP decoder for any fixed rate R < C. The bound shows how the error performance depends
on each parameter of the SC-SPARC, and highlights the tradeoffs involved in choosing these
parameters.

e Theorem 2| gives a concentration inequality for the mean-squared error (MSE) of the AMP

decoder in each iteration. Theorem [1]is a straightforward consequence of Theorem

e With the same technique used for proving Theorem 2] we can obtain a concentration inequality

for the MSE of AMP for compressed sensing with spatially coupled measurement matrices.
This result, stated in Theorem [3| refines the asymptotic result for this model obtained in [40],
and makes explicit how the probability of deviation of the MSE (from the state evolution
prediction) depends on the problem dimension as well as the parameters defining the spatial
coupling.

Section [6] presents numerical simulation results showing the finite length error performance of
SC-SPARCs over the complex AWGN channel. The error performance is compared with coded
modulation schemes which use Quadrature Amplitude Modulation (QAM) with LDPC codes from
the DVB-S2 standard. We observe that at moderately high rates (around 1.5 bits/dimension),
SC-SPARCs have better error performance than the coded modulation schemes considered.

In Section |7, we prove Theorem The proof has two key technical ingredients. The first is
a conditional distribution lemma (Lemma which provides a non-asymptotic characterization
of the conditional distribution of the AMP iterates. This characterization is then used to prove
that various scalar products involving the AMP iterates concentrate around deterministic values
(Lemma . In Section |7, we give an overview of the key ideas in the proof of Theorem |2 then
state the main technical lemmas and use them to prove Theorem [2| The full proofs of the lemmas
are deferred to Section [8

Though our approach to proving Theorems [1] and [2] is broadly similar to that used for power-
allocated SPARCs in [41], the block-wise structure of the spatially coupled design matrix introduces
several new technical challenges. For example, we need to define block-adjusted versions of the AMP
iterates (vectors) to obtain the appropriate linear constraints for the conditional distribution lemma
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Figure 2: An n x ML spatially coupled design matrix A consists of R x C blocks, each of size g x % The
entries of A are independent and normally distributed with A;; ~ N(0, %W,(i)c(j)), where W is the base
matrix. The base matrix shown here is an (w, A, p) base matrix with parameters w = 3,A = 7 and p = 0.
The white parts of A and W correspond to zeros.

(see (56)-(61)). Similarly, in the main concentration lemma (Lemma/7.6) we establish concentration
results for scalar products scaled block-wise by the entries of the base matrix.

Notation: For a positive integer m, we use [m] to denote the set {1,...,m}. For z € R, we
let 2 = max{x,0}. Throughout the paper, we use plain font for scalars, bold font for vectors
and matrices, and subscripts to denote entries of a vector or matrix. For example, if « is a vector,
we write x; for its i'" component. Similarly, if X is a matrix, we write X;; for its (i,)" entry.
The transpose of X is denoted by X*. The Gaussian distribution with mean p and variance o2 is
denoted by N (i, 0?).

We write I; for the ¢t x t identity matrix; the subscript is dropped when the dimension is clear
from context. The indicator function of an event A is denoted by I{.A}. For deterministic sequences
($n)n>0, (Tn)n>0, we write s, = O(zy) if s,/x, is bounded above and below by strictly positive
constants for all sufficiently large n.

2 Spatially coupled SPARC construction

As in the standard construction, a spatially coupled (SC) SPARC is defined by a design matrix A
of dimension n X ML, where n is the code length. The codeword is * = AB, where 3 has one
non-zero entry in each of the L sections. In an SC-SPARC, since the variances of the entries of
different blocks of A can be varied, without loss of generality we will set the value of each non-zero
entry of 3 to 1.

In an SC-SPARC, the matrix A consists of independent zero-mean normally distributed entries
whose variances are specified by a base matriz W of dimension R x C. The design matrix A is
obtained from the base matrix W by replacing each entry Wi by an (n/R) x (M L/C) block with
i.i.d. entries ~ N(0, W,./L), for r € [R], c € [C]. This is analogous to the “graph lifting” procedure
for constructing spatially coupled LDPC codes from protographs . See Fig. [2|for an example.
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From the construction, the design matrix A has independent normal entries
1 : :
Aij ~ N<07 ZWr(i)c(j)> i€ [n], je[ML]. (4)

The operators r(-) : [n] = [R] and c(+) : [M L] — [C] in (4) map a particular row or column index in
A to its corresponding row block or column block index in W. We require C to divide L, resulting
in % sections per column block.

The non-zero coefficients of B are all set to 1. Then it can be verified that E[||z|?] = nP (and
the power constraint is satisfied with high probability) if the entries of the base matrix W satisfy

1 C
22 D We=P (5)

@)

The trivial base matrix with R = C = 1 corresponds to a standard (non-coupled) SPARC with
uniform power allocation, while a base matrix consisting of a single row R = 1, C = L is equivalent
to a standard SPARC with power allocation. In this paper, we will use the following base matrix
inspired by the coupling structure of SC-LDPC codes constructed from protographs [34].

Definition 2.1. An (w,A,p) base matrizc W for SC-SPARCs is described by three parameters:
coupling width w > 1 coupling length A > 2w — 1, and p € [0,1) which determines the fraction of
power allocated to the coupled entries in each column. The matriz has R=A+w—1 rows, C= A
columns, with each column having w tdentical non-zero entries. For an average power constraint
P, the (r,c)th entry of the base matriz, for r € [R], c € [(], is given by

(1—pP - A=l jfe<r<ctw-—1,

Wrc = Adw—1 . (6)

pP - == otherwise.

It is easy to verify that this definition satisfies the power allocation constraint in ([5). For
example, the base matrix in Fig. 2| has parameters w = 3 and A = 7. For our simulations in Section
@ we use p = 0, whereas for our main theoretical result (Theorem [1) we choose p to be a small
positive value proportional to the rate gap from capacity. (Choosing p = 0 causes some technical
difficulties in the proof, which can be addressed by picking a suitable p > 0.) The (w, A, p = 0) base
matrix construction was previously used for SC-SPARCs in [42]. Other base matrix constructions
can be found in [8}/9,|15}39].

Each non-zero entry in a base matrix W corresponds to an (n/R) x (M L/C) block in the design
matrix A. Each block can be viewed as a standard (non-coupled) SPARC with % sections (with M

columns in each section), code length n/R, and rate Ripper = % nats. Using , the overall
rate of the SC-SPARC is related to Rinner according to

C A

R=— Rinner - m

R Rinner; (7)

where the last equality holds for an (w, A, p) base matrix.

With spatial coupling, w is an integer greater than 1, so R < Ripner- The difference (Ripper — R)
is sometimes referred to as the rate loss due to spatial coupling. From , we see that rate
loss depends on the ratio (w — 1)/A, which becomes negligible when A is large w.r.t. w. For our
theoretical results, we will be interested in the regime where L > C = A > w. Without loss of
generality, we will henceforth assume that w < v/A.



Remark 2.1. SC-SPARC constructions usually have a ‘seed’ to jumpstart decoding. In [§], a
small fraction of B’s sections are fixed a priori — this pinning condition is used to analyze the
state evolution equations via the potential function method. Analogously, the construction in [9]
introduces additional rows in the design matrix for blocks corresponding to the first row of the base
matrix. In an (w, A, p) base matrix, the fact that the number of rows in the base matrix exceeds the
number of columns by (w —1) helps decoding start from both ends. The asymptotic state evolution
equations in Sec. 4| describe how AMP decoding progresses in an (w, A, p) base matrix.

In the remainder of the paper, we use subscripts in sans-serif font (r or c) to denote row or
column block indices. Thus, 8. € RMZ/C denotes the c-th column block of 8 € RME, for ¢ € [C].

3 The AMP decoder for spatially coupled SPARCs

Recall that the decoding task is to recover the message vector 8 € RML from the channel output

sequence y € R™ produced according to . An Approximate Message Passing (AMP) decoding

algorithm can be derived using an approach similar to the one for standard SPARCs [4, Appendix

A], with modifications to account for the different variances for the blocks of A specified by the

base matrix. The AMP decoder can also be derived from the Generalized AMP algorithm in [19].
The AMP decoder initializes 8° to the all-zero vector, and for ¢ > 0, iteratively computes:

Zt:y—A,Bt+Ut®Zt_l, (8)

B =n'('+ (5 o 4)2). (9)

Here ® denotes the Hadamard (entry-wise) product. The vector v¢ € R™, the matrix S € RPxML ,

and the denoising function 1! are defined below in terms of the state evolution parameters. Quan-
tities with negative time indices are set to zero.

For any rate R < C, the AMP decoder is run for a finite number of iterations T', where T is

specified later in Section |4} After T iterations, the maximum value in each section ¢ € [L] of Bl is
set to 1 and remaining entries are set to 0 to obtain the decoded message 3.

3.1 State evolution

Given a base matrix W, state evolution (SE) iteratively defines a sequence of scalars (¢!),cr and
(YY) cec, for t > 0. Initialize ¢2 = 1 for ¢ € [C], and for t = 0,1,.. ., compute

C
1
U? = E ; Wrcwé’ ¢|tf = 02 + U?? re [R]a (10)
H=1-¢(1), ce[C], (11)
where .
R 1 w,
t_ - rc

and £(7t) is defined with Uy, ..., Uy =" N(0,1) as

UL/
UL/VTE 4 o—1/7t ij\iQ Uil

8



For t > 1, the vector v' € R” in has a block-wise structure, with the ¢th entry defined as

t oy -
v = T'l, ifr(i) =r, (14)
r

where we recall that r(i) denotes the row block index of the ith entry. (The vector v° is defined
to be all-zeros.) Similarly, S e RML iy @ has a block-wise structure, with entries defined as
follows. For i € [n],j € [ML],

¢
-t T . . .
Si; = ECI;’ if r(i) =r and c(j) = c. (15)
The function o' = (ni,...,n%,,) : RME¥ — RML in (9) is defined as follows, for j € [ML]. For j
in section ¢ € [L], with section ¢ in column block ¢ € [C],

eSi Jars

nj(s) = (16)

e
Zj’ESeC(Z) €% X
where sec(€) := {(¢ —1)M +1,...,£M} refers to the set of indices in section £. We note that 75 (s)
depends on all the components of s in the section containing j.

3.2 Interpretation of the AMP decoder

The input to n§() in can be viewed as a noisy version of 3. In particular, consider an index j
in section ¢ € [L] which belongs to column block ¢ € [C]. Recall that 3, € RM is section £ of the
message vector, and let s} = sy denote section ¢ of the input vector to the function 77;5() Then, s}
is approximately distributed as B3, + \/TTfZ ¢, where Z, € RM is a standard normal random vector
independent of 3,. Under the above distributional assumption, the denoising function 775- in (16 is
the minimum mean squared error (MMSE) estimator for Bj, i.e.,

ni(s)=E |B; | B+l Ze=s],  forjelML] (17)

where the expectation is calculated over and Z, ~ N (0, Is) and 3,, which is uniformly distributed
over the M vectors with a single non-zero entry equal to 1.

The entries of the modified residual 2? in are approximately Gaussian and independent, with
the variance determined by the block index. (A precise characterization of the distribution is given
in Lemmas and ) For r € [R], the SE parameter ¢! approximates the variance of z!, the
rth block of the residual. The ‘Onsager’ term v' ® z!~! in reflects the block-wise structure of
z!. To summarize, the key difference from the state evolution parameters for standard SPARCs
is that here the variances of the effective observation s’ and the modified residual z! depend on

their column- and row-block indices, respectively. These variances are captured by {rgf}ce[q and

{¢$}r€[R}-

3.3 Measuring the performance of the AMP decoder

The performance of a SPARC decoder is measured by the section error rate, defined as
1
Esec 1= Z Zﬂ{ﬂsec(f) 7é ﬁsec(l)}' (18)
(=1

9
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Figure 3: NMSE % vs. column block index ¢ € [C] for several iteration numbers. The SC-SPARC

with an (w, A, p = 0) base matrix has the following parameters: R = 1.5 bits, C = 2 bits, w = 6, A = 32,
M = 512, L = 2048 and n = 12284. The solid lines are the state evolution predictions from , and the
dotted lines are the average NMSE over 100 instances of AMP decoding.

If the AMP decoder is run for T iterations, the section error rate can be bounded in terms of the
squared error || BT — B||? as follows. Since the unique non-zero entry in any section ¢ € [L] of 3
equals 1 and ,Bsec 7 Bgec(ey Implies that the corresponding element of B o(0) is less than or equal
to 1/2,

~ 1
Bsec(é) 7& ﬂsec(@) = ”Iasec ﬁsec(f)”% > Z (19)

We recall that 3. is the part of the message vector corresponding to column block c of the design
matrix. There are % sections in B, with the non-zero entry in each section being equal to 1; we

denote by 3., the (th of these sections, for £ € [L/C]|. Then, implies

c L/C
Esec = — ZH{Bsec 7& /Bsec(ﬁ)} ZZ {'Bce 7& BCZ}
c=1 (=1

4 S 1< 6T 1
<SS - B3 =1 [cZ L Cﬂc|!2] —alzle - )
c=1 (=1 1

We can therefore focus on bounding the bracketed term on the RHS of which is the overall
normalized mean square error (NMSE). Fig. [3| shows that ¢ ((11)) closely tracks the NMSE of

t g2

each block of the message vector, i.e., ! ~ % for ¢ € [C]. We additionally observe from
the figure that as AMP iterates, the NMSE reduction propagates from the ends towards the center
blocks.

4 Decoding progression according to state evolution

In this section, we derive bounds for the state evolution parameters which help explain the decoding
propagation illustrated in Fig. These bounds lead to a succinct asymptotic characterization of

10



state evolution (as M — 00). The non-asymptotic version of these bounds (for large but finite M)
will be used to establish the main result in Theorems [1] and [21

Lemma 4.1. Let W € RF*C be a base matriz having row and column averages that are bounded
above and below by strictly positive constants. That is, there exist constants ki, ky > 0 such that

Ky, < —ZWr , RZWMSKJU, re(R], ce|q.

Let

1 Wie

Sl 2
r=1

For sufficiently large M and any § € (0,1), § € (0,1),

(1 —M’leQ)]I{V£< 2 -0} <yttt <1- (1 - )H{v2> 2+4}, ce[C], (22)

where k, k1 are positive constants depending only on k1, and Ky.

The proof of the lemma is given in Appendix
Lemma implies the following asymptotic state evolution recursion as M — oco. Initialise
P2 =1, for c € [C], and for t = 0,1,2,.. .,

1 C
th = J E z:: rc¢c7 re [R]a (23)

L+l Wrc
Al {RRZ } celd, (24)

where ¢, indicate asymptotic values as M — oo.

The asymptotic SE recursion - is given for a general base matrix W. To get some insight
into the decoding progression, we specialise the result to the (w, A, p = 0) base matrix introduced
in Definition Recall that an (w,A, p = 0) base matrix has R = A +w — 1 rows and C = A
columns, with each column having w non-zero entries, all equal to P - %

Corollary 4.1. The asymptotic state evolution recursion — for an (w, A, p = 0) base matriz
is as follows. Initialise v =1V c € [A], and fort=0,1,2,...,

Pt =02+ Zzp €A +w—1], (25)
B P c+w—1 1
r=c r
where ¥ = %, and
(1, r) if 1<r<w
(cp )= (r—w+1,r if w<r<A (27)

(r—w+1,A) if A<r<A4+w-1.



Proof. Substitute the value of W, from @, with p=0and C=A,R=A4+w—11in —. |

Observe that the ¢!’s and ¥!’s are symmetric about the middle indices, i.e. ¢! = ‘nga—r 4 for
r < L%J and 15@ = itcchrl for c < L%J 3

Consider the initial step (¢ = 0): from the value of ¢? for each r depends on the number of
non-zero entries in row r of W, which is equal to ¢, — ¢, + 1, with €, c, given by . Therefore,
#” increases from r = 1 until r = w, is constant for w < r < A, and then starts decreasing
again for A < r < A +w — 1. As a result, ¢} is smallest for c at either end of the base matrix
(c € {1,A}) and increases as ¢ moves towards the middle, since the Ef:c*’_l(q;?)*l term in (26 is
largest for c € {1, A}, followed by c € {2, A — 1}, and so on. Therefore, we expect the blocks of the
message vector corresponding to column index ¢ € {1, A} to be decoded most easily, followed by
c € {2,A — 1}, and so on. Fig. |3/shows that this is indeed the case.

The decoding propagation phenomenon seen in Fig. |3| can also be explained using Corollary
by tracking the evolution of the ¢!l’s and w!’s. In particular, one finds that if column c*
decodes in iteration t, i.e. . = 0, then columns within a coupling width away, i.e. columns
ce{c*—(w—1),...,c"+ (w—1)}, will become easier to decode in iteration (¢ -+ 1). This wave-like
decoding propagation also occurs in spatially coupled LDPC codes decoded with belief propagation.
The propagation of the LDPC decoding wave (in the large system limit) was studied in [43].

4.1 Decoding progression

We make the above discussion precise by characterizing the decoding progression for an (w, A, p)
base matrix (with p > 0) using Lemma Recalling that
w—1

:1 —
V=14 (28)

we will consider rates R such that

1
R < —In(l+Ysnr), where snr=

20 o2

Note that the RHS of can be made arbitrarily close to the channel capacity C by making “’T_l
small enough. Indeed, since the expression in is decreasing in ¥ for ¢ > 1, we have

1 C
il h 30
C>2191n(1—i-19snr)>19 (30)

Proposition 4.1. Consider a rate R SC-SPARC with an n x ML design matriz constructed using

an (w, A, p) base matriz and a constant § € (O,min{%7 1), where 0 < p < min{gsAnr, 3}, and

1
A= 29 In(1 + Jsnr) — R. (31)

If the rate satisfies R < %, then all the column blocks of the message vector simultaneously

decode in one iteration, i.e., for all c € [A],

M7k§2

1 -
wc < fM,(S = (5\/10g7M (32)
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for sufficiently large M, where k > 0 s a universal constant.
Otherwise, if the rate satisfies ((kﬂ <R< % In(1 49 snr), the coupling width w satisfies

2+9)(1+9snr) —
9 snr 1
v (1 + ﬁsnr) A (33)
and (14 0sn9A
+ v snr
I= T 9anr (34)
then, fort > 1 and
¢ < max {tg, [[2\-‘ } ) (35)
we have
Ve = Vhoepr < furg (36)

for sufficiently large M.

The proof of the proposition is given in Appendix
Remark 4.1 (BP threshold). For rates R smaller than %, one does not require spatial

coupling (or power allocation) for reliable SPARC decoding. Indeed, consider a standard non-
coupled SPARC where the 1-by-1 base matrix is a single entry equal to P. Using Lemma [4.1] in

the state evolution recursion —, we see that if R < % for some ¢ € (0,1), then

the whole message vector decodes in one iteration, i.e., ! < fu,s- The threshold % can be
interpreted as the BP threshold in the M — oo limit.

Remark 4.2 (Choice of base matrix parameters). For any fixed rate % <R<C=3In(l+
snr), Proposition requires the parameters (w, A) to be chosen such that: i) the ratio (w/A) is
small enough that the rate gap A in is positive, and ii) w is large enough that is satisfied.
These two conditions can be satisfied for any fixed R < C by taking (for example) A > w?, and w
sufficiently large.

snr

For rates larger than the threshold FTrsnn)? the proposition says that if the coupling width w is
large enough (as specified by ), then in iteration t at least the first and last |gt] column blocks
from each end are expected to decode. Furthermore, the proof shows that if g; < A/2 is the exact
number of column blocks such that ¢! = ¢f\—c+1 < fms for ¢ < gi, then gi11 > |g¢ +g], ie., in
each iteration at least |g| > 1 additional column blocks of the message vector from each end are
expected to decode.

This decoding progression continues until iteration 7" when all column blocks have been decoded,
ie., I < fars for c € [C]. More precisely, we run the AMP decoder for T iterations where

T :=min{t : %! < fars for c € [C]}. (37)
Proposition [4.1] implies that for rates larger than the threshold

A
T < [} | (33)

29
Using the interpretation of the AMP decoder in Sections [3.2] and after iteration T' we
expect the mean squared error 1|3 — B2 to be small. We note that g is proportional to A,
which represents the rate gap from capacity (see , ) Therefore, from the number of

iterations " grows as the rate approaches the channel capacity. For a fixed R the quantity fass
tends to 0 with growing M.

13



5 Main Result

The main result, stated in the theorem below is a bound on the probability of the section error
rate of the AMP decoder exceeding a target level €, for any € € (0,1).

Theorem 1. Consider an (w, A, p) base matriz W € RF*C with (R,C) = (A +w — 1, A) and
p= min{%ﬂr,% , where A is the rate gap defined in . Fix rate % <R< % In(1 + I snr),
where ¥ = 1 + “’T_l, and let w be large enough that the condition in is satisfied. Let S, be a
SC-SPARC of rate R defined via an n x ML design matrixz constructed using the base matrix W .
The parameters (n, M, L) satisfy .

Fiz e € (0,1), and for f,, o defined in Proposition let M be large enough that fars < § for
'R
0= min{%, %} Then after the AMP decoder is run for T iterations, with T defined in (37, the
section error rate (defined in (18)) satisfies

2

P (Esee(Sn) > €) < Kp_1 (RO exp { ilion ;)TQ;?ZG/W)QT_I } (39)

For t > 0, the constants k; and K; are given by k; = [€2(t)?4~! and K; = =
&, 2 > 0 are universal constants (not depending on the AMP parameters (L, M,n, R,
not explicitly specified.

2™ where
C) ore), but

Remark 5.1. The theorem is stated for rates % <R< % In(1 4 ¥ snr) as this is the region
where spatial coupling is required. Indeed, for R < %, Remark and the proof of Theorem
imply that the probability bound holds with R=C=w =1 and T = 1. This result also follows

from the analysis in [41], applied with a uniform power allocation.

The bound on the probability of excess section error rate is obtained via a concentration
inequality on the normalized MSE of the AMP decoder. Theorem [2| below gives a concentration
inequality bounding the probability of deviation of the normalized MSE from the state evolution
prediction in each iteration. Recall, by , the section error rate can be bounded in terms of the
normalized MSE, ||3” — 3||?/L. This connection is used to prove Theorem |l from Theorem

Theorem 2. With the same assumptions as Theorem I}, for 1 <t <T and ¢ > 0 we have

,Bt _16 2 1 ks 2
P(’HLH - cce%wi‘ = 6) < Ki—1(RC)" exp { (log 1\4,;;*(1Rn/€w)2t‘1 } 0

Here {wﬁ}ce[q are the state evolution parameters defined in , and the constants Ki—1 and Kki_1
are as defined in the statement of Theorem [1,

The dependence of the constants K; and k; on t! arises due to the induction-based proof of the
concentration lemma (Lemma . These constants have not been optimized, but we believe that
these constants will depend on t! in any induction-based proof of the result. It is an open question
whether the ¢! factors are fundamental to the problem or if a different analysis of the AMP can
yield a different ¢t dependence in these constants.

Theorem []is proved in Section [T, We now show how Theorem [1] follows from Theorem
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Proof of Theorem[1. Without loss of generality, we can assume that rate gap A (defined in (31))
satisfies A < 2R. Otherwise the arguments below hold with (A/R) replaced by 1.

Taking ¢t = T, and noting that ] < Ja,ayir) for ¢ € [C] (from Proposition , Theorem
implies that for any € > 0,

~2

||/8T ﬁ”g ~ T —RT_1N€E
< > e+ fM,A/(SR) < KT_l(RC) exp { (log M)QT(R/W)2T_1 } (41)
Furthermore, from we have
18" =8I _ €
P (Esec(Sp) > €) < < s > (42)

Combining and , and taking € = ¢ and M large enough so that fy;a/3r) < § (see )
yields Theorem [ ]

5.1 Choosing the SC-SPARC parameters

Theorems|l]and [2|give guidance on how to systematically choose parameters of the spatially coupled
SPARC for any fixed rate R < C = %ln(l + snr) and a target section error rate e. First, choose
(w, A) so that the rate gap A in is positive and is satisfied. As described in Remark
this can be done by choosing A > w?, and w sufficiently large. This determines R = (A +w — 1)
the number of iterations 7', which from (38 ., is bounded by a Value proportional to A/(wA).

Next choose M large enough for fa s < & for 6 = min{s%, +}. For fixed values of (w, A, M),
shows that the probability that the sectlon error rate exceeds e decays exponentially in the
block length n. Once n is chosen to be a large multiple of R = (A + w — 1), the number of sections
is L = %, which completes the specification of the SPARC

Remark 5.2. Theorem [1| implies that for any fixed R < C and € € (0,1), one can construct a
sequence of rate R spatially coupled SPARCs {S,,} (indexed by code length n) for which

lim Egee(Sp) =0  almost surely. (43)
n—oo
Indeed, once (A, w, M) are chosen to satisfy the conditions in Theorem the bound in decreases
exponentially in n. The Borel-Cantelli lemma then yields the asymptotic result in (43]).

Remark 5.3. As described in [1], to obtain a small probability of codeword error P(3 # 3), one
can use a concatenated code with the SPARC as the inner code and an outer Reed-Solomon code.
A suitably chosen Reed-Solomon code of rate (1 — 2¢) ensures that 3 = B8 whenever the section
error rate Esec < €, for any € > 0. The overall rate for such a concatenated code is (1 — 2¢)R and
the P(8 # @) is bounded by the RHS of (39). The reader is referred to [6, Sec. 2.2] for details of
how to choose an appropriate Reed-Solomon code.

!The parameters L and Nc = ML/A determined in this way need to be integer-valued, which can be ensured by
picking suitable values for w, A, M.
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5.2 Tradeoffs in choosing the parameters

We first consider the effect of the base matrix parameters w, A. The condition in and the bounds
in together imply that the minimum gap from capacity C — R is of order %, or equivalently,
of order 7¥— = . Therefore, decreasing the ratio § allows rates closer to capacity, but weakens
the probability bound in Theorem [1, Indeed, the bound in is exponential in (w/R)?" !, with
T also increasing with (R/w).

Next consider the effect of increasing M. From Theorem |1| increasing M allows for a smaller
target section error rate €, since we require € > 8fys5. Equivalently, from and Theorem
increasing M allows for a smaller state evolution estimate of the normalized MSE, |87 — 8||?/L.
On the other hand, the probability bounds in Theorems [1] and 2] worsen with increasing M.

With A, w and M fixed, increasing the code length n (or, equivalently L) exponentially improves
the probability bound in Theorem

The per-iteration computational complexity of the AMP decoder is determined by the complexity
of matrix-vector multiplications with the design matrix A. This complexity is O(nM L) for Gaussian
design matrices. For our empirical results in Section [6, we use DFT-based design matrices which
reduce the per-iteration complexity to O(M Llog(ML)).

5.3 Compressed sensing with spatially coupled design matrices

In this section, we establish a nonasymptotic result analogous to Theorem [2|for compressed sensing
with a spatially coupled measurement matrix. In compressed sensing, the goal is to estimate a
vector B € RP from a linear measurement y = AB + w. This model is similar to SPARC decoding,
with the main difference being that the entries of the signal vector 8 are now assumed to be drawn
from a generic prior Py rather than the section-wise structure of a SPARC message vector.

We consider a spatially coupled measurement matrix A € R™*P defined via a base matrix
W € RRXC by replacing each entry Wy by an (n/R) x (p/C) block with i.i.d. N(0, 7%3) entries,
for r € [R] and ¢ € [C]. The AMP algorithm for spatially coupled compressed sensing has the
same form as the one in —(@, with the main difference being the denoising function n* and the
corresponding changes in the state evolution parameters. Before describing these differences, we
state the assumptions on the model:

(1) The components of the signal vector 3 € RP are i.i.d. with a sub-Gaussian distribution Pg.

(2) The denoising function ¢ : R — RP used in the AMP algorithm is separable, and its compo-
nents 75 : R — R are Lipschitz continuous, for j € [p].

(3) As the signal dimension p grows, the sampling ratio n/p is constant and denoted by J.
(4) The entries of the noise vector w € R™ are i.i.d. Gaussian with zero mean and variance o2

(5) The entries of the base matrix W € RR*€ are bounded below by a strictly positive constant,
and for r € [R], the row sums satisfy 3 < ZCCZI Wye < 2. (The assumption on the row sums is
made to ensure that the definitions of the state evolution parameters are consistent with [39].)

The state evolution recursion for the spatially coupled compressed sensing AMP is as follows.
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Initialize 1Y = 1 for ¢ € [C], and for ¢ > 0:

C

¢ = 0% + % S Wiedl,  re[Rl, (44)
c=1

A :E{[g_nt((7§)1/25+G)r}, c € [C], (45)

where the expectation in is over the independent pair 5 ~ Pz and G ~ N(0,1). Furthermore,

= (LR, Wie/¢t) " for c € [C].

The entries of the vector v! and the matrix S in the AMP algorithm are defined as in and
, respectively. If the prior Pg is known, the Bayes optimal choice for scalar denoising function
n' is the MMSE estimator. Indeed, 1! is minimized by taking 7;(s) = E[8| (7¢) /28 + G = s] for
an index j in column block c.

Theorem 3. Consider the spatially coupled compressed sensing model under the assumptions listed
above. Fort > 1, the mean-squared error of the AMP satisfies

18- 8P 1
P(’p‘cce%‘”@

—kne? } (46)

[R (max, W, c)]*

> e) < Ki(RC)! exp{

Here Ky, ki are positive constants that depend only on t. (These constants are not the same as the
ones in Theorem @)

The proof of Theorem (3] is similar to that of Theorem [2| with appropriate changes (along the
lines of the result in [44]) to account for the fact that 8 now has i.i.d. entries rather than the block-
wise structure of a SPARC message vector. A few remarks about Theorem [3] and the underlying
assumptions:

1. Theorem [3| refines the asymptotic result established in [40] for spatially coupled design ma-

trices, which showed that lim,_,« ||B" — B]*/p = % > Wk almost surely.

2. The assumption that the entries of the base matrix are lower bounded by a positive constant
is due to a technical detail in the proof. For the same reason, we need p to be strictly positive
(rather than 0) in Theorems [1| and

3. The scaling of the base matrix entries (implied by the column sums condition in Assumption
5) differs from the one used for SPARCs in (5]) by a factor of order R. Therefore, the maximum
entry in the equivalent of the (w, A, p) base matrix for compressed sensing would be of order
1/w, leading to an exponent of % in . Thus the probability bound in Theorem 3| is
similar to that of Theorem [2.

6 Empirical performance of SC-SPARCs

In this section, we investigate the finite length error performance of SC-SPARCs with AMP decoding
via numerical simulations. We use the (w, A, p = 0) base matrix construction in all the simulations.

We would like to compare the performance of SC-SPARCs with that of standard coded modula-
tion schemes such as LDPC codes with Quadrature Amplitude Modulation (QAM), which produce
complex-valued symbols to be transmitted over the channel. Therefore, in these simulations we con-
sider the communication over the complex AWGN channel, where the noise is circularly-symmetric
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Figure 4: Error performance of complex SC-SPARCs defined via a (w =4, A = 32, p = 0) base matrix. R =

1.5 bits/dimension, L = 2944, M = 2048, code length n = 10795. The dashed lines show the performance

of coded modulation: (K = 32400, N = 64800) DVB-S2 LDPC + 64 QAM, frame length = 10800 symbols.
The solid black line in the BER plot is the AWGN Shannon limit for R = 1.5 bits/dimension, and in the

FER plot, it is the normal approximation to the AWGN finite length error probability bound in [46].
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Figure 5: Error performance of complex SC-SPARCs defined via an (w = 6,A = 32,p = 0) base matrix.

R = 1.6 bits/dimension, L = 960, M = 128, code length n = 2100. The dashed lines show the performance
of coded modulation: (K = 6480, N = 16200) DVB-S2 LDPC + 256 QAM, frame length = 2025 symbols.
The solid black line in the BER plot is the AWGN Shannon limit for R = 1.6 bits/dimension, and in the

FER plot, it is the normal approximation to the AWGN finite length error probability bound in [46].

complex Gaussian. We use complex SC-SPARCs, which are defined as described in Section [2] ex-
cept that the design matrix now has independent circularly-symmetric complex Gaussian entries
instead of real-valued Gaussian entries. The AMP decoder for complex SC-SPARCs is similar to
the one in —@: we take A* to be the conjugate transpose of A, and modify the definition of
175- in according to . For additional details on complex SC-SPARCs and its AMP decoder,
see [45].

In Figures and [6, we provide numerical simulation results demonstrating the finite length
error performance of complex SC-SPARCs with AMP decoding at different code rates and code
lengths. The error performance is evaluated using both the bit error rate (BER) and the frame
error rate (FER). (The FER is the message/codeword error rate.) We also simulate and plot the
error performance of coded modulation schemes (LDPC + QAM) for reference using the AFF3CT
toolbox [47]. The LDPC codes are chosen from the DVB-S2 standard and a belief propagation
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Figure 6: Error performance of complex SC-SPARCs defined via an (w = 6,A = 32,p = 0) base matrix.

R = 2 bits/dimension, L = 2688, M = 16, code length n = 2688. The dashed lines show the performance

of coded modulation: (K = 10800, N = 16200) DVB-S2 LDPC + 64 QAM, frame length = 2700 symbols.

The solid black line in the BER plot is the AWGN Shannon limit for R = 2 bits/dimension, and in the FER

plot, it is the normal approximation to the AWGN finite length error probability bound in [46].

(BP) decoder is used which runs for 50 iterations. For fair comparison, in each figure, the frame
length of the coded modulation scheme is chosen to be close to the code length of the SC-SPARC.

Fig. |4 shows the performance of SC-SPARCs with rate 1.5 bits/dimension and code length
n = 10795. The AMP decoder for the SC-SPARC is run for a maximum of 200 iterations (details
in Sec. . The coded modulation scheme uses a rate 3 (32400, 64800) DVB-S2 LDPC code with
64-QAM modulation, for the same overall rate of 1.5 bits/dimension and a frame length of 10,800
symbols. We observe that the SC-SPARC requires a smaller Ej,/Ny to achieve BERs in the range
107! to 107°, and FERs down to 5 x 10™* compared to the coded modulation scheme. However,
for much lower FERs, we expect the coded modulation scheme to require a smaller Ej, /Ny because
its frame error rate drops faster as Ej /Ny increases.

Fig. |5| shows the performance of an SC-SPARC with a shorter code length n = 2100, and a

rate of 1.6 bits/dimension. The AMP decoder for the SC-SPARC is run for a maximum of 100

iterations. The coded modulation scheme uses a rate % (6480, 16200) DVB-S2 LDPC code with

256-QAM modulation, for the same overall rate of 1.6 bits/dimension and a frame length of 2025
symbols. We observe that the SC-SPARC requires a smaller E}/Ny to achieve BERs in the range
107! to 107° and FERs down to 10~* compared to the coded modulation scheme. However, for
BERs and FERs lower than 107° and 1074, respectively, we expect the coded modulation scheme
to require a smaller E}/Ny because its error rate drops faster as Ej/Ny increases.

In Fig. @, the rate of the SC-SPARC is 2 bits/dimension and the code length is n = 2688. The
AMP decoder for the SC-SPARC is run for a maximum of 100 iterations. The coded modulation
scheme uses a rate Z (10800, 16200) DVB-S2 LDPC code with 64-QAM modulation, for the same
overall rate of 2 bits/dimension and a frame length of 2700 symbols. We observe that the SC-
SPARC has a higher BER and FER compared to the coded modulation scheme for all values of
Ey /Ny, and its error rate also drops more slowly as Ej/Np increases.

In the above plots, the SC-SPARC parameters (w, A, L, M,n) have not been carefully opti-
mized. An interesting direction for future work is to develop good finite length design guidelines
for choosing these parameters as a function of rate and snr. Another direction is to explore whether

alternative base matrix designs could improve the finite length performance at higher rates like 2
bits/dimension.
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6.1 Implementation details

The (w, A, p = 0) base matrix was used for all the simulations. Furthermore, to reduce the decoding
complexity and the memory required, a few modifications were made to the SC-SPARC construction
and the AMP decoder:

1) DFT based design matrices: We replaced the complex Gaussian design matrix with a Discrete
Fourier Transform (DFT) based design matrix. This enables the matrix-vector multiplications in
the AMP decoder f@ to be computed via the Fast Fourier Transform (FFT), which significantly
lowers the decoding complexity and memory requirement. Qur approach is similar to that of [4,|9]
where Hadamard based design matrices were used for real-valued SPARCs.

The computational complexity of the AMP decoder is dominated by the two matrix-vector
multiplications associated with the design matrix A. These operations have complexity O(nLM)
when A has independent Gaussian entries. The memory requirements of the encoder and decoder
are also proportional to nL M since the Gaussian design matrix has to be stored. By constructing
the design matrix using randomly sampled rows and columns of the (deterministic) DFT matrix, the
complexity of the matrix-vector multiplications (replaced by FFTs) is reduced to O(LM log(LM)),
and the memory requirements of the encoder and decoder are proportional to wLM. The error
performance of DFT based design matrices was found to be similar to that of Gaussian matrices
for large matrix sizes.

2) Online estimation of state evolution parameters: The AMP decoder in f@ contains pa-
rameters computed using the state evolution (SE) recursion f. In particular, the vector
v! € R", and the matrix S’ € RPML are determined via SE parameters computed offline. Instead
of computing the SE parameters offline, the SE parameters can be estimated online (at runtime)
using the outputs of the AMP decoder in each iteration. The SE parameters {of}.cr), {0} }refr]

and {7 }cc[c), which are needed to compute v* and s (see and (15)) can be estimated online
in the following way. For r € [R] and ¢ € [C],

I 182
Oy = ZWrc <1 - L;C )7 (47)

1

c c=1
~ o2+t if the decoder knows o2,

= £)2 _ (48)
r [EA| th
TR otherwise,
R -1

~ L1 W
Te=— R Arc] (49)

" r=1 ¢£

The justification for these estimates comes from Lemma [7.6] which proves that the estimates
at, <$f concentrate on o, ¢!, respectively (egs. and ([103)), for large (n, L). We observe that using
online estimates of the SE parameters results in a better error performance than using deterministic
SE parameters. A similar improvement was observed in [5] for power allocated SPARCs.

3) Early stopping of AMP: Since the empirical estimates of SE parameters in — are
estimates of certain noise variances related to the decoding error in each iteration of the AMP, we

~t 7t ~ .
chose to stop the AMP decoder early if the change in o', ¢ or 7' fell below a prescribed threshold
over consecutive iterations. A similar stopping criterion was used in [5] to terminate the AMP
decoder for power allocated SPARCs.
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A Python implementation of SPARCs (both power allocated and spatially coupled) with AMP
decoding is available at [48].

7 Proof of Theorem 2

The main ingredients in the proof of Theorem [2| are two technical lemmas (Lemmas and .
After laying down some definitions and notation, we give a brief overview of the proof in Section
We then state the key technical lemmas, and use them to prove Theorem [2| For consistency
with earlier analyses of AMP, we use notation similar to [4,|14,41], with modifications to account
for the row- and column-block dependence induced due to spatial coupling.

7.1 Definitions and Preliminaries

Recall that B, € RMZ is the message vector chosen by the transmitter, w € R" is the channel noise
vector, and the AMP decoder is intialized with 3° = 0 and 2z° = y. Throughout the proof, we use
the notation
Nr:=n/R, Nc:=ML/C. (50)
Define the column vectors bt gttt € RML and b, m! € R” for t > 1 recursively as follows.
Starting with the initial conditions

5 —0 .
q’ = By, h'=p8,—-(5 ©A)*2",

(51)
m’=-2"  bW=w-2",
for t > 1, the vectors ', b1, 1!, b’ are defined as
9] —t sk
=B -8y, BT =8 (I8 0 A2+ 8),
(52)
mt = —2t, bt =w — 2,

where §' € R™ML ig the matrix with entries defined in (15). For notational convenience, we define
the matrix S* € RR*C with entries

Se=7/¢r, reR], ce[C]. (53)
We define a modified design matrix A € R"*M having entries given by
Ay
VW)
Since A;; (O, TWiire(s))s the modified matrix has entries Ay SN0, 1). We note that

A= VW ®A where W € R"™ML i5 the matrix with entries Wij = Wii)e(j)-
Using the definitions f in the AMP update equations —@, we find that the following
block-wise relationships are satisfied for ¢t > 0:

t —
b~ Tl = (VWO A) @) = Y VIWeAcdl,  forre Rl

o1
r ce[C]

_ (55)
R+ gl = (8" VW O Ayl = 3 St VWie (Al for ce [C].
re(R]
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We define complementary quantities for the m' and ¢ vectors that will be useful in the condi-
tional distribution lemma that follows. For ¢ > 0 and r € [R] and c € [C], let

Sic ch ThE:1 V er f]%:l
St/ Wacmny_, VWi Gl

mic= | 27T e R and ghr = T e rMEX (56)
SIF‘/{C WRC mﬁ:R V WrC Zlf::C

(Here m'_; € R refers to the first row block of 1!, and g._; € RN¢ to the first column block
of ¢'.) A Word about the notation before we proceed. when a row- or column-block index (r or
c) appears as a subscript of a vector or a matrix (e.g., as in A,), it denotes the corresponding
block of that vector/matrix, but when a row- or column-block index appears as a superscript of a
vector/matrix (e.g., m"© and q""), it denotes the dependence of the vector/matrix on that index.

Using the vectors defined in , we can rewrite as

t

bf — % Aqt " Z A Qi’r for r € [R],
Pr celC] (57)
Rt 4 gt = [A*mbe]. = Z [AJ*mbc for c € [C].

re[R]

It will be useful to write the equations in in matrix form. For this, we define the following
matrices for ¢t > 1:

[ =0 | ’ o t— 1] c RMLXt
Ht [h1| ] |ht] c RMLXt
Xt [hl +q =0 | h2 vl | |ht vt 1] c RMLXt’
M, = [ ‘ ‘ o t— 1] c Rnxt, (58)
Bt [bO‘ |bt 1] c Rnxt
Y, = [bO | bl ’U @m | | bt—l @’)’ht 2] c Rnxt7
1 t—1
o o
Y! := diag (0 ' ) e R¥™,
t o0 e
In the equations above, the notation [a1 ] as | ... | ag] is used to denote a matrix with columns

ai,...,a;. We also recall from (14) that v! = at/qbt Lfort > 1ifi € [n] is in row block r. For t = 0,
the rnatrlces above are all deﬁned as all—zeros For c € [C], we define th,X ter Hic € RNext to

correspond only to rows c of the corresponding matrix. We similarly define M tes B, Yy € RNrxt
for r € [R]. Using these definitions we have

Y, =By — [0|M_1,]Y},  Xic=Hc+Q,.. (59)
Let Qf and M be all-zero vectors. For ¢t > 1 and c € [C], r € [R], let
M =[m%|...|m" T e R and  Qf=[q"]...|¢"" " e RMI (60)
With this notation, we can compactly write fort > 1 as

[AQ[], =Y re[R] and [A*MS], = Xic, c€[C]. (61)

(C,')
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Here the subscript (r,-) on a matrix denotes the rth block of rows of the matrix.

We use the notation mﬁ’c and qﬁ’r to denote the projection of m!° and ¢*" onto the column

space of M and QJ, respectively. Let

t t * t7 t7 *
at7c (a0c7 s at cl) ) 7t7r = (70 rv e 77t—r1) (62)

be the coefficient vectors of these projections, i.e.,
t—1
te . tc, _ic t,r, t,r 1, r
m" = Z; o, m"e, q : Z'y (63)
1=

Writing p! ¢ for the orthogonal projection matrix onto the column space of My, we have mﬁ’c =
wacmtc = MS((M$)*MS)~L(M$)*mbc and so ' = ((M$)* M)~ (M$)*mb<. (If the columns
of My are linearly dependent, ((M f)*M S~L(MS)* is interpreted as the pseudoinverse of M(S.)
We can similarly write v = ((Q})*Q})~1(Q})*q"". The projections of m»¢ and g"" onto the
orthogonal complements of M and @], respectively, are denoted by

t, Lr ., L,
he — cha qu = qt f— q”r‘ (64)
In Lemma we show that the entries of a’*® and 4" concentrate around constants. We now
~tr ot
specify these constants. For ¢ € [C], r € [R], define matrices C r, C"° e R for t > 1 such that

n ..
Cf_ll 1= O_:nax(h])’ and C—H g1 = LTCmax(z,J)7 0<i,j<t-—1. (65)

The concentrating values for 4" and a®° are

t,r

55 =o€ (L. 1) (0, 0,000t € R

e )—1(1,...,1) (i 0,...,0,74 /7 1) € R,

To see that (a) holds, we observe that (ét’r)_lét’r = I, implies that (ét7r)_1(af_1, ool =
(0,...,0,1)* € R. The equality (b) is obtained similarly.
Let 09  :=0% and 79 _:= 70, and for ¢t > 1 define

t t
Ui,r (1 - Z 1), and 7] =7 (1 — ::) (67)
Or Tc

Lemma 7.1. Under the assumptions of Prop. for sufficiently large M, the constants o' , and
%Tj_ ¢ are bounded below for 0 <k <T':

— 2 —
20 (5) s relR ez Ca(3), celd, (68)
where ) )
—_— 1 Pp* _ p(1+snr)
C1= ( * ﬁsnr) dsnr? A% C2= JR A (69)

where A is the rate gap defined in .
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Proof. In Appendix [

Lemma 7.2. If the o , and %Ti . are bounded below by some positive constants for 0 < k < T,

~k, =k, . . .
then the matrices C' and C’IC ‘ defined in are invertible for 1 < k <T.
Proof. The proof can be found in [44, Lemma 2]. |

We will use the following notation. Given two random vectors 1, xs and a sigma-algebra .7,

% 4 xo denotes that the conditional distribution of &1 given . equals the distribution of xs.

Iy

7.2 Outline of the proof of Theorem

Theorem [2] gives a concentration inequality for the normalized MSE of the AMP decoder, which
for iteration (¢ + 1) can be written as

1
T18 = BIP = £ 37 (8. — ) e, (70)

ce(C]

where we recall that h.™ is the cth column block of ™t € RML. (We choose iteration (t + 1)
rather than ¢ for notational convenience.)

The proof of the theorem is based on showing that for ¢ > 0, the vector hi“ is approximately
Gaussian, for ¢ € [C]. In particular, we show that hi™! is approximately distributed as \/7'>§Zt7c,
where Ztc is standard Gaussian and independent across c € [C]. If we assume that hi™ is ezactly
distributed as \/?gét,c for ¢ € [C], then obtaining a concentration inequality for the MSE in (70
is straightforward. Indeed, for a fixed 3, the MSE + > ||nk(8, — ht) — 8.1 is a bounded and
Lipschitz function of h**1. Therefore, if h'*! were Gaussian, one could obtain a concentration
inequality for the MSE of the AMP decoder via standard Gaussian concentration results [49]. The
bulk of the technical work is in precisely quantifying and controlling the deviation from Gaussianity
of the vectors h'*!, for ¢t > 0.

To study the distribution of h!™', we use the recursion in , or equivalently, the matrix
version in . Note that is a restatement of the dynamics of the AMP algorithm, although
AMP cannot be run this way in practice (since it is initialized with q’ = —B, which is unknown).
The first ingredient in the proof is Lemma which specifies the conditional distribution of b!
and h!*! given the past iterates of the algorithm in , for r € [R],c € [C]. More precisely, for
t > 0, the lemma specifies the conditional distribution of bf| .. and httl| g, 114> Where 7 4 is the
sigma-algebra generated by the collection of vectors

b, .., bt bt Rt Rt G0, .., g, and By, w. (71)

Lemmas [7.4] and [7.5] together show that the conditional distributions have the following form:

vt
dN~0O :
Bl £ 2 (ol Zho+ Aiir) . TR, (72)
i=0 '
d T
hi+1|yt+1,t = Z ?i ( T Lic+ Ai+1,i,c) , ce[C]. (73)
i=0 ¢
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Here, Z; = [Z;1,...,Z;gr|* ~ N(0,I,) is independent of the sigma algebra .7 ;, and Z; =
(Zia,....Zic)" ~ N(0,Inyg) is independent of #jy1;, for 0 < ¢ < t. The deviation vectors
A=D1, AR and Ajy1; = A1, -, Aip14.c)* are measurable with respect to the
sigma algebras . ; and .1, respectively. Their precise definitions are given in Lemma

If we ignore the deviation terms in , then h'*! would be an i.i.d. Gaussian vector with the
variance of the entries equal to 77 25:1 TLC /(7H? = 7. (The equality can be seen by using the
definition of 70 _in (67).) In this case, a concentration inequality for the MSE could be directly
obtained using standard concentration results, as described above.

The deviation terms in @ and are controlled via results in Lemma specifically the
concentration results in , @ and . The definitions of the terms Ay, and Ayyq e (see
(81) and ) involve a combination of vectors that are measurable with respect to .#; ; and %414,
respectively. We need several concentration results for scalar products involving these vectors in
order to show that the deviation terms are negligible. Lemmal7.6]lists all the required concentration
results, which are proved using an induction based argument in Section [8.3

7.3 Conditional distribution lemma

Fort > 1 and t, € {t,t+1}, we recall that .#;, ; be the sigma-algebra generated by the collection of
vectors in ([71)). Furthermore, let .% and .#; o be the sigma-algebras generated by {g°, By, w} and
{bo, mO, q°, Bo, w}, respectively. Given the vectors in , the vectors m%<, ..., mbta=1<c gOr . gt
are determined via for r € [R], c € [C].

The conditional distribution on A given .%;, ; is the same as the conditional distribution given
the following linear constraints:

AQ: Ity = Yiur re|R] [A* M.y = X, ce|[Cl. (74)

where Yy, , X are defined in , and Q} , My§ in . When conditioning on the linear
constraints in , we emphasize that only A is treated as random. In the following lemma, we
characterize the conditional distributions of the vectors [A*m"<]| 4, , and [A q"'];| 5, ,. This result
is then used in Lemma H to compute the conditional distributions of bt|y/m and h'*1| e

We write A, for the (r,c)" block of A, A for the rt" block of rows, and A for the ¢t block
of columns of A. We also recall that when r or c are used as a subscript, it refers to a row or column
block of a larger vector, whereas when r or ¢ are used as a superscript it represents a ‘full’ vector
whose entires depend on row block r or column index c. For a projection matrix Pl ¢ RMLxML
we let [P“]cc/ € RNexNe be the sub-matrix of of P!l composed of the ¢ block of rows and the ¢/t

block of columns. The sub-matrix [P”](q,) € RNeXML g composed of the c¢'* block of rows and all
columns and a similar definition is given to [P”}(_’C) € RMLxNc For a projection matrix pl ¢ rnxn

, the sub-matrices [Pl],, € RNXNr and [P”](,,.) € RM=*" are similarly defined.

Lemma 7.3. The conditional distributions of the vectors in satisfy the following for ¢ € [C]
and r € [R], assuming n >t and Qi and My have full column rank.

Aa"] |y, 200 and (AP |, E ST [Po A, + a2l (0)) | mie,
re([R)]
(75)
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and fort > 1,

[A qt7r]F|«5ﬂtt - Yt f7t "+ Z ( PJ_ c' A (r0) + Mar((Mg)*Mtc)il(XLC)*)thCU (76)

A e, E Xtca“+ > (P, Alen + Qen Q1) Q1) (Yewr)' )i (77)
re[R)

Here A' 2 A and A 2 A are random matrices independent of S114 and iy, and Pé} denotes the
projection matriz onto the orthogonal complement of the space spanned by the columns of Q.
The proof of the lemma is given in Section

Lemma 7.4 (Conditional Distribution Lemma). For the vectors 't and b' defined in (52)), the
following hold for t > 1, provided n >t and M, Q] have full column rank.

t
1 d / t+1 d Tc 41 /
hc‘yl,o = Tg,c Z07c + A1707c, and hc+ ‘y’tJrl,t = 72521 hc + Ti c Zt,c + At—i—l,t,a (78)

b0 L \f0Y, 2, , b ol 2 A (79)

For each t > 0, the vectors Zy = [Zy1,...,Zi.c]* ~ N(0,IyL) and Z) = [Zt,l,.. Zt RI* ~
N(0,1,) are independent of the corresponding conditioning sigma algebras. The terms '71 "and at
for i € [t — 1] are defined in and aé, and T#C are defined in (67). The deviation terms are

AI,O,C = |:\/1Z HmO’CH — \/E] ZO,C_ Z \/— Hmo CH PH Zo Z \/7; (3 -1 )

re[R] re[R]
(80)
and fort > 0,
=2 ot 1
At = Zblr%t T+ [WZ/ T- t:1:| + [L Hqtir - J_,r:| Zi, — NG H thc]
+ ) ME(MF) M) (X ) g - Z’Y” T+ oy (81)
ce(q
=2 Tt 1
_ i+l t c t c - t,c r
At—‘,—l,t,c = ;h + h |:Oét 1= 51:| + |:\/Z HmJ_ T C:| Zt}c f H Qt+1Z ]
+ > Q@) Q) (Yirn,)'m', + Zat e — dc (82)
re[R]

In (81), we recall that vi = oi/¢'"" for i € [t]. The vectors ZS ~ N(0,1,) are i.i.d. for c € [C],
and independent of Si¢. Similarly, in and (82), Z; ~ N(0,Ir1) are i.id. for r € [R] and
independent of 4414 Furthermore, Z}, = %CZCE[C} Z and Z; = ﬁ > relr 2t
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The proof of the lemma is given in Section

The next lemma uses the representation in Lemma . to show that htJrl is the sum of a
N(0,7t In.) random vector and a deviation term for each ¢ > 0. Similarly b is the sum of a
N (0,0t I n,) random vector and a deviation term.

Lemma 7.5. Fort >0, the conditional distributions in Lemma[7.4] can be expressed as

d =t ~ d vt o
hi‘+1|yt+1,t: h’c + At+1,C, btr|y”t,t: br + At,h (83)

where

t t
~t4+1 - 1 ~ 1
hy =1l Z \/TTC <71> Zie, Apic=TlY <TZ> Aiitic (84)
‘ i=0 ¢
VA
= ot Z NGw <JZ> e Ag=ory (a%) Ajir (85)
i=0 r

Here, for each 0 < i <'t, the standard Gaussian vectors Z; = [Z;1,...,Z;c|* ~ N(0,Iyr) and
Z,=1Z;1,...,Z; R] NN(O I,,) are the ones used in Lemman 4l Eqgs. and (79).

C’onsequently, = /T Zt o, and b = \/o Zt r» where Z, = [Z,l,...,ét’d* ~ N(0,Iyrp)
and Zy = [Z;4, . . ., Zt,R] ~ N(0,1,) such that for any j € [N¢] and i € [Ng], the length-t vectors
([Zodjs- -+ Zedy) and ([Zo iy - -, [Ze.)i) are each jointly Gaussian with

B{(Zsj(Zsdi} = \J78/m2,  B{ZsdilZsdi} = \Joifoy  forO<s<F<t.  (86)

Hence for any s <t we can write

-~y ot ot ot
Zt,c:ZSC —i—Utc T—Z and Zt,_Zsr +Utr 4 (87)

where Zs is independent of Ut = Utlj.. Ut ¥ ~ N(0,In1r) and Zs is independent of Ut _
(Ui, Uprl* ~ N(0,1,,).

Proof. The proof is similar to that of |41, Lemma 6] and is omitted. [

7.4  Order of SPARC parameters and state evolution constants

We recall a few facts about the SC-SPARCs construction from Section[2]that will be used throughout
the proof. There are L/C sections per column block of 3, with the non-zero coefficient in each section
equal to 1. Each block in the design matrix A can be viewed as a standard (non-SC) SPARC with
L/C sections (with M columns in each section), code length Ng = n/R; and rate

(L/C)In M R

=R~

Rinner = (n/R) C

For an (w, A, p) base matrix, C = A and R = (A+w —1). Since L > C = A > w, we have
w—1
inner < 2R.
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From @, we have max, Wy < Pg. From @, it can also be verified that for r € [R],

*ZWF’ éZW%WG) Z —M)i (88)

c€[C] ce[C] ce[C]

where k1, ko, k3 are absolute positive constants. A similar statement holds when the summations
in are over r € [R], with c fixed.

Studying the state evolution equations —, we see that ¢!, ol, and ¢! are all ©(1) for all
t > 0,r € [R], and c € [C], while 7{ = ©(1/In M) = O(L/n) for all t > 0 and c € [C]. This implies
that St = 7i(¢l)™1 = ©(1/In M) = ©(L/n). We will use the following facts implicitly. For ¢t > 0,
min,cr| ¢t = ¢} and min, ¢ R ol = ot, additionally, max¢[R] ot = d)tLR/Qj and max.c[R] ol = UtLR/2j‘

Furthermore, max, of < max, ¢ chzl Wye < 2P. It follows that for c € [C],

Sre =1e(¢n) 7" < L)) = S (89)

7.5 Concentration lemma

The next lemma uses the conditional distribution given by Lemmal[7.4]to prove concentration results
for various inner products and functions involving {b’, m®*, [ ans q""}. The concentration lemma
is stated in two parts. The first part gives concentration inequalities for inner products involving
the vectors {b°, m*“}o<s<t (Egs. 7). The second part gives concentration inequalities
for inner products involving the vectors {h**!, g¢*"}o<s<¢ (Eqs. (102)—(109)). These results are
proved using an induction argument that includes two other concentration inequalities (Egs.
and ) showing that that the deviation terms in Lemma are small.

The proof of Theorem [2| requires only one of the results in the concentration lemma, namely,
Eq. . However, the other results in the lemma are required for the induction argument.

To keep the notation compact, we use K, K’ , k, and ' to denote generic positive universal
constants whose values may change throughout the lemma statement and proof.

Let &£,=Z > 0 be universal constants not depending on n, €, or ¢t. For ¢t > 0, let

1 ’ K¢

_ =2t 14 _ _ = 7 _
Ky =E27(t) ™, K't_W7 K;=E(t+1)'Ky, Ht—m- (90)

We also define the following iteration-dependent quantities that summarize the problem parameters:

_ (Naw) (/R

— t+1

—Cly, = (91)

Lemma 7.6. The following results hold for € € (0,1) and 1 <t < T, where T is defined in (38).
1. Let u be an integer with u € {0,1,2}. Let X,, = const be shorthand for

7I{Iit,1(w/R)2(u_1)+7Tt,1€2 }

P(|X, — const| > €) < t*KK; 11,4 exp{ 5

(a) For c € [(]

—KKi—1 (w/R)(“1)+7rt_1e}

( Z LA >€) <BKK 1 1eXp{ 76

re(R)

; (92)
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(b) For all c € [(],

Z WY(b)*w, = 0, (93)
r€ (R
(¢) For all0 < s <t and ce [(],
Z WHY(b3) bl = Z Wiot, (94)
rE (R re[R
(d) For all0 < s,5s <t and c€ [(],
LW = SR S spawgop e, (95)
re[R] relR]
(e) For all0 < s <t and c€ [C],
72 Z WL Z S St Whet (= %Té when u = 1), (96)
re[R) re[R

(f) For TLC defined in and shown to be positive in Lemma and &€ defined in (62), for
allce [(] and 0 < i <t,

2

P(|a§fl — &Efl\z 6) <PKK; 11 1 exp {_’mt;#}, t>1, (97)
n|l tei2 6 —KRp_1Tp_1€2
P(z ZHml‘:H — Tj_ c 2 6) S t KKt_lﬂt_l exp {T} (98)
(g9) Let Mg, == 75 (Mg, )" My, . Then for c € [C],
P(Mtcﬂ is singular) <t"KK; 1Il;_1exp {%} (99)
For matriz ¢ defined in (65), when the inverses of M5, , ewist,
_ 2
P(lI0 ) = (€ | 2 €) < KK e {EEESE S 00)
2. Forv € {0,1}, we have the following:
(a) For all r € [R],
et R 2v, ./
P S WS e (A > ) < PR o SRSy
jEsec(t t
ce[q] tec
(b) For all r € [R),
o R 2 2
() Z \/7 h“‘1 * Or > e) < tSKKé_IH;_l exp{ Fohiy 1(&;{3 )€ } (102)
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(c) For all0 <s<t+1 and re[R],

—rry_q (W/ RV 162} (103)
t8(log M )2 ’

where for v =1, we note that %Zce[q Wttt = ottt
(d) For all0 < s,5 <t and r€ [R],

A L = e - L
(‘ Z rc[ Crs ” = 6) PRE T 1exp{ t8(log M )? }
(104)
(e)
W2v
( Z Z max ([hL];)? > 6(max W2)rllog M + 6)
]Esec([)
ce[q] Lec
—kkh_(w/R)7l_ €
< KK, 1exp{ e } (105)

(f) For O'H—l defined in and shown to be positive in Lemma and AL s defined in
62), for allre (R and0§z§ (t+1),

P =AY ) < Pt o { RIS
P[22~ 0] = €) < ORKL T exp { ‘“"tﬁfg% b aom
(9) Let Q[ 5 := %(QtrJrQ)*Q{H. Then for all r € [R],
P(Qy,, is singular) < " KK;_,II,_; exp { _Fmét_l; ((i;/glj\);;z—lg }, (108)
For matriz (~7t+2’r defined in , when the inverses of Qf o exist,
P(|(@1) ™ = (€77 M| 2 €) < O KL exp { _““%;;Eij) /g fj\f;é‘lg b a0

7.6 Proof of Theorem [2]
Recall from that ¢° = B8° — By. With v =0, Eq. (103) implies that for 0 < s < (T — 1),
sy () /R

l s+1 2 s+1 4 ! s - —
P(Z18°" = Boll* - Ze qw |2 ¢) < 5T KKL (RO Cenp { 15 (log M) +2
C

s —ks(Nrw)e?
Ky(RO)™ exp { (log M)§S+R2(F){/w)23 2
(110)

Setting s = (¢ — 1) and recalling that Ng = n/R yields the statement of Theorem [
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Remark 7.1. Although Theorem [2|is an immediate consequence of (103)), the other concentration
results in Lemma are required for the induction based proof of (103). Indeed, we write

*II“SHIIQ Z Iné(Be = R = Bel?, (111)
ce €]

and use the representation for h™! from Lemma The concentration results in the Lemma
are used in an induction argument to show that the deviation term is negligible in the sense of
(T01). Consequently, hi™ is approximately Gaussian, and hence %ZCE[C] Int(B. — hett) — B,
concentrates on a deterministic value, as described in Section The detailed proof of Lemma
is given in Section

8 Proofs of conditional distribution and concentration lemmas

8.1 Proof of Lemma [7.3l

For t, > 1, let sz and PJ‘; denote the orthogonal projectors onto the column space of Q; and

its orthogonal complement, respectively. Given the constraints in , for r € [R], we can write

A(rv') = A(rv') (Péia + P£2a> = A(rv') (Pl;a + Q;a((an)*Q;a)il(Q;a)*)

| 1 (112)
= APy + Y40 QL) QL) QL)
Similarly, for ¢ € [C] and ¢ > 0, we can write
Aco = (P + Phas) Aoy = Phzs Ao + ME((ME)" M) ™ (X10)", (113)
where we interpret the ¢t = 0 case as follows: Pf/[g =P =1 and PU\/IC = Pl‘) = 0. From ([112) and
(113), we have two equivalent representations for the submatrix A, o) € € RNrxNc,
A= Z ArC’[PcL,);a]C’c + Yta,r((Q;a)*an)_l(Q;a,c)* (114)
c€[C]
= Z [PJJ\_/Ig]rr’ Avc+ M;r((Mg)*Mg)il(Xt,C)*‘ (115)
r'€[R]

Using the representation (115) in (114), we obtain

Ac= > D [Pyl Avc[Pg Jee Z M (M) M) (X, o) PG, Jee
c’e[C] re[R]

+ Y, ((Q1,) Q1) (thc) ) (116)
and using (114)) in (115), we obtain
"C - Z Z |:)MC rr/ Ar’c’ PQr ]c 'c Z [PJMﬂrr’ Yta,r’((Q;;)*erf;)71(Q;&;,c)*
r'€[R]

relR] e
+Mt,r((Mt)*M§) N X o) (117)
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The first term in the RHS of can be written as Zc,e[q[PiIgl A](r’c/)[Péga]c/c. Recall that
conditioning on the sigma-algebra .#;; is equivalent to conditioning on the linear constraints in
with ¢, = ¢t. We note that the constraint corresponding to r in involves only the rth row
block of A, and the constraint corresponding to ¢’ in involves only the ¢’th column block of
A, for each r € [R],c’ € [C]. Therefore, since the entries of A are i.i.d. Gaussian, the conditional
distribution of the above term given .7} ; satisfies [14, Lemmas 10, 12],

d ~
> Pa APy loc| , = D PreAlie[Pg; loc (118)
celq] : ce[C]

where A £ A is independent of .} ;.
We first prove the two results in . We note that A is independent of .%( o and b? = Ag"" by
definition. When ¢, = 1 and ¢ = 0, that the result in (117) gives

I’C_Z ZII’FAI’C Or CC+ZIH’ bO

re[R] ¢’e[C] r'€[R]

—2 !\ * -2 *
(q2")* = [AP ooy + b7 [|a”]| 7 (a2")".

Using the above and noting that AP 20| F0= LY P « (by a similar argument to (118)), we have

Fo Z(A(nc))*m?’c |§”1,0 2 Z [[P‘JI_O’F A,*}(c r) + qgvr qu,rH_Z (b?)* m?,c'

re[R] re(R]

[A*mO,c] .

Next, using (116]) and (118) and multiplying by q"", we obtain

[Aq"T], ‘y” ZA(rC)qc ‘y”
ce[C]

d N\ % '\ — * _t,r r\kYry— ro\* . t,r
= Z Ay @i'e+ Y M5 (M5 M;) ™ (X10)'q o + Yer(Q)* Q) (Q) ) g

celC c’€[C]

Noting that ((Q})*Q})~H(Q}.)*q¢"" = ~"" completes the proof of (76). The result can be
similarly obtained, by using the representation in ((117) to express [A*mt’c]c.

8.2 Proof of Lemma [Z.4]
Proof. We begin by demonstrating . By it follows that

1
b |/00 A(]Or Z Arc Qgr i 6,r (\/Z HqO,rH> ’

ce[C]

where Zj , ~ N(0, In;) independent of %y 9. Furthermore, we have

‘ 3 1
’ o) = Z We [|22* = Z Wie ||Bocl” = Z D Wikl = o, (119)

ce [C] ce [C] ce(C]
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For the case t > 1, we use and to write

t

, Or i
bﬂy)t,t: ([Aqt7 }V ¢ m )‘/tt
' ot (120)
d A r r * — * r o
£ Parle) A @ + ey + D M (M§)"M5) ™ (X10) q + — 5 SEa
ce[q] ce[C]

Since A is independent of Sty with 1.i.d. ~ N(0, %) entries, the first term on the right side of ((120)

can be written as:

A [l e a llgt) gl ,
ST Pude Acgdl 2> N Piss Z) £ \/% Z, -y Nis [P|]|W§Zt°],, (121)

ce(q] celq] c€(C]

where in the first step, the vectors Z;¢ ~ N(0,1,,) are independent for ¢ € [C]. For the second
gl
) la'; ||
N(0,Ing). Using (121) and Y, = By, — [O]Mt_l (] X7, we simplify (120) to the following:

equality we use Pjﬁ =1, Pg\/_,c, and writing Z;J = Zce[q t,, we note that Z;r

b, L Bryt + = lg] zﬁm NP Z59),
\/> ce €]
ot (122)
+ 3 M (M) M) (Xeo) q' e — [0 My 1 JXy" + 7t
ce[C] r

All the quantities in the RHS of (122) except the vectors Zj, and Z° are in the conditioning
sigma-field. We can rewrite (120) with the following pair of values:

t d i1 Of [t o
br|«5’é,t = br O_t_l + O-J_,th,r + At,t,h
r
t—2 a't 1 |
t -1 t t, ’
Buae= St 4 87 i = g | 4 |l = o] 20 - 2 X el Pl 22,

i=0 ce(C]

+mewwwwwﬂcmMﬂmw+ﬁﬁx
ce[C] r

To complete the proof of (79), we note that (0| M,y r]Tr br= S rqf mﬁ_l.

For the result (78) we start by writing ht™ = [A*m?<]. — ¢, and using (77) for the conditional
distribution of [A* e given .#;11,4. We omit the proof as the argument is along similar lines as
the above. |

8.3 Proof of Lemma[7.6]

The proof proceeds by induction on ¢. We label the results in through as step B, and
those in through as step Hit1. The proof consists of four steps, inductively showing
that: (1) By holds, (2) #H; holds, (3) if Bs, Hs hold for all § < ¢t and s < ¢, then B; holds, and (4)
if Bs, Hs hold for all § <t and s < t, then H;;1 holds. Appendix [B|lists a few basic concentration
inequalities and other lemmas that are used in the proof.
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8.3.1 Step 1: Showing By holds

(a) Ag,0 =0, so there is nothing to prove.

(b) First, Y £ /o0 Zy, where Z, ~ N(0,In;) by Lemma Further, w, < oU, where
U, ~ N(0,Iy) independent of Zj . Hence,

PG| 3 waty ] 2) < PG| S ovamea o

re[R]
(a)

2 )
< Kexp nne }} < K exp{—rn(w/R)max{2u-1.0} 21

{max{é Yo, W2, max, W,

rc o

(123)

I’C’

In step (a), we use Lemma @ and that o) < 2P for r € [R]. 1In step (b), we use
max,c W2 < (PR/w)Y, and & >, W2 < P(PR/w)®~! for u € {1,2} (see (88)). Notice that
this is consistent with the II, 7 notation defined in and used in the stated concentration results
since II_; = 1 and 7_; = Ngw, and in particular, n(w/R)m&{2u=10} — Npe(w/R)max{2u=1.0}-1 >
Nrw(w/R)m&x{2(u=1).0} (the only inequality is when u = 0).

(c) Proving By(c) is similar to By(b) and results in the same bound: [|b°||? 4 JPHZ&,HQ by Lemma
therefore the result follows from Lemma @ and arguments as used in step ) of -
(d) Recall, m{¢ = S0 /W,c(b" — wy,), therefore v/We(b0)*mi® = SO W ( HbOH )*w,. Then,

(LNRZWrc bY) Zﬁmr )

re[R] re[R]

bO 0 *,wr
—P<!LR2sowu<‘ D

@ bf|° [ (0w,
2r(r 3 - 2 5)+ (g 2 (ol U]

(124)

€
2 3)
2

®) - 2 max{2u—1,0}
< K exp{—nne(w/R) )

where we have used Lemma [B.2 in step (a), and step (b) follows by By(b) and By(c), using that
fact that 257, is bounded above and below by positive constants for all (r,c).

(e) Proving By(e) is similar to By(d) and results in the same bound. We sketch the detais. First,
my¢ = SO\/Wie(b? — w,), therefore,

Z |my Z( 2I/Vrc Hb9 - er2 = Z (Sgc)2WrC(||b9||2 + ||wr||2 - 2(b9)*'wr),

re(R] re[R] re[R]

Next, ¢0 = (02 + 0?), and letting w, 2 54U, where U, ~ N(0,In), the result follows by Lemma
B2, By(c), Bi(b), and Lemma [B.9 as well as an argument as in step ) of -

(f) There is nothing to prove for since Hm = ||m%¢||? and 79 = = 72 and result (98) follows
from By(e) with u = 1.

(g) First, M§ := 7% (M7$)*M§ = 75 |m"<||> concentrates to 270 by By(e) with u = 1. Result
then follows from By(e) and LemmaE By Fact (C.1} if 75 Hm |2 > ¢ > 0, then M is invertible.
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Note from By(f) that %HmicHQ concentrates on 7 = 270, From (12), since ¢? > o2, we have

270 > "—]32 for all c. Choosing x = min{1, %Tﬂyc}, we therefore have from By(f) that

1
P(Mﬁ singular) < P<%‘Z||m(j_’c|’2 - Tj)_@

> K) < K exp{—cNgrw}.

8.3.2 Step 2: Showing H1 holds

(a) We use the expression for Aj . from Lemma [7.4] and write the second term in as

Z ”mr Pl Z)] Z Hmr { 2’<q°">*za} 3y lm?| [qg"ZF]
G VE e

re[R] re[R] qurH

where Z" ~ N(0,1) are i.i.d. for r € [R]. Recall, g2 = v/Wq? and qu’rH2 = LoV from (119), so

Z ”m?’c |:qg’r Zr} . v0 Z \/7rC||m 4 — Z(“]()(Z W>1/2
VL Ll VL HqO“H ‘ L*oy ’

re[R] re[R]
where Z ~ N(0,1). Using max;cec(s) H(jg]j}Q = MaXje sec(r) Hﬁo;]jf =1, for any section ¢ in ¢ and
the above, we have

WrCHm ||2

max |[Aq0c;]* < 7,0
C

jE€sec() - ‘ \/Z ¢

2
max, \[ZOCH +1Z2)
dese re[R]

) (125)
X e mee -1l
re[R]
We therefore have the following bound for ¥’ € [R], and v = 0 or v = 1 using Lemma [B.2.
ZZW”’ max ‘AIOC] | ZE)
cG[C] tec j€Esec(l
LW \/n\mOvCHQ \/mo 2 o €
< P(— re — e Zodil* = %) 126
- L CEZ[C} n L2 — ]géac)((e) |[ OC] ’ =3 ( )

W ’ 2P o 5~ Weellmr |1
#p(g S wa| S renrmee 'z §) + p(fe Swa SRR g)

ce[C] re[R] ce(C] re[R]

Label the terms on the RHS of (126)) as 71,75, T3 and we bound each separately.
Consider term T and let IIp be the event under consideration, so that 77 = P(Ilj), and define

an event F as
max’\/ Hm0°|| \/
ce[c] n

€

(127)

- (maxc/e[q w2y )9logM}

r/c/
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With this definition, Ty = P(Ily) < P(F) + P(IIo|F¢). First,
- ne )
'V (maxggq W2Y)9L log M

GEDS P(\\/z o] — [t
ce[q] r'c!

(a) N V/L)ey —kN
maxe [c] Wr, U maXcse(c] Wi,

(128)

where step (a) uses By(f) and Lemma E, and step (b) the fact that n7?/L € ©(1) and nR =
Llog M. Next, by Lemma[B.9, using that Zc is independent of the event F for ¢ € [C],

P(IIy|Fe) < P(— S ma [[Zo.]; > SIOgM) < Kexp{—kLlogM}. (199
jEsec(£
ce[C] Lec

From ([128) and ([129), we find

—kNRwe

T; < KCexp { } < KCexp{—+'n(w/R)"?}. (130)

HlaXc/ = [C] WI’/CI

The final inequality uses max, W2’ < (PR/w)?’, thus Ngw/(max,c W2') > kNrw(w/R)?".
For term T5, we use result Bo(d) To see this,

np(e 2w r% (%@9)%‘3@ Mg > )
() ﬁ . o .
< Cg[(::] (‘ rGZF;] ( C 9’ SO WrcO' )’2 > ZCGCTGCI/C> < KCe (w/R)H+ .

In the above, step (a) holds because & L ZrE[R] SY W, = 1, which can be verified using S = 70/¢?,
and the state evolution equations in (L0)-(12)). Step (b) uses that 0¥ € (1) and LemmaE Step
(c) follows from By(d) (Eq. (124)) With u = 1, noting from (88| that Zc el We W2,/C = 0((R/w)Y).

Finally we bound term T3. Note that for any r,r' € [R], we have ¢ >_celq] W2 = 0((R/w)Y)

since v € {0,1} and ¢! = ©O(1). Furthermore, from By(e) with u = 2, for ¢ € [C] the term
77 DrerWre [m{||? concentrates on ”L—AQR Zre[R](SPC)Q W2 ¢? = O(R/w), with the deviation prob-
ability bounded by Bp(e). We therefore have

T; < P(Uce[q {]’\fz (;Y R Z:VV}CHmOcH2 6})

nw 0,c(2 W2 40 2 Nrwe
<> P(fom Do WielmP<|? < 2- L2R2 7 2 (SRPWagr) + P(12P 2 )
ce[C] rE[R] re(R]
(a)
< CK exp{—#rn(w/R)} + exp{—n(w/R)"e/x}, (131)

where step (a) follows from By(e) and Lemma @ The overall upper bound is exp{—rn(w/R)* e},
which is again consistent with the II, © notation defined in for t = 0.
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(b) From Lemma we have hc\jl 0= \/ YZc+ Aqpc. Using this, we obtain

) <pl| 5 i ) (5 i Rise

IOCqC

Pl vt

Label the terms on the right side as 717 and T5.
Consider term Tj. Since g2 is independent of Zy, we have ZOng rd g2’
N(0,1) and [|g2"||? = Wic||Bo.c||> = Wic(L/C). Therefore,

Y VW Z; Lz ( Zr % </1]ZM/
ce[C]

where Z ~ N(0,1). Recall, n = NgrR, therefore T1 < P(x|Z|+/R/(nw) ) < exp{—rNrwe?}.
For term Tb, observe that }_;c...(r)a 01 = —/We for each c € [C] and sectlon lec,

Z \/ rc ’A1 0,c q(g7r| = Z Z V Wie ([Al,O,c]Z)*[ ’ Z ZWrc zel?ixz)| A10<:] |

celC] ce[C] Lec ce[C] Lec

¢, where Z¢ ~

rc

Now (£ 3 cerq) Soree Wre maiesee(e) [[A1,06)i)? < £ Yeeiq) Soree Wik maiesee(e) |[A10if* by Lemma
[C.2]and therefore by Hi(a) with v =1,

T, < p<f Sy w2 ma [[Avocl 2> né) < KCexp{—rn(w/R)3}. (133)

ce[C] Lec i€sec(l

(c) We begin by showing the result (103) for s = 1. Recall that 12(8 . — h¢) — By and hi‘%,og
/70 Zoc+ A1 from Lemma Therefore, by Lemma @,

(5w e (M2

= (% Z ( 1(Boe — VT9Zoc — A1) 50,c2*¢é> ZE)
celC]
gp(é S w, ( (Boe — V7B Zoe) ~ Boc| W) —2)
ce(C]
+P<%ZW?§( 2 (Boe — V10 Z0c — A1) ﬁo,c — [[n(Boc = V70Z0.) = Boc 2)‘2%>

ce[C]

Label the two terms on the RHS as T} and T5.
To bound 77, we write

—P(%)ZW%ZOW (Boe ~ V2 Zoe) — Bo el — vd)| = 5). (134)

ce(C] lec
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and apply Hoeffding’s inequality (Lemma E) To do this, notice that (HW (Boe — VT2Zoc) —
[Bo.Jell> — l) is bounded in absolute value by 1, and has zero mean. Indeed,

Ezo |17 (Bo.c = V70 Zo) — [Bo Jell* = Ep,zo 0] (Be — V72 Zo.e) — 1Belel® = ve, (135)

where the first equality is true for each B, € Bas,r, because of the uniform distribution of the non-

zero entry in each section of B over the M possible locations and the i.i.d. distribution of Z.

The second equality follows by Lemma Applying Hoeffding’s inequality to (134), we obtain
— kL2 —kLe?

2v } =2 exXp { 2v

(ZCE[C] Z@Gc Wrc ) (Zce q] W /C

where for the last equality we have used .
Next, we bound term Tb. To save space, we write 1°(8g — \/70Zo — A1) to mean ng(,B(),C —

\/ T, ZOc Ach FiI‘St,

1n2(By — V/T0Zo — A19) — Bocl* — 0By — /70 Z0) ﬁocH2
= [n? 50 \FZO—Alo — Bo.J (B — \FZO—AIO 2By — V72 Z0)] (137)
—\VT0Z0) — Bo.J M2 (By — VT0Zo — A1) — 0—\/7?20)].

T < Zexp{ } = 2exp{—kL(w/R)eX},  (136)

Using this, we have

ngP( >w

celC]

+P<f Z Woe|[nd(Bo —

ce(C]

— VB Z0) = Bo I 2By — /7020 — Avo) = (8o = VR Z0)]| = )

Label the terms on the right side above as 15, and T5. Then,

—/19Zy — A1) — 1) (By — \@Zo)’ > %)

(a)

L.iP(; LY 2

ce [C] Lec jesec(l)

P(ZZ 0 HZ%) (138)

T jEsec(t
ce[C] Lec
(C) ) Kk2e2 (d) _K:n(CU/R)QV+1€2
— v > — | < .
P<L cez[;:]%w jesect?) (Aol (logM)2) - KceXp{ (log M)? }

Step (a) holds since |77] [30 VTOZ0) — Boj| < 1 for j € [ML], step (b) by Lemma and step
(c) by Lemma and 70 = ©(1/log M). Finally, step (d) follows from H;(a).

Using Lemma @, it can be shown that term 75} also has the same upper bound. This proves
the concentration result for s = 1. Proving the result for s = 0 is similar: we use Lemma @
followed by Hoeffding’s inequality and Lemma
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(d) Recalling ge" = v/Wie[n(By—h') By ], we write 3 ciq () ac " = > cerq) VWre(he)*n2(Bo—
h') + (hl)*q2", and therefore, by Lemma @,

P 3 (a9
_P(E‘ ZW'C[ﬂhi)*n?(Bo—hl)eri} >+P< ’Z VWiee(hL) g0
ce[C]

By H1(b), the second term in (139) is bounded by KC exp{—ﬁ;n(w/R)?’eQ}. Using the conditional
distribution of h'! stated in Lemma and Lemma @, for the first term of (139) we write

P(gl Z Wee (5 (Y0280 — 1) +0)| = ©)

> ;) (139)

< (C\Z;W( (V2 Zoc + Aroc) n(Boe — Vi Zoe — Avoe) + )| =€)
<P(; Zi Wee| (A100) 1 (Boe — V7l Zoe — Aroe)| 2 e)
+P(c % Wee (T V725 2(Boc — v/ Zoe) +01) | 2 ) (140)
+P(5 gfwrczm[ncﬂm VBZoc ~ Aro) — nelBoe — V2Zo)|| > e).
:

Label the terms of the above as 11,715,735 and we bound each individually.

For term T} notice that 71 < P(% ZCE[C] Y e Wie MaX;e sec(r) |[A10.cli| > ke) and therefore the
term can be bounded as in using H;(a) with v = 1.

Next consider term 75 of (140)). Because of the uniform distribution of the non-zero entry in each
section of @ over the M possible locations and the i.i.d. distribution of Zq, for any By € B, 1,

we have Ez,{Z{ 1 (Boc — /70 Z0c)} = EZo,ﬁ{ZOCnc Boc— VT2Zo.c)}. The expectation equals

L
\/>E{Z()c77c BOC \FZOC} EHUC /30c \FZOcH2 *b 1 (141)

where equality (a) is obtained using Stein’s lemma, Lemma [C.3] (see [4, p.1491, Egs. (102) — (104)]
for details) and equality (b) from Lemma Now, using (141) and the fact that 70 = ©(1/log M),
the concentration result from Lemma [C.7] yields

(L‘ZfWcm{ZOC 0 (Boe — V10Zoc) — E{([Zoc)e) nf (Boe — VT0Zo )} ”Zf%)

ce(C] lec
< exp{—rL(w/R)e*}.
Finally consider term T3 in . First,

T3<P ( > \ﬁWcm e \ Zolel Y (B0 = V12Zo — Avo) = ) (Bo = VT Z0) | /%)

cE[C j€sec(l)
(a) (®) —kn(w/R)3e
<P > < e
( Z \F ZkeschE)| Zolk ]emax [[A10]f] /%) < KC exp{ (log M2 } (142)

ce(C]
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Step (a) follows from Lemma [C.5] and step (b) is obtained as follows.

ZZ max |[Aroc;| max ][ZQCMZHE)
esec(?

ce[C] tec 0 jesec(t) k )

(o)
< p(f 3 ZWrc]érslix [Aod;], max [1Zocil 2 wev/Ifn)

ce[C] Lec
@ 2 9 _ KEL
SP( ZZkESin)| ZZW ]gi@ﬂAlOCH > - >

ce[C] Lec ce[C ] Lec

2
2 Kke“L

<P< 2 ZkEseacX@' Zoclil Z31°gM) +P<* 22 W ¢ jnax [[Arocl; 2 3nlogM>

ce[C] Le ce[C] tec
© _ .. —kn(w/R)3e2
<e —I-KCexp{W}. (143)

Step (c) follows by using 70 = ©(L/n) and step (d) by Cauchy-Schwarz. Finally step (e) follows
from Lemma [B.9, H1(a) with v =1 along with nR = Llog M and n = RNg.

(e) From the conditional distribution of h! stated in Lemma and Lemma @, it follows that
([hé]j)2 <272([Zo,c)j)* + 2([A10,c);)? for j € sec(f). We therefore have the following bound:

Z ZW2V max ([hl];)* > 6(max W27 log M + 6)

CE[C | tec jEsec Z)
<P Z ZWQV[ max ([Zod;)? + max ([Arod;) } > 3(max W2')r 10gM+e/2)
CE[C] Tee jEsec(£) jEsec(£)
< P(— Z ZWZV max ([Zo,c]; ) > 3(maxWr%")logM) —|—P(— Z Z max ALO,C]j)Z >
Q) tee  Jesect c celq) teciesectt
(a)
< 2exp{—rLlog M} + KCexp{—rn(w/R)>Tte}. (144)

The inequality (a) follows from Lemma [B.9 and H;(a).

Or)* 1,r O,r)* 1,r

(f) We first prove ({106), then (107)). Recall, ’yol’r = (q”(;w"'lz =l La9q . Then since ’Yé’r = o /oy,
result (106) follows directly from #;(c) with v =1 as %ZCE[C] Wbl = o} and o? € O(1):

> g) = P(‘%(qo’r)*ql’r — O'rl‘ > ea?) < KCexp {W} (145)

1

1,r Oy
P(’y’—f
0 0

Oy

For ([107), by deﬁnltlon ||q H2 " rHQ — (v")? |q®" 2 ||(117'VH2 — (79")?Lo?. Using this and
the fact that UL,r =ol[1 — (o} /oV)], we obtain the following upper bound:

P15 otz =10y - i a5
L2 € ol)? € kn(w/R)3e
< o 1 o 5) +P(‘( - EO‘P;Q‘ = 209) S KCex { (1 (g]/wl:{))2 }
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The second inequality follows from H1(c) with v =1 and (145) above, along with Lemma [B.6.

(g) Note that ||q07"H2 = Lo¥ by and, therefore, Q] := % HqO’rH2 =09 = C". So results
and are trivially true for Q7.

We now show ) for Q. Recall, [@5]541,5+1 = £(g%")*q">" for 0 < 5,5 < 1 and, therefore,
by Hi(c) with v = 1 [Q2]5+1 s+1 concentrates on a}max{s s By Lemma @, if Llg}? > x>0
for all 0 < s <1, then Q3 is invertible. By Hi(f), Hqir

Lemma Choosing k = 3 min{2,09 o'}, using H;(f), we therefore have

Lr)2 —kn(w/R)3e?
) () < e { M)

2 S S
concentrates on o |, and ol ,>0 by

0,r 12
P(Qg singular) < P(‘Hqin - Uir

Now we show ([109). Since

(@)~ = L [ g2 —<q07f>*qlvf]
2 l’rHQ _ ((q07r)*q17r)2 _(ql,r)*qO,r ”qO,r 2 )
and . .
~2r 1 o —0
C) =173 [ ' ]
) = oo = (o1 |-t o

element-wise concentration of (Q5)~! to (C’2 )~1 follows from #H1(c) with v = 1 using Lemma @,
Lemma [B.3, and Lemma [B.7.

8.4 Step 3: Showing B; holds

We prove the statements in B; assuming that By, ..., B;_1, and H1,. .., H; hold due to the induction
hypothesis. We begin with a lemma that is used to prove B;(a). The lemma as well as other parts
of B; assume the invertibility of Mg, ..., Mf for all ¢ € [C], but for the sake of brevity, we do not
explicitly specify the conditioning. The induction hypothesis implies that for 0 < s < (¢ — 1), the
large deviation bound in gives

( S WAl = e) < KKy 111y exp{— ko1 (w/R) D+ r,_oel.
re(R]

Similarly, for 0 < s < (¢t — 1), we can use the values K; 1, k;—1 in prefactor and exponent, respec-
tively, of the bounds given in (93)-(109).

Lemma 8.1. Let M{ := /5(M$)*M{ and v = 75(X )" qi’c If My, ... ,Mf are invertible, we
have for j € [t — 1] and for all r € [R],

J 2.1 2
cy=1y,hc t,r Or 2 / _’%Ht—l(w/R) Ty_o€
(’ EZ[%S Wi[(MF)™ li = e > e) <t KK 11, exp{ Fi{log M2 },
(146)
— Kk R, ,e?
t—1 oy—1,rc < 2 / K1 (w/ t—2 _
(‘ %S Wie[(MS)~1v"el, > €) < KK IT_yexp { Allog 37 !
(147)
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~ t7 — .
Proof. First note that (M$)~! concentrates element-wise to (C C) L'by Bi—1(g). So before proving
(146) and (147), we state two results providing concentration and boundedness guarantees for the
elements of v"¢. For for i € [t], define

max{z 1,t—2}

Eic=— E~§r1q;t LW, ( —2> (148)

7'c
Notice Ejc = ... =E¢_; = 0. Then, we will prove that for ¢ € [t] and B > 0, a universal constant,
L . —kki—1(w/R)?m]_q€?
P(’ Z \/Wrc(gvgc _ Ei,c) > e) < KK IT exp{ Pilog 117 } (149)
—rkt1(w/R)*m_y
(Z VWi . ) < tK K, IT,_ 2exp{ 2(log M7 } (150)

ce(C]

We prove the main result using ((149) and (150), and then prove (149) and (150). We first claim:

t

*ZZS W (™) ok Bre = 5, (151)

ce[C]k 1 r
;ytr

— Z ZS (") Bre = L 1K< (1), (152)
cE[C | k=1 or

The result (151) is obtained as follows using ((148).

Z ZS C™) g B = — Z Sl C )Y Ere (153)

ce[C]k 1 CE[C
n%lztl t—1 tla%lz -1 _ 7t1‘7t1 or
Sre Whe ) ]tt‘I/ ( t—2> = a1 WiV = T T e
ce[C] Te Cor ce[C] o Or

where step (a) uses Siz! = 7171 /¢t=! and [(é’t’c)_l]tt Lt~ Cl) which can be seen as follows.

o tc . aost—1c . . . . .
From the definition of C"* in , it 0" s invertible, using the block inversion formula,

vt—1l,c, _ CIN—1 A f—
&= ( o L G M T R ). s
—ﬁ(ﬂ,c) (@'=he)r 7 J_,c)_
—1,c

where we have used at=te .= ZTg 1(C )y H1,...,1)* and 7L Tt 1(1, oo Datthe = it
(Tf_l)z/Tf 2 = TJ_ cl Result is obtained using steps similar to ) to show that the LHS of
(152) equals

~t,r ] 1 ~tr g
’Yt 1 =14 t lc 7] ar
r ce[C] ¢ r

where the last equality follows from the fact that for j € [t — 2] we have 'Ay;i’r =& 0, and if

— Ai—1c t—1 7 t—2
j =t—1 then since &;_;" = 7. /7.7,
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We now prove (147). Using the result in (151), the LHS of (147) can be expressed as follows:

P(| 3 s Vi z_j (149 v - PC™) B 2 )

ce[C]
(%) Z (7‘ > o 1/ Wie [ [(M§) ik (%v?) _ [(ét,c)_1]tkEk7C} > %)
celC]
(155)
- ;P(‘ cezm[(étvc) o (T VW (05~ Be) 2 57)

In the above, step (a) follows by Lemma E 2 and Sit = 771 /¢t=t with ¢i=! € ©(1). Step (b)
follows by Lemma [B.2 again. Label the terms on the RHS of ([155) as 77 and 7. Note that term
T has the desired upper bound using (149) and that the non-zero elements of [(é’t’c)*l]tk (ErEh

are ©(1). Now consider term T5. Using that 27! is ©(1) for all ¢ € [C],

7y < Y P( X VAR5 e~ () L] > )
k=1 ce[C]
-3 (oWl i z?)w(ucem{][(M;;)-l]tk—[(ét‘)—mk{z—z’j;“R})}
k=1 ce[C]

3 [ € > )+ 5 V|

>

—kki—1(w/R)?m]_oe }
t2(log M )? '

—kk—1(w/R)?m_o€?
2B?

<tCKK; 1II;_oexp { } + tQKKt,1H2_2 exp {

(156)

The last inequality follows by induction hypothesis B;_1(g) and (150 - The final result follows since
Cll;_o =11, , and m_9 = m,_,.
We next consider the bound (146). First, using Lemma @,

P 55 v 2 29
eelcl (157)

~tr g

< P} -3 2 2)+P(\zszsmz o) e - 2| 5,

The first term on the RHS of (157) is upper bounded by K K; 111, ; exp{—rr;_1(w/R)?m,_,€?/(log M)?}
using H;(f). Using result (152), the second term on the RHS of (157) can be written as

P(| 3 sk WTZ[ PR ((e i P W [ L}

ce(C]
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which can be bounded using steps similar to that in (155).
To complete the proof, it remains to prove the bounds in ((149) and (150). Note that for i € [t],

L \/Wr 3 vi—1\% 1 WI’ 7 ’L r
IV Woevi© = Y (Rl a7 g = (Y k-t ) (at Z gy, (158

where we have used the fact that qj’_rc = qf;’r — qﬂ'c = qz’r — Z; %)'yj q¢’". We first prove result

(149). Using (148) and ([158), we can bound for the probability in as:
Pl 3 Vet i) 2 )

ce[C]

max{i—1,t—2}
<1ZW I =) 5 B
(| 32 [gtae @ - e - T (st 2 )

ce[C]

Label the terms on the RHS of (159)) as 77 and T, and we bound both. First, for any i € [t],

re r \/7rc * ]’ €
T1<P(‘c%2ﬁ[ © L] > )*ZP(\t 2 = > =)
(‘ > ﬁ[% 1#+ Af'lmq/tcl ;ZX{Z . 2}” > %) (160)

ce(C]

—kki—1(w/R)?m]_q€? }

t2(log M )?

(0)
< tKK; 4II,_5exp {

Step (a) follows from Lemma[B.2, and step (b) uses H;(d) and H;(f): the bound for the first term
follows directly from H;(d), while the bound for the other two terms uses H;(d) and H.(f), along
with Lemma E and Lemma E Noting that 41", (rfla"“_l’t”}/rg*), and Wi~! are all ©(1)
terms, we observe from that ¢ >, Wi Wt (7o l=LE=2) -2y 45 als0 O(1).

The second term 75 on the RHS of can be bounded similarly using Lemma [B.2, H;(c)
with v = 1,H;(f), Lemma @, and Lemma @

Next we prove result ([150). Using we have for k € [t],

PO Vel 2 25) = (X 1| (Vivent - a) z% ai)| = %)
celC) cel[C]

t—1
< P(% > [V Wielnty at| = %) +P<%Z e S Vel alt| = %)
celd 7=0 )
t—1
P(p 3 farar| = )« PR X P X e a2 ) o
w j=0 ce[C]
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We now provide upper bounds for each term of (161), labeled as A} — A4. We note that these
results don’t follow directly from the induction hypothesis as they involve the sums of the absolute
values of the inner products over the column blocks c. First notice that by , for any 0 < s <,

Wrc 4VVrc
=Y l el <y == c <4, > = Ve Y 1163 < 20/ Wie.

ce[C] celC] i€sec(l) i€sec(£)

sr”

llg*r”

(162)

For reasons that will become clear in a few steps, we take

B= 4(1 + (3", + 1) max {4/@1, V2470 log M + 1}) (163)

(Note that 701log M € ©(1)). First, we claim that third term, As, in (161) equals 0. Indeed, using
the Cauchy-Schwarz inequality and (162),

1 _ .
T30l a1 3 ek ] < gt ] < (164)
ce[C] ceC]

Since % > 4”1R > 4kq, it follows that A3 = 0. To bound Ay, from we note that B >
4+ 16/11|’yf r1| =4+ 16K, Z] Ofyj " since ’yé’r =...= f“yf "y = 0. Then, using , we have

t—1
aoxP(X 2 ron) sp(,zowf S
2

t—1 2 1

. 1 —kki—1(w/R)*m,_q€
< P( 57> )<tKK_H’ { }
2\ TS ) = PR P AT  p log A2

Atr

4%1)

The last inequality uses inductive hypothesis H;(f). Now consider 4;. Using (162), for 0 < j, k <,

< 3 VT s o] X b < 30 S0 [t

zEsec(E) —r ] rec ZEbeC Z)

)"l
ce[C] ce[C] fLec

Z‘mhk

(165)

From ([163), we have

BR _ R
— > (3 + ) max {4m, V/247010g M + 1}) (3 + 1) \/24 max W2)70log M + 1, (166)
w

where the last inequality holds when the constant x; is chosen to be large enough since max. W =
©(R/w). Therefore, using Lemma and H¢(e) with v =1 since k € [t], we obtain

2, BR
A <P re (hk
L= <c§[2]% L zEsecZ) 4W)
1 2 k 2 2 —ririe—1(w/R)?mi_y€?
c c
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Finally, using (165), Lemma and (|166]), we bound term Ajs:

2W,
As < P( < ’ [REL| Y 1 )
P= P2 2T > W
9 t—1 . t—1 .
< Wa kS s 24,0 ) < ) r| ‘A e )
P(Cg[g gze; ler?eac)&) ‘[hc]z > 24(méiXWrc)Tc logM +1)+P ]Z::O gl jz:;) v+ 1

Then the upper bound follows along the same lines as that of A; and A4. This completes the proof
of (150), and the lemma. |

’

(a) Recall the definition of Ay, from LemmaEq. . Consider the term % > lld Cll [PH Z5y,

where Z; ~ N(0,1,,). Using Lemma |C.6 P|J|VI§Z;C 4 S ™ Z5 for i.id. Z§ ~ N(0,1). Then

I=0 |Ime|
||qi7_tCH H ||q jc c 11d N
Z i3 PMC Zt Z Z HZJ, 1z }CE[C] 0<j<(t—1) (0,1). (167)

c ce[C] =0

Noe we simplify the final three terms of A;;, in . Using the Lemma notation M, v",

t

Z M Mt *MC) (Xtc *qirc Z M -1 Vi€ — Z Z mg—l,C[(Mg)—lvr,C]j‘

celC] celC] J=1ce€[C]
Therefore,
> M (M) M§) (X 0) g - Z% iy 4 vl (168)
ce[C]
=1 ‘
= Y S VWl M)V ] Y STl (M) T .
j=1 ce[q) e[

Using the expressions in (167) and (L68) in the definition of A, in , by Lemma

|Aud” f(vt,,&w 6 + (|20 [Hqtg” ] ZZ > el |1
= i i r tr L ,
2t +1) — & VL oy L|m%c|12

12 2

+ZHmJ R[S Wl M)y = | R Y St Wl M) T+ o
celC] celC]

(169)
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Applying Lemma @, with & = m, we obtain
2 \- e aerplBll
( Z rc’ HAt,tJH > 6) < ZP< Z rc’ — % N > Et)
re[R] i=0 re[R] R
20|z, |17 72~ A Wl P mIS
+P(g 2 W U [Pz r(E Y Y e 26)
R r€[R] j=0 ce[(] HmL |
t—1
1 |l 12
+ P(ﬁ Z rc ”m ” ‘ Z S rc MC)—lvr,c]j _ 'y;?’rvﬂ > €t>
J=1 re[R] celC]
1 ’Hm 1”2 t—1 c\—1,,r.c t2 ~
FP(g X0 | X S W) | 2 6). (170)
re[R] celC]

We label the terms in (170) 77 — 75, and show that each has the desired upper bound.
First, using Lemma [B.4 and induction hypotheses By(c) — Bi—1(c) and Hy(f):

Hb’||2
T < P( I,naéd% —ATEY W > Et)
i=0 €[R re[R]

> [r(| S w 4"””2 %> V&) + X Pl - a2 (1.5 BETY)
i= re(R] re[R] re[R]
—kkir_1 (w/R)2U= D, oe

t2

<tKK; 11;_gexp {

—krip1 (w/R)ZFU D47l e
t2(log M )? }
(171)
For the second term we have used that } g Wi¢/R = 1if u = 0 and for u € {1,2} we have
ZrE[R] WH4/R < k(R/w)'~! (see (88)). We have also used the fact that o! is bounded above and
below by positive constants for 0 <i <t —1 and r € [R].

The second term in (170)) is bounded using Lemma [B.4 along with induction hypothesis H¢(f),
Lemma [B.5, and Lemma [B.9,

} +REK; 11T, exp {

T, < P( r; u |z, rH2 IE[R]‘HQL | UL/ 2 . é)
< & (Ml oL 2 amin 3 ) (i T we [ |2 va)

r'e[R] re(R]
_ B R)2+(u—1)4 -/ _ R)2u—1
kK1 (w/R) 7Tt726} _|_2€Xp{ nne(w/ ) }
t2(log M )? t2
We note that air is bounded below for all r and we have used that }_, .z Wie/R=11if u =0 and

for u € {1,2} we have 3, g Wre/R < K(R/w)"~t (see (8Y)).
The third term in (170) is bounded as follows. For all r € [R] and ¢ € [C], using Lemma

< RKK;_1IT,_, exp{ (172)

t—1 t—1

o rod 2 Wr t+1 o 4Wr t+1 r
2 7' <°7[ a| +Z 2]§°(C)[1+Z(vf’ 7.

i= 1=0

qucH Wie
L T L
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where the final inequality follows as ||%|> < 4L/C for 0 < i < t. Therefore,

Ts < P( Z Z > 4ch’W (t+1) [1 + Z(fyf“)2] I A mj;r||2 > et). (173)

re[R] j=0 ce[C] i=0 [

Now considering the RHS of (173)), note that if {( N2 < (ﬁt’r)Q—i—l} forre[Rland 0 <i < (t—1),
then since (3;")? + 1 € ©(1) for r € [R] (meaning 1+ >'_}(7/")? < &t for a constant x > 0),

17 ||2

2y y Wl Mﬁ Ak

re[R} J=0 ceg[C]

KkZ2t2 maxrc{ 2 Wi} ifrHQ KZ2t3 maxy{ WL, Wi}
: 5y Ll )
re[R] 7=0 c€[C] my

Using this argument in (I73) and noting that max, {WY W} < (PR/w)"*! we obtain

T3 < Z Z ( (A2 + 1) + P(Z > /inet(w/R)”Jrl/tg)

=0 re[R] (174)

Kkki—1(w/R)?m_, 1
< RKK,_111,_, eXp{ T : } + 2exp{ - tgﬂNRw(w/R)Ue}.
The final inequality in (L74) is obtained using H;(f) and Lemma [B.6 for the first term, and Lemma
[B.9 for the second term.

Now consider the fourth term of (170):

e S Y | 5 s )
j=1 r'e[R]
SWI(>s MW@WwﬂP¢® 7
j=1 re[R]
+Z Z P(‘ Z S *1W -1 vhel; —7;%5 ’ > €t/(2max{1 Z o O 4 ))
Jj=1re[R] ce[C] re [R]

—rhir_1 (w/R)20 Dy ge —rike— (w/R)ZHO- ”*7#—26}
2 t6(log M)?

Step (a) follows by Lemma|[B.4 and (b) by the induction hypothesis B;_1(e) and Lemma 8.1] noting
> rer) Wre/R=1if u=0and ZrE[R] W4 /R < P(R/w)'~! for u € {1,2}. In particular, B;_1(e) is

used as follows. First, recall |[md "¢|2 = (5% 1)2Wic||7n 1|2 and ﬂSfc_l € O(1). Therefore,
J 1”2

Py 5 e[ o) = va) < (3 5 e G V[ ] o)
(S s 3 a2 o).

re[R] re(R]

®)
< tKKt_ll_[t_gexp{ } + 8 RKKt_lng_Qexp{

[
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Now the result from B;_1(e) can be applied directly.
Finally, the last term in ({170) can be bounded using the same arguments as for the fourth term
o= (RC)*"1 <RII,_, = RCIl;_o = I;_4

To see the overall concentration result, notice that II;_o
and (w/R)2U=Dim,_y > (w/R)*Hu=D+7! , /(log M)? since m;_9 = 7, and u € {0,1,2}. Finally,
(w/R)u~ 1)+7rt,1. Therefore we have the bound in (92))

(w/R)*F = Demi _, /(log M)? =
(b) Using by, ,= / (7., + At,r, by Lemma where Zt’r ~ N(0,Ing), and w, = oU, for

rl e —
~ N(0,In,) independent of Z;,, we have by Lemma [B.2

g 3 e 2 ) = Pl 2w (v mﬂf‘x?)\_;>
B £ of] SwlS)es) o

NRr

<P(lg Xwe

re[R]
To bound the first term in the above, we recall that Z ¢r is independent of U,. Hence, using Lemma

B.9 and the same argument as in (123), this term is bounded by 2 exp{—rne?(w/ R)ma"{Qu L 0}}
For the second term in m we first obtain a concentration result on the norm of At =

(ot/o8) A iy, as defined in Lemma |7 . We have
2
€ ) (177)

Yizo
P(s ZZ( r) L N

P( Sw, HA“H2>6)
re[R] re[R] i=0
! { — tllmt 1(w/R)YW D, 162}

b) & ke (
< Z ( Z Ay (t—|—1)2> < t*'KK; 111,y exp
=0 re[R]

Step (a) follows from Lemmamand step (b) by Lemma @, using that o} € ©(1) forall0 <i <t

2>

—~

a
Finally step (c) uses the result from B:(a) above
Next, using AZ U, | < ||A¢|/[Ul, the second term can be bounded as

Pl 2[5 }—QZ)SPQEZW R a7
%(Z AR S WU > 5e?)
re[R
R )=

re[R]
> wi)+r(gZw

b
P( S W \Atr\|2>ne2/(2max{1
re[R] re(R]

<

—
=

re(R]
1
< t4KKt 111, 1eXp{——/ﬁ;/§t I(W/R)z(u_l)+7rt_1€2}.+2€Xp{ KIE w/R>max{2u 10}}

Step (a) follows by Cauchy-Schwarz, (b) by Lemma@ and (c¢) by Lemma@ and (177).
(c) Let 0 < s < t. By Lemma (7.5, b|s,,= /o otZ;, + Ay, and bs\/“ \/>Z$r+A5r, where
Z, ~ N(0,In,) and Zop ~ N(0,Ing), such that for any ¢ € [Ng], the entries [ZS i [Zt /i are
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jointly Gaussian with covariance E{[Zs J:[Zi,)i} = \/ot/os. Now we use Lemma @ and the fact
that of € ©(1) to write
> 6)

(‘ ZWU bs*bt_*zwriﬁ
:P(’ Z [\FZ,:M—A“ \/aisZsr—i-Asr) t}
R

re(R] re[R]
Ng r

v ok v Yok e (179)

1 Z, Zs,
< P(|g 3 waeter [ =5 — Vot/or]

re[R] re[R]
1 ’ASJ Zt,r € 1 , Zs,r| €
FP(R oW 2 ) P (R L M 2 ),

Label the terms of the above as T7 — Ty.
For T recall from Lemma lﬁ' that Zt,c 4 Zs,m/aﬁ/o'f + Ithﬂ/l — ot /of where IVJ}’r and ZSJ
are independent. Therefore, using Lemma [B.2]

s p(fy S |2 ) (g 3 weved 0[]

re[R]

re[R]

€
Z,

8) (180)

< K exp{—rne? (w/R)max{Qu_l’o}},

where the last inequality is obtained by using Lemma [B.9 to bound each of the two probabilities.
We use and the fact that of € O(1).
Next for 75, by two applications of Cauchy-Schwarz,

T2<P(fz A Barl 2 5) < P(1 ST WEIAGIR - 37 WEIALI? 2 n) (151)

re[R] re[R] re[R]

u—1)
< (5 WA 2 w) (53 WAl 2 ne) < KK Tl e o@D
re[R] re[R]

The final inequality follows by (177). Finally terms T3, Ty can be shown to have the desired upper
bounded by work similar to that in (178).
(d) Let 0 < 5, s <t where either § =, s =t, or both § = s = t. Since m;" = S5/ Wi (b — w,),

( ‘rg]( u- 1/2TRmr_Ss Wio :nax(ss)ﬂ 26) )
<P(g] 2 we(7u) (B ot | 2 ) + (| X0 wi(52) [ |2 w)

Now the result follows from B;(b) and B;(c) using that (757.) € ©(1).
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(e) Since m: £ SE NV Wie(b] — w,), we have (my ) m,y = S5 St Wi [(b])*bl — wib} — w;b] +

r,c>~r,c
||w,||*]. Therefore, using Lemma E and that ¢! = 02 + of, we obtain

( ’ZWul NRZSS St Wt > )

(| 2 st [“’f@?’f B
<#(|5 r;mgﬁﬁfyﬁfyawr‘é[“’f&;”f el > D)+ P E Gasiestoma[ 5] > )
er(i B Gsona 7= ) (5 S Gt 552 )

Now the result follows from Lemma @, By(b), and B;(c) using that (1S7) € O(1).
(f) We first prove (97). Recall, o = 75 (M)~ (MF)*m" where MC = %(MC)*M; so for
1 <k <t, we have a};’il =713 St [(MS) g (mi 1) *mb<. From the definition of 4¢ in (66),

t z 1c t,c t
~t,c *mb _ nr, v t,c,
P(lojs, = afSy [z ¢) = P (\;[ (M) s — () ]| 2 )
(@) <& n(mi=1e) mbe _ nrl . ote, e\ (®) — kR €2
< 50 P (| ) - () ] 2 ) S KB T e o

=1

Step (a) follows by Lemma [B.2 and (b) by Lemmas [B.3, [B.4 using B;(e) with u = 1 and B_1(g)

result (100). Note that n7!/L and the absolute values of the non—zero entries of (C 9L are O(1).
Next we prove . First, note that [|m'||? = [|[m"<||? — |[m[||> = [|m"<|]? — || MSatc|2. Using

the definition of 7 lcin and Lemma @, we have

n t, nl 2_1 (re)”
(z?zumm ~rLd =) = P Il - pInsate ot 4 T = )
1 tef2 ot < € n|l te||2 (7e)?
< P(7|7 el =l = 5) + P(|pIMater - | = 5): (183)
The first term has the desired bound by Bi(e) with u = 1. For the second term, using 7n|t|7C =
M%am _ Zf (1)at cmlc’ we have HMC tc||2 — (M;‘.at,C)*Mganc = Zf;é a;‘gc(mﬁ,c)*mi,c =

Zﬁ;é ol (m<)*mhe. Hence, recalling the definition of &< in (66,

P(7|pInstatep - ek | > £) = (L\z( mi<ymte — atert)| = )
- mbC)* t,c ~t,c_t € ( ) 6 1 2
Z (L 7 a; )'m" — a7 L _5) tPKK; 111 1exp{ t2/<mt 1T 16}

Step (a) is obtained using Lemma @ when ¢ =t — 1 and Lemma E otherwise, along with the
results B;(e) with u = 1 and B.(f) proved in above.
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(g) We first show (99). For 0 < §,s < ¢, [Mf, ]Js11,641 = 75(m*)*m*< and therefore,
M 1]541,64+1 concentrates on LTfnax{s < by Bi(e) with u = 1. By Fact|C.1, if {5 Hm H >k>0

for all 0 < s <, then M{_, is 1nvert1b1e Note from By(f) — B:(f) that 1% Hm H concentrates on
LTJ_ o and 777 >0 by Lemma Choosing k = % min{2, LTj)_ I LTLC} we therefore have

t
P<M§ singular) < Z P(%‘% | 2
s=0

where the second inequality follows from By (f) — B:(f).
Next, we show (T00)). We first note that each non-zero element of (C° )~ is ©(1). To see this,

recall the definition of ét+1’c, from which it follows with work as in (154) that if s invertible,
by the block inversion formula we have

1
— 7l 2 k) SR T e et (1)

t+1,c

e )=

v tc, —1A * —1LA
Lt ((C ) R lat (@) —%vm 1at’°) (185)

Each non-zero element of (I85) is € ©(1) since 7& € O(L/n), for 0 < s < T, and 7} _ is bounded
below (by Lemma . We can similarly represent [M§, ]~ by block inversion. Noting that

oo n(EME L (Mme 6
. (M) mb) [t -
if M is invertible, by the block inversion formula we have
(M) e ateat) g m| ate
(MS )1:< 1z 2 L )7 (187)
. — 5 m 2 (ah) £l
where we have used "¢ = 7% (Mg) ™! (MF)*m"¢ and ((M§)*m")*ac = (mtvc)*mf’c.

In what follows we prove concentration for each of the elements in (187) to the corresponding
element of (185). First, by B(f) and Lemma E,

L? L
P(‘”tcz - E( ‘ 2 6) <K KTl rexp{—; W’vt 1m-1€’}. (188)
n|m;j

Next, consider the i'" element of —%QHmtfH*Qat’c. For ¢ € [t],

2 t,c ~t,c
(’ Lo, Loy~

nHmt’cIIQ nTl .

> 6) < t KKt 1Ht 1exp{ K,:‘it 17¢—1€ } (189)

The above follows from (188), Lemma E 3 for i =t or Lemma @ when ¢ € [t — 1], and B.(f).
Finally, consider element (z §) of (M$)~! + (L2 /n)”m | 2abc(alC)* for 4,5 € [t].

P( > )

a 2 tc
2 (o1 -1 - ) Pl ok - )

Lt)QtCAtc

_ L? o te,
(M) 1]¢7+;Hm |72ai 0l = [(CT) l]z‘j—g(n,c &1

- 5) (e

(b) 1
< t KKt 1Ht 1exp{ K)/it 17— 16} (190)

v
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nTJ_c

Step (a) follows from Lemma [B.2 and Lemma [B.3/B.4 with ¢ = min(\/ €/3, 3Lal’ 3a e
S 1
(b) follows from the inductive hypothesis B;_1(g) (Eq. (100)), B:(f), and (189).

) Step

8.5 Step 4: Showing H;.1 holds

We prove the statements in H; 11 assuming that By, ..., B;, and Hi, ..., H; hold due to the induction
hypothesis. We begin with a lemma that is used to prove H;4+1(a). The lemma as well as other
parts of H;11 assume the invertibility of QY,...,Qj}, but for the sake of brevity, we do not explicitly
specify the conditioning.

Lemma 8.2. Let v"© := %(Yt+1,r)*mjfr and Q1 = +(Q11)* Q1. IfQf,...,Qy,, are invert-
ible, for 0 < j<t-—1,

(’Z\/irc Q1) tvh i+ 1"‘0‘

re(R)

P(’ Z VWiel(Qp11) Vo1 — 1‘ > 6) <t KKt 11 exp{— /mt 17t—1¢€ } (192)
re[R]

> e) <t*KK, II;_1 exp{— /i/it 1€} (191)

. . . . ~t+1,
Proof. By induction hypothesis H;(g), element-wise (Q] ;)" concentrates to (C r)_l, so before

proving (191) and (192), we prove intermediary results about element-wise concentration of v"¢
For 0 < k <t, define

-1

N A - i N, T O_max(k,tfl)
EkJrl,r _ RV rc <Sfc ol — Ozi clstc 10_:nax( R 1)) R LV Wi (E _Or — . (193)
L
For B > 0, a universal constant, we will prove that
(‘ D VWi = Ergar)| > 6) < tKK; 4TIy exp{— /mt 1€}, (194)
re(R]
(Z VWi ’Vk+1| > B) <tKK{ |II; 1 exp{— IiK,t 1T¢—1}- (195)

re(R]

We prove the lemma using (194) and (195), and then prove (194). We first claim that

t+1 “ .
Z V rcz " (]+1) kEk; r = _Oéi c17 0<5< (t - 1)a (196)

re(R]
+1 r
DRVALL rcz Yoy By = 1. (197)
re(R]
To show (197), noting from (193) that E;, = ... = E;,, we have
t
~t+1 r t+1 r ~t4+1,r _
dov rcz JesrBrr = Y VWi [Et—i-l ol ) ey + B Y UCT ) s
re(R] re[R] k=1
(@) VWi ~t,r YALL ~tr ] (b) NRT
= Z = [EtJrl I 1} Z = . [Et+1 P 1} = Z ¢> (198)
re(R] Lr re(R] TLr re[R]
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~ 41
In the above, step (a) is obtained as follows using the definition of M in . Using block
inversion as we did for ¢ in (154), it is straightforward to show that if c s invertible,

~tr. 1A N * 1
<ét+17r)71 — ( (C ) ! + (Uﬁ_,r) 1t,7t,r(,7t,r) 7(Uﬁ_,r) 1,Yt,r > (199)
—(of ) (@)
Step (a) then follows since ’yé’r = ... = ’Ayt 5 = 0. Step (b) of (198) then follows by using the

definitions of E¢11r,Es, in (193) and of '}f ', in . The result in (196]) can be shown similarly,
. . ~t7 — * ,r

using that for 0 < j < (= 1), 4, [C™) g sue = (C™) (1o 1) 41 = (o) 157, where

the last equality follows from the definition of 4%" in .

We now use these results to prove (192). Using (197) and Lemma [B.2, the LHS of (192)) can be
bounded as follows:

t+1

P(’Z\/irc Qt+l vhe t+1—1‘>€>: <’Z\/7rcz Qt+1 (t+1 ka —1‘>€)
re[R] re(R]
= P(‘ > ﬁii [ Qi)™ Jrrvy — (oAb ey P Ek,r] > 6)
re[R]
< %P(‘ rez“; VIel(C ~t+1, r -1 Jrnk[ve© — Byl | = 2T 1)> (200)
+ tfp(\ > VI [1@) T = €7 ) M sn] | 2 575 gy):
re(R]

Label the terms on the RHS of (200]) as 77 and 7. Note that term 73 has the desired upper bound
using (194) and the fact that the non-zero elements of (étH’r)_l € O(1). Now consider T5.

t+1

15 < ZP< Z vV Wi ‘Vk ’ ‘ Q1) Jerr — [(ét+17r)_l](t+1)k) > m)
re[R]

t+1

< Z { ( re[R] ‘ (Ve ] (t+1)k — [(CHIJY J(t+1)k ’ < 2tB) +P< Z V Wie ‘V ‘ > B)}
re[R]

t4+1
<> [Z <‘ @) e — (€ | = ’ > 2tB> +P( > VWl = B)}

k=1 re[R] re R]

/ 2.1 2

<tRKK, |II,_, exp{ — Hﬁt_tg(go/gRL;r;_QE } + 12K K] TI;_j exp{— /mt 11} (201)

The upper bound for the two terms of (201) follows by (195) and #H;(g). The bound in ((192) follows
since RII}_, = I;_1 and (w/R)%*m,_,(log M)? = m_;.
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We now show the bound in (191) for 0 < j <t — 1. By Lemma @,

P<‘ Z VWeel @} 41) 7'V 41 + aj"C’ > 6)
re(R]
) +P(‘ Z VWieel(Q41) v Jj+1 + 65

< P(Jay" —al*
re(R]

€
> %)
-2

The first term of the above is upper bounded with B;(f). Using (196), the second term above is

(‘ Z VIWel( [(Q11) ' v"Yj1 +dt° Zg)
re(R]
= P(‘ Z \/72( [(@QF1) T avi” — [(6t+1,r)*1](j+1)k Eh,) > %) (202)
re(R]

Now we can bound the term in (202) with work similar to that used for (200).
To complete the proof, it remains to show ([194), (195). Using the definition of ¥;11 in (59),

VWi (bF 4 vEmnk—1)* mte Wbk kop k=1 =l .
Vs, = el = e ( T ) mie =3 el mie), (209
rc ;

t, t, ¢, 1t
where we have used vF = 0% /¢F~1 and mJ_r—m,C—chr—mrc—Zf 00y Cmic,

We first prove (194)). Using (203), we have the following bound for the probability in (194):

P(‘ ) VW) = Ergan)| 2 e)

rE[R]
t,c t—1 t,c
r - r N ~t,C — max —
2 p(| 3o YWelbt) lome® = Fimp ol me) | N 5y 1,51 — e, sttt 5 €
re[R] rE[R]
of (my )" (mp® = i oy mi) | e
+P(|3 = >2). (204)
re[R] re

The terms on the RHS of (204) are bounded via the inductive hypotheses B:(d) and Bi(e) with
u=1 and B;(f), similarly to the first term on the RHS of (159) (see (160)).
We now prove (195) using (158) and v¥/Sk~1 = g% /7k=1. Recall that 75! € ©(L/n), then

( Z VWi eS| > B) ( Z[r;} ‘(\/@bf + Uin;;illc)* (mbe — tz;a?cmf,c) > B)
re =

re(R]

k: tc B — tc k %,C B
< P( S [ty mi = B) o p(S o] T vt w2 )
P S Jomt cz§>+P<““ o] X [om ey mie| 2 B). o
re(R] re(R]
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We now provide upper bounds for the terms in (205), labelled T} — Ty, by taking

B:4max{(%7'c0+1)(ozt L), (20 )22 Z Wieot +1)1/2} (206)

rE[R]

L C

First consider T5. For any 0 < j < ¢, using Cauchy-Schwarz Zre[R |(m£g L “)* {’Cyg ||m”~—
and therefore using the fact that B2 > 16(270 +1)% > 16(%rk~1 + 1)(ng + 1), we have

n _ , B n n g n cn2n
T3 S P(ﬁnmk 17CH HmJ’CH Z Z) S P(ﬁnmk L CH2 Z f ! + 1) + P(ﬁ Hm]’cH 2 ZTCJ + 1)
n|l n|l ;
<p(f = {lmFte)? = At >1) P(— |2 — 7 >1). 2

This has the desired bound by B;(e) with u = 1. Next we bound T} as follows using (207) and the
fact that B > 4(%270 + 1)(ayS, +1) > 4(a<, + 1)\/(n (2 4+ 1)

1=3)

t—1 t—1
< (gl | > J 7+ e 0)+ P el 2 Xl

1= 1=

T, < P( 2||mk ch Hmjc

t,c
i

Atc

+1).

The first term in the above can be bounded as in (207) and the second as follows by By (f):
Q-

t—1
P(Y |ai| =
=0

1= 1=

t,c

t—1
1 R
€ +1) <X P(Jai - i z) SHKK] (Tjge @™m0 (208)
1=0

Now we study term 73. Using Cauchy-Schwarz, for any 0 < j <'t,

Wie 1 .
S LWl mici< 3 o Y il < |2 S e Y e (200)

re R] re(R] re[R]

Using the above in term 77 we have,

1 n 12 B?
Ty < P(ﬁ Z Wl [BF |2 - 72 HmJCH > E>

re(R]
< P(E T Wb 2 3 Weeot 1) + P o< 2 i 41)
re[R] rE[R]

1 1 nil . 9 .
< P|g 2 Wi —et) | = 1) + P(Z[ g Il = 72| = 1)

re[R]

(b)
< KK, Iy exp{—kr}_ym—1} + KK, _I;_1 exp{—kK}_1T1_1}
Step (a) uses 16 : > (37 !+ (& 2ore[R] Wieot 4+ 1) and (b) uses Bi(c) and Bi(e) both with u = 1.

56



Finally, using (209), we bound T5:

1
T, < P(\/nZWme’:\p . \éﬁ Hm]c

t—1 -
PSS Wb - 7 <] > <%Zwmaf+1><%rg’+1>) +P( ol = 3 ol
r r =0 1=0

Atc

+1).

Now the first term in the above can be bounded as the work in 7} and the second term as in (208).
This completes the proof of the lemma. |

(a) To show the upper bound in (101), recall the definition of A;;1+ from Lemma Eq. .
First, using arguments similar to (167), we can show for a single entry ¢ € c,

Ay Im, 112 (g )i)?
Z (‘Qr/ Z ZEC = Z Z HQ’C 9 Z ~ N(()? 1)
t 7

r'€[R] Jj=0r'€[R] L”qL

Therefore if we consider the maximum squared element for a section £ € c, we have

Hmi r’ Il d 72 HmL r’ TRy
maXZEc{< Z PQH_ Z ZEC) } Z Z max ([qi,c]i) (210)

‘ I N2 iesec(t
i€sec(l R i=0 R LHq icsec(f)

Now we simplify the final three terms of A1 ¢ in , using the Lemma notation Q 1LV

t+1

> Q@) 'C+Za“ééch > al @)V +Za“ééch
r/

=1 r

t
=3 D VWl @) v+l }+ai[2\/ el (@) 1],
J=1 v’

Therefore for section ¢ € ¢, using the triangle inequality, Lemma the fact that max;eseq(s) 1[gc]; 2 <
4 for 0 < s < t, and the definition of A1 from , we have

- A < tC_Atc2 a hH_l 2
31 1) 50 [Aeiech Z'a [ ma (e
2
[ 2 Im', | I
= VL e 12 222[; LI s ()
l’

+4Z[Z VW (@) 7" —1-04J 1} —1-4[2 VW (@) T — 1 2. (211)

Jj=1 r€[R] r'e[R]
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Using (211) and Lemma [B.2, we have the following bound, where é = =5,
A(t+1)

P(% > max W' |[Avr sl ZG)

Y ]Esec(é)
(a) o tc|? 172 o
< Z ( ZW &, Z max |[RS];] Zet)
i=0 celd] rec J€seclt)
Lo o [nllmie|? nTi o2 )
> W \/ L; X mas 11200 > @)

ce(C]

+P<%
+P< Z WQVZ Z LH i H2 Zzgi}@)([qu;w > &)
+P<C

celC] J=0r€[R]
Zw2v‘ Z \/7 Qt+1 -1 rc _1‘ >€t>
ce[C] r'e[R]
t
+ZP<4ZW2V‘ZHQH1 “Iv" 4 ale 122€t>. (212)
=1 celC] r'e[R]

Label the terms on the RHS of (212) as 71 — T5. We show that each has the desired upper bound.
First consider T1. Let ko be defined via (maxceiq) Wa)7ilog M = ko(R/w)?, noting that
ko = ©(1). Then,

t—

[y

[P(ﬂce[q {\af — &)< (GKU(R/?))QV—{—E)})

=0
1 y ;
+ P(L CGZ[(::} ; w2 Jélslgc)({é)([h 2 < G(dmez%():c] W2l log M + g)}
t—1 B
t,c Atc €t
= =0 L;}JDOO‘ -at= (6ro(R/w)?” + 6))

+ P(Z Z ZWQV max ([hz—&-l]j) > 6(maé( W2l log M + e)}
ce[q] tec jesec(t) €lq]

<tCKK;_II;_y exp{— /-mt Lw/RV 12} + tK K] T,y exp{—rr}_(w/R)?7|_o€?},

The final inequality follows by B:(f) and H.(e).

Term T5 of has the desired upper bound by work similar to that used to bound the
corresponding term in the #;(a) step in equations - .

Next consider term T% in . Using the union bound,

Tgt r Y, cht 1rc+a . €
i ; CEZ[C] (’ r;?] +1 ] \/4(2(: rc//C)) (213)

—1
<3 CKK] I 1exp{ 6 kK;_1(w/R) 2"_1)+7Tt,16},
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where the second inequality follows from Lemma and (88), which gives 2crelq] W2//C <

k(R/w)2=D+ for v € {0,1}. The bound for T} is obtained similarly to Tj.
Finally, we bound the third term T3 in (212). For T3, if all three of the following events hold:

2
vt [ g (T Ry ey
V4

2
i zEsec Hq HQ t

2v 2v €112 2v
and {(w/(l::e) Z nWrc HmL H S n(WI{E) Z WQVTJ_C + 1}

L2
celC] o
then
72 t ||mzj,_cr,||2 y
- Z W%VZ —_— Z “max ([qﬁrc]”Q < K/Et,
L ce[q] j=0 r'€[R] L g’ ||? o2 i€secl®)

2v
where we have used that ”(wL/g ) zce[ ]W vrt S r" using (88). Here, £, ', and £” are suitable

universal positive constants. Therefore,

T3<ZZZ (Z MC]';>/?5)+P<ZZ W)

] =0 VER] zesec Hq
R)2v W2v 2 R)2v
ep(WIEE 5 L M 3wt ). @19
c€[C] ce(C]

We consider each of the terms of (214) separately. For the first term, using Lemma and the
fact that max;cgec(e) [[Gel; | <4 for 0 <s <t forany ce [C],r € [Rland 0 < j <,

T ([qﬁtc]l)2 = erc Z ~maX qc Z%’ Vc A

lee i€sec(?) ree i€sec(?
Jj—1 2
o - 4Pt(1 + (’7 ) )LR
< 2tWyie Z ‘max {([QZL)Q + Z(’Yﬁ [qlg]z)Q} < Eé bk )
Tee i€sec(l) P w
Therefore letting x := max; k; with k; :== 4P(2+ (ﬁ;il) )((UT_:) + 1) we have,
Jr'7 32
cli R
S5 (S, o 2 )
celC] =0 r'e a7 |l
(L+ Y (HAL 1
)3 > p(FEEEt D25 o 53 (17 +1)) (215)
ce[C] j=0r'e ||q H UJ.,r’
) L 1
< ST X [P Do ) 4 (s = 1)
c€[C] 5=0 r'€[R] a7 | N7
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For the second term on the RHS of (215]), by Lemma E and H(f),

> 55 (2 g ) < 225 Pl a2 )

c€[C] j=0 re[R] c€[C] 5=0 re[R] gy

kg1 (w/R)*m_y }

< tRCKK]_,IT,_, exp{ g M7

For the first term on the RHS of , using Lemma @ the fact that %r =0for0 <k <t —2,
along with Lemma [B.6, and H,(f )

—_

j_

33 SE(ESSCTESHURDED 3030 38 () LT AR

ce[C] j=0re[R] k=0 ce[C] 7=0re[R]
Jj—1 2,/
; 1 —kKy_q(w/R)*m,_
<§ EEE Aq,r2’>7< I t—1 =2\
< 222 2 OP(‘ ('yj )4l > t) <tRCKK,; II;_, exp{ 11(log M)? }

The second term of (214) is upper bounded by K exp{—xNrw(w/R)?¢?/t*} using Lemma @
Finally, we bound the second term of (214).

P<<w/§>2v 5 WM /R )

L? - IC
c€ld] ce[C]
UCTL e L R 9 p( s (I
sPl—7c — — = > <
< p(MELE S wr (L ot ) 21) < P(1e 2 4 21)
ce[C] ]
() 2 ©)
= <Z‘HmL ! a ic = 1) < CKK{ I,y exp{—rk;_m_1}.
ce|

In the above, step (a) follows since (WWy/R)? < ((1 — p)P)? < k. Step (b) uses Lemma [B.2 and
step (c) from B;(f). Note that 3 .cic) Wi /R < k.

We finally note that the desired upper bound in (101) follows since IT; _, < II} ; and RCII,_, =
CIl;_; = IT,_, along with the fact that (w/R)®~ 1)+7rt_1, (w/R)¥m_,, and (w/R)?m]_,/(log M)?
are all lower bounded by (w/R)®m;_1 = (w/R)>7,_;.

(b) Using the conditional distribution of h*! from Lemma Eq. , we have

P(z] Z VWt ql"| > e)
|3 I g )] 2

ce(C]

P(Z‘ Z \/TTCt—l(:) q¢

IN

€ 1 f— . €
Z2>+P<L’g[% W"C[ 7_j_,th,cqc +At+1thc ”Z§>
C

The bound for first term above follows from the induction hypothesis Ht(b) The second term has
the desired upper bound using work as in the proof of #H;(b) (Egs. )
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(c) We show when 0 < s <t + 1. For brevity, we write n¢~'(8y — h*) to mean n¢~ (8, —
h{), noting that 773 () depends only on the elements of its input in column block c. Using the
conditional distribution of A**! in Lemma Eq. , we have

v * t+1 v otbl
P | ED)
ce[C]

- P(%‘ Z Wi [%("75_1(30 —h - As) - ﬁo,c)*(né(ﬁo — fNLtH — At+1) 50 e t+1} ’ > e)
ce[C]

= P(i‘ Z Weel g_l(’BO —h - AS) - Bo,c)* [ni(ﬁo - iltH - At+1) - "72(50 - ibt“)} ’ > %)
ce(C]

+P(F| 3 W (8~ B - A = (8 - ff)]*(nz(ﬂo ~R") =By > 7)
ce(C]

+ (L] S W [T 8~ )~ B0 (B — )~ o) ]| 2 ).
(216)

Label the three terms on the RHS of (216) as T1 T3 and provide bounds for each. First note the
following bound for A, c (defined in Lemma that will be used repeatedly. For 1 < s <t+1,

P(1 30 oW mas A= <) = P(1 3 Wi mas ]jz;(ﬂ) hracdi] 2 )

Q) tee el Q) tee  eseelt
(a) s—1 1 5 (b) 4 _ 1 ’ ( /R)2V / 2
= P(f Z ZW y max HAthc] > ) SEKKG I e st (217)
2 jEsec(t
i=0 ce([C] Lec

In the above, step (a) follows by using the triangle inequality, and then Cauchy-Schwarz, noting
that 7571 /71 < 1 for i < s — 1. Step (b) follows from H;.1(a) and s < (¢t + 1).
Consider T7, the first term on the RHS of (216). Since man]nj_1(~) — Bo,;|< 2, we have

nsp( DB

ce[C] lec jet

(0)
( Z rc max |At+1 c} ‘> K;E) %P(i Z ZWV maX |[At+1 c] | logjw)

£
ce[C] e c deseeld) ce[q] ¢ec JEsec(t

— R = Av) By — BT = ke

© 4,
< t*KK; |II,_;exp

{ Kk, (w/R)2Vm)_ €2 } (218)

t8(log M )?

Step (a) follows by Lemma [C.5 applied to each section, (b) by 7¢ = ©(L/n) = ©(1/log M), and
¢) by (217). The bound for T} in (218) also holds for T, of (216) and is shown similarly.
Finally, consider term T3 of (216). Recalling from Lemma that fbi 4 ViEtz s—1,c Where
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Zs 1o ~N(0,Iy.). Then, (dropping the ¢ subscript when used inside the nt(-) function),

T3 =Pr (*‘ZZ [s — 7 Zs 1) — Boe)? —/7EZs) = o) - §+1”2/€6>7

ce[C] Lec

(a)

—kL%e? —mLe2
< 2exp

{ (Ceeq] Svee W) p=2em{ (Ceeiq W2/C) J

where (a) is obtained using Hoeffding’s inequality (Lemma and (b) uses nR = Llog M. Veri-
fying that the expectation of the random variable in T3 is ¥f*! is similar to (135).
(d) Using the representation of h*™ in Lemma we have

(REF) qe™r = VWie (W) 2By — ) — By

(b) —kn(w/Ng)Z—D+e?
<
= 2eXp{ log M }

=5 < -3 . . (219)
= VWeelh™ + Asin ) (B — B = A + (hE) g,
Using and Lemma @,
h5+1 * s+1r \/71/]54_1 max(8§,s)
r(| s vin! )2
ﬁi* + Ag1) 2By - ff“ “Ag) et
<p(| 3wt I e lze) e
ce[C]
s+1 % 0,r
wp(| 3 v B 2 ),
ce(C]

The second term on the RHS of (220) has the desired upper bound by H;4+1(b). We now bound
the first term of (220)), denoted by 73. Using Lemma @,

st-l-l max(5,s)

)+ — >€/6
Crg

n<P(7] 3 Wrc[ By (8o — ) +
ce(C]

~s+1 ~
+P(1 30 W (R (B~ - Aup)| 2 o/6)
ce(C]
! R e ot A s ~s+1
+P<f D Wie| (e ) i(Bo —h™ — A1) —1E(Bo — h )]’ > 6/6)_ (221)
ce(C]

Label the terms of (221) as T4, 1, T1c, and we bound each separately. First consider T,

Bz, 2, {(Z*,c)*ni(ﬁo—ﬁzs)} @ By 3 ﬁo{(Zsc nE(Bo — \/TEZ5) }
0 s, o{lncta - vz} - £ @ TR (222

—

Step (a) follows for each B, € Bz because of the uniform distribution of the non-zero entry
in each section of B, over the M possible locations and the entry-wise i.i.d. distributions of Z;
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and Z,, step (b) by Stein’s Lemma (see [4, p.1491, Eqgs. (102) (104)] for details) and step (c)
from Lemma [C.4, Now recall from Lemma that ﬁ st \ﬁ Z, < where Z, . ~ N(0,In.) with
E{(Z:c)i[Zsc);} = omaxds, s}/ min{s:S) - for j € [Nc]. Using this representation of of h” and (222 (222),
the first term in (221) can be bounded using Lemma

Tia= P(7]| 3 S \/RWe[( 2500280 — V72 Z0) ~ B, 1,0, {25028y — /EZ)Y]| > /6)

ce[C] Lec
< exp{—k1L(w/R)€e*} = exp{—kNrwe®/log M}.

For Ty, we recall that 3¢ .. 1; (8o — R A1) =1 and use (217) with v = 1 to obtain

Ty < P(* Z ZWrc‘ s+1,0)" 1M (B — R - As—l—l)’ > 6/6)

ce[C] Lec

1
( Z ZW,C max ’ S+1,c) ‘> /{6) <t KK 1T, ;exp{— /i/ﬂt L(w/R)?m,_ €%}
Q) tee el

Finally for Ti., using Lemma Eq. to write ﬁi“ = /7 Z 5,c, we can prove the bound as in

the H(d) step in (142) - (143), appealing to Lemma [C.5| Lemma [B.9, and (217).

(e) Using the conditional distribution of A'™ from Lemma Eq. and Eq. we write,
hitt 4 ﬁzﬂ + At+1,c 4 \/ngt,c + At+1,c~ Then we have as in the H;(e) proof, namely ((144),

( Z ZWQV max ([pLH1];)? > 6(maxW2")7' logM—i—e) <
ce[q] tec jEsec Z)

( ZZWQV max Zt7c]j)2ZS(mczxXW,QCV)logM)—i—P( ZZWZV max ([Aps1cli)? >

esec(t €
ce[q] fec Jesec ) ce[q] tec jesec(t

N o
\_/

Then the desired bound follows by Lemma @ and .

(f) The proof of follows similarly to the corresponding B;(f) proof of using inductive
hypothesis H;(g) result and Hy41(c). The proof of follows similarly to the corresponding
B:(f) proof of using H41(c) and Hyy1(f) result (106).

(g) The proof of follows similarly to the corresponding Bi(g) proof of using Fact
and inductive hypotheses H1(g) — Hi+1(g). Result follows similarly to the corresponding

. . . ~ 142,

B:(g) proof of (97): using block inversion we can represent (C r)*l and (Q},,)~'. From the
) ~ 142, .

representation of (C r)_l, we can see that each non-zero element is ©(1), and then we can show

the element-wise concentration with inductive hypothesis H;(g) and Hr1(f).
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A Proofs of bounds on state evolution parameters

A.1 Proof of Lemma 4.1l

Recall that ¢t = 1 — (7)) where £(7!) is defined in (13). It is shown in [41, Appendix A] that
for sufficiently large M and any ¢ € (0, %),

E(rhH > (1 - 5Mk52> Hvt>2+468 celC. (223)

The upper bound on 9! directly follows from the lower bound in ([223).

We now lower bound ! by obtaining an upper bound for £(7}). We will use the following
concentration inequality the maximum of M i.i.d. standard Gaussian random variables Uy, ..., Ux;.
For any € € (0,1),

_ﬁMe(2—e)
P(énjzg](w Uj <v2InM(1 - e)) < exp (W>, (224)

where k > 0 is a universal constant. B

Consider a column block ¢ such that vt < 2 —§. Recall from that vf = (rfln M)~ and
due to the assumption on the base matrix, k1 < 1L < kg for some strictly positive constants k1, k.
Then, with positive constants a,a’ € (0,1) to be specified later, we have

1
1+ e ¥hnM Z]J‘/ig 6Uj\/l/ctlnM . e—UM/V}flnM

< P< max U; < v2In M(1 —a~)> 1

E(TH =E

C

2<j<M
~ ~ -1
+P (2?1%)](\/[ Uj >vV2InM(1 - a5)) E (1 + exp (—\/1/5 1nMU1> M~ exp(y/2vi(1 — ad) 1nM)>
<<
(@)

vVin M

(b) — k) [ag(Q—ag) = 1 =
< S P(U <V2InMd'§) - - P(U, >V2InMd'6
_exp< Vi) ( Le e ) NV T i ( ! na )

c o ad(2—ab) T Y 5 2%
(©) ( —kM@3(2-ad) ) - (V20— —243) (@ (225)

o a6~(27a§) _ 1
< exp (W) +E (l + exp (—WUO M\/ﬂ(l—‘ﬂs)—l’é)

< ex

=P VIin M

In the above sequence of inequalities, step (a) uses (224); step (b) holds because
exp (—\/I/g lnMU1> > MV 2wka's when U; < V2In Md's.

In step (c), the last term is obtained using a standard Gaussian tail bound for U; (Lemma[B.8); the
second term is obtained by noting that \/2vt(1 — (a + a’)d) — v! is a concave function of ! which

(for a,a’ specified below) takes its minimum value in ¢ € [k1,2 — §] at the endpoint v = (2 — §).
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Using the inequality (1 — z)Y/2 > 1 — 52 for x € [0,1/2], we have the following lower bound for
the exponent of the second term in (225):

p- S~ - 5 S -
_ _ _ > _ = _ _
22— 8)(1 — (a+d')?d) 2+5_2(1 16) (1 (a+a)5> 243
_F(3 _ ! § NF2
—5(§ 2(a+a)>+8(a+a)5.
Taking a = 1/64 and o’ = 5/32, we get the desired upper bound.

A.2  Proof of Proposition |4.1

Using the definition in @, the state evolution equations f for the (w, A, p) base matrix are
as follows. With ¢? = 1 for ¢ € [C], for t > 0:

1 _p & P
¢f:0‘2 1—|-195nr Tzwé + ﬁ Z ) Qpi y re [A-‘-w-l], (226)
c=¢, ce[A\{c,,.-.&r}
1 1|{Q-p)- P11 poP 1
t = = — _— —y T It 22
Ve tinM R w Z ot AT Z oL’ (227)
r=c re[A+w—1]\{c,...,c+w—1}
t=1-¢&(1). (228)

Here &(7f) is defined in (13), and c,, <, are defined (27).

Since the variables 9! for ¢ € [A] and ¢ > 0 are symmetric about the center column index, i.e.
Pl =l . 4q forc < (%L we carry out the analysis for ¢ < W; the result for the other half then
holds by symmetry. We will upper bound ¢! using Lemma Using , for the first iteration

we will have ¢! < fys 5 for indices c for which {v0 > 2+ §}. Letting F? := v R, this corresponds
to finding indices c for which F? > (2+ §)R. We now obtain a lower bound on F for indices ¢ < w.
Using (227) we have
+w—1
(1-p)P° 1 pP 1
=3 S+17 > 0 (229)
w = O U reAw—1\ ey etw—1} T
(1-p)P *‘Z 1
woo= e
(i) (1 —p)snr wi 1 n c
w 1+ (kpz)ﬁsmr—i—pf_srl” (A —r) 1+ (1—p)dsnr+ pdsnri=e

1—p)snr 1 c (1 —p)snr
> ( P) Z : jL7( p)
w L+pdsnr+(1—p)dsnr’  w 1+Dsnr

r=c

() 1 c c (1—p)snr
> _ _ = i S o
> §<ln(1+195nr) In <1+p195nr—|—(1 p)ﬁsnrw>)—|—w T Jenr
(i) 1 c ¢ (1L—p)snr

> ~ln(1 — psnr— (1 — S o AP

z 3 n(l+Jsnr) — psnr— ( p)snrw—i—w T donr

1 c Usnr?
> _ _ - 7>
> ﬁln(l—i-ﬁsnr) L i pee
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where the labelled steps are obtained as follows: (i) using the expression for ¢! in (226)) and the
fact that ¢ < w, (ii) using a definite integral to lower bound the left Riemann sum of a positive
decreasing function:

1
1
§ >(/1 4 (230)
“14pdsar |, r 14+p9
r=c (1— z)ﬁszgr + w ¢/w (l—z) ﬁsgr:r +z

Inequality (iii) is obtained using In(1 4 z) < z.
Therefore, the condition F? > (2 + 6)R will be satisfied if

1 c Usnr?
—In(1 — - 2 . 231
3 n(1+ Jsnr) — psnr o TT denr > (24 9)R (231)
Rearranging (231) gives
C 1 1 psnr 0R
; < 2<1+195nr>snr [Mln(l—kﬁsnr) 5 —R—? . (232)

Note that the RHS of (232) is smaller than or equal to 1 if R > % Using p < == and

3snr
0 < %, the sufficient condition in for 1! < fars can be weakened to ¢ < g where g is defined
in . Note that the condition on w guarantees that g > 1.
Notice from that F? is decreasing in c for ¢ € [1,w] and is then constant for ¢ € [w, [4]].
Therefore, for any & € (0,1), if FO > (2 + §)R is satisfied for ¢ = w then ¢} < fus for all ¢ € [A].
By using a similar analysis as above for lower bounding F?, one can show that a sufficient condition

. 1—p)snr
for F > (2+0)R is R < o555

Next we consider subsequent iterations ¢ > 1. Assume towards induction that

WL < fars, forc< gy, (233)

where g; > tg. We will prove that (233) implies {1 < fyss for ¢ < g, +g. We prove the result for
g+ > w, with the other case being similar. We wish to find column indices ¢ € (g, g+ + w) for which

1 < fus, or equivalently F! > (2 + 6)R. For brevity, we will use the shorthand f := fu.
Using the induction assumption (233) in (226)), we deduce

L+ f(L—p)dsnr L+ fpdsnri= r—i—pﬁsnrA e, 1<r<uw,
¢i< 1+ f(1—p)Isnr+ fpdsnrf= +p195nr[/\\gf, w<r<g,
o2 = 1+m[f<w—<r—gt>>+<r—gt>] g << gt
L+ (1—p)dsnr+ fpdsnrg r> g+ w.
(234)

For M sufficiently large (i.e., f sufficiently small), noting that ¢g; > w we can simplify (234]) to

1+f(1- )ﬁsnrl+pﬁsnrﬁ_{, 1<r<uw,
¢ 1+ f(1—p)dsnr+ pdsnri=2, w<r<g,
72§ (1—p) I snr A—w (235)
g L+ = fw—(r—ge) + (r—go)] +pdsnri=%, gt <r < g +w,

1+(1 - )ﬁsnr—i—pﬂsnrA 7, r> g+ w.
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We now obtain a lower bound on F! := v/{R for g; < ¢ < g; + w. Using (227) we have

+w—1
¢ (1—P)Pc 1
@“—P)S"'gtil 1
T = I o g) + ()] + (A )
C— 4t (1 —p)snr
+ —
w 14 (1—p)dsnr+ pdsnrz=%
> Wgti_l 1 +C—gt (1—p)snr
R “ r=c 1+pﬁsnr+f(1—P)ﬁsm’—F(l—f)(l—p)ﬂsnr(r_wgt) w 1+ 9Dsnr
>m wi: 1 +C_gt (1—p)snr
B W r,:c_gt1+,0195nr+f(1fp)ﬁsner(l—f)(l—p)z?snr% w  1+Ysnr
(i) -
> 1if119 (ln(l—i—ﬂsnr) —1In (1+p195nr+f(1_p)q9snr+ (1 —f)(l—p)ﬂsnrc th))
L9 (1 —p)snr
w 1+ dsnr
(iii) 1 C— gt C— gt (1—p)snr

ZEln(l—i—fﬁsnr)—psnr—f(l—p)snr—(l—:o)snr w + w 1+ Jsnr

c—g; Usnr?
1+3Jsnr’

1
> Eln(l—l—ﬁsnr)—psnr—fsnr— (236)
where the labelled steps are obtained as follows: (i) using the bounds for ¢! given in ([235), (ii)
using a definite integral to lower bound the left Riemann sum of a decreasing function, similar to
(230)), and (iii) using the inequalities In(1 4+ z) < z and ﬁ > 1.

Recall from Lemma [4.1| that & < fyr5 if Y > (2 + 6)R. From (236), this condition will be
satisfied if

1 —gr Usnr?
Eln(l%—ﬁsnr) — psnr— fsnr— <9 1+szr;rsnr > (24+6)R. (237)
Rearranging (237) gives
cC— gt 1 1 [1 psnr  fsnr OoR
2 (1 — | =@ +9sr) - 220 L p 0 2
w < ( +v"snr) snr [219 n (1 +9snr) 2 2 R 2 (238)
Note that the RHS of (238) is smaller than or equal to 1 if R > %. Using p < ﬁ and
d < % in (238)), we obtain that a sufficient condition for ¥t < fass is
cC— gt 1 1 [TA  fsnr
2 (1 B P
w < ( * ﬁsnr) snr [12 2 (239)

For M sufficiently large, f < A/(6snr). Thus we conclude from (239) that &t < fys s forc—gr < g,
and hence for ¢ < (t + 1)g (since g¢ > tg).
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A.3 Proof of Lemma[7.1l

We will prove the lemma by showing that the following inequalities hold 1 <t < T

ol ot >0 <%) : (240)
vl > Oy (f) : (241)
A
where we recall that vl = —7—--. Here the constant C; is defined in (246) below, and Cy =
PC1/(Ro*). From these inequalities it follows that
ol _ C? rw\2
o=yt o) 2 gp (5) (242)
n (Wit —vl) _ RCy (cu)
— = > — 243
L'te R(vt)? ~ snr2 \A (243)

The inequality in is obtained using of > Ciw/A and the fact that of~! < YP (from
since ¥!~! < 1). The inequality in is obtained by using v/! > snr/R (from since ¢! > o?).

We will prove via induction. The result can then be obtained from as follows.
Using ([227), we write

o1 la=p Pt p- P 11
ve-ve =4 (JZ o at) Taci > oot

r=c re[Atw—1]\{c,...,c+w—1}

Using ¢!=! > ¢! > 02 and (¢!7! — ¢!) = (ol7! — of) > Cyw/A by the induction assumption, the
above equation yields
t t71>PC'1w_CQw

© T Ro*A A
Next we show the lower bound for of — of*! in (240). For ¢t = 1, noting that 1. = 1 for c € [C], we
have

(244)

C
1
e =00 =) Wil —1e). (245)
c=1

From Proposition we know that 1/1% < fmgs, forl <c<gand A—g+1 < c <A Since
Wye > pP - % and C = A, we have

Adw-—-1 >pP(1+195nr)A w
9 snr? A-1
C

(246)

where the last inequality holds for M sufficiently large. Assume towards induction that (240) holds
for =1 — ot for 1 <t < (T — 2). From (226) we have

1-p & p
of ot =9 P TZWﬁ_ )+ o1 > @E-uih ). (247)
c=c ce[A\{c,,---.Cr}
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For 6,6 € (0, min{1, £1), define the set
i = {ce[A]: yi7l <2 -4 and 1/§>2+5} (248)
For each c € Z;, from Lemma and Proposition [4.1] we have

. — k62
2 M
PL>1— MR, <

¢ = §/logM’

We prove below that for sufficiently small choices of 4, 5, we have |Z:| > 2(g — 2), where g is
defined in ([34)). Using this and (249) in (247), we conclude that

~ —ké2
ol — ottt > ﬂipl%g —2) (1 — MR M)

ceE It. (249)

rT 9 = 5y/Tog M
(;) Ppg  Pp(l1+dsnr)A  w (250)
“A-1 ¥ snr? A-1’
ol

where the inequality (a) holds for M sufficiently large. It remains to show that |Z;| > 2(g — 2) for
suitably chosen §,d. Let c, denote the largest index ¢ < A/2 such that v!=! > 2. That is,

71> 2 for ¢ <, Vz:il <2, and v <2 for ¢, +2<c<|A/2]. (251)

1%

t—1
Let 6 = min{(y°*2_ ), £, 1} and 5= mln{ﬂ, 1}. For these choices, Lemma [4.1| guarantees
that

M—k62
0+/log M

Furthermore, Proposition guarantees that it < fur,s for column indices ¢, +2 < c < cy +g.
Therefore, all these indices belong to the set Z;. Therefore, Z; contains at least (¢ — 2) column
indices ¢ < A/2, and by symmetry, contains an equal number of indices A/2 < ¢ < A. This
completes the proof of the lemma.

wi < fms = for c<c,, and wi >1-— M6 for ¢ > c, + 2, (252)

B Concentration lemmas

In the following € > 0 is assumed to be a generic constant, with additional conditions specified
whenever needed.

Lemma B.1 (Hoeffding’s inequality [49, Thm. 2.8]). If Xi,...,X,, are independent, bounded ran-
dom variables such that a; < X; < b;, then for v =2[>",(b; — a;)*]~!

P(% Zn:(Xi ~EX,) > e) < e <‘

i=1 i1

3

)SZB_VnE .

3\*—‘
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Lemma B.2 (Concentration of sums). If random variables X1, ..., Xy satisfy P(|1X;] > €) < e "€

for 1 <i < M with r; indicating the ‘rate’ of concentration of random variable X;, then

M
u
i=1

Moreover, for constants ki,...,kp > 0,

M
P(‘ S X 2
=1

Lemma B.3 (Concentration of Products [44, Lemma 15]). For random variables X,Y and non-
zero constants cx,cy, if P(|X —cx| > €) < Ke "X and P(]Y — cy| > €) < Ke ™, then the
probability P(|XY — cxcy| > €) is bounded by

. € € . € € —min{TX,ry}e2
P(|X — > - P(lY — > - — V)< 2K .
( ex| _mm{\/;, 3Cy})+ ( v _mln{\/;, SCX}) - eXp{QmaX(l,cgf,c%) }

Lemma B.4 (Concentration of Products). For random variables X,Y, and constant cx # 0, if
P(|X —cx| > €) < Ke ™ and P(|Y| > ¢) < Ke ™ then,

M
6 — 1 . 2 ) e
| =€) < Z;P(IXil > ) < Mem(minro@ /e
1=

) < Zp(yx > s ) < Me—(mini ) /(S )2,

€2 min{ry,rx} }

P(IXY| > Ve) < P(IX —cx| > Ve) + P( 4max{1,c2}

€
Y| > —) <2K { —
Yl 2 et expy ) S 2o

Lemma B.5 (Concentration of square roots, [44, Lemma 16]). Let ¢ # 0. Then
IfP(’szz, _ 62‘2 E) < e—nnGQ’ then, P(HXn’ . ‘C‘ ’2 6) < e—nn|c|2€2

Lemma B.6 (Concentration of powers, [44, Lemma 17]). Assume ¢ # 0 and 0 < ¢ < 1. Then for
any integer k > 2,

if P(1Xy — ¢|> €) < e then P(| X — F|> ) < o—rne? /[(L+|e)F—e]*]?
Lemma B.7 (Concentration of Scalar Inverses, [44, Lemma 18]). Assume ¢ # 0 and 0 < e < 1.
]’f P(‘Xn _ C‘Z 6) S 67'{71627 then, P(‘X,;l o 671’2 6) S Qe*n/{5202min{c271}/4.

Lemma B.8. For a standard Gaussian random variable Z and € > 0, P(|Z] > €) < 2¢~3€

Lemma B.9. Let Z1,Zs,...,Zn and Zy, Zs, ..., Zy be i.i.d. standard Gaussian random variables
and 0 < e <1 and 01,09,...,0N be positive constants. Let oymax = max(o1,09,...,0n). Then the
following concentration results hold for € € (0,1].
N
1 —Né?
P(‘— oi( 72 —1 ‘26>§2exp{ } 253
N ; ilZi ) 4max{ziji1 201.2/]\/', Omax, 1} (253)
N
1 . —Né?
P(‘— 0: 77| > e) < 2exp{ , 954
P 1max(S 1, 02/N. o, 1) 250
L
1 —L M
(L Zagjgi@ Z > 30max log M + e) < exp{ 3 (26 + log %) } (255)
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Proof. Recall that a random variable X is sub-exponential with non-negative parameters (v, b) if
Elexp(A(X — EX))] < exp(v?A\?/2), for all |A| < 1/b. (256)

Furthermore, if X is sub-exponential with parameters (v, b), then [50, Proposition 2.9]

e 2
P(X —EX|>t) < {2¢ 7 for0<t<f, (257)
2e7 0 fort > % T

Taking X = Zf\il 0;72, we will show that X is sub-exponential with v? = 425\; o? and b =
max{40max, 1}, from which it follows that (plugging in ¢ = Ne in (257))

1 X 2exp{—7N62 } f01r()<6<7%25110"2
8 N 2 — max{40max, 1}’
Py Yo -n|ze) < L cxm
. € N 1= 7
i=1 2 exp{ — max{%mx’l}} for € > Ao, 1T

To finish the proof of (253), we now show that X = Zf\il 0;Z? has sub-exponential parameters
given above. Using the moment generating function of a chi-squared random variable, we have

n

1 1
E AX)] _— for A <
[exp( Hl VIT—2a 7T 20mae

Therefore, for A < min{ﬁ, 1}, we show the desired sub-exponential parameters as follows:

e N
Elexp(A(X ~ EX))] = exp ( - 5> Il —2X) =AY i)
=1 i=1
al (A7) N N
( > [ m} Ay ai) < exp (2)\2 > af) : (258)
i=1 ’ i=1 =1

In step (a), we use that —log(1—u) < u+5 ( oy foru e [0,1) and step (b) holds since for A <
we have 1 —2Xo; > 1 — 0;/(20max) > 1/2. 3
We prove (254) similarly. For X = Zfil 0:Z;Z;, the moment generating function is

40max ’

Elexp(AX)] = [J(1 = X%07)""2,  for M07 < L. (259)

=1

Using this and steps similar to (258), we can show that X is sub-exponential with parameters
2 =23"N 62 and b = max{omax+/3/2, 1}. Then, using t = Ne in (257), we obtain

N Qexp{ _Ne } for 0 < e < DL
~ T 4N > s
p(‘i E :UiZzZi > 6) < N 2i=107 max{omax1/3/2, 1}.

2 Ne f % Zivzl 01‘2
=1 exp{ B max{ama,n/z;/z,l}.} ore> max{omax+/3/2,1}."

This proves (254). The inequality (255) is shown in [41, Lemma 16]. [
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C Other useful lemmas

Lemma C.1. [14, Lemma 8] Let vi,...,v; be a sequence of vectors in R™ such that for i € [t],

%HvZ — PL‘_I(Vi)\\Q > ¢, where ¢ is a positive constant that does not depend on n, and P,|L.|_1 is the
orthogonal projection onto the span of vi,...,v;_1. Then the matriz C € R with Cj; = viv;/n
has minimum eigenvalue Ayin > ¢}, where ¢} is a positive constant (not depending on n).

Lemma C.2. For any scalars aq,...,a; and positive integer m, we have (la1| + ... + |as|)™ <
tm=LSag|™. Consequently, for any vectors uy, ..., u, € RY, szzl ukH2 <t gl

Lemma C.3 (Stein’s lemma). For zero-mean jointly Gaussian random wvariables Zy,Za, and
any function f : R — R for which E[Z1f(Zs)] and E[f'(Z2)] both exist, we have E[Zf(Zs)] =
E[Z1 Zo]E[f'(Z2)].

Lemma C.4. Let Z5,Z;c € RN¢ be random vectors such that the pairs (Zs,i, Zs3), 1 € [Mc], are
i.i.d. bivariate Gaussian with covariance E[Zs;Z, ;] = (12/7E). Then for 0 < §<s<T,

CE{iBoc /325 i Boc — /7EZe )} = (1 4EH), (260)
TR Boe — i Z50) ~ Bod I Boc — V/TEZa) — Bo ) = v (261)

Proof. We will use the following fact, adapted from [4, Proposition 1]:
L
E{ﬂé,cni (Bo,c — \/rgzs,c)} =2~ S, for 0<s<T. (262)

Let ugz/BO,c_\/;:gzic and uSZIBOC \/>Z5C Then 77c IBOC \/7Zsc = BOc’u]and
ne(Boec — VTEZs.c) = E[By | u’], and therefore, for § < s,
E{[né(Bo,c — \/%Zg,c)]*[ni(ﬁo,c — /178 Zs.)]} = E{[E[By | v’]]*E[By | u®]}
< E{[E[Bo. | u][ElBo | u*u’] — By + Bocl}

Y B(E{By | o) 8ot < €1 — i),

In the above, step (a) holds since E[3( . | u®,u"] = E[B . | u’], which can be shown using steps
similar to those in [41, Lemma 22]. Step (b) follows from the orthogonality property of conditional
expectation: E{(E[B, |u®, u’] — ,807C)*IE[,80’C|U§]} = 0 due to the orthogonality principle, and step

¢) by (262). The result (261) follows from (260)) and (262]), noting that H ,BOyCHQ =L/Lc. [ |
Lemma C.5. For the function nt : RML — RML defined , s, A € RML | gnd sec(l) € c,

> |ni(s) = ni(s + A)] < (2/7) max |A].

i€sec(¥) iesec(t)
Proof. From the multivariate version of Taylor’s theorem, for any ¢ € [M L] and for some x € (0, 1),

ni(s 4+ A) = ni(s) + ATVnﬁ(s + kA). (263)
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For i € sec({), as nf depends only on the subset of its input also belonging to section ¢, using (263),

Z ‘T]f( nzs—i-A Z ‘ Z A]E) ms—i-/iA)’

i€sec(l) i€sec(f) jesec(l)
(@) 1 1 . . ® 2
<5 ‘Aml S—f—fiA)’ o S nis+rA) > Ajnj(s+ﬁA)’ < tzéﬁe&lﬁ‘@m i,
€ iesec(l) € iesec(l) jEsec(l)
where inequality (a) uses the fact that for i,j € [M L],
0 HO PP .
2 its) = B 15 = i) — af(s)]14i g € see(t). (€ .
Sj Tc
Inequality (b) uses the fact that 3 c ..o I75(8 + KA)| =32 c ooy Mi(s + KA) = L. [ |

Lemma C.6. Let W be a d-dimensional subspace of R"™ for d < n and let Z ~ N(0,1,) be a
standard Gaussian random vector. Let (w1, ..., wq) be an orthonormal basis of W with ||w;||* = 1 for

i €[d], and let P|1|/V denote the orthogonal projection operator onto W. Then for D = [wq | ... | wql,
we have P|1|,VZ 2 DZ where Z ~ N(0,1,) is independent of D.
Lemma C.7 (H(d) concentration). Let Z ~ N(0,1p1) and Z ~ N(0,1p) such that (Z;, Zz) are

i.i.d. bivariate Gaussian, for 1 <i < ML. For 0 € [L], let Yo = Zini(By — \/TZ). Then, for a
universal positive constant, k, and Ac € O(1) for each c € [(],

P(i)% \jl;gﬂz Y, - E[Y[)| 2 ¢) < exp{-mL(w/RIC).

Proof. The proof is along the same lines as that of Lemma 20 in [41], and is hence omitted. |
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