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Abstract

Sparse superposition codes, also referred to as sparse regression codes (SPARCs), are a class
of codes for e�cient communication over the AWGN channel at rates approaching the channel
capacity. In a standard SPARC, codewords are sparse linear combinations of columns of an
i.i.d. Gaussian design matrix, while in a spatially coupled SPARC the design matrix has a
block-wise structure, where the variance of the Gaussian entries can be varied across blocks.
A well-designed spatial coupling structure can significantly enhance the error performance of
iterative decoding algorithms such as Approximate Message Passing (AMP).

In this paper, we obtain a non-asymptotic bound on the probability of error of spatially
coupled SPARCs with AMP decoding. Applying this bound to a simple band-diagonal design
matrix, we prove that spatially coupled SPARCs with AMP decoding achieve the capacity of
the AWGN channel. The bound also highlights how the decay of error probability depends on
each design parameter of the spatially coupled SPARC.

An attractive feature of AMP decoding is that its asymptotic mean squared error (MSE) can
be predicted via a deterministic recursion called state evolution. Our result provides the first
proof that the MSE concentrates on the state evolution prediction for spatially coupled designs.
Combined with the state evolution prediction, this result implies that spatially coupled SPARCs
with the proposed band-diagonal design are capacity-achieving. Using the proof technique
used to establish the main result, we also obtain a concentration inequality for the MSE of
AMP applied to compressed sensing with spatially coupled design matrices. Finally, we provide
numerical simulation results that demonstrate the finite length error performance of spatially
coupled SPARCs. The performance is compared with coded modulation schemes that use LDPC
codes from the DVB-S2 standard.
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1 Introduction

We consider communication over the memoryless additive white Gaussian noise (AWGN) channel,
where the output symbol y is generated from input symbol u as y = u+w. The noise w is Gaussian
with zero mean and variance �2. The input has an average power constraint P : for a codeword
x = x1, x2, . . . , xn transmitted over n uses of the channel,

1

n

nX

i=1

x
2
i  P. (1)

The Shannon capacity of the channel is C = 1
2 ln

�
1 + P

�2

�
nats/transmission.

Sparse superposition codes, or sparse regression codes (SPARCs), were introduced by Joseph
and Barron [1, 2] for e�cient communication over the AWGN channel. These codes have been
proven to be reliable at rates approaching C with various low complexity iterative decoders [2–4].
As shown in Fig. 1, a SPARC is defined by a design matrix A of dimension n⇥ML, where n is the
code length and M , L are integers such that A has L sections with M columns each. Codewords
are generated as linear combinations of L columns of A, with one column from each section. Thus
a codeword can be represented as x = A�, with � being an ML⇥ 1 message vector with exactly
one non-zero entry in each of its L sections. The message is indexed by the locations of the non-zero
entries in �. The values of the non-zero entries are fixed a priori.

Since there are M choices for the location of the non-zero entry in each of the L sections, there
are M

L codewords. To achieve a communication rate of R nats/transmission, we therefore require

M
L = e

nR or nR = L lnM. (2)

The decoding task is to recover the message vector � from the received sequence y 2 Rn given by

y = A� +w. (3)

In the standard SPARC construction introduced in [1, 2], the design matrix A is constructed
with i.i.d. standard Gaussian entries. The values of the non-zero coe�cients in the message vector
� then define a power allocation across sections. With an appropriately chosen power allocation
(e.g., one that is exponentially decaying across sections), the feasible decoders proposed in [2–4]
have been shown to be asymptotically capacity-achieving. The choice of power allocation has also
been shown to be crucial for obtaining good finite length performance with the standard SPARC
construction [5]. A detailed discussion of the error rates of optimal versus feasible decoders for
standard SPARCs can be found in [6].

In a spatially coupled SPARC, the design matrix A is composed of blocks with di↵erent vari-
ances, i.e., the entries of A are still independent and Gaussian but not identically distributed.
Spatially coupled SPARCs were introduced by Barbier and co-authors in [7–10]. In these works, an
approximate message passing (AMP) algorithm was used for decoding, whose performance can be
predicted via a deterministic recursion called state evolution. Empirical results indicate that spa-
tially coupled SPARCs can have better error performance than power allocated SPARCs at finite
code lengths (see, e.g., [9,11]). Moreover, both standard SPARCs and power allocated SPARCs can
be viewed as special cases of spatially coupled SPARCs (see Section 2). It is therefore of interest to
rigorously characterize the achievable rates and the decay of error probability for spatially coupled
SPARCs.
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Section 1 Section 2 Section L

A : n
rows

� : . . ....0, a1, 0 a2, 0, 0, ... 0, aL, 0, ...
|

M columns

Figure 1: A is an n ⇥ML design matrix and � is an ML ⇥ 1 message vector with one non-zero entry in
each of its L sections. Codewords are of the form A�. The non-zero values a1, . . . , aL are fixed a priori.

Two key steps are required to prove that spatially coupled SPARCs achieve vanishingly small
error probability with AMP decoding for rates R < C:

1. Prove that in a suitable limit (corresponding to increasing code length), the fixed point of the
state evolution recursion is one that corresponds to vanishing probability of decoding error;

2. Prove that the error rate of the AMP decoder is closely tracked by the state evolution pa-
rameters for su�ciently large code length.

The first step was proved by Barbier et al. [8], using the potential function method [12]. The
result in [8] shows ‘threshold saturation’ for a class of spatially coupled SPARCs with AMP de-
coding. For any fixed rate R < C, this implies that state evolution predicts vanishing probability
of decoding error in the large system limit. (Throughout, the terminology ‘large system limit’ or
‘asymptotic limit’ refers to (L,M, n) all tending to infinity with L lnM = nR.)

In this paper, we rigorously prove the second step. We also provide an alternative proof of
the first step which gives insight into how the parameters defining the spatially coupled matrix
influence the decoding progression. These two steps together yield the main result (Theorem 1),
which is a non-asymptotic bound on the probability of decoding error of the AMP decoder. To our
knowledge, this is the first complete proof that spatially coupled SPARCs are capacity-achieving
with e�cient decoding.

Related work: Approximate message passing (AMP) refers to a class of iterative algorithms for
statistical estimation in models corresponding to dense factor graphs. AMP algorithms, which are
obtained via Gaussian and quadratic approximations of standard message passing techniques like
belief propagation, have been successfully applied to compressed sensing [13–16] and its applications
in communications such as MIMO detection [17] and unsourced random access [18]. Other appli-
cations of AMP include estimation in generalized linear models [19, 20], robust estimation [21, 22],
and several variants of low-rank matrix estimation [23–28].

The idea of spatial coupling was introduced in the context of LDPC codes [29–34], and first
used for compressed sensing in [35]. AMP algorithms for compressed sensing with spatially coupled
matrices were first proposed by Krzakala et al. in [15,36]. Takeuchi et al. [37,38] proposed a method
for analyzing the state evolution recursion of spatially coupled systems using a potential function
defined for the uncoupled system. This method characterizes the fixed points of the spatially
coupled state evolution in terms of the stationary points of the potential function. The potential
function method was made rigorous by Yedla et al. in [12]. In [39], Donoho et al. proved that
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a class of spatially coupled Gaussian designs achieve the optimal information-theoretic limit for
compressed sensing by analyzing the spatially coupled state evolution recursion in the continuum
limit. In a complementary work [40], Javanmard and Montanari proved that the mean-squared
error of AMP algorithm for spatially coupled compressed sensing converges (almost surely) to the
state evolution prediction in each iteration.

Though the SPARC model is similar to compressed sensing, the result of [40] cannot be directly
applied to AMP decoder since the SPARC message vector has a section-wise i.i.d. structure, with
a growing section size M in the large system limit. Moreover, our result is non-asymptotic and
generalizes the proof technique developed for power-allocated SPARCs [41] to the present setting
of spatially coupled designs.

1.1 Structure of the paper and main contributions

After describing the construction of spatially coupled SPARCs (SC-SPARCs) in Section 2, we
explain the AMP decoder and the associated state evolution recursion in Section 3. In Section 4,
we obtain upper and lower bounds on the state evolution parameters (Lemma 4.1) which help
explain the decoding progression of the AMP decoder for large M (Proposition 4.1). The main
theoretical results of the paper are stated in Section 5:

• Theorem 1 gives a non-asymptotic bound on the probability of excess section error rate of the
AMP decoder for any fixed rate R < C. The bound shows how the error performance depends
on each parameter of the SC-SPARC, and highlights the tradeo↵s involved in choosing these
parameters.

• Theorem 2 gives a concentration inequality for the mean-squared error (MSE) of the AMP
decoder in each iteration. Theorem 1 is a straightforward consequence of Theorem 2.

• With the same technique used for proving Theorem 2, we can obtain a concentration inequality
for the MSE of AMP for compressed sensing with spatially coupled measurement matrices.
This result, stated in Theorem 3, refines the asymptotic result for this model obtained in [40],
and makes explicit how the probability of deviation of the MSE (from the state evolution
prediction) depends on the problem dimension as well as the parameters defining the spatial
coupling.

Section 6 presents numerical simulation results showing the finite length error performance of
SC-SPARCs over the complex AWGN channel. The error performance is compared with coded
modulation schemes which use Quadrature Amplitude Modulation (QAM) with LDPC codes from
the DVB-S2 standard. We observe that at moderately high rates (around 1.5 bits/dimension),
SC-SPARCs have better error performance than the coded modulation schemes considered.

In Section 7, we prove Theorem 2. The proof has two key technical ingredients. The first is
a conditional distribution lemma (Lemma 7.4) which provides a non-asymptotic characterization
of the conditional distribution of the AMP iterates. This characterization is then used to prove
that various scalar products involving the AMP iterates concentrate around deterministic values
(Lemma 7.6). In Section 7, we give an overview of the key ideas in the proof of Theorem 2, then
state the main technical lemmas and use them to prove Theorem 2. The full proofs of the lemmas
are deferred to Section 8.

Though our approach to proving Theorems 1 and 2 is broadly similar to that used for power-
allocated SPARCs in [41], the block-wise structure of the spatially coupled design matrix introduces
several new technical challenges. For example, we need to define block-adjusted versions of the AMP
iterates (vectors) to obtain the appropriate linear constraints for the conditional distribution lemma

5



Design matrix A

n
R

n

ML/C

ML

Base matrix W

R

C

Figure 2: An n⇥ML spatially coupled design matrix A consists of R⇥C blocks, each of size n
R ⇥

ML
C . The

entries of A are independent and normally distributed with Aij ⇠ N (0, 1
LWr(i)c(j)), where W is the base

matrix. The base matrix shown here is an (!,⇤, ⇢) base matrix with parameters ! = 3,⇤ = 7 and ⇢ = 0.
The white parts of A and W correspond to zeros.

(see (56)-(61)). Similarly, in the main concentration lemma (Lemma 7.6) we establish concentration
results for scalar products scaled block-wise by the entries of the base matrix.

Notation: For a positive integer m, we use [m] to denote the set {1, . . . ,m}. For x 2 R, we
let x+ = max{x, 0}. Throughout the paper, we use plain font for scalars, bold font for vectors
and matrices, and subscripts to denote entries of a vector or matrix. For example, if x is a vector,
we write xi for its i

th component. Similarly, if X is a matrix, we write Xij for its (i, j)th entry.
The transpose of X is denoted by X

⇤. The Gaussian distribution with mean µ and variance �2 is
denoted by N (µ,�2).

We write It for the t⇥ t identity matrix; the subscript is dropped when the dimension is clear
from context. The indicator function of an event A is denoted by I{A}. For deterministic sequences
(sn)n�0, (xn)n�0, we write sn = ⇥(xn) if sn/xn is bounded above and below by strictly positive
constants for all su�ciently large n.

2 Spatially coupled SPARC construction

As in the standard construction, a spatially coupled (SC) SPARC is defined by a design matrix A

of dimension n ⇥ ML, where n is the code length. The codeword is x = A�, where � has one
non-zero entry in each of the L sections. In an SC-SPARC, since the variances of the entries of
di↵erent blocks of A can be varied, without loss of generality we will set the value of each non-zero
entry of � to 1.

In an SC-SPARC, the matrix A consists of independent zero-mean normally distributed entries
whose variances are specified by a base matrix W of dimension R ⇥ C. The design matrix A is
obtained from the base matrix W by replacing each entry Wrc by an (n/R)⇥ (ML/C) block with
i.i.d. entries ⇠ N (0,Wrc/L), for r 2 [R], c 2 [C]. This is analogous to the “graph lifting” procedure
for constructing spatially coupled LDPC codes from protographs [34]. See Fig. 2 for an example.
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From the construction, the design matrix A has independent normal entries

Aij ⇠ N

⇣
0,

1

L
Wr(i)c(j)

⌘
i 2 [n], j 2 [ML]. (4)

The operators r(·) : [n] ! [R] and c(·) : [ML] ! [C] in (4) map a particular row or column index in
A to its corresponding row block or column block index in W . We require C to divide L, resulting
in L

C sections per column block.

The non-zero coe�cients of � are all set to 1. Then it can be verified that E[kxk2] = nP (and
the power constraint is satisfied with high probability) if the entries of the base matrix W satisfy

1

RC

RX

r=1

CX

c=1

Wrc = P (5)

The trivial base matrix with R = C = 1 corresponds to a standard (non-coupled) SPARC with
uniform power allocation, while a base matrix consisting of a single row R = 1, C = L is equivalent
to a standard SPARC with power allocation. In this paper, we will use the following base matrix
inspired by the coupling structure of SC-LDPC codes constructed from protographs [34].

Definition 2.1. An (!,⇤, ⇢) base matrix W for SC-SPARCs is described by three parameters:
coupling width ! � 1 coupling length ⇤ � 2! � 1, and ⇢ 2 [0, 1) which determines the fraction of
power allocated to the coupled entries in each column. The matrix has R = ⇤+ ! � 1 rows, C = ⇤
columns, with each column having ! identical non-zero entries. For an average power constraint
P , the (r, c)th entry of the base matrix, for r 2 [R], c 2 [C], is given by

Wrc =

(
(1� ⇢)P ·

⇤+!�1
! if c  r  c+ ! � 1,

⇢P ·
⇤+!�1
⇤�1 otherwise.

(6)

It is easy to verify that this definition satisfies the power allocation constraint in (5). For
example, the base matrix in Fig. 2 has parameters ! = 3 and ⇤ = 7. For our simulations in Section
6, we use ⇢ = 0, whereas for our main theoretical result (Theorem 1) we choose ⇢ to be a small
positive value proportional to the rate gap from capacity. (Choosing ⇢ = 0 causes some technical
di�culties in the proof, which can be addressed by picking a suitable ⇢ > 0.) The (!,⇤, ⇢ = 0) base
matrix construction was previously used for SC-SPARCs in [42]. Other base matrix constructions
can be found in [8, 9, 15, 39].

Each non-zero entry in a base matrix W corresponds to an (n/R)⇥ (ML/C) block in the design
matrix A. Each block can be viewed as a standard (non-coupled) SPARC with L

C sections (with M

columns in each section), code length n/R, and rate Rinner =
(L/C) lnM

(n/R) nats. Using (2), the overall
rate of the SC-SPARC is related to Rinner according to

R =
C

R
Rinner =

⇤

⇤+ ! � 1
Rinner, (7)

where the last equality holds for an (!,⇤, ⇢) base matrix.
With spatial coupling, ! is an integer greater than 1, so R < Rinner. The di↵erence (Rinner �R)

is sometimes referred to as the rate loss due to spatial coupling. From (7), we see that rate
loss depends on the ratio (! � 1)/⇤, which becomes negligible when ⇤ is large w.r.t. !. For our
theoretical results, we will be interested in the regime where L � C = ⇤ � !. Without loss of
generality, we will henceforth assume that ! <

p
⇤.
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Remark 2.1. SC-SPARC constructions usually have a ‘seed’ to jumpstart decoding. In [8], a
small fraction of �’s sections are fixed a priori — this pinning condition is used to analyze the
state evolution equations via the potential function method. Analogously, the construction in [9]
introduces additional rows in the design matrix for blocks corresponding to the first row of the base
matrix. In an (!,⇤, ⇢) base matrix, the fact that the number of rows in the base matrix exceeds the
number of columns by (!�1) helps decoding start from both ends. The asymptotic state evolution
equations in Sec. 4 describe how AMP decoding progresses in an (!,⇤, ⇢) base matrix.

In the remainder of the paper, we use subscripts in sans-serif font (r or c) to denote row or
column block indices. Thus, �c 2 RML/C denotes the c-th column block of � 2 RML, for c 2 [C].

3 The AMP decoder for spatially coupled SPARCs

Recall that the decoding task is to recover the message vector � 2 RML from the channel output
sequence y 2 Rn produced according to (3). An Approximate Message Passing (AMP) decoding
algorithm can be derived using an approach similar to the one for standard SPARCs [4, Appendix
A], with modifications to account for the di↵erent variances for the blocks of A specified by the
base matrix. The AMP decoder can also be derived from the Generalized AMP algorithm in [19].

The AMP decoder initializes �0 to the all-zero vector, and for t � 0, iteratively computes:

z
t = y �A�

t + �
t
� z

t�1
, (8)

�
t+1 = ⌘

t(�t + (S
t
�A)⇤zt). (9)

Here � denotes the Hadamard (entry-wise) product. The vector �t
2 Rn, the matrix S

t
2 Rn⇥ML,

and the denoising function ⌘t are defined below in terms of the state evolution parameters. Quan-
tities with negative time indices are set to zero.

For any rate R < C, the AMP decoder is run for a finite number of iterations T , where T is
specified later in Section 4. After T iterations, the maximum value in each section ` 2 [L] of �T is
set to 1 and remaining entries are set to 0 to obtain the decoded message b�.

3.1 State evolution

Given a base matrix W , state evolution (SE) iteratively defines a sequence of scalars (�tr)r2R and
( t

c)c2C, for t � 0. Initialize  0
c = 1 for c 2 [C], and for t = 0, 1, . . ., compute

�
t
r =

1

C

CX

c=1

Wrc 
t
c , �

t
r = �

2 + �
t
r , r 2 [R], (10)

 
t+1
c = 1� E(⌧ tc), c 2 [C], (11)

where

⌧
t
c =

R

lnM

"
1

R

RX

r=1

Wrc

�tr

#�1

, (12)

and E(⌧ tc) is defined with U1, . . . , UM
i.i.d.
⇠ N (0, 1) as

E(⌧ tc) = E

2

4 e
U1/

p
⌧ tc

e
U1/

p
⌧ tc + e�1/⌧ tc

PM
j=2 e

Uj/
p

⌧ tc

3

5 . (13)
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For t � 1, the vector �t
2 Rn in (8) has a block-wise structure, with the ith entry defined as

�
t
i =

�
t
r

�
t�1
r

, if r(i) = r, (14)

where we recall that r(i) denotes the row block index of the ith entry. (The vector �
0 is defined

to be all-zeros.) Similarly, S
t
2 Rn⇥ML in (9) has a block-wise structure, with entries defined as

follows. For i 2 [n], j 2 [ML],

S
t
ij =

⌧
t
c

�tr
, if r(i) = r and c(j) = c. (15)

The function ⌘t = (⌘t1, . . . , ⌘
t
ML) : RML

! RML in (9) is defined as follows, for j 2 [ML]. For j
in section ` 2 [L], with section ` in column block c 2 [C],

⌘
t
j(s) =

e
sj/⌧ tc

P
j02sec(`) e

sj0/⌧
t
c
, (16)

where sec(`) := {(`� 1)M +1, . . . , `M} refers to the set of indices in section `. We note that ⌘tj(s)
depends on all the components of s in the section containing j.

3.2 Interpretation of the AMP decoder

The input to ⌘tj(·) in (16) can be viewed as a noisy version of �. In particular, consider an index j

in section ` 2 [L] which belongs to column block c 2 [C]. Recall that �` 2 RM is section ` of the
message vector, and let st` = s` denote section ` of the input vector to the function ⌘tj(·). Then, s

t
`

is approximately distributed as �` +
p
⌧ tcZ`, where Z` 2 RM is a standard normal random vector

independent of �`. Under the above distributional assumption, the denoising function ⌘tj in (16) is
the minimum mean squared error (MMSE) estimator for �j , i.e.,

⌘
t
j(s) = E

h
�j | �` +

p
⌧ tc Z` = s`

i
, for j 2 [ML], (17)

where the expectation is calculated over and Z` ⇠ N (0, IM ) and �`, which is uniformly distributed
over the M vectors with a single non-zero entry equal to 1.

The entries of the modified residual zt in (8) are approximately Gaussian and independent, with
the variance determined by the block index. (A precise characterization of the distribution is given
in Lemmas 7.4 and 7.5.) For r 2 [R], the SE parameter �tr approximates the variance of zt

r, the
rth block of the residual. The ‘Onsager’ term �

t
� z

t�1 in (8) reflects the block-wise structure of
z
t. To summarize, the key di↵erence from the state evolution parameters for standard SPARCs

is that here the variances of the e↵ective observation s
t and the modified residual zt depend on

their column- and row-block indices, respectively. These variances are captured by {⌧
t
c}c2[C] and

{�
t
r}r2[R].

3.3 Measuring the performance of the AMP decoder

The performance of a SPARC decoder is measured by the section error rate, defined as

Esec :=
1

L

LX

`=1

I{b�sec(`) 6= �sec(`)}. (18)

9



Figure 3: NMSE k�t
c��ck

2
2

L/C vs. column block index c 2 [C] for several iteration numbers. The SC-SPARC

with an (!,⇤, ⇢ = 0) base matrix has the following parameters: R = 1.5 bits, C = 2 bits, ! = 6, ⇤ = 32,
M = 512, L = 2048 and n = 12284. The solid lines are the state evolution predictions from (11), and the
dotted lines are the average NMSE over 100 instances of AMP decoding.

If the AMP decoder is run for T iterations, the section error rate can be bounded in terms of the
squared error k�

T
� �k

2 as follows. Since the unique non-zero entry in any section ` 2 [L] of �
equals 1 and b�sec(`) 6= �sec(`) implies that the corresponding element of �T

sec(`) is less than or equal
to 1/2,

b�sec(`) 6= �sec(`) ) k�
T
sec(`) � �sec(`)k

2
2 �

1

4
. (19)

We recall that �c is the part of the message vector corresponding to column block c of the design
matrix. There are L

C sections in �c, with the non-zero entry in each section being equal to 1; we
denote by �c` the `th of these sections, for ` 2 [L/C]. Then, (19) implies

Esec =
1

L

LX

`=1

I{b�sec(`) 6= �sec(`)} =
1

L

CX

c=1

L/CX

`=1

I
n
b�c` 6= �c`

o


4

L

CX

c=1

L/CX

`=1

k�
T
c` � �c`k

2
2 = 4

"
1

C

CX

c=1

k�
T
c � �ck

2
2

L/C

#
= 4


1

L
k�

T
� �k

2

�
. (20)

We can therefore focus on bounding the bracketed term on the RHS of (20) which is the overall
normalized mean square error (NMSE). Fig. 3 shows that  t ((11)) closely tracks the NMSE of

each block of the message vector, i.e.,  t
c ⇡

k�t
c��ck22
L/C for c 2 [C]. We additionally observe from

the figure that as AMP iterates, the NMSE reduction propagates from the ends towards the center
blocks.

4 Decoding progression according to state evolution

In this section, we derive bounds for the state evolution parameters which help explain the decoding
propagation illustrated in Fig. 3. These bounds lead to a succinct asymptotic characterization of
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state evolution (as M ! 1). The non-asymptotic version of these bounds (for large but finite M)
will be used to establish the main result in Theorems 1 and 2.

Lemma 4.1. Let W 2 RR⇥C be a base matrix having row and column averages that are bounded
above and below by strictly positive constants. That is, there exist constants L,U > 0 such that

L 
1

C

X

c0

Wrc0 ,
1

R

X

r0

Wr0c  U, r 2 [R], c 2 [C].

Let

⌫
t
c :=

1

⌧ tc lnM
=

1

R

"
1

R

RX

r=1

Wrc

�tr

#
. (21)

For su�ciently large M and any � 2 (0, 12), �̃ 2 (0, 1),

⇣
1�M

�k1�̃2
⌘
I{⌫tc < 2� �̃}   

t+1
c  1�

 
1�

M
�k�2

�
p
logM

!
I{⌫tc > 2 + �}, c 2 [C ], (22)

where k, k1 are positive constants depending only on L and U.

The proof of the lemma is given in Appendix A.1.
Lemma 4.1 implies the following asymptotic state evolution recursion as M ! 1. Initialise

 ̄
0
c = 1, for c 2 [C], and for t = 0, 1, 2, . . .,

�̄
t
r = �

2 +
1

C

CX

c=1

Wrc ̄
t
c, r 2 [R], (23)

 ̄
t+1
c = 1� I

(
1

RR

RX

r=1

Wrc

�̄tr
> 2

)
, c 2 [C], (24)

where �̄,  ̄ indicate asymptotic values as M ! 1.
The asymptotic SE recursion (23)-(24) is given for a general base matrix W . To get some insight

into the decoding progression, we specialise the result to the (!,⇤, ⇢ = 0) base matrix introduced
in Definition 2.1. Recall that an (!,⇤, ⇢ = 0) base matrix has R = ⇤ + ! � 1 rows and C = ⇤
columns, with each column having ! non-zero entries, all equal to P ·

⇤+!�1
! .

Corollary 4.1. The asymptotic state evolution recursion (23)-(24) for an (!,⇤, ⇢ = 0) base matrix
is as follows. Initialise  ̄0

c = 1 8 c 2 [⇤], and for t = 0, 1, 2, . . .,

�̄
t
r = �

2 +
#P

!

crX

c=cr

 ̄
t
c, r 2 [⇤+ ! � 1], (25)

 ̄
t+1
c = 1� I

(
P

R!

c+!�1X

r=c

1

�̄tr
> 2

)
, c 2 [⇤], (26)

where # = ⇤+!�1
⇤ , and

(cr, cr) =

8
><

>:

(1, r) if 1  r  !

(r� ! + 1, r) if !  r  ⇤

(r� ! + 1, ⇤) if ⇤  r  ⇤+ ! � 1.

(27)

11



Proof. Substitute the value of Wrc from (6), with ⇢ = 0 and C = ⇤, R = ⇤+!� 1 in (23)-(24). ⌅

Observe that the �̄tr’s and  ̄
t
c’s are symmetric about the middle indices, i.e. �̄tr = �̄

t
R�r+1 for

r  b
R
2 c and  ̄t

c =  ̄
t
C�c+1 for c  b

C
2 c.

Consider the initial step (t = 0): from (25) the value of �̄0r for each r depends on the number of
non-zero entries in row r of W , which is equal to cr � cr + 1, with cr, cr given by (27). Therefore,
�̄
0
r increases from r = 1 until r = !, is constant for !  r  ⇤, and then starts decreasing

again for ⇤ < r  ⇤ + ! � 1. As a result,  ̄1
c is smallest for c at either end of the base matrix

(c 2 {1,⇤}) and increases as c moves towards the middle, since the
Pc+!�1

r=c (�̄0r )
�1 term in (26) is

largest for c 2 {1,⇤}, followed by c 2 {2,⇤� 1}, and so on. Therefore, we expect the blocks of the
message vector corresponding to column index c 2 {1,⇤} to be decoded most easily, followed by
c 2 {2,⇤� 1}, and so on. Fig. 3 shows that this is indeed the case.

The decoding propagation phenomenon seen in Fig. 3 can also be explained using Corollary
4.1 by tracking the evolution of the �̄tr’s and  ̄

t
c’s. In particular, one finds that if column c⇤

decodes in iteration t, i.e.  ̄t
c⇤ = 0, then columns within a coupling width away, i.e. columns

c 2 {c⇤� (!� 1), . . . , c⇤+(!� 1)}, will become easier to decode in iteration (t+1). This wave-like
decoding propagation also occurs in spatially coupled LDPC codes decoded with belief propagation.
The propagation of the LDPC decoding wave (in the large system limit) was studied in [43].

4.1 Decoding progression

We make the above discussion precise by characterizing the decoding progression for an (!,⇤, ⇢)
base matrix (with ⇢ > 0) using Lemma 4.1. Recalling that

# = 1 +
! � 1

⇤
, (28)

we will consider rates R such that

R <
1

2#
ln(1 + # snr), where snr =

P

�2
. (29)

Note that the RHS of (29) can be made arbitrarily close to the channel capacity C by making !�1
⇤

small enough. Indeed, since the expression in (29) is decreasing in # for # > 1, we have

C >
1

2#
ln(1 + # snr) >

C

#
. (30)

Proposition 4.1. Consider a rate R SC-SPARC with an n⇥ML design matrix constructed using
an (!,⇤, ⇢) base matrix and a constant � 2 (0,min{ �

2R ,
1
2}), where 0  ⇢  min{ �

3snr ,
1
2}, and

� :=
1

2#
ln(1 + #snr)�R. (31)

If the rate satisfies R <
(1�⇢)snr

(2+�)(1+#snr) , then all the column blocks of the message vector simultaneously

decode in one iteration, i.e., for all c 2 [⇤],

 
1
c  fM,� :=

M
�k�2

�
p
logM

(32)

12



for su�ciently large M , where k > 0 is a universal constant.
Otherwise, if the rate satisfies (1�⇢)snr

(2+�)(1+#snr)  R <
1
2# ln(1+# snr), the coupling width ! satisfies

! >

✓
# snr2

1 + #snr

◆
1

�
, (33)

and

g =
(1 + # snr)�

# snr2
!, (34)

then, for t � 1 and

c  max

⇢
tg,

⇠
⇤

2

⇡�
, (35)

we have
 
t
c =  

t
⇤�c+1  fM,� (36)

for su�ciently large M .

The proof of the proposition is given in Appendix A.2.

Remark 4.1 (BP threshold). For rates R smaller than snr
2(1+snr) , one does not require spatial

coupling (or power allocation) for reliable SPARC decoding. Indeed, consider a standard non-
coupled SPARC where the 1-by-1 base matrix is a single entry equal to P . Using Lemma 4.1 in
the state evolution recursion (10)-(13), we see that if R <

snr
(2+�)(1+snr) for some � 2 (0, 1), then

the whole message vector decodes in one iteration, i.e.,  1
 fM,�. The threshold snr

2(1+snr) can be
interpreted as the BP threshold in the M ! 1 limit.

Remark 4.2 (Choice of base matrix parameters). For any fixed rate snr
2(1+snr)  R < C = 1

2 ln(1 +

snr), Proposition 4.1 requires the parameters (!,⇤) to be chosen such that: i) the ratio (!/⇤) is
small enough that the rate gap � in (31) is positive, and ii) ! is large enough that (33) is satisfied.
These two conditions can be satisfied for any fixed R < C by taking (for example) ⇤ > !

2, and !
su�ciently large.

For rates larger than the threshold snr
2(1+snr) , the proposition says that if the coupling width ! is

large enough (as specified by (33)), then in iteration t at least the first and last bgtc column blocks
from each end are expected to decode. Furthermore, the proof shows that if gt  ⇤/2 is the exact
number of column blocks such that  t

c =  
t
⇤�c+1  fM,� for c  gt, then gt+1 � bgt + gc, i.e., in

each iteration at least bgc � 1 additional column blocks of the message vector from each end are
expected to decode.

This decoding progression continues until iteration T when all column blocks have been decoded,
i.e.,  T

c  fM,� for c 2 [C]. More precisely, we run the AMP decoder for T iterations where

T := min{t :  t
c  fM,� for c 2 [C]}. (37)

Proposition 4.1 implies that for rates larger than the threshold

T 

⇠
⇤

2g

⇡
. (38)

Using the interpretation of the AMP decoder in Sections 3.2 and 3.3, after iteration T we
expect the mean squared error 1

Lk� � �
T
k
2 to be small. We note that g is proportional to �,

which represents the rate gap from capacity (see (30), (31)). Therefore, from (38) the number of
iterations T grows as the rate approaches the channel capacity. For a fixed R the quantity fM,�

tends to 0 with growing M .
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5 Main Result

The main result, stated in the theorem below is a bound on the probability of the section error
rate of the AMP decoder exceeding a target level ✏, for any ✏ 2 (0, 1).

Theorem 1. Consider an (!,⇤, ⇢) base matrix W 2 RR⇥C with (R,C) = (⇤ + ! � 1, ⇤) and
⇢ = min{ �

3snr ,
1
2}, where � is the rate gap defined in (31). Fix rate snr

2(1+snr)  R <
1
2# ln(1 + # snr),

where # = 1 + !�1
⇤ , and let ! be large enough that the condition in (33) is satisfied. Let Sn be a

SC-SPARC of rate R defined via an n⇥ML design matrix constructed using the base matrix W .
The parameters (n,M,L) satisfy (2).

Fix ✏ 2 (0, 1), and for fM,�R
defined in Proposition 4.1, let M be large enough that fM,� 

✏
8 for

� = min{ �
3R ,

1
3}. Then after the AMP decoder is run for T iterations, with T defined in (37), the

section error rate (defined in (18)) satisfies

P (Esec(Sn) > ✏)  KT�1(RC)
T exp

n
�T�1n✏

2

64(logM)2T (R/!)2T�1

o
. (39)

For t � 0, the constants t and Kt are given by t = [⇠2t(t!)24]�1 and Kt = ⌅2t(t!)14 where
⇠,⌅ > 0 are universal constants (not depending on the AMP parameters (L,M, n,R,C) or ✏), but
not explicitly specified.

Remark 5.1. The theorem is stated for rates snr
2(1+snr)  R <

1
2# ln(1 + # snr) as this is the region

where spatial coupling is required. Indeed, for R <
snr

2(1+snr) , Remark 4.1 and the proof of Theorem 1

imply that the probability bound (39) holds with R = C = ! = 1 and T = 1. This result also follows
from the analysis in [41], applied with a uniform power allocation.

The bound (39) on the probability of excess section error rate is obtained via a concentration
inequality on the normalized MSE of the AMP decoder. Theorem 2 below gives a concentration
inequality bounding the probability of deviation of the normalized MSE from the state evolution
prediction in each iteration. Recall, by (20), the section error rate can be bounded in terms of the
normalized MSE, k�T

� �k
2
/L. This connection is used to prove Theorem 1 from Theorem 2.

Theorem 2. With the same assumptions as Theorem 1, for 1  t  T and ✏ > 0 we have

P

⇣���
k�

t
� �k

2

L
�

1

C

X

c2[C]

 
t
c

��� � ✏

⌘
 Kt�1(RC)

t exp
n

�t�1n✏
2

(logM)2t(R/!)2t�1

o
. (40)

Here { 
t
c}c2[C] are the state evolution parameters defined in (11), and the constants Kt�1 and t�1

are as defined in the statement of Theorem 1.

The dependence of the constants Kt and t on t! arises due to the induction-based proof of the
concentration lemma (Lemma 7.6). These constants have not been optimized, but we believe that
these constants will depend on t! in any induction-based proof of the result. It is an open question
whether the t! factors are fundamental to the problem or if a di↵erent analysis of the AMP can
yield a di↵erent t dependence in these constants.

Theorem 2 is proved in Section 7. We now show how Theorem 1 follows from Theorem 2.
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Proof of Theorem 1. Without loss of generality, we can assume that rate gap � (defined in (31))
satisfies � < 2R. Otherwise the arguments below hold with (�/R) replaced by 1.

Taking t = T , and noting that  T
c  fM,�/(3R) for c 2 [C] (from Proposition 4.1), Theorem 2

implies that for any ✏̃ > 0,

P

✓
k�

T
� �k

2

L
� ✏̃+ fM,�/(3R)

◆
 KT�1(RC)

T exp
n

�T�1n✏̃
2

(logM)2T (R/!)2T�1

o
. (41)

Furthermore, from (20) we have

P (Esec(Sn) > ✏)  P

✓
k�

T
� �k

2

L
�
✏

4

◆
. (42)

Combining (41) and (42), and taking ✏̃ = ✏
8 and M large enough so that fM,�/(3R) 

✏
8 (see (32))

yields Theorem 1. ⌅

5.1 Choosing the SC-SPARC parameters

Theorems 1 and 2 give guidance on how to systematically choose parameters of the spatially coupled
SPARC for any fixed rate R < C = 1

2 ln(1 + snr) and a target section error rate ✏. First, choose
(!,⇤) so that the rate gap � in (31) is positive and (33) is satisfied. As described in Remark 4.2,
this can be done by choosing ⇤ > !

2, and ! su�ciently large. This determines R = (⇤ + ! � 1)
the number of iterations T , which from (38), is bounded by a value proportional to ⇤/(!�).

Next choose M large enough for fM,� 
✏
8 for � = min{ �

3R ,
1
3}. For fixed values of (!,⇤,M),

(39) shows that the probability that the section error rate exceeds ✏ decays exponentially in the
block length n. Once n is chosen to be a large multiple of R = (⇤+ ! � 1), the number of sections
is L = nR

lnM , which completes the specification of the SPARC.1

Remark 5.2. Theorem 1 implies that for any fixed R < C and ✏ 2 (0, 1), one can construct a
sequence of rate R spatially coupled SPARCs {Sn} (indexed by code length n) for which

lim
n!1

Esec(Sn) = 0 almost surely. (43)

Indeed, once (⇤,!,M) are chosen to satisfy the conditions in Theorem 1, the bound in (39) decreases
exponentially in n. The Borel-Cantelli lemma then yields the asymptotic result in (43).

Remark 5.3. As described in [1], to obtain a small probability of codeword error P (b� 6= �), one
can use a concatenated code with the SPARC as the inner code and an outer Reed-Solomon code.
A suitably chosen Reed-Solomon code of rate (1 � 2✏) ensures that b� = � whenever the section
error rate Esec < ✏, for any ✏ > 0. The overall rate for such a concatenated code is (1 � 2✏)R and
the P (b� 6= �) is bounded by the RHS of (39). The reader is referred to [6, Sec. 2.2] for details of
how to choose an appropriate Reed-Solomon code.

1The parameters L and NC = ML/⇤ determined in this way need to be integer-valued, which can be ensured by
picking suitable values for !,⇤,M .
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5.2 Tradeo↵s in choosing the parameters

We first consider the e↵ect of the base matrix parameters !,⇤. The condition in (28) and the bounds
in (30) together imply that the minimum gap from capacity C � R is of order !

⇤ , or equivalently,
of order !

⇤+!�1 = !
R . Therefore, decreasing the ratio !

R allows rates closer to capacity, but weakens

the probability bound in Theorem 1. Indeed, the bound in (39) is exponential in (!/R)2T�1, with
T also increasing with (R/!).

Next consider the e↵ect of increasing M . From Theorem 1 increasing M allows for a smaller
target section error rate ✏, since we require ✏ � 8fM,�. Equivalently, from (36) and Theorem 2,
increasing M allows for a smaller state evolution estimate of the normalized MSE, k�T

� �k
2
/L.

On the other hand, the probability bounds in Theorems 1 and 2 worsen with increasing M .
With ⇤,! and M fixed, increasing the code length n (or, equivalently L) exponentially improves

the probability bound in Theorem 1.
The per-iteration computational complexity of the AMP decoder is determined by the complexity

of matrix-vector multiplications with the design matrixA. This complexity isO(nML) for Gaussian
design matrices. For our empirical results in Section 6, we use DFT-based design matrices which
reduce the per-iteration complexity to O(ML log(ML)).

5.3 Compressed sensing with spatially coupled design matrices

In this section, we establish a nonasymptotic result analogous to Theorem 2 for compressed sensing
with a spatially coupled measurement matrix. In compressed sensing, the goal is to estimate a
vector � 2 Rp from a linear measurement y = A�+w. This model is similar to SPARC decoding,
with the main di↵erence being that the entries of the signal vector � are now assumed to be drawn
from a generic prior P� rather than the section-wise structure of a SPARC message vector.

We consider a spatially coupled measurement matrix A 2 Rn⇥p defined via a base matrix
W 2 RR⇥C by replacing each entry Wrc by an (n/R) ⇥ (p/C) block with i.i.d. N (0, Wrc

n/R) entries,

for r 2 [R] and c 2 [C]. The AMP algorithm for spatially coupled compressed sensing has the
same form as the one in (8)-(9), with the main di↵erence being the denoising function ⌘t and the
corresponding changes in the state evolution parameters. Before describing these di↵erences, we
state the assumptions on the model:

(1) The components of the signal vector � 2 Rp are i.i.d. with a sub-Gaussian distribution P� .

(2) The denoising function ⌘t : Rp
! Rp used in the AMP algorithm is separable, and its compo-

nents ⌘tj : R ! R are Lipschitz continuous, for j 2 [p].

(3) As the signal dimension p grows, the sampling ratio n/p is constant and denoted by �.

(4) The entries of the noise vector w 2 Rn are i.i.d. Gaussian with zero mean and variance �2.

(5) The entries of the base matrix W 2 RR⇥C are bounded below by a strictly positive constant,
and for r 2 [R], the row sums satisfy 1

2 
PC

c=1Wrc  2. (The assumption on the row sums is
made to ensure that the definitions of the state evolution parameters are consistent with [39].)

The state evolution recursion for the spatially coupled compressed sensing AMP is as follows.
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Initialize  0
c = 1 for c 2 [C], and for t � 0:

�
t
r = �

2 +
1

�

CX

c=1

Wrc 
t
c, r 2 [R], (44)

 
t+1
c = E

⇢h
� � ⌘

t
�
(⌧ tc)

�1/2
� +G

�i2�
, c 2 [C], (45)

where the expectation in (45) is over the independent pair � ⇠ P� and G ⇠ N (0, 1). Furthermore,

⌧
t
c =

�PR
r=1Wrc/�

t
r

��1
for c 2 [C].

The entries of the vector �t and the matrix S in the AMP algorithm are defined as in (14) and
(15), respectively. If the prior P� is known, the Bayes optimal choice for scalar denoising function
⌘
t is the MMSE estimator. Indeed,  t

c is minimized by taking ⌘j(s) = E[� | (⌧ tc)�1/2
� +G = s] for

an index j in column block c.

Theorem 3. Consider the spatially coupled compressed sensing model under the assumptions listed
above. For t � 1, the mean-squared error of the AMP satisfies

P

⇣���
k�

t
� �k

2

p
�

1

C

X

c2[C]

 
t
c

��� � ✏

⌘
 Kt(RC)

t exp
n

�ktn✏
2

[R (maxr,cWr,c)]2t

o
. (46)

Here Kt, kt are positive constants that depend only on t. (These constants are not the same as the
ones in Theorem 2).

The proof of Theorem 3 is similar to that of Theorem 2, with appropriate changes (along the
lines of the result in [44]) to account for the fact that � now has i.i.d. entries rather than the block-
wise structure of a SPARC message vector. A few remarks about Theorem 3 and the underlying
assumptions:

1. Theorem 3 refines the asymptotic result established in [40] for spatially coupled design ma-
trices, which showed that limp!1 k�

t
� �k

2
/p = 1

C

P
c  

t
c almost surely.

2. The assumption that the entries of the base matrix are lower bounded by a positive constant
is due to a technical detail in the proof. For the same reason, we need ⇢ to be strictly positive
(rather than 0) in Theorems 1 and 2.

3. The scaling of the base matrix entries (implied by the column sums condition in Assumption
5) di↵ers from the one used for SPARCs in (5) by a factor of order R. Therefore, the maximum
entry in the equivalent of the (!,⇤, ⇢) base matrix for compressed sensing would be of order

1/!, leading to an exponent of �ktn✏2

(R/!)2t in (46). Thus the probability bound in Theorem 3 is

similar to that of Theorem 2.

6 Empirical performance of SC-SPARCs

In this section, we investigate the finite length error performance of SC-SPARCs with AMP decoding
via numerical simulations. We use the (!,⇤, ⇢ = 0) base matrix construction in all the simulations.

We would like to compare the performance of SC-SPARCs with that of standard coded modula-
tion schemes such as LDPC codes with Quadrature Amplitude Modulation (QAM), which produce
complex-valued symbols to be transmitted over the channel. Therefore, in these simulations we con-
sider the communication over the complex AWGN channel, where the noise is circularly-symmetric
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Figure 4: Error performance of complex SC-SPARCs defined via a (! = 4,⇤ = 32, ⇢ = 0) base matrix. R =
1.5 bits/dimension, L = 2944, M = 2048, code length n = 10795. The dashed lines show the performance
of coded modulation: (K = 32400, N = 64800) DVB-S2 LDPC + 64 QAM, frame length = 10800 symbols.
The solid black line in the BER plot is the AWGN Shannon limit for R = 1.5 bits/dimension, and in the
FER plot, it is the normal approximation to the AWGN finite length error probability bound in [46].

Figure 5: Error performance of complex SC-SPARCs defined via an (! = 6,⇤ = 32, ⇢ = 0) base matrix.
R = 1.6 bits/dimension, L = 960, M = 128, code length n = 2100. The dashed lines show the performance
of coded modulation: (K = 6480, N = 16200) DVB-S2 LDPC + 256 QAM, frame length = 2025 symbols.
The solid black line in the BER plot is the AWGN Shannon limit for R = 1.6 bits/dimension, and in the
FER plot, it is the normal approximation to the AWGN finite length error probability bound in [46].

complex Gaussian. We use complex SC-SPARCs, which are defined as described in Section 2, ex-
cept that the design matrix now has independent circularly-symmetric complex Gaussian entries
instead of real-valued Gaussian entries. The AMP decoder for complex SC-SPARCs is similar to
the one in (8)-(9): we take A

⇤ to be the conjugate transpose of A, and modify the definition of
⌘
t
j in (16) according to (17). For additional details on complex SC-SPARCs and its AMP decoder,
see [45].

In Figures 4, 5, and 6, we provide numerical simulation results demonstrating the finite length
error performance of complex SC-SPARCs with AMP decoding at di↵erent code rates and code
lengths. The error performance is evaluated using both the bit error rate (BER) and the frame
error rate (FER). (The FER is the message/codeword error rate.) We also simulate and plot the
error performance of coded modulation schemes (LDPC + QAM) for reference using the AFF3CT
toolbox [47]. The LDPC codes are chosen from the DVB-S2 standard and a belief propagation
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Figure 6: Error performance of complex SC-SPARCs defined via an (! = 6,⇤ = 32, ⇢ = 0) base matrix.
R = 2 bits/dimension, L = 2688, M = 16, code length n = 2688. The dashed lines show the performance
of coded modulation: (K = 10800, N = 16200) DVB-S2 LDPC + 64 QAM, frame length = 2700 symbols.
The solid black line in the BER plot is the AWGN Shannon limit for R = 2 bits/dimension, and in the FER
plot, it is the normal approximation to the AWGN finite length error probability bound in [46].

(BP) decoder is used which runs for 50 iterations. For fair comparison, in each figure, the frame
length of the coded modulation scheme is chosen to be close to the code length of the SC-SPARC.

Fig. 4 shows the performance of SC-SPARCs with rate 1.5 bits/dimension and code length
n = 10795. The AMP decoder for the SC-SPARC is run for a maximum of 200 iterations (details
in Sec. 6.1). The coded modulation scheme uses a rate 1

2 (32400, 64800) DVB-S2 LDPC code with
64-QAM modulation, for the same overall rate of 1.5 bits/dimension and a frame length of 10,800
symbols. We observe that the SC-SPARC requires a smaller Eb/N0 to achieve BERs in the range
10�1 to 10�5, and FERs down to 5 ⇥ 10�4 compared to the coded modulation scheme. However,
for much lower FERs, we expect the coded modulation scheme to require a smaller Eb/N0 because
its frame error rate drops faster as Eb/N0 increases.

Fig. 5 shows the performance of an SC-SPARC with a shorter code length n = 2100, and a
rate of 1.6 bits/dimension. The AMP decoder for the SC-SPARC is run for a maximum of 100
iterations. The coded modulation scheme uses a rate 1

2 (6480, 16200) DVB-S2 LDPC code with
256-QAM modulation, for the same overall rate of 1.6 bits/dimension and a frame length of 2025
symbols. We observe that the SC-SPARC requires a smaller Eb/N0 to achieve BERs in the range
10�1 to 10�5 and FERs down to 10�4 compared to the coded modulation scheme. However, for
BERs and FERs lower than 10�5 and 10�4, respectively, we expect the coded modulation scheme
to require a smaller Eb/N0 because its error rate drops faster as Eb/N0 increases.

In Fig. 6, the rate of the SC-SPARC is 2 bits/dimension and the code length is n = 2688. The
AMP decoder for the SC-SPARC is run for a maximum of 100 iterations. The coded modulation
scheme uses a rate 2

3 (10800, 16200) DVB-S2 LDPC code with 64-QAM modulation, for the same
overall rate of 2 bits/dimension and a frame length of 2700 symbols. We observe that the SC-
SPARC has a higher BER and FER compared to the coded modulation scheme for all values of
Eb/N0, and its error rate also drops more slowly as Eb/N0 increases.

In the above plots, the SC-SPARC parameters (!,⇤, L,M, n) have not been carefully opti-
mized. An interesting direction for future work is to develop good finite length design guidelines
for choosing these parameters as a function of rate and snr. Another direction is to explore whether
alternative base matrix designs could improve the finite length performance at higher rates like 2
bits/dimension.
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6.1 Implementation details

The (!,⇤, ⇢ = 0) base matrix was used for all the simulations. Furthermore, to reduce the decoding
complexity and the memory required, a few modifications were made to the SC-SPARC construction
and the AMP decoder:

1) DFT based design matrices : We replaced the complex Gaussian design matrix with a Discrete
Fourier Transform (DFT) based design matrix. This enables the matrix-vector multiplications in
the AMP decoder (8)–(9) to be computed via the Fast Fourier Transform (FFT), which significantly
lowers the decoding complexity and memory requirement. Our approach is similar to that of [4, 9]
where Hadamard based design matrices were used for real-valued SPARCs.

The computational complexity of the AMP decoder is dominated by the two matrix-vector
multiplications associated with the design matrix A. These operations have complexity O(nLM)
when A has independent Gaussian entries. The memory requirements of the encoder and decoder
are also proportional to nLM since the Gaussian design matrix has to be stored. By constructing
the design matrix using randomly sampled rows and columns of the (deterministic) DFT matrix, the
complexity of the matrix-vector multiplications (replaced by FFTs) is reduced to O(LM log(LM)),
and the memory requirements of the encoder and decoder are proportional to !LM . The error
performance of DFT based design matrices was found to be similar to that of Gaussian matrices
for large matrix sizes.

2) Online estimation of state evolution parameters : The AMP decoder in (8)–(9) contains pa-
rameters computed using the state evolution (SE) recursion (10)–(13). In particular, the vector

�
t
2 Rn, and the matrix S

t
2 Rn⇥ML are determined via SE parameters computed o✏ine. Instead

of computing the SE parameters o✏ine, the SE parameters can be estimated online (at runtime)
using the outputs of the AMP decoder in each iteration. The SE parameters {�

t
r}r2[R], {�

t
r}r2[R]

and {⌧
t
c}c2[C], which are needed to compute �

t and S
t
(see (14) and (15)) can be estimated online

in the following way. For r 2 [R] and c 2 [C],

b�tr =
1

C

CX

c=1

Wrc

✓
1�

k�
t
ck

2

L/C

◆
, (47)

b�tr =

(
�
2 + b�tr if the decoder knows �2,

kzt
rk2

n/R otherwise,
(48)

b⌧ tc =
L

n

"
1

R

RX

r=1

Wrc

b�tr

#�1

. (49)

The justification for these estimates comes from Lemma 7.6, which proves that the estimates
b�tr , b�tr concentrate on �tr ,�tr, respectively (eqs. (94) and (103)), for large (n, L). We observe that using
online estimates of the SE parameters results in a better error performance than using deterministic
SE parameters. A similar improvement was observed in [5] for power allocated SPARCs.

3) Early stopping of AMP : Since the empirical estimates of SE parameters in (47)-(49) are
estimates of certain noise variances related to the decoding error in each iteration of the AMP, we

chose to stop the AMP decoder early if the change in b�t
, b�

t
or b⌧ t fell below a prescribed threshold

over consecutive iterations. A similar stopping criterion was used in [5] to terminate the AMP
decoder for power allocated SPARCs.
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A Python implementation of SPARCs (both power allocated and spatially coupled) with AMP
decoding is available at [48].

7 Proof of Theorem 2

The main ingredients in the proof of Theorem 2 are two technical lemmas (Lemmas 7.4 and 7.6).
After laying down some definitions and notation, we give a brief overview of the proof in Section
7.2. We then state the key technical lemmas, and use them to prove Theorem 2. For consistency
with earlier analyses of AMP, we use notation similar to [4, 14, 41], with modifications to account
for the row- and column-block dependence induced due to spatial coupling.

7.1 Definitions and Preliminaries

Recall that �0 2 RML is the message vector chosen by the transmitter, w 2 Rn is the channel noise
vector, and the AMP decoder is intialized with �

0 = 0 and z
0 = y. Throughout the proof, we use

the notation
NR := n/R, NC := ML/C. (50)

Define the column vectors h
t+1

, q̆
t+1

2 RML and b
t
, m̆

t
2 Rn for t � 1 recursively as follows.

Starting with the initial conditions

q̆
0 = ��0, h

1 = �0 � (S
0
�A)⇤z0

,

m̆
0 = �z

0
, b

0 = w � z
0
,

(51)

for t � 1, the vectors q̆t,ht+1
, m̆

t
, b

t are defined as

q̆
t = �

t
� �0, h

t+1 := �0 �

⇣
[(S

t
�A)⇤zt] + �

t
⌘
,

m̆
t = �z

t
, b

t = w � z
t
,

(52)

where S
t
2 Rn⇥ML is the matrix with entries defined in (15). For notational convenience, we define

the matrix S
t
2 RR⇥C with entries

S
t
rc = ⌧

t
c/�

t
r, r 2 [R], c 2 [C]. (53)

We define a modified design matrix A 2 Rn⇥ML having entries given by

Aij =
Aijp

Wr(i)c(j)
, i 2 [n], j 2 [ML]. (54)

Since Aij
i.i.d.
⇠ N (0, 1

LWr(i)c(j)), the modified matrix has entries Aij
i.i.d.
⇠ N (0, 1

L). We note that

A =
p
fW � A where fW 2 Rn⇥ML is the matrix with entries fWij = Wr(i)c(j).

Using the definitions (51)–(54) in the AMP update equations (8)-(9), we find that the following
block-wise relationships are satisfied for t � 0:

b
t
r �

�
t
r

�
t�1
r

m̆
t�1
r = [(

p
fW � A) q̆t]r =

X

c2[C]

p
WrcArc q̆

t
c, for r 2 [R],

h
t+1
c + q̆

t
c = [(S

t
�

p
fW � A)⇤m̆t]r =

X

r2[R]

S
t
rc

p
Wrc (Arc)

⇤
m̆

t
r, for c 2 [C].

(55)
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We define complementary quantities for the m̆
t and q̆

t vectors that will be useful in the condi-
tional distribution lemma that follows. For t � 0 and r 2 [R] and c 2 [C], let

m
t,c =

2

6664

S
t
1c

p
W1c m̆

t
r=1

S
t
2c

p
W2c m̆

t
r=2

...
S
t
Rc

p
WRc m̆

t
r=R

3

7775
2 Rn⇥1 and q

t,r =

2

6664

p
Wr1 q̆

t
c=1p

Wr2 q̆
t
c=2

...
p
WrC q̆

t
c=C

3

7775
2 RML⇥1

. (56)

(Here m̆
t
r=1 2 RNR refers to the first row block of m̆t, and q̆

t
c=1 2 RNC to the first column block

of q̆t.) A word about the notation before we proceed: when a row- or column-block index (r or
c) appears as a subscript of a vector or a matrix (e.g., as in Arc), it denotes the corresponding
block of that vector/matrix, but when a row- or column-block index appears as a superscript of a
vector/matrix (e.g., mt,c and q

t,r), it denotes the dependence of the vector/matrix on that index.
Using the vectors defined in (56), we can rewrite (55) as

b
t
r �

�
t
r

�
t�1
r

m̆
t�1
r = [A q

t,r]r =
X

c2[C]

Arc q
t,r
c for r 2 [R],

h
t+1
c + q̆

t
c = [A⇤

m
t,c]c =

X

r2[R]

[Arc]
⇤
m

t,c
r for c 2 [C].

(57)

It will be useful to write the equations in (57) in matrix form. For this, we define the following
matrices for t � 1:

Q̆t := [q̆0 | . . . | q̆t�1] 2 RML⇥t
,

Ht := [h1
| . . . |h

t] 2 RML⇥t
,

Xt := [h1 + q̆
0
| h

2 + q̆
1
| . . . | h

t + q̆
t�1] 2 RML⇥t

,

M̆ t := [m̆0
| . . . | m̆

t�1] 2 Rn⇥t
,

Bt := [b0| . . . |bt�1] 2 Rn⇥t

Y t := [b0 | b1 � �
1
� m̆

0
| . . . | b

t�1
� �

t�1
� m̆

t�2] 2 Rn⇥t
,

⌥
r
t := diag

✓
0,
�
1
r

�0r
, . . . ,

�
t�1
r

�
t�2
r

◆
2 Rt⇥t

.

(58)

In the equations above, the notation [a1 | a2 | . . . | ak] is used to denote a matrix with columns
a1, . . . ,ak. We also recall from (14) that �ti = �

t
r/�

t�1
r for t � 1 if i 2 [n] is in row block r. For t = 0,

the matrices above are all defined as all-zeros. For c 2 [C], we define Q̆t,c,Xt,c,Ht,c 2 RNC⇥t to

correspond only to rows c of the corresponding matrix. We similarly define M̆ t,r,Bt,r,Y t,r 2 RNR⇥t

for r 2 [R]. Using these definitions we have

Y t,r = Bt,r � [0|M̆ t�1,r]⌥
r
t, Xt,c = Ht,c + Q̆t,c. (59)

Let Qr
0 and M

c
0 be all-zero vectors. For t � 1 and c 2 [C], r 2 [R], let

M
c
t = [m0,c

| . . . |m
t�1,c] 2 Rn⇥t and Q

r
t = [q0,r| . . . |qt�1,r] 2 RML⇥t

. (60)

With this notation, we can compactly write (57) for t � 1 as
⇥
AQr

t

⇤
(r,·) = Y t,r, r 2 [R], and

⇥
A⇤

M
c
t

⇤
(c,·) = Xt,c, c 2 [C]. (61)
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Here the subscript (r, ·) on a matrix denotes the rth block of rows of the matrix.
We use the notation m

t,c
k and q

t,r
k to denote the projection of mt,c and q

t,r onto the column

space of M c
t and Q

r
t, respectively. Let

↵
t,c := (↵t,c

0 , . . . ,↵
t,c
t�1)

⇤
, �

t,r := (�t,r0 , . . . , �
t,r
t�1)

⇤ (62)

be the coe�cient vectors of these projections, i.e.,

m
t,c
k :=

t�1X

i=0

↵
t,c
i m

i,c
, q

t,r
k :=

t�1X

i=0

�
t,r
i q

i,r
. (63)

Writing Pk
M c

t
for the orthogonal projection matrix onto the column space of M c

t , we have m
t,c
k =

Pk
M c

t
m

t,c = M
c
t((M

c
t)

⇤
M

c
t)

�1(M c
t)

⇤
m

t,c and so ↵
t,c = ((M c

t)
⇤
M

c
t)

�1(M c
t)

⇤
m

t,c. (If the columns

of M c
t are linearly dependent, ((M c

t)
⇤
M

c
t)

�1(M c
t)

⇤ is interpreted as the pseudoinverse of M c
t .)

We can similarly write �
t,r = ((Qr

t)
⇤
Q

r
t)
�1(Qr

t)
⇤
q
t,r. The projections of m

t,c and q
t,r onto the

orthogonal complements of M c
t and Q

r
t, respectively, are denoted by

m
t,c
? := m

t,c
�m

t,c
k , q

t,r
? := q

t,r
� q

t,r
k . (64)

In Lemma 7.6, we show that the entries of ↵t,c and �
t,r concentrate around constants. We now

specify these constants. For c 2 [C], r 2 [R], define matrices eC
t,r
, C̆

t,c
2 Rt⇥t for t � 1 such that

eCt,r
i+1,j+1 = �

max(i,j)
r , and C̆

t,c
i+1,j+1 =

n

L
⌧
max(i,j)
c , 0  i, j  t� 1. (65)

The concentrating values for �t,r and ↵
t,c are

b�t,r := �
t
r(eC

t,r
)�1(1, . . . , 1)⇤

(a)
= (0, . . . , 0,�tr/�

t�1
r )⇤ 2 Rt

,

b↵t,c :=
n

L
⌧
t
c(C̆

t,c
)�1(1, . . . , 1)⇤

(b)
= (0, . . . , 0, ⌧ tc/⌧

t�1
c )⇤ 2 Rt

.

(66)

To see that (a) holds, we observe that (eC
t,r
)�1 eC

t,r
= It implies that (eC

t,r
)�1(�t�1

r , . . . ,�
t�1
r )⇤ =

(0, . . . , 0, 1)⇤ 2 Rt. The equality (b) is obtained similarly.
Let �0?,r := �

0
r and ⌧0?,c := ⌧

0
c , and for t � 1 define

�
t
?,r := �

t
r

⇣
1�

�
t
r

�
t�1
r

⌘
, and ⌧

t
?,c := ⌧

t
c

⇣
1�

⌧
t
c

⌧
t�1
c

⌘
. (67)

Lemma 7.1. Under the assumptions of Prop. 4.1, for su�ciently large M , the constants �t?,r and
n
L⌧

t
?,c are bounded below for 0  k < T :

�
t
?,r � C1

⇣
!

⇤

⌘2
, r 2 [R], ⌧

t
?,c � C2

⇣
!

⇤

⌘
, c 2 [C], (68)

where

C1 =

✓
1 +

1

#snr

◆2
P⇢

2

#snr2
�2

, C2 =
⇢(1 + #snr)

#R
�, (69)

where � is the rate gap defined in (31).
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Proof. In Appendix A.3. ⌅

Lemma 7.2. If the �t?,r and
n
L⌧

t
?,c are bounded below by some positive constants for 0  k < T ,

then the matrices eC
k,r

and C̆
k,c

defined in (65) are invertible for 1  k  T .

Proof. The proof can be found in [44, Lemma 2]. ⌅

We will use the following notation. Given two random vectors x1,x2 and a sigma-algebra S ,

x1|S
d
= x2 denotes that the conditional distribution of x1 given S equals the distribution of x2.

7.2 Outline of the proof of Theorem 2

Theorem 2 gives a concentration inequality for the normalized MSE of the AMP decoder, which
for iteration (t+ 1) can be written as

1

L
k�

t+1
� �k

2 =
1

L

X

c2[C]

k⌘
t
c(�c � h

t+1
c )� �ck

2
, (70)

where we recall that h
t+1
c is the cth column block of ht+1

2 RML. (We choose iteration (t + 1)
rather than t for notational convenience.)

The proof of the theorem is based on showing that for t � 0, the vector ht+1
c is approximately

Gaussian, for c 2 [C]. In particular, we show that h
t+1
c is approximately distributed as

p
⌧ tc
eZt,c,

where eZt,c is standard Gaussian and independent across c 2 [C]. If we assume that ht+1
c is exactly

distributed as
p
⌧ tc
eZt,c for c 2 [C], then obtaining a concentration inequality for the MSE in (70)

is straightforward. Indeed, for a fixed �, the MSE 1
L

P
c k⌘

t
c(�c � h

t+1
c ) � �ck

2 is a bounded and
Lipschitz function of ht+1. Therefore, if ht+1 were Gaussian, one could obtain a concentration
inequality for the MSE of the AMP decoder via standard Gaussian concentration results [49]. The
bulk of the technical work is in precisely quantifying and controlling the deviation from Gaussianity
of the vectors ht+1, for t � 0.

To study the distribution of h
t+1, we use the recursion in (57), or equivalently, the matrix

version in (61). Note that (57) is a restatement of the dynamics of the AMP algorithm, although
AMP cannot be run this way in practice (since it is initialized with q̆

0 = ��0 which is unknown).
The first ingredient in the proof is Lemma 7.4, which specifies the conditional distribution of btr
and h

t+1
c given the past iterates of the algorithm in (57), for r 2 [R], c 2 [C]. More precisely, for

t � 0, the lemma specifies the conditional distribution of btr|St,t and h
t+1
c |St+1,t , where Sta,t is the

sigma-algebra generated by the collection of vectors

b
0
, ..., b

ta�1
, m̆

0
, ..., m̆

ta�1
,h

1
, ...,h

t
, q̆

0
, ..., q̆

t
, and �0,w. (71)

Lemmas 7.4 and 7.5 together show that the conditional distributions have the following form:

b
t
r|St,t

d
=

tX

i=0

�
t
r

�ir

⇣q
�i?,rZ

0
i,r +�i,i,r

⌘
, r 2 [R], (72)

h
t+1
c |St+1,t

d
=

tX

i=0

⌧
t
c

⌧ ic

⇣q
⌧ i?,cZi,c +�i+1,i,c

⌘
, c 2 [C]. (73)
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Here, Z
0
i = [Zi,1, . . . ,Zi,R]⇤ ⇠ N (0, In) is independent of the sigma algebra Si,i, and Zi =

[Zi,1, . . . ,Zi,C]⇤ ⇠ N (0, IML) is independent of Si+1,i, for 0  i  t. The deviation vectors
�i,i = [�i,i,1, . . . ,�i,i,R]⇤ and �i+1,i = [�i+1,i,1, . . . ,�i+1,i,C]⇤ are measurable with respect to the
sigma algebras Si,i and Si+1,i, respectively. Their precise definitions are given in Lemma 7.4.

If we ignore the deviation terms in (73), then h
t+1 would be an i.i.d. Gaussian vector with the

variance of the entries equal to ⌧ tc
Pt

i=1 ⌧
i
?,c/(⌧

i
c)

2 = ⌧
t
c . (The equality can be seen by using the

definition of ⌧ i?,c in (67).) In this case, a concentration inequality for the MSE could be directly
obtained using standard concentration results, as described above.

The deviation terms in (72) and (73) are controlled via results in Lemma 7.6, specifically the
concentration results in (92), (101) and (102). The definitions of the terms �t,t,r and �t+1,t,c (see
(81) and (82)) involve a combination of vectors that are measurable with respect to St,t and St+1,t,
respectively. We need several concentration results for scalar products involving these vectors in
order to show that the deviation terms are negligible. Lemma 7.6 lists all the required concentration
results, which are proved using an induction based argument in Section 8.3.

7.3 Conditional distribution lemma

For t � 1 and ta 2 {t, t+1}, we recall that Sta,t be the sigma-algebra generated by the collection of
vectors in (71). Furthermore, let S0,0 and S1,0 be the sigma-algebras generated by {q̆

0
,�0,w} and

{b
0
,m

0
, q̆

0
,�0,w}, respectively. Given the vectors in (71), the vectors m0,c

, ...,m
ta�1,c

, q
0,r
, ..., q

t,r

are determined via (56) for r 2 [R], c 2 [C].
The conditional distribution on A given Sta,t is the same as the conditional distribution given

the following linear constraints:

[AQr
ta ](r,·) = Y ta,r, r 2 [R], [A⇤

M
c
t ](c,·) = Xt,c, c 2 [C]. (74)

where Y ta,r,Xt,c are defined in (59), and Q
r
ta , M

c
t in (60). When conditioning on the linear

constraints in (74), we emphasize that only A is treated as random. In the following lemma, we
characterize the conditional distributions of the vectors [A⇤

m
t,c]c|St+1,t and [A q

t,r]r|St,t . This result

is then used in Lemma 7.4 to compute the conditional distributions of bt|St,t and h
t+1

|St+1,t .

We write Arc for the (r, c)th block of A, A(r,·) for the r
th block of rows, and A(·,c) for the c

th block
of columns of A. We also recall that when r or c are used as a subscript, it refers to a row or column
block of a larger vector, whereas when r or c are used as a superscript it represents a ‘full’ vector
whose entires depend on row block r or column index c. For a projection matrix Pk

2 RML⇥ML

we let [Pk]cc0 2 RNC⇥NC be the sub-matrix of of Pk composed of the cth block of rows and the c0th

block of columns. The sub-matrix [Pk](c,·) 2 RNC⇥ML is composed of the cth block of rows and all

columns and a similar definition is given to [Pk](·,c) 2 RML⇥NC . For a projection matrix Pk
2 Rn⇥n

, the sub-matrices [Pk]rr0 2 RNR⇥NR and [Pk](r,·) 2 RNR⇥n are similarly defined.

Lemma 7.3. The conditional distributions of the vectors in (57) satisfy the following for c 2 [C]
and r 2 [R], assuming n > t and Q

r
t+1 and M

c
t have full column rank.

⇥
A q

0,r
⇤
r

��
S0,0

d
= b

0
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⇥
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m
0,c
⇤
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d
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(c,r)
+ q

0,r
c

��q0,r
���2

(b0r )
⇤
i
m

0,c
r ,

(75)
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and for t � 1,

[A q
t,r]r|St,t

d
= Y t,r �

t,r +
X

c2[C]

⇣
[P?

M c0
t

bA](r,c) +M
c
t,r((M

c
t)

⇤
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c
t)

�1(Xt,c)
⇤
⌘
q
t,r
?,c, (76)

[A⇤
m

t,c]c|St+1,t

d
= Xt,c↵

t,c +
X

r2[R]

⇣
[P?

Qr0
t+1

A0⇤](c,r) +Q
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⇤
Q

r
t+1)

�1(Y t+1,r)
⇤
⌘
m

t,c
?,r. (77)

Here A0 d
= A and bA d

= A are random matrices independent of St+1,t and St,t, and P?
Q denotes the

projection matrix onto the orthogonal complement of the space spanned by the columns of Q.

The proof of the lemma is given in Section 8.1.

Lemma 7.4 (Conditional Distribution Lemma). For the vectors h
t+1 and b

t defined in (52), the
following hold for t � 1, provided n > t and M

c
t ,Q

r
t have full column rank.

h
1
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d
=
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⌧0?,cZ0,c +�1,0,c, and h

t+1
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d
=

⌧
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h
t
c +

q
⌧ t?,cZt,c +�t+1,t,c, (78)

b
0
r |S0,0

d
=

q
�0?,rZ

0
0,r, and b

t
r|St,t

d
=

�
t
r

�
t�1
r

b
t�1
r +

q
�t?,r Z

0
t,r +�t,t,r. (79)

For each t � 0, the vectors Zt = [Zt,1, . . . ,Zt,C]⇤ ⇠ N (0, IML) and Z
0
t = [Zt,1, . . . ,Zt,R]⇤ ⇠

N (0, In) are independent of the corresponding conditioning sigma algebras. The terms b�t,ri and b↵t,c
i

for i 2 [t� 1] are defined in (66) and �?t,r and ⌧
?
t,c are defined in (67). The deviation terms are
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p
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(80)

and for t > 0,
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t�2X
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b
i
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�
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�t+1,t,c =
t�2X
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h
i+1
c ↵

t,c
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t
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⇤
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i
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c. (82)

In (81), we recall that �ir = �
i
r/�

i�1
r for i 2 [t]. The vectors Z

0c
t ⇠ N (0, In) are i.i.d. for c 2 [C],

and independent of St,t. Similarly, in (80) and (82), Zr
t ⇠ N (0, IML) are i.i.d. for r 2 [R] and

independent of St+1,t. Furthermore, Z 0
t =

1p
C

P
c2[C]Z

0c
t and Zt =

1p
R

P
r2[R]Z

r
t.
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The proof of the lemma is given in Section 8.2.
The next lemma uses the representation in Lemma 7.4 to show that h

t+1
c is the sum of a

N (0, ⌧ tc INC) random vector and a deviation term for each t � 0. Similarly b
t
r is the sum of a

N (0,�tr INR) random vector and a deviation term.

Lemma 7.5. For t � 0, the conditional distributions in Lemma 7.4 can be expressed as

h
t+1
c |St+1,t

d
= eh

t
c + e�t+1,c, b

t
r|St,t

d
= b̆

t
r + �̆t,r, (83)

where

eh
t+1
c := ⌧

t
c

tX
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q
⌧ i?,c

✓
1

⌧ ic

◆
Zi,c,
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t
c

tX
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✓
1
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◆
�i+1,i,c, (84)

b̆
t
r := �

t
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tX

i=0

q
�i?,r

✓
1
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◆
Z

0
i,r, �̆t,r := �

t
r

tX

i=0

✓
1

�ir

◆
�i,i,r. (85)

Here, for each 0  i  t, the standard Gaussian vectors Zi = [Zi,1, . . . ,Zi,C]⇤ ⇠ N (0, IML) and
Z

0
i = [Zi,1, . . . ,Zi,R]⇤ ⇠ N (0, In) are the ones used in Lemma 7.4, Eqs. (78) and (79).

Consequently, eh
t+1
c

d
=
p
⌧ tc
eZt,c, and b̆

t
r

d
=
p
�trZ̆t,r, where eZt = [eZt,1, . . . ,

eZt,C]⇤ ⇠ N (0, IML)

and Z̆t = [Z̆t,1, . . . , Z̆t,R]⇤ ⇠ N (0, In) such that for any j 2 [NC] and i 2 [NR], the length-t vectors

([ eZ0,c]j , . . . , [ eZt,c]j) and ([Z̆0,r]i, . . . , [Z̆t,r]i) are each jointly Gaussian with

E{[ eZes,c]j [ eZs,c]j} =
q
⌧esc /⌧

s
c , E{[Z̆es,r]i[Z̆s,r]i} =

q
�esr /�

s
r for 0  s  es  t. (86)

Hence for any s  t we can write

eZt,c
d
= eZs,c

s
⌧ tc

⌧ sc
+ eUt,c

s

1�
⌧ tc

⌧ sc
, and Z̆t,r

d
= Z̆s,r

s
�tr

�sr
+ Ŭt,r

s

1�
�tr

�sr
, (87)

where eZs is independent of eUt = [eUt,1, . . . ,
eUt,C]⇤ ⇠ N (0, IML) and Z̆s is independent of Ŭt =

[Ŭt,1, . . . , Ŭt,R]⇤ ⇠ N (0, In).

Proof. The proof is similar to that of [41, Lemma 6] and is omitted. ⌅

7.4 Order of SPARC parameters and state evolution constants

We recall a few facts about the SC-SPARCs construction from Section 2 that will be used throughout
the proof. There are L/C sections per column block of �, with the non-zero coe�cient in each section
equal to 1. Each block in the design matrix A can be viewed as a standard (non-SC) SPARC with
L/C sections (with M columns in each section), code length NR = n/R, and rate

Rinner =
(L/C) lnM

(n/R)
= R ·

R

C
.

For an (!,⇤, ⇢) base matrix, C = ⇤ and R = (⇤ + ! � 1). Since L � C = ⇤ � !, we have
R
C = 1 + !�1

⇤ < 2, hence R < Rinner < 2R.
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From (6), we have maxr,c Wr,c  P
R
! . From (6), it can also be verified that for r 2 [R],

1

C

X

c2[C]

Wrc = 1,
1

C

X

c2[C]

W
2
rc = 2

⇣R
!

⌘
,

1

C

X

c2[C]

W
4
rc = 3

⇣R
!

⌘3
, (88)

where 1,2,3 are absolute positive constants. A similar statement holds when the summations
in (88) are over r 2 [R], with c fixed.

Studying the state evolution equations (10)-(11), we see that  t
c,�

t
r , and �

t
r are all ⇥(1) for all

t � 0, r 2 [R], and c 2 [C], while ⌧ tc = ⇥(1/ lnM) = ⇥(L/n) for all t � 0 and c 2 [C]. This implies
that St

rc = ⌧
t
c(�

t
r)
�1 = ⇥(1/ lnM) = ⇥(L/n). We will use the following facts implicitly. For t � 0,

minr2[R] �
t
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t
1 and minr2[R] �
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t
1, additionally, maxr2[R] �

t
r = �

t
bR/2c and maxr2[R] �

t
r = �

t
bR/2c.

Furthermore, maxr �tr  maxr
1
C

PC
c=1Wrc  2P. It follows that for c 2 [C],

S
t
rc = ⌧

t
c(�

t
r)
�1

 ⌧
t
c(�

t
1)

�1 = S
t
1,c. (89)

7.5 Concentration lemma

The next lemma uses the conditional distribution given by Lemma 7.4 to prove concentration results
for various inner products and functions involving {b

t
,m

t,c
,h

t+1
, q

t,r
}. The concentration lemma

is stated in two parts. The first part gives concentration inequalities for inner products involving
the vectors {b

s
,m

s,c
}0st (Eqs. (93)–(100)). The second part gives concentration inequalities

for inner products involving the vectors {h
s+1

, q
s,r
}0st (Eqs. (102)–(109)). These results are

proved using an induction argument that includes two other concentration inequalities (Eqs. (92)
and (101)) showing that that the deviation terms in Lemma 7.4 are small.

The proof of Theorem 2 requires only one of the results in the concentration lemma, namely,
Eq. (103). However, the other results in the lemma are required for the induction argument.

To keep the notation compact, we use K,K
0
,, and 

0 to denote generic positive universal
constants whose values may change throughout the lemma statement and proof.

Let ⇠,⌅ > 0 be universal constants not depending on n, ✏, or t. For t � 0, let

Kt = ⌅
2t(t!)14, t =

1

⇠2t(t!)24
, K

0
t = ⌅(t+ 1)7Kt, 

0
t =

t

⇠(t+ 1)12
. (90)

We also define the following iteration-dependent quantities that summarize the problem parameters:

⇧t = (RC)t+1
, ⇡t =

(NR!)(!/R)2(t+1)

(logM)2(t+1)
, ⇧0

t = C⇧t, ⇡
0
t = ⇡t. (91)

Lemma 7.6. The following results hold for ✏ 2 (0, 1) and 1  t < T , where T is defined in (38).
1. Let u be an integer with u 2 {0, 1, 2}. Let Xn

.
= const be shorthand for

P (|Xn � const| � ✏)  t
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(b) For all c 2 [C],

1
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X
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W
u
rc(b

t
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⇤
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.
= 0, (93)

(c) For all 0  s  t and c 2 [C],
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(d) For all 0  s, es  t and c 2 [C],

1

L

X

r2[R]

W
u�1/2
rc (besr )

⇤
m

s,c
r

.
=

NR

L

X

r2[R]

S
s
rcW

u
rc �

max(es,s)
r , (95)

(e) For all 0  s  t and c 2 [C],
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(f) For ⌧ t?,c defined in (67) and shown to be positive in Lemma 7.1 and b↵t,c defined in (62), for
all c 2 [C] and 0 < i  t,
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For matrix C̆
t+1,c

defined in (65), when the inverses of MMMc
t+1 exist,
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2. For v 2 {0, 1}, we have the following:
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(c) For all 0  s  t+ 1 and r 2 [R],
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where for v = 1, we note that 1
C

P
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(f) For �t+1
?,r defined in (67) and shown to be positive in Lemma 7.1, and b�t+1,r is defined in

(62), for all r 2 [R] and 0  i  (t+ 1),
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(g) Let QQQr
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For matrix eC
t+2,r

defined in (65), when the inverses of QQQr
t+2 exist,
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7.6 Proof of Theorem 2

Recall from (52) that q̆s = �
s
� �0. With v = 0, Eq. (103) implies that for 0  s  (T � 1),
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(110)

Setting s = (t� 1) and recalling that NR = n/R yields the statement of Theorem 2. ⌅
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Remark 7.1. Although Theorem 2 is an immediate consequence of (103), the other concentration
results in Lemma 7.6 are required for the induction based proof of (103). Indeed, we write

1

L
kq̆

s+1
c k

2 =
1

L

X

c2[C]

k⌘
t
c(�c � h

s+1
c )� �ck

2
, (111)

and use the representation for hs+1
c from Lemma 7.4. The concentration results in the Lemma 7.6

are used in an induction argument to show that the deviation term is negligible in the sense of
(101). Consequently, hs+1

c is approximately Gaussian, and hence 1
L

P
c2[C] k⌘

t
c(�c � h

s+1
c ) � �ck

2

concentrates on a deterministic value, as described in Section 7.2. The detailed proof of Lemma
7.6 is given in Section 8.2.

8 Proofs of conditional distribution and concentration lemmas

8.1 Proof of Lemma 7.3

For ta � 1, let Pk
Qr

ta
and P?

Qr
ta

denote the orthogonal projectors onto the column space of Qr
ta and

its orthogonal complement, respectively. Given the constraints in (74), for r 2 [R], we can write
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(112)

Similarly, for c 2 [C] and t � 0, we can write

A(·,c) =
⇣
P?
M c

t
+ Pk

M c
t

⌘
A(·,c) = P?

M c
t
A(·,c) +M

c
t((M

c
t)

⇤
M

c
t)

�1(Xt,c)
⇤
, (113)

where we interpret the t = 0 case as follows: P?
M c

0
= P?

0 = I and Pk
M c

0
= Pk

0 = 0. From (112) and

(113), we have two equivalent representations for the submatrix A(r,c) 2 RNR⇥NC :
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Using the representation (115) in (114), we obtain
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and using (114) in (115), we obtain
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The first term in the RHS of (116) can be written as
P

c02[C][P
?
M c0

t
A](r,c0)[P

?
Qr

ta
]c0c. Recall that

conditioning on the sigma-algebra St,t is equivalent to conditioning on the linear constraints in
(74) with ta = t. We note that the constraint corresponding to r in (74) involves only the rth row
block of A, and the constraint corresponding to c0 in (74) involves only the c0th column block of
A, for each r 2 [R], c0 2 [C]. Therefore, since the entries of A are i.i.d. Gaussian, the conditional
distribution of the above term given St,t satisfies [14, Lemmas 10, 12],
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where Â
d
= A is independent of St,t.

We first prove the two results in (75). We note that A is independent of S0,0 and b
0
r = Aq0,r by

definition. When ta = 1 and t = 0, that the result in (117) gives
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Next, using (116) and (118) and multiplying by q
t,r, we obtain
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Noting that ((Qr
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r
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t,r completes the proof of (76). The result (77) can be
similarly obtained, by using the representation in (117) to express

⇥
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m
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8.2 Proof of Lemma 7.4

Proof. We begin by demonstrating (79). By (52) it follows that
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where Z
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For the case t � 1, we use (57) and (76) to write
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(120)

Since Â is independent of St,t, with i.i.d. ⇠ N (0, 1
L) entries, the first term on the right side of (120)

can be written as:
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where in the first step, the vectors Z
0c
t ⇠ N (0, In) are independent for c 2 [C]. For the second

equality we use P?
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(122)

All the quantities in the RHS of (122) except the vectors Z
0
t,r and Z

0c
t are in the conditioning

sigma-field. We can rewrite (120) with the following pair of values:
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To complete the proof of (79), we note that [0|M̆ t�1,r]⌥
r
t�
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t,r
i

�i
r

�i�1
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For the result (78) we start by writing h
t+1
c = [A⇤

m
t,c]c � q̆

t
c, and using (77) for the conditional

distribution of [A⇤
m

t,c]c given St+1,t. We omit the proof as the argument is along similar lines as
the above. ⌅

8.3 Proof of Lemma 7.6

The proof proceeds by induction on t. We label the results in (92) through (100) as step Bt, and
those in (101) through (109) as step Ht+1. The proof consists of four steps, inductively showing
that: (1) B0 holds, (2) H1 holds, (3) if Bs̃,Hs hold for all s̃ < t and s  t, then Bt holds, and (4)
if Bs̃,Hs hold for all s̃  t and s  t, then Ht+1 holds. Appendix B lists a few basic concentration
inequalities and other lemmas that are used in the proof.
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8.3.1 Step 1: Showing B0 holds

(a) �0,0 = 0, so there is nothing to prove.

(b) First, b
0
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d
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p
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0
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0
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In step (a), we use Lemma B.9 (254) and that �0r  2P for r 2 [R]. In step (b), we use
maxr,cW u

rc  (PR/!)u, and 1
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P
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rc  P (PR/!)2u�1 for u 2 {1, 2} (see (88)). Notice that

this is consistent with the ⇧,⇡ notation defined in (91) and used in the stated concentration results
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where we have used Lemma B.2 in step (a), and step (b) follows by B0(b) and B0(c), using that
fact that n

LS
0
rc is bounded above and below by positive constants for all (r, c).

(e) Proving B0(e) is similar to B0(d) and results in the same bound. We sketch the detais. First,
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Note from B0(f) that
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8.3.2 Step 2: Showing H1 holds

(a) We use the expression for �1,0,c from Lemma 7.4, and write the second term in (80) as
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(125)

We therefore have the following bound for r0 2 [R], and v = 0 or v = 1 using Lemma B.2.
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Label the terms on the RHS of (126) as T1, T2, T3 and we bound each separately.
Consider term T1 and let ⇧0 be the event under consideration, so that T1 = P (⇧0), and define
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With this definition, T1 = P (⇧0)  P (F) + P (⇧0|F
c). First,
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where step (a) uses B0(f) and Lemma B.5, and step (b) the fact that n⌧
0
c /L 2 ⇥(1) and nR =
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From (128) and (129), we find
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The final inequality uses maxr,cW 2v
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In the above, step (a) holds because NR
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r ,

and the state evolution equations in (10)–(12). Step (b) uses that �0r 2 ⇥(1) and Lemma B.2. Step
(c) follows from B0(d) (Eq. (124)) with u = 1, noting from (88) that

P
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Finally we bound term T3. Note that for any r, r0 2 [R], we have 1
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where step (a) follows from B0(e) and Lemma B.8. The overall upper bound is exp{�n(!/R)2v+1
✏},

which is again consistent with the ⇧,⇡ notation defined in (91) for t = 0.
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(b) From Lemma 7.4, we have h
1
c |S1,0

d
=
p
⌧0c Z0,c +�1,0,c. Using this, we obtain
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(132)

Label the terms on the right side as T1 and T2.

Consider term T1. Since q
0,r
c is independent of Z0,c, we have Z

⇤
0,c q
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c

d
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c, where Z
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where Z ⇠ N (0, 1). Recall, n = NRR, therefore T1  P ( |Z|
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For term T2, observe that
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(c) We begin by showing the result (103) for s = 1. Recall that ⌘0c (�0,c � h
1
c)� �0,c and h

1
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Label the two terms on the RHS as T1 and T2.
To bound T1, we write
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⇣ 1

L

���
X

c2[C]

W
v
rc

X

`2c

⇣
k⌘

0
` (�0,c �

p
⌧0cZ0,c)� [�0,c]`k

2
�  

1
c

⌘��� �
✏

2

⌘
, (134)

37



and apply Hoe↵ding’s inequality (Lemma B.1). To do this, notice that
�
k⌘

0
` (�0,c �

p
⌧0cZ0,c) �

[�0,c]`k
2
�  

1
c

�
is bounded in absolute value by 1, and has zero mean. Indeed,

EZ0k⌘
0
` (�0,c �

p
⌧0cZ0,c)� [�0,c]`k

2 = E�,Z0k⌘
0
` (�c �

p
⌧0cZ0,c)� [�c]`k

2 =  
1
c , (135)

where the first equality is true for each �0 2 BM,L because of the uniform distribution of the non-
zero entry in each section of �0 over the M possible locations and the i.i.d. distribution of Z0,c.
The second equality follows by Lemma C.4. Applying Hoe↵ding’s inequality to (134), we obtain
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where for the last equality we have used (88).
Next, we bound term T2. To save space, we write ⌘0c (�0 �
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Using this, we have
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Label the terms on the right side above as T2,a and T2,b. Then,
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(138)

Step (a) holds since |⌘
0
j (�0 �

p
⌧0cZ0) � �0,j |  1 for j 2 [ML], step (b) by Lemma C.5, and step

(c) by Lemma C.2 and ⌧0c = ⇥(1/ logM). Finally, step (d) follows from H1(a).
Using Lemma C.5, it can be shown that term T2,b also has the same upper bound. This proves

the concentration result (103) for s = 1. Proving the result for s = 0 is similar: we use Lemma B.2
followed by Hoe↵ding’s inequality and Lemma C.5.
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(d) Recalling q
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By H1(b), the second term in (139) is bounded by KC exp{�n(!/R)3✏2}. Using the conditional
distribution of h1 stated in Lemma 7.4 and Lemma B.2, for the first term of (139) we write
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Label the terms of the above as T1, T2, T3 and we bound each individually.
For term T1 notice that T1  P ( 1L

P
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P
`2cWrcmaxi2sec(`) |[�1,0,c]i| � ✏) and therefore the

term can be bounded as in (133) using H1(a) with v = 1.
Next consider term T2 of (140). Because of the uniform distribution of the non-zero entry in each

section of � over the M possible locations and the i.i.d. distribution of Z0,c, for any �0 2 BM,L,
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where equality (a) is obtained using Stein’s lemma, Lemma C.3 (see [4, p.1491, Eqs. (102) – (104)]
for details) and equality (b) from Lemma C.4. Now, using (141) and the fact that ⌧0c = ⇥(1/ logM),
the concentration result from Lemma C.7 yields
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Step (a) follows from Lemma C.5 and step (b) is obtained as follows.
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Step (c) follows by using ⌧0c = ⇥(L/n) and step (d) by Cauchy-Schwarz. Finally step (e) follows
from Lemma B.9, H1(a) with v = 1 along with nR = L logM and n = RNR.

(e) From the conditional distribution of h1
c stated in Lemma 7.4 and Lemma C.2, it follows that
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The inequality (a) follows from Lemma B.9 and H1(a).

(f) We first prove (106), then (107). Recall, �1,r0 = (q0,r)⇤q1,r
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The second inequality follows from H1(c) with v = 1 and (145) above, along with Lemma B.6.

(g) Note that
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Now we show (109). Since
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8.4 Step 3: Showing Bt holds

We prove the statements in Bt assuming that B0, . . . ,Bt�1, andH1, . . . ,Ht hold due to the induction
hypothesis. We begin with a lemma that is used to prove Bt(a). The lemma as well as other parts
of Bt assume the invertibility of MMMc
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t for all c 2 [C], but for the sake of brevity, we do not
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Proof. First note that (M c
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We prove the main result using (149) and (150), and then prove (149) and (150). We first claim:
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The result (151) is obtained as follows using (148).

�n

L

X

c2[C]

tX

k=1

S
t�1
rc

p
Wrc [(C̆

t,c
)�1]tk Ek,c =

�n

L

X

c2[C]

S
t�1
rc

p
Wrc [(C̆

t,c
)�1]tt Et,c (153)

=
n�̂

t,r
t�1

LC

X

c2[C]

S
t�1
rc Wrc [(C̆

t,c
)�1]tt 

t�1
c

⇣
1�

⌧
t�1
c

⌧
t�2
c

⌘
(a)
=

�̂
t,r
t�1

C�t�1
r

X

c2[C]

Wrc 
t�1
c =

�̂
t,r
t�1�

t�1
r

�
t�1
r

=
�
t
r

�
t�1
r

,

where step (a) uses S
t�1
rc = ⌧

t�1
c /�

t�1
r and [(C̆

t,c
)�1]tt =

L
n (⌧

t�1
?,c )

�1 which can be seen as follows.

From the definition of C̆
t,c

in (65), if C̆
t�1,c

is invertible, using the block inversion formula,

(C̆
t,c
)�1 =

⇣ (C̆
t�1,c

)�1 + L
n (⌧

t�1
?,c )

�1
↵̂
t�1,c(↵̂t�1,c)⇤ �

L
n (⌧

t�1
?,c )

�1
↵̂
t�1,c

�
L
n (⌧

t�1
?,c )

�1(↵̂t�1,c)⇤ L
n (⌧

t�1
?,c )

�1

⌘
, (154)

where we have used ↵̂t�1,c := n
L⌧

t�1
c (C̆

t�1,c
)�1(1, . . . , 1)⇤ and ⌧ t�1

c � ⌧
t�1
c (1, . . . , 1)↵̂t�1,c = ⌧

t�1
c �

(⌧ t�1
c )2/⌧ t�2

c = ⌧
t�1
?,c . Result (152) is obtained using steps similar to (153) to show that the LHS of

(152) equals

�̂
t,r
t�1

�
j�1
r C

X

c2[C]

Wrc 
t�1
c ↵̂

t�1,c
j�1

h
⌧
j�1
c

⌧
t�1
c

i
=
�̂
t,r
j �

j
r

�
j�1
r

,

where the last equality follows from the fact that for j 2 [t � 2] we have �̂t,rj = ↵̂
t�1,c
j�1 = 0, and if

j = t� 1 then since ↵̂t�1,c
t�1 = ⌧

t�1
c /⌧

t�2
c .

42



We now prove (147). Using the result in (151), the LHS of (147) can be expressed as follows:
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In the above, step (a) follows by Lemma B.2 and S
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The last inequality follows by induction hypothesis Bt�1(g) and (150). The final result follows since
C⇧t�2 = ⇧0

t�2 and ⇡t�2 = ⇡
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The first term on the RHS of (157) is upper bounded byKKt�1⇧0
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which can be bounded using steps similar to that in (155).
To complete the proof, it remains to prove the bounds in (149) and (150). Note that for i 2 [t],
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Label the terms on the RHS of (159) as T1 and T2, and we bound both. First, for any i 2 [t],
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Step (a) follows from Lemma B.2, and step (b) uses Ht(d) and Ht(f): the bound for the first term
follows directly from Ht(d), while the bound for the other two terms uses Ht(d) and Ht(f), along

with Lemma B.3 and Lemma B.4. Noting that �̂t,rt�1, (⌧
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The second term T2 on the RHS of (159) can be bounded similarly using Lemma B.2, Ht(c)
with v = 1,Ht(f), Lemma B.3, and Lemma B.4.
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We now provide upper bounds for each term of (161), labeled as A1 � A4. We note that these
results don’t follow directly from the induction hypothesis as they involve the sums of the absolute
values of the inner products over the column blocks c. First notice that by (88), for any 0  s  t,
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(Note that ⌧0c logM 2 ⇥(1)). First, we claim that third term, A3, in (161) equals 0. Indeed, using
the Cauchy-Schwarz inequality and (162),
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The last inequality uses inductive hypothesis Ht(f). Now consider A1. Using (162), for 0  j, k  t,
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From (163), we have
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where the last inequality holds when the constant 1 is chosen to be large enough since maxcWrc =
⇥(R/!). Therefore, using Lemma C.2 and Ht(e) with v = 1 since k 2 [t], we obtain
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Finally, using (165), Lemma C.2, and (166), we bound term A2:
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Then the upper bound follows along the same lines as that of A1 and A4. This completes the proof
of (150), and the lemma. ⌅
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Applying Lemma B.2, with ✏̃t =
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We label the terms in (170) T1 � T5, and show that each has the desired upper bound.
First, using Lemma B.4 and induction hypotheses B0(c)� Bt�1(c) and Ht(f):
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For the second term we have used that
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We note that �t?,r is bounded below for all r and we have used that
P
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u
rc/R = 1 if u = 0 and

for u 2 {1, 2} we have
P

r2[R]W
u
rc/R  (R/!)u�1 (see (88)).

The third term in (170) is bounded as follows. For all r 2 [R] and c 2 [C], using Lemma C.2,
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where the final inequality follows as kq̆ick
2
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Now considering the RHS of (173), note that if
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The final inequality in (174) is obtained using Ht(f) and Lemma B.6 for the first term, and Lemma
B.9 for the second term.

Now consider the fourth term of (170):
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Now the result from Bt�1(e) can be applied directly.
Finally, the last term in (170) can be bounded using the same arguments as for the fourth term.
To see the overall concentration result, notice that ⇧t�2 = (RC)t�1
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To bound the first term in the above, we recall that Z̆t,r is independent of Ur. Hence, using Lemma
B.9 and the same argument as in (123), this term is bounded by 2 exp{�n✏2(!/R)max{2u�1,0}

}.
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Step (a) follows from Lemma C.2 and step (b) by Lemma B.2, using that �ir 2 ⇥(1) for all 0  i  t.
Finally step (c) uses the result from Bt(a) above.
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Step (a) follows by Cauchy-Schwarz, (b) by Lemma B.4, and (c) by Lemma B.9 and (177).
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jointly Gaussian with covariance E{[Z̆s,r]i[Z̆t,r]i} =
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(179)

Label the terms of the above as T1 � T4.

For T1 recall from Lemma 7.5 that Z̆t,c
d
= Z̆s,r

p
�tr/�

s
r + Ŭt,r

p
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s
r where Ŭt,r and Z̆s,r

are independent. Therefore, using Lemma B.2,
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where the last inequality is obtained by using Lemma B.9 to bound each of the two probabilities.
We use (88) and the fact that �sr 2 ⇥(1).

Next for T2, by two applications of Cauchy-Schwarz,

T2  P

⇣ 1
n

X

r2[R]

W
u
rck�̆t,rkk�̆s,rk �

✏

4

⌘
 P

⇣ 1
n

X

r2[R]

W
u
rck�̆t,rk

2
·
1

n

X

r2[R]

W
u
rck�̆s,rk

2
� ✏

2
⌘

(181)
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The final inequality follows by (177). Finally terms T3, T4 can be shown to have the desired upper
bounded by work similar to that in (178).
(d) Let 0  s̃, s  t where either s̃ = t, s = t, or both s̃ = s = t. Since m
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Now the result follows from Bt(b) and Bt(c) using that (nLS
s
rc) 2 ⇥(1).
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(e) Since m
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Now the result follows from Lemma B.9, Bt(b), and Bt(c) using that (nLS
s
rc) 2 ⇥(1).

(f) We first prove (97). Recall, ↵t,c = n
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⇤
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Step (a) follows by Lemma B.2 and (b) by Lemmas B.3, B.4 using Bt(e) with u = 1 and Bt�1(g)

result (100). Note that n⌧ tc/L and the absolute values of the non-zero entries of (C̆
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)�1 are ⇥(1).
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The first term has the desired bound by Bt(e) with u = 1. For the second term, using m
t,c
k =

M
c
t↵

t,c =
Pt�1

i=0 ↵
t,c
i m

i,c, we have kM
c
t↵

t,c
k
2 = (M c

t↵
t,c)⇤M c

t↵
t,c =

Pt�1
i=0 ↵

t,c
i (mt,c

k )⇤mi,c =
Pt�1

i=0 ↵
t,c
i (mi,c)⇤mt,c

. Hence, recalling the definition of ↵̂t,c in (66),

P

⇣
n

L

���
1

L
kM

c
t↵

t,c
k
2
�

(⌧ tc)
2

⌧
t�1
c

��� �
✏

2

⌘
= P

⇣
n

L

���
t�1X

i=0

⇣ 1

L
↵
t,c
i (mi,c)⇤mt,c

� ↵̂
t,c
i ⌧

t
c

⌘��� �
✏

2

⌘



t�1X

i=0

P

⇣
n

L

���
1

L
↵
t,c
i (mi,c)⇤mt,c

� ↵̂
t,c
i ⌧

t
c

��� �
✏

2t

⌘ (a)
 t

6
KKt�1⇧t�1 exp

n
�

1

t12
t�1⇡t�1✏

2
o
.

Step (a) is obtained using Lemma B.3 when i = t � 1 and Lemma B.4 otherwise, along with the
results Bt(e) with u = 1 and Bt(f) proved in (97) above.
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(g) We first show (99). For 0  s̃, s  t, [MMMc
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where the second inequality follows from B0(f)� Bt(f).

Next, we show (100). We first note that each non-zero element of (C̆
t+1,c

)�1 is ⇥(1). To see this,

recall the definition of C̆
t+1,c

, from which it follows with work as in (154) that if C̆
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Each non-zero element of (185) is 2 ⇥(1) since ⌧ sc 2 ⇥(L/n), for 0  s  T , and ⌧ t?,c is bounded

below (by Lemma 7.1). We can similarly represent [MMMc
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if MMMc
t is invertible, by the block inversion formula we have
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where we have used ↵
t,c = n

L2 (MMMc
t)

�1(M c
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⇤
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k .

In what follows we prove concentration for each of the elements in (187) to the corresponding
element of (185). First, by Bt(f) and Lemma B.7,
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Next, consider the i
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The above follows from (188), Lemma B.3 for i = t or Lemma B.4 when i 2 [t � 1], and Bt(f).
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Step (a) follows from Lemma B.2 and Lemma B.3/B.4 with ✏0 = min(
p
✏/3,

n⌧ t?,c

3L↵̂t,c
i�1

,
✏

3↵̂t,c
j�1

). Step

(b) follows from the inductive hypothesis Bt�1(g) (Eq. (100)), Bt(f), and (189).

8.5 Step 4: Showing Ht+1 holds

We prove the statements inHt+1 assuming that B0, . . . ,Bt, andH1, . . . ,Ht hold due to the induction
hypothesis. We begin with a lemma that is used to prove Ht+1(a). The lemma as well as other
parts of Ht+1 assume the invertibility of QQQr

1, . . . ,QQQr
t, but for the sake of brevity, we do not explicitly

specify the conditioning.
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Proof. By induction hypothesis Ht(g), element-wise (QQQr
t+1)

�1 concentrates to (eC
t+1,r

)�1, so before
proving (191) and (192), we prove intermediary results about element-wise concentration of vr,c.
For 0  k  t, define
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For B > 0, a universal constant, we will prove that
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We prove the lemma using (194) and (195), and then prove (194). We first claim that
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To show (197), noting from (193) that E1,r = . . . = Et,r, we have
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In the above, step (a) is obtained as follows using the definition of eC
t+1,r

in (65). Using block

inversion as we did for C̆
t,c

in (154), it is straightforward to show that if eC
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is invertible,
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Step (a) then follows since �̂t,r0 = . . . = �̂
t,r
t�2 = 0. Step (b) of (198) then follows by using the

definitions of Et+1,r,Et,r in (193) and of �̂t,rt�1 in (66). The result in (196) can be shown similarly,

using that for 0  j  (t � 1),
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j , where

the last equality follows from the definition of �̂t,r in (66).
We now use these results to prove (192). Using (197) and Lemma B.2, the LHS of (192) can be

bounded as follows:
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Label the terms on the RHS of (200) as T1 and T2. Note that term T1 has the desired upper bound
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The upper bound for the two terms of (201) follows by (195) and Ht(g). The bound in (192) follows
since R⇧0

t�2 = ⇧t�1 and (!/R)2⇡0t�2(logM)2 = ⇡t�1.
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We now show the bound in (191) for 0  j  t� 1. By Lemma B.2,
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The first term of the above is upper bounded with Bt(f). Using (196), the second term above is
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Now we can bound the term in (202) with work similar to that used for (200).
To complete the proof, it remains to show (194), (195). Using the definition of Y t+1 in (59),
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where we have used �kr = �
k
r /�

k�1
r and m

t,c
?,r = m

t,c
r �m

t,c
k,r = m

t,c
r �

Pt�1
i=0 ↵

t,c
i m

i,c
r .

We first prove (194). Using (203), we have the following bound for the probability in (194):
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The terms on the RHS of (204) are bounded via the inductive hypotheses Bt(d) and Bt(e) with
u = 1 and Bt(f), similarly to the first term on the RHS of (159) (see (160)).
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We now provide upper bounds for the terms in (205), labelled T1 � T4, by taking
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First consider T3. For any 0  j  t, using Cauchy-Schwarz
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This has the desired bound by Bt(e) with u = 1. Next we bound T4 as follows using (207) and the
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The first term in the above can be bounded as in (207) and the second as follows by Bt(f):
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Now we study term T1. Using Cauchy-Schwarz, for any 0  j  t,
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Using the above in term T1 we have,
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Finally, using (209), we bound T2:
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Now the first term in the above can be bounded as the work in T1 and the second term as in (208).
This completes the proof of the lemma. ⌅

(a) To show the upper bound in (101), recall the definition of �t+1,t,c from Lemma 7.4 Eq. (82).
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Now we simplify the final three terms of �t+1,t,c in (82), using the Lemma 8.2 notation QQQr
t+1,v

rc.

X

r0

Q
r0
t+1,c(QQQr0

t+1)
�1

v
r0,c +

t�1X

i=0

↵
t,c
i q̆

i
c � q̆

t
c =

t+1X

j=1

X

r0

q
j�1,r0
c [(QQQr0

t+1)
�1

v
r0,c]j +

t�1X

i=0

↵
t,c
i q̆

i
c � q̆

t
c

=
tX

j=1

q̆
j�1
c

hX

r0

p
Wr0c[(QQQr0

t+1)
�1

v
r0,c]j + ↵

t,c
j�1

i
+ q̆

t
c

hX

r0

p
Wr0c[(QQQr0

t+1)
�1

v
r0,c]t+1 � 1

i
.

Therefore for section ` 2 c, using the triangle inequality, Lemma C.2, the fact that maxj2sec(`) |[q̆
s
c]j |

2


4 for 0  s  t, and the definition of �t+1,t,c from (82), we have

1

2(t+ 1)
max

j2sec(`)
|[�t+1,t,c]j |

2


t�2X

i=0

|↵
t,c
i � ↵̂

t,c
i |

2 max
j2sec(`)

��[hi+1
c ]j

��2

+
h
km

t,c
? k

p
L

�

q
⌧ t?,c

i2
max

j2sec(`)
|[Zt,c]j |

2 + Z
2

tX

j=0

X

r02[R]

km
t,c
?,r0k

2

Lkq
j,r0

? k2
max

i2sec(`)
([qj,r

0

?,c]i)
2

+ 4
tX

j=1

h X

r02[R]

p
Wr0c[(QQQr0

t+1)
�1

v
r0,c]j + ↵

t,c
j�1

i2
+ 4

h X

r02[R]

p
Wr0c[(QQQr0

t+1)
�1

v
r0,c]t+1 � 1

i2
. (211)

57



Using (211) and Lemma B.2, we have the following bound, where ✏̃t =
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Label the terms on the RHS of (212) as T1 � T5. We show that each has the desired upper bound.
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The final inequality follows by Bt(f) and Ht(e).
Term T2 of (212) has the desired upper bound by work similar to that used to bound the

corresponding term in the H1(a) step in equations (127) - (130).
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where the second inequality follows from Lemma 8.2 and (88), which gives
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We consider each of the terms of (214) separately. For the first term, using Lemma C.2 and the
fact that maxj2sec(`) |[q̆
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For the second term on the RHS of (215), by Lemma B.7 and Ht(f),
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For the first term on the RHS of (215), using Lemma B.2, the fact that �̂t,rk = 0 for 0  k  t� 2,
along with Lemma B.6, and Ht(f),
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The second term of (214) is upper bounded by K exp{�NR!(!/R)2v✏2/t4} using Lemma B.9.
Finally, we bound the second term of (214).
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In the above, step (a) follows since (!Wrc/R)2v  ((1� ⇢)P )2v  . Step (b) uses Lemma B.2 and
step (c) from Bt(f). Note that
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(b) Using the conditional distribution of ht+1 from Lemma 7.4 Eq. (78), we have
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The bound for first term above follows from the induction hypothesis Ht(b). The second term has
the desired upper bound using work as in the proof of H1(b) (Eqs. (132) - (133)).
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(c) We show (103) when 0  s  t + 1. For brevity, we write ⌘s�1
c (�0 � h

s) to mean ⌘s�1
c (�0,c �

h
s
c), noting that ⌘s�1

c (·) depends only on the elements of its input in column block c. Using the
conditional distribution of ht+1 in Lemma 7.5 Eq. (83), we have
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(216)

Label the three terms on the RHS of (216) as T1 � T3 and provide bounds for each. First note the
following bound for �̃s,c (defined in Lemma 7.5) that will be used repeatedly. For 1  s  t+ 1,
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In the above, step (a) follows by using the triangle inequality, and then Cauchy-Schwarz, noting
that ⌧ s�1

c /⌧
i
c  1 for i  s� 1. Step (b) follows from Ht+1(a) and s  (t+ 1).
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Step (a) follows by Lemma C.5 applied to each section, (b) by ⌧ tc = ⇥(L/n) = ⇥(1/ logM), and
(c) by (217). The bound for T1 in (218) also holds for T2 of (216) and is shown similarly.

Finally, consider term T3 of (216). Recalling from Lemma 7.5 that h̃
s
c

d
=
p
⌧
s�1
c Z̃s�1,c where
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Z̃s�1,c ⇠ N (0, INC). Then, (dropping the c subscript when used inside the ⌘tc(·) function),
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where (a) is obtained using Hoe↵ding’s inequality (Lemma B.1) and (b) uses nR = L logM . Veri-
fying that the expectation of the random variable in T3 is  t+1

c is similar to (135).
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Using (219) and Lemma B.2,
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(220)

The second term on the RHS of (220) has the desired upper bound by Ht+1(b). We now bound
the first term of (220), denoted by T1. Using Lemma B.2,
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Label the terms of (221) as T1a, T1b, T1c, and we bound each separately. First consider T1a,
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Step (a) follows for each �0 2 BM,L because of the uniform distribution of the non-zero entry
in each section of �0 over the M possible locations and the entry-wise i.i.d. distributions of Z̃ s̃
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and Z̃s, step (b) by Stein’s Lemma (see [4, p.1491, Eqs. (102)–(104)] for details), and step (c)

from Lemma C.4. Now recall from Lemma 7.5 that h̃
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Finally for T1c, using Lemma 7.5 Eq. (84) to write h̃
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c =

p
⌧ s̃c Z̃ s̃,c, we can prove the bound as in

the H1(d) step in (142) - (143), appealing to Lemma C.5, Lemma B.9, and (217).
(e) Using the conditional distribution of ht+1 from Lemma 7.5 Eq. (83) and Eq. (84) we write,
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Then the desired bound follows by Lemma B.9 and (217).
(f) The proof of (106) follows similarly to the corresponding Bt(f) proof of (97) using inductive

hypothesisHt(g) result (109) andHt+1(c). The proof of (107) follows similarly to the corresponding
Bt(f) proof of (98) using Ht+1(c) and Ht+1(f) result (106).

(g) The proof of (108) follows similarly to the corresponding Bt(g) proof of (99) using Fact
C.1 and inductive hypotheses H1(g)�Ht+1(g). Result (109) follows similarly to the corresponding

Bt(g) proof of (97): using block inversion we can represent ( eC
t+2,r

)�1 and (QQQr
t+2)

�1. From the

representation of ( eC
t+2,r

)�1, we can see that each non-zero element is ⇥(1), and then we can show
the element-wise concentration with inductive hypothesis Ht(g) and Ht+1(f).
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A Proofs of bounds on state evolution parameters

A.1 Proof of Lemma 4.1

Recall that  t+1
c = 1 � E(⌧ tc) where E(⌧ tc) is defined in (13). It is shown in [41, Appendix A] that

for su�ciently large M and any � 2 (0, 12),

E(⌧ tc) �

 
1�

M
�k�2

�
p
logM

!
I{⌫tc > 2 + �} c 2 [C]. (223)

The upper bound on  t
c directly follows from the lower bound in (223).

We now lower bound  
t
c by obtaining an upper bound for E(⌧ tc). We will use the following

concentration inequality the maximum of M i.i.d. standard Gaussian random variables U1, . . . , UM .
For any ✏ 2 (0, 1),

P

⇣
max

1jM
Uj <

p

2 lnM(1� ✏)
⌘
 exp

⇣
�M

✏(2�✏)

p
lnM

⌘
, (224)

where  > 0 is a universal constant.
Consider a column block c such that ⌫tc  2 � e�. Recall from (21) that ⌫tc = (⌧ tc lnM)�1 and

due to the assumption on the base matrix, 1  ⌫
t
c  2 for some strictly positive constants 1,2.

Then, with positive constants a, a0 2 (0, 1) to be specified later, we have

E(⌧ tc) = E

2

4 1

1 + e�⌫tc lnM
PM

j=2 e
Uj

p
⌫tc lnM

· e
�U1

p
⌫tc lnM

3

5

 P

✓
max

2jM
Uj <

p

2 lnM(1� ae�)
◆
· 1

+ P

✓
max

2jM
Uj �

p

2 lnM(1� ae�)
◆
E
⇣
1 + exp

⇣
�

p
⌫tc lnM U1

⌘
M

�⌫tc exp(
p

2⌫tc(1� ae�) lnM)
⌘�1

(a)
 exp

 
�M

ae�(2�ae�)
p
lnM

!
+ E

⇣
1 + exp

⇣
�

p
⌫tc lnM U1

⌘
M

p
2⌫tc (1�ae�)�⌫tc

⌘�1

(b)
 exp

 
�M

ae�(2�ae�)
p
lnM

!
+ P

⇣
U1 

p

2 lnMa
0e�
⌘
·

1

1 +M

p
2⌫tc (1�(a+a0)e�)�⌫tc

+ P

⇣
U1 >

p

2 lnMa
0e�
⌘

(c)
 exp

 
�M

ae�(2�ae�)
p
lnM

!
+M

�
⇣p

2(2�e�)(1�(a+a0)e�)�2+e�
⌘

+M
�(a0)2e�2

. (225)

In the above sequence of inequalities, step (a) uses (224); step (b) holds because

exp
⇣
�

p
⌫tc lnM U1

⌘
� M

�
p

2⌫tca
0e� when U1 

p

2 lnMa
0e�.

In step (c), the last term is obtained using a standard Gaussian tail bound for U1 (Lemma B.8); the
second term is obtained by noting that

p
2⌫tc(1� (a+ a

0)e�)� ⌫
t
c is a concave function of ⌫tc which

(for a, a0 specified below) takes its minimum value in ⌫tc 2 [1, 2� e�] at the endpoint ⌫tc = (2� e�).
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Using the inequality (1� x)1/2 � 1� 5x
8 for x 2 [0, 1/2], we have the following lower bound for

the exponent of the second term in (225):
q
2(2� e�)(1� (a+ a

0)e�)� 2 + e� � 2
⇣
1�

5e�
16

⌘⇣
1� (a+ a

0)e�
⌘
� 2 + e�

= e�
⇣3
8
� 2(a+ a

0)
⌘
+

5

8
(a+ a

0)e�2.

Taking a = 1/64 and a
0 = 5/32, we get the desired upper bound.

A.2 Proof of Proposition 4.1

Using the definition in (6), the state evolution equations (10)–(12) for the (!,⇤, ⇢) base matrix are
as follows. With  0

c = 1 for c 2 [C], for t � 0:

�
t
r = �

2

2

41 + # snr

0

@1� ⇢

!

crX

c=cr

 
t
c +

⇢

⇤� 1

X

c2[⇤]\{cr,...,cr}

 
t
c

1

A

3

5 , r 2 [⇤+ ! � 1], (226)

⌫
t
c =

1

⌧ tc lnM
=

1

R

2

4(1� ⇢) · P

!

c+!�1X

r=c

1

�tr
+

⇢ · P

⇤� 1

X

r2[⇤+!�1]\{c,...,c+!�1}

1

�tr

3

5 , (227)

 
t+1
c = 1� E(⌧ tc). (228)

Here E(⌧ tc) is defined in (13), and cr, cr are defined (27).
Since the variables  t

c for c 2 [⇤] and t � 0 are symmetric about the center column index, i.e.
 
t
c =  

t
⇤�c+1 for c 

⌃
⇤
2

⌥
, we carry out the analysis for c 

⌃
⇤
2

⌥
; the result for the other half then

holds by symmetry. We will upper bound  t
c using Lemma 4.1. Using (22), for the first iteration

we will have  1
c  fM,� for indices c for which {⌫

0
c > 2+ �}. Letting F

0
c := ⌫

0
c R, this corresponds

to finding indices c for which F
0
c > (2+�)R. We now obtain a lower bound on F

0
c for indices c < !.

Using (227) we have

F
0
c =

(1� ⇢)P

!

c+!�1X

r=c

1

�0r
+

⇢P

⇤� 1

X

r2[⇤+!�1]\{c,...,c+!�1}

1

�0r
(229)

�
(1� ⇢)P

!

c+!�1X

r=c

1

�0r

(i)
=

(1� ⇢) snr

!

 
!�1X

r=c

1

1 + (1�⇢)# snr
! r+ ⇢ # snr

⇤�1 (⇤� r)
+

c

1 + (1� ⇢)# snr+ ⇢ # snr ⇤�!
⇤�1

!

�
(1� ⇢) snr

!

!�1X

r=c

1

1 + ⇢ # snr+ (1� ⇢)# snr r
!

+
c

!

(1� ⇢) snr

1 + # snr

(ii)
�

1

#

⇣
ln(1 + # snr)� ln

⇣
1 + ⇢ # snr+ (1� ⇢)# snr

c

!

⌘⌘
+

c

!

(1� ⇢) snr

1 + # snr
(iii)
�

1

#
ln(1 + # snr)� ⇢ snr� (1� ⇢) snr

c

!
+

c

!

(1� ⇢) snr

1 + # snr

�
1

#
ln(1 + # snr)� ⇢ snr�

c

!

# snr2

1 + # snr
,
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where the labelled steps are obtained as follows: (i) using the expression for �tr in (226) and the
fact that c < !, (ii) using a definite integral to lower bound the left Riemann sum of a positive
decreasing function:

1

!

!�1X

r=c

1
1+⇢ # snr
(1�⇢)# snr +

r
!

�

Z 1

c/!

1
1+⇢ # snr
(1�⇢)# snr + x

dx. (230)

Inequality (iii) is obtained using ln(1 + x)  x.
Therefore, the condition F

0
c > (2 + �)R will be satisfied if

1

#
ln(1 + # snr)� ⇢ snr�

c

!

# snr2

1 + # snr
> (2 + �)R. (231)

Rearranging (231) gives

c

!
< 2

✓
1 +

1

# snr

◆
1

snr


1

2#
ln (1 + # snr)�

⇢ snr

2
�R�

�R

2

�
. (232)

Note that the RHS of (232) is smaller than or equal to 1 if R �
(1�⇢)snr

(2+�)(1+# snr) . Using ⇢ 
�
3snr and

� <
�
2R , the su�cient condition in (232) for  1

c  fM,� can be weakened to c  g where g is defined
in (34). Note that the condition (33) on ! guarantees that g > 1.

Notice from (229) that F 0
c is decreasing in c for c 2 [1,!] and is then constant for c 2 [!, d⇤2 e].

Therefore, for any � 2 (0, 1), if F 0
c > (2 + �)R is satisfied for c = ! then  1

c  fM,� for all c 2 [⇤].
By using a similar analysis as above for lower bounding F

0
c , one can show that a su�cient condition

for F 0
! > (2 + �)R is R <

(1�⇢)snr
(2+�)(1+# snr) .

Next we consider subsequent iterations t > 1. Assume towards induction that

 
t
c  fM,�, for c  gt, (233)

where gt � tg. We will prove that (233) implies  t+1
c  fM,� for c  gt+ g. We prove the result for

gt � !, with the other case being similar. We wish to find column indices c 2 (gt, gt +!) for which
 
t+1
c  fM,�, or equivalently F

t
c > (2 + �)R. For brevity, we will use the shorthand f := fM,�.

Using the induction assumption (233) in (226), we deduce

�
t
r

�2


8
>>>><

>>>>:

1 + f (1� ⇢)# snr r
! + f ⇢ # snr gt�r

⇤�1 + ⇢ # snr ⇤�gt
⇤�1 , 1  r  !,

1 + f (1� ⇢)# snr+ f ⇢ # snr gt�!
⇤�1 + ⇢ # snr ⇤�gt

⇤�1 , !  r  gt,

1 + (1�⇢)# snr
! [f(! � (r� gt)) + (r� gt)] + f ⇢ # snr r�!

⇤�1 + ⇢ # snr ⇤�r
⇤�1 , gt  r < gt + !,

1 + (1� ⇢)# snr+ f ⇢ # snr r�!
⇤�1 + ⇢ # snr ⇤�r

⇤�1 , r � gt + !.

(234)

For M su�ciently large (i.e., f su�ciently small), noting that gt � ! we can simplify (234) to

�
t
r

�2


8
>>>><

>>>>:

1 + f (1� ⇢)# snr r
! + ⇢ # snr ⇤�r

⇤�1 , 1  r  !,

1 + f (1� ⇢)# snr+ ⇢ # snr ⇤�!
⇤�1 , !  r  gt,

1 + (1�⇢)# snr
! [f(! � (r� gt)) + (r� gt)] + ⇢ # snr ⇤�!

⇤�1 , gt  r < gt + !,

1 + (1� ⇢)# snr+ ⇢ # snr ⇤�!
⇤�1 , r � gt + !.

(235)
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We now obtain a lower bound on F
t
c := ⌫

t
cR for gt < c < gt + !. Using (227) we have

F
t
c �

(1� ⇢)P

!

c+!�1X
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�tr
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�
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!
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1
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1 + # snr

�
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!�1X
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1
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+
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1 + # snr
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#
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ln(1 + # snr)� ln
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(iii)
�

1

#
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+
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!

# snr2

1 + # snr
, (236)

where the labelled steps are obtained as follows: (i) using the bounds for �tr given in (235), (ii)
using a definite integral to lower bound the left Riemann sum of a decreasing function, similar to
(230), and (iii) using the inequalities ln(1 + x)  x and 1

1�f � 1.

Recall from Lemma 4.1 that  t+1
c  fM,� if F t

c > (2 + �)R. From (236), this condition will be
satisfied if

1

#
ln(1 + # snr)� ⇢ snr� f snr�

c� gt

!

# snr2

1 + # snr
> (2 + �)R. (237)

Rearranging (237) gives

c� gt

!
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✓
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1

# snr
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snr
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2#
ln (1 + # snr)�

⇢ snr
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�
. (238)

Note that the RHS of (238) is smaller than or equal to 1 if R �
(1�⇢)snr

(2+�)(1+# snr) . Using ⇢ 
�
3snr and

� <
�
2R in (238), we obtain that a su�cient condition for  t+1

c  fM,� is

c� gt

!
< 2

✓
1 +

1

# snr

◆
1

snr


7�

12
�

fsnr

2

�
(239)

ForM su�ciently large, f < �/(6snr). Thus we conclude from (239) that  t+1
c  fM,� for c�gt  g,

and hence for c  (t+ 1)g (since gt � tg).
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A.3 Proof of Lemma 7.1

We will prove the lemma by showing that the following inequalities hold 1  t < T :

�
t�1
r � �

t
r � C1

⇣
!

⇤

⌘
, (240)

⌫
t
c � ⌫

t�1
c � C2

⇣
!

⇤

⌘
, (241)

where we recall that ⌫tc = 1
⌧ tc lnM . Here the constant C1 is defined in (246) below, and C2 =

PC1/(R�4). From these inequalities it follows that

�
t
?,r =

�
t
r

�
t�1
r

�
�
t�1
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t
r

�
�

C
2
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#P

⇣
!

⇤

⌘2
, (242)

n

L
⌧
t
?,c =

(⌫t�1
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t
c)

R(⌫tc)
2

�
RC2

snr2

⇣
!

⇤

⌘
. (243)

The inequality in (242) is obtained using �tr � C1!/⇤ and the fact that �t�1
r  #P (from (226)

since  t�1
c  1). The inequality in (243) is obtained by using ⌫tc � snr/R (from (227) since �tr � �

2).
We will prove (240) via induction. The result (241) can then be obtained from (240) as follows.

Using (227), we write

⌫
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t�1
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Using �t�1
r � �

t
r � �

2 and (�t�1
r � �

t
r) = (�t�1
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t
r) � C1!/⇤ by the induction assumption, the

above equation yields

⌫
t
c � ⌫

t�1
c �

PC1

R�4

!

⇤
=

C2!

⇤
. (244)

Next we show the lower bound for �tr � �
t+1
r in (240). For t = 1, noting that  c = 1 for c 2 [C], we

have

�
1
c � �

0
c =

1

C

CX

c=1

Wrc(1�  
1
c ). (245)

From Proposition 4.1, we know that  1
c  fM,�, for 1  c  g and ⇤ � g + 1  c  ⇤. Since

Wrc � ⇢P ·
⇤+!�1
⇤�1 and C = ⇤, we have

�
1
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0
c �

1

⇤
2g⇢P
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⇤� 1
(1� fM,�) �

⇢P (1 + # snr)�
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C1

!

⇤� 1
, (246)

where the last inequality holds for M su�ciently large. Assume towards induction that (240) holds
for �t�1

r � �
t
r , for 1  t  (T � 2). From (226) we have

�
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@1� ⇢

!

crX
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c )
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A . (247)
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For �, e� 2 (0, min{1
2 ,

�
2R}), define the set

It :=
n
c 2 [⇤] : ⌫t�1

c  2� e� and ⌫tc > 2 + �

o
(248)

For each c 2 It, from Lemma 4.1 and Proposition 4.1 we have

 
t
c � 1�M

�k1�̃2 ,  
t+1
c 

M
�k�2

�
p
logM

, c 2 It. (249)

We prove below that for su�ciently small choices of �, e�, we have |It| � 2(g � 2), where g is
defined in (34). Using this and (249) in (247), we conclude that

�
t
r � �

t+1
r �

#P⇢

⇤� 1
2(g � 2)

 
1�M

�k1�̃2 �
M

�k�2
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logM
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(a)
�

P⇢ g

⇤� 1
=

P⇢(1 + # snr)�

# snr2| {z }
C1

·
!

⇤� 1
,

(250)

where the inequality (a) holds for M su�ciently large. It remains to show that |It| � 2(g � 2) for
suitably chosen �, e�. Let c⇤ denote the largest index c  ⇤/2 such that ⌫t�1

c > 2. That is,

⌫
t�1
c > 2 for c  c⇤, ⌫

t�1
c⇤+1  2, and ⌫

t�1
c < 2 for c⇤ + 2  c  b⇤/2c. (251)

Let � = min{ (⌫t�1
c⇤ �2)
2 ,

�
2R ,

1
2} and e� = min{

(2�⌫t�1
c⇤+2)

2 ,
1
3}. For these choices, Lemma 4.1 guarantees

that

 
t
c < fM,� :=

M
�k�2

�
p
logM

for c  c⇤, and  
t
c > 1�M

�k1�̃2 for c � c⇤ + 2, (252)

Furthermore, Proposition 4.1 guarantees that  t+1
c  fM,� for column indices c⇤ + 2  c  c⇤ + g.

Therefore, all these indices belong to the set It. Therefore, It contains at least (g � 2) column
indices c  ⇤/2, and by symmetry, contains an equal number of indices ⇤/2 < c  ⇤. This
completes the proof of the lemma.

B Concentration lemmas

In the following ✏ > 0 is assumed to be a generic constant, with additional conditions specified
whenever needed.

Lemma B.1 (Hoe↵ding’s inequality [49, Thm. 2.8]). If X1, . . . , Xn are independent, bounded ran-
dom variables such that ai  Xi  bi, then for ⌫ = 2[

P
i(bi � ai)2]�1

P

⇣ 1
n

nX

i=1

(Xi � EXi) � ✏

⌘
 e

�⌫n2✏2
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⇣���
1

n

nX

i=1

(Xi � EXi)
��� � ✏

⌘
 2e�⌫n2✏2

.
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Lemma B.2 (Concentration of sums). If random variables X1, . . . , XM satisfy P (|Xi| � ✏)  e
�ri✏2

for 1  i  M with ri indicating the ‘rate’ of concentration of random variable Xi, then
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��� � ✏
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⌘
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.

Moreover, for constants 1, . . . ,M > 0,
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Lemma B.3 (Concentration of Products [44, Lemma 15]). For random variables X,Y and non-
zero constants cX , cY , if P (|X � cX | � ✏)  Ke

�rX✏2 and P (|Y � cY | � ✏)  Ke
�rY ✏2

, then the
probability P (|XY � cXcY | � ✏) is bounded by

P (|X � cX | � min
nr

✏

3
,
✏

3cY

o
) + P (|Y � cY | � min

nr
✏

3
,
✏

3cX

o
)  2K exp

n
�min{rX , rY }✏

2

9max(1, c2X , c2Y )

o
.

Lemma B.4 (Concentration of Products). For random variables X,Y, and constant cX 6= 0, if
P (|X � cX | � ✏)  Ke

�rX✏2 and P (|Y | � ✏)  Ke
�rY ✏2

, then,

P (|XY | �
p
✏)  P (|X � cX | �

p
✏) + P

⇣
|Y | �

✏

2max{1, |cX |}

⌘
 2K exp

n
�
✏
2min{rY , rX}

4max{1, c2X}

o
.

Lemma B.5 (Concentration of square roots, [44, Lemma 16]). Let c 6= 0. Then

If P (|X2
n � c

2
|� ✏)  e

�n✏2
, then P (||Xn|� |c| |� ✏)  e

�n|c|2✏2
.

Lemma B.6 (Concentration of powers, [44, Lemma 17]). Assume c 6= 0 and 0 < ✏  1. Then for
any integer k � 2,

if P (|Xn � c|� ✏)  e
�n✏2

, then P (|Xk
n � c

k
|� ✏)  e

�n✏2/[(1+|c|)k�|c|k]2
.

Lemma B.7 (Concentration of Scalar Inverses, [44, Lemma 18]). Assume c 6= 0 and 0 < ✏ < 1.

If P (|Xn � c|� ✏)  e
�n✏2

, then P (|X�1
n � c

�1
|� ✏)  2e�n✏2c2 min{c2,1}/4

.

Lemma B.8. For a standard Gaussian random variable Z and ✏ > 0, P (|Z| � ✏)  2e�
1
2 ✏

2
.

Lemma B.9. Let Z1, Z2, . . . , ZN and Z̃1, Z̃2, . . . , Z̃N be i.i.d. standard Gaussian random variables
and 0  ✏  1 and �1,�2, . . . ,�N be positive constants. Let �max = max(�1,�2, . . . ,�N ). Then the
following concentration results hold for ✏ 2 (0, 1].

P

⇣���
1

N

NX

i=1

�i(Z
2
i � 1)

��� � ✏

⌘
 2 exp

n
�N✏

2

4max{
PN

i=1 2�
2
i /N, �max, 1}

o
, (253)

P

⇣���
1

N

NX

i=1

�iZiZ̃i

��� � ✏

⌘
 2 exp

n
�N✏

2

4max{
PN

i=1 �
2
i /N,�max, 1}

o
, (254)

P

⇣ 1

L

LX

`=1

�` max
j2sec(`)

Z
2
j � 3�max logM + ✏

⌘
 exp

n
�L

5

⇣
2✏+ log

M

70

⌘o
. (255)
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Proof. Recall that a random variable X is sub-exponential with non-negative parameters (⌫, b) if

E[exp(�(X � EX))]  exp(⌫2�2/2), for all |�| < 1/b. (256)

Furthermore, if X is sub-exponential with parameters (⌫, b), then [50, Proposition 2.9]

P (|X � EX| � t) 

(
2 e�

t2

2⌫2 for 0 < t 
⌫2

b ,

2 e�
t
b for t > ⌫2

b .
(257)

Taking X =
PN

i=1 �iZ
2
i , we will show that X is sub-exponential with ⌫

2 = 4
PN

i=1 �
2
i and b =

max{4�max, 1}, from which it follows that (plugging in t = N✏ in (257))

P

⇣���
1

N

NX

i=1

�i(Z
2
i � 1)

��� � ✏

⌘


8
><

>:

2 exp
n
�

N✏2
8
N

PN
i=1 �

2
i

o
for 0 < ✏ 

4
N

PN
i=1 �

2
i

max{4�max, 1} ,

2 exp
n
�

N✏
max{4�max, 1}

o
for ✏ >

4
N

PN
i=1 �

2
i

max{4�max, 1} .

To finish the proof of (253), we now show that X =
PN

i=1 �iZ
2
i has sub-exponential parameters

given above. Using the moment generating function of a chi-squared random variable, we have

E[exp(�X)] =
nY

i=1

1
p
1� 2��i

, for � <
1

2�max
.

Therefore, for � < min{ 1
4�max

, 1}, we show the desired sub-exponential parameters as follows:

E[exp(�(X � EX))] = exp
⇣
�

1

2

NX

i=1

ln(1� 2��i) � �

NX

i=1

�i

⌘

(a)
 exp

⇣ NX

i=1

h
��i +

(��i)2

1� 2��i

i
� �

NX

i=1

�i

⌘ (b)
 exp

⇣
2�2

NX

ı=1

�
2
i

⌘
. (258)

In step (a), we use that � log(1�u)  u+ u2

2(1�u) for u 2 [0, 1) and step (b) holds since for � <
1

4�max
,

we have 1� 2��i � 1� �i/(2�max) � 1/2.
We prove (254) similarly. For X =

PN
i=1 �iZiZ̃i, the moment generating function is

E[exp(�X)] =
nY

i=1

(1� �
2
�
2
i )

�1/2
, for �2�2i < 1. (259)

Using this and steps similar to (258), we can show that X is sub-exponential with parameters
⌫
2 = 2

PN
i=1 �

2
i and b = max{�max

p
3/2, 1}. Then, using t = N✏ in (257), we obtain

P

⇣���
1

N

NX
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�iZiZ̃i

��� � ✏

⌘
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2 exp
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p
3/2, 1}.

o
for ✏ >

2
N

PN
i=1 �

2
i

max{�max

p
3/2, 1}.

.

This proves (254). The inequality (255) is shown in [41, Lemma 16]. ⌅
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C Other useful lemmas

Lemma C.1. [14, Lemma 8] Let v1, . . . ,vt be a sequence of vectors in Rn such that for i 2 [t],
1
nkvi � Pk

i�1(vi)k2 � c, where c is a positive constant that does not depend on n, and Pk
i�1 is the

orthogonal projection onto the span of v1, . . . ,vi�1. Then the matrix C 2 Rt⇥t with Cij = v
⇤
i vj/n

has minimum eigenvalue �min � c
0
t, where c

0
t is a positive constant (not depending on n).

Lemma C.2. For any scalars a1, ..., at and positive integer m, we have (|a1| + . . . + |at|)m 

t
m�1Pt

i=1 |ai|
m. Consequently, for any vectors u1, . . . ,ut 2 RN ,

��Pt
k=1 uk

��2  t
Pt

k=1 kukk
2.

Lemma C.3 (Stein’s lemma). For zero-mean jointly Gaussian random variables Z1, Z2, and
any function f : R ! R for which E[Z1f(Z2)] and E[f 0(Z2)] both exist, we have E[Z1f(Z2)] =
E[Z1Z2]E[f 0(Z2)].

Lemma C.4. Let Z s̃,c,Zs,c 2 RNC be random vectors such that the pairs (Zs̃,i, Zs,i), i 2 [MC ], are
i.i.d. bivariate Gaussian with covariance E[Zs̃,iZs,i] = (⌧ sc /⌧

s̃
c ). Then for 0  s̃  s  T ,

C

L
E{[⌘s̃c(�0,c �

q
⌧ s̃cZ s̃,c)]

⇤[⌘sc(�0,c �
p
⌧ scZs,c)]} = (1�  

s̃+1
c ), (260)

C

L
E{[⌘s̃c(�0,c �

q
⌧ s̃cZ s̃,c)� �0,c]

⇤[⌘sc(�0,c �
p
⌧ scZs,c)� �0,c]} =  

s+1
c . (261)

Proof. We will use the following fact, adapted from [4, Proposition 1]:

E
n
�
⇤
0,c⌘

s
c

⇣
�0,c �

p
⌧ scZs,c

⌘o
=

L

C
(1�  

s+1
c ), for 0  s < T. (262)

Let us̃ = �0,c�
p
⌧ s̃cZ s̃,c and u

s = �0,c�
p
⌧ scZs,c. Then, ⌘s̃c(�0,c�

p
⌧ s̃cZ s̃,c) = E[�0,c | u

s̃] and
⌘
s
c(�0,c �

p
⌧ scZs,c) = E[�0,c | u

s], and therefore, for s̃  s,

E{[⌘s̃c(�0,c �

q
⌧ s̃cZ s̃,c)]

⇤[⌘sc(�0,c �
p
⌧ scZs,c)]} = E{[E[�0,c | u

s̃]]⇤E[�0,c | u
s]}

(a)
= E{[E[�0,c | u

s̃]]⇤[E[�0,c | u
s
,u

s̃]� �0,c + �0,c]}

(b)
= E{[E[�0,c | u

s̃]]⇤�0,c}
(c)
=

L

C
(1�  

s̃+1
c ).

In the above, step (a) holds since E[�0,c | u
s
,u

r] = E[�0,c | u
s], which can be shown using steps

similar to those in [41, Lemma 22]. Step (b) follows from the orthogonality property of conditional
expectation: E{(E[�0,c|u

s
,u

s̃]� �0,c)
⇤E[�0,c|u

s̃]} = 0 due to the orthogonality principle, and step

(c) by (262). The result (261) follows from (260) and (262), noting that
���0,c

��2 = L/LC . ⌅

Lemma C.5. For the function ⌘t : RML
! RML defined (16), s,� 2 RML, and sec(`) 2 c,

X

i2sec(`)

��⌘ti(s)� ⌘
t
i(s+�)

��  (2/⌧ tc) max
i2sec(`)

|�i| .

Proof. From the multivariate version of Taylor’s theorem, for any i 2 [ML] and for some  2 (0, 1),

⌘
t
i(s+�) = ⌘

t
i(s) +�

T
r⌘

t
i(s+ �). (263)
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For i 2 sec(`), as ⌘ti depends only on the subset of its input also belonging to section `, using (263),

X

i2sec(`)

��⌘ti(s)� ⌘
t
i(s+�)

�� =
X

i2sec(`)

���
X

j2sec(`)

�j
@
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⌘
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i(s+ �)

���

(a)


1

⌧ tc

X

i2sec(`)

����i⌘
t
i(s+ �)

���+
1

⌧ tc

X

i2sec(`)

���⌘ti(s+ �)
X

j2sec(`)

�j⌘
t
j(s+ �)

���
(b)


2

⌧ tc
max

i2sec(`)
|�i| ,

where inequality (a) uses the fact that for i, j 2 [ML],

@

@sj
⌘
t
i(s) =

⌘
t
i(s)

⌧ tc
[1{j = i}� ⌘

t
j(s)]1{i, j 2 sec(`), ` 2 c}.

Inequality (b) uses the fact that
P

j2sec(`) |⌘
t
j(s+ �)| =

P
j2sec(`) ⌘

t
j(s+ �) = 1. ⌅

Lemma C.6. Let W be a d-dimensional subspace of Rn for d  n and let Z ⇠ N (0, In) be a
standard Gaussian random vector. Let (w1, ...,wd) be an orthonormal basis of W with kwik

2 = 1 for

i 2 [d], and let Pk
W denote the orthogonal projection operator onto W. Then for D = [w1 | . . . | wd],

we have Pk
WZ

d
= DZ̃ where Z̃ ⇠ N (0, Id) is independent of D.

Lemma C.7 (H(d) concentration). Let Z ⇠ N (0, IML) and Z̃ ⇠ N (0, IML) such that (Zi, Z̃i) are
i.i.d. bivariate Gaussian, for 1  i  ML. For ` 2 [L], let Y` = Z

⇤
`⌘`(�0 �

p
⌧Z̃). Then, for a

universal positive constant, , and �c 2 ⇥(1) for each c 2 [C],

P

⇣ 1

L

���
X

c2[C]

�cWrc
p
logM

X

`2c
(Y` � E[Y`])

��� � ✏

⌘
 exp{�1L(!/R)✏

2
}.

Proof. The proof is along the same lines as that of Lemma 20 in [41], and is hence omitted. ⌅
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