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Shape versus Timing: Linear Responses of a Limit Cycle with Hard Boundaries
under Instantaneous and Static Perturbation®
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Abstract. When dynamical systems that produce rhythmic behaviors operate within hard limits, they may
exhibit limit cycles with sliding components, that is, closed isolated periodic orbits that make and
break contact with a constraint surface. Examples include heel-ground interaction in locomotion,
firing rate rectification in neural networks, and stick-slip oscillators. In many rhythmic systems,
robustness against external perturbations involves response of both the shape and the timing of
the limit cycle trajectory. The existing methods of infinitesimal phase response curve (iPRC) and
variational analysis are well established for quantifying changes in timing and shape, respectively, for
smooth systems. These tools have recently been extended to nonsmooth dynamics with transversal
crossing boundaries. In this work, we further extend the iPRC method to nonsmooth systems with
sliding components, which enables us to make predictions about the synchronization properties of
weakly coupled stick-slip oscillators. We observe a new feature of the isochrons in a planar limit
cycle with hard sliding boundaries: a nonsmooth kink in the asymptotic phase function, originating
from the point at which the limit cycle smoothly departs the constraint surface and propagating
away from the hard boundary into the interior of the domain. Moreover, the classical variational
analysis neglects timing information and is restricted to instantaneous perturbations. By defining
the “infinitesimal shape response curve” (iSRC), we incorporate timing sensitivity of an oscillator
to describe the shape response of this oscillator to parametric perturbations. In order to extract
timing information, we also develop a “local timing response curve” (ITRC) that measures the timing
sensitivity of a limit cycle within any given region. We demonstrate in a specific example that taking
into account local timing sensitivity in a nonsmooth system greatly improves the accuracy of the
iSRC over the global timing analysis given by the iPRC.
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1. Introduction. A limit cycle with sliding component (LCSC) is a closed, isolated, peri-
odic orbit of an n-dimensional, autonomous, deterministic nonsmooth dynamical system, in
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which the trajectory is constrained to move along a surface of dimension k& < n during some
portion of the orbit. The motion of a trajectory sliding along a constraint surface is called
a sliding mode. LCSCs appear naturally in dynamical systems models of physiological and
robotic motor control systems (Barajon, Gossard, and Hultborn, 1992; Gelfand, Orlovsky, and
M. Shik, 2004; Mortin and Stein, 1989; Holmes et al., 2006; Revzen and Guckenheimer, 2011;
Lyttle et al., 2017; Guckenheimer and Javeed, 2018) as well as mechanical stick-slip systems
(Galvanetto and Bishop, 1999; Galvanetto, 2001; Dieci and Lopez, 2011; Leine and Nijmeijer,
2013). In control theory, the sliding mode concept has been used to design controllers for
nonlinear systems (Slotine and Sastry, 1983; Slotine, 1984; Lee, Kim, and Sastry, 2009).

Both natural and engineered motor systems are robust to certain short and long term
disturbances. Studies of the robustness properties of these systems have relied on applying
the infinitesimal phase response curve (iPRC) and variational analysis to quantify changes
in timing and shape of the motor trajectory to weak perturbations. For understanding the
response to instantaneous perturbations, the two methods are used ubiquitously in the litera-
ture of smooth dynamical systems (Spardy et al., 2011a,b; Park, Heitmann, and Ermentrout,
2017). Filippov (1988); Bernardo et al. (2008); Leine and Nijmeijer (2013); Dieci and Lopez
(2011) show that variational analysis can be applied to nonsmooth systems including LCSC
systems. Recently, the iPRC has also been generalized to nonsmooth systems, provided the
flow is always transverse to any switching surfaces at which nonsmooth transitions occur (Shi-
rasaka, Kurebayashi, and Nakao, 2017; Park et al., 2018; Chartrand, Goldman, and Lewis,
2018; Wilson, 2019). However, there have been fewer reported studies that analyze the model
response (especially the shape response) to perturbations that are sustained over long times.
Even fewer works have analyzed the response of LCSCs, in which the transverse flow condition
fails, to both instantaneous and sustained perturbations. Our goal in this paper is to bridge
such a knowledge gap by providing a first description of the infinitesimal shape response curve
(iSRC) that can account for the shape response of an oscillator to sustained (e.g., parametric)
perturbations and extending both iPRC and iSRC to LCSCs in nonsmooth systems.

In this paper, we consider the case of continuous LCSC solutions to nonsmooth systems
with degree of smoothness one or higher, that is, systems with continuous trajectories, also
known as Filippov systems (Filippov, 1988; Bernardo et al., 2008). The simplest model of
such a system can be written as follows:

dx polide (), x € Rolde 3,
(1.1) o F(x) := { Frinterior (y) otherwise,

where x denotes the state variable. The trajectory is confined to travel within the closure of
the domain R, the boundary of which is defined to be the hard boundary . A trajectory
entering the sliding region R¥4¢ ¢ 3 will slide along it with the vector field Fslde until it
is allowed to reenter the interior. For points not in R4 the dynamics is determined by
Finterior.

A stick-slip oscillator is one example of a system that exhibits an LCSC (Galvanetto and
Bishop, 1999). A mass on a belt that moves at a constant velocity u is connected to a fixed
support by a linear elastic spring and by a linear dashpot. Mechanical systems of this type are
referred to as stick-slip since there are times when the mass and the belt are moving together
(stick phase) and others in which the mass slips relative to the belt (slip phase). Such a
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Figure 1. Periodic LCSC solution trajectories of a stick-slip system. Left: Projection of the unperturbed
trajectory y(t) onto the (x,v) phase space (black), where x is the displacement of the mass from the position in
which the spring assumes its natural length and v is the velocity of the mass. The trajectory enters and leaves the
hard boundary (blue line) at Xiana (blue square) and Xusos (blue circle), respectively. Right: Projections of the
unperturbed trajectory v(t) (black) and the trajectory under parametric perturbation ~y.(t)(red). See section 5.1
for further details.

solution trajectory alternating between stick and slip phases is an LCSC, as illustrated in
Figure 1(left). Here the hard boundary is given by v = u, where v is the velocity of the mass
and w is the driving velocity of the belt. Thus, for a stick-slip system, the “sliding component”
of the limit cycle corresponds to the “stick” phase, during which the mass moves with fewer
degrees of freedom than during the “slip” phase.

While the response of an oscillator to an instantaneous perturbation is well understood,
relatively little consideration has been given to studying the model response to sustained
(e.g., parametric) perturbations even in the context of smooth systems. Here we develop
the mathematical framework required to analyze the changes in shape and timing wrought
by parametric changes. In general, a small fixed change in a parameter gives rise to a new
limit cycle, with shape and timing different from the original. See Figure 1(right). In order to
account for the shape response of an oscillator to parametric perturbations, we apply Lighthill’s
method (Jordan and Smith, 2007) to derive an iSRC in section 2.2. Later, in section 5.1, we
use the iSRC to study the shape response of the stick-slip oscillator to a small parametric
perturbation. In contrast to standard variational analysis, which neglects timing changes,
the iSRC takes into account both timing and shape changes arising due to a parametric
perturbation.

In many applications of LCSCs, the impact of a perturbation on local timing can be as
important as the global effects. For instance, any motor control or mechanical system that
operates by making and breaking physical contact (e.g., walking, scratching, grasping, or stick-
slip) would only experience perturbations limited to a discrete component of the limit cycle
(e.g., the friction of the ground acts as a perturbation during the stance phase of locomotion
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and is absent during the swing phase). In these cases, one would need to compute the local
timing changes of the trajectory during the phase when the perturbation exists to understand
the robustness of this system. It is well known that the global change in timing of an oscillator
due to a parametric perturbation can be captured using the iPRC, which, however, cannot
be used to capture a local timing change induced by sustained perturbations in many LCSC
systems. In this paper, we develop a local timing response curve (ITRC) that is analogous
to the iPRC but measures the local timing sensitivity of a limit cycle within any given local
region (e.g., the stance phase in locomotion). Development of the ITRC allows us to compute
local timing changes in an oscillator due to nonuniform sustained perturbations. Moreover, we
show that the ITRC can be used to greatly improve the accuracy of the iSRC of a nonsmooth
System.

Recently, the iPRC has been extended to certain nonsmooth systems, but the theory does
not extend directly to LCSCs in which the transverse flow condition fails. In this paper, we
bridge such a knowledge gap by extending the iPRC to LCSC systems (see Theorem 3.13). In
contrast to the variational dynamics that exhibits discontinuities when a sliding motion begins
(Filippov, 1988), we find that the iPRC in an LCSC experiences a discontinuous jump when
the trajectory leaves a sliding region and is continuous when the sliding mode begins. To our
knowledge, ours is the first work considering iPRC for systems with sliding components." We
illustrate the theory using a planar model consisting of four sliding components and a stick-
slip system with one sliding component. We also use the iPRC to predict the synchronization
properties of two weakly coupled stick-slip oscillators.

The rest of the paper is organized as follows. We consider smooth systems in section 2
and Filippov systems in section 3. In each of the two sections, we first review classical theory
and methods to provide context and then present our new results. The variational and phase
response curve analyses for the responses of smooth dynamical systems to instantaneous and
parametric perturbations are reviewed in section 2.1. To account for shape responses to
sustained perturbations, we define the iSRC in section 2.2 and define the ITRC in section 2.3.
We present the classical two-zone Filippov system with transversal crossing boundary and
define a Filippov system that produces an LCSC solution (see (1.1)) in section 3.1. While
the applicability of the classical perturbative methods from section 2 is generally limited by
the constraint that the dynamics of the system is smooth, some elements of the methods
have already been generalized to nonsmooth systems, which are reviewed in section 3.2. We
extend the iPRC to the LCSC case in nonsmooth systems in section 3.3. The main result is
summarized in Theorem 3.13. Section SM3 of the supplementary materials to this manuscript,
linked from the main article webpage, gives a proof of the theorem. Numerical algorithms for
implementing all the methods are presented in section SM4. In section 4, we illustrate both
the theory and algorithms using a planar model, comprising a limit cycle with a linear vector
field in the interior of a simply connected convex domain with four hard boundaries. In this
example, we show that under certain circumstances (e.g., nonuniform perturbation), the iSRC

!For example, although the well-known monograph Hybrid Dynamical Systems (Goebel, Sanfelice, and Teel,
2009) addresses periodic orbits and synchronization in nonsmooth systems with transverse boundary crossings,
it avoids systems with sliding components, which have nontransverse flow out of the constraint surface, and it
does not discuss phase response curve methods.
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together with the ITRC provides a more accurate representation of the combined timing and
shape responses to static perturbations than using the global iPRC alone. Surprisingly, we
discover nondifferentiable “kinks” in the isochron function that propagate backwards in time
along an osculating trajectory that encounters the hard boundary exactly at the liftoff point
(the point where the limit cycle trajectory smoothly departs the boundary). In section 5, we
use the iSRC to understand the shape response of an actual mechanical system—a stick-slip
oscillator—to a parametric perturbation and use the iPRC to study the synchronization of
two weakly coupled stick-slip oscillators. Last, we discuss limitations of our methods and
possible future directions in section 6. Section SM5 provides a table of symbols used in the

paper.

2. Linear responses of smooth systems. In this section, we consider smooth dynamical
systems. We begin by reviewing the classical variational theory for limit cycles, and then we
derive new methods, including the infinitesimal shape response curve (iSRC) and the local
timing response curve (1TRC) for linear approximation of the effects of small perturbations
on the timing and shape of a limit cycle trajectory in the smooth case.

Specifically, in section 2.1 we review the classical variational and infinitesimal phase re-
sponse curve analyses that capture the shape response to small instantaneous perturbations
and the effects of both instantaneous and sustained perturbations on the timing of trajectories
near a limit cycle trajectory. However, little consideration has been given to the effect of sus-
tained perturbations on the shape of the orbit. In section 2.2, we derive the iSRC to account
for the combined shape and timing response of a limit cycle trajectory under sustained (e.g.,
parametric) perturbations. To obtain a more accurate iSRC when the limit cycle experiences
different timing sensitivities in different regions within the domain, in section 2.3, we introduce
the ITRC. In contrast to the iPRC, which measures the global shift in the period, the ITRC
lets us compute the timing change of a limit cycle trajectory within regions bounded between
specified Poincaré sections.

Consider a one-parameter family of n-dimensional dynamical systems

dx
(2.1) i F.(x),
indexed by a parameter € representing a static perturbation of a reference system
dx
2.2 — = Fy(x).
(22) =~ R)

Assumption 2.1. Throughout this section, we make the following assumptions:

(a) The vector field F.(x) : @ x Z — R™ is C! in both the coordinates x in some open
subset €2 C R™ and the perturbation € € Z C R, where 7 is a small open neighborhood
of zero.

(b) For ¢ € Z, system (2.1) has a linearly asymptotically stable limit cycle 7.(t), with a
finite period T depending (at least C!) on ¢.

Note that the C! dependence of T. on ¢ in Assumption 2.1(b) follows from the assumed
smoothness of F; in Assumption 2.1(a). It is a classical result in the theory of normally
hyperbolic invariant manifolds that C' isochrons exist in the neighborhood of any asymptot-
ically stable hyperbolic periodic orbit of a C! vector field, which are given as the level sets

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/26/21 to 129.22.126.5. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

706 Y. WANG, J. P. GILL, H. J. CHIEL, AND P. J. THOMAS

of locally defined asymptotic phase function ¢(x) near the limit cycle (Fenichel and Moser,
1971; Kresimir, Shea-Brown, and Moehlis, 2006; Wiggins, 1994). It follows that the iPRC
z(t), which is V¢(x) evaluated at the limit cycle (see section 2.1 below for more details), is a
continuous function of ¢. Differentiability of T, with respect to ¢ then follows from the formula
for Th = dT/de given in (2.14) below.

It follows from Assumption 2.1 that when ¢ = 0, Fy(x) is C! in x € © and the unperturbed
system (2.2) exhibits a Tp-periodic asymptotically stable limit cycle solution ~o(t) = o (t+7p)
with 0 < Tp < oo. To simplify notation, we will drop the subscript 0 and use F(x), v(t),
and T to denote the unperturbed vector field, limit cycle solution, and period, except where
required to avoid confusion.

Moreover, Assumption 2.1 implies that we have the following approximations that will be
needed for deriving the iSRC and ITRC:

(2.3) F.(x) = Fy(x) + 888};5 (x) o + 0(e?),
(2.4) T. = To +<Th + O(?),
(2.5) e (1(t) = 70(t) +e71(t) + O(e?)  (uniformly in t),

where T7 is the linear shift in the limit cycle period Tj in response to the static perturbation
of size €. This global timing sensitivity 77 > 0 if increasing € increases the period. The
perturbed time 7.(t), which satisfies 79(t) = ¢ and 7-(t + Tp) — 7-(t) = T, will be described in
detail later (see (2.15)); it allows the approximation (2.5) to be uniform in time and permits
us to compare perturbed and unperturbed trajectories at corresponding time points. The
vector function i (t) is a representative belonging to an equivalence class that comprises the

iSRC.
2.1. Review of shape and timing response to perturbations (classical theory).

Shape and timing response to instantaneous perturbations. Suppose a small, brief
perturbation is applied to (2.2) at time ty such that there is a small abrupt perturbation in
the state space. We have

(2.6) Y(to) = ~(to) + P,

where 7 indicates the trajectory subsequent to the instantaneous perturbation, ¢ is the mag-
nitude of the perturbation, and P is the unit vector in the direction of the perturbation in the
state space. As is well known, the effects of the small brief perturbation e P on the shape and
timing of the limit cycle trajectory are given, respectively, by the solution of the variational
equation (2.7) and the iPRC which solves the adjoint equation (2.9).

The evolution of a trajectory 4(t) close to the limit cycle v(¢) may be approximated as
F(t) = v(t) + u(t) + O(e?), where u(t) satisfies the variational equation

du

(2.7) = DF(y(t)u

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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with initial displacement u(tp) = € P given by (2.6) for small . Here DF(+(t)) is the Jacobian
matrix evaluated along ~(t).

On the other hand, an iPRC of an oscillator measures the timing sensitivity of the limit
cycle to infinitesimally small perturbations at every point along its cycle. It is defined as
the shift in the oscillator phase 6 € [0,T") per size of the perturbation, in the limit of small
perturbation size. The limit cycle solution takes each phase to a unique point on the limit
cycle, x = (), and its inverse maps each point on the cycle to a unique phase, = ¢(x).
One may extend the domain of ¢(x) to points in the basin of attraction B of the limit cycle
by defining the asymptotic phase: ¢(x): B — [0,T) with

do(x(t))

— =1 ex(t) = o(x(t+T)).

If xg € 7(t) and y, € B, then we say that yo has the same asymptotic phase as xq if
Ix(t;x0) — ¥(¢;¥0)|| = 0, as ¢ — oo. This means that ¢(x0) = ¢(yo). The set of all points
off the limit cycle that have the same asymptotic phase as the point x¢ on the limit cycle is
the isochron with phase ¢(xo). The asymptotic phase function ¢ is defined up to an additive
constant; this constant is of no consequence other than to define an arbitrary reference point
as the “zero phase” location on the limit cycle trajectory.

Suppose P applied at phase 6 results in a new state v(6) + eP € B, which corresponds
to a new phase = #(v(0) + eP). The phase difference 0 — 6 defines the phase response
curve (PRC) of the oscillator. One defines the iPRC as the vector function z : [0,7) — R"

satisfying

(2.8) 2(0) - P = lim ~ ($(4(0) + £P) — 0) = Vx(x(0)) - P

e—0 ¢

for arbitrary unit perturbation P. The first equality serves as a definition, while the second
follows from routine arguments (Brown, Moehlis, and Holmes, 2004; Ermentrout and Terman,
2010; Schwemmer and Lewis, 2012; Park, Heitmann, and Ermentrout, 2017). It follows directly
that the vector iPRC is the gradient of the asymptotic phase and it captures the phase (or
timing) response to perturbations in any direction P in state space. By Assumption 2.1, the
vector field F is C'. It follows that the iPRC is a continuous T-periodic solution satisfying
the adjoint equation (Schwemmer and Lewis, 2012),

d

(2.9) & = _DF(y(t),
dt

with the normalization condition

(2.10) F(v(0))-z(0) = 1.

Remark 2.2. By direct calculation, one can show that the solutions to the variational
equation and the adjoint equation satisfy uTz = constant:
d(uTz) duT dz
- T—= =u'DFT T(=DFTz) = 0.
o dtz+u il z+u'( z)
This relation holds for both smooth and nonsmooth systems with transverse crossings (Park
et al., 2018).

(2.11)
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For completeness, we note that differences between phase variables, as in (2.8), will be
interpreted as the periodic difference, dr(¢(x), ¢(y)). That is, if two angular variables 6 and
1 are defined on the circle S = [0,T"), then we set

0—y+T, 0—yp<-L
e_w_Ta 9—¢>%,

which maps dr(6,) to the range [-7/2,7/2]. In what follows, we will simply write 6 — 1
for clarity rather than dp(6,).

Timing response to sustained perturbations. Next we review how the iPRC can be used
to estimate the linear shift in the limit cycle period in response to a sustained perturbation
(see (2.14)).

Note that the perturbed periodic solution 7.(¢) to system (2.1) can be represented, to
leading order, by the single variable system

do
(2.13) pri 1+2z(0)"G(x,t),
where G(x,t) = E%Z(t)”a:o represents the O(e) perturbation of the vector field, 6 € [0, 7p)
is the asymptotic phase as defined above, and z : 6 € [0,7)) — R"™ is the iPRC. Recall that
for 0 < ¢ < 1 we can represent T, with Tz = Ty + Tt + O(g?) (see (2.4)). From (2.13), T}
can be calculated using the iPRC as

To
(2.14) T, = - /0 z(e)TaFSnge)) .

2.2. Shape response to sustained perturbations: iISRC. In this section, we develop new
tools to analyze the effects of sustained perturbations on the shape of a limit cycle solution.
As the parameter ¢ in (2.1) varies, the family of limit cycles produced by the flow forms a 2-
dimensional “ribbon” in the (n+1)-dimensional space parametrized by (x,e). The smoothness
of this ribbon, when the vector field F; is smooth, follows immediately from the persistence
of hyperbolic over- and underflowing invariant manifolds (Wiggins (1994), section 6.2).

In contrast to the instantaneous perturbation considered in the previous section, changes in
each aspect of shape and timing can now influence the other, and hence a variational analysis
of the combined shape and timing response of limit cycles under constant perturbation is
needed. To this end, we develop a new method that we call the iSRC (see (2.20)). In our
analysis, we adapt Lighthill’s method of coordinate perturbation (“strained coordinates”) to
simultaneously stretch the time coordinate so as to accommodate the effect of parameter
changes on period.

Generically, introducing a change in a parameter will lead to a change in period, as well as
a displacement of the set of points comprising the limit cycle’s orbit. In order to quantify the
change in shape, we must first accommodate any change in period. To this end, we introduce a
rescaled time coordinate t — 7.(t), which satisfies the consistency and smoothness conditions

d 1/ [T /d
(2.15) % >0, and z </t0 <c;€> dt — TO> =T1+0(¢), ase — 0,
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where Ty is the unperturbed period and 77 is the linear shift in the period as given by (2.14).
These conditions do not determine the value of the derivative of 7., which we write as

(2.16) dr./dt = 1/v.(t).

In general, the iISRC will depend on the choice of v.(t). However, some natural choices are
particularly well adapted to specific problems, as we will see. Initially, we will make the simple
ansatz

(2.17) ve(t) = const;

that is, we will impose uniform local timing sensitivity. Later, in section 2.3, we will intro-
duce the local timing response curve (ITRC) to exploit alternative time rescalings for greater
accuracy.

As discussed above, to understand how the static perturbation changes the shape of the
limit cycle 7(t), we need to rescale the time coordinate of the perturbed solution so that ~(t)
and 7.(t) may be compared at corresponding time points. That is, for € > 0 we wish to
introduce a rescaled perturbed time coordinate 7-(t) so that (2.5) holds, uniformly in time
—00 < t < 00, which we repeat below:

Ye(7=(8)) = 70(t) +en(t) + O(e?).

We define the Ty-periodic function v;(t) to be the infinitesimal shape response curve (iSRC).
We show next that ~;(t) obeys an inhomogeneous variational equation (2.20). This equa-
tion resembles (2.7), but has two additional nonhomogeneous terms arising, respectively, from
time rescaling t — 7.(t) and directly from the constant perturbation acting on the vector field.
It follows from (2.16) and (2.17) that the scaling factor is v, = %. Moreover, by (2.4), ve
can be written as
ve =1 — ey + O(£?),

where v = % represents the relative change in frequency. In terms of v. being time-

independent, the rescaled time for ~.(7.(t)) can be written as 7.(t) = t/v. € [0,T¢] for

t € [0,Tp] (see (2.16)). Differentiating v.(7-(t)) given in (2.5) with respect to ¢ (thE = ZZE dcz;a),
dr: 1

dt — ve

substituting the ansatz ( ), and rearranging lead to

e = v (W) + e () + O(?))
(2.18) = (1—ev1 +0(?)) (v(t) +evi(t) + O(e?))
= (t) —eving(t) + 71 (t) + O(e?)
= Fy(y(t) +e(=n1Fo(n(t) + 71 (1) + O(e?),

where ’ denotes the derivative with respect to t. On the other hand, expanding the right-hand
side of (2.1), and using (2.5), yields

zzz = F(7(7))

(2.19) = Fo(o(t)) +( DEoo(t)m (1) + 2=Go®)

5:0) + O(e?).
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Equating (2.18) and (2.19) to first order, we find that the linear shift in shape produced by a
static perturbation, i.e., the iSRC, satisfies

dyi(t)
dt

with period Ty, as claimed before.

It remains to establish an initial condition 7 (0). For smooth systems, without loss of gen-
erality, we may choose the initial condition for (2.20) by taking a Poincaré section orthogonal
to the limit cycle at a chosen reference point py = 40(0). Then the initial condition is given
by 71(0) = (p: — po)/e, where p. is the intersection point where the perturbed limit cycle 7.
crosses the Poincaré section. For nonsmooth systems discussed in the balance of the paper,
we choose the reference section X to be one of the switching or contact boundaries. That such
an arbitrary choice of an initial condition using an orthogonal Poincaré section or a switching
boundary does not compromise generality is a consequence of the following lemma, the proof
of which is given in section SM1 of the supplementary materials.

Lemma 2.3. Let v&(t) and vP(t) be two Ty-periodic solutions to the iSRC equation (2.20)
for a smooth vector field Fy with a hyperbolically stable limit cycle yo(t). Then their difference
satisfies 2 (t) — v&(t) = ©Fo(Y0(t)), where ¢ is a constant representing a fived phase offset.

an—: (70 (t))

(2.20) 98 o’

= DFy(v0(t))71(t) +viFo(v0(t)) +

Thus, if ¥2(t) is a representative iISRC specified by taking the orthogonal Poincaré section,
and 7'10 (t) is another representative specified by a different transverse section, then the two
solutions differ by a fixed offset—namely a vector in the direction of the flow along the limit
cycle—indexed by an additive difference in phase. Hence the differences between distinct
periodic solutions to (2.20) have precisely the same degree of ambiguity—and for the same
reason—as the familiar ambiguity of the phase of an oscillator.

The accuracy of the iSRC in approximating the linear change in the limit cycle shape evi-
dently depends on its timing sensitivity, that is, the choice of the relative change in frequency
v1. In the preceding derivation, we chose vy to be the relative change in the full period by
assuming the limit cycle has constant timing sensitivity. It is natural to expect that different
choices of v; will be needed for systems with varying timing sensitivities along the limit cycle.
This possibility motivates us to consider local timing surfaces which divide the limit cycle
into a number of segments, each distinguished by its own timing sensitivity properties. For
each segment, we show that the linear shift in the time that v (¢) spends in that segment can
be estimated using a local timing response curve (ITRC) derived in section 2.3. The 1ITRC
is analogous to the iPRC in the sense that they obey the same adjoint equation but with
different boundary conditions.

2.3. Local timing response to perturbations: ITRC. The iPRC captures the net effect
on timing of an oscillation—the phase shift—due to a transient perturbation (2.8), as well
as the net change in period due to a sustained perturbation (2.14). In order to study the
impact of a perturbation on local timing as opposed to global timing, we introduce the notion
of local timing surfaces that separate the limit cycle trajectory into segments with different
timing sensitivities. Examples of local timing surfaces in smooth systems include the passage
of neuronal voltage through its local maximum or through a predefined threshold voltage, and
the point of maximal extension of reach by a limb. In nonsmooth systems, switching surfaces
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Eout Xout

region | ‘n

region II .
yin
region III

Figure 2. Schematic illustration of a limit cycle solution for a system consisting of a number of regions,
each with distinct constant timing sensitivities. ™ and X°% denote the local timing surfaces for region I. x®
and x°% denote the points where the limit cycle enters region 1 through Y™ and exits region I through %°U,
respectively.

at which dynamics changes can also serve as local timing surfaces. For instance, in the feeding
system of Aplysia californica (Shaw et al., 2015; Lyttle et al., 2017), the open-closed switching
boundary of the grasper defines a local timing surface.”

Whatever the origin of the local timing surface or surfaces of interest, it is natural to
consider the phase space of a limit cycle as divided into multiple regions. Hence we may
consider a smooth system dx/dt = F(x) with a limit cycle solution v(t) passing through
multiple regions in succession (see Figure 2). In each region, we assume that -y(¢) has constant
timing sensitivity. To compute the relative change in time in any given region, we define a
ITRC to measure the timing shift of () in response to perturbations delivered at different
times in that region. Below, we illustrate the derivation of the ITRC in region I and show
how it can be used to compute the relative change in time in this region, denoted by 1.

Suppose that at time 7, v(t) enters region I upon crossing the surface X' at the point
xM; at time t°", ~(t) exits region I upon crossing the surface Y° at the point x°"* (see
Figure 2). Denote the vector field under a constant perturbation by F.(x), and let x. denote
the coordinate of the perturbed trajectory. Let Tg = t°"* — i denote the time ~(t) spent in
region I, and let 7! denote the time the perturbed trajectory spent in region I. Assume we
can write T = T} + €T} + O(e?) as we did before. It follows that the relative change in time
of y(t) in region I is given by

T T
A= =
0

The goal is to compute 1/%, which requires an estimate of Tf. To this end, we define the local
timing response curve n'(t) associated with region I. We show that n'(t) satisfies the adjoint

2Tt is worth noting that the idea of exploiting the presence of timing surfaces to specify the ITRC, by which
we are taking advantage of corresponding features present in both the perturbed and the unperturbed limit
cycles, may be seen as an example of the general notion of bisimulation (Haghverdi, Tabuada, and Pappas,
2003; Haghverdi Tabuada, and Pappas, 2005).
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equation (2.24) and the boundary condition (2.25).

Let 7'(x) for x in region I be the time remaining until exiting region I through ¥°"*, under
the unperturbed vector field. This function is at least defined in some open neighborhood
around the reference limit cycle trajectory ~y(t) if not throughout region I. For the unperturbed
system, T satisfies

dT(x(t))
(2.21) =1
along the limit cycle orbit v(¢). Hence
(2.22) F(x) VT (x) =1

for all x for which 77! is defined. We define '(t) := VT (x(t)) to be the local timing response
curve (ITRC) for region L. Tt is defined for ¢ € [, t°%]. We show in section SM2 that 7] can
be estimated as

) a in tout
(2.23) T = nl(x™) - 2=

oxin OF.((1))
Oe

I —_—
4 / o) g

where x denotes the coordinate of the perturbed entry point into region I. We may naturally
view 1! as either a function of space, as in (2.23), or as a function of time, evaluated, e.g., along
the limit cycle trajectory. Comparing (2.23) with (2.14), the integral terms have the same
form, albeit with opposite signs. In addition, (2.23) has an additional term arising from the
impact of the perturbation on the point of entry to region I. On the other hand, the impact
of the perturbation on the exit point, denoted by n!(x%) - ag—gjt‘ezo, is always zero because
the exit boundary ¥°" is a level curve of T7; in other words, 71 = 0 at X°". This indicates
that the ITRC vector n' associated with a given region is always perpendicular to the exit
boundary of that region.
Similar to the iPRC, it follows from (2.22) that ' satisfies the adjoint equation

I
(2.24) % = —DF(y(t))™n'

together with the boundary (normalization) condition at the exit point

I ¢ _nout
ou S
(2'25) n (X ) - noutTF(Xout)’
where n°" is a normal vector of ¥°" at the unperturbed exit point x°"*. The reason 7' at

the exit point has the direction n°" is because n' is normal to the exit boundary as discussed

above.

To summarize, in order to compute v = T1/(t°" — ), we need numerically to find
"t and evaluate (2.23) to estimate T}, for which we need to solve the boundary problem
of the adjoint equation (2.24)-(2.25) for the ITRC n'. The procedures to obtain the relative

change in time in other regions V%I, V%H, ... are similar to computing V{ in region I and hence
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are omitted. The existence of different timing sensitivities of v(¢) in different regions therefore
leads to a piecewise-specified version of the iSRC (2.20) with period Ty,

OF! (7(t))

(2.26) = DFJ(y()1 () + A F (v(#) + —5 | _,

where 7{, Fg , F! , and 1/{ denote the iSRC, the unperturbed vector field, the perturbed vector
field, and the relative change in time in region j, respectively, with j € {I,ILIII, ... }. Note
that in the smooth system for which we were concerned in this section, Fj = Fy for all j.

In section 4, we will show in a specific example that the iSRC with piecewise-specified
timing rescaling has much greater accuracy in approximating the linear shape response of the
limit cycle to static perturbations than the iSRC using a global uniform rescaling.

Remark 2.4. The derivation of the ITRC in a given region still holds as long as the system
is smooth in that region. Hence the assumption that F(x) is smooth everywhere can be
relaxed to F'(x) being piecewise smooth.

Remark 2.5. The ITRC is an intrinsic property of a limit cycle that is determined by the
choice of local timing surfaces that are transverse to the limit cycle. In this work, we only
use the ITRC in the situation where there are naturally occurring surfaces, such as those
corresponding to switching surfaces inherent in the geometry of a problem (e.g., the stick-slip
system). In general, the ITRC construction could be used to analyze smooth systems as well,
for instance, systems with heteroclinic cycling (Shaw et al., 2012).

3. Linear responses of nonsmooth systems with continuous solutions. Nonsmooth dy-
namical systems arise in many areas of biology and engineering. However, methods developed
for smooth systems (discussed in section 2) do not extend directly to understanding the
changes of periodic limit cycle orbits in nonsmooth systems because their Jacobian matrices
are not well defined (Chartrand, Goldman, and Lewis, 2018; Wilson, 2019). Specifically, non-
smooth systems exhibit discontinuities in the time evolution of the solutions to the variational
equations, u (2.7) and v; (2.20), and the solutions to the adjoint equations, z (2.9) and 7
(2.24). Following the terminology of Park et al. (2018) and Leine and Nijmeijer (2013), we
call the discontinuities in z and n “jumps” and call the discontinuities in u and v; “saltations.”
Qualitatively, we use “jumps” to refer to discontinuities in the timing response of a trajectory
and “saltations” in the shape response. Since z and 7 satisfy the same adjoint equation, they
have the same discontinuities. Similarly, u and +; obey versions of the variational equation
with the same homogeneous term and different nonhomogeneous terms; since the jump con-
ditions arise from the homogeneous terms (involving the Jacobian matrix in (2.7), (2.20)), we
will presume that u and ~y; satisfy the same saltation conditions at the transition boundaries.
In this section, we characterize the discontinuities in the solutions to the adjoint equation in
terms of z and discuss nonsmoothness of the variational dynamics in terms of u.

In this paper, we consider nonsmooth systems with degree of smoothness one or higher
(Filippov systems), that is, systems with continuous solutions. In such systems, the right-
hand side changes discontinuously as one or more switching surfaces are crossed. A trajectory
reaching a switching surface has two behaviors: it may cross the surface transversally, or it
may slide along it, in which case the motion is called sliding mode. In Shirasaka, Kurebayashi,
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and Nakao (2017); Park et al. (2018); Chartrand, Goldman, and Lewis (2018); Wilson (2019);
Bernardo et al. (2008); Leine and Nijmeijer (2013), the solutions to the adjoint and variational
equations have been studied in the case of solutions which cross the surface of discontinuity
transversally. The concept of saltations in the variational dynamics u has also been adapted by
Filippov (1988); Bernardo et al. (2008); Leine and Nijmeijer (2013); Dieci and Lopez (2011)
to the case of sliding motion on surfaces. However, in the case of sliding mode motions,
discontinuous jumps exhibited by the iPRC have not yet been characterized. Bridging that
gap is a principal goal of this paper.

In the remainder of this section, we first define Filippov systems with both types of
discontinuities. Then we review the existing methods for computing the saltations in u (and
~1) in both cases, and the jumps in z (and 1) in the case of transversal crossing boundaries,
following Bernardo et al. (2008); Leine and Nijmeijer (2013) and Park (2013); Park et al.
(2018). Last, in section 3.3, we present our main results about the discontinuous behavior of
the iPRC for nonsmooth systems with sliding motions. For completeness, we include both the
old and the new results in the case of sliding motions in the statement of Theorem 3.13.

3.1. Filippov systems. It is sufficient to consider a Filippov system with a single bound-
ary (switching surface) to illustrate the discontinuities of z and u at any boundary crossing
point. Below we give the definition of a two-zone Filippov system with a transversal crossing
boundary (see (3.1)) and a local representation of a Filippov system that exhibits the sliding
mode (see (3.7)).

Transversal crossing boundary.
Definition 3.1. A two-zone system with uniform degree of smoothness one (or higher) is

described by

dr Fl(x), xeRl,

(3.1) a F(x):= { FII(X)’ x RII’

where R' := {x|H(x) < 0} and R := {x|H(x) > 0} for a smooth function H have nonempty
interiors, and the vector fields FL' ﬁI’H — R” are at least C', where R denotes the closure

of R in R™.
Definition 3.2. The switching boundary for Filippov system (3.1) is the R"~'-dimensional

manifold ¥ := R NR" = {x|H(x) = 0}. X is called a transversal crossing boundary if at
X, € X the following holds:

(np - F1(xp))(np - F(xp)) > 0,

where n, = VH(x,) refers to the vector normal to ¥ at x,,.

Without loss of generality, we assume at time ¢ = ¢, a limit cycle solution v(¢) of (3.1)
crosses the boundary ¥ from R! to R (see Figure 3(A)). In this case, we have

(3.2) n, - F1(x,) > 0, ny - F(x,) > 0,

where the boundary crossing point can be defined as x, := lim, ~y(t) = lim, .+ v(t).
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(A) n (B) n

FI FII Finterior \.

Fslidei
R | RU /

Figure 3. FEzamples of trajectories of nonsmooth systems with a boundary X. (A) The trajectory of a
two-zone nonsmooth system (3.1) intersects the boundary ¥ transversely at x, (black dot). F' and F™' denote
the vector fields in the two regions R' and R™. Components of F* and F' normal to S at the crossing point
have the same sign, allowing for the transversal crossing. (B) The trajectory of a nonsmooth system (3.7) hits
the hard boundary ¥ at the landing point (red dot) and begins sliding along ¥ under the vector field Fetide - A¢
the liftoff point (blue dot), the trajectory naturally reenters the interior. F™°M°T denotes the vector field in the
interior domain.

Sliding motion on a hard boundary. Next we consider the second type of switching surface
on which the transversal flow condition (3.2) does not hold. That is, parts of the solution
trajectory slide along a surface (see, e.g., Figure 3(B)). As an example of a hard boundary at
which the transverse flow condition would break down, consider the requirement that firing
rates in a neural network model be nonnegative. When a nerve cell ceases firing because
of inhibition, its firing rate will be held at zero until the balance of inhibition and excitation
allow spiking to resume. At the point at which the firing rate first resumes positive values, the
vector field describing the system lies tangent to the constraint surface rather than transverse
to it.

Below we present a model of a Filippov system with sliding motion along a hard boundary,
system (3.7). We begin with precise definitions of hard boundary, sliding region, sliding vector
field, and the liftoff condition. In such systems, nontransversal crossing points include the
landing point at which a sliding motion begins and the liftoff point at which the sliding
terminates (see Figure 3(B)).

Definition 3.3. Consider a system with domain R. We call a surface ¥ a hard boundary
if it is part of the boundary of the closure of R.

Definition 3.4. The sliding region (R™19€) is defined as the portion of a hard boundary ¥
for which
(33) Rslide — {X ey | Ny - Finterior(x) > O},

where ny s a unit normal vector of ¥ at x that points away from the interior and Fmterior

denotes the vector field defined on the closure of the domain R.
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Definition 3.5. The interior domain (R™*"T ) is defined as the complement of R in the
closure of R.

When the trajectory enters the sliding region, the solution will continue along R¢ with
time derivative F®id¢ that is tangent to the hard boundary. While any vector field with
vanishing normal component could be considered for Fs19¢ in this paper we adopt the natural
choice of setting F®19¢ to be the following.

Definition 3.6. The sliding vector field F19¢ | defined on R*9®, is given by the continuation
of Fterior in the component tangential to RS"e:

(34) Fslide(x) — Finterior(x) _ (nx . Finterior(x»nx.

During the sliding motion, the flow will slide along ¥ with the sliding vector field until it
is allowed to reenter the interior; that is, we have the following.

Definition 3.7. The flow exits the sliding region R3¢ as the trajectory crosses the liftoff
boundary L defined as

(3.5) L = {x € | ny - Finterior(x) = 0}

Thus, the liftoff boundary constitutes the edge of the sliding region of the hard boundary.
To identify the liftoff point at which the trajectory reenters the interior of the domain, we
further require the nondegeneracy condition that the trajectory crosses the liftoff boundary £
at a finite velocity. Specifically, the outward normal component of the interior velocity should
switch from positive (outward) to negative (inward) at the liftoff boundary as one moves in
the direction of the flow (see Figure 4). That is,

(36) [V(?’Lx . Finterior(x)) . Fslide<x)] ‘ <0 .

xeL
Note that the liftoff condition (3.5) together with the nondegeneracy condition (3.6) uniquely

defines a liftoff point for the trajectory that slides along 3. At the liftoff point, we have
Fslide — Finterior‘

Remark 3.8. Our definition of the sliding region and sliding vector field is consistent with
that in Bernardo et al. (2008) section 5.2.2, except that the system of interest in this paper
is only defined on one side of the sliding region. However, our main theorem, Theorem 3.13
below, holds in either case. Hence our results also apply to Filippov systems with sliding
regions bordered by vector fields on either side, as in the example of the stick-slip oscillator
(Leine and Nijmeijer (2013), section 6.5).

The motion along a trajectory is specified differently, depending on the location of a point.
For a point in the interior, the dynamics is determined by F™erior - For a point on ¥, the
velocity obeys either F™terior or else Fslide that is tangent to ¥, depending on whether Finterior
is directed inwardly or outwardly at a given boundary point. This dual definition of the vector
field has the effect that points driven into the boundary do not exit through the hard boundary
but rather slide along the boundary until the trajectory crosses the liftoff boundary L.
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L

landing ggj%ftf

point

Rslide ‘n- Finterior >0 n- Finterior <0

n

Figure 4. Trajectory from the interior with vector field F™" " making a transverse entry to a hard

boundary 3, followed by motion confined to the sliding region R%® and then a smooth liftoff at £ back into the
interior of the domain. Red dot: landing point (point at which the trajectory exits the interior and enters the
hard boundary surface). Blue dot: liftoff point (point at which the trajectory crosses the liftoff boundary L and
reenters the interior). After a suitable change of coordinates, the geometry may be arranged as shown, with the
hard boundary 3 coinciding with one coordinate plane. Downward vertical arrow: n, the outward normal vector
for . The region n - F™°" > O defines the sliding region within X; the condition n - F™¢°" = 0 defines the
liftoff boundary L.

Using the preceding notation, in the neighborhood of a hard boundary 3, a system with
a limit cycle component confined to the sliding region takes the following form:

dx Finterior (X), x e Rinterior)
(37) E - F(X) i { Fvslide(x)7 = Rslide C 27

where finterior pinterior pside -pslide 33 are given in Definitions 3.3-3.6.

Definition 3.9. In a general Filippov system which locally at a hard boundary ¥ has the
form (3.7), we call a closed, isolated periodic orbit that passes through a sliding region a limit
cycle with sliding component, denoted as LCSC.

We make the following assumptions about the vector field F', the hard boundary 3, and
the liftoff boundary £ C ¥ throughout.

Assumption 3.10.

(a) Finterior . R RM s at least C1.

(b) Under an appropriate smooth change of coordinates, the hard boundary ¥ can be
transformed into a lower-dimensional manifold with a constant normal vector n (cf.
Figure 4).

(c) When the trajectory crosses the liftoff boundary £, the nondegeneracy condition (3.6)
holds so a liftoff point can be uniquely defined.
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We point out that the nondegeneracy condition (3.6) in Assumption 3.10(c), i.e., the cross-
ing of £ is transverse to the trajectory, holds generically. To see this, note that Fmterior(x) ig
assumed to be at least C'. It follows from the definition of £ (3.5) that £ is a submanifold
of ¥ which is also at least C''. Therefore, generically, the trajectory sliding along ¥ crosses £
transversally. Moreover, our previous assumptions imply that V (ny - Fterior (x)). Fslide(x) the
quantity on the left-hand side of condition (3.6), varies continuously in x. There is therefore
an open set (in the appropriate space of vector fields) surrounding the given system that also
satisfies the transversality condition. Examples of systems satisfying this condition include
the stick-slip oscillator discussed in section 1, as well as other commonplace movements. In
walking or running, the liftoff of the foot at the transition from the stance to the swing phase
corresponds to a transverse crossing of £. In rhythmic scratching or wiping movements, cross-
ing L corresponds to the breaking of contact between the extremity and the skin. Similarly,
in repetitive pulling movements, such as hauling a bucket hand-over-hand out of a well, the
release of one hand in order to reposition it ahead of the other corresponds to the transverse
crossing of a liftoff boundary.

3.2. Review of variational dynamics and iPRC in Filippov systems. Below we review the
behaviors of the variational dynamics u and the iPRC z in the case of transversal intersection,
as well as the characterization of discontinuities in u in the case of sliding motion on a
hard boundary. As discussed before, the iSRC ~; and the I'TRC n experience the same
discontinuities as u and z, respectively.

Variational dynamics: Transversal crossing and sliding motion. For a sufficiently small
instantaneous perturbation, the displacement u(t¢) evolves continuously over the domain in
which (3.1) is smooth and can be obtained to first order in the initial displacement by solving
the variational equation (2.7). As v crosses X at time t,, u(t) exhibits discontinuities (or
“saltations”) since the Jacobian evaluated at x, is not uniquely defined. The discontinuity in
u at x, can be expressed with the saltation matriz S, as

(3.8) ul =S,u,,

where v, = lim, - u(t) and uf = lim, Lt u(t) represent the displacements between per-
turbed and unperturbed solutions just before and just after the crossing, respectively. It is
straightforward to show (cf. Leine and Nijmeijer (2013), section 7.2 or Bernardo et al. (2008),
section 2.5) that S, can be constructed using the vector fields in the neighborhood of the

crossing point and the vector n, normal to the switching boundary at x,, as

(FF —F;)n)
3.9 Sy=I+-—L __P- —
( ) p n};pr

where F},” = lim_ oy B (x), 7 = lim, ot F (x) are the vector fields of (3.1) just before and
just after the crossing at x,. Throughout this paper, I denotes the identity matrix with size

n X n.

Remark 3.11. If the vector field F' evaluated along the limit cycle is continuous when
crossing the boundary X transversely, so that F; = F[T and nIT)Fp_ # 0, then the saltation
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matrix S, at such a boundary crossing point is the identity matrix, and there is no discontinuity
in uor vy at time ¢,.

When the transversal flow condition njF,~ # 0 is violated, the expression (3.9) cannot be
used. Nevertheless, Filippov (1988); Bernardo et al. (2008) showed how to adapt the definition
of the saltation matrix to capture the discontinuity of u at nontransversal crossings including
both landing and liftoff points. Specifically, at a landing point, the saltation matrix is given
by

—7_ T
Sp=1—nyn,

whereas at a liftoff point, the saltation matrix is
S, =1.

The above results about S, at the nontransversal crossing points are also summarized as parts
(a) and (b) in Theorem 3.13, together with our new results about the iPRC in the case of
sliding motion along a hard boundary. For the derivation of S, at the landing and liftoff
points, we refer the reader to Filippov (1988); Bernardo et al. (2008) or our proof of Theorem
3.13 in section SM3.

iPRC: Transversal crossing. Now we consider discontinuous jumps in the iPRC z for (3.1)
with transversal intersection. This curve obeys the adjoint equation (2.9) and is continuous
within the interior of each subdomain in which (3.1) is smooth. When the limit cycle path
crosses the switching boundary at the point x,, z exhibits a discontinuous jump which can be
characterized by the jump matriz J,

(3.10) z, = Jpz,,
where z, = lim, - z(t) and z, = lim, ¢ z(t) are the values of the iPRC just before and

just after crossing the switching boundary at time ¢,. As discussed in Park et al. (2018), the
relation (2.11) between u and z for smooth systems remains valid at any transversal boundary
crossing point. In other words, u, Tz; = u; Tz; holds at the transversal crossing point x,.
This leads to a relation between the saltation and jump matrices at x,:

(3.11) ISy =1I.

The saltation matrix S, given by (3.9) has full rank at any transverse crossing point. It follows
that J, can be written as

(3.12) Jy=(S,”HT.
The definition of J, given by (3.12), however, does not hold at a landing or a liftoff point.
See Remarks 3.16 and 3.17 for more details. This motivates us to characterize discontinuous

jumps in z at nontransversal crossing points, which will then allow us to compute iPRC in
the context of LCSC.
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3.3. Jumps in iPRC: Sliding motion on a hard boundary. In this section, we now present
our new results on the iPRC for LCSC. As discussed in the previous section, the existence of
the jump matrix (3.12) is guaranteed by the transversal flow condition (3.2), which, however,
will no longer hold when part of the limit cycle slides along a boundary (see, e.g., Figure
3(B)). Next we establish the conditions relating z at nontransversal crossings, including the
landing point and the liftoff point. Before that, we need to impose the following assumption
on the asymptotic phase function for LCSC.

Assumption 3.12. Within the stable manifold of an LCSC there is a well-defined asymp-
totic phase function ¢(x) satisfying d¢/dt = 1 along the trajectory, where ¢ is Lipschitz
continuous. Moreover, on the hard boundary 3, the directional derivatives of ¢ with respect
to directions tangential to the surface are also Lipschitz continuous, except (possibly) at the
liftoff and landing points.

Our main result, Theorem 3.13 as shown below, gathers together several conclusions about
the variational and infinitesimal PRC dynamics of an LCSC local to a sliding boundary. For
completeness, we review the established behavior of variational dynamics local to a sliding
boundary (parts (a) and (b)) and present our new results regarding the iPRC in parts (c)
through (e) (see section SM3 for the proof).

Theorem 3.13. Consider a general LCSC described locally by (3.7) in the neighborhood of
a hard boundary X satisfying Assumptions 3.10 and 3.12. The following properties hold for
the variational dynamics u and the iPRC z along X:

(a) At the landing point of ¥, the saltation matriz is S = I —nnT, where I is the identity

matrix.

(b) At the liftoff point of ¥, the saltation matriz is S = 1.
(c) Along the sliding region within 3, the component of z normal to ¥ is zero.
(d)

)

o,

The normal component of z is continuous at the landing point.
The tangential components of z are continuous at both landing and liftoff points.

(e
We make the following additional observations about Theorem 3.13.

Remark 3.14. The following two statements follow directly from Theorem 3.13:

o It follows from (a) in Theorem 3.13 that the component of u normal to ¥ vanishes
when the LCSC hits . Once on the sliding region, the Jacobian used in the variational
equation switches from DFnterior to ppslide where Fslide hag zero normal component
by construction (3.4). Hence the normal component of u is stationary over time and
remains zero on the sliding region.

o It follows from parts (d) and (e) in Theorem 3.13 that the jump matrix of z at a
landing point is trivial (identity matrix).

Remark 3.15. Theorem 3.13 excludes discontinuities in z, except at the liftoff point, and
then only in its normal component. Since the normal component of z along each sliding
component of an LCSC is zero by Theorem 3.13, a discontinuous jump occurring at a liftoff
point must be a nonzero instantaneous jump, which cannot be specified directly in terms of
the value of z prior to the jump. However, a time-reversed version of the jump matrix at the
liftoff point, denoted as 7, is well defined as follows:

(3.13) Zyp = jzlJirft’
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where z;, and zfirft are the values of the iPRC just before and just after the trajectory crosses
the liftoff point in forward time, and 7 at the liftoff point has the same form as the saltation
matrix S at the corresponding landing point:

(3.14) J=1-nnT.
That is, the component of z normal to > becomes 0 as the trajectory enters ¥ in backward

time.

Remark 3.16. Combining Theorem 3.13 and Remarks 3.14 and 3.15, we summarize the
behavior of the solutions of the variational and adjoint equations u and z in limit cycles with
sliding components:

Landing Sliding Liftoff
u S=I-nnT ut=0 S=1I
z J=1 zt=0 J=1-nnT

where S is the regular saltation matrix, J is the time-reversed jump matrix, and + denotes
the normal component.

Remark 3.17. Tt follows directly from Remark 3.16 that the relation between the saltation
and jump matrices at a transversal boundary crossing point JT7.S = I (see (3.11)) is no longer
true at a landing or a liftoff point. Instead, the following condition holds:

Iy Sp=1—nnT,

where 7, and S, denote the time-reversed jump matrix and the regular saltation matrix at a
landing or a liftoff point.

Remark 3.18. Assumption 3.12 is necessary for the proof of part (c¢) in Theorem 3.13.
A stable limit cycle arising in a C"-smooth vector field, for » > 1, will have C” isochrons
(Wiggins, 1994; Kresimir, Shea-Brown, and Moehlis, 2006). In Park et al. (2018) and (Wilson,
2019), the authors assume differentiability of the phase function with respect to a basis of
vectors spanning a switching surface. The assumption we require here is similarly plausible;
it appears to hold at least for the model systems we have considered.

Next we illustrate the behavior of a limit cycle with sliding components via an analytically
tractable planar model in section 4 and a stick-slip oscillator in section 5. In these two
examples, we will see that a nonzero instantaneous jump discussed in Remark 3.15 can occur
in the normal component of z at the liftoff point, reflecting a “kink” or nonsmooth feature
in the isochrons (cf. Figure 6). In both systems, the discontinuity in the iPRC reflects a
curve of nondifferentiability in the asymptotic phase function propagating backwards along a
trajectory from the liftoff point to the interior of the domain (see Figure 6(A)). The presence of
a discontinuous jump from zero to a nonzero normal component in z in forward time implies
that numerical evaluation of the iPRC (presented in section SM4) should be accomplished
via backward integration along the limit cycle. In section 5.2, we further apply the iPRC
developed for the LCSC system to study the synchronization of two weakly coupled stick-
slip oscillators, which together form a four-dimensional nonsmooth system with two sliding
components. In addition to the iPRC, we also provide numerical algorithms for calculating the
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ITRC, the variational dynamics, and the iSRC for an LCSC in a general nonsmooth system
with hard boundaries in section SM4.

4. Applications to a planar limit cycle model with sliding components. In this section,
we apply our methods to a two-dimensional, analytically tractable model that has a single
interior domain with purely linear flow and hard boundary constraints that create a limit cycle
with sliding components (LCSC). We find the surprising result that the isochrons exhibit a
nonsmooth “kink” propagating into the interior of the domain from the locations of the liftoff
points, i.e., the points where the limit cycle smoothly departs the boundary. In addition, we
show that using local timing response curve analysis gives significantly greater accuracy of
the shape response than using a single, global PRC.

MATLAB source code for simulating the model and reproducing the figures is available
online from https://github.com/yangyang-wang/LC_in_square.

In the interior of the domain [—1,1] x [—1,1], we take the vector field of a simple spiral
source to define the interior dynamics of the planar model

(4.1) B P = [g‘ﬂ;ﬂ ,

“f;

and « is the expansion rate of the source at the origin. The rotation rate is fixed at a constant
value 1. The Jacobian matrix DF evaluated along the limit cycle solution in the interior of
the domain is

where

a -1

(4.2) DF = [1 a]

In what follows, we will require 0 < a < 1, so we have a weakly expanding source. For
illustration, o = 0.2 provides a convenient value. Every trajectory starting from the interior,
except the origin, will eventually collide with one of the walls at x = +1 or y = £1 (in time
not exceeding - In(2/(z(0)? + y(0)?)). As in section 3.3, we set the sliding vector field when
the trajectory is traveling along the wall to be equal to the continuation of the interior vector
field in the component parallel to the wall, while the normal component is set to zero (except
where it is oriented into the domain interior).

The resulting vector fields of the planar LCSC model F(x) on the interior and along the
walls are given in Table 1 and illustrated in Figure 5(B).

The trajectory will naturally lift off the wall and return to the interior when the normal
component of the unconstrained vector field changes from outward to inward, i.e., (Fmterior .
)| yan = 0 (see (3.5)). For instance, on the wall z = 1 with a normal vector n = [1,0]T, we
compute

Finterior’Wall . nwall _ (Ckl' o y)lwall —a—y= 0.

It follows that y = « defines the liftoff condition on the wall x = 1. For this planar model,
there are four liftoff points with coordinates (1,«), (—a, 1), (=1, —a), (a, —1) on the walls
r=1,y=1, 2= -1,y = —1, respectively.
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Table 1
Vector field of the planar LCSC model on the interior and along the boundaries.

T range y range dz/dt dy/dt
<1 l<l _az-y o+ay
rz=1 -1<y<a 0 1+ ay
r=1 aly<l a—y 14+ ay
y=1 122> —« ar —1 0

y=1 —a>x>—-1 ar-—-1 T+«
r=-—1 1>2y> -« 0 —1+ay
z=-1 —-—a>2y>-1 —-aoa-y —-1l+ay
y=-—1 —-1<r <« ar +1 0

y=-—1 alz<l1 ar +1 T —«

(A) (B)

time -1 0o =z 1

Figure 5. Simulation result of the planar LCSC model with parameter o = 0.2. (A) Time series of the
limit cycle y(t) generated by the planar LCSC model over one cycle with initial condition v(0) = [1,a]T. (B)
Projection of v(t) onto the (z,y) phase space (solid black) and the osculating trajectory (dashed black), starting
near the center that ends up running into the wall at the liftoff point [1,a]T (black star). Red arrows represent
the vector field.

Denote the LCSC produced by the planar model by ~(t), whose time series over [0, Tp] is
shown in Figure 5(A), where Tj is the period. The projection of (¢) onto the (x,y)-plane is
shown in the right panel, together with an osculating trajectory that starts near the center
and ends up running into the wall z = 1 at the liftoff point (1, a) (black star).

Next we implement algorithms given in section SM4 to find the timing and shape re-
sponses of the LCSC to both instantaneous perturbations and sustained perturbation. We
start by finding the iPRC for the LCSC to understand the timing response and then solve
the variational equation to find the linear shape response of the planar LCSC model to an
instantaneous perturbation. Last, we compute the iSRC when the applied sustained pertur-
bations are both uniform and nonuniform, to understand the shape response of the planar
LCSC model to sustained perturbations.

4.1. Infinitesimal phase response analysis. In the case of weak coupling or small pertur-
bations of a strongly stable limit cycle, a linearized analysis of the PRC—the iPRC—suffices
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; 15 Infinitesimal Phase Response Curve
2 [—x-direction | ' ‘
(A) ——y-direction
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' 1.5
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T time

Figure 6. iPRCs for the planar LCSC model with parameter o = 0.2. (A) Trajectories and isochrons
for the LCSC model. The solid black and dashed black curves are the same as in Figure 5(B). The colored
scalloped curves are isochrons of the LCSC ~(t) (black solid) corresponding to 50 evenly distributed phases
nTp/50, n=1,...,50. We define the phase at the liftoff point (black star) to be zero. (B) iPRCs for the planar
LCSC model. The blue and red curves represent the iPRCs for perturbations in the positive x- and y-directions,
respectively. The intervals during which v(t) slides along a wall are indicated by the shaded regions. While
y = 41, the iPRC vector is parallel to the wall (zy = 0) and oriented opposite to the direction of flow (zo < 0).
Similarly, on the remaining walls, the iPRC vector has zero normal component relative to the active constraint
wall and parallel component opposite the direction of motion.

to predict the behavior of the perturbed system. When trajectories slide along a hard bound-
ary, however, the linearized analysis breaks down. For nonsmooth systems such as the LCSCs,
the asymptotic phase function ¢(x) may itself be nonsmooth at certain locations, even when
it remains well defined; its gradient (i.e., the iPRC) may therefore be discontinuous at those
locations. Nevertheless, one may be able to derive a consistent first-order approximation to
the PRC notwithstanding that the directional derivative (2.8) may not be well defined, as
discussed in section 3.

The dynamics of the planar LCSC model is smooth, except for the discontinuities when
crossing the switching boundaries, that is, entering or exiting the walls. The iPRC, z(t),
will be continuous in the interior domain as well as in the interior of the four boundaries.
As discussed in section 3.3, the discontinuity of iPRCs only occurs at the liftoff point. By
Remark 3.16, the time-reversed jump matrix at a liftoff point, which takes the iPRC just after
crossing the liftoff point to the iPRC just before crossing the liftoff point in backward time,

is given by
00
7|07
when the trajectory leaves the walls x = +1 and is given by
10
7=|o 0]

when the trajectory leaves the walls y = +1.
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Figure 6(A) shows the limit cycle (solid black curve), the osculating trajectory (dashed
black curve) corresponding to the liftoff point (black star, # = 0), and the isochrons computed
from a direct method, starting from a grid of initial conditions and tracking the phase of final
locations (colored scalloped curves). There appears to be a “kink” in the isochron function,
propagating backward in time along the trajectories that encounter the boundaries exactly
at the liftoff points, such as the dashed curve. This apparent discontinuity in the gradient
of the isochron function in the interior of the domain exactly corresponds, at the boundary,
with the point of discontinuity occurring in the iPRC along the limit cycle (cf. Remark 3.15).
According to Figure 6, the isochron curves are perpendicular to the sliding region of the wall
at which the interior vector field is pointing outward. That is, the normal component of the
iPRC when the trajectory slides along a wall is equal to 0. There is no jump in z when the
trajectory enters the wall but instead a discontinuous jump from zero to nonzero occurs in
the normal component of z at the liftoff point. All of these observations are consistent with
iPRC z (Figure 6(right)) that is computed using Algorithm for z in section SM4.1 based
on Theorem 3.13.

After the trajectory lifts off the east wall (z = 1) at the point marked # = 0 in Figure 6(A)
(black star), a perturbation along the positive a-direction (resp., positive y-direction) causes a
phase delay (resp., advance). While the timing sensitivity of the LCSC to small perturbations
in the z-direction reaches a local maximum before reaching the next wall y = 1, the phase
advance caused by the y-direction perturbation decreases continuously to 0 as the trajectory
approaches y = 1. As the trajectory is sliding along the wall (y = 1), the positive y-direction
perturbation that is normal to the wall has no effect on the LCSC and hence will not affect its
phase. Moreover, we showed in Theorem 3.13 that a perturbation in the negative y-direction
also has no effect on the phase since the perturbed trajectory returns to the wall within time
O(e), with a net phase offset that is at most O(?), where ¢ is the size of the perturbation.
As the trajectory lifts off the wall, there is a discontinuous jump in z,, so that a negative
y-direction perturbation applied immediately after the liftoff point leads to a phase advance.
On the other hand, on the sliding region of the wall y = 1, a perturbation along the positive
z-direction, against the direction of the flow, results in a phase delay, which decreases in size
as the phase increases, and becomes 0 upon reaching the next wall, x = —1. The timing
sensitivity of the LCSC to perturbations applied afterwards is similar to what is observed in
the first quarter of the period due to the Zs-symmetry o(x,y) = (—y, x).

The linear change in the oscillation period of the LCSC in response to a static perturbation
can then be estimated by taking the integral of the iPRC multiplying the given perturbation,
as shown in the last step in Algorithm for z (section SM4.1). As noted before, the change
in period will be needed to solve (2.20) for the iSRC to understand how this perturbation
affects the shape of the LCSC.

In this example, the interior vector field (4.1) is linear. Therefore, its Jacobian is constant,
and the iPRC may be obtained analytically (Park et al., 2018). The resulting curves are
indistinguishable from the numerically calculated curves shown in Figure 6(B).

4.2. Variational analysis. Suppose a small instantaneous perturbation, applied at time
t = 0, leads to an initial displacement u(0) = 5(0) — v(0), where v(0) = [1, @] is the liftoff
point (black star in Figures 5(B) and 6(A)) as in the previous section. We use the variational
analysis to study how this perturbation evolves over time.
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Similar to the iPRC, u(¢) will be continuous everywhere in the domain, except when
entering or exiting the walls. In contrast to the iPRC, u is continuous at all liftoff points but
exhibits discontinuous saltations when the trajectory enters a wall. According to Theorem
3.13, the saltation matrix S, which takes u just before entering a wall to u just after entering
the wall in forward time, for the planar LCSC model is given by
0 0

S:_o 1]

when the trajectory enters the walls x = +1 and is given by

S =

"1 0]
L O 0 m
when the trajectory enters the walls y = +£1.

Solutions to the variational equation of the planar LCSC model with the given initial
condition u(0) can be computed using Algorithm for u in section SM4.3. As discussed in
Remark SM4.3, an alternative way to find the displacement u(t) is to compute the fundamental
solution matrix ®(¢,0) by running Algorithm for u twice and then to evaluate u(t) =
®(¢,0)u(0). The advantage of the latter approach is that once ®(¢,0) is obtained, it can be
used to compute u(t) with any given initial value by evaluating a matrix multiplication instead
of solving the variational equation.

Here, by taking [1,0] and [0, 1] as the initial conditions for u at the liftoff point A, we
apply Algorithm for u to compute the time evolution of the two columns for the funda-
mental matrix ®(¢,0). A simple calculation shows that the monodromy matrix ®(7p,0) has
an eigenvalue +1, whose eigenvector [0, 1] is tangent to the limit cycle at the liftoff point, as
expected (Remark SM4.4). It follows that if the initial displacement at the liftoff point is
along the limit cycle direction, then the displacement after a full period becomes the same as
the initial one. To see this, we take the initial displacement u(0) = [0, ] (where € = 0.1) to
be the tangent vector of the limit cycle at the liftoff point, and compute u(t), z and y compo-
nents of which are shown in red dotted curves in Figure 7(B), (D). The saltations in u at the
time when the trajectory hits the walls can be clearly distinguished in the plot. Moreover,
u(Tp) = u(0), as we expect.

To further validate the accuracy of u, we solve and plot (¢) with v(0) = [1,a] (black,
Figure 7(A), (C)) and the perturbed trajectory (t) with 4(0) = [1,a] + u(0) (red dotted,
Figure 7(A), (C)). The differences between the two trajectories along the z-direction and
the y-direction are indicated by the black lines in Figure 7(B) and (D), both showing good
agreements with the approximated displacements computed from the variational equation,
indicated by the red dotted lines in Figure 7(B) and (D). Such an approximation becomes
better as the perturbation size ¢ gets smaller (simulation result not shown).

Next we study the effects of static perturbations on the timing and shape using the iPRC
and iSRC.

4.3. Shape response analysis. In this section, we illustrate how to compute the iSRC
~1, the linear shape response of the LCSC to small static perturbations. Recall that we use
v0(t) with period Ty and ~.(¢) with period 7; to denote the original and the perturbed LCSC
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Figure 7. Linear shape response u(t) of the LCSC trajectory v(t) to an instantaneous perturbation applied
at v(0) = [1,a] when time = 0, where a« = 0.2. The initial displacement is u(0) = [0,¢], where € = 0.1. (A),
(C) Time series of v(t) (black solid) and A(t) (red dotted) with a perturbed initial condition ¥(0) = [1, a + €].
(B), (D) The difference between %(t) and y(t) obtained by direct calculation from the left panels (black) and the
displacement solution u(t) obtained using the Algorithm for u (red dotted). (A) and (B) show trajectories
and the displacement along the x-direction, while (C) and (D) show trajectories and displacements along the
y-direction. Shaded regions have the same meaning as in Figure 6.

solutions. We write «y; for the linear shift in the limit cycle shape in response to the static
perturbation as indicated by (2.5), which we also repeat here:

e (7=(8)) = 70(t) + en(t) + O?),

where the time for the perturbed LCSC is rescaled to be 7.(t) to match the unperturbed
time points. The iSRC ~; satisfies the nonhomogeneous variational equation (2.20). To solve
this equation, an estimation of the timing scaling factor 1, determined by the choice of time
rescaling 7.(t), is needed. Here we consider two kinds of static perturbations on the planar
LCSC model: global perturbation and piecewise perturbation.

Global perturbation. We apply a small static perturbation to the planar LCSC model by
increasing the model parameter « by € globally: @ — a + €. To compare the LCSCs before
and after perturbation at corresponding time points, we rescale the perturbed trajectory
uniformly in time so that 7.(t) = T.t/Ty. It follows that v; = T1/Ty, where the linear shift
Ty = lim._,o(T: — Tp)/e can be estimated using the iPRC (see (2.14)).

Using Algorithm for ~; with uniform rescaling, we numerically compute the iSRC
~1(t) for e = 0.01. The z- and y-components of £v;(t) are shown by the red curves in Figure
8(A), both of which show good agreement with the numerical displacement v (7:(t)) — vo(?)
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Figure 8. iSRC of the LCSC model to a small perturbation o — a+ & with unperturbed parameter o = 0.2.
(A) Time series of the difference between the perturbed and unperturbed solutions along the x-direction (top
panel) and the y-direction (bottom panel) with € = 0.01. The black curve denotes the numerical displacement
computed by subtracting the unperturbed solution trajectory from the perturbed trajectory, after globally rescaling
time. The red dashed curve denotes the product of € and the shape response curve solution. Shaded regions
have the same meaning as in Figure 6. (B) The norm of the numerical difference (black) and the product of &
and the iSRC (red dashed) grow linearly with respect to e with nearly identical slope, indicating that the iSRC
is very good for approximating the numerical difference over a range of € and improves with smaller ¢.

(black solid), as expected from our theory.

For ¢ over a range [0,0.01], we repeat the above procedure and compute the Euclidean
norms of both the numerical displacement vector v-(7:(t)) — v(¢) (Figure 8(B), black solid)
and the approximated displacement vector ev;(t) (Figure 8(B), red dotted) over one cycle.
From the plot, we can see that the iSRC with uniform rescaling of time gives a good first-
order € approximation to the shape response of the planar LCSC model to a global static
perturbation.

Piecewise perturbation. Uniform rescaling of time as used above is the simplest choice
among many possible rescalings and is shown to be adequate in the global perturbation case
for computing an accurate iSRC. As discussed in section 2, in certain cases we may instead
need the technique of local timing response curves (ITRCs) to obtain nonuniform choices of
rescaling for greater accuracy.

As an illustration, we add two local timing surfaces ™ and X°" to the planar LCSC
model (see Figure 9(A)). We denote the subdomain above ¥ and ¥°U by region I (R!) and
denote the remaining subdomain by region IT (R'). Moreover, we introduce a new parameter
w, the rotation rate of the source at the origin, that has previously been fixed at 1, and rewrite
the interior dynamics of the planar LCSC model as

(4.3) B P = [gf; N gg] |

The vector fields on a given wall are obtained by replacing the coefficient of y in dz/dt (in
Table 1) by —w and replacing the coefficient of x in dy/dt (in Table 1) by w on that wall.
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Figure 9. ITRC of the planar LCSC model under perturbation (a,w) — (a4 &,w — €) over region 1 with
unperturbed parameters a = 0.2 and w = 1 held fized in region II. (A) Projection of the limit cycle solution
to the planar model with two new added switching surfaces ©™ (green dashed line) and $°"° (blue dashed line)
onto its phase plane. (B) Time series of the ITRC n' from t™ (the time of entry into region 1 at x™) to t°"°
(the time of exiting region 1 at x°"*). A discontinuous jump occurs when the trajectory exits the wall y = 1
indicated by the right boundary of the shaded region, which has the same meaning as in Figure 6.

We apply a static piecewise perturbation to the system by letting (a,w) — (a4 &,w —
e) over region I but not region II. Such a piecewise constant perturbation affects both the
expansion and rotation rates of the source in region I and hence will lead to different timing
sensitivities of (¢) in the two regions. It is therefore natural to use piecewise uniform rescaling
when computing the shape response curve as opposed to using a uniform rescaling. In the
following, we first compute the ITRC (see Figure 9) and use it to estimate the two time
rescaling factors for R! and R, which are denoted by ] and vil, respectively. We then
show that the iSRC computed using the piecewise uniform rescaling factors provides a more
accurate representation of the shape response to the piecewise static perturbation than using
a uniform rescaling (see Figures 10 and 11).

Although the ITRC 7 is defined throughout the domain, estimating the effect of the
perturbation localized to region I only requires evaluating the ITRC in this region. Figure
9(B) shows the time series of ' for the planar LCSC model in region I, obtained by numerically
integrating the adjoint equation (2.24) backward in time with the initial condition of n' given
by its value at the exit point of region I denoted by x°"* (see Algorithm for n7).

Similar to the iPRC, the y-component of the ITRC 7' shown by the red curve in Figure
9(B) is zero along the wall y = 1, and the only discontinuous jump of n' occurs at the liftoff
point. Note that ' is defined as the gradient of the time remaining in R until exiting through
Yout If the a- or y-component of n! is positive, then the perturbation along the positive -
direction or y-direction increases the time remaining in R!, and the exit from R' will occur
later. On the other hand, if the a- or y-component 7' is negative, then the perturbation along
the positive z-direction or y-direction decreases the time remaining in R!, and the exit from
R will occur sooner. The relative shift in time spent in R! caused by a static perturbation can
therefore be estimated using the ITRC (see (2.23)) as illustrated in the last step of Algorithm
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for n7. Note that the first term in (2.23) implies that the timing change in a region generically
depends on the shape change at the corresponding entry point, leading to the possibility of
bidirectional coupling between timing and shape changes. However, in this planar system, a
perturbed trajectory with ¢ < 1 will converge back to the original trajectory, within region
IT (where the perturbation is absent), in finite time. Under these circumstances, there is no
shift between the perturbed and unperturbed trajectories in the entry location to region I.
Hence, in this case, the local timing shift does not depend on the shape change.

Let T, 5 denote the time spent in region I, and let TA! = Ty — T& denote the time spent in
region II (recall T} is the total period). The linear shift in T&, denoted by Tll, can be estimated
using the ITRC 5! as discussed above. By definition, the Ewo time rescaling factors required
TlTEIT1
in period, T}, can be estimated using the iPRC as discussed before. With v1 and v}! known,
we take x'", the coordinate of the entry point into R!, as the initial condition for v(t) and
apply Algorithm for ~; with piecewise uniform rescaling to compute the iSRC ~; for
e = 0.1. The z- and y-components of ey; are shown by the red dashed curves in Figure 10(B),
both of which show good agreement with the numerical displacement ~.(7.(t)) — ~y(t) (black
solid curves). Here the rescaling 7.(t) is piecewise uniform:

1
to compute the iSRC are given by v] = % and vl = , where the global relative change
0

0+ To(t — t7)/Tg, y(t) € R,
(4.4) () =9 |
t0 T4 TRt — 121/ Tg!, (1) € RY,

where T! denotes the time 7. spends in R* with i € {I,11}. Tt follows that the exit time of
the trajectory from region I before (Figure 10(B), vertical blue line) and after (Figure 10(B),
vertical magenta line) perturbation are the same.

As a comparison, for ¢ = 0.1, we also compute the iSRC and the numerical displacement
using the uniform rescaling of time as we did in the global perturbation case (see Figure
10(A)). The difference between the vertical blue and magenta lines (the time when the unper-
turbed and perturbed trajectories leave region I) indicates that regions I and II have different
timing sensitivities. As expected, the resulting ev; no longer shows good agreement with the
numerical displacement obtained from subtracting the unperturbed solution from the rescaled
perturbed solution.

Piecewise uniform rescaling, on the other hand, leads to a more accurate iSRC for the
LCSC model (4.3) than uniform rescaling, when the LCSC ~(t) experiences distinct timing
sensitivities for ¢ = 0.1. Figure 10 contrasts the accuracy of the linearized shape response
using global (A) versus local (B) timing response curves for ¢ = 0.1. We also show that the
same conclusion holds for other € values. To this end, for £ over a range of [0, 0.1] we repeat the
above procedure and compute the Euclidean norms of both the numerical displacement vector
and the displacement vector approximated by the iSRC as illustrated in Figure 11(A). The
numerical and approximated norm curves using the uniform rescaling are shown in red solid
and red dotted lines, while the numerical and approximated norm curves using the piecewise
uniform rescaling are shown in blue solid and blue dotted lines. Unsurprisingly, the norms of
the displacements between the perturbed and original trajectory grow approximately linearly
with respect to ¢, and the displacement norms with piecewise uniform rescaling are smaller
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Figure 10. A small perturbation is applied to the planar model over region 1 in which (o, w) — (a+e,w—¢)
with unperturbed parameters o = 0.2, w = 1 and perturbation ¢ = 0.1. Time series of the difference between the
perturbed and unperturbed solutions along the x-direction (top panel) and the y-direction (lower panel) using
(A) the global rescaling factor and (B) two different rescaling factors within regions I and II. The vertical blue
dashed line denotes the exit time of the unperturbed trajectory from Region 1, while the vertical magenta solid
line denotes the ezit time of the rescaled perturbed trajectory from Region 1. Other color codings of lines are
the same as in Figure 8(A). Shaded regions have the same meaning as in Figure 6.

than that with uniform rescaling. The fact that the difference between the lines in red is
much bigger than the difference between the lines in blue suggests that the piecewise uniform
rescaling gives a more accurate iSRC than using the uniform rescaling for € € [0,0.1], as we
expect. This heightened accuracy is further demonstrated in Figure 11(B), where the relative
difference between the numerical and approximated norms with uniform rescaling (red curve)
is significantly larger than the relative difference when using piecewise uniform rescaling (blue
curve).

5. Applications to stick-slip oscillators. In this section, we return to our motivating
example—the stick-slip oscillator—presented in section 1, which is a piecewise smooth system
that exhibits an LCSC (see Figure 1). In section 5.1, we apply the analysis of ITRC and iSRC
to compute the shape response of the single stick-slip oscillator to parametric perturbations
as done in section 4. In section 5.2, we use the phase reduction method to show that two
weakly coupled identical stick-slip oscillators exhibit antiphase synchronization.

5.1. Shape response of a stick-slip oscillator to parametric perturbations. We consider
a stick-slip system consisting of a block of mass m supported by a moving belt with constant
velocity u. The block is connected to a fixed support by an elastic spring with stiffness k& and
a linear dashpot with damping coefficient ¢. The surface between the block and the belt is
rough so that the belt exerts a static friction force on the block which sticks to the belt during
the stick phase until the elastic force due to the spring and the damping force generated by
the dashpot build up to exceed the maximum static friction force. At this point the slip phase
begins and the slipping motion is described by the following equation (Galvanetto and Bishop,
1999; Dieci and Lopez, 2011):

(5.1) ma” + cx’ + kx = f(2' — u),
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Figure 11. A small parametric perturbation is applied to the planar model over region 1 in which (o, w) —
(a+e,w—e) with unperturbed parameters a = 0.2, w = 1. (A) Values of the Euclidean norm of (e (1 (t)) —~(t))
computed numerically (solid curve) versus those computed from the iSRC (dashed curve) as € varies. The norms
grow approximately linearly with respect to €. The approximation obtained by the iSRC when using piecewise
uniform rescaling (blue) is closer to the actual simulation than using the uniform rescaling (red). (B) The
relative difference between the actual and approzimated norms with a uniform rescaling (red) is larger than that
when piecewise uniform rescaling is used (blue). The difference between the two curves expands as € increases.

where z(t) is the displacement of the oscillator from the position at which the spring assumes
its natural length; " and ” indicate first- and second-order differentiation with respect to t.
The kinetic friction force of the block for 2/ < u is given by

(5.2) Fa —u) = l_,ly(_x,é_u)

where § € [0,1],7 > 0, and n > 0. When 2/ > u, the kinetic friction force is % -0 —
n(z' — u)?. The maximum static friction force is assumed to be f; = 1 when there is zero
relative velocity (i.e., ' = u), and therefore the friction force is continuous in the stick-slip
transition, whereas in general such a transition may be characterized by a finite jump in the
friction force. The slipping motion governed by (5.1) will continue to the point where there
is no relative motion between the block and belt so that 2’ = u, and the elastic and damping
forces are balanced by the static friction force so that z” = 0.

The continuous repetition of sticking and slipping motions with appropriate parameters
can lead to a stick-slip limit cycle with sliding component (LCSC) within one zone 2’ < w.
See Figure 12. The sliding region R®19¢ when the system is constrained to one less degree of
freedom by a hard boundary corresponds physically to the stick phase of the stick-slip system
when the block is captured by the moving belt and is carried along with the velocity 2’ = u
until it escapes. It follows that the hard boundary is ¥ = {2/ = u} with a unit normal vector
n = [0,1]T. Letting v = 2/ and x = [z,v|T, we rewrite the stick-slip system in the form of

+ 6 +n(z' —u)?,
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Figure 12. Simulation result of the stick-slip system (5.3) whenm =1,k =1,¢=0.1,6 =0.5,v=1,np =
0.001,u = 0.5. Left: Time series of the LCSC with initial condition [1.4127,0.0829]T. The shaded region
indicates the stick phase. Right: Projection of the LCSC from the left onto the (x,v) phase space (solid black)
and the hard boundary ¥ : v = u (solid blue). The red star symbol denotes the starting point.

(3.7), where
. Finterior(x) — _ﬁx B £7; N Fouw) ] , x € Rinterior’
3) = F(x):= e m ™
G3) - (%) | y .
FShde(X) — 0 , x € Rshde C E,

where F™erior js the vector field during the slip phase and F®4¢ ig the vector field during the
stick phase. It follows from Definitions 3.4 and 3.7 that R*l4° = {x € ¥ |z < 152} and the
flow exits the sliding region (i.e., the stick phase ends) when x = 17% In other words, the
stick phase terminates when the maximum static friction force f; = 1 acting on the block is
exceeded by the other two forces, that is, kx + cx’ = fs, where 2’ = u during the stick phase.

The interior domain is therefore RIMr = {x € S |2 > L@ U {x € R? |v < u}.

Remark 5.1. In contrast to our setup, in which the stick-slip system (5.3) is restricted to
the domain v < w, Galvanetto and Bishop (1999); Dieci and Lopez (2011) used Filippov’s
convez method to write the stick-slip system in the full space R?:

dx Fl(x), v<u,
(5.4) T F(x):={ F*(x), v=u,
FU(x), v>u,

where F*(x) = (1 — a(x))F' + a(x)F" and a(x) = __ntE__ Nonetheless, the two systems

nT(FI-FI) -
(5.3) and (5.4) exhibit the same LCSC that has the (same i)PRC and iSRC in response to
parametric perturbations. This is because F! is identical to F™r°r in (5.3) and, moreover,
it follows from direct calculation that F> is identical to F*id¢ in (5.3). Since we are only
interested in understanding the timing and shape response of the stick-slip LCSC to small
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Figure 13. Shape response of the stick-slip system (5.3) to a small parametric perturbation of the damping
coefficient ¢ — c+¢ with e = —0.05 and other unperturbed parameters the same as in Figure 12. Time series of
the displacement between the perturbed and unperturbed solutions along the x-direction (resp., the v-direction)
are shown in the top panel (resp., the bottom panel). The black curve denotes the numerical displacement
computed by subtracting the unperturbed solution trajectory from the time-rescaled perturbed trajectory. The red
dashed curve denotes the product of the iSRC solution and the perturbation size €. The white and shaded regions
indicate the slip and stick phases, respectively, and the blue/magenta dashed line indicates the transition.

parametric perturbations, it is enough for us to work with (5.3), which is defined in the domain
v < u where the LCSC exists.

When m =1,k =1,¢=0.1,6 = 0.5, = 1,7 = 0.001,u = 0.5, the system (5.3) exhibits
an LCSC, denoted by 7(t), that slides along the hard boundary ¥ (see Figure 12). In the
following, we study the shape response of v(t) to a small parametric perturbation using the
iSRC and ITRC, as discussed in section 1. Similar to the constructed planar model (4.3) with
two local timing surfaces, variations of the model parameters in (5.3) (e.g., the damping coef-
ficient ¢) only affect the vector field in the interior domain (i.e., during the slip phase), which
naturally leads to a piecewise perturbation on the system. The ITRC is therefore needed to
compute rescaling factors in different regions (interior /boundary) or phases (slip/stick), which
are required to compute the iISRC. The iSRC obtained by using piecewise uniform rescaling
factors is shown by red dashed lines in Figure 13, agreeing with the actual displacements
(black solid line) between rescaled perturbed and unperturbed trajectories.

5.2. Antisynchrony of two weakly coupled stick-slip oscillators. The theory of weakly
coupled oscillators has been used to predict the synchronization properties in networks of
oscillators in smooth systems (Schwemmer and Lewis, 2012; Park, Heitmann, and Ermentrout,
2017) and nonsmooth systems with transversal crossing boundaries (Park et al., 2018). In
this section, we consider a nonsmooth system with hard boundaries composed of two blocks
connected by a spring on a moving belt and apply the weakly coupled oscillator theory to study
the synchrony between the two coupled stick-slip oscillators. Our results predict a nonintuitive
result, namely that the antisynchrony solution is stable whereas in-phase synchronization is
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unstable for an identical pair of stick-slip oscillators. Moreover, the antisynchrony solution
has an extremely slow rate of convergence.

A slip phase of the coupled stick-slip oscillators begins according to the following equations
of motion (Galvanetto, 2001):

mizy = —kizy —ks(z1 —22) + fi(z) — ),
/

5.5
( ) mng = _k2$2_k3(x2—x1)+f2<$2—u>,

where x; is the displacement, m; is the mass, k; for ¢ = 1,2 is the stiffness of the spring
connecting block ¢ to the fixed support, k3 is the stiffness of the coupling spring, fi(z; — u)
is the kinetic friction force of the ith block, and u is the velocity of the moving belt. The
damping coefficient of the spring is assumed to be 0 for simplicity. Each mass can undergo a
stick phase, which leads to two hard boundaries:

»l= {z}] = u}, »?2 = {xhy = u}.

Letting X1 = [z1,v1]T and X2 = [x2,vs|T, where v; = 2} and ve = 2, and assuming
m1 =mo =m, k1 = ko =k, and f; = fo = f so the two uncoupled oscillators are identical,
we rewrite the coupled stick-slip systems in the following form:

X = F(X1)+ k3G(X2, X1),

5.6
(59) Xy = F(X2)+ ksG(X1, Xa),
where
Ui X c Rinteriori
_ﬁw + f(vi—u) ) % )
[ g’ :| ’ X; € Rslidei C Zi,
gy | FeR
, Xi € R interior;,
G(x; X = LT
|: 8 :| 7 Xz c Rslidei C Ei7

and the kinetic force f is given by (5.2). The sliding regions (Rs!de1, Rslide2) " confined to X!
and X2, and the interior domains (Rinteriorr Rinteriors) can he found according to Definitions
3.4 and 3.5, as we did for the one-mass stick-slip system (5.3).

When there is no coupling with k3 = 0, the two oscillators are identical and exhibit a
To-periodic LCSC solution denoted as «(t). As discussed before, the periodic solutions of
an asymptotically stable oscillator can be represented by a single variable phase model (see
(2.13)) and the coupled oscillators can then be converted to the following phase model:

9/1 = 1+ ]{23Z(91) . G(XQ,Xl),

(5.7) 9’2 = 14+ ng(HQ) : G(le XQ)ﬂ
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where 6, € [0,Tp] and 0y € [0,Tp] are the phases of the two uncoupled oscillators. z is the
iPRC curve for the uncoupled stick-slip oscillator. If the coupling strength ks is sufficiently
small, the uncoupled oscillator is almost identical to the periodic solutions X;(t). The system
(5.7) can then be approximated by

07 = 1+ ksz(01) - G(v(62),7(01)),

(5.8) 05 = 1+ ksz(02)  G(v(61),7(02)).

Averaging the right-hand sides over one cycle [0, Tp] and defining ¢ = 02 — 01, we can obtain
the following scalar equation of the relative phase:

(5.9) W= ky(H(—) — H)) = ksH),
where

1 [T
(5.10) HW) = 7 /0 2(t) - G (t + ), (8)) dt.

The autonomous and scalar ODE (5.9) can then be used to predict the synchronization rates
and stability using a standard stability analysis on the phase line.

¥ =5.0119

-0.15

time v

Figure 14. iPRC for the uncoupled stick-slip system and the right-hand side H of (5.9) when m =1,k =
1,6 =0,y =3,7=0, and u = 0.295. Left: iPRC for the unperturbed oscillator. The shaded region indicates
the stick phase. Right: Stability analysis of the right-hand side function H of (5.9). The filled (resp., hollow)
circle denotes an asymptotically stable (resp., unstable) phase locked solution.

When m = 1,k = 1,0 = 0,7 = 3,7 = 0, and v = 0.295, the iPRC for the uncoupled
stick-slip oscillator is shown in Figure 14(left). As discussed before, the discontinuous jump in
the iPRC occurs at the liftoff boundary, that is, when the stick phase ends. Figure 14(right)
shows the right-hand side function H of (5.9). On the phase line, a filled circle at » = Ty/2
(resp., open circle at » = 0,7p) corresponds to an asymptotically stable (resp., unstable)
phase locked solution. Hence the phase model predicts that coupled stick-slip oscillators will
diverge from an in-phase synchrony and asymptotically converge to an antiphase synchrony.
This prediction is supported by the numerical simulation in Figure 15(left), showing that
oscillations beginning in-phase eventually converge to an antiphase synchrony solution.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/26/21 to 129.22.126.5. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

SHAPE AND TIMING RESPONSES OF LIMIT CYCLES 737

k3=0.001
0.5 " " ; 5 .

V1, V2

-0.5

0 50 100 150 200

0.5

o

vy, U2

o
w

'
~N =

98 7.985 7.99 7.995 8 1 6 8
t x10% t x10*

Figure 15. Simulation result of the coupled stick-slip system (5.6) when the coupling strength ks = 0.001
and other parameters are the same as in Figure 14. Left: Time series of velocities of the two oscillators: initial
conditions at a phase difference of 0 (3 =0) (top panel) approach a phase difference of 4.2449 after duration
time 80000 (bottom panel) and eventually converge to a phase-locked solution with a phase difference of Ty /2,
where Ty = 10.02 is the period of the uncoupled stick-slip oscillator (not shown here since the convergence rate
of ¥ near the plateau region of H(¢) as shown in Figure 14 is very slow). Right: Time series of the predicted
phase difference (red) and the actual phase difference (black) for time over [0,80000].

The accuracy of the synchronization rates is demonstrated in Figure 15(right), where the
red dashed curve is the solution to (5.9) and the black curve is the numerical phase difference
in the full model (5.6) for k3 = 0.001. The two curves agree relatively well until ¢ is close
to the plateau region in H(v) shown in Figure 14. In this region, H(1) is nearly zero so
the convergence to the antiphase synchrony is very slow. Hence in Figure 15(right), we only
include the time evolution of v for ¢ € [0,80000], which is not long enough for the phase
difference to converge to the antisynchrony state. From the plot, we can see that 1 increases
rapidly to about 4 over the first 2000 units of time. After that, the converging rate significantly
slows down because 1) enters the plateau region of (). On the other hand, the shape of the
H (1)) curve also suggests that the antisynchronous point is near-neutrally stable, which may
explain why the prediction of the convergence rates near the plateau region is less accurate
than the prediction in nonplateau regions. Improving the accuracy needs further work, such
as accounting for higher-order effects that are neglected in our first-order phase reduction of
coupled oscillators, which is beyond the scope of this paper.

6. Discussion. Rhythmic motions making and breaking contact with a constraining bound-
ary, and subject to external perturbations, arise in motor control systems such as walking,
running, scratching, biting, and swallowing, as well as other natural and engineered hybrid
systems (Branicky, 1998; Burden, Revzen, and Sastry, 2015). Dynamical systems describing
such rhythmic motions are therefore nonsmooth and often exhibit limit cycle trajectories with
sliding components. In smooth dynamical systems, classical analysis for understanding the
change in periodic limit cycle orbits under weak perturbation relies on the Jacobian lineariza-
tion of the flow near the limit cycle. These methods do not apply directly to nonsmooth
systems, for which the Jacobian matrices are not well defined. In this work, we describe for
the first time the infinitesimal phase response curves (iPRCs) for limit cycles with sliding com-
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ponents (LCSCs). Moreover, we give a rigorous derivation of the jump matrix for the iPRC
at the hard boundary crossing point. We also report, for the first time, how the presence of
a liftoff point, where a limit cycle leaves a constraint surface, can create a nondifferentiable
“kink” in the asymptotic phase function, propagating backward in time along an osculating
trajectory (see Figure 6(A)). Most significantly, we have developed the infinitesimal shape re-
sponse curve (iISRC) to analyze the joint variation of both shape and timing of LCSCs under
parametric perturbations. We show that taking into account local timing sensitivity within a
switching region improves the accuracy of the iSRC over global timing analysis alone. This
improvement in accuracy is facilitated by our introduction of a novel local timing response
curve (ITRC) measuring the timing sensitivity of an oscillator within a given local region.

Our results clarify an important distinction between the effects of the boundary encounter
on the timing and shape changes in LCSCs. We have extended the iPRC developed for
smooth limit cycle systems to the LCSC case, presented here as Theorem 3.13. In addition, our
analysis yields an explicit expression for the iPRC jump matrix that characterizes the behavior
of the iPRC at the landing and liftoff points. Surprisingly, we find that the iPRC experiences
no discontinuity when the trajectory first contacts a hard boundary, while the variational
equation suffers a discontinuity, captured by the saltation matrix. Even more interesting, at
the liftoff point—where the saltation matrix for the variational problem is trivial—the iPRC
does show a discontinuous change, captured by a nontrivial jump matrix. Specifically, there is
a discontinuous jump from zero to a nonzero normal component in the iPRC. Consequently,
numerical evaluation of the iPRC must be obtained by backward integration along the limit
cycle, as discussed in section SM4.1. Finally, we find that both the iPRC and the variational
dynamics have zero normal components during the sliding component of the limit cycle due
to dimensional compression at the hard boundary.

LCSCs can sometimes arise as the singular limits of smooth singularly perturbed systems
(Jeffrey, 2018; Jelbart and Wechselberger, 2020). Specifically, Jeffrey (2018) shows that a
piecewise smooth system can be understood as a singular perturbation problem in the lim-
iting situation by blowing up the discontinuity into a switching layer. To the best of our
knowledge, this literature does not address PRC and variational dynamics. In principle, one
might obtain results analogous to those we present here by first analyzing a smooth system
and subsequently taking the singular limit. While such an undertaking would be both inter-
esting and challenging, our methods avoid the associated technical challenges by calculating
the iSRC, iPRC, and 1TRC for the nonsmooth system directly. Moreover, our results may
provide some insights into PRC and variational dynamics of singularly perturbed systems that
exhibit LCSCs in the singular limit. For example, Somers and Kopell (1993); Izhikevich (2000)
analyze and predict synchronization properties of relaxation oscillators using the results from
iPRC analysis in the singular relaxation limit. Whether a similar relationship holds between
singularly perturbed systems and LCSCs in singular limits has yet to be understood.

Standard variational and PRC analysis typically neglects changes in timing or shape,
focusing instead on only one of the two aspects (Kuramoto, 1975). However, in many ap-
plications, such as motor control systems, both the shape and timing of the trajectory are
often affected under slow or parametric perturbations. In this paper, we consider both timing
and shape aspects using the iSRC, a first-order approximation to the change in shape of the
limit cycle under a parameteric perturbation. We have discussed two ways of incorporating
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timing changes into the iSRC: uniform timing rescaling based on the global timing analysis
(iPRC), and piecewise uniform timing rescaling based on the local timing analysis (ITRC). As
demonstrated in the planar system example in section 4, when the trajectory exhibits approx-
imately constant timing sensitivities, the iSRC with global timing rescaling is good enough
for approximating the shape change (see Figure 8); otherwise, we need take into account local
timing changes to increase the accuracy of the iSRC (see Figure 10). LCSCs with piecewise
timing sensitivities naturally arise in many motor control systems due to nonuniform per-
turbations as well as the stick-slip mechanical system as studied in section 5. Local timing
analysis (ITRC) will then provide a better understanding of such systems compared with the
global timing analysis (iPRC). Ours is not the first work to characterize linear responses of
limit cycles to parameteric perturbations. Taylor et al. (2008) defines the “parametric im-
pulse phase response curve (pIPRC)” to capture the timing sensitivity of limit cycle systems
to parametric perturbations, which is estimated in our paper through the iPRC as described
at the end of section 2.1.

The ITRC is the gradient of the local timing function that gives the time remaining until
reaching some specified Poincaré section. Such a section could be given as a hard boundary
(time to “landing”) or as the liftoff boundary within the hard boundary (time to “liftoff”;
cf. the stick-slip mechanical system studied in section 5). The section could also be a boundary
where the dynamics changes between regions or where a perturbation is applied in one region
but not another (as considered in the planar LCSC model in section 4).

The I'TRC may find application in smooth systems as well. For example, in a half-center
oscillator (HCO) model of a central pattern generator circuit, the distinction between “es-
cape” versus “release” mechanisms concerns which of two Poincaré sections the limit cycle
crosses first: the section at which the inhibited cell’s voltage rises past its synaptic activa-
tion threshold (“escape”), or the section at which the active cell’s voltage decreases below
its synaptic threshold (“release”) (Wang and Rinzel, 1992; Skinner, Turrigiano, and Marder,
1993; Zhang and Lewis, 2013; Yu and Thomas, 2021). The ITRC for each section could play a
role in analyzing the impact of perturbations on transitions between escape versus release. As
a final example, consider the time remaining until a neuron fires its next action potential. In
a common procedure for identifying spike timing, a voltage trigger is set at a fixed threshold,
Vitresh- The spike time corresponds to the time of crossing the Poincaré section given by
{v = Vihresh, dv/dt > 0}, where v(t) is the nerve cell’s transmembrane voltage. This section is,
generically, not an isochron of the system (Wilson and Ermentrout, 2018b; Pu and Thomas,
2020). Asking how a perturbation affects the time to the next spike corresponds to a question
about the ITRC for the spike-counting section. In general, if the sensitivity of the time to exit
a region of phase space is important, then the ITRC may be a useful quantity as discussed
above. In this sense, it is a straightforward generalization of iPRC methods.

Other investigators have also considered variational (Bernardo et al., 2008; Leine and Ni-

jmeijer, 2013) and phase response analysis in nonsmooth systems (Shirasaka, Kurebayashi,

and Nakao, 2017; Park et al., 2018; Chartrand, Goldman, and Lewis, 2018; Wilson, 2019), but
the studies on the iPRC were subject to transverse flow conditions. Our work extends the
iPRC analysis to the LCSC case in which the transversal crossing condition fails. Combined
timing and shape responses of limit cycles to perturbations have also been explored in other
works. Monga and Moehlis (2018) examined energy-optimal control of the timing of limit cy-
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cle systems including spiking neuron models and models of cardiac arrhythmia. They showed
that when one of the nontrivial Floquet multipliers of an unperturbed limit cycle system has
magnitude close to unity, control inputs based solely on standard phase reduction, which ne-
glects the effect on the shape of the controlled trajectory, can dramatically fail to achieve
control objectives. They and other authors have introduced augmented phase reduction tech-
niques that use a system of coordinates (related to the Floquet coordinates) transverse to
the limit cycle to improve the accuracy of phase reduction and control (Castejon, Guillamon,
and Huguet, 2013; Wilson and Moehlis, 2015, 2016; Wilson and Ermentrout, 2018a; Monga
et al., 2018; Wilson, 2019, 2020a,b; Pérez-Cervera, Seara, and Huguet, 2020). These meth-
ods require the underlying dynamics be smoothly differentiable and rely on calculation of the
Jacobian (first derivative) and in some cases the Hessian (second derivative) matrices (Wil-
son and Ermentrout, 2018a). For nonsmooth LCSCs, our analysis is the first to address the
combined effects of shape and timing, an essential element of improved control in biomedical
applications as well as for understanding mechanisms of control in naturally occurring motor
control systems.

For trajectories with different timing sensitivities in different regions, we rely on the local
timing response curve (ITRC) to estimate the relative shift in time in each subregion, in order
to compute the full infinitesimal shape response curve (iISRC). Conversely, solving for the
ITRC in a given region may also require an understanding of the impact of the perturbation
on the entry point associated with that region (see (2.23)). Thus, in general, the iSRC and
the ITRC are interdependent. While we have not derived a closed-form expression for the
shape and timing response in the most general case, we have provided effective algorithms
for solving each of them separately, which requires preliminary numerical work to find the
trajectory shape shift at the entry point. In the future, it may be possible to derive general
closed-form expressions for the iSRC and 1'TRC in systems with distinct timing sensitivities.

While our methods are illustrated using a planar limit cycle system with hard boundaries
and coupled stick-slip systems, they apply to higher-dimensional and more realistic systems
as well. For instance, preliminary investigations suggest that the methods developed in this
paper are applicable to analyzing the nonsmooth dynamics arising in the control system of
feeding movements in the sea slug Aplysia (Shaw et al., 2012, 2015; Lyttle et al., 2017). More
generally, limit cycles with discontinuous trajectories arise in neuroscience (e.g., integrate
and fire neurons) and mechanics (e.g., ricochet dynamics). If such systems manifest LCSCs,
our methods could be combined with variational methods adapted for piecewise continuous
trajectories (Coombes, Thul, and Wedgwood, 2012; Shirasaka, Kurebayashi, and Nakao, 2017).

It was observed heuristically by Lyttle et al. (2017) that sensory feedback could in some
circumstances lead to significant robustness against an increase in applied load, in the sense
that although modest relative increases in external load (c. 20%) led to comparable changes
in both the timing and shape of trajectories, the net effect on the performance (rate of intake
of food) was an order of magnitude smaller (c. 1%). Similarly, Diekman, Thomas, and Wil-
son (2017) showed that in a model for control of a central pattern generator regulating the
breathing rhythm, mean arterial partial pressure of oxygen (PPO3) remained approximately
constant under changing metabolic loads when chemosensory feedback from the arterial PPOs
to the central pattern generator was present, but varied widely otherwise (Diekman, Thomas,
and Wilson, 2017). Understanding how rhythmic biological control systems respond to such
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perturbations and maintain robust, adaptive performance is one of the fundamental problems
within theoretical biology. Solving these problems will then require variational analysis along
the lines we develop here. Nonsmooth dynamics arise naturally in many biological systems
(Aihara and Suzuki, 2010; Coombes, Thul, and Wedgwood, 2012), and thus the approach in
this paper is likely to have broad applicability to many other problems in biology.
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