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ABSTRACT: We report the synthesis of alternating poly(lactic-co-glycolic acid) via a regioselective ring-opening polymerization of
(S)-methyl glycolide. An enantiopure aluminum salen catalyst with binaphthyl backbone facilitates the regioselective ring-opening of
this unsymmetrical cyclic diester exclusively at the glycolide acyl−oxygen bond site. This living, chain-growth polymerization is able
to reach low dispersities with tailored molecular weights. Quantitative regioselectivity calculations and sequence error analysis have
been established for this sequence-controlled polymer.

Polymer sequence controlthe precise arrangement of
monomer units in a macromoleculeis an important

technique for tuning copolymer properties, as well as
developing functional materials.1−4 Among synthetic biomate-
rials, the random copolymer poly(lactic-co-glycolic acid)
(PLGA) has garnered significant interest due to its nontoxic
hydrolytic degradation pathway in vivo, with tunable
degradation rates and a Tg that lies just above human body
temperature.5 The utility of PLGA has been demonstrated in a
variety of applications, including sustained or targeted drug
delivery vehicles, scaffolding for tissue engineering, and
bioabsorbable sutures.6−8 The conventional copolymerization
of the cyclic diesters lactide (LA) and glycolide (GA),
however, produces a random copolymer with little control
over monomer sequence. Thus, it is of great interest to develop
a sequence-controlled PLGA and to study the effect of
monomer placement on polymer properties.9

Alternating PLGA is a particularly attractive sequence
variant because this material exhibits distinct degradation
properties compared with other microstructures in terms of
hydrolysis rates, bulk morphology, and thermal behavior. The
Meyer group has demonstrated that, with the same LA/GA
composition, higher quantities of G-G linkages (G = glycolic
unit) result in faster degradation rates, as they are more
susceptible to hydrolysis than L-G or L-L linkages (L = lactic
unit).10 Alternating PLGA, which bears no G-G or L-L
linkages, undergoes slow hydrolysis with linear degradation
rates and a sustained drug release profile relative to random
PLGA 50/50.11,12 Additionally, the alternating material
minimizes sudden local pH changes and in vivo inflammatory
response associated with acid release.13 During the degradation
of alternating PLGA, the morphology is preserved over a long
period of time, without significant swelling or erosion, and its
glass transition temperature (Tg) remains largely unchanged.14

This linkage-dependent hydrolytic behavior is also observed
for other PLGA derivatives and polyesters.10,15−17 Block
copolymers with alternating PLGA segments also present
special properties suitable for thermosensitive hydrogels,
controlled drug release, and lithography.18−20 When self-

assembled into micelles, the sequenced structure can further
affect the solubility, hydrophilicity, and gel point, offering
another approach to tune the gelation properties and drug
delivery performance.
PLGA is synthesized by the ring-opening polymerization

(ROP) of LA and GA, yielding a random copolymer (Figure 1,

bottom left).21,22 An alternative method is step-growth segmer
assembly polymerization (SAP), which produces PLGA with a
repeating sequence that depends on the preformed oligomer
used.23 Although this direct polycondensation is reliable for
producing high-fidelity alternating PLGA, the SAP method
does not allow for molecular weight control, with dispersities
(Đ) ranging from 1.3 to 2 (Figure 1, top right). ROP of 3-
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Figure 1. Common routes to synthesize random (left) and alternating
(right) PLGA.
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methyl glycolide (MeG) has also been used to prepare
alternating PLGA, with varying degrees of sequence fidel-
ity.24−26 In this work, we have been able to achieve a 98%
regioselectivity with (S)-MeG (Figure 1, bottom right).
Previous studies on the random copolymerization of GA and

LA revealed that the rate of GA incorporation is 10 times that
of LA, which is attributed to the steric effect of the methyl
substitution.27 The MeG monomer contains an LA acyl−O
bond site (A, Scheme 1) and a GA acyl−O bond site (B,

Scheme 1). The ring-opening of MeG intrinsically favors the
less hindered GA site, with a reported 84:16 ratio.24,25

Hillmyer and Vert have reported that ROP of other

unsymmetrical cyclic diester monomers proceeds with similar
regioselectivity induced by ring-opening at the less hindered
site.28−30 However, near-complete regioselectivity has been
achieved in only a few cases using special conditions or
monomers with strong steric or electronic bias.26,31,32 For
example, the Satoh group recently developed a phosphazene
base-catalyzed ROP of enantiopure MeG with 95% regiose-
lectivity at −78 °C due to the kinetically favored ring-opening
at the more electrophilic LA acyl−O site. However, this
electronic approach alone was unable to afford this level of
regioselectivity at higher monomer loading or at ambient
temperature.26

Inspired by previous work on stereoselective lactide ring-
opening, we have developed a completely regioselective MeG
polymerization catalyzed by (SalBinam)AlOR (SalBinam =
N,N′-bis(salicylidene)-1,1′-binaphthyl-2,2′-diamine) (Scheme
1). This catalyst is also reactive for lactide copolymerization
with lactones or cyclic carbonates.33−35 Spassky and Ovitt
reported that (R)-(SalBinam)AlOR preferentially promotes
ROP at the carbonyl next to an (R)-Me substituent in either
rac- or meso-LA. The relative ROP rates are in the order of (S)-
MeG > (R,R)-LA > meso-LA > (S,S)-LA.36−39 We inferred that
(R)-(SalBinam)AlOR blocks nucleophilic attack at the
chirality-mismatched (S)-LA carbonyl of rac-LA or meso-
LA.40 On the basis of this chirality mismatch, we hypothesized
that (R)-(SalBinam)AlOiPr would further discourage ring-
opening at the (S)-LA site of (S)-MeG (Scheme 1). Thus, we
theorized that dual steric and chirality control might
significantly favor ring-opening at the GA site. Herein, we
report the synthesis of alternating PLGA with 98%
regioselectivity, high efficiency, tailored molecular weight,
and low dispersity.

Scheme 1. Stereo- and Regioselective Ring-Opening
Polymerization Using (SalBinam)AlOR

Table 1. Optimization of Reaction Conditions

Mn (kDa)

entry initiator solvent [MeG]0:[init.]0 (M:I)a temp (°C) time (h) conv (%)b theor GPCc Đ (Mw/Mn)
c regioselectivity (%)b

1d 1 toluene 131:1 90 4.5 >99 8.5 8.3 1.44 84
2 (R)-2 toluene 100:1 70 19 98 12.8 14.2 1.59 95
3 (R)-2 toluene 100:1 50 17 80 10.4 10.1 1.30 96
4 (R)-2 toluene 100:1 35 21 72 9.4 13.0 1.13 97
5 rac-2 toluene 100:1 35 40 >99 13.0 12.6 1.20 89
6 (S)-2 toluene 100:1 35 40 >99 13.0 13.8 1.27 84
7 (R)-2 toluene 40:1 35 17 98 5.1 7.1 1.18 96
8 (R)-2 toluene 10:1 35 12 >99 1.3 2.0 1.29 90
9 (R)-2 CDCl3 100:1 50 21 97 12.7 13.6 1.15 94
10 (R)-2 THF 100:1 50 20 95 12.4 12.1 1.11 96
11 (R)-2 DCM 100:1 35 21 94 12.2 15.8 1.06 98
12 (S)-2 DCM 100:1 35 19 97 12.6 16.9 1.12 78
13 (R)-2 DCM 200:1e 40 48 93 24.3 25.4 1.06 98
14 (R)-2 DCE 400:1f 80 48 73 37.9 40.0 1.09 96
15 (R)-2 DCM 40:1 22 21 99 5.1 9.0 1.05 98
16 (R)-2 DCM 10:1 22 12 >99 1.3 2.1 1.10 98

a[MeG]0 = 0.5 M. bDetermined by 1H NMR analysis. cDetermined by GPC. dData from ref 25. e[MeG]0 = 1.0 M. f[MeG]0 = 1.5 M.
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Complex 1 (Table 1) exhibits a regioselectivity of 84% when
applied for the ROP of MeG, with baseline monomer-oriented
steric control.25 Following the standard conditions for lactide
polymerization reported previously, we examined (S)-MeG
ROP at 70 °C in toluene with (R)-2. The dispersity was
unexpectedly high, indicating significant transesterification or
reversibility. Lowering the temperature to 35 °C helped narrow
the dispersity and increase the regioselectivity to 97% (Table 1,
entries 2−4). When enantiomeric (S)-2 was used, the
regioselectivity dropped from 97% to 84%. As expected, the
regioselectivity with rac-2 ranked in between those of its
enantiopure counterparts, indicating that while steric prefer-
ence remained, the catalyst chirality was crucial for enhanced
regioselectivity through chirality control (Table 1, entries 4−
6). In order to access materials with a wide range of molecular
weights, we investigated different ratios of monomer to
initiator (M:I). At a low monomer loading, transesterification
started to dominate, leading to a high dispersity and low
regioselectivity (Table 1, entries 4, 7, and 8).
Polymerizations performed in toluene showed dispersities

between 1.1 and 1.3 and limited conversion, likely due to low
solubility of the monomer and polymer. Preheating the
reaction ensured complete dissolution of monomer at the
start of the reaction period, producing PLGA with a slightly
lower dispersity. To improve polymer solubility and reduce
transesterification at low monomer loading, we screened
several solvents with good solubility. CDCl3 exhibited nearly
full conversion but lower regioselectivity, likely due to its slight
acidity, which can facilitate side reactions. THF also produced
high conversion, while other results were similar to those of
reactions performed in toluene. DCM was determined to be
the optimal solvent, considering solubility, conversion,
dispersity, and regioselectivity (Table 1, entries 4, 9−11).
Reaction with (S)-2 under the optimal conditions exhibited a
reasonably low regioselectivity (Table 1, entry 12). In addition,
a higher molecular weight polymer could easily be reached at a
prolonged reaction time. Using DCM as solvent also
eliminated transesterification at low monomer loading,
affording a 98% regioselectivity and Đ as low as 1.05 (Table
1, entries 13−16).
With the possible variations investigated, we sought to

design and synthesize a series of polymers with different
regioselectivities for future degradation study. At a lower
regioselectivity, there are more G-G linkages in the polymer
chain, which is expected to have a faster degradation rate.
Figure 2 shows a stacking of polymer 1H NMR spectra on
methine (δ = 5.2−5.3 ppm) and methylene (δ = 4.6−4.9 ppm)
regions, the regioselectivities of which range from 98% to 84%,
in accordance with the reaction conditions in Table 1. At M:I
= 100:1, the chain end peaks are almost negligible in the
spectra; the minor peaks are therefore assigned to regiodefects.
Thus, we could see a clear and gradual increase of regiodefect
peaks near the methine quartets and methylene doublets.
Effective sequence error determination, in this case

regioselectivity calculation, is a crucial topic for sequence
control. Previous studies on ROP of unsymmetrical cyclic
diesters reported regioselectivities mostly qualitatively or by
end group ratio.24,25,31,32 In fact, the polymer end group ratio
does not necessarily represent the actual regioselectivity of the
polymerization, as the two types of chain ends from normal
insertion and inverted insertion have different propagation
rates. Another calculation method was based on the 1H NMR
decoupled methine region, but overlapping peaks impeded

precise integration, especially at near-perfect regioselectivities.
We developed a quantitative method based on integrations of
accumulative repeating units using the most sensitive 1H NMR
methylene region. The heteronuclear single quantum coher-
ence (HSQC) spectrum (Figure 3a, top) shows three sets of
minor CH2 doublets resulting from one regiodefect
(GLLGGL). Among these three minor CH2 groups, one is
directly derived from the inverted insertion (GLLGGL), while
the other two are adjacent to the regiodefect under normal
insertion (GLLGGL and GLLGGL). From the sequence
structure, only the actual regiodefect CH2 group (GLLGGL)
would not have a three-bond correlation with an L carbonyl in
the heteronuclear multiple bond correlation (HMBC)
spectrum (Figure 3a, bottom). Based on this, we could assign
all three sets of minor CH2 groups to the sequence in Figure
3b. Notably, half of this regiodefect CH2 group (GLLGGL) (δ
= 4.80−4.85 ppm) can be integrated separately without any
overlap, while the other half (δ = 4.71−4.76 ppm) is
overlapped and split due to the influence of an adjacent
regiodefect in a row. Hence, precise NMR integration on half
of the regiodefect CH2 group (δ = 4.80−4.85 ppm) and the
overall CH2 group (δ = 4.50−4.92 ppm) allows us to
accurately and reproducibly calculate the regioselectivity
representative of the whole polymer (Figure 3b).
The previous hypothesis is that ring-opening occurs

preferentially at the less hindered GA site under steric control
and is disfavored at the (S)-LA site with a mismatched catalyst
under chirality control. In order to prove this idea, we
conducted a [MeG]0:[Initiator]0 = 1:1 experiment and
investigated the initial ring-opened adducts. The ratio of the
resulting lactyl and glycolyl chain ends was used as an
indication of regioselectivity. As a control experiment, iPrOH
was used to open (S)-MeG, generating products in a 60:40
ratio (lactyl:glycolyl chain ends; Scheme 2a). Using (R)-2, the
lactyl-terminated product was formed in a 97% yield, indicating
that nucleophilic attack occurred almost exclusively at the less
hindered GA acyl−O bond site (Scheme 2b). As mentioned
previously, (R)-2 preferentially promotes ring-opening at the
(R)-LA site. When using (S)-MeG, a chirality mismatch with
(R)-2 prevents the opening at the (S)-LA site, further

Figure 2. Stacked 1H NMR spectra of PLGA with different
regioselectivities (M:I = 100:1): (a) Table 1, entry 11; (b) Table 1,
entry 9; (c) Table 1, entry 5; and (d) Table 1, entry 6.
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improving regioselectivity. Moreover, the polymer NMR also
displays exclusively lactyl chain ends. These results suggest that
the ROP of (S)-MeG undergoes a site-controlled coordina-
tion−insertion mechanism, with near-exclusive ring-opening at
the GA acyl−O bond site.
In conclusion, we have developed a chirality-directed

regioselective approach for the sequence-controlled synthesis
of PLGA. This process produces alternating PLGA under living
chain growth conditions. Quantitative regioselectivity deter-
mination has been established for a precise sequence error
determination. A degradation study on polymers with varied
regioselectivities is currently in progress. The effect of
sequence on polymer hydrolysis behavior, together with

kinetic and mechanistic studies, will be explored in depth in
a future report.
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