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Abstract

This paper is concerned with a posteriori error bounds for a wide class of
numerical schemes, for n×n hyperbolic conservation laws in one space dimension.
These estimates are achieved by a “post-processing algorithm”, checking that the
numerical solution retains small total variation, and computing its oscillation on
suitable subdomains. The results apply, in particular, to solutions obtained by the
Godunov or the Lax–Friedrichs scheme, backward Euler approximations, and the
method of periodic smoothing. Some numerical implementations are presented.

1. Introduction

Consider the Cauchy problem for a strictly hyperbolic system of conservation
laws in one space dimension:

ut + f (u)x = 0, (1.1)

u(0, x) = ū(x). (1.2)

For initial data with small total variation, it is well known that this problem has a
unique entropy-weak solution, depending Lipschitz continuously on the initial data
ū in the L1 norm [8,9,22,26].

A closely related question is the stability and convergence of various types
of approximate solutions. Estimates on the convergence rate for a deterministic
version of the Glimm scheme [24,28] were derived in [18], and more recently in
[1,6] for a wider class of flux functions. For vanishing viscosity approximations

ut + f (u)x = ε uxx , (1.3)

uniform BV bounds, stability and convergence as ε → 0 were proved in [5], while
convergence rates were later established in [13,19]. Further convergence results
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were proved byBianchini for approximate solutions constructed by the semidiscrete
(upwind) Godunov scheme [3], and by the Jin-Xin relaxation model [4].

A major remaining open problem is the convergence of fully discrete approxi-
mations, such as the Lax–Friedrichs or the Godunov scheme [25–27]. Indeed, the
convergence results known for these numerical algorithms rely on compensated
compactness [23]. They apply only to 2× 2 systems, and do not yield information
about uniqueness or convergence rates.

For a particular class of systems, the convergence of Godunov approximations
was proved in [14], relying on uniform bounds on the total variation. For general
hyperbolic systems, however, it is known that the Godunov scheme is unstable
with respect to the BV norm. In [2] an example was constructed, showing that the
total variation of a numerical solution can become arbitrarily large as t → +∞.
Indeed, if the exact solution contains a shock with speed close to a rational multiple
of the grid size Δx/Δt , this can cause resonances, producing a large amount of
downstream oscillations.

Without an a priori bound on the total variation, one cannot compare an ap-
proximate solution with trajectories of the semigroup of exact solutions, and all the
uniqueness arguments developed in [12,15,16] break down. The counterexample
in [2] can thus be regarded as a fundamental obstruction toward the derivation of a
priori error estimates for fully discrete numerical schemes.

To make progress, in this paper we shift our point of view, focusing on a pos-
teriori error estimates. Namely, we assume that an approximate solution to (1.1),
(1.2) has been constructed by some numerical algorithm. Based on some additional
information about the approximate solution, we seek an estimate on the difference

‖uapprox(T, ·) − uexact(T, ·)‖L1(R). (1.4)

For any sufficiently small BV initial data ū, it is well known that the unique
entropy-admissible BV solution of (1.1), (1.2) has two key properties [8]:

(i) The total variation of u(t, ·) remains uniformly small, for all t � 0.
(ii) Given a threshold ρ > 0, one can identify a finite number of curves in the t-x

plane (shocks or contact discontinuities) such that, outside these curves, the
solution has local oscillation < ρ.

The counterexample in [2] shows that, for an approximation constructed by the
Godunov scheme, the property (i) sometimes can fail. Roughly speaking, the result
we want to prove in the present paper is the following: let uapprox be an approximate
solution produced by a conservative scheme which dissipates entropy, and assume
that

(i’) The total variation of uapprox(t, ·) remains small, for all t ∈ [0, T ];
(ii’) Outside a finite number of narrow strips in the domain [0, T ] × R, the local

oscillation of uapprox remains small.

Then the L1 distance (1.4) is small.
We emphasize that both conditions (i′), (ii′) refer to the output of a numerical

computation. In (ii′), we expect that the finitely many strips where the oscillation
of uapprox is large will have the form
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{
(t, x); t ∈ [ai , bi ], x ∈ [γi (t) − δ, γi (t) + δ]

}
,

where the curve t �→ γi (t) traces the approximate location of a large shock (or a
contact discontinuity) in the exact solution. It is also worth noting that our estimates
do not require any regularity of the exact solution. In particular, uexact may well
have a dense set of discontinuities.

Our goal is to prove error bounds which can be applied to a wide class of
approximation schemes. For future reference, we collect the basic assumptions on
the system (1.1), and the properties of the approximate solutions that will be used.

(A1) The system (1.1) is strictly hyperbolic, with each characteristic field being
either linearly degenerate or genuinely nonlinear. It generates a semigroup of
entropy weak solutions S : D × [0,+∞[ �→ D, where D ⊂ L1(R; Rn) is a
domain containing all functions with sufficiently small total variation, namely

ū ∈ L1(R; Rn), Tot.Var.{ū} � δ0 	⇒ ū ∈ D. (1.5)

There exist Lipschitz constants C0, L0 such that

‖Stu − Ssu‖L1 � C0 · Tot.Var.{u} · |t − s|, (1.6)

‖Stu − Stv‖L1 � L0‖u − v‖L1 (1.7)

for all u, v ∈ D and 0 � s � t .
(A2) For each genuinely nonlinear field, there exists a strictly convex entropy
η, with entropy flux q, which selects the admissible shocks.

We recall that the existence of a semigroup generated by (1.1) was proved in [5,10,
11,17], in various degrees of generality. In particular, it is known that the trajectories
of the semigroup are the unique limits of vanishing viscosity approximations. To
explain the additional assumption (A2), let u−, u+ be any two states connected by
a genuinely nonlinear shock with speed λ, so that following the Rankine–Hugoniot
conditions hold:

λ (u+ − u−) = f (u+) − f (u−).

Then, if the shock is NOT admissible, we require that the corresponding entropy
should be strictly increasing, namely

λ
(
η(u−) − η(u+)

)− (q(u−) − q(u+)
)

> c0|u− − u+|3, (1.8)

for some constant c0 > 0.
In what follows, we shall use test functions ϕ ∈ Cc(R2) which are Lipschitz

continuous with compact support, with Sobolev norm

‖ϕ‖W 1,∞
.= max

{‖ϕ‖L∞ , ‖ϕt‖L∞ , ‖ϕx‖L∞
}
. (1.9)

Given ε > 0, we consider approximate solutions u : [0, T ] �→ D of the system of
conservation laws (1.1), taking values inside the domain of the semigroup S. We as-
sume that these solutions are inductively defined for a discrete set of times τ j = jε,
j = 0, 1, 2 . . . For t ∈ [τ j , τ j+1[ one can then define u(t, ·) to be the exact solution
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to (1.1) which coincides with u(τ j , ·) at time t = τ j . In alternative, sometimes it is
more convenient to simply define u(t, ·) = u(τ j , ·) for t ∈ [τ j , τ j+1[ .

While we do not specify any particular method to construct these approximate
solutions, two basic properties will be assumed. The first is the Lipschitz continuity
of the map t �→ u(t, ·) ∈ L1(R;Rn), restricted to the discrete set of times τ j . The
second is an approximate weak form of the conservation equations and the entropy
conditions. In what follows, L ,C denote suitable constants. Moreover, the notation
εN

.= { jε; j = 0, 1, 2, . . .} will be used.
(AL) For every 0 � τ < τ ′ � T with τ, τ ′ ∈ εN, one has

‖u(τ ′, ·) − u(τ, ·)‖L1 � L (τ ′ − τ) · sup
t∈[τ,τ ′]

Tot.Var.
{
u(t, ·)}. (1.10)

(Pε) For every 0 � τ < τ ′ � T with τ, τ ′ ∈ εN, and every test function
ϕ ∈ C1c (R2), one has

∣∣∣∣
∫

u(τ, x)ϕ(τ, x) dx −
∫

u(τ ′, x)ϕ(τ, x) dx

+
∫ τ ′

τ

∫ {
uϕt + f (u)ϕx

}
dx dt

∣∣∣∣∣
� Cε‖ϕ‖W 1,∞ · (τ ′ − τ) · sup

t∈[τ,τ ′]
Tot.Var.

{
u(t, ·)}. (1.11)

Moreover, assuming ϕ � 0, one has the entropy inequality
∫

η(u(τ, x))ϕ(τ, x) dx −
∫

η(u(τ ′, x))ϕ(τ ′, x) dx

+
∫ τ ′

τ

∫ {
η(u)ϕt + q(u)ϕx

}
dx dt

� − Cε‖ϕ‖W 1,∞ · (τ ′ − τ) · sup
t∈[τ,τ ′]

Tot.Var.
{
u(t, ·)}. (1.12)

We remark that, for an exact solution, the left hand side of (1.11) would be zero,
while the left hand side of (1.12) would be non-negative. Since here we are dealing
with ε-approximate solutions, we allow an error that decreases with ε, but increases
with the Lipschitz constant of the test function ϕ.

In the present paper, two main questions will be addressed:

– Given an approximate solution u of (1.1), (1.2) satisfying (AL) and (Pε), can
one estimate the distance between u and the exact solution?

– What kind of approximation schemes satisfy the conditions (AL) and (Pε)?

To answer the first question, using a technique introduced in [7], two types of
estimates will be derived:

– On regions where the oscillation is small, the approximate solution u is com-
paredwith the solution to a linear hyperbolic problemwith constant coefficients.

– Near a point where a large jump occurs, u is compared with the solution to a
Riemann problem.
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We recall that, for exact solutions, this technique yields the identity u(t, ·) = St ū,
proving that an entropy weak solution is unique and coincides with the correspond-
ing semigroup trajectory [7,8,12,15,16]. In Sections 2 to 4 we develop similar
estimates in the case of an approximate solution u, where the right hand side of
(1.11), (1.12) is not zero, but vanishes of orderO(1) · ε‖ϕ‖W 1,∞ . This will provide
a bound on the difference (1.4).

An important aspect must be mentioned here. The uniqueness proofs in [12,
15,16] require some additional regularity condition, such as “Tame Variation” or
“Tame Oscillation”. These conditions are always satisfied by solutions constructed
by front tracking or by the Glimm scheme, but may fail for a numerically approxi-
mated solution. To derive rigorous error bounds, we must check that an equivalent
condition is satisfied.

For a numerically computed approximation, in Section 5 we introduce a post-
processing algorithm, which accomplishes three main tasks:

(1) Check that the total variation remains bounded.
(2) Trace the location of a finite number of large shocks.
(3) Check that the oscillation of the solution remains small, on a finite number of

polygonal domains, away from the large shocks.

Step (1) is the simplest, yet the crucial one. If the total variation becomes too large,
at some time t the approximate solution u(t, ·) will fall outside the domain D of
the semigroup. When this happens, the algorithm stops and no error estimate is
achieved.

In the favorable case where the total variation remains small, the algorithm
can then proceed with steps (2) and (3). To implement these steps, one needs to
introduce certain parameters, such as the minimum size of the shocks which will
be traced, and the length of the time intervals [t j , t j+1] used in a new partition of
[0, T ]. For every choice of these parameter values, the algorithm yields an error
bound. In practice, the accuracy of this estimate largely depends on the choice of
these values. At the end of Section 3, and then again at the end of Section 5, we
discuss how to choose these parameters, and the expected order of magnitude of
the corresponding error bounds.

To complete our program, in Section 6 we consider various approximation
schemes, and prove that they all satisfy the properties (AL) and (Pε). In particular,
our analysis applies to: (i) Godunov’s scheme, (ii) the Lax–Friedrichs’ scheme,
(iii) backward Euler approximations, and (iv) approximate solutions obtained by
periodic mollifications.

Finally, in Section 7, we discuss details of the post-processing algorithm, and
present a numerical simulation. For the “p-system”, describing isentropic gas dy-
namics in Lagrangian coordinates, we consider initial data generating two centered
rarefactions, and two shocks that eventually cross each other. After computing an
approximate solution by the upwind scheme, we implement the post-processing
algorithm. The two shocks are traced (as long as they remain well separated), and
the remaining domain is covered by trapezoids where the numerical solution has
small oscillation (away from interaction times).
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2. Solutions with Small Oscillation

In this section we begin by studying the case where no large shocks are present.
Let u = u(t, x) be an approximate solution which satisfies (AL) and (Pε). Consider
an open interval ]a, b[ , fix a point ξ with a < ξ < b and set

A = Df (u(0, ξ)). (2.1)

Assuming that all characteristic speeds satisfy

λ− < λi (u) < λ+, i = 1, . . . , n, (2.2)

fix τ ∈ εN and consider the trapezoidal domain

Δ =
{
(t, x); t ∈ [0, τ ], a(t)

.= a + λ+t < x < b + λ−t .= b(t)
}
. (2.3)

Following an approach introduced in [7], error estimates will be obtained by com-
paring u with the solution w of the linear hyperbolic system with constant coeffi-
cients

wt + Awx = 0, w(0, x) = u(0, x). (2.4)

For this purpose, let {�1, . . . , �n} and {r1, . . . , rn} be dual bases of left and right
eigenvectors of the matrix A, normalized so that

|ri | = 1, �i · r j = δi j =
{
1 if i = j,
0 if i �= j.

(2.5)

Let λ1, . . . , λn be the corresponding eigenvalues of A. For each i , consider the
scalar functions

ui (t, x) = �i · u(t, x), wi (t, x) = �i · w(t, x).

By (2.4), wi solves the scalar linear equation

wi,t + λiwi,x = 0, wi (0, x) = ui (0, x).

For each i = 1, . . . , n, we will estimate the difference ui (τ, ·) − wi (τ, ·).
As a preliminary to this, consider a BV function g : [α, β] �→ R. Since g is

regulated, it admits left and right limits g(x−), g(x+) at every point x . By possibly
modifying g on the countable set where it has jumps, we can assume that

g(x+) · g(x−) � 0 	⇒ g(x) = 0. (2.6)

We can then select countably many maximal open subintervals ]a j , b j [ ⊂ [α, β]
where g has constant sign. Namely,

(G) g has constant sign on each ]a j , b j [ , and changes sign on every neighbor-
hood of each endpoint a j , b j (unless a j = α or b j = β). Moreover, g(x) = 0
for x /∈⋃ j [a j , b j ] (Fig. 1).
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Fig. 1. The test function φ defined at (2.7), with Lipschitz constant ε−2/3

For a given ε > 0, consider the test function with Lipschitz constant ‖φx‖L∞ =
ε−2/3

φ(x)
.=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min

{
1,

x − a j

ε2/3
,
b j − x

ε2/3

}
, if x ∈[a j , b j ]andgis positive on ]a j , b j [,

max

{
−1,

a j − x

ε2/3
,
x − b j

ε2/3

}
, if x ∈[a j , b j ] and g is negative on ]a j , b j [,

0, if x /∈ ∪ j [a j , b j ].

(2.7)

Lemma 1. Let g : [α, β] �→ R be as above. If g is strictly positive (or strictly
negative) for all x ∈ [α, β], then

∫ β−ε2/3

α+ε2/3
|g(x)| dx �

∫ β

α

φ(x) g(x) dx . (2.8)

On the other hand, if g(ξ) = 0 for some ξ ∈ [α, β], then
∫ β

α

|g(x)| dx �
∫ β

α

φ(x) g(x) dx + 2ε2/3 · Tot.Var.{g; [α, β]}. (2.9)

Proof. 1. If g has always the same sign, then by construction φ(x) g(x) � 0 for
all x , while φ(x) = sign(g(x)) for x ∈ [α + ε2/3, β − ε2/3]. Hence the estimate
(2.8) is trivially true.

2. If g changes sign, consider the maximal subintervals [a j , b j ] where g has a
constant sign, as in (G). We then have the estimate
∫ β

α

|g(x)| dx =
∑
j

∫ b j

a j

|g(x)| dx

�
∑

b j−a j�2ε2/3

(b j − a j ) sup
a j<x<b j

|g(x)|



364 Alberto Bressan, Maria Teresa Chiri & Wen Shen

+
∑

b j−a j�2ε2/3

(∫ b j−ε2/3

a j+ε2/3
+
∫ a j+ε2/3

a j

+
∫ b j

b j−ε2/3

)
|g(x)| dx

� 2ε2/3 ·
∑

b j−a j�2ε2/3

Tot.Var.{g; ]a j , b j ]} +
∫ β

α

φ(x) g(x) dx

+ 2ε2/3 ·
∑

b j−a j>2ε2/3

sup
a j<x<b j

|g(x)|

=
∫ β

α

φ(x) g(x) dx + 2ε2/3 · Tot.Var.{g; [α, β]}.


�

Remark 1. Here and in the sequel, one could prove similar results by replacing the
exponent 2/3 with any number γ ∈ ]0, 1[ , and working with test functions which
are Lipschitz continuous with constant ε−γ . Our choice of γ = 2/3 is motivated
by the heuristic expectation that, in most cases, this should yield the sharpest error
bounds. See Remark 2 for further discussion of this point.

We can now state the main result of this section, providing an error estimate on
the trapezoidal domain (2.3).

Lemma 2. There exists a constant C1 such that the following holds. For a given
ε > 0, let u be an approximate solution of (1.1) that satisfies the property (Pε). Let
Δ be the trapezoid in (2.3), and let w be the solution to the linear Cauchy problem
(2.4), with A as in (2.1). Then

∫ b+τλ−−ε2/3

a+τλ++ε2/3

∣∣u(τ, x) − w(τ, x)
∣∣ dx

� C1

(
τ · sup

(t,x)∈Δ

∣∣u(t, x) − u(0, ξ)| + τε1/3 + ε2/3
)

· sup
t∈[0,τ ]

Tot.Var.
{
u(t, ·)}. (2.10)

Proof. 1.Fix i ∈ {1, . . . , n}. On the interval [α, β] .= [a+τλ+, b+τλ−], consider
the scalar function

gi (x)
.= �i · [u(τ, x) − w(τ, x)

] = �i · [u(τ, x) − u(0, x − λiτ)
]
. (2.11)

Let φi : [α, β] �→ [−1, 1] be the function with Lipschitz constant ‖φ′
i‖L∞ =

ε−2/3, defined as in (2.7) with g replaced by gi . We then extend φi to the entire real
line by setting φi (x) = 0 if x /∈ [α, β], and consider a test function ϕi = ϕi (t, x)
such that

ϕi (t, x) = φi
(
x − λi (t − τ)

)
�i for t ∈ [0, τ ], x ∈ R. (2.12)
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2. Observing that λi ∈ [0, 1] and ‖ϕi‖W 1,∞ = |�i | ε−2/3, by (1.11) we now
obtain

∣∣∣∣
∫

ϕi (0, x)u(0, x) dx −
∫

ϕi (τ, x)u(τ, x) dx

+
∫ τ

0

∫ {
uϕi,t + f (u)ϕi,x

}
dx dt

∣∣∣∣
� Cε‖ϕi‖W 1,∞ · τ · sup

t∈[0,τ ]
Tot.Var.

{
u(t, ·)}

� C ′ε1/3 τ · sup
t∈[0,τ ]

Tot.Var.
{
u(t, ·)}. (2.13)

3. For future use we observe that, if x �→ u(x) is Lipschitz and u∗ = u(ξ) for
some ξ ∈ [x1, x2], then

∫ x2

x1

∣∣∣�i
(
f (u)x − λi ux

)∣∣∣ dx =
∫ x2

x1

∣∣∣�i
[
Df (u) − Df (u∗)

]
ux
∣∣∣ dx

� C0 sup
x1<x<x2

|u(x) − u∗| ·
∫ x2

x1
|ux | dx .

Here C0 is a constant depending only on the function f . By an approximation
argument, for any BV function x �→ u(x) we conclude that

Tot.Var.
{
�i
(
f (u) − λi u

); [x1, x2]
}

� C0

(
sup

x1<x<x2
|u(x) − u∗|

)
· Tot.Var.{u; [x1, x2]

}
. (2.14)

4.Sincew is a solution to the linear equation (2.4), the choice of the test function
ϕi in (2.12) implies

∫
ϕi (0, x) u(0, x) dx =

∫
ϕi (0, x) w(0, x) dx

=
∫

ϕi (τ, x) w(τ, x) dx . (2.15)

Moreover, calling u∗ = u(0, ξ), integrating by parts and using (2.14) together with
the bound φi (x) ∈ [−1, 1], we obtain
∣∣∣∣
∫ τ

0

∫ {
uϕi,t + f (u)ϕi,x

}
dx dt

∣∣∣∣

=
∣∣∣∣
∫ τ

0

∫ [
f (u) − λi u

]
ϕi,x dx dt

∣∣∣∣

�
∫ τ

0
Tot.Var.

{
�i ( f (u) − λi u); [a + λ+τ + (t − τ)λi , b + λ−τ + (t − τ)λi ]

}
‖ϕi‖L∞ dt

� C0 sup
(t,x)∈Δ

|u(t, x) − u∗| ·
∫ τ

0
Tot.Var.

{
u(t, ·); ]a + tλ+, b + tλ−[

}
dt. (2.16)
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5. By (2.15), combining (2.13) with (2.16) we conclude that

∫ b+τλ−

a+τλ+
φi (x) �i

[
w(τ, x) − u(τ, x)

]
dx

=
∫

ϕi (0, x)u(0, x) dx −
∫

ϕi (τ, x)u(τ, x) dx

�
∣∣∣∣
∫ τ

0

∫ {
uϕi,t + f (u)ϕi,x

}
dx dt

∣∣∣∣+ Ei , (2.17)

where

Ei .=
∣∣∣∣
∫

ϕi (0, x)u(0, x) dx −
∫

ϕi (τ, x)u(τ, x) dx

+
∫ τ

0

∫ {
uϕi,t + f (u)ϕi,x

}
dx dt

∣∣∣∣
� Cε‖ϕ‖W 1,∞ · τ · sup

t∈[0,τ ]
Tot.Var.

{
u(t, ·)}. (2.18)

Notice that the above inequality follows from (1.11). In addition, the first term on
the right hand side of (2.17) is estimated by (2.16).

6. If the function gi (x)
.= �i

[
w(τ, x) − u(τ, x)

]
always keeps the same sign,

we now use (2.8). If it changes sign at least once, we use (2.9). Combining the two
cases, by (2.16) and (2.17) we deduce that

∫ b+τλ−−ε2/3

a+τλ++ε2/3

∣∣∣�i
[
w(τ, x) − u(τ, x)

]∣∣∣ dx

� C0 sup
(t,x)∈Δ

|u(t, x) − u∗| ·
∫ τ

0
Tot.Var.

{
u(t, ·); ]a + tλ+, b + tλ−[

}
dt + Ei

+2ε2/3 · Tot.Var.
{
gi ; ]a + τλ+, b + τλ−[

}
. (2.19)

7. Recalling (2.5), for any vector v =∑i ci ri ∈ R
n one has

|v| �
n∑

i=1

|ci | =
n∑

i=1

|�i · v|.

We use this inequality with v = w(τ, x) − u(τ, x). Using (2.11) to compute the
total variation of gi , summing the inequalities (2.18), (2.19) for i = 1, . . . , n, we
obtain
∫ b+τλ−−ε1/3

a+τλ++ε1/3

∣∣∣w(τ, x) − u(τ, x)
∣∣∣ dx

� nC0 sup
(t,x)∈Δ

|u(t, x) − u∗| · τ · sup
t∈[0,τ ]

Tot.Var.
{
u(t, ·); ]a + tλ+, b + tλ−[

}

+ nCε‖ϕ‖W 1,∞ · τ · sup
t∈[0,τ ]

Tot.Var.
{
u(t, ·)}+ 2ε2/3

(∑
i

|�i |
)
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h
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T
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t j+1

j
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Fig. 2. Covering the strip [0, T ] × R with finitely many trapezoids Δ jk

·
(
Tot.Var.

{
u(0, ·); [a, b]}+ Tot.Var.

{
u(τ, ·); [a + τλ+, b + τλ−]}

)
.

This yields (2.10), for a suitable constant C1. 
�

3. Error Bounds for Solutions Without Large Shocks

Consider an approximate solution u = u(t, x) of (1.1), (1.2), constructed by a
numerical algorithm with time step ε > 0, which satisfies the properties (AL) and
(Pε). We fix a new time step h >> ε, and split the interval [0, T ] into subintervals
[t j , t j+1] with t j = j h. Throughout what follows we choose h ≈ ε1/3, say

c0ε
1/3 � h � ε1/3 (3.1)

for some constant c0 > 0, and assume that both h and T are integer multiples of ε.
To simplify the discussion, we also assume that T = νh for some integer ν. Notice
that, in the general case, one can consider the time T ′ such that

T ′ = νh � T < (ν + 1)h

for some integer ν. By (1.10), the difference can then be estimated by

‖u(T, ·) − u(T ′, ·)‖L1 � Lh · sup
t∈[0,T ]

Tot.Var.{u(t, ·)} = O(1) · ε1/3.

As shown in Fig. 2, for any given j = 1, 2, . . . , ν − 1, we cover the real line
with finitely many intervals ]a jk, b jk[ , k = 1, . . . , N ( j), so that

−∞ = a j,1 < a j,2 < b j,1 < a j,3 < · · · < a j,N ( j) < b j,N ( j)−1 < b j,N ( j) = +∞.

We then cover each strip [t j , t j+1] ×R with the trapezoids Δ jk , k = 1, . . . , N ( j).
For convenience, thesewill be expressed as the convex closure of their four vertices:

Δ jk = co
{
(t j , a jk), (t j , b jk), (t j+1, a jk + hλ+ + ε2/3),

(t j+1, b jk + hλ− − ε2/3)
}
.
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Equivalently:

Δ jk =
{
(t, x); t ∈ [t j , t j+1],
t j+1 − t

h
a jk + t − t j

h
(a jk + hλ+ + ε2/3) � x

� t j+1 − t

h
b jk + t − t j

h
(b jk + hλ− − ε2/3)

}
. (3.2)

By suitably choosing the points a jk , b jk , we can assume that the intervals

J ′
jk = [a jk + hλ+ + ε2/3, b jk + hλ− − ε2/3], k = 1, . . . , N ( j)

form a partition of R. Namely

b jk + hλ− − ε2/3 = a j,k+1 + hλ+ + ε2/3, k = 1, . . . , N ( j) − 1. (3.3)

Furthermore, by choosing the bases of all trapezoids to have length

b jk − a jk > 2h(λ+ − λ−), (3.4)

we can assume that each point (t, x) ∈ [t j , t j+1] × R is contained in at least one
and in not more than two of these trapezoids.

Next, we recall that the oscillation of u over a set Δ is defined as

Osc.
{
u; Δ

} .= sup
(t,x),(s,y)∈Δ

|u(t, x) − u(t, y)|.

For each fixed j ∈ {1, . . . , ν}, the maximum oscillation of u over all trapezoids
Δ jk will be denoted by

κ j
.= max

1�k�N ( j)
Osc.

{
u; Δ jk

}
. (3.5)

Let now S : [0,+∞[ ×D �→ D be the Lipschitz semigroup generated by the
hyperbolic system (1.1), as in (1.6), (1.7). In particular, t �→ St ū yields the exact
solution to the Cauchy problem (1.1), (1.2). As proved in [7,8], for any approximate
solution u one has the error estimate

‖u(T, ·) − ST ū‖L1 � L0 ·
ν−1∑
j=0

∥∥∥u(t j+1, ·) − Shu(t j , ·)
∥∥∥
L1

. (3.6)

For each j , we will show that the corresponding term on the right hand side of (3.6)
can be estimated using (2.10).

Consider the covering of the strip [t j , t j+1]×R in terms of the trapezoids Δ jk ,
introduced at (3.2). As in (2.4), for k = 1, . . . , N ( j) we shall denote by w(k) the
solution to the linearized problem with constant coefficients

wt + Awx = 0, w(t j , ·) = u(t j , ·), A
.= Df

(
u(t j , ξk)

)
(3.7)

for some given points ξk ∈ ]a jk, b jk [.
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Let �(k)
i be the i th left eigenvector of the above matrix A, normalized as in (2.5).

Using (2.19) on each trapezoid Δ jk we obtain

∫ b jk+h jλ
−−ε2/3

a jk+h jλ
++ε2/3

∣∣∣�(k)
i · [u(t j+1, x) − w(k)(t j+1, x)

]∣∣∣ dx

� C0 · Osc.{u; Δ jk}
·
∫ t j+1

t j
Tot.Var.

{
u(t, ·); ]a jk + (t − t j )λ

+, b jk + (t − t j )λ
−[
}
dt

+
∣∣∣∣
∫

ϕ
(k)
i (t j , x)u(t j , x) dx −

∫
ϕ

(k)
i (t j+1, x)u(t j+1, x) dx

+
∫∫

Δ jk

{
uϕ

(k)
i,t + f (u)ϕ

(k)
i,x

}
dx dt

∣∣∣∣∣
+ 2ε2/3 · Tot.Var.

{
�i · u(t j , ·); [a jk, b jk]

}

+ 2ε2/3 · Tot.Var.
{
�i · u(t j+1, ·); [a jk + h jλ

+, b jk + h jλ
−]
}

.= Aik + Bik + Cik + Dik . (3.8)

For notational convenience, call χ jk the characteristic function of the interval
[a jk + h jλ

+ + ε2/3, b jk + h jλ
− − ε2/3]. Our next goal is to estimate the quantity

E j
.=
∫ +∞

−∞

∣∣∣∣∣u(t j+1, x) −
∑
k

w(k)(t j+1, x) · χ jk(x)

∣∣∣∣∣ dx . (3.9)

This can of course be achieved by summing the terms on the right hand side of (3.8)
over all i = 1, . . . , n and k = 1, . . . , N ( j). In working towards this goal, we recall
the key assumption that every point (t, x) ∈ [t j , t j+1] × R belongs to one and no
more than two of the trapezoids Δ jk . More precisely, we have the implication

|k − k′| � 2 	⇒ Δ jk ∩ Δ jk′ = ∅. (3.10)

Recalling (3.5), for a fixed i we thus obtain

N ( j)∑
k=1

Aik � C0 κ j ·
∫ t j+1

t j
2 Tot.Var.{u(t, ·)} dt, (3.11)

and

N ( j)∑
k=1

Cik � 4ε2/3 Tot.Var.{u(t j , ·)},

N ( j)∑
k=1

Dik � 4ε2/3 Tot.Var.{u(t j+1, ·)}. (3.12)
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The estimate for
∑

k B jk is a bit more delicate, because if we use (1.11) separately
on each subdomain Δ jk , the error term on the right side would be multiplied by
N ( j), which can be a very large number.

For this reason, we argue as follows. For each i ∈ {1, . . . , n}, we consider test
functions ϕ, ϕ̃i which satisfy, for t ∈ [t j , t j+1],

ϕi (t, x) =
{

ϕ
(k)
i (t, x) if (t, x) ∈ Δ jk, k even,

0 otherwise.

ϕ̃i (t, x) =
{

ϕ
(k)
i (t, x) if (t, x) ∈ Δ jk, k odd,

0 otherwise.

For convenience, we denote by �max an upper bound for the norm of all left eigen-
vectors �i = �i (u) of all matrices A(u) = Df (u), normalized as in (2.5). With this
notation we have

‖ϕi‖W 1∞ � �max · ε−2/3, ‖ϕ̃i‖W 1∞ � �max · ε−2/3. (3.13)

Applying (1.11) to the test function ϕi , then to ϕ̃i , we obtain
∑
k even

Bik � Cεh ε−2/3�max · sup
t∈[t j ,t j+1]

Tot.Var.
{
u(t, ·)},

∑
k odd

Bik � Cεh ε−2/3�max · sup
t∈[t j ,t j+1]

Tot.Var.
{
u(t, ·)}.

Summing over k, we thus obtain

N ( j)∑
k=1

Bik � 2Chε1/3�max · sup
t∈[t j ,t j+1]

Tot.Var.
{
u(t, ·)}. (3.14)

All together, the inequalities (3.11), (3.12), and (3.14) yield

∫ +∞

−∞

∣∣∣∣∣u(t j+1, x) −
∑
k

w(k)(t j+1, x) · χ jk(x)

∣∣∣∣∣ dx

� C0 2nκ j

∫ t j+1

t j
Tot.Var.

{
u(t, ·)} dt + 4nε2/3Tot.Var.

{
u(t j , ·)

}

+4nε2/3Tot.Var.
{
u(t j+1, ·)

}+ 2Ch ε1/3�max

· sup
t∈[t j ,t j+1]

Tot.Var.
{
u(t, ·)}. (3.15)

Next, we replace the approximate solution u with the exact solution uexact(t j +
s, ·) = Ssu(t j , ·) of (1.1) having the same data at t = t j . As proved in [7], with the
same notation used in (3.9), as long as u(t j , ·) ∈ D remains in the domain of the
semigroup, one has

∫ +∞

−∞

∣∣∣∣∣u
exact(t j+1, x) −

∑
k

w(k)(t j+1, x) · χ jk(x)

∣∣∣∣∣ dx
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� C2 h

(
max

1�k�N ( j)
Osc.

{
u(t j , ·); Δ jk

}) · Tot.Var.{u(t j , ·)
}
, (3.16)

for a suitable constant C2.
Combining (3.15) with (3.16) and recalling (3.5), we obtain

∫ +∞

−∞

∣∣∣u(t j+1, x) − (St j+1−t j u(t j , ·)
)
(x)
∣∣∣ dx

� C3

(
κ j h + ε2/3 + hε1/3

)
· sup
t∈[t j ,t j+1]

Tot.Var.
{
u(t, ·)}. (3.17)

Recalling that h ≈ ε1/3 and T = νε1/3, from the above analysis we obtain

Theorem 1. Let the basic assumptions (A1), (A2) hold. Let t �→ u(t, ·) ∈ D be an
approximate solution to theCauchy problem (1.1), (1.2), taking values in the domain
D of the semigroup and satisfying (AL) and (Pε). Then, for some constant C4, the
following holds: assume that the strip [0, T ]×R can be covered by trapezoidsΔ jk ,
j = 0, . . . , ν − 1, k = 1, . . . N ( j) as in (3.2), so that (3.3)–(3.5) hold. Then the
difference between u(T, ·) and the exact solution ST ū is bounded by

‖u(T, ·) − ST ū‖L1 � C4

⎛
⎝2T +

ν−1∑
j=0

κ j

⎞
⎠ ε1/3 · sup

t∈[0,T ]
Tot.Var.

{
u(t, ·)}.(3.18)

Proof. Let L0 be the Lipschitz constant of the semigroup in (1.7). From (3.6) and
(3.17) it now follows that

‖u(T, ·) − ST ū‖L1 � L0 ·
ν−1∑
j=0

∥∥∥u(t j+1, ·) − Shu(t j , ·)
∥∥∥
L1

� L0 ·
ν−1∑
j=0

C3

(
κ j h + ε2/3 + hε1/3

)
· sup
t∈[t j ,t j+1]

Tot.Var.
{
u(t, ·)}

. � L0 C3 ·
⎛
⎝2T +

ν−1∑
j=0

κ j

⎞
⎠ ε1/3 · sup

t∈[0,T ]
Tot.Var.

{
u(t, ·)}. (3.19)

This yields (3.18), with C4 = L0C3. 
�
Remark 2. Based on the estimate (3.19), we seek to understand at which rate the
error in the approximate solution may approach zero, as ε → 0.

Having chosen h ≈ ε1/3, we can choose all bounded trapezoids Δ jk , 1 < k <

N ( j), to be of diameter O(1) · ε1/3. Moreover, by choosing every b j1 suitably
large and negative, and a j,N ( j) large and positive, we can assume that the solution
is nearly constant on the unbounded trapezoids Δ j,1 and Δ j,N ( j). Here and in the
sequel, the Landau symbol O(1) denotes a uniformly bounded quantity.

If the exact solution is Lipschitz continuous, we expect that the maximum
oscillation (3.5) will be of size κ j = O(1) · ε1/3 for every j ∈ {0, 1, . . . , ν − 1}. In
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this case, as ε → 0 the quantity 2T +∑ν
j=1 κ j remains uniformly bounded, and

the estimate (3.19) indicates that the error vanishes of order O(1) · ε1/3.
Next, assume that the initial data ū contains a jump, generating a centered

rarefaction wave of strength σ . In this case, taking into account the decay caused
by genuine nonlinearity, we expect that the oscillation of u over a trapezoid Δ jk of
diameter O(1) · ε1/3 will satisfy a bound of the form

Osc.
{
u(t, ·); Δ jk

} = O(1) · min

{
σ,

ε1/3

t j

}
. (3.20)

Recalling that t j = jε1/3 and ν = T ε−1/3, this leads to

ν∑
j=1

κ j =
ν∑
j=1

min

{
σ,

Cε1/3

jε1/3

}
= O(1) · log ν = O(1) · | log ε|. (3.21)

In this case, the estimate (3.19) would indicate that the error vanishes of order
O(1) · ε1/3 | log ε|. The same should hold if the exact solution contains finitely
many centered rarefaction waves.

We emphasize, however, that this is only a heuristic expectation. For a numer-
ically computed solution, it needs to be confirmed by a post-processing algorithm,
which can actually provide a bound on the oscillations κ j in (3.18).

4. Solutions with an Isolated Large Shock

The error estimates developed in the previous section are not effective for so-
lutions containing large shocks. Indeed, around a shock, the oscillation will be
large. As a consequence, even when the diameters of the trapezoids Δ jk in (3.2)
approach zero, the maximum oscillation κ j in (3.5) will remain uniformly large.
For this reason, we do not expect that the right hand side of the error bound (3.18)
will approach zero as ε → 0. To cope with this problem, in this section we develop
additional tools to estimate the numerical error in a neighborhood of a shock.

Consider an approximate solution u, which satisfies (AL) and (Pε). We seek a
sharper error bound, assuming that the oscillation of u is concentrated in a narrow
region of the form

Γ
.=
{
(t, x); t ∈ [0, h], |x − γ (t)| < δ

}
, γ (t) = x0 + λt. (4.1)

Of course, we expect that γ (·) will trace the position of a large shock in the exact
solution. Here ρ, δ > 0 are suitable parameters. Different choices of these values
will lead to different estimates. As a rule of thumb, it will be useful for the reader
to keep in mind their order of magnitude:

h ≈ ε1/3, ρ ≈ ε1/3, δ ≈ ε

ρ
= ε2/3. (4.2)
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Fig. 3. The regions Γl , Γm , Γr introduced at (4.13) to trace a large shock, and the trapezoid
Δ′ at (4.4)

Referring to Fig. 3, we introduce the points

{
a = x0 + λ−h − δ − ρ,

b = x0 + λ+h + δ + ρ,

{
a′ .= a − λ+h,

b′ .= b − λ−h,
(4.3)

and consider the trapezoidal domain

Δ′ .= co
{
(0, a′), (0, b′), (h, a), (h, b)

}

=
{
(t, x); t ∈ [0, h], a′ + λ+t � x � b′ + λ−t

}
.

(4.4)

Our basic assumption is that, outside the narrow stripΓ , the oscillation of u remains
small. More precisely, consider the left and right domains

Δ′
l =

{
(t, x); t ∈ [0, h], a′ + λ+t � x � x0 − δ + λt

}
,

Δ′
r =

{
(t, x); t ∈ [0, h], x0 + δ + λt � x � b′ + λ−t

}
,

(4.5)

and define

κ ′ .= max
{
Osc.{u; Δ′

l}, Osc.{u; Δ′
r }
}
. (4.6)

Saying that

u− .= u
(
0, x0 − δ

)
, u+ .= u

(
0, x0 + δ

)
, (4.7)

the above definition of κ ′ implies

|u(t, x) − u−| � κ ′ for (t, x) ∈ Δ′
l ,

|u(t, x) − u+| � κ ′ for (t, x) ∈ Δ′
r .

(4.8)

Assuming that κ ′ is small, the following result provides a bound on the distance
between u and the exact solution, ‖u(h, ·) − Shū‖L1([a,b]), restricted to the interval
[a, b].
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Theorem 2. Let t �→ u(t, ·) ∈ D beanapproximate solution to theCauchyproblem
(1.1), (1.2), taking values in the domain D of the semigroup, and satisfying (AL)
and (Pε). Then, for some constant C5, in the above setting we have the error bound

∫ b

a

∣∣u(h, x) − (Shū)(x)
∣∣ dx � C5 · h

(
ε

ρ
+ κ ′ + ρκ ′ + δ

h

)2/3

+C5

(
ρκ ′ + hκ ′ + δ

)
. (4.9)

Moreover, there exists a constant K1 such that, if

|u+ − u−| � K1 ·
(

ε

δ
+ κ ′ + ρκ ′ + δ

h

)1/3

, (4.10)

then the estimate (4.9) can be improved to

∫ b

a

∣∣u(h, x) − (Shū)(x)
∣∣ dx � C5 · h

(
ε

ρ
+ κ ′ + ρκ ′ + δ

h

)
. (4.11)

Remark 3. Itmay seem surprising that the error bound (4.11), valid for large jumps,
is actually better than (4.9), which applies to small jumps. To understand what is
involved here, is useful to observe that if the strength σ = |u+ − u−| is small,
it could be that this jump is tracing a centered rarefaction wave within the exact
solution, which gets approximated by a single jump by the numerical algorithm
(indeed, this is a common feature of front tracking approximations). If σ is small
enough, the entropy produced by the jump is small, and the assumptions (1.11),
(1.12) can still be satisfied. This is a “worst-case scenario”: as shown in Fig. 4, the
corresponding L1 error is O(1) · hσ 2. On the other hand, if the strength σ of the
jump is large, the entropy dissipation assumption (1.12) rules out this possibility.
Therefore, the jump must trace an entropic shock in the exact solution.

Proof of Theorem 2. 1. As a first step, using (Pε) we will provide a bound for the
error

∣∣∣ f (u+) − f (u−) − λ
(
u+ − u−)∣∣∣. (4.12)

As shown in Fig. 3, denote by Γl , Γm , and Γr the left, middle, and right domains

Γl
.= {

(t, x); t ∈ [0, h], x ∈ [γ (t) − δ − ρ, γ (t) − δ]},
Γm

.= {
(t, x); t ∈ [0, h], x ∈ [γ (t) − δ, γ (t) + δ]},

Γr
.= {

(t, x); t ∈ [0, h], x ∈ [γ (t) + δ, γ (t) + δ + ρ]}.
(4.13)

Recalling (4.1), (4.3) and (4.4), we observe that the above definitions imply

Γm = Γ, Γl ∪ Γm ∪ Γr ⊂ Δ′.
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Given ρ > 0, consider a Lipschitz test function ϕ such that, for t ∈ [0, h], one
has

φ(t, x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if |x − γ (t)| � δ + ρ,

1 if |x − γ (t)| � δ,

δ + ρ − |x − γ (t)|
ρ

if δ < |x − γ (t)| < δ + ρ.

(4.14)

Then choose any unit vector w ∈ R
n and set ϕ(t, x) = φ(t, x)w. By construction,

for t ∈ [0, h] the test function ϕ vanishes outside the union Γl ∪ Γm ∪ Γr . Notice
that

‖ϕx‖L∞ = 1

ρ
, ‖ϕt‖L∞ = |λ|

ρ
.

Assuming that the approximate solution u satisfies (Pε), by (1.11), it follows that
∣∣∣∣
∫

ϕ(0, x)u(0, x) dx −
∫

ϕ(h, x)u(h, x) dx

+
∫∫

Γl∪Γm∪Γr

uϕt + f (u)ϕx dx dt

∣∣∣∣

� C ε h · max
{
1, |λ|}
ρ

· sup
t∈[0,h]

Tot.Var.
{
u(t, ·)}. (4.15)

Using (4.8), we now estimate
(∫∫

Γl

+
∫∫

Γm

+
∫∫

Γr

){
uϕt + f (u)ϕx

}
dx dt

.= Il + Im + Ir . (4.16)

Trivially, Im = 0 because ϕt = ϕx = 0 on Γm . By (4.8) it follows that

Ir + Il =
∫∫

Γr∪Γl

{
uϕt + f (u)ϕx

}
dx dt

=
∫ h

0

{[
λu+ − f (u+)

]− [λu− − f (u−)
]}
w dt + O(1) · h κ ′.

(4.17)

Next, by (4.6), one obtains
∣∣∣∣
∫

ϕ(0, x)u(0, x) dx −
∫

ϕ(h, x)u(h, x) dx

∣∣∣∣

�
(∫ x0−δ

x0−δ−ρ

+
∫ x0+δ+ρ

x0+δ

) ∣∣∣u(0, x) − u(h, x + λh)

∣∣∣ dx

+
∫ x0+δ

x0−δ

(
|u(0, x)| + |u(h, x + λh)|

)
dx

� ρ · Osc.{u; Δ′
l} + ρ · Osc.{u; Δ′

r } + 2δ · 2‖u‖L∞

� 2ρκ ′ + 4δ ‖u‖L∞ . (4.18)
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From (4.15), by (4.17) and (4.18) it follows that
∣∣∣∣
∫ h

0

{
λ(u+ − u−) − [ f (u+) − f (u−)

]}
w dt

∣∣∣∣

= O(1) ·
(

ε h

ρ
+ hκ ′ + ρκ ′ + δ

)
, (4.19)

where the factorO(1) already accounts for the uniform bound on the total variation.
Choosing the unit vector

w = λ(u+ − u−) − [ f (u+) − f (u−)
]

∣∣∣λ(u+ − u−) − [ f (u+) − f (u−)
]∣∣∣

,

by (4.19) we conclude that the error in the Rankine–Hugoniot equations has the
size

∣∣∣λ(u+ − u−) − [ f (u+) − f (u−)
]∣∣∣ = O(1) ·

(
εh

ρ
+ hκ ′ + ρκ ′ + δ

h

)
.

(4.20)

2. Next, consider the piecewise constant function

w(t, x)
.=
{
u− if x < x0 + λt,

u+ if x > x0 + λt.
(4.21)

The aim of the next two steps is to prove that the difference betweenw and an exact
solution having the same initial data is bounded by

‖w(h, ·) − Shw(0, ·)‖L1(R) = O(1) · h
∣∣∣λ(u+ − u−) − [ f (u+) − f (u−)

]∣∣∣.
(4.22)

With this goal in mind, define the averaged Jacobian matrix

A =
∫ 1

0
Df
(
su+ + (1 − s)u−) ds.

Call λ1 < · · · < λn the eigenvalues of A. Let {r1, . . . , rn} and {�1, . . . , �n} be dual
bases of right and left eigenvectors of A, normalized as (2.5). Moreover, let ci , �max

be such that

u+ − u− =
n∑

i=1

ciri , �max
.= max{|�1|, . . . , |�n|}. (4.23)

For every i = 1, . . . , n, we then have
∣∣∣�i · (λI − A)(u+ − u−)

∣∣∣ = |ci | |λ − λi |
� �max

∣∣∣λ(u+ − u−) − [ f (u+) − f (u−)
]∣∣∣. (4.24)



A Posteriori Error Estimates for Numerical Solutions 377

Let i∗ ∈ {1, . . . , n} be a characteristic family such that |λ − λi∗ | = mini |λ − λi |.
Since the eigenvalues of A are strictly separated, by (4.24), it follows that

|ci | = O(1) ·
∣∣∣λ(u+ − u−) − [ f (u+) − f (u−)

]∣∣∣ for all i �= i∗. (4.25)

We now consider the solution to the Riemann problem with left and right states
u−, u+. Let σ1, . . . , σn be the sizes of the waves in this solution. As usual, if the
i th field is genuinely nonlinear, we choose the sign so that σi > 0 corresponds to a
rarefaction wave, while σi < 0 yields an entropy admissible shock. For future use,
we denote by

u− = u0, u1, . . . , un = u+ (4.26)

the intermediate states. If the i∗th characteristic field is linearly degenerate, standard
estimates on the strength of these waves yield the bound

n∑
i=1

|σi − ci | = O(1) ·
∑
i �=i∗

|ci |. (4.27)

Indeed, (4.27) is trivially true when the right hand side is zero. The general case
is obtained by an application of the implicit function theorem. The same estimate
(4.27) is achieved when the i∗th field is genuinely nonlinear and ci∗ < 0. By (4.27)
it follows that

|ui∗ − u+| + |ui∗−1 − u−| +
∑
i �=i∗

|ui − ui−1| = O(1) ·
∑
i �=i∗

|ci |. (4.28)

In both of the above cases, combining (4.24), (4.25), and (4.28), the distance be-
tween w(h, ·) and an exact solution can be estimated as

1

h
‖w(h, ·) − Shw(0, ·)‖L1(R)

= O(1) ·
∑
i �=i∗

|ci | + O(1) · |λi∗ − λ| |ci∗ |

+ O(1) · (|ui∗ − u+| + |ui∗−1 − u−|) |λ|
= O(1) ·

∣∣∣λ(u+ − u−) − [ f (u+) − f (u−)
]∣∣∣

= O(1) ·
(

ε

ρ
+ κ ′ + ρκ ′ + δ

h

)
. (4.29)

Notice that the last estimate was obtained from (4.20). 
�
3. It remains to study the case where the i∗th field is genuinely nonlinear, but

ci∗ > 0. For this purpose, call w̃ = w̃(t, x) the solution to the Riemann problem
with initial data w̃(0, ·) = w(0, ·), which contains a non-entropic i∗-shock of size
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w

hσi*

σi*

wexact

u _

u+

x

~

Fig. 4. Comparing the entropic solution wexact to the Riemann problem with left and right
states u−, u+ with anotherweak solution w̃ containing a non-admissible i∗-shock of strength
σi∗ > 0. Taking into account the presence of a centered rarefaction wave in wexact, The
difference between the two solutions can be bounded as ‖w̃(h, ·)−wexact(h, ·)‖L1 = O(1) ·
hσ 2

i∗

σ ∗, while all other waves are entropy admissible. We observe that all the above
estimates still apply to w̃. In particular,

1

h
‖w̃(h, ·) − Shw(0, ·)‖L1(R) = O(1) ·

∑
i �=i∗

|ci | + O(1) · |λi∗ − λ| |ci∗ |.

(4.30)

It remains to estimate the difference between w̃ and the entropic solution to the same
Riemann problem. Call u− = ũ0, ũ1, . . . , ũn = u+ the intermediate states for the
non-entropic solution w̃. Since shock and rarefaction curves have a second order
tangency, comparing with the intermediate states (4.26) of the entropic solution,
we find

|̃ui − ui | = O(1) · σ 3
i∗ i = 0, 1, . . . , n. (4.31)

Taking into account that the wave connecting the states ui∗−1 and ui∗ is a centered
rarefaction instead of a single jump, we obtain the bound

1

h
‖w(h, ·) − w̃(h, ·)‖L1(R) = O(1) · σ 2

i∗ . (4.32)

Combining (4.30) with (4.32) we conclude that

1

h
‖w(h, ·) − Shw(0, ·)‖L1(R) = O(1)

·
∑
i �=i∗

|ci | + O(1) · |λi∗ − λ| |ci∗ | + O(1) · c2i∗ . (4.33)

We claim that the jump ci∗ > 0 must be small, otherwise the approximate entropy
inequality (1.12) would fail. Intuitively, this means that the approximate solution
cannot contain a large, non-admissible shock. Indeed, let η be a convex entropy,
with entropy flux q, such that (1.8) holds for every non-admissible shock of the i∗
family. Let φ be the test function in (4.14). Arguing as in (4.15), by (1.12) we now
obtain ∫

φ(0, x)η(u(0, x)) dx −
∫

φ(h, x)η(u(h, x)) dx
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+
∫∫

Γl∪Γm∪Γr

η(u)φt + q(u)φx dx dt � − O(1) · ε

ρ
h. (4.34)

As in (4.18), we have
∣∣∣∣
∫

φ(0, x)η(u(0, x)) dx −
∫

φ(h, x)η(u(h, x)) dx

∣∣∣∣
= O(1) · (ρκ ′ + δ). (4.35)

Repeating the argument at (4.16), (4.17) we obtain

∫ h

0

∫ {
η(u)φt + q(u)φx

}
dx dt = h

{[
λη(u+) − q(u+)

]

−[λη(u−) − q(u−)
]}+ O(1)hκ ′. (4.36)

Next, consider the state ũ+, connected to u− by a (not entropy admissible)
i∗-shock of size ci∗ > 0. By the implicit function theorem, one has the bound

|̃u+ − u+| = O(1) ·
∑
i �=i∗

|ci |. (4.37)

Recalling (1.8), from (4.36) we obtain that

1

h

∫ h

0

∫ {
η(u)φt + q(u)φx

}
dx dt

=
{[

λη(̃u+) − q (̃u+)
]− [λη(u−) − q(u−)

]}

+O(1) · |̃u+ − u+| + O(1) · κ ′

� − c0 |̃u+ − u−|3 + O(1) · |̃u+ − u+| + O(1) · κ ′

� − c0c
3
i∗ + O(1) ·

∑
i �=i∗

|ci |

� − c0c
3
i∗ + O(1) ·

∣∣∣λ(u+ − u−) − [ f (u+) − f (u−)
]∣∣∣, (4.38)

where (4.25) was used in the last inequality. Combining (4.38) with (4.34)–(4.36),
and using (4.20) to bound the last term in (4.38), we obtain

ci∗ = O(1) ·
(

ε

ρ
+ κ ′ + ρ

h
κ ′ + δ

h

)1/3

. (4.39)

Starting from (4.33), and using (4.24), (4.25), (4.20), and (4.39), we obtain

1

h
‖w(h, ·) − Shw(0, ·)‖L1(R) = O(1) ·

(
ε

δ
+ κ ′ + ρκ ′ + δ

h

)2/3

. (4.40)

4. Notice that the estimate (4.40) is somewhat weaker, compared with (4.29).
In this step we show that, if the jump |u+ − u−| is sufficiently large, then in the
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genuinely nonlinear case we must have ci∗ < 0, hence the stronger estimate (4.29)
holds. Recalling (4.23), notice that

|ci∗ | � |u+ − u−| −
∑
i �=i∗

|ci | � |u+ − u−| − O(1)

·
(

ε

δ
+ κ ′ + ρκ ′ + δ

h

)
. (4.41)

Therefore, there exists a constant K1 large enough so that, if (4.10) holds, then
(4.41) provides a contradiction with (4.39). Since (4.39) was obtained by assuming
that ci∗ > 0, we conclude that (4.10) is a sufficient condition to guarantee that
ci∗ � 0. In this case, the stronger estimate (4.29) holds.

5. Restricted to the interval [a, b], by (4.8) and (4.40), the difference between
u and the exact solution having initial data u(0, x) = ū(x) can now be estimated
by

∫ b

a

∣∣u(h, x) − (Shū)(x)
∣∣ dx

�
(∫ x0+λh−δ

a
+
∫ x0+λh+δ

x0+λh−δ

+
∫ b

x0+λh+δ

) ∣∣u(h, x) − w(h, x)
∣∣ dx

+‖w(h, ·) − Shw(0, ·)‖L1

+L0

(∫ x0−δ

a′
+
∫ x0+δ

x0−δ

+
∫ b′

x0+δ

) ∣∣w(0, x) − ū(x)
∣∣ dx

�
[
(b − a − 2δ) κ ′ + 4δ‖u‖L∞

]
+ O(1) · h

(
ε

ρ
+ κ ′ + ρκ ′ + δ

h

)2/3

+
[
(b′ − a′ − 2δ) κ ′ + 4δ‖u‖L∞

]

� C5 · h
(

ε

ρ
+ κ ′ + ρκ ′ + δ

h

)2/3

+ C5(ρ + h)κ ′ + C5δ, (4.42)

for a suitable constant C5. Indeed, from (4.3) it follows that

b − a = 2ρ + 2δ + (λ+ − λ−)h,

b′ − a′ = 2ρ + 2δ + 2(λ+ − λ−)h. (4.43)

On the other hand, if (4.10) holds, then we can use (4.29) instead of (4.40). The
same argument used in (4.42) now yields that

∫ b

a

∣∣u(h, x) − (Shū)(x)
∣∣ dx � C5 · h

(
ε

ρ
+ κ ′ + ρκ ′ + δ

h

)

+C5(ρ + δ + h)κ ′ + C5δ. (4.44)
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5. A Post-processing Algorithm

There are various ways to use the estimates developed in Sections 3 and 4, to
obtain a posteriori error bounds. The underlying idea is to isolate a finite number
of thin regions enclosing the large jumps, where the estimates (4.9) or (4.11) can
be used. Then use the bounds (3.18) on the remaining portion of the domain.

The algorithm described below can be applied to any BV solution of (1.1), but it
is designed in order to be most effective when the exact solution is piecewise Lips-
chitz with finitely many shocks (or contact discontinuities) and centered rarefaction
waves.

Let u : [0, T ] × R �→ R
n be an approximate solution of (1.1), (1.2), which

satisfies the properties (AL) and (Pε). In this section we introduce an algorithm
which checks its total variation, identifies the location of large shocks, and con-
structs trapezoidal subdomains where the oscillation remains small. In view of our
previous analysis, this will yield an error bound on the L1 distance (1.4) between
u and an exact solution.

The algorithm includes three steps.
STEP 1. For each t ∈ [0, T ], we compute the total variation of u(t, ·). Let

δ0 > 0 be the constant in (1.5). If

sup
t∈[0,T ]

Tot.Var.
{
u(t, ·)} � δ0, (5.1)

then the algorithm can proceed. On the other hand, if (5.1) fails, the approximate
solution may lie outside the domain of the semigroup and no error estimate can be
provided. In this case, the algorithm stops.

STEP2.Wenow split the interval [0, T ] into equal subintervals of size h = ε1/3,
inserting the times t j = j h, j = 0, 1, . . . , ν = T/h. The next goal is to identify
the location of the large shocks, on each strip [t j , t j+1] × R. For this purpose, we
set ρ = h = ε1/3, δ = ε2/3, and choose two additional parameters:

– A lower bound σmin for the size of the jump to be traced;
– An upper bound κ ′ for the oscillation of u on a region to the right and to the
left of the jump.

In view of (4.10), it will be convenient to choose these values so that

σmin � K1 ·
(
2ε1/3 + 2κ ′)1/3 . (5.2)

In this way, the sharper estimate (4.11) in Theorem 2 will be available.
Recalling the construction at (4.1)–(4.5), we introduce

Definition 1. Given an interval [x0 − δ, x0 + δ] and a speed λ ∈ [λ−, λ+], consider
the polygonal regions

Γ
.=
{
(t, x); t ∈ [t j , t j+1], x0 − δ + λ(t − t j ) � x � x0 − δ + λ(t − t j )

}
,

Δ′
l =

{
(t, x); t ∈ [t j , t j+1], a′ + λ+(t − t j ) � x � x0 − δ + λ(t − t j )

}
,

Δ′
r =

{
(t, x); t ∈ [t j , t j+1], x0 + δ + λ(t − t j ) � x � b′ + λ−(t − t j )

}
,

(5.3)
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Fig. 5. Implementing a post-processing algorithm, each strip [t j , t j+1]×R is covered with

trapezoidsΔ jk where the oscillation remains small (as far as possible), and trapezoidsΔ( j�)

containing a large traced shock

with a′, b′ as in (4.3).We say thatΓ traces a shock during the time interval [ti , ti+1]
if

max
{
Osc.{u; Δ′

l}, Osc.{u; Δ′
r }
}

� κ ′, (5.4)
∣∣u(t j , x0 + δ) − u(t j , x0 + δ)

∣∣ � σmin . (5.5)

In what follows, we shall denote by

Δ( j�) =
{
(t, x); t ∈ [t j , t j+1], a′

j� + λ+(t − t j ) � x � b′
j� + λ−(t − t j )

}
,

� = 1, . . . , N ′( j) (5.6)

the trapezoids containing the traced shocks (see Fig. 5).

STEP 3. We cover the remaining region [t j , t j+1] \⋃N ′( j)
�=1 Δ( j�) with finitely

many trapezoids of the same form as in (3.2)

Δ jk =
{
(t, x); t ∈ [t j , t j+1], t j+1 − t

h
c jk + t − t j

h
(c jk + hλ+ + ε2/3)

� x � t j+1 − t

h
d jk + t − t j

h
(d jk + hλ− − ε2/3)

}
, (5.7)

in such a way that each point (t, x) ∈ [t j , t j+1] × R is contained in at most two
of these trapezoids (see Fig. 5). More precisely, we can assume that (3.10) holds,
for all k, k′ ∈ {1, . . . , N ( j)}. Within each time interval [t j , t j+1], we compute the
maximum oscillation of u over these trapezoids:

κ j
.= max

1�k�N ( j)
Osc.{u; Δ jk}. (5.8)

The next result provides an a posteriori estimate on the L1 error in the ap-
proximate solution. Here the estimate refers to the outcome of a post-processing
algorithm, depending on the choice of κ ′ and σmin in (5.4), (5.5). We remark that
any choice of such parameters, determining which shocks are actually traced, leads
to some error bound. However, the sharpness of the estimate heavily depends on a
suitable choice of these parameter values.
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Theorem 3. Consider a system of conservation laws satisfying the basic assump-
tions (A1), (A2). Then there exist constants C ′,C ′′ such that the following holds.

Let u : [0, T ] × R �→ R
n be an approximate solution to the Cauchy problem

(1.1), (1.2), satisfying the conditions (AL) and (Pε), together with (5.1). Let κ j , κ ′
be the oscillation bounds in (3.5) and (5.4), for a covering with trapezoids Δ jk ,
Δ( j�) produced by a post-processing algorithm. Then the difference between u(T, ·)
and the exact solution is bounded by

∥∥u(T, ·) − ST ū
∥∥
L1(R)

� C ′
⎛
⎝T +

ν−1∑
j=0

κ j

⎞
⎠ ε1/3

+C ′′(ε1/3κ ′ + ε2/3
)

·
ν−1∑
j=0

N ′( j). (5.9)

Proof. 1.Denoting L0 as the Lipschitz constant of the semigroup at (1.7), we have

‖u(T, ·) − ST ū‖L1 � L0 ·
ν−1∑
j=0

∥∥∥u(t j+1, ·) − Shu(t j , ·)
∥∥∥
L1

. (5.10)

For each j , in order to estimate the difference u(t j+1, ·) − Shu(t j , ·), we consider
a covering of the strip [t j , t j+1] × R by trapezoids Δ( j�), � = 1, . . . N ′( j) as in
(5.6), and Δ jk , k = 1, . . . , N ( j), as in (5.7).

2. Recalling (4.3), we denote by {t j+1}× [a j�, b j�] the upper boundaries of the
trapezoids Δ( j�). These are the trapezoids which contain one large traced shock.
Moreover, we call {t j+1} × [̂c jk, d̂ jk] the upper boundaries of the remaining trape-
zoids Δ jk . According to (5.7), this means that

[̂c jk, d̂ jk] =
[
c jk + hλ+ + ε2/3 , d jk + hλ− − ε2/3

]
.

3. The same argument used at (3.17) now yields an error bound on the set

Vj
.=

N ( j)⋃
k=1

[̂c jk, d̂ jk].

Indeed, recalling the uniform bound (5.1) on the total variation, one obtains
∫

Vj

∣∣∣u(t j+1, x) − (Shu(t j , ·)
)
(x)
∣∣∣ dx � C3

(
κ j h + ε2/3 + hε1/3

)
· δ0.

(5.11)

On the other hand, for each � ∈ {1, . . . , N ′( j)}, applying the estimate (4.11) on
the interval [a j�, b j�] we obtain the error bound

∫ b j�

a j�

∣∣u(h, x) − (Shū)(x)
∣∣ dx � C5 · h

(
ε

ρ
+ κ ′ + ρκ ′ + δ

h

)
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+C5
(
ρκ ′ + hκ ′ + δ

)
. (5.12)

4. Recalling our choices

ρ = h = ε1/3, δ = ε2/3, νh = νε1/3 = T,

summing the terms in (5.11) over all j ∈ {0, . . . , ν − 1}, and summing the terms
in (5.12) over all j and all � ∈ {1, . . . , N ′( j)}, we obtain (5.9). 
�
Remark 4. It is interesting to speculate about the rate at which the error bound on
the right hand side of (5.9) will approach zero as ε → 0. We begin by assuming
that the exact solution we are trying to compute is piecewise Lipschitz, with a finite
number of centered rarefaction waves, and finitely many non-interacting shocks.

As is Remark 2, the first term on the right hand side of (5.9) is expected to
approach zero as ε1/3| log ε|. Concerning the second term, we can fix a constant C0
and choose κ ′ = C0ε

1/3. If the exact solution contains N ′ shocks, we expect that,
for all ε > 0 sufficiently small, each of these shocks will be traced, satisfying the
inequality (5.2). The second term on the right hand side of (5.9) will thus have the
form

C ′′ (ε1/3C0ε
1/3 + ε2/3

)
· νN ′ = O(1) · ε1/3.

In this case, (5.9) would yield

∥∥u(T, ·) − ST ū
∥∥
L1(R)

= O(1) · ε1/3| log ε|. (5.13)

More generally, let us now assume that some of the shocks in the solution interact
with each other. Let τ ∈ [0, T ] be one of the (finitely many) interaction times.
During a time interval [τ−, τ+] around τ , of size τ+−τ− = O(1)·ρ, we shall not be
able to trace the interacting shocks. As a consequence, for [t j , t j+1]∩[τ−, τ+] �= ∅,
the oscillation on one of the trapezoids Δ jk in (5.7) (the one which contains a non-
traced shock) will be large. This will force κ j to be large. However, we expect that
the total length of all intervals [t j , t j+1], where some large shock cannot be traced,
will have size

O(1) · ρ · [total number of shock interactions] = O(1) · ε1/3.

In conclusion, the presence of finitely many shock interactions will contribute an
additional error termO(1) ·ε1/3 to the right hand side of (5.9). This will not change
its overall order of magnitude.

One could also argue that, if the solution contains a finite number of compres-
sion waves, from which new shocks are formed, these (non-traced) waves would
contribute an error term of the same nature as a centered rarefaction wave. There-
fore, a bound of the order (5.13) would still be obtained.

Once again, we emphasize that the bounds (5.13) represent only a heuristic
expectation. For a numerically computed solution, they needs to be confirmed by
a post-processing algorithm, computing a bound on the oscillations κ j in (3.5).



A Posteriori Error Estimates for Numerical Solutions 385

6. Properties of Approximation Schemes

In this section we analyze various approximation methods, and check that they
all satisfy the assumptions (AL) and (Pε).

6.1. The Godunov Scheme

To simplify our discussion, without loss of generality we assume that all char-
acteristic speeds (that is all eigenvalues of the Jacobian matrices Df (u)) lie in the
interior of the interval [0, 1]. This can be achieved by a linear rescaling and a shift
of the coordinates t, x . In this case, the Godunov scheme reduces to an upwind
scheme. Given a mesh size ε > 0, consider the grid points

Pmj = (tm, x j ) = (εm, ε j).

As shown in Fig. 6, left, we consider approximate solutions u = u(t, x) with the
following properties:

(i) At each time t = tm , the function u(tm, ·) is piecewise constant, namely

u(tm, x) = Umj for x j < x < x j+1,

(ii) For t ∈ [tm, tm+1[ , the function u(t, ·) yields the exact solution to (1.1) with
initial data u(tm, ·). This is obtained by solving the Riemann problems at each
node x j .

(iii) At time tm+1, we take the average of u(tm+1−, ·) on each interval [x j , x j+1].
Namely

u(tm+1, x) = Um+1, j
.= 1

ε

∫ x j+1

x j
u(tm+1, y) dy for x j < x < x j+1. (6.1)

Since we are assuming that all wave speeds are contained in the interval
[0, 1], using the conservation equations these average values Um+1, j can be
computed by

Um+1, j = Um, j +
(
f (Um, j−1) − f (Um, j )

)
. (6.2)

We check that an approximate solution u produced by the Godunov scheme with
mesh size ε > 0 satisfies the Lipschitz condition (AL). Indeed, for every 0 � τ <

τ ′ � T with τ, τ ′ ∈ εN,

∥∥u(τ ′, ·) − u(τ, ·)∥∥L1(R)
�

∑

τ<tm�τ ′

∑
j

∫ x j

x j−1

∣∣u(tm+1, x) − u(tm, x)
∣∣ dx

=
∑

τ<tm�τ ′

∑
j

ε

∣∣∣ f (Um, j−1) − f (Um, j )

∣∣∣

� ε
∑

τ<tm�τ ′
Tot.Var.

{
f (u(tm, ·))

}
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� (τ ′ − τ) · Lip( f ) · sup
t∈[τ,τ ′]

Tot.Var.
{
u(t, ·)}.(6.3)

Here and in the sequel, Lip( f ) denotes the Lipschitz constant of the function f .
To prove that the property (Pε) also holds, we shall use

Lemma 3. Letw : [0, ε] �→ R be any functionwith bounded variation, and assume
ϕ ∈ C1. Consider the average value

w
.= 1

ε

∫ ε

0
w(y) dy.

Then
∣∣∣∣
∫ ε

0
[w(x) − w] ϕ(x) dx

∣∣∣∣ � Tot.Var.
{
w; ]0, ε[ } · ε2‖ϕx‖L∞ . (6.4)

Proof. Call ϕ the average value of ϕ over [0, ε]. Then
∣∣∣∣
∫ ε

0
[w(x) − w] ϕ(x) dx

∣∣∣∣ =
∣∣∣∣
∫ ε

0
[w(x) − w] (ϕ(x) − ϕ) dx

∣∣∣∣

�
∫ ε

0
‖w(·) − w‖L∞ · ‖ϕ(·) − ϕ‖L∞ dx

� ε · Tot.Var.{w; ]0, ε[ } · ε‖ϕx‖L∞ . (6.5)


�
Next, fix ε > 0 and consider any test function ϕ ∈ C1c (R2). Since the Godunov

approximations coincide with exact solutions on each of the half-open intervals
[tm, tm+1[ , we have

∣∣∣∣
∫

u(τ, x)ϕ(τ, x) dx −
∫

u(τ ′, x)ϕ(τ ′, x) dx

+
∫ τ ′

τ

∫ {
uϕt + f (u)ϕx

}
dx dt

∣∣∣∣∣

=
∣∣∣∣∣∣
∑

τ<tm�τ ′

∫
[u(tm, x) − u(tm−, x)]ϕ(tm, x) dx

∣∣∣∣∣∣
. (6.6)

Using Lemma 3 we obtain

∑

τ<tm�τ ′

∣∣∣∣
∫

[u(tm, x) − u(tm−, x)] ϕ(tm, x) dx

∣∣∣∣

�
∑

τ<tm�τ ′

∑
j

ε2 Tot.Var.
{
u(tm, ·); ] jε, ( j + 1)ε[

}
· ‖ϕx‖L∞

= ε (τ ′ − τ)‖ϕx‖L∞ · sup
t∈[τ,τ ′]

Tot.Var.
{
u(t, ·)}. (6.7)
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This yields (1.11). In order to prove (Pε), given a convex entropy with entropy flux
q, it remains to check that (1.12) is satisfied as well. Let ϕ � 0 be a test function
in C1c (R2). Integration by parts yields

∫
η(u(τ, x))ϕ(τ, x) dx −

∫
η(u(τ ′, x))ϕ(τ ′, x) dx +

∫ τ ′

τ

∫
η(u)ϕt + q(u)ϕx dt dx

= −
∫ τ ′

τ

∫
{η(u)t + q(u)x }ϕ dx dt

+
∑

τ<tm�τ ′

∫
(η(u(tm−, x)) − η(u(tm, x)))ϕ(tm, x) dx . (6.8)

By construction, the approximation u is an entropy weak solution of the hyperbolic
system of conservation law in every strip [tm−1, tm[×R, therefore the first term on
the right hand side of (6.8) is non negative.

By the convexity of η, we can apply Jensen’s inequality and obtain

η(u(tm, x)) = η
(1

ε

∫ x j+1

x j
u(tm−, y) dy

)
� 1

ε

∫ x j+1

x j
η(u(tm−, y)) dy (6.9)

for x j < x < x j+1. In turn, this yields

∑

τ<tm�τ ′

∫

R

(η(u(tm−, x)) − η(u(tm, x)))ϕ(tm, x) dx

=
∑

τ<tm�τ ′

∑
j

∫ x j+1

x j
(η(u(tm−, x)) − η(u(tm, x)))ϕ(tm, x) dx

�
∑

τ<tm�τ ′

∑
j

∫ x j+1

x j

(
η(u(tm−, x)) − 1

ε

∫ x j+1

x j
η(u(tm−, y)) dy

)
ϕ(tm, x) dx

� − Lip(η) ε · (τ ′ − τ)‖ϕx‖L∞ · sup
t∈[τ,τ ′]

Tot.Var.
{
u(t, ·)}. (6.10)

6.2. The Lax–Friedrichs Scheme

Consider step sizesΔt,Δx > 0 so that all characteristic speeds satisfy the CFL
condition

|λi | <
Δx

Δt
. (6.11)

As shown in Fig. 6, right, we then construct a staggered grid with nodes at the
points

Pmj = (m Δt, j Δx), m + j even.

The Lax–Friedrichs approximations are defined inductively as follows. Given a
piecewise constant function u(tm, ·), with jumps at the points Pmj withm+ j even,
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for t ∈ [tm, tm+1[ we let u(t, ·) be the exact solution of the system of conservation
laws (1.1)with the given data at t = tm .We then defineu(tm+1, ·) to be the piecewise
constant function obtained by taking the average of u(tm+1−, ·) over every interval
[x j−1, x j+1] with m + j even. By the conservation equations, if all characteristic
speeds satisfy |λi | < Δx/Δt , these average values

Um+1, j = 1

2Δx

∫ x j+1

x j−1

u(tm+1−, x) dx, m + j even,

are inductively computed by the Lax–Friedrichs scheme

Um+1, j = 1

2
(Um, j+1 +Um, j−1) − Δt

2Δx

[
f (Um, j+1) − f (Um, j−1)

]
. (6.12)

Setting ε = Δt , both the approximate Lipschitz condition (AL) and the property
(Pε) can be proved in the same way as for the Godunov scheme. We thus omit
details.

Remark 5. If the stability condition (6.11) is violated, it is well known that the
numerical algorithm becomes unstable. As a consequence, the numerical solution
will develop a large amount of oscillations. In this case, the total variation becomes
too large, the assumption (5.1) fails, and the error bound (5.9) does not apply.

6.3. Backward Euler Approximations

We now discretize time but keep space continuous. We assume that all char-
acteristic speeds are strictly positive. Calling ε = Δt the time step, the backward
Euler approximations are defined in terms of the implicit equations

u(t + ε, x) = u(t, x) − ε f (u(t + ε, x))x .

Equivalently, settingUm(x) = u(mε, x), one needs to solve the sequence of ODEs

Um+1(x) = Um(x) − ε f (Um+1(x))x . (6.13)

The convergence of these approximations for general n×n hyperbolic systems has
not been studied. Complete results are available in the scalar case [20], which is
covered by the general theory of nonlinear contractive semigroups [21].

Let Um(·) be a sequence of solutions to (6.13) with m = 0, 1, . . . and define
the approximate solution u by setting

u(t, x) = Um(x) for mε � t < (m + 1)ε.

Then (AL) follows by
∥∥u(τ, ·) − u(τ ′, ·)∥∥L1(R)

�
∑

τ<tm�τ ′

∥∥u(tm, ·) − u(tm−1, ·)
∥∥
L1(R)

= ε
∑

τ<tm�τ ′

∫ ∣∣ f (u(tm, x))x
∣∣ dx � Lip( f ) (τ ′ − τ) ·

(
sup

t∈[τ,τ ′]
Tot.Var.{u(t, ·)}

)
.
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Next, we verify (Pε). As before, fix 0 � τ < τ ′ � T with τ, τ ′ ∈ εN. Given a test
function ϕ ∈ C1c (R2), we compute that

∣∣∣∣∣
∫

u(τ, x)ϕ(τ, x) dx −
∫

u(τ ′, x)ϕ(τ ′, x) dx +
∫ τ ′

τ

∫ {
uϕt + f (u)ϕx

}
dx dt

∣∣∣∣∣

=
∣∣∣∣∣∣
−
∫ τ ′

τ

∫
f (u)xϕ dx dt +

∫ ∑

τ<tm�τ ′

(
u(tm−1, x) − u(tm, x)

)
ϕ(tm, x) dx

∣∣∣∣∣∣

=
∣∣∣∣−
∫ ⎛
⎝ ∑

τ<tm�τ ′

u(tm−1, x) − u(tm, x)

ε

∫ tm

tm−1

ϕ(t, x) dt

⎞
⎠ dx

+
∫ ∑

τ<tm�τ ′

(
u(tm−1, x) − u(tm, x)

)
ϕ(tm, x) dx

∣∣∣∣

�
∫ ∑

τ<tm�τ ′

∣∣u(tm−1, x) − u(tm, x)
∣∣
∣∣∣∣ϕ(tm, x) − 1

ε

∫ tm

tm−1

ϕ(t, x) dt

∣∣∣∣ dx

� ε (τ ′ − τ) ‖ϕt‖L∞ Lip( f ) ·
(

sup
t∈[τ,τ ′]

Tot.Var.{u(t, ·)}
)
.

Finally, let η be a convex entropy with entropy flux q. If ϕ � 0 is a test function
in C1c (R2), we have

∫
η(u(τ, x))ϕ(τ, x) dx −

∫
η(u(τ ′, x))ϕ(τ ′, x) dx +

∫ τ ′

τ

∫
{η(u)ϕt + q(u)ϕx } dx dt

= −
∫ τ ′

τ

∫
q(u)xϕ dt dx +

∫ ∑

τ<tm�τ ′

(
η(u(tm−1, x)) − η(u(tm , x))

)
ϕ(tm , x) dx

= −
∑

τ<tm�τ ′

∫ (
Dη(u(tm , x)) · u(tm−1, x) − u(tm , x)

ε

∫ tm

tm−1

ϕ(t, x) dt
)
dx

+
∫ ∑

τ<tm�τ ′

(
η(u(tm−1, x)) − η(u(tm , x))

)
ϕ(tm , x) dx

�
∑

τ<tm�τ ′

∫ (
η(u(tm−1, x)) − η(u(tm , x)

)(
ϕ(tm , x) − 1

ε

∫ tm

tm−1

ϕ(t, x) dt
)
dx

� − ε (τ ′ − τ) ‖ϕt‖L∞ Lip(η)Lip( f ) ·
(

sup
t∈[τ,τ ′]

Tot.Var.{u(t, ·)}
)
.

Notice that the convexity of η was here used in the inequality

Dη(u(a, x)) · (u(a, x) − u(b, x)
)

� η(u(a, x)) − η(u(b, x)). (6.14)
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6.4. The Smoothing Method

Next, we consider an approximate solution to (1.1), (1.2) obtained by periodic
mollifications, taking the convolution with a smoothing kernel K ∈ C∞

c (R). We
assume that

{
K (x) ∈ [0, 1] for |x | < 1,
K (x) = 0 for |x | � 1,

K (x) = K (−x),
∫

K (x) dx = 1,(6.15)

and set Kδ(x)
.= δ−1K (δ−1x).Wefixa time step ε > 0 anddefine an ε-approximate

solution u by setting

tm = m ε, u(tm, ·) = Kδ ∗ u(tm−, ·),
and letting u be a classical solution to (1.1) on each half-open interval [tm, tm+1[ .

As in the scalar case (see [26]), the method is well-defined provided that the
ratio ε/δ is suitably small. To see this, in connection with the quasilinear system

ut + A(u)ux = 0, A(u) = Df (u), (6.16)

we choose bases {r1(u), . . . , rn(u)} and {l1(u), . . . , ln(u)} of right and left eigen-
vectors of A(u), normalized so that

|ri (u)| = 0, li (u) · ri (u) =
{
1 if i = j,
0 if i �= j.

(6.17)

We denote by uix = li · ux the i th component of the gradient vector ux with respect
to this basis. From (6.17) and (6.16) it follows that

ux =
n∑

i=1

uixri (u) ut = −
n∑

i=1

λi (u)uixri (u).

Differentiating the first equation with respect to t and the second one with respect
to x , then equating the results, one obtains a semilinear system of evolution equa-
tions for the scalar components uix , having the form

(uix )t + λi (u
i
x )x =

n∑
j,k=1

gijk(u)u j
xu

k
x (6.18)

(see, for example, Section 1.6 in [9] for details). Assume that
∣∣gijk(u)

∣∣ < Mg

for all i, j, k, and all u in the domain were the solution is defined. Let t �→ Z(t) be
the solution to the ODE

d

dt
Z(t) = n2Mg Z

2(t), Z(0) = Z0. (6.19)

Assume that, at time t = 0, it holds that
∣∣uix (0, x)

∣∣ � Z0 for all x ∈ R, i = 1, . . . , n. (6.20)



392 Alberto Bressan, Maria Teresa Chiri & Wen Shen

A comparison argument now yields
∣∣uix (t, x)

∣∣ � Z(t) for all x ∈ R, t ∈ [0, T0[,
where

T0 = 1

n2Mg Z0

is the time where the solution to (6.19) blows up.
It remains to give an upper bound for the gradient components after each mollifi-
cation. This is achieved observing that

‖uix (tm, ·)‖L∞ � ‖ux (tm, ·)‖L∞ · sup
u

|li (u)|

� Tot.Var.{u(tm−, ·)}
δ

‖K‖L∞ · sup
u

|li (u)|.

Therefore, if we choose

0 < ε <
δ

n2 Mg ‖K‖L∞

(
sup
m

Tot.Var.{u(tm−, ·)}
)−1(

sup
i

sup
u

|li (u)|
)−1

,

(6.21)

all the components uix remain bounded on each strip [tm, tm+1[×R, and the approx-
imate solution is well-defined.

We now check that the assumption (AL) holds:
∥∥u(τ ′, ·) − u(τ, ·)∥∥L1(R)

�
∑

τ<tm�τ ′

∫ ∣∣ Kδ ∗ u(tm−, x)−u(tm−, x)| dx+
∫ ∣∣u(tm−, x)−u(tm−1, x)| dx

� 2δ
(τ ′ − τ

ε

)
· sup
t∈[τ,τ ′]

Tot.Var.
{
u(t, ·)}+ L (τ ′ − τ) · sup

t∈[τ,τ ′]
Tot.Var.

{
u(t, ·)}

= C (τ ′ − τ) · sup
t∈[τ,τ ′]

Tot.Var.
{
u(t, ·)}.

Here we are using the estimate
∫ ∣∣ Kδ ∗ u(tm−, x) − u(tm−, x)| dx

�
∫ (∫ δ

−δ

Kδ(y) sup
|y|<δ

∣∣∣u(tm−, x) − u(tm−, x − y)
∣∣∣ dy
)

dx

�
∫

Tot.Var.
{
u(tm−, ·); ]x − δ, x + δ[

}
dx

� 2δ · Tot.Var.{u(tm−, ·)}. (6.22)

To prove (Pε) we shall need the following result:
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Lemma 4. Let w : R �→ R be any function with bounded variation, and assume
ϕ ∈ C1. Let K ∈ C∞

c be a smoothing kernel as in (6.15), and define

w̃
.= Kδ ∗ w.

Then
∣∣∣∣
∫

[w̃(x) − w(x)] ϕ(x) dx

∣∣∣∣ � δ2 ‖ϕx‖L∞ · Tot.Var.{w}. (6.23)

Proof. 1. Assuming that w is Lipschitz continuous, we rewrite the left hand side
of (6.23) in a more suitable way:

∣∣∣∣
∫

[w̃(x) − w(x)] ϕ(x) dx

∣∣∣∣

=
∣∣∣∣
∫∫

Kδ(x − y)[w(y) − w(x)] ϕ(x) dy dx

∣∣∣∣

=
∣∣∣∣
∫∫

Kδ(x − y)[ϕ(y) − ϕ(x)] w(x) dy dx

∣∣∣∣

=
∣∣∣∣
∫ (∫ x

−∞

∫
Kδ(z − y)[ϕ(y) − ϕ(z)] dy dz

)
w′(x) dx

∣∣∣∣ . (6.24)

2. Next we prove the estimate
∣∣∣∣
∫ x

−∞

∫
Kδ(z − y)[ϕ(y) − ϕ(z)] dy dz

∣∣∣∣ � δ2 ‖ϕx‖L∞ . (6.25)

Indeed, since the integrand vanishes for |z − y| > δ, the domain where it can be
nonzero can be split as Σ0 ∪ Σ , where (see Fig. 7)

Σ0 =
{
(z, y); |z − y| � δ, y + z < x − δ

}
,

Σ =
{
(z, y); z � x, y − z � δ, y + z � x − δ

}
.

Since K is an even function, by symmetry (switching the variables z and y),
we immediately obtain

∫∫

Σ0

Kδ(z − y)[ϕ(y) − ϕ(z)] dy dz = 0. (6.26)

On the other hand, the integral over the triangle Σ can be estimated by
∣∣∣∣
∫∫

Σ

Kδ(z − y)[ϕ(y) − ϕ(z)] dy dz
∣∣∣∣

� meas(Σ) · ‖Kδ‖L∞ · sup
(z,y)∈Σ

|ϕ(y) − ϕ(z)|

� δ2 · δ−1‖K‖L∞ · δ‖ϕx‖L∞ . (6.27)

Putting together (6.26) and (6.27), and recalling that ‖K‖L∞ � 1, we obtain (6.25).
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δ

y

z

Σ

0Σ

x

Fig. 7. Splitting the domain of integration Σ0 ∪ Σ , in the proof of (6.25)

3. Using (6.25) in (6.24), we now obtain the bound (6.23), for every Lipschitz
function w. Since the previous arguments do not depend on the Lipschitz constant
of w, by an approximation argument we conclude that (6.23) remains valid for
every function w with bounded variation. 
�

We are now ready to prove (Pε). Consider a test function ϕ ∈ C1c (R2). Using
Lemma 4, we obtain
∣∣∣∣∣
∫

u(τ, x)ϕ(τ, x) dx −
∫

u(τ ′, x)ϕ(τ ′, x) dx +
∫ τ ′

τ

∫ {
uϕt + f (u)ϕx

}
dx dt

∣∣∣∣∣

=
∣∣∣∣∣∣

∫ ∑

τ<t j�τ ′

(
u(t j , x) − u(t j−, x)

)
ϕ(t j , x)dx

∣∣∣∣∣∣

� δ2
(τ ′ − τ

ε

)
‖ϕx‖L∞ · sup

t∈[τ,τ ′]
Tot.Var.{u(t, ·)}

= C1 ε (τ ′ − τ)‖ϕx‖L∞ · sup
t∈[τ,τ ′]

Tot.Var.{u(t, ·)}.

In view of (6.21), here we can choose the constant C1 = δ2/ε2.
Finally, let η be a convex entropy with entropy flux q. For any non-negative test

function ϕ ∈ C1c (R2) one has
∫

η(u(τ, x))ϕ(τ, x) dx −
∫

η(u(τ ′, x))ϕ(τ ′, x) dx +
∫ τ ′

τ

∫ {
η(u)ϕt + q(u)ϕx

}
dx dt

= −
∫ ∑

τ<tm�τ ′

(
η(u(tm, x)) − η(u(tm−, x))

)
ϕ(tm, x) dx

� −
∫ ∑

τ<tm�τ ′
Dη(u(tm, x))

(
u(tm, x) − u(tm−, x)

)
ϕ(tm, x) dx

� − δ2
(τ ′ − τ

ε

)
‖ϕx‖L∞ Lip(η) · sup

t∈[τ,τ ′]
Tot.Var.{u(t, ·)}

= − C1 ε (τ ′ − τ)‖ϕx‖L∞ Lip(η) · sup
t∈[τ,τ ′]

Tot.Var.{u(t, ·)},
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where the first inequality follows from the convexity of η, by (6.14).

7. Numerical Implementation

In this last section we discuss details of the post-processing algorithm, and
present a numerical simulation.

STEP 1 of the algorithm, computing the total variation of the numerical solution
u(t, ·), is entirely straightforward.

STEP 2, identifying the location of the large shocks, requires more attention.
Given a pair of constants M > 0 and σ >> ε > 0, we first identify regions where
the total variation of u is large. For this purpose, we introduce

Definition 2. For a given function u : [0, T ]×R �→ R
n , the points (t, x) such that

min
{
Tot.Var.

{
u(t, ·); [x − σ, x + ε]},

Tot.Var.
{
u(t, ·); [x − ε, x + σ ]}

}
> Mσ (7.1)

will be called flagged points.

Notice that, by definition, the variation of u(t, ·) on a small interval to the left
or to the right of a flagged point must be large. Roughly speaking, the following
result shows that, outside flagged points, solutions are approximately Lipschitz
continuous with constant 2M .

Lemma 5. Assume that all points (t, x) with x ∈ [a, b] are not flagged. Then

|u(t, a) − u(t, b)| �
(
1 + b − a

σ + ε

)
2σM. (7.2)

Proof. 1. By assumption, we can split the interval as [a, b] = I+ ∪ I−, where
I+, I− are two disjoint sets with the following property. Setting

Jx =
{ [x − ε, x + σ ] if x ∈ I+,

[x − σ, x + ε] if x ∈ I−,

one has

Tot.Var.{u(t, ·); Jx } � σM for all x ∈ [a, b].
2. We claim that every subinterval [c, d] ⊆ [a, b] with length d − c � σ + ε

can be covered by two of the intervals Jx . Indeed, three cases can arise:
CASE 1: c + ε ∈ I+. Then [c, d] ⊆ Jc+ε .
CASE 2: d − ε ∈ I−. Then [c, d] ⊆ Jd−ε .
CASE 3: c + ε ∈ I− and d − ε ∈ I+. Then we can find to points c + ε � x <

y � d − ε, such that

y − x < ε, x ∈ I−, y ∈ I+.
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In this case, [c, d] ⊆ Jx ∪ Jy , proving our claim.
3. To complete the proof, we cover [a, b] with finitely many intervals [ci , di ],

i = 1, . . . , N , such that

N � 1 + b − a

σ + ε
, di − ci � σ + ε for all i = 1, . . . , N ,

By the previous construction, for every i we have that

Tot.Var.
{
u(t, ·); [ci , di ]

}
� 2Mσ.

Therefore, the total variation of u(t, ·) over [a, b] is bounded by 2NσM . This yields
(7.2). 
�

Having defined the setF ⊆ [0, T ]×R of all flagged points, for each t j = jε ∈
[0, T ], j = 0, 1, . . . , ν, we denote by

F j
.= {x ∈ R; (t j , x) ∈ F}

the set of flagged points at time t j .
For every time t j , we identify intervals [a, b] such that b − a � δ

.= ε2/3 and
moreover

a ∈ F j , b ∈ F j , F j ∩ [a − ρ, a[= F j ∩ ]b, b + ρ] = ∅.

In other words, the points (t j , a) and (t j , b) are flagged, but points to the left of a
and to the right of b are not flagged.

Each such interval [a, b] locates a possible isolated shock at time t j . To check
if this shock can be traced over the entire interval [t j , t j+1], we check if there exists
an interval [c, d] satisfying the same properties at time t = t j+1, and moreover

[c, d] ⊂ [a + λ−h , b + λ+h].
In the positive case, we approximate the shock location with a straight line as
follows:

γ (t) = x0 + λ(t − t j ), t ∈ [t j , t j+1].
Here we choose x0, λ so that

x0 = γ (t j ) = a + b

2
, γ (t j+1) = c + d

2
.

We then consider the polygonal regions Γ , Δl , Δ′
r defined as in (5.3). If the

two inequalities (5.4), (5.5) are both satisfied, we say that the parallelogram

Γ =
{
(t, x); t ∈ [t j , t j+1], x0 − δ + (t − t j )λ � x � x0 + δ + (t − t j )λ

}
,

traces the shock. The trapezoid

Δ′ =
{
(t, x); t ∈ [t j , t j+1], a′ + λ+(t − t j ) � x � b′ + λ−(t − t j )

}
,
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where

a′ .= x0 − ρ − δ − (λ+ − λ−)h, b′ .= x0 + ρ + δ + (λ+ − λ−)h,

is then insertedwithin the list of trapezoidsΔ( j�) in (5.6), containing a traced shock.
On the other hand, if one of the inequalities (5.4), (5.5) fails, the shock is not traced.

STEP 3 of the algorithm provides a covering of each domain

(
[t j , t j+1] × R

)
\
N ′( j)⋃
�=1

Δ( j�), j = 0, 1, . . . , ν − 1,

with finitely many trapezoids Δ jk as in (5.7). This step is straightforward. The
algorithm terminates by computing the constants κ j in (5.8), which provide an
upper bound on the oscillation of u on each Δ jk , k = 1, . . . , N ( j).

Example. We consider a model of isentropic gas dynamics in Lagrangian coordi-
nates. Using a shifted system of coordinates, this can be written as

⎧⎪⎨
⎪⎩

vt − ux + vx = 0,

ut +
(

1

2v2

)

x
+ ux = 0.

(7.3)

Here u is the velocity of the gas, while v denotes the specific volume. By the choice
of coordinates, the characteristic speeds are

λ± = 1 ± v−3/2.

In particular, when v � 1, one has λ(v) ∈ [λ−, λ+] .= [0, 2]. We consider the
Cauchy problem with piecewise constant initial data

v(0, x) =
⎧
⎨
⎩
2 if x < 0,
3 if 0 < x < 1/2,
1 if x > 1/2,

u(0, x) = 0. (7.4)

The exact solution is shown in Fig. 8.

We compute an approximate solution using the upwind schemewithmesh sizes

Δx = ε = 0.0005, Δt = ε

2
= 0.00025.

The profiles of the two components of the solution, at the final time T = 1.5, are
shown in Fig. 9.

To illustrate how the post-processing algorithm works, in Fig. 10, left, we plot
the set of flagged points. These are computed according to Definition 2, choosing
σ = 0.0063 and M = 25. In Fig. 10, right, we identify the shocks that can be traced
on each time interval [t j , t j+1]. Here κ ′ = 0.1, σmin = 0.4. Notice that, according
to our previous construction, each trapezoid Δ( j�) around a traced shock will have
the form

Δ( j�) =
{
(t, x); t ∈ [t j , t j+1], x j� − δ − ρ − 2h
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t

t*

x1/20

Fig. 8. A sketch of the exact solution to (7.3), (7.4), containing two centered rarefaction
waves and two shocks, interacting at time t∗
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Fig. 9. The components of the solution at the terminal time T = 1.5, computed by the
upwind scheme. Above: the specific volume v(T, ·). Below: the velocity u(T, ·). The dotted
lines show the initial data

+2(t − t j ) � x � x j� + δ + ρ + 2h
}
.

Indeed, this is obtained from (4.3), (4.4), with

a′ = x j� − δ − ρ − 2h, b′ = x j� + δ + ρ + 2h, λ− = 0, λ+ = 2.

Finally, in Fig. 11 we plot an approximate graph of the function

κ(t) = κ j
.= max

1�k�N ( j)
Osc.{u; Δ jk} if t ∈ [t j , t j+1 [. (7.5)

One can think of κ(t) as the maximum oscillation of the numerical solution u(t, ·)
on domains of diameter O(1) · ε1/3, outside the large traced shocks. In view of
(5.9), this function κ(·) determines the rate at which the distance ‖u(t, ·) − St ū‖L1

between the approximate and the exact solution increases in time. Notice that κ(t)
is large for t ≈ 0, when the main contribution to the error comes from the two
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Fig. 11. An approximate computation of the function κ(t) defined at (7.5), determining the
error rate

centered rarefactions. As time increases, the rarefactions decay, and the value of
κ(t) decays as well. As t approaches the interaction time t∗, the two shocks cannot
be individually traced. As a consequence, the value of κ(t) suddenly becomes very
large. Finally, when the shocks move away from each other and can be traced once
again, we see that κ(t) reverts to a small value.
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