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Abstract

This paper is concerned with a posteriori error bounds for a wide class of
numerical schemes, for n x n hyperbolic conservation laws in one space dimension.
These estimates are achieved by a “post-processing algorithm”, checking that the
numerical solution retains small total variation, and computing its oscillation on
suitable subdomains. The results apply, in particular, to solutions obtained by the
Godunov or the Lax—Friedrichs scheme, backward Euler approximations, and the
method of periodic smoothing. Some numerical implementations are presented.

1. Introduction

Consider the Cauchy problem for a strictly hyperbolic system of conservation
laws in one space dimension:

ur+ fu)yx =0, (1.1)
u(0,x) = u(x). (1.2)

For initial data with small total variation, it is well known that this problem has a
unique entropy-weak solution, depending Lipschitz continuously on the initial data
it in the L' norm [8,9,22,26].

A closely related question is the stability and convergence of various types
of approximate solutions. Estimates on the convergence rate for a deterministic
version of the Glimm scheme [24,28] were derived in [18], and more recently in
[1,6] for a wider class of flux functions. For vanishing viscosity approximations

U+ fU)y = €utyy, (1.3)

uniform BV bounds, stability and convergence as ¢ — 0 were proved in [5], while
convergence rates were later established in [13,19]. Further convergence results
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were proved by Bianchini for approximate solutions constructed by the semidiscrete
(upwind) Godunov scheme [3], and by the Jin-Xin relaxation model [4].

A major remaining open problem is the convergence of fully discrete approxi-
mations, such as the Lax—Friedrichs or the Godunov scheme [25-27]. Indeed, the
convergence results known for these numerical algorithms rely on compensated
compactness [23]. They apply only to 2 x 2 systems, and do not yield information
about uniqueness or convergence rates.

For a particular class of systems, the convergence of Godunov approximations
was proved in [14], relying on uniform bounds on the total variation. For general
hyperbolic systems, however, it is known that the Godunov scheme is unstable
with respect to the BV norm. In [2] an example was constructed, showing that the
total variation of a numerical solution can become arbitrarily large as t — +o00.
Indeed, if the exact solution contains a shock with speed close to a rational multiple
of the grid size Ax/At, this can cause resonances, producing a large amount of
downstream oscillations.

Without an a priori bound on the total variation, one cannot compare an ap-
proximate solution with trajectories of the semigroup of exact solutions, and all the
uniqueness arguments developed in [12,15,16] break down. The counterexample
in [2] can thus be regarded as a fundamental obstruction toward the derivation of a
priori error estimates for fully discrete numerical schemes.

To make progress, in this paper we shift our point of view, focusing on a pos-
teriori error estimates. Namely, we assume that an approximate solution to (1.1),
(1.2) has been constructed by some numerical algorithm. Based on some additional
information about the approximate solution, we seek an estimate on the difference

[u*PPOX(T, ) — uE YT, ) L1 Ry (1.4)

For any sufficiently small BV initial data u, it is well known that the unique
entropy-admissible BV solution of (1.1), (1.2) has two key properties [8]:

(i) The total variation of u(z, -) remains uniformly small, for all = 0.

(i) Given a threshold p > 0, one can identify a finite number of curves in the 7-x
plane (shocks or contact discontinuities) such that, outside these curves, the
solution has local oscillation < p.

The counterexample in [2] shows that, for an approximation constructed by the
Godunov scheme, the property (i) sometimes can fail. Roughly speaking, the result
we want to prove in the present paper is the following: let #*PP™* be an approximate
solution produced by a conservative scheme which dissipates entropy, and assume
that

(i’) The total variation of u?PP™X(¢, .) remains small, for all ¢ € [0, T'];
(ii’) Outside a finite number of narrow strips in the domain [0, 7] x R, the local
oscillation of ©#?PP™* remains small.

Then the L! distance (1.4) is small.

We emphasize that both conditions (i'), (ii’) refer to the output of a numerical
computation. In (ii"), we expect that the finitely many strips where the oscillation
of u®PPr ig large will have the form
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where the curve ¢ — y;(¢) traces the approximate location of a large shock (or a
contact discontinuity) in the exact solution. It is also worth noting that our estimates
do not require any regularity of the exact solution. In particular, #®*** may well
have a dense set of discontinuities.

Our goal is to prove error bounds which can be applied to a wide class of
approximation schemes. For future reference, we collect the basic assumptions on
the system (1.1), and the properties of the approximate solutions that will be used.

(A1) The system (1.1) is strictly hyperbolic, with each characteristic field being
either linearly degenerate or genuinely nonlinear. It generates a semigroup of
entropy weak solutions S : D x [0, +oo[+— D, where D C LY(R; R") is a
domain containing all functions with sufficiently small total variation, namely

ieL'(R; R"), Tot.Var.{u} <8 = ueD. (1.5)
There exist Lipschitz constants Cyp, L such that

I1S;u — Ssullp1 < Co - Tot.Var.{u} - |t —s|, (1.6)
Siu — Svllpr = Lollu — vllp (1.7)

forallu,v e Dand 0 < s < t.
(A2) For each genuinely nonlinear field, there exists a strictly convex entropy
n, with entropy flux g, which selects the admissible shocks.

We recall that the existence of a semigroup generated by (1.1) was proved in [5, 10,
11,17], in various degrees of generality. In particular, it is known that the trajectories
of the semigroup are the unique limits of vanishing viscosity approximations. To
explain the additional assumption (A2), let u™~, u™ be any two states connected by
a genuinely nonlinear shock with speed A, so that following the Rankine—Hugoniot
conditions hold:

At —uT) = f) = fw).

Then, if the shock is NOT admissible, we require that the corresponding entropy
should be strictly increasing, namely

(™) = n@®) = (gw™) — q™h)) > colu™ —uP, (1.8)

for some constant c¢o > 0.
In what follows, we shall use test functions ¢ € C, (Rz) which are Lipschitz
continuous with compact support, with Sobolev norm

lpllwree = max{ligliee, llgeliee, lexllie}. (1.9)

Given ¢ > 0, we consider approximate solutions « : [0, T] — D of the system of
conservation laws (1.1), taking values inside the domain of the semigroup S. We as-
sume that these solutions are inductively defined for a discrete set of times 7; = je,
J=0,1,2... Fort € [tj, Tj41[ one can then define u(z, -) to be the exact solution
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to (1.1) which coincides with u(t}, -) at time ¢ = 7;. In alternative, sometimes it is
more convenient to simply define u(z, -) = u(z;, -) fort € [z}, Tj41[.

While we do not specify any particular method to construct these approximate
solutions, two basic properties will be assumed. The first is the Lipschitz continuity
of themap t — u(t,-) € L' (R; R"), restricted to the discrete set of times T . The
second is an approximate weak form of the conservation equations and the entropy
conditions. In what follows, L, C denote suitable constants. Moreover, the notation
eN={je; j=0,1,2,...} will be used.

(AL) Forevery0 < t <1t/ < T with 1,1’ € €N, one has

lu(z',) —u(z, ) < L(x'—7)- sup Tot.Var.{u(r,)}. (1.10)

telr, 7]

(P;) Forevery 0 £ t < v/ £ T with 7,7/ € ¢N, and every test function
@€ Cc1 (R?), one has

’/u(r,x)w(r,x)dx —/u(r’,x)<p(r,x)dx

+/ f{uw, + f(uw)ex} dx dr

< Celgllyio - (r' = 1)+ sup Tot.Var.{u(t,-)}. (1.11)

te[r, ]

Moreover, assuming ¢ = 0, one has the entropy inequality

/n(u(r, x))w(f,x)dx—/n(u(r’,x))w(f/,x)dx

+/ /{n(u)qot + g gy} dx dr
2 —Cellglyre - (r' =)+ sup Tot.Var{u(r,)}. (1.12)

te[r,1’]
We remark that, for an exact solution, the left hand side of (1.11) would be zero,
while the left hand side of (1.12) would be non-negative. Since here we are dealing
with e-approximate solutions, we allow an error that decreases with &, but increases
with the Lipschitz constant of the test function ¢.
In the present paper, two main questions will be addressed:

— Given an approximate solution u of (1.1), (1.2) satisfying (AL) and (P;), can
one estimate the distance between u and the exact solution?
— What kind of approximation schemes satisfy the conditions (AL) and (P;)?

To answer the first question, using a technique introduced in [7], two types of
estimates will be derived:

— On regions where the oscillation is small, the approximate solution u is com-
pared with the solution to a linear hyperbolic problem with constant coefficients.

— Near a point where a large jump occurs, u is compared with the solution to a
Riemann problem.
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We recall that, for exact solutions, this technique yields the identity u(¢, -) = S:u,
proving that an entropy weak solution is unique and coincides with the correspond-
ing semigroup trajectory [7,8,12,15,16]. In Sections 2 to 4 we develop similar
estimates in the case of an approximate solution u, where the right hand side of
(1.11), (1.12) is not zero, but vanishes of order O(1) - €||¢||yy1,00. This will provide
a bound on the difference (1.4).

An important aspect must be mentioned here. The uniqueness proofs in [12,
15,16] require some additional regularity condition, such as “Tame Variation” or
“Tame Oscillation”. These conditions are always satisfied by solutions constructed
by front tracking or by the Glimm scheme, but may fail for a numerically approxi-
mated solution. To derive rigorous error bounds, we must check that an equivalent
condition is satisfied.

For a numerically computed approximation, in Section 5 we introduce a post-
processing algorithm, which accomplishes three main tasks:

(1) Check that the total variation remains bounded.

(2) Trace the location of a finite number of large shocks.

(3) Check that the oscillation of the solution remains small, on a finite number of
polygonal domains, away from the large shocks.

Step (1) is the simplest, yet the crucial one. If the total variation becomes too large,
at some time ¢ the approximate solution u(z, -) will fall outside the domain D of
the semigroup. When this happens, the algorithm stops and no error estimate is
achieved.

In the favorable case where the total variation remains small, the algorithm
can then proceed with steps (2) and (3). To implement these steps, one needs to
introduce certain parameters, such as the minimum size of the shocks which will
be traced, and the length of the time intervals [¢;, #; 1] used in a new partition of
[0, T']. For every choice of these parameter values, the algorithm yields an error
bound. In practice, the accuracy of this estimate largely depends on the choice of
these values. At the end of Section 3, and then again at the end of Section 5, we
discuss how to choose these parameters, and the expected order of magnitude of
the corresponding error bounds.

To complete our program, in Section 6 we consider various approximation
schemes, and prove that they all satisfy the properties (AL) and (P,). In particular,
our analysis applies to: (i) Godunov’s scheme, (ii) the Lax—Friedrichs’ scheme,
(iii) backward Euler approximations, and (iv) approximate solutions obtained by
periodic mollifications.

Finally, in Section 7, we discuss details of the post-processing algorithm, and
present a numerical simulation. For the “p-system”, describing isentropic gas dy-
namics in Lagrangian coordinates, we consider initial data generating two centered
rarefactions, and two shocks that eventually cross each other. After computing an
approximate solution by the upwind scheme, we implement the post-processing
algorithm. The two shocks are traced (as long as they remain well separated), and
the remaining domain is covered by trapezoids where the numerical solution has
small oscillation (away from interaction times).
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2. Solutions with Small Oscillation

In this section we begin by studying the case where no large shocks are present.
Letu = u(¢, x) be an approximate solution which satisfies (AL) and (P, ). Consider
an open interval ]a, b[, fix a point £ witha < & < b and set

A= Df(u(,§)). 2.1
Assuming that all characteristic speeds satisfy
AT o< M(w) < AT, i=1,...n, (2.2)
fix T € eN and consider the trapezoidal domain
A= {(r,x); tel0,7], alt)=a+rTt < x < b+rt= b(t)}. 2.3)

Following an approach introduced in [7], error estimates will be obtained by com-
paring u with the solution w of the linear hyperbolic system with constant coeffi-
cients

wy + Awy, =0, w(0, x) = u(0, x). 2.4)

For this purpose, let {¢1, ..., ¢,}and {rq, ..., r,} be dual bases of left and right
eigenvectors of the matrix A, normalized so that

ril =1, Gorj =268 = {(1) ﬁi;? 2.5)
Let A1, ..., A, be the corresponding eigenvalues of A. For each i, consider the
scalar functions
ui(t,x) =4; -u(t,x), w;(t, x) =4¢; -w(t, x).
By (2.4), w; solves the scalar linear equation
wi; +Aw =0, w; (0, x) = u; (0, x).
Foreachi =1, ..., n, we will estimate the difference u; (z, -) — w;(z, -).

As a preliminary to this, consider a BV function g : [«, 8] +— R. Since g is
regulated, it admits left and right limits g(x—), g(x+) at every point x. By possibly
modifying g on the countable set where it has jumps, we can assume that

gx+)-gx—) =0 = gx)=0. (2.6)

We can then select countably many maximal open subintervals la;, b;[ C [, B]
where g has constant sign. Namely,

(G) g has constant sign on each |a;, b;[, and changes sign on every neighbor-
hood of each endpoint a;, b; (unless a; = a or b; = B). Moreover, g(x) =0
for x ¢ Uj[aj,bj] (Fig. 1).
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Fig. 1. The test function ¢ defined at (2.7), with Lipschitz constant e=2/3

For a given ¢ > 0, consider the test function with Lipschitz constant ||y |~ =
-2/3
&

. x—aj bj—x . . .
min {1, arore iyl if x €[a;, bjlandgis positive on Ja;, b;[,

2.7

P(x) = max{_l aj—x x—bj

s oA T} if xelaj, bj] and g is negative on Ja;, b;[,
e o2/ ! js 0.

0, ifxgéUj[aj,bj].

Lemma 1. Let g : [, B] — R be as above. If g is strictly positive (or strictly
negative) for all x € [, B], then

pe2s 8
/ gl dx < f 6 () g(x) dx. 2.8)

+e2/3
On the other hand, if g(§) = 0 for some & € [, B], then

B p
/ lg(x)|dx < / ¢ (x) g(x)dx +2¢* - Tot.Var.{g; [, B1}. (2.9)

Proof. 1. If g has always the same sign, then by construction ¢ (x) g(x) = 0 for
all x, while ¢ (x) = sign(g(x)) for x € [a + §2/3, B — £2/3]. Hence the estimate
(2.8) is trivially true.

2. If g changes sign, consider the maximal subintervals [a;, b;] where g has a
constant sign, as in (G). We then have the estimate

B bj
/ lg(x)|dx E / lg(x)|dx
[04 j aj

Y (bj—a)) sup [g)

bj—a; <2623 aj<x<b;

[IA
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b_,‘—SZ/S aj+e bj
+ Y / +/ +/ lg(x)] dx
aj+e23 Ja; b;—e2/3

bj—aj;2£2/3 J
2/3 P
< 2823 Z Tot.Var.{g; la;, b;1} + / ¢ (x) g(x)dx
bj—a; <2623 “

+2673 . 3 sup |g(x)|

bj—a; >22/3 % <x<bj

2/3

B
= / ¢ (x) g(x) dx +2¢* - Tot.Var.{g; [o, B1}.

O

Remark 1. Here and in the sequel, one could prove similar results by replacing the
exponent 2/3 with any number y € ]0, 1[, and working with test functions which
are Lipschitz continuous with constant e 7". Our choice of y = 2/3 is motivated
by the heuristic expectation that, in most cases, this should yield the sharpest error
bounds. See Remark 2 for further discussion of this point.

We can now state the main result of this section, providing an error estimate on
the trapezoidal domain (2.3).

Lemma 2. There exists a constant Cy such that the following holds. For a given
& > 0, let u be an approximate solution of (1.1) that satisfies the property (P;). Let
A be the trapezoid in (2.3), and let w be the solution to the linear Cauchy problem
(2.4), with A as in (2.1). Then

b+Ta~—e2/3
/ |u(r,x) —w(T, x)|dx
a+1’)»++82/3

< C (‘( - sup |u(t,x) —u(0,8)| + P+ 82/3)
(t.x)eA

- sup Tot.Var.{u(t, -)}. (2.10)

tel0,7]

Proof. 1.Fixi € {1,...,n}.Ontheinterval [, 8] = [a4+TAT, b+TA ], consider
the scalar function

gilx)=¢; - [u(t,x) — w(t,x)] =¥ - [u(r,x) —u0,x — A,-r)]. 2.11)

Let ¢; : [a, B] — [—1, 1] be the function with Lipschitz constant [|¢;||L~ =
e72/3 defined as in (2.7) with g replaced by g;. We then extend ¢; to the entire real
line by setting ¢; (x) = 0 if x ¢ [, B], and consider a test function ¢; = ¢; (¢, x)
such that

@i(t,x) = ¢i(x — 2t — 1)) ¢ for 1€[0,7], xeR.  (2.12)
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2. Observing that A; € [0, 1] and [|¢; [ly1.0 = |€;]7%/3, by (1.11) we now
obtain

‘/(pi(o,x)u(o,x) dx —/(pi(t,x)u(r, x)dx

+/ /{Wpi,t + fw)@i .} dxdr
0

< Cellgillyrio - T+ sup Tot.Var.{u(t, )}
t€(0,7]
< C'e'Pr. sup Tot.Varfu(t,-)). (2.13)

tel0,7]

3. For future use we observe that, if x — u(x) is Lipschitz and u* = u(&) for
some £ € [x1, x2], then

X2 X2
/ 0 (f Gy — hitty)| dx = /
X1 X

1

dx

6 [Df () — Df (u*)]uy

x2
< ¢ sup |u(x>—u*|-/ x| dx.
X

X <X<x2 1

Here Cy is a constant depending only on the function f. By an approximation
argument, for any BV function x — u(x) we conclude that

Tot.Var.{@i (f(u) — )»,-u); [x1, X2]}
< Co( sup  |u(x) — u*l) - Tot.Var.{u; [x1,x2]}. (2.14)
X]<x<x2

4. Since w is a solution to the linear equation (2.4), the choice of the test function
@; in (2.12) implies

/goi(O,x)u(O,x) dx = /(pi(O,x) w(0, x)dx

= /(pi(r, x) w(t, x)dx. (2.15)

Moreover, calling u* = u(0, &), integrating by parts and using (2.14) together with
the bound ¢; (x) € [—1, 1], we obtain

‘fr /{M(Pi,t + fu)gix}dxdt

0

‘/Tf[f(u) — hiu] @i dx dt
0

:/Tot.Var.{K,'(f(u)fAiu); [a+ A2t 4+ — DA, b+)»_t+(tft))»i]} i I dt
0

A

<Co sup |u(t,x)—u*|~/ Tot.Var.{u(t,-); ]a+m+,b+zr[}dr. (2.16)
(t,x)eA 0
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5. By (2.15), combining (2.13) with (2.16) we conclude that

b+tA™
/ ¢i(x)fi[w(f, X) —u(r,x)] dx

+TAt

= /(p,-(O,x)u(O, x)dx —/(pi(r,x)u(t,x) dx

‘/0 /{”‘Pi,t + fu)gi x| dx dr

A

+ &, 2.17)

where

& = ’/(pi(O, x)u(0, x) dx —f(pi(t,x)u(r,x)dx

+/ /{W)i,z + fw)@ix ) dx dr
0

< Cellgllwis - T+ sup Tot.Var.{u(t, -)}. (2.18)
tel0,7]

Notice that the above inequality follows from (1.11). In addition, the first term on
the right hand side of (2.17) is estimated by (2.16).

6. If the function g; (x) = ¢;[w(t, x) — u(r, x)| always keeps the same sign,
we now use (2.8). If it changes sign at least once, we use (2.9). Combining the two
cases, by (2.16) and (2.17) we deduce that

bt
/ e[z, %) - u( ]| dx
a+trt+e?/3

T

< Co sup |ut,x) —u*|-/ Tot.Var.{u(t, ): la+ it b+m—[}dt+5,~
(t,x)eA 0

+282/3. Tot.Var.[gi; la+ 2T, b+ r)ﬁ[]. (2.19)

7. Recalling (2.5), for any vector v = ), c¢;r; € R" one has

n n
ol £ > el =) 1t -vl.
i=1 i=1

We use this inequality with v = w(z, x) — u(z, x). Using (2.11) to compute the

total variation of g;, summing the inequalities (2.18), (2.19) fori =1, ...,n, we
obtain
b+ta~—gl/3
/ w(t, x) —u(r, x)’ dx
a+tat4el/3

<nCy sup |u(t,x)—u"|-7- sup Tot.Var.{u(t, ) Ja+ At b+ tk_[}
(t,x)eA tel0,1]

+nCellgllyr - T+ sup Tot.Var.{u(t, )} +2¢*? (Z |z,-|>
t€[0,7] X

1
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tJ+1 777777
Ak A h
tj- S S
Ak A k1 b, L
! / N
0 X

Fig. 2. Covering the strip [0, 7] x R with finitely many trapezoids A ;.

-(Tot.Var.{u(O, 9); la, bl} + Tot.Var.{u(z, ); [a + A", b+ rk‘]}).

This yields (2.10), for a suitable constant C1. O

3. Error Bounds for Solutions Without Large Shocks

Consider an approximate solution u = u(t, x) of (1.1), (1.2), constructed by a
numerical algorithm with time step € > 0, which satisfies the properties (AL) and
(P:). We fix a new time step & >> ¢, and split the interval [0, T] into subintervals
[tj,tj41] with z; = j h. Throughout what follows we choose h ~ el/3, say

coe'P < h < 3 (3.1)

for some constant ¢g > 0, and assume that both s and T are integer multiples of €.
To simplify the discussion, we also assume that 7 = vh for some integer v. Notice
that, in the general case, one can consider the time 7’ such that

T"=vh £ T < (v+Dh
for some integer v. By (1.10), the difference can then be estimated by

lu(T,-) —u(T’,)|pr < Lh- sup Tot.Var.{u(t,-)} = O(1)-&'/3.

1€[0,T]
As shown in Fig. 2, for any given j = 1,2,...,v — 1, we cover the real line
with finitely many intervals laji, bjr[, k =1, ..., N(j), so that

—00 =aj1 <ajr<bji<ajz<--<ajng <bjng-1 <bjn) =+00.

We then cover each strip [#;, #;41] x R with the trapezoids Ajx, k = 1,..., N(j).
For convenience, these will be expressed as the convex closure of their four vertices:

Aji = CO{(fﬁ ajp), (tj,bj), (tjs1,aje+hat +e23),

(ti41. bjk +ha™ — 52/3)}.
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Equivalently:
Ajp = {(l‘,x); t € [tj, tjt1ls
tj+;1_ “aji+ _htj (aje+hat +e*) S x
= tj+1h_tbjk+t_htj (bjk +hr~ —52/3)}. (3.2)

By suitably choosing the points a i, b i, we can assume that the intervals
Tio=laj+mF +&5, by +h= =&, k=1,...,N())
form a partition of R. Namely
bik+h~ — e =aj 1 +hat + &2, k=1,...,N()—1. 3.3)
Furthermore, by choosing the bases of all trapezoids to have length
bjk —ajr > 2h(AT — A7), (3.4)

we can assume that each point (¢, x) € [#;, ¢j41] x R is contained in at least one
and in not more than two of these trapezoids.
Next, we recall that the oscillation of u over a set A is defined as

Osc.fu; Ay = sup  |u(t,x) —u(t,y)l.
(t,x),(s,y)eA

For each fixed j € {1, ..., v}, the maximum oscillation of u over all trapezoids
A j will be denoted by
ki = max Osciu; Aii. 3.5)
T kNG fus- A}
Let now S : [0, +0o[ XD + D be the Lipschitz semigroup generated by the
hyperbolic system (1.1), as in (1.6), (1.7). In particular, ¢ — S;u yields the exact

solution to the Cauchy problem (1.1), (1.2). As proved in [7,8], for any approximate
solution u# one has the error estimate

v—1
lu(T.) = Srall < Lo- Y |utten, ) = Stz )| - G6)
j=0

For each j, we will show that the corresponding term on the right hand side of (3.6)
can be estimated using (2.10).

Consider the covering of the strip [}, #;4+1] x R in terms of the trapezoids A j,
introduced at (3.2). As in (2.4), fork = 1, ..., N(j) we shall denote by w® the
solution to the linearized problem with constant coefficients

w; + Awy =0, w(tj, ) = u(t), -), A=Df(ut;, &) (37

for some given points & € laji, bjk [.
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Let? Ek) be the ith left eigenvector of the above matrix A, normalized as in (2.5).
Using (2.19) on each trapezoid A j; we obtain

/*bjk+hjk—82/3
ajk+hj)»++82/3

S Co-Osc{u; Aj}

ZE") utjprx) — w® (41, x)]‘ dx

Lj+1
-/’ Tot.Var.{u(t, ): ]ajk—f-(t—tj))ﬁ,bjk+(t—tj))»_[}dt
t

J

k k
/%( )(tj,x)u(fj,X)dx_/(pi( M1 Outjr,x) da

+// {ugoi(’];) + f(u)<pi(’k;] dx dt
Ajk

+262 - TotVar {6 - (. ;- laje. bel}

+

+2¢%/3 .Tot.Var.{e,- cultitr, ); lajx +hia™, b +hjr]}
= Ajk + Bix + Cix + Djy. (3.8)

For notational convenience, call y jx the characteristic function of the interval
[ajk +hjrt 423, bjx+hjaA™ —&?/3]. Our next goal is to estimate the quantity

+00
E; =/
—0oQ

This can of course be achieved by summing the terms on the right hand side of (3.8)
overalli =1,...,nandk =1, ..., N(j). In working towards this goal, we recall
the key assumption that every point (¢, x) € [¢;,7;41] x R belongs to one and no
more than two of the trapezoids A ;. More precisely, we have the implication

w(tjpr, x) =y w® (0, 0) - x| dr. (3.9)

k

k—Kk| =2 - A NAj =0 (3.10)
Recalling (3.5), for a fixed i we thus obtain

N(j) e
> Ay £ C()Kj-/ 2 Tot.Var.{u(t, )} dt, (3.11)
k=1 !

j
and

N(j)
Z Cix < 4/ Tot.Var.{u(t}, )},
k=1

A

N(@j)
> Dy < 48?7 Tot.Var{u(tj1. )} (3.12)
k=1

N



370 ALBERTO BRESSAN, MARIA TERESA CHIRI & WEN SHEN

The estimate for ) « Bjk is a bit more delicate, because if we use (1.11) separately
on each subdomain A ji, the error term on the right side would be multiplied by
N (j), which can be a very large number.

For this reason, we argue as follows. For each i € {1, ..., n}, we consider test
functions ¢, @; which satisfy, for r € [¢;, 1j 411,

(p(t x) — (pl(k)(t, x) lf (t,x) (S Ajkv k even,
o 0 otherwise.

Qi(t, x) = <pl.(k)(t,x) if (t,x) € Ajx, kodd,
Y 0 otherwise.

For convenience, we denote by ¢, an upper bound for the norm of all left eigen-
vectors £; = £; (u) of all matrices A(u) = Df (u), normalized as in (2.5). With this
notation we have

l@illwico < Lonax - €723, @i llwice < lmax -~ 23 (3.13)

Applying (1.11) to the test function ¢;, then to ¢;, we obtain

Z Bix < Cehe 3ty - sup Tot.Var.{u(t, -)},

k even 1€ltj,tjt1]

Z Bix < Cehe *Plpay - sup Tot. Var.{u(t, -)}.

k odd teftj,tjy1]

Summing over k, we thus obtain

N())
> Bix £ 2Che'Plpay - sup  Tot.Var.{u(t,)}. (3.14)
k=1 l€[lj,lj+1]

All together, the inequalities (3.11), (3.12), and (3.14) yield

/+oo
—00

u(tjy1, x) — Z w® (01, %) - x| dx

k
Lj+1
< Co 2m<j/ Tot.Var.{u(t, )} df + 4ne*/>Tot.Var.{u(t;, )}
Zj
+4ne*3Tot.Var.{u(tj 41, )} +2Ch '/ lrax
sup  Tot.Var.{u(t, )}. (3.15)
te[t_/,tj+1]

Next, we replace the approximate solution u with the exact solution u®**!(z; +
s,-) = Ssu(t;, -) of (1.1) having the same data at ¢ = ¢;. As proved in [7], with the
same notation used in (3.9), as long as u(¢;, -) € D remains in the domain of the
semigroup, one has

+00
/ u™ N (b, x) — Z w® (41, %) - x| dx
NS p
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< Cyh max Osc.{u(ti,); A; -Tot.Var.{u(t;, )}, (3.16
= L2 <l§k§N(j) { (] ) jk }) { (] )} ( )
for a suitable constant C,.

Combining (3.15) with (3.16) and recalling (3.5), we obtain

+00
/ ’”(tj+lax) - (Stj+1—tj”(tj»'))(x)’dx

§C3(th+82/3+h81/3)~ sup  Tot.Var.{u(t,)}.  (3.17)

tE[Ij ,t_j+|]
Recalling that & &~ ¢!/3 and T = ve!/3, from the above analysis we obtain

Theorem 1. Let the basic assumptions (A1), (A2) hold. Let t +— u(t,-) € D be an
approximate solution to the Cauchy problem (1.1), (1.2), taking values in the domain
D of the semigroup and satisfying (AL) and (P;). Then, for some constant Cy, the
following holds: assume that the strip [0, T] x R can be covered by trapezoids A j,
j=0,...,v—=1k=1,...N(j) as in (3.2), so that (3.3)—(3.5) hold. Then the
difference between u(T, -) and the exact solution Stu is bounded by

v—1

lu(T, ) — Sritlly1 < Cq 2T+Z/<,- '3 sup Tot.Var.{u(r,))3.18)
00 1€[0,T]

Proof. Let L be the Lipschitz constant of the semigroup in (1.7). From (3.6) and
(3.17) it now follows that

v—1
() = Srilp £ Low Y futjr, ) = Syt
=0
v—1
< 1y-Y Gy (th+82/3+h81/3 . sup  Tot.Var.{u(, )
=0 teltjitjl
v—1
.S LyCy- 2T+Z/<j gl/3. sup Tot.Var.{u(t,~)}. (3.19)
) 1€[0,T]
This yields (3.18), with C4 = LoCs. O

Remark 2. Based on the estimate (3.19), we seek to understand at which rate the
error in the approximate solution may approach zero, as ¢ — 0.

Having chosen h = ¢!/3, we can choose all bounded trapezoids Aj, 1 <k <
N(j), to be of diameter O(1) - ¢'/3. Moreover, by choosing every b j1 suitably
large and negative, and a; y(;) large and positive, we can assume that the solution
is nearly constant on the unbounded trapezoids A; | and A; y(;). Here and in the
sequel, the Landau symbol O(1) denotes a uniformly bounded quantity.

If the exact solution is Lipschitz continuous, we expect that the maximum
oscillation (3.5) will be of size x; = O(1) -el/3 for every j € {0,1,...,v—1}.In
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this case, as ¢ — 0 the quantity 27 + Z;zl k j remains uniformly bounded, and
the estimate (3.19) indicates that the error vanishes of order O(1) - g!/3.

Next, assume that the initial data & contains a jump, generating a centered
rarefaction wave of strength o. In this case, taking into account the decay caused
by genuine nonlinearity, we expect that the oscillation of u over a trapezoid A j; of

diameter O(1) - ¢!/3 will satisfy a bound of the form

1/3
Osc. {u(t,); Ay} = O(1) - min {a, gt—} . (3.20)
J
Recalling that #; = j81/3 and v = Te~ /3, this leads to

v v . Cell3
ZKj = me {0, JST} =0()-logv =0() - |logel. (3.21)
j=1 j=1

In this case, the estimate (3.19) would indicate that the error vanishes of order
o) - '/3 |log e|. The same should hold if the exact solution contains finitely
many centered rarefaction waves.

We emphasize, however, that this is only a heuristic expectation. For a numer-
ically computed solution, it needs to be confirmed by a post-processing algorithm,
which can actually provide a bound on the oscillations «; in (3.18).

4. Solutions with an Isolated Large Shock

The error estimates developed in the previous section are not effective for so-
lutions containing large shocks. Indeed, around a shock, the oscillation will be
large. As a consequence, even when the diameters of the trapezoids A j; in (3.2)
approach zero, the maximum oscillation «; in (3.5) will remain uniformly large.
For this reason, we do not expect that the right hand side of the error bound (3.18)
will approach zero as ¢ — 0. To cope with this problem, in this section we develop
additional tools to estimate the numerical error in a neighborhood of a shock.

Consider an approximate solution u, which satisfies (AL) and (P.). We seek a
sharper error bound, assuming that the oscillation of u is concentrated in a narrow
region of the form

r={eo: relo.n, - yol <3}, yO) =xo+ir. (1)
Of course, we expect that y (-) will trace the position of a large shock in the exact
solution. Here p, § > 0 are suitable parameters. Different choices of these values

will lead to different estimates. As a rule of thumb, it will be useful for the reader
to keep in mind their order of magnitude:

= g2/3, (4.2)
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0 \' T 1
a a X b b X

Fig. 3. The regions I}, I}, I introduced at (4.13) to trace a large shock, and the trapezoid
A at (4.4)

Referring to Fig. 3, we introduce the points

a= xg+A"h—38—p, a = a—1th,
(4.3)
b= xo+ATh+8§+p, b= b—Ar"h,
and consider the trapezoidal domain
4 = cof 0., 0.6, (@), (h,b)]
4.4)

- [(t,x); tel0,h], ad+rtt < x < b’—i—)ﬁt}.

Our basic assumption is that, outside the narrow strip I”, the oscillation of # remains
small. More precisely, consider the left and right domains

Ap = {(t,x); t€l0,h], @ +1Tt < x = XO—5+M},

Al = {(t,x); 1[0 h], xo4+8+r < x < b/+rt}, *)

and define
' = max {OSC.{M; A}, Ose.(u; A’,}}. (4.6)

Saying that
u” =u(0,x0—8), ut=u(0,x0+3), 4.7

the above definition of «’ implies
lu(t,x) —u=| < k' for (t,x) € A,

(4.8)

lu(t,x) —u™| < k' for (t,x) € AlL.

Assuming that «” is small, the following result provides a bound on the distance
between u and the exact solution, |lu(h, -) — Spit||1,1 ({45, restricted to the interval
la, b].
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Theorem 2. Lett +— u(t, -) € D be anapproximate solution to the Cauchy problem
(1.1), (1.2), taking values in the domain D of the semigroup, and satisfying (AL)
and (P ). Then, for some constant Cs, in the above setting we have the error bound

b ’ S 2/3
/ lu(h, x) — (Spit)(x)| dx < Cs-h (f+;</+p'(]:r )
. P

+Cs (px’ +hi + 5). (4.9)

Moreover, there exists a constant K| such that, if

"4 1/3
ot —u| >K1-(f+x’+"" ) , (4.10)

8 h

then the estimate (4.9) can be improved to

b ’
/ lu(h, x) — (Spi)(x)|dx < Cs-h (%+K’~|—p’(h+8>. (4.11)

Remark 3. It may seem surprising that the error bound (4.11), valid for large jumps,
is actually better than (4.9), which applies to small jumps. To understand what is
involved here, is useful to observe that if the strength 0 = |u™ — u™| is small,
it could be that this jump is tracing a centered rarefaction wave within the exact
solution, which gets approximated by a single jump by the numerical algorithm
(indeed, this is a common feature of front tracking approximations). If o is small
enough, the entropy produced by the jump is small, and the assumptions (1.11),
(1.12) can still be satisfied. This is a “worst-case scenario”: as shown in Fig. 4, the
corresponding L! error is O(1) - ho?. On the other hand, if the strength o of the
jump is large, the entropy dissipation assumption (1.12) rules out this possibility.
Therefore, the jump must trace an entropic shock in the exact solution.

Proof of Theorem 2. 1. As a first step, using (P.) we will provide a bound for the
error

et = pa) =it )| “.12)
As shown in Fig. 3, denote by I7, I3, and I the left, middle, and right domains

= {(t.x): t€[0.h], xely@®)—38—p, y@) -6}
Lw = {t,x); t €[0,h], x €[y@®) =6, y)+41}, (4.13)
L= {@x); t€[0,h], xely@®+68, y@)+8+pl}

Recalling (4.1), (4.3) and (4.4), we observe that the above definitions imply

I, =T, nHur,ur, c A.
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Given p > 0, consider a Lipschitz test function ¢ such that, for ¢t € [0, i], one
has

0 it =yl = 5+ p.
1 it -y < 6,
t, = 4.14
PED=N s k=0 19

if §<|x—y@®)|<3d+np.
0

Then choose any unit vector w € R” and set ¢ (¢, x) = ¢ (¢, x) w. By construction,
for t € [0, h] the test function ¢ vanishes outside the union I7 U I, U I',.. Notice
that

4|

1
loxlLe = —, lgillLe = —.
o P

Assuming that the approximate solution u satisfies (P), by (1.11), it follows that

'/gﬁ(O, xu(0, x)dx —f(p(h,x)u(h,x)dx

+// ug; + f(u)pyx dx dt
UL, UT,

.max{l, |A|} Csup T .
— 7 p Tot.Var.{u(t,-)}. (4.15)
1Y t€[0,h]

< Ceh

Using (4.8), we now estimate

<//n+f/m+//) {ug + fey} dxdt = L+ 1, +1,. (4.16)

Trivially, I,,, = 0 because ¢; = ¢, = 0 on I},. By (4.8) it follows that

L +1 = // F{M¢r+f(u)¢x}dxdt
rUl

h
/ {[Mﬁ — F@h] = [ - f(u_)]}wdt +00)-hi'.
0
4.17)

Next, by (4.6), one obtains

‘/(p(O, xu(0, x)dx —fw(h,x)u(h,x)dx

x0—§ x0+8+p
< (/ +/ )‘M(O,x)—u(h,x+kh)‘dx
x0—8—p x0+6

x0+36
+/ (|u(0,x)|+|u(h,x+xh)|) dx
xp—36

p - Osc.{u; A;} + p - Osc.{u; AL} + 268 - 2|jullL=
20K’ + 48 ||lul|Lee. (4.18)
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From (4.15), by (4.17) and (4.18) it follows that

h
/0 {,\(:ﬁ —u) = [ft) - f(u_)]}wdt

n
= O - (8— +hi’ + pK! + a) , (4.19)
0

where the factor O(1) already accounts for the uniform bound on the total variation.
Choosing the unit vector

o M )~ [Fa) — fw)]
rt —um) = [t = ra)]|

by (4.19) we conclude that the error in the Rankine—-Hugoniot equations has the
size

Mt =) = [ ) — fao)]| = o). (% a4 2L ) .
(4.20)
2. Next, consider the piecewise constant function
u- if x < xg+ At,
w(t, x) = { 4.21)

ut if x > xg+ Af.

The aim of the next two steps is to prove that the difference between w and an exact
solution having the same initial data is bounded by

lwih, ) = Spw . gy = OW) -k [t —u™) = [t = f@)]|

(4.22)
With this goal in mind, define the averaged Jacobian matrix
1
A= / Df (su™ + (1 —s)u~)ds.
0
Call A1 < --- < A, the eigenvalues of A. Let {ry,...,r,}and {¢1, ..., £,} be dual

bases of right and left eigenvectors of A, normalized as (2.5). Moreover, let ¢;, £,
be such that

n
wt—u” =) an, Cnax = max{ler] ... J6al).  (423)
i=1
Foreveryi =1, ..., n, we then have

[0 01 = Myt — )| = leil 1~

§ Emax

AMut —uT) = [fuh) - f(u_)]’. (4.24)



A Posteriori Error Estimates for Numerical Solutions 377

Leti* € {1, ..., n} be a characteristic family such that |A — A;+| = min; |A — ;.
Since the eigenvalues of A are strictly separated, by (4.24), it follows that

leil = O) - A —u™) = [fuh) —f(u*)]) foralli #i*. (4.25)

We now consider the solution to the Riemann problem with left and right states
u,ut.Letoy, ..., o, be the sizes of the waves in this solution. As usual, if the
ith field is genuinely nonlinear, we choose the sign so that o; > 0 corresponds to a
rarefaction wave, while o; < 0 yields an entropy admissible shock. For future use,
we denote by

U~ =ug, Uy, ..., Uy =ut (4.26)

the intermediate states. If the i *th characteristic field is linearly degenerate, standard
estimates on the strength of these waves yield the bound

D loi —cil =0 ) leil. (4.27)
i=1 Q%

Indeed, (4.27) is trivially true when the right hand side is zero. The general case
is obtained by an application of the implicit function theorem. The same estimate
(4.27) is achieved when the i *th field is genuinely nonlinear and ¢;+ < 0. By (4.27)
it follows that

e —ut| o — w4 —uia | =0 - Y el (4.28)
Qi i i

In both of the above cases, combining (4.24), (4.25), and (4.28), the distance be-
tween w(h, -) and an exact solution can be estimated as

1
5wl ) = Spw (0. )l

= O()- Y eil + O1) - [aix — Al |ci+]
Qi
+ 00 - (e — |+ Juey — u™ ) 2]

O - [rt —um) = [t = fa)]|

/ + (S
- 0(1)-<5+K’+M ) (4.29)
Jo h
Notice that the last estimate was obtained from (4.20). |

3. It remains to study the case where the i*th field is genuinely nonlinear, but
c¢i > 0. For this purpose, call w = w(z, x) the solution to the Riemann problem
with initial data w (0, -) = w(0, -), which contains a non-entropic i *-shock of size
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ho;« exact
w

W

X

Fig. 4. Comparing the entropic solution w*#t to the Riemann problem with left and right
states ™, u™ with another weak solution & containing a non-admissible i *-shock of strength
o;+ > 0. Taking into account the presence of a centered rarefaction wave in w®*t, The
difference between the two solutions can be bounded as || (4, -) — w2 (h, ) Il =00)-

h (Tiz*

o*, while all other waves are entropy admissible. We observe that all the above
estimates still apply to . In particular,

1
A, ) = SO, i = OM) - D leil +OW) - A = Al feiel.
ii*
(4.30)

It remains to estimate the difference between w and the entropic solution to the same
Riemann problem. Call u™ = g, #1, ..., 4, = u" the intermediate states for the
non-entropic solution w. Since shock and rarefaction curves have a second order
tangency, comparing with the intermediate states (4.26) of the entropic solution,
we find

i — uil = O(1) - o i=0,1,...,n. 4.31)
Taking into account that the wave connecting the states u;=_1 and u;= is a centered
rarefaction instead of a single jump, we obtain the bound

1 9
Hlwh, ) = B, )L = O) - oh. (4.32)

Combining (4.30) with (4.32) we conclude that

1
I;Hw(hv ) - ShU)(O, ')”LI(R) = O(l)

Y el + O - [agn = Al leis| + O(1) - cE (4.33)
i#i*

We claim that the jump c;+ > 0 must be small, otherwise the approximate entropy
inequality (1.12) would fail. Intuitively, this means that the approximate solution
cannot contain a large, non-admissible shock. Indeed, let 1 be a convex entropy,
with entropy flux ¢, such that (1.8) holds for every non-admissible shock of the i*
family. Let ¢ be the test function in (4.14). Arguing as in (4.15), by (1.12) we now
obtain

/¢>(0, N, x) dx —f¢<h,x)n<u(h,x)>dx
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+// nw¢r +qw)p, dxdt = —O(1) - s (4.34)
UL, Ul 0
As in (4.18), we have

'/¢(0»X)n(u(0,X))dx —/¢(h,X)n(M(h,X))dx

=0(0) - (p«’ +9). (4.35)

Repeating the argument at (4.16), (4.17) we obtain

h
[ [t -+ o avar = nffrne) - g
~[n ) = g@) ]} + OhK'. (4.36)

Next, consider the state %", connected to u~ by a (not entropy admissible)
i*-shock of size ¢;+ > 0. By the implicit function theorem, one has the bound

it —ut =01 lail. (4.37)
i£i*

Recalling (1.8), from (4.36) we obtain that
1 h
E/o /{”(“)d’t +qu)¢y} dxdr

= {0 @*) = 9@H)] = @) — g}
+O) - [u" —uT |+ 0) -k’

< —clit —u PO - [Tt —ut|+00) -«
<~ +0M)- Y ail
i i*
< —cpcd 4+ 0() - )/\(Lﬁ —u) = [fwh) = f@H]. (438

where (4.25) was used in the last inequality. Combining (4.38) with (4.34)—(4.36),
and using (4.20) to bound the last term in (4.38), we obtain

s\1/3
p ’+—> . (4.39)

&
=00 = Iy =
Ci ()(p+l<+hic A

Starting from (4.33), and using (4.24), (4.25), (4.20), and (4.39), we obtain

1 € i+ 8\

4. Notice that the estimate (4.40) is somewhat weaker, compared with (4.29).
In this step we show that, if the jump |u™ — u~| is sufficiently large, then in the
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genuinely nonlinear case we must have ¢;+ < 0, hence the stronger estimate (4.29)
holds. Recalling (4.23), notice that

leiel = Jut —u"[ = el Z |t —um|—O®)

i#i*
e, pK'+39
A< . 441
<5+K+ ; ) (4.41)

Therefore, there exists a constant K large enough so that, if (4.10) holds, then
(4.41) provides a contradiction with (4.39). Since (4.39) was obtained by assuming
that ¢;+ > 0, we conclude that (4.10) is a sufficient condition to guarantee that
¢i+ < 0. In this case, the stronger estimate (4.29) holds.

5. Restricted to the interval [a, b], by (4.8) and (4.40), the difference between
u and the exact solution having initial data u(0, x) = u(x) can now be estimated
by

b
f |u(h, x) — (Spit) (x)| dx

xo+Ah—48 x0+Ah+8 b
< (/ [ )|u<h,x)—w<h,x>|dx
a x0+Ah—38 xo0+AR+S

Hlwh, ) = Spw(0, )l

x0—§ x0+6 b
+Lo / +f +/ |w(0, x) — ii(x)| dx
a’ x0—36 x0+6

< [(b —a—28)k + 46||u||Loo] +O0) - h (% i+ p"/h+ 8)2/3
+[(b’ —d 28K+ 43||u||Loo]
< Cs-h (%+x/+ pK/+8)2/3+C5(,0+h)/c/+C58, (4.42)
for a suitable constant Cs. Indeed, from (4.3) it follows that
b—a=2p+25+ X" =21 )h,
b —a =2p+284+20T —A7)h. (4.43)

On the other hand, if (4.10) holds, then we can use (4.29) instead of (4.40). The
same argument used in (4.42) now yields that

b l

8

/ [, %) = Sy dx < Cs-h (f b )
a P

+Cs(p + 8 + h)k’ + Csé. (4.44)
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5. A Post-processing Algorithm

There are various ways to use the estimates developed in Sections 3 and 4, to
obtain a posteriori error bounds. The underlying idea is to isolate a finite number
of thin regions enclosing the large jumps, where the estimates (4.9) or (4.11) can
be used. Then use the bounds (3.18) on the remaining portion of the domain.

The algorithm described below can be applied to any BV solution of (1.1), but it
is designed in order to be most effective when the exact solution is piecewise Lips-
chitz with finitely many shocks (or contact discontinuities) and centered rarefaction
waves.

Letu : [0, T] x R — R” be an approximate solution of (1.1), (1.2), which
satisfies the properties (AL) and (P;). In this section we introduce an algorithm
which checks its total variation, identifies the location of large shocks, and con-
structs trapezoidal subdomains where the oscillation remains small. In view of our
previous analysis, this will yield an error bound on the L! distance (1.4) between
u and an exact solution.

The algorithm includes three steps.

STEP 1. For each ¢t € [0, T], we compute the total variation of u(t, -). Let
8o > 0 be the constant in (1.5). If

sup Tot.Var.{u(t, -)} < o, (5.1)
tel0,7T]
then the algorithm can proceed. On the other hand, if (5.1) fails, the approximate
solution may lie outside the domain of the semigroup and no error estimate can be
provided. In this case, the algorithm stops.

STEP 2. We now split the interval [0, T] into equal subintervals of size 1 = ¢!/3,
inserting the times t; = jh, j = 0,1,...,v = T/h. The next goal is to identify
the location of the large shocks, on each strip [¢;, ;41] x R. For this purpose, we
setp=h = e!/3, 85 = ¢2/3, and choose two additional parameters:

— A lower bound o,,;, for the size of the jump to be traced;
— An upper bound «’ for the oscillation of u on a region to the right and to the
left of the jump.

In view of (4.10), it will be convenient to choose these values so that
1/3
omin > K - (251/3 + 2;/) . (5.2)

In this way, the sharper estimate (4.11) in Theorem 2 will be available.
Recalling the construction at (4.1)—(4.5), we introduce

Definition 1. Given an interval [xo — 8, xo + 8] and a speed A € [A~, A™], consider
the polygonal regions

r= {(t,x); teltj.til, Xo—8+A(—1;) < x < x0—8+)»(t—tj)},

Ay = {(t,x); t€ltj,tjp1], @ +aT@E —1;) S x < x0—8+ A —tj)}, (5.3)

B
I

’ {(t,x); teltjtinl, xo+8+At—1t) < x < b’+,\—(t—tj)},
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Fig. 5. Implementing a post-processing algorithm, each strip [#;, #j4 1] x R is covered with

trapezoids A jx where the oscillation remains small (as far as possible), and trapezoids AUH
containing a large traced shock

witha’, b’ asin (4.3). We say that I" traces a shock during the time interval [¢;, ;1]
if

max {Osc.{u; A}, Osc.{u; A;}} <« (5.4)
|u(tj, xo +8) — u(tj, xo +8)| = opin. (5.5)
In what follows, we shall denote by
AVY = H(t,x); telt tjpl, dj+270—1;) £ x < b;.ﬁr(t—t,»)],
£=1,...,N'(j) (5.6)

the trapezoids containing the traced shocks (see Fig. 5).
STEP 3. We cover the remaining region [;, ;411 \ U}/’ AU9 with finitely
many trapezoids of the same form as in (3.2)

fig] —t f—t;
Aji = {(I,X); teltjtjiyl, HTCjk—i- T‘/(Cjk + it 4 &%)
figg —t t—t; B
<x < ”h djk+ ——(djk + h —82/3)}, (5.7)

in such a way that each point (¢, x) € [#j,¢;4+1] x R is contained in at most two
of these trapezoids (see Fig. 5). More precisely, we can assume that (3.10) holds,
forall k, k" € {1, ..., N(j)}. Within each time interval [#j,tj+1], we compute the
maximum oscillation of u over these trapezoids:

ki = max Osc{u; Air}. 5.8
P e, Ot A o9

The next result provides an a posteriori estimate on the L' error in the ap-
proximate solution. Here the estimate refers to the outcome of a post-processing
algorithm, depending on the choice of k" and 0, in (5.4), (5.5). We remark that
any choice of such parameters, determining which shocks are actually traced, leads
to some error bound. However, the sharpness of the estimate heavily depends on a
suitable choice of these parameter values.
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Theorem 3. Consider a system of conservation laws satisfying the basic assump-
tions (A1), (A2). Then there exist constants C', C" such that the following holds.

Letu : [0,T] x R — R" be an approximate solution to the Cauchy problem
(1.1), (1.2), satisfying the conditions (AL) and (P, ), together with (5.1). Let « j, K’
be the oscillation bounds in (3.5) and (5.4), for a covering with trapezoids A j,
AUY produced by a post-processing algorithm. Then the difference between u (T, -)
and the exact solution is bounded by

v—1
|u(T, ) = Sty SC T+ x| e
j=0
v—1
+C”(81/3K’ +52/3) SONG. (59)
=0

Proof. 1. Denoting L as the Lipschitz constant of the semigroup at (1.7), we have

v—1
lu(T.) = Srill < Lo- Y uttjen, ) = Stz )| - (5.10)
j=0

For each j, in order to estimate the difference u (41, .). — Spu(tj, -), we consider
a covering of the strip [#;,7;41] x R by trapezoids AUD ¢ =1,...N'(j) as in
(5.6),and Aji, k=1,...,N(j),asin (5.7).

2. Recalling (4.3), we denote by {#; 1} X [aj¢, bj¢] the upper boundaries of the
trapezoids AUY. These are the trapezoids which contain one large traced shock.
Moreover, we call {t;1} % [Cjk, Zl\jk] the upper boundaries of the remaining trape-
zoids A j. According to (5.7), this means that

[k, djx] = [c,»k AT 423 dp T — 82/3].
3. The same argument used at (3.17) now yields an error bound on the set

N()
vi=J @ dinl.
k=1

Indeed, recalling the uniform bound (5.1) on the total variation, one obtains

/ w1, = (Swu(tj, ) 0| dx < Cs (i b+ + el ) - s,
4
(5.11)

On the other hand, for each ¢ € {1, ..., N'(j)}, applying the estimate (4.11) on
the interval [a ¢, bj¢] we obtain the error bound

bj¢
/ Cuthx) = S )| dx £ Cs-h (f +1 +
aj 1Y

jt

ok’ +8
h
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+Cs (pk" + hi' +8). (5.12)
4. Recalling our choices
,0=h=81/3, 8=82/3, vh=v81/3=T,

summing the terms in (5.11) over all j € {0, ..., v — 1}, and summing the terms
in(5.12) overall j andall £ € {1, ..., N'(j)}, we obtain (5.9). O

Remark 4. It is interesting to speculate about the rate at which the error bound on
the right hand side of (5.9) will approach zero as ¢ — 0. We begin by assuming
that the exact solution we are trying to compute is piecewise Lipschitz, with a finite
number of centered rarefaction waves, and finitely many non-interacting shocks.

As is Remark 2, the first term on the right hand side of (5.9) is expected to
approach zero as £!/3| log £|. Concerning the second term, we can fix a constant Cg
and choose k’ = Cosl/ 3 If the exact solution contains N’ shocks, we expect that,
for all ¢ > 0 sufficiently small, each of these shocks will be traced, satisfying the
inequality (5.2). The second term on the right hand side of (5.9) will thus have the
form

c” (81/3C081/3 + 82/3> wN = 0() - '3,
In this case, (5.9) would yield
fu(T, ) — SrzZ”LI(R) =01) ¢ loge|. (5.13)

More generally, let us now assume that some of the shocks in the solution interact
with each other. Let T € [0, T] be one of the (finitely many) interaction times.
During atime interval [T, rT]around 7, of size Tt —7t~ = O(1)- p, we shall not be
able to trace the interacting shocks. As a consequence, for [#;, #; 1 ]N[T ™, ] £ 9,
the oscillation on one of the trapezoids A j; in (5.7) (the one which contains a non-
traced shock) will be large. This will force «; to be large. However, we expect that
the total length of all intervals [#;, #;41], where some large shock cannot be traced,
will have size

O(1) - p - [total number of shock interactions] = O(1) - el/3.

In conclusion, the presence of finitely many shock interactions will contribute an
additional error term O(1) - ¢'/3 to the right hand side of (5.9). This will not change
its overall order of magnitude.

One could also argue that, if the solution contains a finite number of compres-
sion waves, from which new shocks are formed, these (non-traced) waves would
contribute an error term of the same nature as a centered rarefaction wave. There-
fore, a bound of the order (5.13) would still be obtained.

Once again, we emphasize that the bounds (5.13) represent only a heuristic
expectation. For a numerically computed solution, they needs to be confirmed by
a post-processing algorithm, computing a bound on the oscillations «; in (3.5).
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6. Properties of Approximation Schemes

In this section we analyze various approximation methods, and check that they
all satisfy the assumptions (AL) and (P;).

6.1. The Godunov Scheme

To simplify our discussion, without loss of generality we assume that all char-
acteristic speeds (that is all eigenvalues of the Jacobian matrices D f (1)) lie in the
interior of the interval [0, 1]. This can be achieved by a linear rescaling and a shift
of the coordinates ¢, x. In this case, the Godunov scheme reduces to an upwind
scheme. Given a mesh size ¢ > 0, consider the grid points

ij = (tmvxj) = (Sma 8])

As shown in Fig. 6, left, we consider approximate solutions u = u(¢, x) with the
following properties:

(i) Ateach time t = t,,, the function u(t,,, -) is piecewise constant, namely
u(ty, x) = Uy;j for x; <x < xjy1,

(i1) Fort € [ty, tym+1l, the function u(z, -) yields the exact solution to (1.1) with
initial data u(#,,, -). This is obtained by solving the Riemann problems at each

node x;.
(iii) At time f,,, 41, we take the average of u(#,4.1—, -) on each interval [x;, x11].
Namely
N A
W10 = Unpry = = [ i) dy foryy <x <. 61
xj

Since we are assuming that all wave speeds are contained in the interval
[0, 1], using the conservation equations these average values U, 1,; can be
computed by

Un+1.5 = Unj + (£ Unj-1) = FUn.)). (6.2)

We check that an approximate solution u produced by the Godunov scheme with
mesh size ¢ > 0 satisfies the Lipschitz condition (AL). Indeed, for every 0 < t <
v/ ST witht, v/ € ¢N,

x_'
Jue’ ) —u@ g £ D Z/ ultmsr, ©) — (tn, )| d
xj,1

t<ty <t J

S e W) = £ U

<ty <t ]

P Z Tot.Var.{f(u(tm,-))}

<ty <1/

[IA
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< (' —7)-Lip(f) - sup Tot.Var.{u(t,)}.(6.3)

telr,v']

Here and in the sequel, Lip( f) denotes the Lipschitz constant of the function f.
To prove that the property (P) also holds, we shall use

Lemma 3. Let w : [0, €] — R be any function with bounded variation, and assume
@ € C. Consider the average value

1 &
wi—/ w(y)dy.
€ Jo
Then

< Tot.Var.{w; 10, e[} - e*llgyle.  (6.4)

/0 [w(x) — B p(x) dx

Proof. Call p the average value of ¢ over [0, €]. Then

/0 [w(x) — B p(x) dx

| @ =7 w0 9

é/o lw(:) = wliLee - lle() — @llLe dx

< g-Tot.Var.{w; 10,&[} - ellgcllLe. (6.5
0

Next, fix ¢ > 0 and consider any test function ¢ € CC1 (R?). Since the Godunov
approximations coincide with exact solutions on each of the half-open intervals
[, tmy1, we have

'/u(t,x)fp(r, x)dx —/u(r/,x)go(r/,x) dx

+/ f{mpf + fey} dxdr

=| > /[u(tm,x)—u(tm—,x)](p(tm,x)dx. (6.6)

T<tm gf/

Using Lemma 3 we obtain

2

/[u(tm, %) = tltm—, X)] 9t x) dx

<ty ST
< Y Y e TotVar{un, ) Ve G+ Del | - loxlu
<ty <t J
= (' = DlecllLe - sup Tot.Var.fu(r,)}. (6.7)

telr, ']
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This yields (1.11). In order to prove (P, ), given a convex entropy with entropy flux
g, it remains to check that (1.12) is satisfied as well. Let ¢ = 0 be a test function
in C! (R?). Integration by parts yields

/n(u(f,x))w(r, x)dx — /n(u(f’,x))w(r’,x)dx +/ /n(u)fpr + q(u)g, dr dx

= —[ /{n(u)erq(u)x}(pdxdt

#2000 = 1302 (6:8)

<ty <t/

By construction, the approximation u is an entropy weak solution of the hyperbolic
system of conservation law in every strip [#,—1, tn[ xR, therefore the first term on
the right hand side of (6.8) is non negative.

By the convexity of n, we can apply Jensen’s inequality and obtain

1 Xj+1 1 Xj+1
i) = 0z [ utn-nay) £ 2 [ w69

J j

for x; < x < xj41.In turn, this yields

Z /R(n(u(tm—,x))—n(u(tm,X)))w(tm,X)dx

<ty <t/
Xj+1
= > > / (1 (=, %)) = (Wt X)), %) dx
r<ty <t Jj 7N
Xj+1 1 Xjt1
> > Zf (n(u(rm—,x»—g/ n(u(tm—,y»dy)w(rm,x)dx
r<ty<v 7N Y
> — Lip(me- (' —1)@xllLe - sup Tot.VaI.{u(t, -)}. (6.10)

tefr, ']

6.2. The Lax—Friedrichs Scheme

Consider step sizes Af, Ax > 0 so that all characteristic speeds satisfy the CFL
condition
hil < 2 (6.11)
| < —. .
! At
As shown in Fig. 6, right, we then construct a staggered grid with nodes at the
points
Pyj = (m At, j Ax), m 4+ j even.

The Lax—Friedrichs approximations are defined inductively as follows. Given a
piecewise constant function u(t,,, -), with jumps at the points P,,; withm + j even,
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for t € [ty, tn+1[ We let u(z, -) be the exact solution of the system of conservation
laws (1.1) with the given dataatt = t,,,. We then define u(#,, 11, -) to be the piecewise
constant function obtained by taking the average of u(#,,11—, -) over every interval
[xj—1,xj41] with m + j even. By the conservation equations, if all characteristic
speeds satisfy |X;| < Ax/At, these average values

1 Xjt1
U, = — u(t, —, x)dx, m + j even,
m+1,j 2Ax /x/_| (tm+1 ) J

are inductively computed by the Lax—Friedrichs scheme

1 At
Unt1.j = 5 U1+ Un,j1) = E[f(Um, i+1) = fUn,j-D]- (6.12)

Setting ¢ = At, both the approximate Lipschitz condition (AL) and the property
(P;) can be proved in the same way as for the Godunov scheme. We thus omit
details.

Remark 5. If the stability condition (6.11) is violated, it is well known that the
numerical algorithm becomes unstable. As a consequence, the numerical solution
will develop a large amount of oscillations. In this case, the total variation becomes
too large, the assumption (5.1) fails, and the error bound (5.9) does not apply.

6.3. Backward Euler Approximations

We now discretize time but keep space continuous. We assume that all char-
acteristic speeds are strictly positive. Calling ¢ = At the time step, the backward
Euler approximations are defined in terms of the implicit equations

ut+e,x)=u(t,x) —ef(u+¢e,x))x.
Equivalently, setting U, (x) = u(me, x), one needs to solve the sequence of ODEs
Un+1(x) = Un(x) — & f(Upn+1(x))x- (6.13)

The convergence of these approximations for general n x n hyperbolic systems has
not been studied. Complete results are available in the scalar case [20], which is
covered by the general theory of nonlinear contractive semigroups [21].

Let Uy, () be a sequence of solutions to (6.13) with m = 0, 1, ... and define
the approximate solution u by setting

u(t,x) = U, (x) for me <t < (m+ 1e.

Then (AL) follows by
Jur, ) —u e £ Y [uln ) = w1, |1 g
<ty <t
= ¢ Z /|f(u(tm,x))x’dx < Lip(f) (r’—r)~< sup Tot.Var.{u(t,-)}
telr, ']

<ty <7/

).
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Next, we verify (Pg). As before, fix 0 < 7 < v/ < T with 7, t/ € ¢N. Given a test
function ¢ € Cg (R2), we compute that

‘[u(r,x)w(r,x) dx —/u(f’,x)(p(r/’x) dx —|—/T /{mp, + f(u)wx}dx dr

_//f(u)xwdxdt—i—/ Z (u(tmfl,x)—u(tm,x)><p(tm,x) dx

T<tm <t/

Im

tm—1, —u(ty,
_ ‘_ Z u(tm—1,x) — u(ly, x) o(r,x)dr | dx
€ tm—1
<ty <t/
+/ > (u(tm_1,x)—u(tm,x))qo(tm,X)dx
T<tm <t/
1 [im
<[ X |u(tm_1,x)—u(rm,x>|‘w(tm,x)—gf w(t. x)de| dx
<ty <t/ fm—1
< (@ =) llgrllus Lip(/) - sup Tot.Var.{u(, ).
te[r, ]

Finally, let n be a convex entropy with entropy flux g. If ¢ = 0 is a test function
in Cg (R?%), we have

/n(u(f, xX)e(T, x)dx — /n(u(t',X))w(t’,X) dx + //{n(u)fpz +q gy} dxdr

= [ [atpdrars [ (a1, = nuttn 5 oton, 1 dx

T<tm <t/
—_ tUl
= - Y /(Dn(u(zm,x))-”(t’”‘l’x) 1t X) (p(t,x)dt)dx
<7/ € Im—1

T<tyST
+/ Z (U(M(tm—l,X))—n(u(tm,X))><ﬂ(lm,X)dx

<ty <t

1 Im

= m—1, - Im, tm, —7/ t,x)dr)d
Z ,<§g,/'/(n(u([ 1, %) — nutn x))(w(m x) - o(t, x) ) X
> —e (@~ 1) el LipGnLip(f) - ( sup TotVar(u(r, )}).

te[r, ]

Notice that the convexity of 1 was here used in the inequality

Dy(u(a, x)) - (u(a, x) —ub, x)) 2 na,x)) —nb,x). (6.14)
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6.4. The Smoothing Method

Next, we consider an approximate solution to (1.1), (1.2) obtained by periodic
mollifications, taking the convolution with a smoothing kernel K € C2°(R). We
assume that

{K(x) e [0, 1] for x| < 1,

Koo =0 forlx]>1 KO=KCE0, /K(x)dx = 1(6.15)

andset K5(x) = 8§ 1K (8~ 'x). We fixatime stepe > 0and define an e-approximate
solution u by setting
tm = mME, u(ty, ) = Ks xu(ty,—, ),

and letting u be a classical solution to (1.1) on each half-open interval [#,,, f,,,+1[ -
As in the scalar case (see [26]), the method is well-defined provided that the
ratio /4 is suitably small. To see this, in connection with the quasilinear system

ur + A(w)uy, =0, A(u) = Df (u), (6.16)
we choose bases {r{(u), ..., r,(u)} and {l1(u), ..., I, (u)} of right and left eigen-
vectors of A(u), normalized so that

A _ ‘ U ifi=,
lri(u)| =0, liu) - ri(u) = {0 it 6.17)

We denote by u'. = ; - u, the ith component of the gradient vector u, with respect
to this basis. From (6.17) and (6.16) it follows that

U, = Zu;ri(u) u; = —Zki(u)ui”i(u)-
i=1

i=1

Differentiating the first equation with respect to ¢ and the second one with respect
to x, then equating the results, one obtains a semilinear system of evolution equa-
tions for the scalar components ', having the form

n
W+ A = Y ghpwuiuy (6.18)
jk=1

(see, for example, Section 1.6 in [9] for details). Assume that
|giw)] < My

for all i, j, k, and all u in the domain were the solution is defined. Let ¢ — Z(¢) be
the solution to the ODE

izm =n’M, Z*(1t) Z(0) = Z, (6.19)
dt s ’ - '

Assume that, at time ¢ = 0, it holds that

lu'.(0,x)] < Zy forallx eR, i=1,...,n. (6.20)
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A comparison argument now yields
u'.(t,.x)] £ Z@) forallx € R, 1 € [0, Tyl

where

1

To= ——
O 7 w2M, 7,

is the time where the solution to (6.19) blows up.
It remains to give an upper bound for the gradient components after each mollifi-
cation. This is achieved observing that

e s YL S it (Ut )l - sup |1 (w)]
u

Tot.Var.{u(t,,—, -)}

<
- 8

1K llLee - sup [1; (u)].
u
Therefore, if we choose

e (
< ———— ( sup Tot. Var.{u(t,,—, ')}>
T Mg Kl \oor ;

-1
0<e¢ (supsuplli(u)l) ,
i u

6.21)

all the components u!. remain bounded on each strip [#y, t+1[ xR, and the approx-
imate solution is well-defined.
We now check that the assumption (AL) holds:

”“(f,’ ) —u(r, ‘)”LI(R)

< > |K,g>|<u(tm—,x)—u(tm—,x)|dx+/|u(tm—,x)—u(tm_1,x)|dx

T<tm§7,
-1 ,
< 28( ) - sup Tot.Var.{u(t, )} +L(z'—1)- sup Tot.Var.{u(, )}
€ tefr,v'] tefr,v']
= C('—1)- sup Tot.Var.{u(,)}.
te[r, ]

Here we are using the estimate

/| Ks % u(ty—, x) — u(ty—, x)| dx

8
é f(/ KB()’) Sup M(tm_ax) _u(tm_ax _y)‘d)’> d'x
= Ivl<b

/Tot.Var.{u(tm—, 3: Tk — 8, x + 9] } dx
< 28 - Tot.Var.{u(t,—, -)}. (6.22)

A

To prove (P,) we shall need the following result:
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Lemmad. Let w : R — R be any function with bounded variation, and assume
peCl. LetK e C2° be a smoothing kernel as in (6.15), and define

W= Ks *w.

Then

‘/[ﬁ(x) —w@)]ex)dx| < 8% |l@xllLe - Tot. Var.{w}. (6.23)

Proof. 1. Assuming that w is Lipschitz continuous, we rewrite the left hand side
of (6.23) in a more suitable way:

V[ﬁ(X) —w(x)]@(x)dx

- / f Ks(x — »lw(y) — w0l o) dy dx

- / / Ks(x — Moy — 900l w(x) dy dx

_ / ( f / Ka(z—y>[go(y>—go<z>]dydz) wde|. (624)
2. Next we prove the estimate
‘ / / K5z — M) — o(@1dydz| < Sllode.  (6.25)

Indeed, since the integrand vanishes for |z — y| > &, the domain where it can be
nonzero can be split as Xy U X, where (see Fig. 7)

Xy = {(Z,y); lz —y| <6, y+z<x—8],

={@ cSx y-z5s y+oza-s)

Since K is an even function, by symmetry (switching the variables z and y),
we immediately obtain

/ /E Ks(z — Vo) — e(@)]dydz = 0. 6.26)
0

On the other hand, the integral over the triangle X' can be estimated by

‘//2 Ks(z = yle(y) —e(x)]dydz

< meas(Y) - [|Kslle - sup o(y) — @(2)]

(z.y)ex

8287 K I - 8llg llLoe- (6.27)

A

Putting together (6.26) and (6.27), and recalling that | K ||~ < 1, we obtain (6.25).
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Fig. 7. Splitting the domain of integration Xy U X, in the proof of (6.25)

3. Using (6.25) in (6.24), we now obtain the bound (6.23), for every Lipschitz
function w. Since the previous arguments do not depend on the Lipschitz constant
of w, by an approximation argument we conclude that (6.23) remains valid for
every function w with bounded variation. O

We are now ready to prove (P;). Consider a test function ¢ € Ccl. (R?). Using
Lemma 4, we obtain

/u(r,x)w(r,x) dx —/u(r’,x)w(t’,x) dx +/T /{mpt + f(w)ey} dx dr

Z (u(t;, x) — u(tj—, x)) @(t;, x)dx

T<t; <t/

A

T =1
1) (T>||(px||Loo- sup Tot.Var.{u(z, -)}

telr,v']

= Cie(t' —1)|l@s|lLe - sup Tot.Var.{u(z, -)}.

telr,t']

In view of (6.21), here we can choose the constant C| = 82 /52.
Finally, let n be a convex entropy with entropy flux ¢. For any non-negative test
function ¢ € CC1 (R?) one has

o oo ar— [aa e [ [ e+ e aar
= —/ Z (U(u(tm,x))—n(u(tm—,x))> @ (tm, x) dx

<ty <t/

> — | > D0, ) (ultm, x) = ultn—, x)) 9(tn, x) dx
<ty <t/
> 52 (TE;T)HgaXHLooLip(n)- sup Tot.Var.{u(z, -)}

; ) telr, ]
— Cre(t' = D)llgxlliL= Lip(n) - sup Tot.Var.{u(t, )},

te[r, ]
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where the first inequality follows from the convexity of 1, by (6.14).

7. Numerical Implementation

In this last section we discuss details of the post-processing algorithm, and
present a numerical simulation.

STEP 1 of the algorithm, computing the total variation of the numerical solution
u(t, -), is entirely straightforward.

STEP 2, identifying the location of the large shocks, requires more attention.
Given a pair of constants M > 0 and o >> ¢ > 0, we first identify regions where
the total variation of u is large. For this purpose, we introduce

Definition 2. For a given function u : [0, T] x R +— R", the points (¢, x) such that
min iTot.Var.{u(t, ) [x —o,x + 8]},
TotVar. {u(r, ); [x — &, x +01}} > Mo (7.1)

will be called flagged points.

Notice that, by definition, the variation of u(¢, -) on a small interval to the left
or to the right of a flagged point must be large. Roughly speaking, the following
result shows that, outside flagged points, solutions are approximately Lipschitz
continuous with constant 2M.

Lemma 5. Assume that all points (t, x) with x € [a, b] are not flagged. Then

b—a

lu(t,a) —u(t,b)] < (1+—) 20M. (7.2)
o+¢

Proof. 1. By assumption, we can split the interval as [a, b] = [ + U I-, where
I, I~ are two disjoint sets with the following property. Setting

[x —e,x+o]if xelt,
Jy =
[x —o,x+¢e]if xel™,

one has
Tot.Var.{u(t,-); Jy} < oM forall x € [a, b].

2. We claim that every subinterval [c, d] C [a, b] with lengthd —c S 0 + ¢
can be covered by two of the intervals J,. Indeed, three cases can arise:

CASE l:c+eeIt.Then[c,d] C Joje .

CASE2:d —e eI .Then[c,d] C J;_..

CASE3:c+e¢ €1 andd — ¢ € I™". Then we can find to points ¢ + & < x <
y <d — ¢, such that

y—x <§g, er_,y€I+.
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In this case, [c, d] € J; U Jy, proving our claim.
3. To complete the proof, we cover [a, b] with finitely many intervals [c;, d;],
i=1,...,N,such that

b_
N<142-¢
o+e¢€

di—ci £ o+e foralli=1,..., N,

By the previous construction, for every i we have that
Tot.Var.{u(t, 9 e, di]} < 2Mo.

Therefore, the total variation of u (¢, -) over [a, b] is bounded by 2N o M. This yields
(7.2). O

Having defined the set 7 C [0, T'] x R of all flagged points, foreach t; = je €
[0,T],j=0,1,...,v, we denote by

Fi= {x eR; (tj,x) ef}

the set of flagged points at time ¢;.
For every time 7, we identify intervals [a, b] such that b — a < 8§ =¢%3 and
moreover

aefj, b€.7:j, fjﬁ[a—p,a[=.7:jﬂ]b,b+p]=@.

In other words, the points (¢;, a) and (¢, b) are flagged, but points to the left of a
and to the right of b are not flagged.

Each such interval [a, b] locates a possible isolated shock at time ¢;. To check
if this shock can be traced over the entire interval [¢, f; 1], we check if there exists
an interval [c, d] satisfying the same properties at time ¢ = ¢; 1, and moreover

[e,d] C [a+X"h, b+21Th].

In the positive case, we approximate the shock location with a straight line as
follows:

y(t) = xo+ At — 1), 1€ [tj,tjq1].
Here we choose xg, A so that

a+b c+d

: tig1) = ——.
) v (tj+1) )

xo=y(j) =

We then consider the polygonal regions I', A;, Al defined as in (5.3). If the
two inequalities (5.4), (5.5) are both satisfied, we say that the parallelogram

A

r= {(I,X); teltjtiz1l, xo—8+ @ —tj)r < x = XO+5+(t—tj)?»},

traces the shock. The trapezoid

[IA

A = {(t,x); teltjtinl, d+1T@t—1;) < x b'+A_(t—tj)},
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where
ad=xg—p—8—AT—=1h, b =xo+p+5+ At —A1)h,

is then inserted within the list of trapezoids AUD in (5.6), containing a traced shock.
On the other hand, if one of the inequalities (5.4), (5.5) fails, the shock is not traced.
STEP 3 of the algorithm provides a covering of each domain

N'(j)

([fjﬁm]xﬂ%)\ J av®, j=0,1,...,v—1,
=1

with finitely many trapezoids A i as in (5.7). This step is straightforward. The
algorithm terminates by computing the constants «; in (5.8), which provide an
upper bound on the oscillation of u oneach Aji, k =1,..., N(j).

Example. We consider a model of isentropic gas dynamics in Lagrangian coordi-
nates. Using a shifted system of coordinates, this can be written as

Vs — Uy + Uy =0,

1
ur + <m>x +u, =0.

Here u is the velocity of the gas, while v denotes the specific volume. By the choice
of coordinates, the characteristic speeds are

(7.3)

AT =14+032

In particular, when v > 1, one has A(v) € [A™,AT] = [0, 2]. We consider the
Cauchy problem with piecewise constant initial data

2if x <O,
v(0,x)=33if 0 <x <1/2, u(0,x) =0. (7.4)
1if x > 1/2,

The exact solution is shown in Fig. 8.

We compute an approximate solution using the upwind scheme with mesh sizes
Ax = & = 0.0005, At = 5 = 0.00025.

The profiles of the two components of the solution, at the final time 7 = 1.5, are
shown in Fig. 9.

To illustrate how the post-processing algorithm works, in Fig. 10, left, we plot
the set of flagged points. These are computed according to Definition 2, choosing
o = 0.0063 and M = 25. In Fig. 10, right, we identify the shocks that can be traced
on each time interval [#;, #;+1]. Here k' = 0.1, omin = 0.4. Notice that, according
to our previous construction, each trapezoid AU around a traced shock will have
the form

AU = {(t,x); telty, tjs1l, xje—8—p—2h
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T
0 12 X
Fig. 8. A sketch of the exact solution to (7.3), (7.4), containing two centered rarefaction
waves and two shocks, interacting at time ¢*

3

05 1 1 1 1 T 1 1
0 0.5 1 15 2 25 3 35 4

Fig. 9. The components of the solution at the terminal time 77 = 1.5, computed by the
upwind scheme. Above: the specific volume v (7, -). Below: the velocity u (7, -). The dotted
lines show the initial data

Y2t —1) £ x £ xju+8+p +2h}.
Indeed, this is obtained from (4.3), (4.4), with
a=xjy—8—p—2h, b =xy+8+p+2n, 1 =0, AIT=2
Finally, in Fig. 11 we plot an approximate graph of the function

K(t) = Kj = 1§1kn§a§(j)05c.{u; Ajk} if t € [tj,tj_H [. (7.5)

One can think of « (¢) as the maximum oscillation of the numerical solution u(z, -)
on domains of diameter O(1) - ¢!/3, outside the large traced shocks. In view of
(5.9), this function « (-) determines the rate at which the distance ||u (¢, -) — S;it||11
between the approximate and the exact solution increases in time. Notice that « (¢)
is large for + ~ 0, when the main contribution to the error comes from the two



399

A Posteriori Error Estimates for Numerical Solutions

paden A[[enjoe aIe ey SYO0ys om) ) jo suoniod oy ySry ‘wpLiose Suissadord-1sod ayy £q pa3Sey syurtod ayy :3JoT QT “S1q

v s € 52 z e L 50 0 v e = =X %
T T T T T T - o T T T

45021

1, 8 Hou=

L L gl . . L g=t




400

Fig.

ALBERTO BRESSAN, MARIA TERESA CHIRI & WEN SHEN
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0 0.5 1 15

11. An approximate computation of the function « (¢) defined at (7.5), determining the

error rate

centered rarefactions. As time increases, the rarefactions decay, and the value of
Kk (1) decays as well. As t approaches the interaction time #*, the two shocks cannot
be individually traced. As a consequence, the value of « (¢) suddenly becomes very
large. Finally, when the shocks move away from each other and can be traced once
again, we see that « (r) reverts to a small value.
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