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Abstract9

We investigate the problem of designing optimal classifiers in the “strategic classification" setting,10

where the classification is part of a game in which players can modify their features to attain a11

favorable classification outcome (while incurring some cost). Previously, the problem has been12

considered from a learning-theoretic perspective and from the algorithmic fairness perspective.13

Our main contributions include14

Showing that if the objective is to maximize the efficiency of the classification process (defined15

as the accuracy of the outcome minus the sunk cost of the qualified players manipulating their16

features to gain a better outcome), then using randomized classifiers (that is, ones where the17

probability of a given feature vector to be accepted by the classifier is strictly between 0 and 1)18

is necessary.19

Showing that in many natural cases, the imposed optimal solution (in terms of efficiency) has20

the structure where players never change their feature vectors (and the randomized classifier is21

structured in a way, such that the gain in the probability of being classified as a ‘1’ does not22

justify the expense of changing one’s features).23

Observing that the randomized classification is not a stable best-response from the classifier’s24

viewpoint, and that the classifier doesn’t benefit from randomized classifiers without creating25

instability in the system.26

Showing that in some cases, a noisier signal leads to better equilibria outcomes — improving27

both accuracy and fairness when more than one subpopulation with different feature adjustment28

costs are involved. This is particularly interesting from a policy perspective, since it is hard to29

force institutions to stick to a particular randomized classification strategy (especially in a context30

of a market with multiple classifiers), but it is possible to alter the information environment to31

make the feature signals inherently noisier.32

2012 ACM Subject Classification Theory of computation → Algorithmic game theory and mechan-33

ism design; Theory of computation → Machine learning theory34

Keywords and phrases Strategic classification, noisy features, randomized classification, fairness35

Digital Object Identifier 10.4230/LIPIcs.FORC.2020.936

Funding Mark Braverman: Research supported in part by the NSF Alan T. Waterman Award,37

Grant No. 1933331, a Packard Fellowship in Science and Engineering, and the Simons Collaboration38

on Algorithms and Geometry. Any opinions, findings, and conclusions or recommendations expressed39

in this publication are those of the author and do not necessarily reflect the views of the National40

Science Foundation.41

1 Introduction42

Machine learning algorithms are increasingly being used to make decisions about the in-43

dividuals in various areas such as university admissions, employment, health, etc. As the44

individuals gain information about the algorithms being used, they have an incentive to45
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9:2 The Role of Randomness and Noise in Strategic Classification

adapt their data so as to be classified desirably. For example, if a student is aware that46

a university heavily weighs SAT score in their admission process, she will be motivated47

to achieve a higher SAT score either through extensive test preparation or multiple tries.48

Such efforts by the students might not change their probability of being successful at the49

university, but are enough to fool the admissions’ process. Therefore, under such “strategic50

manipulation" of one’s data, the predictive power of the decisions are bound to decrease.51

One way to prevent such manipulation is by keeping the classification algorithms a secret,52

but this is not a practical solution to the problem, as some information is bound to leak53

over time and the transparency of these algorithms is a growing social concern. Thus, this54

motivates the study of algorithms that are optimal under “strategic manipulation". The55

problem of gaming in the context of classification algorithms is a well known problem and is56

increasingly gaining researchers’ attention, for example, [8, 1, 9, 16, 4].57

[2] and [8] modeled strategic classification as a Stackelberg competition– the algorithm58

(Jury) goes first and publishes the classifier, and then the individuals get to transform their59

data, after knowing the classifier, incurring certain costs to manipulate. The individuals60

would manipulate their features as long as the cost to manipulate is less than the advantage61

gained in getting the desirable classification. We assume that such manipulations don’t62

change the actual qualifications of an individual. A natural question is: what classifier63

achieves optimal classification accuracy under the Stackelberg competition? These papers64

considered the task of strategic classification when the published classifier is deterministic. We65

study the role of randomness (and addition of noise to the features) in strategic classification66

and define the Stackelberg equilibrium for probabilistic classifiers, that assigns a real number67

in [0, 1], to each individual and a classification outcome o, representing the probability of68

being classified as o.69

As higher SAT scores are preferred by a university, the students would put an effort in70

increasing their SAT score, thereby, forcing the university to raise the score bar to optimize71

its accuracy (under the Stackelberg equilibrium). Due to this increased bar of acceptance,72

even the students who were above the true cutoff would have to put an extra effort to73

achieve a SAT score above this raised bar. And this effort is entirely the result of gaming74

in the classification system. We define the cost of strategy for a published classifier to be75

the total extra effort, it induced, amongst the qualified individuals of the population. Then,76

we define the efficiency of a published classifier to be its classification accuracy minus the77

cost of strategy under the Stackelberg equilibrium. A natural question here is: what classifier78

achieves the optimal efficiency? The efficiency of a published classifier represents the total79

impact of the classifier on all the agents in the Stackelberg equilibrium.80

In normal classification problems it is never a good idea to use randomness, since one81

should always adhere to the best/utility maximizing action based on the prediction. Just as82

in games, randomness may lead to better solution in strategic classification, the paper aims83

to start understanding tradeoffs between efficiency losses due to randomness and efficiency84

gains through better equilibria induced by the randomized classifier.85

Gaming in classification adds to the plethora of fairness concerns associated with classi-86

fication algorithms, when the costs of manipulation are different across subpopulations. For87

example, a high weightage of SAT scores (for university admissions) favors the subgroups of88

the society that have the resources to enroll in test preparation or attempt the test multiple89

times. Further, varying costs across the subpopulations can lead to varied efforts put by90

identically qualified individuals, belonging to different subpopulations, to achieve the same91

outcome. [16] and [9] study the disparate effects of strategic classification on subpopulations92

(we will discuss these papers more in the related work section). [9] observes that a single93
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classifier might have different classification errors on subpopulations due to the varying cost94

of manipulations. We also study the effect of strategic manipulation on the classification95

errors across subpopulations and how randomized classifiers or noisy features may reduce96

the disparate effects.97

Strategic classification is a well known problem and there has been research in many other98

aspects of strategic classification, for example, learning the optimal classifier efficiently when99

the samples might also be strategic [8, 4], mechanism design under strategic manipulation100

[3, 5, 12], and studying the manipulation costs that actually change the inherent qualifications101

[14, 15]. The focus of this paper is theoretically demonstrating the role of randomness and102

noise in the strategic setting.103

1.1 Our contributions104

Above, we talked about how strategic manipulation can deteriorate the classification accuracy105

and lead to unfair classification. We investigate the different scenarios of the classification106

task that help in regaining the lost accuracy and fairness guarantees. Our entire work is107

based on one-dimensional feature space.108

1.1.1 Randomized classifiers109

Firstly, we formulate the strategic classification task, when the published classifier is ran-110

domized. Instead of publishing a single binary classifier (for 2 classification outcomes, 0 and111

1), the Jury publishes a distribution of classifiers and promises to pick the final classifier112

from that distribution. Another interpretation is that the Jury assigns a value in [0, 1] to113

each feature value, which represents the probability of an individual with this feature being114

classified as 1. The individuals manipulate their features, after knowing the set of classifiers115

but not the final classifier, incurring certain costs according to the cost function.116

Not surprisingly, we show through examples that a probabilistic classifier can achieve117

strictly higher expected accuracy and efficiency than any binary classifier under strategic118

setting. Note that, without any strategic manipulation, a randomized classifier has no119

advantage over deterministic classifiers in terms of classification accuracy. The intuition is as120

follows: using randomness, the Jury can discourage the individuals from manipulating their121

features by making the advantage gained by any such a manipulation small enough.122

For simple cost functions, we then characterize the randomized classifier that achieves123

optimal efficiency. We prove that such a classifier sets the probabilities (of being classified as124

1) such that none of the individuals have an incentive to manipulate their feature. Given125

two features x and x′ in the feature space, let c(x, x′) denote the cost of manipulating one’s126

feature from x to x′. Informally, we say a cost function c is simple when all the costs are127

non-negative, the cost to manipulate to a “less" qualified feature is 0, and the costs are128

sub-additive, that is, manipulating your feature x directly to x′′ is at least easier than first129

manipulating it to x′ and then to x′′. The characterization theorem, stated informally, is as130

follows:131

I Theorem 1 (Informal statement of Theorem 3). For simple cost functions, the most efficient132

randomized classifier is such that the best response of all the individuals is to reveal their133

true features.134

This characterization, in addition to being mathematically clean, allows us to infer the135

following: let A and B be two subpopulations (identical in terms of qualifications) such136

that the costs to manipulation are higher for individuals in A than in B, then the optimal137

efficiency obtained for the subpopulation A is greater than that in B.138

FORC 2020



9:4 The Role of Randomness and Noise in Strategic Classification

1.1.2 Obstacles to using a randomized classifier139

Till now, we have argued the benefits of using a probabilistic classifier. However, the degree to140

which it is possible to use or commit to a randomized strategy varies depending on the setting.141

There are two main drivers impeding the implementation of the most efficient Stacklberg142

equilibrium. Firstly, in many real-life classification settings, it might be unacceptable to143

use a probabilistic classifier, for example, due to legal restrictions (applicants with identical144

features must obtain identical outcomes). Secondly, for the more complicated scenario with145

multiple classifiers (such as college admissions), the effect of each Jury on the overall market146

is small, hence, diminishing the incentive to stick to a randomized strategy ‘for the benefit147

of the market as a whole’. Informally, the best response of a single Jury, when the other148

classifiers commit to using a randomized classifier, is not a randomized classifier. And even149

if we got the Juries to commit to randomization, the final probabilities of classification150

depends on the number of classifiers (k) and hence, the implementation of the most efficient151

randomized classifier needs coordination between the multiple classifiers. Analyzing the152

equilibria for multiple classifiers is beyond the scope of this paper but we illustrate the153

instability of randomized classifier as follows. We show that unless Jury is able to commit154

to the published randomized classifier, such a classifier is not a stable solution to strategic155

classification. As mentioned above, randomization helps because of the following observation:156

if the difference between the probabilities, of being classified as 1 at adjacent features is157

small, the individuals have no incentive to manipulate their features. But, once the Jury158

knows that no one changed their feature, her best response, then, is to use the classifier that159

achieves best accuracy given the true features.160

Formally, we show (Theorem 5) that for any published randomized classifier that achieves161

strictly higher accuracy compared to any deterministic classifier under Stackelberg equilibrium,162

Jury has an opportunity to improve its utility and get strictly better accuracy using a classifier163

different from the published.164

The shortcomings of a randomized classifier can be redeemed by addition of noise to the165

features.166

1.1.3 Addition of noise to the features167

This brings us to our second scenario that uses noisy features for classification. Every168

individual has an associated private signal that identifies their qualification. The Jury sees a169

feature that is a noisy representation of this private signal. The individuals, after incurring170

certain cost, can effectively manipulate their private signal such that the features are a171

noisy representation of this updated private signal. Again, the assumption is that such a172

manipulation didn’t change the true qualifications of an individual. We show, through an173

example of a cost function and a noise distribution, that in the strategic setting, using a174

deterministic classifier, the Jury achieves better accuracy when the features are noisy than175

any deterministic classifier in the noiseless case, that is, when Jury gets to see the private176

signal. This is counter-intuitive at first glance because under no strategic manipulation, noise177

can only decrease Jury’s accuracy.178

We also show examples where noisy features can help in achieving fairer outcomes across179

subpopulations. Let A and B be two subpopulations identical in qualifications but having180

different (but not extremely different) costs of manipulation (and |A| ≤ |B|; A is a minority).181

We show, through an example, that no matter whether the minority has higher or lower182

costs of manipulation than the majority, it is at a disadvantage when Jury publishes a single183

deterministic classifier to optimize its overall accuracy (noiseless strategic setting). Here, by184
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disadvantage, we mean that the minority has lower classification accuracy than the majority.185

Next, we show that the addition of appropriate noise to the private signals, in the same186

example, can ensure that Jury’s best response classifier is fair across subpopulations. This is187

not that surprising as making the features completely noisy also lead to same outcomes for the188

subpopulations. However, such an addition of noise can also sometimes increase Jury’s overall189

accuracy (improving both accuracy and fairness). We consider the case where the Jury would190

publish a single classifier for both the subpopulations (for e.g., either because A is a protected191

group and the Jury is not allowed to discriminate based on the subgroup membership or192

because the Jury has not yet identified these subpopulations and the differences in their cost193

functions). Informally, our results, can be stated as follows:194

I Theorem 2 (Informal statement of Theorems 6,7,8). Let A and B be two subpopulations that195

are identical in qualifications. Let cA 6= cB be the cost functions for subpopulations A and B196

respectively. In Case 1, Jury gets to see the private signals and publishes a single deterministic197

classifier that achieves optimal overall accuracy (sum over the two subpopulations) under198

the Stackelberg equilibrium (for the cost functions cA and cB). In Case 2, the features are199

noisy representations of the private signal; Jury publishes a single deterministic classifier200

that achieves optimal overall accuracy under the Stackelberg equilibrium (knowing that the201

features are noisy). There exists an instantiation of the “identical qualifications" such that202

1. If |A| < |B|, that is, A is a minority, for a wide set of costs functions cA, cB, A is always203

at a disadvantage when in Case 1.204

2. There exists a setting of the “noise" (η) for each of the above cost functions, such that,205

Jury’s best response in Case 2, is always fair, that is, achieves equal classification accuracy206

on the subpopulations.207

3. There exists cost functions cA, cB from this wide set of cost functions, and corresponding208

noise η, such that Jury’s accuracy in Case 2 is strictly better than in Case 1.209

This result has potentially interesting policy implications, since it is easier, both practically210

and legally, to commit to using noisier signals (for example by restricting the types of211

information available to the Jury) than to commit to disregarding pertinent information212

ex-post (as in randomized classification). Therefore, future mechanism design efforts involving213

strategic classification should carefully consider the mechanisms of information disclosure to214

the Jury.215

1.2 Related Work216

[8, 2] initiated the study of strategic classification through the lens of Stackelberg competition.217

[9, 16, 10] study the effects of strategic classification on different subpopulations and how it218

can exacerbate the social inequity in the world. [9] also made the observation that a single219

classifier would have varying classification accuracies across subpopulations with different220

costs of manipulation. [16] defined a concept called “social burden" of a classifier to be the221

sum of the minimum effort any qualified individual has to put in to be classified as 1. Thus,222

the subpopulations with higher costs of manipulation would have worse social burden and223

might be at a disadvantage. In such situations, intuitively, one would think that subsidizing224

the costs for the disadvantaged population might help. [9] showed that cost subsidy for225

disadvantaged individuals can sometimes lead to worse outcomes for the disadvantaged group.226

In the present paper, we observe that the addition of noise, counter-intuitively, can help227

Jury’s accuracy as well as serve the fairness concerns. There are many examples in game228

theory where loss of information helps an individual in strategic setting, for example, [6].229

[11, 10] also studies the role of hiding information to serve fairness. [7] has a brief discussion230
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at the end of the paper on making manipulated data more informative through addition of231

noise to the features (this was put online a couple of months after the first version of our232

paper was made online).233

Another work related to Theorem 3 of the present paper is [13], which studies the scope234

of truthful mechanisms when the agents incur certain costs for misreporting their true type.235

In particular, the paper gives conditions, on the misreporting costs, that allow the revelation236

principle to hold, that is, any mechanism can be implemented by a truthful mechanism,237

where all the agents reveal their true types. The main difference between [13] and our paper238

is that the former allows the use of monetary transfers to the agents to develop truthful239

mechanisms and such transfers don’t impact the objective value of the mechanism.240

1.3 Organization241

We formalize the model used for strategic classification in Section 2. In Section 3, we show242

how randomness helps in achieving better accuracy and efficiency. We also characterize243

the classifiers that achieve optimal efficiency for simple cost functions. In Section 4, we244

investigate the stability of randomized classifiers. In Section 5, we investigate the role of245

noisy features in strategic classification.246

2 Preliminaries247

In this paper, we concern ourselves with classification based on a one-dimensional feature
space X . In many of the examples, our feature space X ⊆ R is discrete, hence, we use sum
(
∑

) in many of the definitions, but, these definitions are well-defined when X is taken to be
continuous (for e.g., R) by replacing sum (

∑
) with integrals (

∫
) and probability distributions

with probability density functions. We use the notation N (z, σ) to denote the gaussian
distribution with mean z and standard deviation σ. We say a function f : X → {0, 1} is a
threshold function (classifier) with threshold τ if

f(x) =
{

1 if x ≥ τ
0 otherwise

We also use 1x≥τ to denote a threshold function (classifier) with threshold τ . Sometimes, we248

will use 1x>τ that classifies x as 1 if and only if x > τ .249

2.1 The Model250

Let X be the set of features. Let π : X → [0, 1] be the probability distribution over the251

feature set realized by the individuals. Let h : X → [0, 1] be the true probability of an252

individual being qualified (1) given the feature. We also refer to it as the true qualification253

function. Let c(x, x′) be the cost incurred by an individual to manipulate their feature from x254

to x′ (We also use words, change and move, to refer to this manipulation). The classification255

is modeled as a sequential game where a Jury publishes a classifier (possibly probabilistic)256

f : X → [0, 1] and contestants (individuals) can change their features (after seeing f) as long257

as they are ready to incur the cost of change. The previous papers in the area considered the258

task of strategic classification when the published classifier is deterministic binary classifier.259

Here, we formalize the Stackelberg prediction game for probabilistic classifiers.260



M.Braverman and S. Garg 9:7

Given f , we define the best response of a contestant with feature x1, as follows261

∆f (x) = argmaxy∈({x}∪{x′|(f(x′)−f(x))>c(x,x′)})(f(y)) (1)262

We will denote it by ∆ when f is clear from the context. ∆(x) might not be well defined if263

there are multiple values of y that attains the maximum. In those cases, ∆(x) is chosen to264

be the smallest y amongst them. In words, you jump to another feature only if the cost of265

jumping is less than the advantage in being classified as 1.266

We define the Jury’s utility for publishing f (U(f)) as the classification accuracy with267

respect to h(x). Thus, Jury’s utility for publishing f is268

U(f) =
∑
x∈X

π(x)[f(∆(x)) · h(x) + (1− f(∆(x)) · (1− h(x))]269

=
∑
x∈X

π(x)[f(∆(x)) · (2h(x)− 1) + 1− h(x)]270

271

We define C(f) =
∑
x∈X π(x)[h(x) ·c(x,∆f (x))] to be the cost of strategy for a published272

classifier f .273

We define the efficiency of the classifier f (E(f))2 as follows:274

E(f) = U(f)− C(f)275

=
∑
x∈X

π(x)[f(∆(x)) · h(x) + (1− f(∆(x)) · (1− h(x))]−
∑
x∈X

π(x)[h(x) · c(x,∆(x))]276

=
∑
x∈X

π(x)[f(∆(x)) · h(x) + (1− f(∆(x)) · (1− h(x))− h(x) · c(x,∆(x))]277

278

The focus of this paper is to demonstrate what role randomness and noise can play in279

strategic classification and not to give algorithms for learning the optimal or most efficient280

strategic classifier. We can present the ideas even by making the following assumptions on281

the cost function c : X × X → R:282

1. c(x, x′) ≥ 0, ∀x, x′ ∈ X .283

2. c(x′, x) = 0, ∀x, x′ | h(x′) ≥ h(x), that is, jumping to a lesser qualified feature is free.284

3. c(x, x′′) ≤ c(x, x′) + c(x′, x′′), ∀x, x′, x′′ ∈ X , that is, the costs are sub-additive.285

4. c(x, x′) ≤ c(x, x′′), ∀x, x′, x′′ | h(x′′) ≥ h(x′), that is, jumping to a lesser qualified feature286

is easier.287

5. c(x′, x′′) ≤ c(x, x′′), ∀x, x′, x′′ | h(x′) ≥ h(x), that is, jumping from a lesser qualified288

feature is harder.289

The last two points are implied by the first three, we wrote them as separate points for290

completeness. We call the cost function simple if it satisfies all the above assumptions.291

By the virtue of the definition of simple cost functions, without loss of generality, we292

assume that h is monotonically increasing with the feature x, that is, ∀x, x′ ∈ X , x′ ≥293

x =⇒ h(x′) ≥ h(x).294

Next, we mention a special kind of cost function that satisfies the assumptions: c(x, x′) =295

max(a(x′)− a(x), 0) where the function a : X → R is monotonically increasing in x, that is,296

x′ ≥ x =⇒ a(x′) ≥ a(x).297

1 Such a best response model has been studied in the literature, for example, [17].
2 We defined efficiency as U(f) − C(f) for the simplicity of the presentation. Defining efficiency as
U(f)− β · C(f) (for some β > 0) doesn’t effect the theorems except for Theorem 3, which is no longer
true for β < 1.
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Given a cost function c, let298

Lip1(c) = {f | f : X → [0, 1], f(x′)− f(x) ≤ c(x, x′) ∀x, x′ ∈ X}299

Given the cost function c, we say f satisfies the Lipschitz constraint if f ∈ Lip1(c). Note300

that any classifier f ∈ Lip1(c) is monotonically increasing with x, that is, x′ ≥ x =⇒301

f(x′) ≥ f(x). This is because ∀x′ ≥ x, f(x)− f(x′) ≤ c(x′, x) = 0. And ∀x ∈ X ,∆f (x) = x,302

that is, no one changes their feature if f is the published classifier.303

In Section 5, we generalize this model to the setting where the features are a noisy304

representation of an individual’s private signal. An individual can make efforts to change305

their private signal but can’t control the noise. The Jury only see the features and classifies306

an individual based on that. In Section 5, the fairness notion, we will concern ourselves with,307

is the classification accuracy of the published classifier across subpopulations.308

3 Committed Randomness Helps both Utility and Efficiency309

In this section, we compare the optimal utility and efficiency achieved by a deterministic310

binary classifier to a probabilistic classifier. Consider the following two scenarios:311

Scenario 1 : The Jury commits to using a binary classifier f : X → {0, 1}. The best312

response function ∆f : X → X , Jury’s utility from publishing f (U(f)) and efficiency of the313

classifier f (E(f)) are defined as in Section 2.314

Scenario 2 : The Jury publishes a probabilistic classifier f : X → [0, 1] and commits to315

it. The best response function ∆f : X → X , Jury’s utility from publishing f (U(f)) and316

efficiency of the classifier f (E(f)) are as defined in Section 2. Note that this is equivalent to317

when Jury publishes a list of deterministic classifiers and chooses a classifier uniformly at318

random from them. Contestants update their feature without knowing which classifier gets319

picked up at the end.320

The following example illustrates how randomization helps in getting strictly better utility321

and efficiency:322

Let X = {1, 2} and each feature contains half of the population. Let

h(x) =
{

1 if x = 2
0 otherwise

Let the cost of changing the feature from 1 to 2 be 0.5. The the randomized classifier f
defined as follows:

f(x) =
{

1 if x = 2
0.5 if x = 1

achieves an accuracy of 0.75. The contestants at x = 2 are happy as they are already being323

classified as 1 with probability 1. For the contestants at x = 1, f(2)− f(1) = 0.5 = c(1, 2)324

and hence, they don’t have an incentive to manipulate their feature. As all the contestant325

retain their true features, the efficiency of f is also equal to 0.75. As the feature space is326

bounded, there are only three options for a deterministic classifier: keep the threshold at 1327

and classify everyone as 1; keep the threshold at 2 and you end up classifying everyone as 1,328

as the contestants at 1 change their feature to 2; classify everyone as 0. All these classifiers329

have 0.5 accuracy and at most 0.5 efficiency.330

In the mathematical example given above, the randomized classifier was set up such that331

none of the contestants had any incentive to change their feature. In the next subsection,332

we show that the most efficient classifier always looks like “this" for “simple" cost functions.333
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That is, if the cost function c satisfies the assumptions made in Section 2, then for every334

true qualification function h, there exists a function fh ∈ Lip1(c) that achieves the optimal335

efficiency.336

3.1 Most Efficient Classifier for Simple Cost Functions337

Recall, E(f) =
∑
x∈X π(x)[f(∆(x)) · h(x) + (1− f(∆(x)) · (1− h(x))− h(x) · c(x,∆(x))]. Let338

E∗ = maxf :X→[0,1]
∑
x∈X π(x)[f(∆(x)) ·h(x) + (1− f(∆(x)) · (1−h(x))−h(x) · c(x,∆(x))].339

I Theorem 3. For every monotone true qualification function h : X → [0, 1], probability340

distribution π : X → [0, 1] over the features, simple cost function c, there exists g ∈ Lip1(c)341

such that E(g) = E∗.342

Proof. Let f be an efficiency maximizing classifier. We argue that g : X → [0, 1] defined as

g(x) = maxy{f(y)− c(x, y)}

is in Lip1(c) and satisfies E(g) ≥ E(f). Let δf (x) = argmaxy{f(y) − c(x, y)}. When f is343

clear from the context, we will drop the subscript on δ. Using definition of δ, g(x) ∈ [0, 1] as344

∀x, y ∈ X , f(y)−c(x, y) ≤ f(y) ≤ 1 (c(x, y) ≥ 0) and maxy{f(y)−c(x, y} ≥ f(x)−c(x, x) ≥345

0. For all x, x′ ∈ X ,346

g(x′)− g(x) = f(δ(x′))− c(x′, δ(x′))− f(δ(x)) + c(x, δ(x))347

= f(δ(x′))− c(x, δ(x′))− f(δ(x)) + c(x, δ(x)) + (c(x, δ(x′))− c(x′, δ(x′)))348

≤ c(x, δ(x′))− c(x′, δ(x′)) ≤ c(x, x′) (sub-additivity)349
350

The first inequality follows the definition of δ, that is, ∀y ∈ X , f(δ(x)) − c(x, δ(x)) ≥351

f(y) − c(x, y). Therefore, f(δ(x′)) − c(x, δ(x′)) − f(δ(x)) + c(x, δ(x)) ≤ 0. The second352

inequality follows from the fact that the cost function c is simple and satisfies the sub-353

additivity condition. This proves that g ∈ Lip1(c). This implies, as observed previously,354

∀x ∈ X ,∆g(x) = x. Next, we show that E(g) ≥ E(f) and hence E(g) = E∗. Efficiency of355

the classifier g is356

E(g) =
∑
x∈X

π(x)[g(∆g(x)) · h(x) + (1− g(∆g(x)) · (1− h(x))− h(x) · c(x,∆g(x))]357

=
∑
x∈X

π(x)[2 · g(x) · h(x)− g(x)− h(x) + 1]358

359

Efficiency of the classifier f is360

E(f) =
∑
x∈X

π(x)[f(∆f (x)) · h(x) + (1− f(∆f (x)) · (1− h(x))− h(x) · c(x,∆f (x))]361

=
∑
x∈X

π(x)[2f(∆(x)) · h(x)− f(∆(x))− h(x) + 1− h(x) · c(x,∆(x))]362

363

E(g)− E(f) =
∑
x∈X π(x)[(g(x)− f(∆(x))) · (2h(x)− 1) + h(x) · c(x,∆(x))]364

B Claim 4. ∀x, [(g(x)− f(∆(x))) · (2h(x)− 1) + h(x) · c(x,∆(x))] ≥ 0.365

Please refer to Appendix A for the proof of the claim. It’s straightforward to see that366

E(g)− E(f) ≥ 0 using the above claim. Therefore, we showed a classifier g ∈ Lip1(c) such367

that E(g) = E∗. J368

In words, when we are concerned with the efficiency of the published classifier, the optimal is369

achieved by a probabilistic classifier that has zero cost of strategy and gives individuals no370

incentive to change their feature.371
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4 Are Randomized Classifiers in Equilibrium from Jury’s Perspective?372

As discussed in the Section 1, there are many obstacles to implementing a randomized373

classifier in the strategic setting. In this section, we illustrate the instability caused by374

the use of randomized classifiers (which becomes increasingly important while considering375

multiple classifiers). In Section 3, we saw that a randomized classifier can achieve better376

accuracy and efficiency than any binary classifier. While maximizing efficiency, we further377

showed that the optimally efficient classifier is such that every contestant reveals their true378

feature. Once the Jury knows the contestants’ true features, she can be greedy and classify379

the individuals using a threshold function with τ = min{x | h(x) ≥ 1
2} as the threshold to380

achieve the best accuracy. Therefore, unless the Jury commits to using randomness, she has381

an incentive of not sticking to the promised randomized classifier. The question is: what’s382

the best accuracy/efficiency achieved by a classifier that is in equilibrium even from Jury’s383

perspective? We formalize this equilibrium concept as follows (the true qualification function384

h and the cost function c are fixed):385

1. Jury publishes a randomized classifier f : X → [0, 1].386

2. Contestants, knowing f , changes their feature from x to ∆f (x).387

3. f is in equilibrium from Jury’s perspective if given that the contestants changed their388

features according to the best response function ∆f , f achieves the best classification389

accuracy, that is, for all classifiers g ∈ X → [0, 1],390 ∑
x∈X

π(x)[f(∆f (x)) · h(x) + (1− f(∆f (x)) · (1− h(x))] (2)391

−
∑
x∈X

π(x)[g(∆f (x)) · h(x) + (1− g(∆f (x)) · (1− h(x))] ≥ 0392

393

Using next theorem, we show that for any randomized classifier that is in equilibrium from394

Jury’s perspective, there exists a binary classifier that achieves at least the same accuracy.395

I Theorem 5. Given a monotone true qualification function h, probability distribution π396

over the features, and a simple cost function c, let f∗ : X → {0, 1} be the classifier that397

optimizes Jury’s utility over the deterministic classifiers under Stackelberg equilibrium. Let398

f : X → [0, 1] be a randomized classifier such that U(f) > U(f∗), then f is not in an399

equilibrium from Jury’s perspective (the notion defined above).400

Please refer to Appendix B for the proof.401

Disclaimer: f ′ as defined above might also not be in equilibrium from Jury’s perspective.402

The above theorem illustrates the following point: Jury doesn’t benefit from randomized403

classifiers without creating instability in the system.404

Can we somehow exploit this power of randomness while overcoming the obstacles to405

randomized classification? The answer is yes – make the features noisy.406

5 Noisy Features Give the System Free Randomness407

We formalize the setting with noisy features as follows: every individual has a private signal408

y ∈ X . The true qualification function h : X → [0, 1] depends on y, that is, h(y) is the409

probability of an individual being qualified (1) given that its private signal is y. Given a410

private signal y, a feature is drawn randomly from the distribution py : X → [0, 1], that411

is, py(x) is the probability that an individual’s feature is x when their private signal is412

y. If X = R, the right intuition for py is it being N (y, σ) where N (y, σ) is the gaussian413
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distribution with mean y and standard deviation σ. Let π : X → [0, 1] be the probability414

distribution over the private signals y realized by the individuals.415

Let c(y, y′) be the cost incurred by the contestant to change their private signal from y416

to y′. The contestants can put effort to change their private signals but the feature would417

still be drawn randomly using the updated private signal.418

The classification is again modeled as a sequential game where a Jury publishes a419

deterministic classifier f : X → {0, 1}. We restricts ourselves to deterministic classifiers due420

to the observations made in Section 4. Contestants change their private signals as long as421

they are ready to incur the cost of change. Given a private signal y, let qf (y) denote the422

probability of a contestant, with private signal y, being classified as 1 when f is the classifier.423

Therefore, qf (y) =
∑
x∈X py(x) · f(x).424

Given f , the best response of a contestant with private signal y is given as,425

∆f (y) = argmaxz∈{y}∪{y′|qf (y′)−qf (y)>c(y,y′)}(qf (z)) (3)426

We will denote it by ∆ when f is clear from the context. ∆(y) might not be well defined427

if there are multiple values of z that attains the maximum. In those cases, ∆(y) is chosen428

to be the smallest z amongst them. In words, you jump to another private signal only if429

the cost of jumping is less than the advantage in being classified as 1. Even though f is430

deterministic, due to noisy features, the effective classifier given the private signal y (qf ) is431

probabilistic. Therefore, we will see below that the noise allows us similar advantages as that432

of a probabilistic classifier.433

The accuracy and efficiency of the classifier f are defined as follows:

U(f) =
∑
y∈X

π(y)[qf (∆(y)) · h(y) + (1− qf (∆(y)) · (1− h(y))]

E(f) =
∑
y∈X

π(y)[qf (∆(y)) · h(y) + (1− qf (∆(y)) · (1− h(y))]−
∑
y∈X

π(y)[h(y) · c(y,∆(y))]

We assume that h is monotonically increasing with y and the cost function c is simple. Next,434

we will demonstrate how noisy features can lead fairer outcomes and even increase Jury’s435

accuracy.436

5.1 Noisy Features achieve Fairer Equilibriums437

Consider two subpopulations A and B. For simplicity, these subpopulations are a partition438

of the individuals in the universe. Let sA denote the probability an individual from the439

universe is in subpopulation A. Similarly, sB (sA = 1− sB). Let hA : A→ [0, 1] be the true440

qualification function for the subpopulation A. Similarly, hB. Let cA : X × X → R be the441

cost function for the subpopulation A, that is, cA(y, y′) is the cost of changing the private442

signal from y to y′ for an individual in A. Similarly, cB is defined. Let πA : A→ [0, 1] and443

πB be the probability distribution over the private signals realized by the subpopulations A444

and B respectively.445

Given a published deterministic classifier f : X → {0, 1}, the best response of the446

contestant in subpopulation A with private signal y (∆A
f (y)) is defined using cA as the447

cost function. Similarly, for subpopulation B, let ∆B
f (y) denote the best response of the448

contestant in subpopulation B with private signal y and when the published classifier is449

f . We use UA(f) and UB(f) to denote the accuracy of the classifier f on the respective450

subpopulations.451
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We consider the setting where hA = hB = h and πA = πB = Π, but the cost functions452

cA and cB are different. In this section, we use the symbol Π to denote the probability453

distribution over the private signals to avoid confusion with the Archimedes’ constant π.454

In our first example, we show that even though the subpopulations are identical with455

respect to their qualifications, different costs can lead to unfair classification when classification456

is based on private signals. Through our second example, we show that the use of noisy457

features, for strategic classification, can lead to increase in the overall accuracy of classification458

as well as give fair classification. We evaluate the fairness of a classifier f quantitively using459

the difference between the accuracies, that is, |UA(f)− UB(f)|.460

Let’s start with the example. X = R. Let the true qualification function for both the461

subpopulations be as follows: h(y) =


1 if y > d
y
2d + 1

2 if y ∈ [−d, d]
0 if y < −d

, where d is a fixed large462

enough positive real number. Let the probability density function on the private signals463

realized by the subpopulations be as follows: Π(y) = e
− y2

2t2√
2πt , that is, the gaussian distribution464

with mean 0 and standard deviation t. Again, t is fixed positive real number. We assume465

d >> t.466

Let σA and σB be positive real numbers. The cost function for a subpopulation S ∈ {A,B}467

is defined as follows (with (y′ − y)+ = max{y′ − y, 0}):468

cS(y, y′) = (y′ − y)+
√

2πσS
(4)469

We start with the setting where the features are the private signals and not a noisy470

representation of them.471

Remark: If the Jury is allowed to publish different classifiers for the two subpopulations,472

then she can achieve “the best possible accuracy" on both the subpopulations. It’s easy to473

see that the classifier fS : X → {0, 1}, defined as follows, achieves as much accuracy as a474

classifier under no strategic manipulation of the features can achieve on the subpopulation475

S ∈ {A,B}: fS(y) =
{

1 if y ≥
√

2πσS
0 otherwise

.476

All the contestants in a subpopulation S, with 0 < y <
√

2πσS report their private signals477

to be
√

2πσS as cost of this change is < 1 whereas the advantage gained in the probability of478

being classified as 1 is 1. For all the contestants with private signal y ≤ 0, the cost of change479

is too high (≥ 1) and thus, they report their true private signals. Therefore, the classifier fS480

ends up classifying everyone with private signal y > 0 as 1 which is the accuracy maximizing481

classification under the "no strategic manipulation" setting.482

How strategic classification leads to unfairness: When σA 6= σB, the optimal483

classifiers for the subpopulations A and B are different and hence, when we choose a single484

classifier for both the subpopulations, we are bound to loose on the accuracy of at least one of485

the subpopulations. Through an example (Theorem 6), we suggest that: while maximizing the486

overall accuracy over the universe, the minority group might be at a disadvantage irrespective487

of whether their costs to change the private signals are higher or lower than the majority488

subpopulation. Without loss of generality, we assume that A is the minority subpopulation,489

that is, sA ≤ sB. In many real life scenarios, the Jury would publish a single classifier for490

both the subpopulations either because A is a protected group and the Jury is not allowed to491

discriminate based on the subgroup membership or because the Jury has not yet identified492

these subpopulations and the differences in their cost functions.493
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I Theorem 6. Let A and B be two subpopulations such that the true qualification functions,494

hA, hB, the probability density functions, πA, πB and the cost functions cA, cB are as495

instantiated above.496

Assuming |σA − σB | ≤ t√
2π , let f

∗ be the deterministic classifier that maximizes Jury’s497

utility (U(f)), if sA < sB and σA 6= σB (the cost functions are different), then UA(f∗) <498

UB(f∗), that is, the minority is at a disadvantage, even though their qualifications were499

identical (hA = hB, πA = πB).500

Please refer to Appendix C for the proof.501

Next we show that, when the features are appropriately noisy, the optimal classifier from502

Jury’s perspective is fair to the subpopulations. The intuition is as follows: if the noise is503

large enough such that none of contestants in either of the subpopulations want to manipulate504

their private signals, then the cost differences become irrelevant and hence, the optimal505

classifier achieves equal accuracy on both the subpopulations. You would think that this506

addition of noise would compromise Jury’s utility. Subsequently, we show that adding noise507

might also improve the overall accuracy of the Jury’s optimal classifier, therefore, addition of508

noise can make everyone happier. The latter is a continuation to the results at the start of509

Section 5 about the usefulness of noise to the Jury under strategic classification.510

Noisy features lead to fairer outcomes: Now, we analyze the setting with noisy511

features and prove the following theorem. The true qualification function h, cost functions512

(cA and cB) and the probability density function Π are as defined for the first example. Let513

σ = max{σA, σB}. Given a private signal y, the features x are distributed according to the514

gaussian with mean y and standard deviation σ. The probability density function for the515

feature x given the private signal y is py(x) = e
− (x−y)2

2σ2
√

2πσ .516

I Theorem 7. Let A and B be two subpopulations such that the true qualification functions,517

hA, hB, the probability density functions, πA, πB and the cost functions cA, cB are as518

instantiated above. When the features are drawn with a gaussian noise of mean 0 and standard519

deviation σ, such that, σ ≥ σA, σB, if f∗ is the deterministic classifier that maximizes Jury’s520

utility (U(f)), then f∗ is fair, that is, UA(f∗) = UB(f∗).521

Please refer to Appendix D for the proof.522

Theorem 7 would hold for when we are concerned with multiple subpopulations as long as523

σ ≥ σS for every relevant subpopulation S. In words, using noisy features we can ensure that524

the best response of a Jury, maximizing her own utility, is fair to all the subpopulations that525

are identical in terms of qualifications but different in terms of the costs to manipulate the526

private signals, as long as the costs of manipulation for a subpopulation are not too small.527

528

Noisy features can also improve Jury’s utility: Next, we show that further in some529

cases, the addition of noise to the features is not only beneficial for ensuring fairness but530

might also achieve better overall accuracy under strategic classification compared to when a531

noiseless signal is used.532

Retaining the instantiations of hA, hB, πA, πB, cA, cB and σ as above, consider the533

following two scenarios: 1. Jury bases her classifier on the private signal y. 2. The features534

are drawn with a gaussian noise of mean 0 and standard deviation σ and Jury bases her535

classifier on the features (x).536

Let f∗0 and f∗σ be the optimal classifiers under strategic classification in the two scenarios537

respectively. Let U(f∗0 ) be the overall classification accuracy (Jury’s utility) under Scenario 1538

and U(f∗σ) be the overall classification accuracy (Jury’s utility) under Scenario 2. We assume539
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that the subpopulations are equally populated, that is, sA = sB for simplicity of calculations540

in the next theorem.541

I Theorem 8. There exists qualification functions, hA, hB, the probability density functions542

over the private signals, πA, πB, the cost functions cA, cB and σ > 0 such that, U(f∗σ) >543

U(f∗0 ), that is, the Jury gets better classification accuracy when the features are drawn with a544

gaussian noise of mean 0 and standard deviation σ. Here, the subpopulations have identical545

qualifications (hA = hB, πA = πB) but different cost functions.546

Please refer to Appendix E for the proof. This theorem corroborates the idea that not only547

the subpopulations, but even the Jury might prefer noisy features. In the above example,548

for simplicity, we assumed sA = sB. Therefore, the optimal classifier was fair even in the549

noiseless setting. But a slight tweak in sA so that sA < sB wouldn’t change Jury’s utility, in550

Scenario 1, by much and thus, would give an example where the noiseless setting has both551

unfairness and lesser overall classification accuracy.552

In this paper, we study the interaction of noise with strategic classification through some553

simple examples, and leave the task of generalizing these results for future research.554

6 Discussion555

The problem of classification (and the strategic classification problem it entails) is of tremend-556

ous importance both practically (affecting pretty much every industry) and theoretically557

(with implications ranging from algorithms to policy and law). Therefore, clarifying the558

role randomness plays in this specific family of games is an important goal. Just as in559

games, randomness may lead to better solution in strategic classification. Moreover, in many560

important settings (such as college admissions in some jurisdictions), the classifier is required561

to be deterministic by law — which is not a handicap for algorithmic classification, but562

is a handicap for strategic one. In addition, we proved that, in many natural cases, any563

randomized classifier (based on one-dimension) that achieves strictly better accuracy than564

the optimal deterministic one is not stable from the classifier’s standpoint, thus illustrating565

the difficulty of implementing a randomized classifier in a more complicated scenario with566

multiple classifiers (such as college admissions). This motivates the use of noisy features as a567

commitment device, which can improve both accuracy and fairness, and is also practically568

possible (for example by restricting the types of information available to the classifier).569
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A Proof of Claim 4615

Recalling, g(x) = f(δ(x))− c(x, δ(x)). Using definition of δ, we know that616

g(x) = f(δ(x))− c(x, δ(x)) ≥ f(∆(x))− c(x,∆(x)) (5)617
618

And, using definition of ∆, we can show that619

f(∆(x)) ≥ g(x) (6)620
621

This is because, either f(δ(x)) − c(x, δ(x)) = f(x) and as f(∆(x)) ≥ f(x), we get the622

inequality. Or, f(δ(x))−c(x, δ(x)) > f(x), which implies that x has an incentive to change its623

feature to δ(x). Therefore, by the definition of ∆, f(∆(x)) ≥ f(δ(x)) ≥ f(δ(x))− c(x, δ(x)).624

The expression in the claim can be rewritten as625

(g(x)− f(∆(x))) · (2h(x)− 1) + h(x) · c(x,∆(x))626

= (g(x)− f(∆(x))) · (h(x)− 1) + h(x) · (g(x)− f(∆(x)) + c(x,∆(x)))627
628

As g(x)− f(∆(x)) ≤ 0 from Equation 6 and g(x)− f(∆(x)) + c(x,∆(x)) ≥ 0 from Equation629

5, the inequality follows from the fact that 0 ≤ h(x) ≤ 1. This proves the claim.630
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B Proof of Theorem 5631

Equation 2 implies that for all classifiers g ∈ X → [0, 1],632 ∑
x∈X

π(x)[(f(∆f (x))− g(∆f (x))) · (2h(x)− 1)] ≥ 0633

=⇒
∑
y∈X

(f(y)− g(y)) ·
∑

x:∆f (x)=y

π(x)(2h(x)− 1) ≥ 0634

635

Therefore, if f is in equilibrium from the Jury’s perspective, for all y ∈ X such that636

f(y) ∈ (0, 1),
∑
x:∆f (x)=y π(x)(2h(x) − 1) = 0 otherwise Jury can choose g(y) = 1 (or 0)637

depending on whether
∑
x:∆f (x)=y π(x)(2h(x) − 1) > 0 (or < 0) to increase her accuracy.638

Therefore, accuracy of the classifier f is given by639

U(f) =
∑
x∈X

π(x)[f(∆f (x)) · (2h(x)− 1) + (1− h(x))]640

=
∑
y∈X

f(y) ·
∑

x:∆f (x)=y

π(x)(2h(x)− 1) +
∑
x∈X

π(x)(1− h(x))641

=
∑

y:f(y)=1

∑
x:∆f (x)=y

π(x)(2h(x)− 1) +
∑
x∈X

π(x)(1− h(x))642

643

Consider a binary classifier f ′ : X → {0, 1} defined as follows: f(x) ∈ [0, 1) =⇒ f ′(x) = 0644

and f(x) = 1 =⇒ f ′(x) = 1. We can show that U(f ′) ≥ U(f). The contestants who change645

their features when f ′ is the published classifier is a subset of {x ∈ X | f(∆f (x)) ∈ (0, 1]}646

and as
∑
x:f(∆f (x))∈(0,1) π(x)(2h(x)− 1) = 0, the accuracy of f ′ can only increase. This is647

because: ∀x ∈ X if f(∆f (x)) = 0, then f ′(∆f ′(x)) = 0 as otherwise if x changed its feature648

under f ′, it had an incentive to change under f too.649

If x′ > x, f(∆f (x′)), f(∆f (x)) ∈ (0, 1) and x changes its feature under f ′, then x′ has the650

incentive to change too as c(x′, x) = 0, and hence, the subset of {x ∈ X | f(∆f (x)) ∈ (0, 1)}651

that change their features under f ′ can only do a positive addition to the utility (h is652

monotonically increasing with x and
∑
x:f(∆f (x))∈(0,1) π(x)(2h(x) − 1) = 0). And, the653

contestants (x) who changed their features under f such that f(∆f (x)) = 1 would also654

change their features under f ′ such that f ′(∆f ′(x)) = 1 (as f ′(x) ≤ f(x)) and are already655

included in the calculation of U(f).656

C Proof of Theorem 6657

Jury publishes a deterministic classifier and as there’s no noise involved, without loss of
generality, we can assume that f is a threshold classifier on the space X (as cA and cB
are simple cost functions). This assumption is justified in Section 3. Given the classifier
f : X → {0, 1} with threshold τ , the best response of a contestant in the subpopulation
S ∈ {A,B} is given as follows:

∆S
f (y) =


y if y ≥ τ
τ if τ −

√
2πσS < y < τ

y if y ≤ τ −
√

2πσS

The accuracy of the classifier f for the subpopulation S is given as follows:658

US(f) =
∫ ∞
−∞

Π(y)[f(∆S(y)) · (2h(y)− 1) + (1− h(y))]dy659

660
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Let c =
∫∞
−∞Π(y)[(1− h(y))]dy which is independent of the subpopulation and the classifier.661

Therefore, US(f) =
(∫∞
−∞Π(y)[f(∆S(y)) · (2h(y)− 1)]dy

)
+ c.662

For the convenience of calculations, we will replace h(y) with the following function,

h′(y) = y

2d + 1
2

As d is large and Π is a gaussian centered at 0, this change barely affects the utility663

values. To be precise, the difference in the utility calculations for any classifier f while using664

h′ instead of h is bounded by665 ∣∣∣∣∫ ∞
−∞

Π(y)[f(∆S(y)) · 2(h(y)− h′(y))]dy
∣∣∣∣ ≤2

∫ ∞
−∞

Π(y)[f(∆S(y))|h(y)− h′(y)|]dy666

≤2
∫ ∞
−∞

Π(y) · |h(y)− h′(y)|dy667

=4
∫ ∞
d

Π(y) ·
(
y

2d −
1
2

)
dy668

≤2
∫ ∞
d

e−
y2

2t2

√
2πt
· y
d
dy = 2 te

− d2
2t2

√
2πd

669

670

As we take d (d >> t) to be large enough, we would be able to ignore this difference.671

From now onwards, we use h′ as the “true qualification function".672

Therefore, the accuracy of the classifier f over the subpopulation S ∈ {A,B} can be673

approximated by674

US(f) =
(∫ ∞
−∞

Π(y)[f(∆S(y)) · (2h′(y)− 1)]dy
)

+ c =
(∫ ∞
−∞

Π(y) · f(∆S(y)) · y
d
dy

)
+ c675

=

∫ ∞
τ−
√

2πσS

e−
y2

2t2

√
2πt
· y
d
dy

+ c = t√
2πd

e−(τ−
√

2πσS)2/2t2 + c676

677

The second last equality follows from the definition of ∆S
f and the fact that f classifies678

everyone, with the updated private signal greater than or equal to τ , as 1 and 0 otherwise.679

680

The overall accuracy of the classifier f is given by681

U(f) = sA · UA(f) + sB · UB(f)682

= sA ·
t√
2πd

e−(τ−
√

2πσA)2/2t2 + sB ·
t√
2πd

e−(τ−
√

2πσB)2/2t2 + c (7)683

684

It’s clear from the expression that the accuracy for the subpopulation A is maximized at685

τA =
√

2πσA and that of B is maximized at τB =
√

2πσB . Consider the case when sA < sB .686

As τA 6= τB , and UB(f) has a larger weight in the expression, intuitively, while optimizing the687

overall accuracy, τ would try to achieve better accuracy for the subpopulation B, irrespective688

of whether σA > σB or σA < σB, leading to unfairness across the subpopulations (A being689

at a disadvantage).690

It’s complicated to calculate the optimal τ , below we give a proof of the fact that the691

optimal τ would be such that UA(f) < UB(f). To find the optimal value of τ , we differentiate692

U(f) with respect τ as follows:693

FORC 2020



9:18 The Role of Randomness and Noise in Strategic Classification

dU(f)
dτ

= sA ·
dUA(f)
dτ

+ sB ·
dUB(f)
dτ

694

= − 1√
2πtd

(
sA · (τ −

√
2πσA) · e−(τ−

√
2πσA)2/2t2 + sB · (τ −

√
2πσB) · e−(τ−

√
2πσB)2/2t2

)
695
696

Therefore, dU(f)
dτ = 0697

=⇒ sA · (τ −
√

2πσA) · e−(τ−
√

2πσA)2/2t2 + sB · (τ −
√

2πσB) · e−(τ−
√

2πσB)2/2t2 = 0698

=⇒

∣∣∣∣∣ (τ −
√

2πσA) · e−(τ−
√

2πσA)2/2t2

(τ −
√

2πσB) · e−(τ−
√

2πσB)2/2t2

∣∣∣∣∣ > 1 (sB > sA)699

700

As ze−
z2
2t2 is maximized at z = t, as long as |σA − σB | ≤ t√

2π (implying |τ −
√

2πσS | ≤ t701

for S ∈ {A,B}), the overall accuracy is maximized at a threshold τ such that |τ −
√

2πσA| >702

|τ −
√

2πσB | and hence, UA(f∗) < UB(f∗), where f∗ is the optimal classifier from Jury’s703

perspective. The assumption, |σA − σB | ≤ t√
2π , can be interpreted as the subpopulations704

being different but not extremely different, which is reasonable assumption in many real life705

scenarios.706

D Proof of Theorem 7707

Again, we will replace the function h with h′ (as in proof of Theorem 6) while loosing708

an insignificant amount in all the calculations (d >> t, σ). Let Π′ : X → [0, 1] be the709

probability density function over the features realized by each of the subpopulations. Let710

H(x) (H : X → [0, 1]) represent the probability of an individual being qualified (1) given that711

the Jury sees feature x. These functions are same for both the subpopulations. As the Jury712

only sees the feature and not the private signal, her accuracy is information-theoretically713

limited by these functions as we will describe below. Firstly, Π′ : X → [0, 1] is given as714

follows:715

Π′(x) =
∫ ∞
−∞

Π(y) · py(x)dy =
∫ ∞
−∞

e−
y2

2t2

√
2πt
· e
− (x−y)2

2σ2

√
2πσ

dy716

=
∫ ∞
−∞

e
− x2

2(σ2+t2)

√
2πt

· e
−(y− xt2

σ2+t2
)2/(2 σ2t2

σ2+t2
)

√
2πσ

dy717

= e
− x2

2(σ2+t2)

√
2πt ·

√
2πσ

∫ ∞
−∞

e
−(y− xt2

σ2+t2
)2/(2 σ2t2

σ2+t2
)
dy718

= e
− x2

2(σ2+t2)

√
2πt ·

√
2πσ

√
2π σ2t2

σ2 + t2
= e

− x2
2(σ2+t2)√

2π(σ2 + t2)
719

720

Therefore, the probability density function over the features realized by the subpopulations,721

with N (0, σ) gaussian noise, is itself a gaussian with mean 0 and
√

(σ2 + t2) standard722

deviation.723

The qualification function given the features, H, is given as follows:724

H(x) = 1
Π′(x)

∫ ∞
−∞

Π(y) · py(x) · h(y)dy725

726
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We replace h with h′, thus replacing H with H ′ as defined below:727

H ′(x) = 1
Π′(x)

∫ ∞
−∞

Π(y) · py(x) · h′(y)dy = 1
Π′(x)

∫ ∞
−∞

e−
y2

2t2

√
2πt
· e
− (x−y)2

2σ2

√
2πσ

· ( y2d + 1
2)dy728

= 1
2 + 1

Π′(x)

∫ ∞
−∞

e
− x2

2(σ2+t2)

√
2πt

· e
−(y− xt2

σ2+t2
)2/(2 σ2t2

σ2+t2
)

√
2πσ

· y2d dy729

= 1
2 + 1

2d ·Π′(x)
e
− x2

2(σ2+t2)

√
2πt ·

√
2πσ

∫ ∞
−∞

e
−(y− xt2

σ2+t2
)2/(2 σ2t2

σ2+t2
) · y dy730

= 1
2 + 1

2d ·Π′(x)
e
− x2

2(σ2+t2)

√
2πt ·

√
2πσ

·
√

2π σ2t2

σ2 + t2
· xt2

σ2 + t2
731

= 1
2 + t2

σ2 + t2
x

2d732
733

Therefore, when there’s no strategic manipulation, Jury would classify any individual734

with feature x > 0 as 1 and 0 otherwise. This is because, H ′(x) > 1
2 if and only if x > 0 and735

the Jury would classify a feature as 1 if and only if, in expectation, the individuals with that736

feature are more likely to be qualified. This is true irrespective of whether an individual737

is from the subpopulation A or B because these subpopulations are identical in terms of738

qualifications, that is, hA = hB = h and πA = πB = Π.739

We show that for the cost functions defined above, if Jury publishes f = 1x>0, as the740

classifier, then none of the contestants in both the subpopulations A and B have an incentive741

to change their private signal (under N (0, σ) gaussian noise). Hence, the Jury gets the best742

possible accuracy from these features and the classification is fair. For a subpopulation743

S ∈ {A,B}, let qSf (y) denote the probability of a contestant, with private signal y, being744

classified as 1 when f is the classifier. Therefore,745

qSf (y) =
∫ ∞
−∞

f(x) · py(x)dx =
∫ ∞

0

e−
(x−y)2

2σ2

√
2πσ

dx746

747

For a subpopulation S ∈ {A,B}, let’s calculate the advantage that a contestant, with748

private signal y, gets by changing its signal to y′ (y′ > y, otherwise qSf (y′) ≤ qSf (y) ):749

qSf (y′)− qSf (y) =
∫ ∞

0

e−
(x−y′)2

2σ2

√
2πσ

dx−
∫ ∞

0

e−
(x−y)2

2σ2

√
2πσ

dx =
∫ ∞
−y′

e−
x2

2σ2

√
2πσ

dx−
∫ ∞
−y

e−
x2

2σ2

√
2πσ

dx750

=
∫ −y
−y′

e−
x2

2σ2

√
2πσ

dx ≤
∫ −y
−y′

1√
2πσ

dx = y′ − y√
2πσ

751
752

As σ = max{σA, σB} and recalling the definitions of the cost functions cA and cB (Equation753

4), we get that754

qAf (y′)− qAf (y) ≤ cA(y, y′) and qBf (y′)− qBf (y) ≤ cB(y, y′)755
756

Therefore, none of the contestants in any of the subpopulations have an incentive to change757
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their private signals. The accuracy of the classifier f on the subpopulation A is given as758

UA(f) =
(∫ ∞
−∞

Π(y)[qAf (∆A
f (y)) · (2h(y)− 1)]dy

)
+ c759

=

∫ ∞
−∞

Π(y)
∫ ∞

0

e−
(x−y)2

2σ2

√
2πσ

dx · (2h(y)− 1)dy

+ c760

=

∫ ∞
0

∫ ∞
−∞

Π(y)e
− (x−y)2

2σ2

√
2πσ

· (2h(y)− 1)dy

 dx

+ c761

=
(∫ ∞

0
Π′(x) · (2H(x)− 1)dx

)
+ c762

763

Replacing H with H ′ without loosing much in the approximation, we get that764

UA(f) =

∫ ∞
0

e
− x2

2(σ2+t2)√
2π(σ2 + t2)

· t2

σ2 + t2
x

d
dx

+ c = t2√
2π(σ2 + t2) · d

+ c765

766

Similarly for UB(f) and hence, U(f) = UB(f) = UA(f) = t2√
2π(σ2+t2)·d

+ c.767

E Proof of Theorem 8768

We retain the instantiations of hA, hB , πA, πB , cA, cB and σ as above. As seen above, in Scen-769

ario 2, 1x>0 is the classifier that optimizes Jury’s utility and hence, U(f∗σ) = t2√
2π(σ2+t2)·d

+ c.770

Actually, it’s approximately equal to this but the error is extremely small (e−Ω(d), d >> t, σ).771

In Scenario 1, the utility of any threshold classifier (f) with τ as the threshold is given by772

Equation 7 (without loss of generality, we can optimize over threshold classifiers). Therefore,773

U(f) = sA ·
t√
2πd

e−(τ−
√

2πσA)2/2t2 + sB ·
t√
2πd

e−(τ−
√

2πσB)2/2t2 + c774

775

When sA = sB = 1
2 and we assume that |σA − σB | ≤ t√

2π , it’s easy enough to see that the
above expression is maximized at τ =

√
2πσA+

√
2πσB

2 . Therefore, the optimal classification
accuracy in Scenario 1, is

U(f∗0 ) = t√
2πd

e−(
√

2πσA−
√

2πσB
2 )2/2t2 + c

For σB = σ, σA = 0.1σ, t = 0.9
√

2πσ, U(f∗σ) > U(f∗0 ).776
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