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—— Abstract

We investigate the problem of designing optimal classifiers in the “strategic classification" setting,
where the classification is part of a game in which players can modify their features to attain a
favorable classification outcome (while incurring some cost). Previously, the problem has been
considered from a learning-theoretic perspective and from the algorithmic fairness perspective.
Our main contributions include
Showing that if the objective is to maximize the efficiency of the classification process (defined
as the accuracy of the outcome minus the sunk cost of the qualified players manipulating their
features to gain a better outcome), then using randomized classifiers (that is, ones where the
probability of a given feature vector to be accepted by the classifier is strictly between 0 and 1)
is necessary.
Showing that in many natural cases, the imposed optimal solution (in terms of efficiency) has
the structure where players never change their feature vectors (and the randomized classifier is
structured in a way, such that the gain in the probability of being classified as a ‘1’ does not
justify the expense of changing one’s features).
Observing that the randomized classification is not a stable best-response from the classifier’s
viewpoint, and that the classifier doesn’t benefit from randomized classifiers without creating
instability in the system.
Showing that in some cases, a noisier signal leads to better equilibria outcomes — improving
both accuracy and fairness when more than one subpopulation with different feature adjustment
costs are involved. This is particularly interesting from a policy perspective, since it is hard to
force institutions to stick to a particular randomized classification strategy (especially in a context
of a market with multiple classifiers), but it is possible to alter the information environment to
make the feature signals inherently noisier.
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1 Introduction

Machine learning algorithms are increasingly being used to make decisions about the in-
dividuals in various areas such as university admissions, employment, health, etc. As the
individuals gain information about the algorithms being used, they have an incentive to
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The Role of Randomness and Noise in Strategic Classification

adapt their data so as to be classified desirably. For example, if a student is aware that
a university heavily weighs SAT score in their admission process, she will be motivated
to achieve a higher SAT score either through extensive test preparation or multiple tries.
Such efforts by the students might not change their probability of being successful at the
university, but are enough to fool the admissions’ process. Therefore, under such “strategic
manipulation" of one’s data, the predictive power of the decisions are bound to decrease.
One way to prevent such manipulation is by keeping the classification algorithms a secret,
but this is not a practical solution to the problem, as some information is bound to leak
over time and the transparency of these algorithms is a growing social concern. Thus, this
motivates the study of algorithms that are optimal under “strategic manipulation". The
problem of gaming in the context of classification algorithms is a well known problem and is
increasingly gaining researchers’ attention, for example, [8, 1, 9, 16, 4].

[2] and [8] modeled strategic classification as a Stackelberg competition— the algorithm
(Jury) goes first and publishes the classifier, and then the individuals get to transform their
data, after knowing the classifier, incurring certain costs to manipulate. The individuals
would manipulate their features as long as the cost to manipulate is less than the advantage
gained in getting the desirable classification. We assume that such manipulations don’t
change the actual qualifications of an individual. A natural question is: what classifier
achieves optimal classification accuracy under the Stackelberg competition? These papers
considered the task of strategic classification when the published classifier is deterministic. We
study the role of randomness (and addition of noise to the features) in strategic classification
and define the Stackelberg equilibrium for probabilistic classifiers, that assigns a real number
in [0, 1], to each individual and a classification outcome o, representing the probability of
being classified as o.

As higher SAT scores are preferred by a university, the students would put an effort in
increasing their SAT score, thereby, forcing the university to raise the score bar to optimize
its accuracy (under the Stackelberg equilibrium). Due to this increased bar of acceptance,
even the students who were above the true cutoff would have to put an extra effort to
achieve a SAT score above this raised bar. And this effort is entirely the result of gaming
in the classification system. We define the cost of strategy for a published classifier to be
the total extra effort, it induced, amongst the qualified individuals of the population. Then,
we define the efficiency of a published classifier to be its classification accuracy minus the
cost of strategy under the Stackelberg equilibrium. A natural question here is: what classifier
achieves the optimal efficiency? The efficiency of a published classifier represents the total
impact of the classifier on all the agents in the Stackelberg equilibrium.

In normal classification problems it is never a good idea to use randomness, since one
should always adhere to the best/utility maximizing action based on the prediction. Just as
in games, randomness may lead to better solution in strategic classification, the paper aims
to start understanding tradeoffs between efficiency losses due to randomness and efficiency
gains through better equilibria induced by the randomized classifier.

Gaming in classification adds to the plethora of fairness concerns associated with classi-
fication algorithms, when the costs of manipulation are different across subpopulations. For
example, a high weightage of SAT scores (for university admissions) favors the subgroups of
the society that have the resources to enroll in test preparation or attempt the test multiple
times. Further, varying costs across the subpopulations can lead to varied efforts put by
identically qualified individuals, belonging to different subpopulations, to achieve the same
outcome. [16] and [9] study the disparate effects of strategic classification on subpopulations
(we will discuss these papers more in the related work section). [9] observes that a single
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classifier might have different classification errors on subpopulations due to the varying cost
of manipulations. We also study the effect of strategic manipulation on the classification
errors across subpopulations and how randomized classifiers or noisy features may reduce
the disparate effects.

Strategic classification is a well known problem and there has been research in many other
aspects of strategic classification, for example, learning the optimal classifier efficiently when
the samples might also be strategic [8, 4], mechanism design under strategic manipulation
[3, 5, 12], and studying the manipulation costs that actually change the inherent qualifications
[14, 15]. The focus of this paper is theoretically demonstrating the role of randomness and
noise in the strategic setting.

1.1 Our contributions

Above, we talked about how strategic manipulation can deteriorate the classification accuracy
and lead to unfair classification. We investigate the different scenarios of the classification
task that help in regaining the lost accuracy and fairness guarantees. Our entire work is
based on one-dimensional feature space.

1.1.1 Randomized classifiers

Firstly, we formulate the strategic classification task, when the published classifier is ran-
domized. Instead of publishing a single binary classifier (for 2 classification outcomes, 0 and
1), the Jury publishes a distribution of classifiers and promises to pick the final classifier
from that distribution. Another interpretation is that the Jury assigns a value in [0, 1] to
each feature value, which represents the probability of an individual with this feature being
classified as 1. The individuals manipulate their features, after knowing the set of classifiers
but not the final classifier, incurring certain costs according to the cost function.

Not surprisingly, we show through examples that a probabilistic classifier can achieve
strictly higher expected accuracy and efficiency than any binary classifier under strategic
setting. Note that, without any strategic manipulation, a randomized classifier has no
advantage over deterministic classifiers in terms of classification accuracy. The intuition is as
follows: using randomness, the Jury can discourage the individuals from manipulating their
features by making the advantage gained by any such a manipulation small enough.

For simple cost functions, we then characterize the randomized classifier that achieves
optimal efficiency. We prove that such a classifier sets the probabilities (of being classified as
1) such that none of the individuals have an incentive to manipulate their feature. Given
two features x and 2’ in the feature space, let ¢(x,2’) denote the cost of manipulating one’s
feature from x to z’. Informally, we say a cost function c is simple when all the costs are
non-negative, the cost to manipulate to a “less" qualified feature is 0, and the costs are
sub-additive, that is, manipulating your feature z directly to z” is at least easier than first
manipulating it to 2’ and then to z”. The characterization theorem, stated informally, is as
follows:

» Theorem 1 (Informal statement of Theorem 3). For simple cost functions, the most efficient
randomized classifier is such that the best response of all the individuals is to reveal their
true features.

This characterization, in addition to being mathematically clean, allows us to infer the
following: let A and B be two subpopulations (identical in terms of qualifications) such
that the costs to manipulation are higher for individuals in A than in B, then the optimal
efficiency obtained for the subpopulation A is greater than that in B.
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The Role of Randomness and Noise in Strategic Classification

1.1.2 Obstacles to using a randomized classifier

Till now, we have argued the benefits of using a probabilistic classifier. However, the degree to
which it is possible to use or commit to a randomized strategy varies depending on the setting.
There are two main drivers impeding the implementation of the most efficient Stacklberg
equilibrium. Firstly, in many real-life classification settings, it might be unacceptable to
use a probabilistic classifier, for example, due to legal restrictions (applicants with identical
features must obtain identical outcomes). Secondly, for the more complicated scenario with
multiple classifiers (such as college admissions), the effect of each Jury on the overall market
is small, hence, diminishing the incentive to stick to a randomized strategy ‘for the benefit
of the market as a whole’. Informally, the best response of a single Jury, when the other
classifiers commit to using a randomized classifier, is not a randomized classifier. And even
if we got the Juries to commit to randomization, the final probabilities of classification
depends on the number of classifiers (k) and hence, the implementation of the most efficient
randomized classifier needs coordination between the multiple classifiers. Analyzing the
equilibria for multiple classifiers is beyond the scope of this paper but we illustrate the
instability of randomized classifier as follows. We show that unless Jury is able to commit
to the published randomized classifier, such a classifier is not a stable solution to strategic
classification. As mentioned above, randomization helps because of the following observation:
if the difference between the probabilities, of being classified as 1 at adjacent features is
small, the individuals have no incentive to manipulate their features. But, once the Jury
knows that no one changed their feature, her best response, then, is to use the classifier that
achieves best accuracy given the true features.

Formally, we show (Theorem 5) that for any published randomized classifier that achieves
strictly higher accuracy compared to any deterministic classifier under Stackelberg equilibrium,
Jury has an opportunity to improve its utility and get strictly better accuracy using a classifier
different from the published.

The shortcomings of a randomized classifier can be redeemed by addition of noise to the
features.

1.1.3 Addition of noise to the features

This brings us to our second scenario that uses noisy features for classification. Every
individual has an associated private signal that identifies their qualification. The Jury sees a
feature that is a noisy representation of this private signal. The individuals, after incurring
certain cost, can effectively manipulate their private signal such that the features are a
noisy representation of this updated private signal. Again, the assumption is that such a
manipulation didn’t change the true qualifications of an individual. We show, through an
example of a cost function and a noise distribution, that in the strategic setting, using a
deterministic classifier, the Jury achieves better accuracy when the features are noisy than
any deterministic classifier in the noiseless case, that is, when Jury gets to see the private
signal. This is counter-intuitive at first glance because under no strategic manipulation, noise
can only decrease Jury’s accuracy.

We also show examples where noisy features can help in achieving fairer outcomes across
subpopulations. Let A and B be two subpopulations identical in qualifications but having
different (but not extremely different) costs of manipulation (and |A| < |B|; A is a minority).
We show, through an example, that no matter whether the minority has higher or lower
costs of manipulation than the majority, it is at a disadvantage when Jury publishes a single
deterministic classifier to optimize its overall accuracy (noiseless strategic setting). Here, by
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disadvantage, we mean that the minority has lower classification accuracy than the majority.
Next, we show that the addition of appropriate noise to the private signals, in the same
example, can ensure that Jury’s best response classifier is fair across subpopulations. This is
not that surprising as making the features completely noisy also lead to same outcomes for the
subpopulations. However, such an addition of noise can also sometimes increase Jury’s overall
accuracy (improving both accuracy and fairness). We consider the case where the Jury would
publish a single classifier for both the subpopulations (for e.g., either because A is a protected
group and the Jury is not allowed to discriminate based on the subgroup membership or
because the Jury has not yet identified these subpopulations and the differences in their cost
functions). Informally, our results, can be stated as follows:

» Theorem 2 (Informal statement of Theorems 6,7,8). Let A and B be two subpopulations that
are identical in qualifications. Let c4 # cp be the cost functions for subpopulations A and B
respectively. In Case 1, Jury gets to see the private signals and publishes a single deterministic
classifier that achieves optimal overall accuracy (sum over the two subpopulations) under
the Stackelberg equilibrium (for the cost functions ca and cg). In Case 2, the features are
notsy representations of the private signal; Jury publishes a single deterministic classifier
that achieves optimal overall accuracy under the Stackelberg equilibrium (knowing that the
features are noisy). There exists an instantiation of the “identical qualifications” such that

1. If |A] < |B|, that is, A is a minority, for a wide set of costs functions ca,cp, A is always
at a disadvantage when in Case 1.

2. There exists a setting of the “noise” (n) for each of the above cost functions, such that,
Jury’s best response in Case 2, is always fair, that is, achieves equal classification accuracy
on the subpopulations.

3. There exists cost functions ca,cp from this wide set of cost functions, and corresponding
noise 1, such that Jury’s accuracy in Case 2 is strictly better than in Case 1.

This result has potentially interesting policy implications, since it is easier, both practically
and legally, to commit to using noisier signals (for example by restricting the types of
information available to the Jury) than to commit to disregarding pertinent information
ex-post (as in randomized classification). Therefore, future mechanism design efforts involving
strategic classification should carefully consider the mechanisms of information disclosure to
the Jury.

1.2 Related Work

[8, 2] initiated the study of strategic classification through the lens of Stackelberg competition.
[9, 16, 10] study the effects of strategic classification on different subpopulations and how it
can exacerbate the social inequity in the world. [9] also made the observation that a single
classifier would have varying classification accuracies across subpopulations with different
costs of manipulation. [16] defined a concept called “social burden" of a classifier to be the
sum of the minimum effort any qualified individual has to put in to be classified as 1. Thus,
the subpopulations with higher costs of manipulation would have worse social burden and
might be at a disadvantage. In such situations, intuitively, one would think that subsidizing
the costs for the disadvantaged population might help. [9] showed that cost subsidy for

disadvantaged individuals can sometimes lead to worse outcomes for the disadvantaged group.

In the present paper, we observe that the addition of noise, counter-intuitively, can help
Jury’s accuracy as well as serve the fairness concerns. There are many examples in game

theory where loss of information helps an individual in strategic setting, for example, [6].

[11, 10] also studies the role of hiding information to serve fairness. [7] has a brief discussion
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The Role of Randomness and Noise in Strategic Classification

at the end of the paper on making manipulated data more informative through addition of
noise to the features (this was put online a couple of months after the first version of our
paper was made online).

Another work related to Theorem 3 of the present paper is [13], which studies the scope
of truthful mechanisms when the agents incur certain costs for misreporting their true type.
In particular, the paper gives conditions, on the misreporting costs, that allow the revelation
principle to hold, that is, any mechanism can be implemented by a truthful mechanism,
where all the agents reveal their true types. The main difference between [13] and our paper
is that the former allows the use of monetary transfers to the agents to develop truthful
mechanisms and such transfers don’t impact the objective value of the mechanism.

1.3 Organization

We formalize the model used for strategic classification in Section 2. In Section 3, we show
how randomness helps in achieving better accuracy and efficiency. We also characterize
the classifiers that achieve optimal efficiency for simple cost functions. In Section 4, we
investigate the stability of randomized classifiers. In Section 5, we investigate the role of
noisy features in strategic classification.

2 Preliminaries

In this paper, we concern ourselves with classification based on a one-dimensional feature
space X. In many of the examples, our feature space X C R is discrete, hence, we use sum
(3>2) in many of the definitions, but, these definitions are well-defined when X is taken to be
continuous (for e.g., R) by replacing sum (") with integrals ( [) and probability distributions
with probability density functions. We use the notation N'(z,0) to denote the gaussian
distribution with mean z and standard deviation o. We say a function f: X — {0,1} is a
threshold function (classifier) with threshold 7 if

f(x):{l ifx>71

0 otherwise

We also use 1>, to denote a threshold function (classifier) with threshold 7. Sometimes, we
will use 1., that classifies z as 1 if and only if z > 7.

2.1 The Model

Let X be the set of features. Let m : X — [0,1] be the probability distribution over the
feature set realized by the individuals. Let h : X — [0, 1] be the true probability of an
individual being qualified (1) given the feature. We also refer to it as the true qualification
function. Let ¢(x,z’) be the cost incurred by an individual to manipulate their feature from
to 2’ (We also use words, change and move, to refer to this manipulation). The classification
is modeled as a sequential game where a Jury publishes a classifier (possibly probabilistic)
f: X —[0,1] and contestants (individuals) can change their features (after seeing f) as long
as they are ready to incur the cost of change. The previous papers in the area considered the
task of strategic classification when the published classifier is deterministic binary classifier.
Here, we formalize the Stackelberg prediction game for probabilistic classifiers.
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Given f, we define the best response of a contestant with feature !, as follows

Af(x) = argmaxye (a}ufa|(f(a)— 1 (2) > e(e,e)h) (F(Y) (1)

We will denote it by A when f is clear from the context. A(z) might not be well defined if
there are multiple values of y that attains the maximum. In those cases, A(x) is chosen to
be the smallest y amongst them. In words, you jump to another feature only if the cost of
jumping is less than the advantage in being classified as 1.

We define the Jury’s utility for publishing f (U(f)) as the classification accuracy with
respect to h(x). Thus, Jury’s utility for publishing f is

U(f) =Y m@)f(A@)) - h(z) + (1 = f(A®@)) - (1 = h(z))]

reX

= > 7(@)[f(A@@)) - (2h(z) —1) + 1 = h(x)]

zeX

We define C(f) = >, cr m(x)[h(x)-c(z, As(z))] to be the cost of strategy for a published
classifier f.
We define the efficiency of the classifier f (E(f))? as follows:

=Y w(@)[f(A2)) - hlz) + (1 = f(A(2) - (1= h(@)] = Y w(x)[h(z) - e(z, Ax))]

reX TEX
= > w(@)[f(A@) - h(z) + (1= f(A@) - (1= h(x)) = h(@) - c(z, Ax))]

The focus of this paper is to demonstrate what role randomness and noise can play in
strategic classification and not to give algorithms for learning the optimal or most efficient
strategic classifier. We can present the ideas even by making the following assumptions on
the cost function ¢: X x X — R:

1. ¢(z,2’) >0, Va,2' € X.

2. ¢(a’,x) =0, Vo, 2’ | h(z") > h(zx), that is, jumping to a lesser qualified feature is free.

3. c(z,2") < c(z,2’) + (o', 2"), Vo, 2’2" € X, that is, the costs are sub-additive.

4. c(z,2") < c(z,z"”), Vo, o', 2" | h(z") > h(a’), that is, jumping to a lesser qualified feature
is easier.

5. c(a',2") < e(z,a”), Vo, o' 2" | h(z') > h(x), that is, jumping from a lesser qualified
feature is harder.

The last two points are implied by the first three, we wrote them as separate points for

completeness. We call the cost function simple if it satisfies all the above assumptions.

By the virtue of the definition of simple cost functions, without loss of generality, we
assume that h is monotonically increasing with the feature xz, that is, Vo,2’ € X, 2’ >
x = h(z') > h(z).

Next, we mention a special kind of cost function that satisfies the assumptions: ¢(x, z’) =
max(a(z’) — a(x),0) where the function a : X — R is monotonically increasing in z, that is,
¥ >x = a(a’) > a(z).

! Such a best response model has been studied in the literature, for example, [17].

2 We defined efficiency as U(f) — C(f) for the simplicity of the presentation. Defining efficiency as
U(f) = B-C(f) (for some B > 0) doesn’t effect the theorems except for Theorem 3, which is no longer
true for g < 1.
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The Role of Randomness and Noise in Strategic Classification

Given a cost function ¢, let
Lipy(c) ={f | f: X = [0,1], f(a) — f(x) < c(z,2') Vo,2" € X}

Given the cost function ¢, we say f satisfies the Lipschitz constraint if f € Lip;(c). Note
that any classifier f € Lip,(c) is monotonically increasing with z, that is, 2’ > 2 =
f(z') > f(x). This is because Va’' > z, f(z) — f(2') < ¢(a’,2) =0. And Vo € X, Ay(z) = z,
that is, no one changes their feature if f is the published classifier.

In Section 5, we generalize this model to the setting where the features are a noisy
representation of an individual’s private signal. An individual can make efforts to change
their private signal but can’t control the noise. The Jury only see the features and classifies
an individual based on that. In Section 5, the fairness notion, we will concern ourselves with,
is the classification accuracy of the published classifier across subpopulations.

3 Committed Randomness Helps both Utility and Efficiency

In this section, we compare the optimal utility and efficiency achieved by a deterministic
binary classifier to a probabilistic classifier. Consider the following two scenarios:

Scenario 1: The Jury commits to using a binary classifier f : X — {0,1}. The best
response function Ay : X — X, Jury’s utility from publishing f (U(f)) and efficiency of the
classifier f (E(f)) are defined as in Section 2.

Scenario 2: The Jury publishes a probabilistic classifier f: X — [0, 1] and commits to
it. The best response function Ay : X — X, Jury’s utility from publishing f (U(f)) and
efficiency of the classifier f (E(f)) are as defined in Section 2. Note that this is equivalent to
when Jury publishes a list of deterministic classifiers and chooses a classifier uniformly at
random from them. Contestants update their feature without knowing which classifier gets
picked up at the end.

The following example illustrates how randomization helps in getting strictly better utility
and efficiency:

Let X = {1,2} and each feature contains half of the population. Let

h(x)_{1 if g =2

0 otherwise

Let the cost of changing the feature from 1 to 2 be 0.5. The the randomized classifier f

defined as follows:
1 ifx=2
x prg
f(@) {0.5 fz=1

achieves an accuracy of 0.75. The contestants at © = 2 are happy as they are already being
classified as 1 with probability 1. For the contestants at x =1, f(2) — f(1) = 0.5 = ¢(1, 2)
and hence, they don’t have an incentive to manipulate their feature. As all the contestant
retain their true features, the efficiency of f is also equal to 0.75. As the feature space is
bounded, there are only three options for a deterministic classifier: keep the threshold at 1
and classify everyone as 1; keep the threshold at 2 and you end up classifying everyone as 1,
as the contestants at 1 change their feature to 2; classify everyone as 0. All these classifiers
have 0.5 accuracy and at most 0.5 efficiency.

In the mathematical example given above, the randomized classifier was set up such that
none of the contestants had any incentive to change their feature. In the next subsection,
we show that the most efficient classifier always looks like “this" for “simple" cost functions.
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That is, if the cost function c¢ satisfies the assumptions made in Section 2, then for every
true qualification function h, there exists a function f;, € Lip;(c) that achieves the optimal
efficiency.

3.1 Most Efficient Classifier for Simple Cost Functions

Recall, E(f) = -, ca m(@)[f(A(z)) - h(z) + (1 = f(A(z)) - (1 = h(2)) — h(z) - c(z, A(z))]. Let
E* = max g o) Swere @) (A@)) - h(z) + (1= F(A@))- (1= h(@)) = h(x) - ol A))]
» Theorem 3. For every monotone true qualification function h : X — [0,1], probability

distribution m : X — [0,1] over the features, simple cost function c, there exists g € Lip,(c)
such that E(g) = E*.

Proof. Let f be an efficiency maximizing classifier. We argue that g : X — [0, 1] defined as

g(w) = max,{f(y) — c(z,y)}

is in Lip; (c) and satisfies E(g) > E(f). Let d;(z) = argmax,{f(y) — c(z,y)}. When f is
clear from the context, we will drop the subscript on ¢. Using definition of §, g(z) € [0,1] as
Vz,y € X, f(y)—c(z,y) < f(y) < 1(c(z,y) > 0) and max, {f(y) —c(z,y} > f(z)—c(z,2) >
0. For all z,2' € X,
g9(a') — g(z) = f(3(2")) — c(a’, 6(z")) — f(d(x)) + c(x, 6(x))
f(5( )) c(z,0(2")) = f(0()) + c(x,0(x)) + (c(z, (")) — c(a’, 6(2")))
<c(z,0(z") —c(2',0(z") < e(z,2")  (sub-additivity)

The first inequality follows the definition of 4, that is, Vy € X, f(d(z)) — c(x,d(x)) >
fly) — c(z,y). Therefore, f(6(x)) — e(x,d(z")) — f(6(x)) + ¢(z,d(x)) < 0. The second
inequality follows from the fact that the cost function c¢ is simple and satisfies the sub-
additivity condition. This proves that g € Lip;(¢). This implies, as observed previously,

Vo € X,Ay(x) = . Next, we show that E(g) > E(f) and hence E(g) = E*. Efficiency of
the classifier g is

E(g) = Y m(2)[g(Ag(2)) - h(z) + (1 = g(Ag(@)) - (1 = h(2)) = h() - e, Ag(x))]

TEX
= S w(@)[2- glx) - hlw) — g(x) — hlx) + 1]
zeX
Efficiency of the classifier f is
E(f) =Y m(@)[f(As(@)) - h(z) + (1 = f(Af(2)) - (1 = h(z)) = h(z) - e, Ap(2))]

rzeX
=Y m(@)2f(A()) - hlx) = f(A(@)) = h(z) + 1 = h(z) - (2, A))]
zeX
E(g) = E(f) = Xaex m(@)[(9(z) — f(A(2))) - (2h(z) = 1) + h(z) - c(z, A(z))]
> Claim 4. Vi, [(g9(z) = F(A))) - (2h(x) — 1) + h(x) - e(a, Alx))] > 0.
Please refer to Appendix A for the proof of the claim. It’s straightforward to see that

E(g) — E(f) > 0 using the above claim. Therefore, we showed a classifier g € Lip,(c¢) such
that E(g) = E*. <

In words, when we are concerned with the efficiency of the published classifier, the optimal is
achieved by a probabilistic classifier that has zero cost of strategy and gives individuals no
incentive to change their feature.
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The Role of Randomness and Noise in Strategic Classification

4 Are Randomized Classifiers in Equilibrium from Jury’s Perspective?

As discussed in the Section 1, there are many obstacles to implementing a randomized
classifier in the strategic setting. In this section, we illustrate the instability caused by
the use of randomized classifiers (which becomes increasingly important while considering
multiple classifiers). In Section 3, we saw that a randomized classifier can achieve better
accuracy and efficiency than any binary classifier. While maximizing efficiency, we further
showed that the optimally efficient classifier is such that every contestant reveals their true
feature. Once the Jury knows the contestants’ true features, she can be greedy and classify
the individuals using a threshold function with 7 = min{xz | h(z) > 1} as the threshold to
achieve the best accuracy. Therefore, unless the Jury commits to using randomness, she has
an incentive of not sticking to the promised randomized classifier. The question is: what’s
the best accuracy/efficiency achieved by a classifier that is in equilibrium even from Jury’s
perspective? We formalize this equilibrium concept as follows (the true qualification function
h and the cost function c are fixed):
1. Jury publishes a randomized classifier f: X — [0, 1].
2. Contestants, knowing f, changes their feature from x to Ay(x).
3. f is in equilibrium from Jury’s perspective if given that the contestants changed their
features according to the best response function Ay, f achieves the best classification
accuracy, that is, for all classifiers g € X — [0, 1],

D @)f(Ap(@) - hlx) + (1= f(Af(2) - (1= h(z))] (2)
reX

=Y m@)lg(As()) - h(x) + (1 = g(Af(x)) - (1 = h())] 2 0

zeX

Using next theorem, we show that for any randomized classifier that is in equilibrium from
Jury’s perspective, there exists a binary classifier that achieves at least the same accuracy.

» Theorem 5. Given a monotone true qualification function h, probability distribution w
over the features, and a simple cost function c, let f* : X — {0,1} be the classifier that
optimizes Jury’s utility over the deterministic classifiers under Stackelberg equilibrium. Let
f X = [0,1] be a randomized classifier such that U(f) > U(f*), then f is not in an
equilibrium from Jury’s perspective (the notion defined above).

Please refer to Appendix B for the proof.

Disclaimer: f’ as defined above might also not be in equilibrium from Jury’s perspective.
The above theorem illustrates the following point: Jury doesn’t benefit from randomized
classifiers without creating instability in the system.

Can we somehow exploit this power of randomness while overcoming the obstacles to
randomized classification? The answer is yes — make the features noisy.

5 Noisy Features Give the System Free Randomness

We formalize the setting with noisy features as follows: every individual has a private signal
y € X. The true qualification function h : X — [0,1] depends on y, that is, h(y) is the
probability of an individual being qualified (1) given that its private signal is y. Given a
private signal y, a feature is drawn randomly from the distribution p, : X — [0, 1], that
is, py(x) is the probability that an individual’s feature is z when their private signal is
y. If X = R, the right intuition for p, is it being N(y, o) where N (y,o) is the gaussian
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distribution with mean y and standard deviation o. Let m : X — [0, 1] be the probability
distribution over the private signals y realized by the individuals.

Let ¢(y,y’) be the cost incurred by the contestant to change their private signal from y
to ¢’. The contestants can put effort to change their private signals but the feature would
still be drawn randomly using the updated private signal.

The classification is again modeled as a sequential game where a Jury publishes a
deterministic classifier f: X — {0,1}. We restricts ourselves to deterministic classifiers due
to the observations made in Section 4. Contestants change their private signals as long as
they are ready to incur the cost of change. Given a private signal y, let ¢s(y) denote the

probability of a contestant, with private signal y, being classified as 1 when f is the classifier.

Therefore, ¢;(y) = erxpy(x) - f(x).
Given f, the best response of a contestant with private signal y is given as,

Aj(y) = argmax e )o0y lap (v')—ar () > ey} (47 (2)) (3)

We will denote it by A when f is clear from the context. A(y) might not be well defined
if there are multiple values of z that attains the maximum. In those cases, A(y) is chosen
to be the smallest z amongst them. In words, you jump to another private signal only if
the cost of jumping is less than the advantage in being classified as 1. Even though f is
deterministic, due to noisy features, the effective classifier given the private signal y (qy) is
probabilistic. Therefore, we will see below that the noise allows us similar advantages as that
of a probabilistic classifier.

The accuracy and efficiency of the classifier f are defined as follows:

Uf)=>_ mwlar(Aw)) - hy) + (1 = qr(Ay)) - (1 — h(y))]

yeX

E(f) =Y mW)lar(AWw) - h(y) + (1 = qr(A@W) - (1= hy)] = Y 7)[hy) - c(y, A(y))]

yeX yeEX

We assume that h is monotonically increasing with y and the cost function c is simple. Next,
we will demonstrate how noisy features can lead fairer outcomes and even increase Jury’s
accuracy.

5.1 Noisy Features achieve Fairer Equilibriums

Consider two subpopulations A and B. For simplicity, these subpopulations are a partition
of the individuals in the universe. Let s4 denote the probability an individual from the
universe is in subpopulation A. Similarly, sg (sa =1 — sp). Let ha : A — [0, 1] be the true
qualification function for the subpopulation A. Similarly, hp. Let ¢4 : X x X — R be the
cost function for the subpopulation A, that is, c4(y,y’) is the cost of changing the private
signal from y to ¢’ for an individual in A. Similarly, c¢p is defined. Let 74 : A — [0, 1] and
wp be the probability distribution over the private signals realized by the subpopulations A
and B respectively.

Given a published deterministic classifier f : X — {0,1}, the best response of the
contestant in subpopulation A with private signal y (A?(y)) is defined using c4 as the
cost function. Similarly, for subpopulation B, let AfB (y) denote the best response of the
contestant in subpopulation B with private signal y and when the published classifier is
f- We use Ua(f) and Ug(f) to denote the accuracy of the classifier f on the respective
subpopulations.

9:11
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The Role of Randomness and Noise in Strategic Classification

We consider the setting where hy = hg = h and m4 = wg = II, but the cost functions
ca and cp are different. In this section, we use the symbol II to denote the probability
distribution over the private signals to avoid confusion with the Archimedes’ constant .

In our first example, we show that even though the subpopulations are identical with
respect to their qualifications, different costs can lead to unfair classification when classification
is based on private signals. Through our second example, we show that the use of noisy
features, for strategic classification, can lead to increase in the overall accuracy of classification
as well as give fair classification. We evaluate the fairness of a classifier f quantitively using
the difference between the accuracies, that is, |Ua(f) — Up(f)|-

Let’s start with the example. X = R. Let the true qualification function for both the

1 ify>d
subpopulations be as follows: h(y) = o+ % if y € [-d,d] , where d is a fixed large
0 ify<—d
enough positive real number. Let the probability density function on the private signals
2
realized by the subpopulations be as follows: II(y) = € \/227:; , that is, the gaussian distribution

with mean 0 and standard deviation ¢. Again, ¢ is fixed positive real number. We assume
d>>t.

Let 04 and o be positive real numbers. The cost function for a subpopulation S € {A, B}
is defined as follows (with (v’ —y)* = max{y’ —y,0}):

n_ W —y*
CS(yv Yy ) - \/%0'5 (4)

We start with the setting where the features are the private signals and not a noisy
representation of them.

Remark: If the Jury is allowed to publish different classifiers for the two subpopulations,
then she can achieve “the best possible accuracy" on both the subpopulations. It’s easy to
see that the classifier fs : X — {0, 1}, defined as follows, achieves as much accuracy as a
classifier under no strategic manipulation of the features can achieve on the subpopulation

S e{A B} fs(y) = {1 ify > va2ros

0 otherwise

All the contestants in a subpopulation S, with 0 < y < /270 report their private signals
to be v/2mog as cost of this change is < 1 whereas the advantage gained in the probability of
being classified as 1 is 1. For all the contestants with private signal y < 0, the cost of change
is too high (> 1) and thus, they report their true private signals. Therefore, the classifier fg
ends up classifying everyone with private signal y > 0 as 1 which is the accuracy maximizing
classification under the "no strategic manipulation" setting.

How strategic classification leads to unfairness: When o4 # op, the optimal
classifiers for the subpopulations A and B are different and hence, when we choose a single
classifier for both the subpopulations, we are bound to loose on the accuracy of at least one of
the subpopulations. Through an example (Theorem 6), we suggest that: while mazimizing the
overall accuracy over the universe, the minority group might be at a disadvantage irrespective
of whether their costs to change the private signals are higher or lower than the majority
subpopulation. Without loss of generality, we assume that A is the minority subpopulation,
that is, s4 < sp. In many real life scenarios, the Jury would publish a single classifier for
both the subpopulations either because A is a protected group and the Jury is not allowed to
discriminate based on the subgroup membership or because the Jury has not yet identified
these subpopulations and the differences in their cost functions.
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» Theorem 6. Let A and B be two subpopulations such that the true qualification functions,
ha, hp, the probability density functions, ma, mg and the cost functions ca, cg are as
instantiated above.

Assuming |oa —opg| < \/%, let f* be the deterministic classifier that maximizes Jury’s
utility (U(f)), if sa < sp and 04 # op (the cost functions are different), then Ua(f*) <
Ug(f*), that is, the minority is at a disadvantage, even though their qualifications were

identical (ha = hp, ma =7pB).

Please refer to Appendix C for the proof.

Next we show that, when the features are appropriately noisy, the optimal classifier from
Jury’s perspective is fair to the subpopulations. The intuition is as follows: if the noise is
large enough such that none of contestants in either of the subpopulations want to manipulate
their private signals, then the cost differences become irrelevant and hence, the optimal
classifier achieves equal accuracy on both the subpopulations. You would think that this
addition of noise would compromise Jury’s utility. Subsequently, we show that adding noise
might also improve the overall accuracy of the Jury’s optimal classifier, therefore, addition of
noise can make everyone happier. The latter is a continuation to the results at the start of
Section 5 about the usefulness of noise to the Jury under strategic classification.

Noisy features lead to fairer outcomes: Now, we analyze the setting with noisy
features and prove the following theorem. The true qualification function h, cost functions
(ca and cp) and the probability density function IT are as defined for the first example. Let
o =max{oa,0p}. Given a private signal y, the features x are distributed according to the

gaussian with mean y and standard deviation o. The probability density function for the

_(z—p)?
e 202

feature x given the private signal y is p,(z) = —

» Theorem 7. Let A and B be two subpopulations such that the true qualification functions,
ha, hp, the probability density functions, ma, mp and the cost functions ca, cg are as
instantiated above. When the features are drawn with a gaussian noise of mean 0 and standard
deviation o, such that, 0 > ca,0p, if f* is the deterministic classifier that maximizes Jury’s
utility (U(f)), then f* is fair, that is, Ua(f*) = Up(f*).

Please refer to Appendix D for the proof.

Theorem 7 would hold for when we are concerned with multiple subpopulations as long as
o > og for every relevant subpopulation S. In words, using noisy features we can ensure that
the best response of a Jury, maximizing her own utility, is fair to all the subpopulations that
are identical in terms of qualifications but different in terms of the costs to manipulate the
private signals, as long as the costs of manipulation for a subpopulation are not too small.

Noisy features can also improve Jury’s utility: Next, we show that further in some
cases, the addition of noise to the features is not only beneficial for ensuring fairness but
might also achieve better overall accuracy under strategic classification compared to when a
noiseless signal is used.

Retaining the instantiations of h4, hg, w4, T, ca, cg and o as above, consider the
following two scenarios: 1. Jury bases her classifier on the private signal y. 2. The features
are drawn with a gaussian noise of mean 0 and standard deviation ¢ and Jury bases her
classifier on the features (z).

Let f3 and f be the optimal classifiers under strategic classification in the two scenarios
respectively. Let U(f;) be the overall classification accuracy (Jury’s utility) under Scenario 1
and U(fX) be the overall classification accuracy (Jury’s utility) under Scenario 2. We assume
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The Role of Randomness and Noise in Strategic Classification

that the subpopulations are equally populated, that is, s4 = sp for simplicity of calculations
in the next theorem.

» Theorem 8. There exists qualification functions, ha, hp, the probability density functions
over the private signals, ma, 7g, the cost functions ca, cg and o > 0 such that, U(fX) >
U(f3), that is, the Jury gets better classification accuracy when the features are drawn with a
gaussian noise of mean 0 and standard deviation o. Here, the subpopulations have identical
qualifications (ha = hg, 74 = ) but different cost functions.

Please refer to Appendix E for the proof. This theorem corroborates the idea that not only
the subpopulations, but even the Jury might prefer noisy features. In the above example,
for simplicity, we assumed s, = sg. Therefore, the optimal classifier was fair even in the
noiseless setting. But a slight tweak in s4 so that s4 < sp wouldn’t change Jury’s utility, in
Scenario 1, by much and thus, would give an example where the noiseless setting has both
unfairness and lesser overall classification accuracy.

In this paper, we study the interaction of noise with strategic classification through some
simple examples, and leave the task of generalizing these results for future research.

6 Discussion

The problem of classification (and the strategic classification problem it entails) is of tremend-
ous importance both practically (affecting pretty much every industry) and theoretically
(with implications ranging from algorithms to policy and law). Therefore, clarifying the
role randomness plays in this specific family of games is an important goal. Just as in
games, randomness may lead to better solution in strategic classification. Moreover, in many
important settings (such as college admissions in some jurisdictions), the classifier is required
to be deterministic by law — which is not a handicap for algorithmic classification, but
is a handicap for strategic one. In addition, we proved that, in many natural cases, any
randomized classifier (based on one-dimension) that achieves strictly better accuracy than
the optimal deterministic one is not stable from the classifier’s standpoint, thus illustrating
the difficulty of implementing a randomized classifier in a more complicated scenario with
multiple classifiers (such as college admissions). This motivates the use of noisy features as a
commitment device, which can improve both accuracy and fairness, and is also practically
possible (for example by restricting the types of information available to the classifier).
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os A Proof of Claim 4

a6 Recalling, g(x) = f(d(z)) — ¢(z,d(x)). Using definition of §, we know that

g9(x) = f(6(x)) = (2, 8(z)) = [(A(z)) = c(z, A(x)) ()

oo
o2
o

619 And, using definition of A, we can show that

@ [(A®@) > g(x) 6)

o2 This is because, either f(6(x)) — c¢(z,d(z)) = f(x) and as f(A(z)) > f(x), we get the
e inequality. Or, f(0(z))—c(z,d(x)) > f(z), which implies that = has an incentive to change its
o feature to §(x). Therefore, by the definition of A, f(A(x)) > f(d(x)) > f(d(x)) — e(x, d(x)).
e The expression in the claim can be rewritten as

o2 (9(z) = f(A(2))) - (2h(z) = 1) + h(z) - c(z, A(z))
% = (9(2) = f(A(2))) - (h(z) = 1) + k() - (9(2) = fF(A(2)) + ez, A(2)))

o0 As g(x) — f(A(x)) <0 from Equation 6 and g(z) — f(A(z)) 4+ ¢(z, A(x)) > 0 from Equation
s0 B, the inequality follows from the fact that 0 < h(x) < 1. This proves the claim.
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B  Proof of Theorem 5
Equation 2 implies that for all classifiers g € X — [0, 1],

Y m(@)[(f(Ar() = g(Af(x))) - (2h(z) = 1)] > 0

= > (fW-9w)- > w@)2h(z)-1)>0
yex @Ay )=y

Therefore, if f is in equilibrium from the Jury’s perspective, for all y € X such that
fy) € (0,1), 3 0n,(2)=y (@) (2h(z) — 1) = 0 otherwise Jury can choose g(y) =1 (or 0)
depending on whether 37, A ), 7(2)(2h(z) — 1) > 0 (or < 0) to increase her accuracy.
Therefore, accuracy of the classifier f is given by

U(f) = n@)f(As(2) - (2h(z) = 1) + (1 = h(2))]

TeEX

=> fly)- Y, w@h(x) -1+ Y w(x)(1 - h(z))
yeEX z:Ag(z)=y TeX

= Y > w@Eh@) -1+ Y wl@)(1 - h()
y:f(y)=1z:Ap(z)=y zeEX

Consider a binary classifier f': X — {0,1} defined as follows: f(z) € [0,1) = f'(z) =0
and f(z) =1 = f'(z) = 1. We can show that U(f’") > U(f). The contestants who change
their features when f’ is the published classifier is a subset of {x € X' | f(Af(x)) € (0,1]}
and as Zx:f(Af(x))e(o,l) m(x)(2h(z) — 1) = 0, the accuracy of f’ can only increase. This is
because: Vo € X if f(Af(x)) =0, then f'(As (x)) = 0 as otherwise if = changed its feature
under f, it had an incentive to change under f too.

If o >z, f(Ag(2)), f(Af(z)) € (0,1) and = changes its feature under f’, then z’ has the
incentive to change too as c¢(z’,z) = 0, and hence, the subset of {z € X' | f(Af(x)) € (0,1)}
that change their features under f’ can only do a positive addition to the utility (h is
monotonically increasing with = and Zz:f(Af(m))e(o,l) m(x)(2h(z) — 1) = 0). And, the
contestants (x) who changed their features under f such that f(Ay¢(z)) = 1 would also
change their features under f’ such that f'(As(z)) =1 (as f'(z) < f(z)) and are already
included in the calculation of U(f).

C Proof of Theorem 6

Jury publishes a deterministic classifier and as there’s no noise involved, without loss of
generality, we can assume that f is a threshold classifier on the space X (as c4 and cp
are simple cost functions). This assumption is justified in Section 3. Given the classifier
f X — {0,1} with threshold 7, the best response of a contestant in the subpopulation
S € {A, B} is given as follows:

y ify>r1
A?(y): T if7—V2mos <y<r
Y ify<7—+2m0g

The accuracy of the classifier f for the subpopulation S is given as follows:

Us(f) = /Oo (y)[£(A%(y)) - (2h(y) — 1) + (1 = h(y))]dy

— 00
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etc= | Y — h(y))|dy which is independent of the subpopulation and the classifier.
L OOOOH 1—-h dy which is ind d f th b lati d the classifi

Therefore, Us(f) = ( /72, TI(y) /(A5 (1) - (2h(y) — 1)]dy) +c.
For the convenience of calculations, we will replace h(y) with the following function,

As d is large and II is a gaussian centered at 0, this change barely affects the utility
values. To be precise, the difference in the utility calculations for any classifier f while using
h' instead of h is bounded by

\ | e w) -2 - h'(ymdy\ <2 [ WA W)t - 1)y
< / ) - 1h(y) — K (y)ldy
1 [T (2 -5 )

R _a=
X T 22 te  2t2

e Y4 ot
4 V2t d \V2md

As we take d (d >> t) to be large enough, we would be able to ignore this difference.
From now onwards, we use h’ as the “true qualification function".

<2

Therefore, the accuracy of the classifier f over the subpopulation S € {4, B} can be
approximated by

vsth) = ([ nmirasw)-@n) - i) +e= ([ - @S- Yan) +c
= /OO 8_;? Y dy | +c= Le—(‘r—mas)z/%z +e
r—Vares V2mt d V2rd

The second last equality follows from the definition of A]Sc and the fact that f classifies
everyone, with the updated private signal greater than or equal to 7, as 1 and 0 otherwise.

The overall accuracy of the classifier f is given by

U(f)=sa-Ua(f)+ s -Us(f)

t 2 0,2 t 2 /0,2

o —(1—V2mo4)?/2t —(T—V2mwoRp)°/2t
=54 e +sp- e +c 7
A V2rd b V2md "

It’s clear from the expression that the accuracy for the subpopulation A is maximized at
T4 = /2710 4 and that of B is maximized at 75 = /270 5. Consider the case when s4 < sg.
As 74 # 7, and Ug(f) has a larger weight in the expression, intuitively, while optimizing the
overall accuracy, 7 would try to achieve better accuracy for the subpopulation B, irrespective
of whether o4 > op or o4 < op, leading to unfairness across the subpopulations (A being
at a disadvantage).

It’s complicated to calculate the optimal 7, below we give a proof of the fact that the
optimal 7 would be such that Ua(f) < Ug(f). To find the optimal value of 7, we differentiate
U(f) with respect 7 as follows:
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o WU dUAY) | dUB()
dr 4 dr B dr
1
e ~ Vantd (SA (7= V2ma4) e TTVETOE g (- — \2mo) - e’(T*\/ﬁ”B)z/%g)
T
s7  Therefore, d%gf ) —
6% — sa - (1= V2moa) e VRO 2 (o) e (TmVETOR) 20 _

(7_ _ \/%O—A) . 67(77\/§0A)2/2t2
(1 — 2m0op) - e~ (T—V2rop)?/2t2

>1  (sp>sa)

699

700

701 As ze_zzti? is maximized at z = ¢, as long as |04 — op| < \/% (implying |7 — v27mos| <t
w  for S € {A, B}), the overall accuracy is maximized at a threshold 7 such that |7 — /270 4| >
ws |7 —2mop| and hence, Us(f*) < Ug(f*), where f* is the optimal classifier from Jury’s
e perspective. The assumption, |04 — op| < \/%, can be interpreted as the subpopulations
s being different but not extremely different, which is reasonable assumption in many real life

706 Scenarios.

w D Proof of Theorem 7

s Again, we will replace the function h with A’ (as in proof of Theorem 6) while loosing
70 an insignificant amount in all the calculations (d >> t,0). Let II' : X — [0,1] be the
7o probability density function over the features realized by each of the subpopulations. Let
m  H(x) (H : X — [0, 1]) represent the probability of an individual being qualified (1) given that
72 the Jury sees feature x. These functions are same for both the subpopulations. As the Jury
73 only sees the feature and not the private signal, her accuracy is information-theoretically
ne limited by these functions as we will describe below. Firstly, IT' : X — [0, 1] is given as
ns  follows:

2 (=)

o0 o0 e_Qy? e 202
H’x:/H- z)dy = ———d
716 () - (y) - py(x)dy T e W
o T IET e—(y—ﬁ%ﬁ/@ﬁ%)d
" B oo V2mt V2mo Y
2

—(y-525)%/ 25 ) dy

=
e 2(02+4t2)
718 = 7/ e
Vort - \2mo J 0o
22 22
e 2(02+t2) o2¢2 e 2(c2+t2)

= 27’[’ =
V2t -\ 210 0% 4 t2 2r(0? + t2)

719

720

=1 Therefore, the probability density function over the features realized by the subpopulations,
= with A(0,0) gaussian noise, is itself a gaussian with mean 0 and 4/(¢? + t?) standard
723 deviation.

724 The qualification function given the features, H, is given as follows:

. H) - /w T(y) - py () - h(y)dy

726 l(‘r) —0o0
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We replace h with A/, thus replacing H with H' as defined below:

y? (z—y)?
1 > 1 T2 e 202 Y 1
H'(z) = / II . ) - B (v)dy = / . (= 4+ 2
(2) ) | (y) - py(x) - I (y)dy () Nz — (5 5)
z2 2t2
_ } N 1 00 LT 2(e2412) . e*(y*(,2+t2)2/( 2+,2) Y dy
2 Il(z) J_o \/ﬂt V2ro 2d
1 1 i —(-525)?/ 25
= — + e 2+t2 2+t2 . d
2 2d- H'(QC) V2t -\ 210 / vy
’122
1 1 e 2@ o2t? xt?
=1 alor .
2 2d-1I'(z) /2rt - 270 02412 o2 +¢2
1 n 2 T
2 o24t22d

Therefore, when there’s no strategic manipulation, Jury would classify any individual
with feature z > 0 as 1 and 0 otherwise. This is because, H'(z) > 3 if and only if > 0 and
the Jury would classify a feature as 1 if and only if, in expectation, the individuals with that
feature are more likely to be qualified. This is true irrespective of whether an individual
is from the subpopulation A or B because these subpopulations are identical in terms of
qualifications, that is, ha = hg = h and 14 = 7 = II.

We show that for the cost functions defined above, if Jury publishes f = 1,50, as the
classifier, then none of the contestants in both the subpopulations A and B have an incentive
to change their private signal (under A (0, o) gaussian noise). Hence, the Jury gets the best
possible accuracy from these features and the classification is fair. For a subpopulation
S € {A, B}, let q;?(y) denote the probability of a contestant, with private signal y, being
classified as 1 when f is the classifier. Therefore,

_(z—y)?

= /:’o f(z) - py(z)de = Ooo ﬁd‘r

2mo

For a subpopulation S € {A, B}, let’s calculate the advantage that a contestant, with
private signal y, gets by changing its signal to ¥’ (y' > y, otherwise qf (y) < q?(y) ):

o L=y >2 e u) o —=22 o — 2
Sy s e € = d €
_ — = —axr — d$
ay () qy (v) 0 27r0 / me /y, 2o —y V27o
5 1 Y-y

< =
—y V2mo oy \/27T0' V2T

As 0 = max{oa,0p} and recalling the definitions of the cost functions ¢4 and c¢p (Equation
4), we get that

a7t () — af () < caly,y) and a7 W) —af () < es(y,v)

Therefore, none of the contestants in any of the subpopulations have an incentive to change
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their private signals. The accuracy of the classifier f on the subpopulation A is given as

Uath) = ([ Tl a3 w) - @h) - 1) + o

—0Q0

(z—1)2

oo 00 5o
—00 0 e

I 0 e—(m2;%)2
- / / M) 2 - (2h(y) — 1)dy | dz | +¢
0 —00 27TO'

(/Ooo I(z) - (2H () - 1)dm) e

Replacing H with H' without loosing much in the approximation, we get that

2

T R £,
= . —axr c= C

4 0 2m(02 +12) o*+t?d V2r(oZ +12) -d

Similarly for Ug(f) and hence, U(f) = Up(f) = Ua(f) = ——L—x— +c.

V2m(o2+t2)-d

E Proof of Theorem 8

We retain the instantiations of ha, hpg, w4, ™5, ca, cg and o as above. As seen above, in Scen-

ario 2, 1,50 is the classifier that optimizes Jury’s utility and hence, U(fZ) = ﬁ +ec.
(O .

Actually, it’s approximately equal to this but the error is extremely small (=@ d >> ¢, o).
In Scenario 1, the utility of any threshold classifier (f) with 7 as the threshold is given by
Equation 7 (without loss of generality, we can optimize over threshold classifiers). Therefore,

U(f) =54 - Le—(r—\/ﬂm)z/zt? +sp t —(r1—V2mop)?/2t? +e

e
V2rd V2rd

When sy = sg = % and we assume that |04 — op| < \/%, it’s easy enough to see that the

above expression is maximized at 7 = 7v2’“w2r V2195 Therefore, the optimal classification
accuracy in Scenario 1, is
t (V2o A —V2Top 2 /6,2
U) (AEAPERRYL L

B \/27rde
For op =0, 04 = 0.10, t = 0.9V 270, U(f2) > U(f}).



	Introduction
	Our contributions
	Randomized classifiers
	Obstacles to using a randomized classifier
	Addition of noise to the features

	Related Work
	Organization

	Preliminaries
	The Model

	Committed Randomness Helps both Utility and Efficiency
	Most Efficient Classifier for Simple Cost Functions

	Are Randomized Classifiers in Equilibrium from Jury's Perspective?
	Noisy Features Give the System Free Randomness
	Noisy Features achieve Fairer Equilibriums

	Discussion
	Proof of Claim 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Theorem 8

