BeauCoup: Answering Many Network Traffic
Queries, One Memory Update at a Time

Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, Jennifer Rexford
Princeton University
{xiaoqic,sfeibish,mbraverm,jrex}@cs.princeton.edu

ABSTRACT

Network administrators constantly monitor network traffic for con-
gestion and attacks. They need to perform a large number of mea-
surements on the traffic simultaneously, to detect different types of
anomalies such as heavy hitters or super-spreaders. Existing tech-
niques often focus on a single statistic (e.g., traffic volume) or traf-
fic attribute (e.g., destination IP). However, performing numerous
heterogeneous measurements within the constrained memory ar-
chitecture of modern network devices poses significant challenges,
due to the limited number of memory accesses allowed per packet.
We propose BeauCoup, a system based on the coupon collector
problem, that supports multiple distinct counting queries simulta-
neously while making only a small constant number of memory
accesses per packet. We implement BeauCoup on PISA commodity
programmable switches, satisfying the strict memory size and ac-
cess constraints while using a moderate portion of other data-plane
hardware resources. Evaluations show BeauCoup achieves the same
accuracy as other sketch-based or sampling-based solutions using
4x fewer memory access.

CCS CONCEPTS

« Networks — Data path algorithms; Network measurement;

KEYWORDS

Streaming Algorithm, Sketching, Distinct Counting, Data Plane,
Programmable Switch, Network Measurement

ACM Reference Format:

Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, Jennifer Rexford. 2020.
BeauCoup: Answering Many Network Traffic Queries, One Memory Update
at a Time. In Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and protocols
for computer communication (SIGCOMM °20), August 10-14, 2020, Virtual
Event, NY, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3387514.3405865

1 INTRODUCTION

Network operators constantly monitor network traffic to detect
attacks, performance problems, and faulty equipment. To ensure
that networks are functioning properly, network operators often

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCOMM °20, August 10-14, 2020, Virtual Event, NY, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7955-7/20/08. .. $15.00
https://doi.org/10.1145/3387514.3405865

need to monitor for multiple kinds of problems simultaneously,
including worms, port scans, DDoS attacks, SYN floods, and heavy-
hitter flows.

A variety of network-monitoring tasks can be modelled as count-
ing the number of distinct attributes seen across a set of packets.
As the simplest example, to detect a host that is spreading a worm
we may look for a super-spreader [31], or a source IP that sends
packets to many (e.g., 1000+) distinct destinations. However, there
may be multiple hosts that are spreading worms, thus we need
to identify all the source IPs sending traffic to many destinations.
Furthermore, different tasks may define their keys differently: to
identify victims of a DDoS attack, for example, we need to instead
look for destination IPs that are receiving from many distinct source
IPs. The diversity of monitoring tasks with different key definitions
makes executing them simultaneously even more challenging.

Emerging programmable switches can analyze traffic directly
in the data plane as packets stream by, making these devices well-
suited for performing such telemetry tasks. However, the memory
and processing resources of these switches are extremely limited.
Traditionally, researchers have focused on the limited memory space
in the data plane, designing compact data structures that can com-
pute approximate answers for a single traffic-monitoring query [4,
17, 20, 23, 29, 31, 32], or multiple queries over the same key [22, 32].

Extending these solutions to support multiple queries over differ-
ent keys would require instantiating multiple separate data struc-
tures. Having separate data structures would consume precious
memory space in the data plane, but this is not the only problem. To
maintain line rate, programmable switches only allow a small con-
stant number of memory accesses per packet, making it infeasible
to update multiple data structures for every packet.

Most existing techniques for handling multiple queries rely heav-
ily on software running outside of the data plane, introducing
communication overhead and latency. The simplest approach is
to randomly sample packets in the data plane [3, 8], and have the
software compute multiple statistics on the samples. While useful
for detecting high-volume flows, random sampling significantly
reduces the accuracy for queries that count the number of distinct
attributes. To improve accuracy, several recent works collect in-
formation about all potentially relevant flows in the data plane,
and have the software compute the statistics of interest [16, 20, 25].
However, these solutions introduce a tension between the volume
of data exported from the data plane and the number and diver-
sity of queries that can be answered with reasonable accuracy in
real time.

Instead, we need new techniques that can handle numerous
heterogeneous queries directly in the data plane, despite the limited
memory space and memory access. We present BeauCoup, which
supports a general query abstraction that counts the number of


https://doi.org/10.1145/3387514.3405865
https://doi.org/10.1145/3387514.3405865
https://doi.org/10.1145/3387514.3405865

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

distinct items (i.e., with different attributes) seen across a set of
related packets (with the same key), and flags the keys with distinct
counts above a threshold. For example, when searching for worms,
a packet’s source IP is the key, its destination IP is the attribute,
and the threshold decides how many distinct destination IPs are
needed to flag a source IP as a worm sender. Our goal is to generate
an alarm for those source IPs, approximately, within a reasonable
error such as 20%-30% of the threshold. BeauCoup runs multiple
queries simultaneously, under a strict per-packet memory access
constraint. BeauCoup also allows users to define arbitrary packet-
header field tuples as query keys and attributes, providing great
expressiveness. The query set can be updated on the fly without
the need to re-compile the data-plane program; re-compilation is
required only when new header field tuples are defined.

The design of BeauCoup takes inspiration from the coupon-
collector problem [14]. Using super-spreader detection as an ex-
ample, suppose we want to know if a sender has sent packets to at
least 130 different destination IP addresses. Instead of recording all
destination IPs we see, we define 32 coupons, and map each destina-
tion IP to one of the 32 coupons uniformly at random. Now, for each
packet from that sender, we extract the destination IP and collect
its associated coupon. The coupon may be a duplicate (was already
collected earlier), either because the same destination IP appears
twice, or because two destination IPs map to the same coupon. We
then wait until we have collected each of the 32 coupons at least
once to flag the sender as a super-spreader.

The coupon-collector problem asks how many random draws
(with replacement) are needed to collect all of the coupons, i.e., have
every coupon drawn at least once. With 32 coupons, we need 129.9
draws in expectation. We therefore can use a 32-coupon collector
to identify if a particular sender is sending to 130 (or more) distinct
destination IPs. Answering a query with a different threshold (say,
1000 destination IPs) requires tuning the coupon collector’s config-
uration, by changing the number of coupons (m), the probability (p)
of drawing each coupon for a new destination IP, or the number of
coupons that must be collected (n). Essentially, we are using a m-bit
vector to estimate whether the number of distinct items seen has
exceeded a threshold. A naive m-bit coupon collector is equivalent
to either a HyperLogLog [13] register with m 1-bit hash functions,
or a m-bit Bloom Filter [1] with only 1 hash function. We discuss
the equivalence in more detail in Section 7.

The challenge in designing BeauCoup lies in applying the coupon-
collection problem to multiple queries, each with different keys and
attributes entirely in the data plane, under strict memory constraints.
To limit memory size, BeauCoup must keep coupon state small,
devote state to a key only when needed, and share memory across
queries and keys. Furthermore, to limit the memory accesses when
processing a packet, BeauCoup collects at most one coupon per
packet. BeauCoup must ensure each query only draws a coupon
with a small enough probability, and coordinate among different
queries to avoid collecting many coupons concurrently. Thus, Beau-
Coup must tune the coupon-collector parameters (i.e., m, p, and n)
carefully to simultaneously achieve accurate results for each query
and ensure that the combination of queries does not violate the
memory access constraint. Finally, we must implement each part
of the BeauCoup algorithm using only the operations available in
high-speed programmable switches.

Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, Jennifer Rexford

Name Key Attribute Threshold
Super-spreader srcIP dstIP 1000
DDoS victim dstIP srcIP 1000
Port scan {srcIP,dstIP} dstPort 100
Heavy hitter ,

P pair {srcIP, dstIP} timestamp 10000
Heavy hitter {srcIP, srcPort, .
IP&Port pair dstIP,dstPort} timestamp 10000
{srcIP,srcPort}
SYN-flood {dstIP,dstPort} if TCP SYN, 5000
otherwise 0

Table 1: Examples of count-distinct query definitions.

In designing and implementing BeauCoup, we make the follow-
ing contributions:

o Algorithm (§2): Data-plane algorithm for multiple count-distinct
queries under memory size and access constraints.

e Compiler (§3): Method for optimizing the accuracy of a set of
queries subject to the memory constraints.

e Prototype (§4): System that translates high-level queries into
data-plane configuration that runs on a PISA hardware switch.

We evaluate our prototype in §5, discuss future work in §6, compare

with related work in §7, and conclude in §8.
Ethics Statement: This work does not raise any ethical issues.

2 THE BEAUCOUP ALGORITHM

We now show the BeauCoup algorithm for network-monitoring
queries. We first present a query model based on distinct counting,
that supports a variety of network-monitoring tasks. Next, we
discuss how to use coupon collectors to implement these queries.
Finally, we discuss how to use coupon collectors to run multiple
queries simultaneously, under a strict per-packet memory access
constraint.

2.1 Query: Count-Distinct with Threshold

A wide variety of network-monitoring tasks can be characterized as
a query q which (1) maps each packet i to a key keyq(i), (2) counts
the number of distinct attributes attrg(i) that appear for each key,
and (3) applies a threshold T; to the count to decide whether to
report a key. That is, BeauCoup should output an alert (g, k) for
query g and key k, when the packets in a time window W satisfy:

|{attrq(i) | keyq(i) = k}i > Ty.

For the super-spreader example in the Introduction, the key is the
packet’s source IP, the attribute is the destination IP, and the thresh-
old is 1000. For DDoS detection, we can instead use the destination
IP as a packet’s key, use the source IP as the attribute, and perhaps
use a higher threshold like 10000.

In Table 1, we present more examples of common network-
monitoring tasks under our query model. In particular, the special
attribute i.timestamp is unique across all packets, so the user may
write a query to count packets by defining attrq (i) = {i.timestamp},
i.e., counting the number of unique timestamps seen. Filtering op-
erations can also be expressed in this query formulation, as shown
in the SYN-flood example above—by mapping irrelevant packets to
a fixed value, the distinct counting query effectively ignores them.



BeauCoup: Answering Many Network Traffic Queries

Notation Definition
keyq(-) | Key definition for query g
attrg(-) | Attribute definition for query g
Ty Threshold for query g
w Time window for answering queries
r Maximum memory access per packet
c Number of accesses for collecting one coupon
S Memory size
mg Total number of coupons for query q
Pq Probability of drawing a particular coupon
ng Number of different coupons to collect
Yq Average number of coupons activated per packet

Table 2: Notations used in the paper.

Qe | Coupons |

1A 1)(2)(3

Packet #42

SrclP: C » 1,B @@ 3)(4 QAJ::;:I
DstIP: Y @@ ? KeyC
Select Query 2,A 1)(2)3 @
and Coupon .

Figure 1: We collect coupons by updating bit vectors in an
in-memory coupons table.

Many other network-monitoring tasks can be expressed in this
formulation by using a combination of packet IP addresses, ports,
timestamps, etc. as the query key and attribute.

Our goal is to build a system that simultaneously executes a
set of queries Q = {q1, 2, ... } and outputs alerts (g, k;), subject
to the hardware constraints of a maximum memory size S and at
most I' memory accesses per packet. In the rest of this section, we
discuss how BeauCoup achieves I = O(1), i.e., answering multiple
queries in the data plane using a small constant number of memory
accesses per packet, independent of the number of queries.

2.2 Updating the Coupon-Collector Table

We maintain a table with bit vectors representing the coupon col-
lectors, as shown in Figure 1. Upon collecting the first coupon
for the query-key pair (g, k), BeauCoup creates a new table entry;
when the bit vector indicates enough coupons have been collected,
BeauCoup generates an alert for (g, k).

The example in Figure 1 uses 4-coupon collectors for all queries.
When a packet arrives at the switch, BeauCoup first selects a query
and a coupon. In this case, coupon #2 for query q; is selected, and
we can extract the query key C from the packet, using the query’s
key definition. Now BeauCoup finds the coupon collector in the
in-memory coupon table under row (1, C), and collects the second
coupon by marking the bit vector’s second bit to 1. If there is no
such row in the table, we allocate a new row and collect the single
coupon. Since now all four coupons are collected at least once for
row (1,C), BeauCoup reports that key C satisfied query g;. Other
packets may collect coupons for other queries, or do not collect any
coupon at all.

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

The coupon table shown in Figure 1 is designed to fit the hard-
ware constraints of PISA programmable switches:

e Compact rows: Each row of the table stores one w-bit word
as a bit vector, representing at most w coupons, where each bit
represents whether a particular coupon has been collected at
least once. (We also store two more words of auxiliary data per
row, to record a timestamp and a checksum of the query key,
which are used for detecting timeouts and hash collisions.)

e Space efficiency: We only maintain the bit vector for a query
key when there’s at least one coupon collected for that key. There-
fore, although each query has many keys (e.g., 232), only a small
fraction of active keys occupies memory. Different keys (such
as keys A, B, and C for query ¢q1) and different queries (such as
queries g1 and gz) effectively multiplex a shared memory space,
and a new entry is created when a key collects its first coupon.
Limited access: BeauCoup only needs to access the in-memory
table when it needs to collect a coupon. When a packet does
not produce any coupon for a query, we do not need to access
memory. This effectively allows us to multiplex memory accesses
across queries, by having different packets updating the table for
different queries.

A coupon collector defines m coupons, a probability p for draw-
ing each coupon in a random draw, and stops when there are at
least n different coupons collected, i.e., each of these n coupons
had been drawn at least once. Since BeauCoup uses a random (yet
fixed) mapping from attributes to coupons, observing a new, unseen
attribute is equivalent to randomly drawing a coupon. Seeing the
same attribute more than once has no effect on the coupon collector,
as it merely draws the same coupon again. With an appropriate
combination of parameters (m, p, n), the coupon collector can be
used to indicate if there are more than Ty distinct attributes seen,
while automatically ignoring duplicate attributes.

2.3 Selecting a Query and a Coupon

We now discuss how we select one coupon for a given query, and
how we coordinate between multiple queries.

Selecting one of m coupons. For every query g, with key def-
inition keyq and attribute definition attrq, BeauCoup applies a
random hash function h on packet i’s attribute attry(i), where
h: {attrg(i),Vi} — [0,1), and checks if the output of the hash
function falls into a range. For example, suppose query g uses
four coupons (mg = 4) and selects each coupon with probability
pq = 1/8. Then, BeauCoup would map all attributes satisfying
h(attrq(i)) € [0,1/8) to coupon #1; similarly, coupons #2, #3, and
#4 are associated with output ranges [1/8,2/8), [2/8,3/8), and
[3/8,4/8), respectively. If the output of the hash function for packet
i falls in [0, 4/8), BeauCoup sets the bit for the associated coupon
to 1 for that query-key pair, creating an entry in the table if needed.

If the output of the hash function falls in [4/8, 1), BeauCoup does
not need to access memory for this query on behalf of this packet,
and it can use the memory access for other queries. We define yq4
as the average number of activated coupons allowed per packet for
query g; with the random hash function A, the example query only
activates yq = mgq - pg = 1/2 coupons per packet in expectation. A
small y4 < 1 has two main advantages. First, the coupon table does
not need to maintain state for every active key. Instead, BeauCoup



SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

only allocates memory for a query-key pair upon collecting the
first coupon for that key. Second, a small y; allows multiple queries
to run concurrently under a maximum memory access constraint
T = O(1).In particular, when a particular query q is not collecting a
coupon, BeauCoup can devote the unused memory access “budget”
to collect a coupon for another query, as we discuss next.

Each query g has its own limit y; on how many coupons to
collect per packet. For simplicity, we assume a naive fair allocation
that gives each query the same share of memory accesses. Given
that collecting a coupon costs ¢ memory accesses and a total mem-
ory access budget of ' per packet, we limit each query to collect at
most yg = I'/|c - Q| coupons per packet on average. Therefore, each
query’s coupon-collector configuration should satisfy mq - pg < yq.
However, a naive choice of hash functions could have a single
packet need to collect a coupon for many different queries, even
if the average rate of memory accesses is constant. To obey the
strict per-packet memory access constraint I', BeauCoup coordi-
nates the hash functions across the queries, first among all queries
using the same attribute, and second across sets of queries using
different attributes.

Grouping queries with the same attribute. Queries may have
the same attribute definition (say, destination IP) but with differ-
ent key definitions (say, source IP for query ¢1, and source IP and
source port tuple for query gz). These queries can use the same hash
function, applied to their common attribute, to draw their coupons.
To guarantee that at most one query collects a coupon, BeauCoup
divides the hash output across the queries. For example, suppose
query qj uses mj = 2 coupons each with probability p; = 1/4,
while query g2 uses my = 2 coupons each with probability p; = 1/8.
We partition the range [0, 1) of the hash output as follows: [0,1/4)
for coupon #1 of g1, [1/4,2/4) for coupon #2 of q1, [2/4,2/4 +1/8)
for coupon #1 of g2, and [2/4 + 1/8,2/4 + 2/8) for coupon #2 of
q2. Other output values are not associated with any coupon. We
illustrate this example in Figure 2. We can stack additional queries
using the same attribute accordingly. Note that we never run out
of the [0, 1) range, as long as the total memory accesses across all
queries (g Mg - pq) is bounded by I' < ¢, i.e., each packet collects
at most one coupon.

Queryl p=1/4 Query2, p=1/8

h(dstIP) |:> Coupon #1 Coupon #2 [C#1 [C#2 No Coupon

1/2 5/8 3/4

Figure 2: Different queries use disjoint ranges to map the
random hash function’s output to coupons.

Coordinating across queries with different attributes. To
support queries with different attribute definitions, BeauCoup con-
structs one random hash function for each unique attribute (e.g.,
one hash function for destination IP, one for timestamp, and so
on). When a packet arrives, BeauCoup computes all of these ran-
dom hash functions to determine if any hash function’s output
value is associated with a coupon for some query. If only one hash
function draws a coupon, BeauCoup collects the coupon for the
associated query and key. However, if multiple coupons are drawn,
we perform tie-breaking. Currently, BeauCoup only tie-breaks if

Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, Jennifer Rexford

exactly two hash functions draw coupons, by tossing a coin and
allowing each coupon to succeed with 50% probability; we discuss
how to implement the coin toss in Section 4.1. When more than
two hash functions draw coupons, we do not collect any of them;
this has little effect on accuracy, as we prove in Appendix B that the
probability of drawing many coupons for one packet is very small.

With the coordination within and across hash functions, Beau-
Coup can now guarantee collecting at most one coupon per packet,
without meaningfully impacting the accuracy of individual query’s
coupon collectors. Each individual query still collects coupons with
the right probability, as if it is the only query running in the system.
Given the strict memory access constraint, such coordination is
what makes it possible to run many queries simultaneously while
maintaining reasonable accuracy for all of them.

3 THE BEAUCOUP QUERY COMPILER

For each query ¢, BeauCoup computes three coupon-collector pa-
rameters: collect ng out of mg coupons, each with probability pg.
Taking the threshold T and the average per-packet coupon limit
Yq for all queries g € Q as input, the BeauCoup compiler produces
the configuration of {mg, pq, nq} that maximizes accuracy. A con-
figuration satisfies the average per-packet coupon limit as long as
Mg pq < Yq> which means a query produces at most y4 coupons per
packet in expectation. However, characterizing a coupon collector’s
accuracy for tracking the threshold Ty is less straightforward. We
want the number of random draws needed until the coupon col-
lector collects enough coupons to both be unbiased (close to Ty in
expectation) and stable (has small variance). In this section, we first
define and analyze an accuracy metric for coupon-collector configu-
rations, then present our method for finding the best configuration
for each query.

3.1 Coupon Collector’s Accuracy

Given a specific query threshold Ty, a coupon-collector configu-
ration is accurate if the number of random draws it needs has an
expectation close to Ty and a small variance. Let us first analyze the
expectation. We note that the traditional coupon-collector problem
requires n = m = 1/p, so we present the following analysis for our
generalized coupon-collector problem (1 < n <m,0 < p < 1/m):

LEMMA 3.1. A generalized coupon collector with m coupons in
total, each coupon having probability p being drawn upon each ran-
dom draw, and stops after collecting n different coupons, needs in

expectation CC(m, p, n) £ ;‘ 01 p(m 5 draws.

Proor. With j coupons already collected, the probability that
the next draw produces a new, unseen coupon (out of the m — j
remaining) is p(m — j). Thus, the number of draws needed until re-
ceiving a new coupon is a geometric random variable Geo(p(m—j))
with expectation . We need to collect n new coupons hence

Geo(p(m - j)) = 312, p( =)
in expectation. -

_1
p(m=j)
the total number of draws is Z;’;&

However, the configuration with the closest expectation CC(m, p, n)
from Ty may have a large variance in the number of draws needed.
Therefore, we define Relative Error, an accuracy metric for a dis-
tinct counting algorithm running query g with threshold Ty, that



BeauCoup: Answering Many Network Traffic Queries

simultaneously captures the bias and variance of a coupon-collector
configuration.

e True count: Say the algorithm first outputs an alert (g, k) after
observing the input stream iy, iy, . . ., ir; at this time, the ground
truth number of distinct attributes seen by the algorithm is

T = [{attrg(i) | keyq(i) = ki € iy, ia,....ir}|-

o Absolute error: However, the algorithm should generate an

alert when there are exactly Ty distinct attributes. We define the

absolute error as |7 — Tg].

|T-T4|

¢ Relative error: We normalize and use ——" as the relative

q
error of output (g, k). This scaled error includes both the bias
E[7] - Ty and the variance of 7.

By running the same algorithm many times with different random
hash functions, we can have many observations of Relative Error
for the same query, and we can subsequently define Mean Relative
Error as the mean of all observations.

Next, we discuss how BeauCoup finds a coupon-collector con-
figuration with small Mean Relative Error for every query.

3.2 Finding the Best Configuration

The BeauCoup compiler needs to identify one coupon-collector
configuration for every query given the query’s threshold Ty, and
we focus on how we satisfy the strict per-packet memory access
constraint. When implementing BeauCoup on PISA switches, our
choice for mgq, g, and ngis subject to hardware constraints. Namely,
since a memory word is w = 32-bit we require my < 32, and to
facilitate efficient mapping from random hash function to coupons
we require pg to be an integer power of two. Also, we must satisfy
the average per-packet coupon limit y,: we require in expectation
that we collect fewer than y4 coupons per packet, i.e., mg - pg < yq-.

Thus, we use the following procedure to find the configuration
given threshold T; and per-packet coupon limit y4:

(1) For all feasible coupon probabilities pg = 277, we calculate the
maximum number of coupons allowed, based on both the per-
packet coupon limit and the word length: mg = min(w, yq/pq).
We stop if mg < 1.

(2) For each pg, we identify all feasible configurations 1 < ng <
mg < mgq. We then calculate their expected number of draws
CC(myg, pq, ng) for all feasible configurations, and accept a con-
figuration as reasonable when it is within a 5% tolerance from
Ty, ie., 0.95T4 < CC(mg, pg,ng) < 1.05T4. The 5% tolerance
is selected because the minimum relative error for the opti-
mal collectors is about 10%, and is relaxed when no reasonable
configuration was found.

(3) Given all of the reasonable configurations, we choose the op-
timal configuration based on their minimum relative error, ac-
cording to a lookup table prepared via simulations (shown later
in the Evaluation section in Figure 5).

4 BEAUCOUP ON PISA HARDWARE

In this section, we describe how we implement BeauCoup on PISA
programmable switches. PISA switches always process packets
at line rate (at least 100Gbps per port), which requires the algo-
rithms running on it to comply with several hardware-imposed
resource constraints.

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

Key fields Attribute tuples

P4 Code
IEdEl=P| Generator

Query 1, Query 2, Query 3, ...

Compiler
‘ ‘ ‘ (mq'pqlnq)

Rules
Generator

Data plane
program

Packets

Figure 3: BeauCoup runs queries by installing a static data-
plane program on the PISA switch, then generating and in-
stalling TCAM rules on the fly.

PISA switches have two kinds of memory. Ternary Content-
Addressable Memory (TCAM) holds match-action rules installed by
the control software, while Static Random Access Memory (SRAM)
holds general-purpose register arrays that can be updated within
the data plane. TCAM can simultaneously match a bit string with
many match rules, and is typically used for forwarding packets by
matching on the IP prefix. BeauCoup utilizes a small fraction of the
available TCAM space to efficiently implement both the mapping
from attributes to coupons and the tie-breaking process between
queries. Meanwhile, BeauCoup collects coupons by updating SRAM
entries. The SRAM memory space is limited (several megabytes),
and more importantly we can only perform a small, constant num-
ber of memory accesses to SRAM per packet. In this paper, we
primarily focus on the limited SRAM space and the limited number
of SRAM accesses allowed.

BeauCoup’s implementation has two components: the data-plane
program executes the logic for collecting coupons, and the control
algorithm transforms queries into coupon-collector configurations,
as illustrated in Figure 3. Now we first introduce how we imple-
ment the data-plane program to run the coupon collectors on PISA
hardware, then discuss how BeauCoup as a whole executes and
updates queries.

4.1 Using TCAM for Drawing Coupons

BeauCoup needs to draw coupons based on the output of random
hash functions. Since each hash function maps to a large num-
ber of coupons, we utilize the TCAM to efficiently check if the
hash function’s output value maps to any of the ranges defined by
the coupons.

Each random hash function’s output is encoded into 16 bits, and
each coupon’s corresponding range is translated to a bit prefix
match for these random bits. For example, we translate the coupons
of g1 and g2 shown in Figure 2 into matching rules in Table #1 in
Figure 4. Coupon #1 of query g; matches on range [0, 1/4), which
is transformed to a bit prefix match 00+ (the first rule in Table #1).
Coupon #2 of query g2 matches on [2/4 +1/8,2/4 + 2/8), which is
transformed to prefix 101% (the last rule in Table #1).

After we use TCAM tables to match on every hash function’s
output, we use a bit vector to represent if any one of the many hash



SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

AR W .

Table gom (1.9) 0000, * No coupon
#1 o E5) 1000, * From table #1
1oem (2,0) 0100, * From table #2
torr — 0010, * From table #3
0001, * From table #4
Table ~ ©9000** (6,0) q 1100,0 From table #1
#2 00001** (6,1) 1100,1 From table #2
00010** (6,2) > 1010,0 From table #1
P> 1010,1 From table #3
Matc 1001,0 From table #1
Tilgle N° matchi= 1991: 1 From table #4

0110,0 From table #2

Matc
Table % i srclP,ji.srcPort) | Query#,Coupontt No Tt 91'1.(.3, 1 From .tfa.ble #3

# R

Figure 4: Using TCAM rules to draw coupons.

functions had matched with a coupon. As there could be zero or
more coupons, we again use the TCAM to efficiently tie-break and
select one coupon to collect when there may be multiple coupons
available. The matching rules are trivial when there are zero or
exactly one coupon matched. If there are exactly two coupons
available, we flip a random coin (by using a random bit from the
random number generator) to fairly tie-break and select one of the
two for collection. We ignore all coupons if there are more than
three; this has very minor effect on BeauCoup’s accuracy, as we
discuss in Appendix B.

We illustrate the coupon matching and the tie-breaking pro-
cess in Figure 4. There are four random hash functions and four
corresponding match tables (on the left) to draw coupons. After
matching, Table #1 and #2 produced coupons while Table #3 and
#4 did not. We use the bit vector 1100 to represent which tables
produced coupons. A tie-breaking table (on the right) uses TCAM
match rules to match on the bit vector 1100, and there are two
matching rules (highlighted in yellow). The table matches on the
random bit to tie-break, and chooses either the coupon from Table
#1 or the one from Table #2 as the final coupon for collection.

4.2 Recording Coupons in SRAM

After BeauCoup has selected a query g and chosen a coupon ¢ for
packet i (using TCAM matching), we need to collect ¢ into the
in-memory coupon table. We used the SRAM-based register arrays
on PISA switches to record coupons and other states. Each array
holds S memory words, indexed 0, 1,..., S-1, and each word has 32
bits. Given an index, we can read the existing value at this index,
perform arithmetics, and write a new value; this counts as one
memory access.

BeauCoup first extracts the query key keyq (i) from the packet,
then locates an index using the tuple (g, keyq(i)). We use an index-
ing random hash function H to map the tuple into an array index,
denoted idx = H(q, keyq(i)).

BeauCoup defines three register arrays, each with S words. 7S [ ]
stores timestamps, and is used to enforce the query time window
W for every coupon collector; we reclaim memory when a collec-
tor is timed out before collecting enough coupons. QK[-] stores
32-bit checksums checksum(keyq(i)) and is used to detect hash col-
lisions in the indexing hash function H, avoiding two keys adding

Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, Jennifer Rexford

coupons into the same collector bit vector. Finally, CC[-] stores all
the coupon collector bit vectors.

The process for collecting the coupon c¢ for query g and key
keyq(i) is as follows, accessing at most three words of memory,
First, we calculate the array index idx = H(q, keyq(i)), and en-
code the coupon into a variable onehot(c), a 32-bit binary string
“000...010...0” with all bits @ except one 1 at the location corre-
sponding to the coupon c. Subsequently, we check whether we
are creating a new coupon collector or adding this coupon to
an existing collector, using query time window W and current
timestamp i.timestamp:

e Create new collector: If 7 S[idx] < i.timestamp — W, the cur-
rent collector has expired. We allocate a new coupon collector
by setting 7 S[idx] « i.timestamp as well as QK[idx] «
checksum(keygq(i)). We initialize the collector bit vector with
one coupon: CC[idx] < onehot(c).

e Update existing collector: If 7S[idx]| > i.timestamp — W

and QK [idx] = checksum(keyq(i)), we accumulate into an ex-

isting coupon collector. We update its bit vector using bitwise-OR:

CClidx] « (CClidx] V onehot(c)). Now, if the number of one

bits in CC[idx] reaches ng, we output an alert (g, keyq(i)).

Handle collision: If 7 S[idx] > i.timestamp—W yet QK [idx] #

checksum(keyq(i)), we encountered a hash collision; the system

ignores this coupon. This indicates there are too many active
coupon collectors, hence the system is running out of memory.

We discuss how to address memory size constraint and hash

collisions in Section 6.

We note that coupon collectors for different queries uses the same
block of memory space, statistically multiplexing their memory
demand. Therefore, we may encounter high memory load when
many different queries simultaneously collect coupons for many
keys. We discuss BeauCoup’s memory size requirement under real-
world traffic settings in Section 5.2.3.

4.3 Query Compiler and Code Generation

Figure 3 presents the high-level architecture of the BeauCoup
system. Given a set of queries Q, we first run a query compiler
(using the algorithm in Section 3.2) to compute a configuration
{mgq, pq, nq} for each query g, and produce the hash functions for
attributes. The query compiler generates an intermediate represen-
tation with the mapping from each hash function’s output values to
all of the coupons. Subsequently, the rules generator uses these map-
pings to generate the TCAM matching rules and the corresponding
action parameters, representing the query set Q.

Meanwhile, BeauCoup generates the P4 code for the switch us-
ing a python-based code generator. The generator uses an algorithm
template (approximately 750 lines), written under the Jinja [28]
templating language, that implements BeauCoup’s data-plane algo-
rithm. Jinja enables auto-generating repeated P4 elements, such as
defining multiple hash functions and variables, as demonstrated in
Appendix A. Given the queries’ key fields and attribute tuples as
input, the code generator prepares the definition for hash functions,
then expands the template into a P4 [9] program (approximately
1500 lines), which is subsequently compiled and installed into the
PISA switch. When the TCAM matching rules are installed in the
tables specified by the P4 program, the switch executes the query



BeauCoup: Answering Many Network Traffic Queries

set Q. We have open-sourced the complete template program, the
code generator, as well as the query compiler on GitHub'.
Although the packet parser (header field definitions), hash func-
tions, and query key extraction rules are part of the P4 data-plane
program, the TCAM matching rules can be updated on the fly. The
user may frequently change the query set @, by first running the
query compiler and the rules generator, then installing the new
matching rules, as long as all queries are using existing key fields
and attribute tuples already defined in the data-plane program. This
also avoids the potential network downtime caused by re-installing
a new data-plane program, which would temporarily interrupt the
switch’s normal operation. The green shaded box on the left half
of Figure 3 represents the heavy-weight update of the data-plane
program, which is largely static, while the yellow shaded box on the
right represents light-weight update of query matching rules, which
can be installed swiftly without causing downtime. Still, using a
new header field in a query’s key or attribute definition requires
re-generating P4 code and re-compiling the data-plane program.

5 EVALUATION

In this section, we demonstrate that BeauCoup can accurately and
efficiently execute multiple queries. We first show that the query
compiler produces good parameters for coupon collection. Then, we
investigate BeauCoup’s performance when answering queries over
a real-world traffic trace, under limited memory access constraint,
and show it achieves the same accuracy using 4x fewer memory
accesses than alternatives. Finally, we show BeauCoup ’s data-plane
program only uses a modest fraction of the available hardware
resources on a commodity switch.

5.1 Evaluating the Query Compiler

We now investigate the coupon-collector configurations generated
by the query compiler under different thresholds T, and average per-
packet coupon limit y4. The compiler’s running time is negligible
(< 1ms) given its time complexity O(w?|@Q|).

Recall that the query compiler outputs the configuration {mg, pg, nq}

with the lowest Mean Relative Error given that its expected num-
ber of draws CC (mq, Py nq) is close to the query threshold Ty. In
Figure 5 we plot the minimum possible Mean Relative Error of
various configurations, when the expected number of draws ex-
actly matches the threshold (T = CC(mg, pg, ng)). We note that
adjusting pg does not noticeably change the error, and only plotted
the relationship between Mean Relative Error and (mg, ng) for all
configurations in 2 < ng < mg < 64.

As we can see from Figure 5, in general, using more coupons
leads to lower error. We can further observe that for any given
myg (total coupons), the configuration with minimal Mean Relative
Error corresponds to a choice of ng around 0.75mg. That is, the
coupon-collector configuration should stop when around three-
fourths of coupons are collected, as this leads to the least variance
in the number of random draws required. We also verified that
the ng = 0.75mq heuristic still holds with thousands of coupons,
although we defer a rigorous analysis to future work. However,
when memory access is extremely constrained, the compiler often

!https://github.com/Princeton- Cabernet/BeauCoup

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

50%

(o)}
o

(6,
o

»
o

30%

N
o

Total coupons (m)
w
o

Mean Relative Error

=
o

o

. . . 10%
0 20 40 60

Coupons to collect (n)

Figure 5: When using various coupon collector configura-
tions, we find that collecting approximately n = 0.75m out of
m coupons produce the lowest error.

50% A

40%

30% 1

20% 1

10% 1

0% +— . . , .
11632 64 128 192 256
Number of total coupons (m)

Minimum Mean Relative Error

Figure 6: Using more coupons lead to lower Mean Relative
Error. A coupon collector can achieve 13.7% minimum error
when using m = 32 coupons.

selects ng = mg = 1, as the configurations using more coupons
consume many more memory accesses per packet.

We now look at the relationship between the minimum Mean
Relative Error and the total number of coupons (mg), as shown in
Figure 6. In our current prototype implementation, we restrict the
query compiler to use at most mg = 32 coupons, as one memory
read on the PISA hardware reads a 32-bit memory word. Using
mg = 32 coupons achieves 13.7% minimum error, which means
BeauCoup may send a super-spreader alert upon seeing 860~1140
distinct IP addresses, given the threshold 1000. We note that Beau-
Coup can maintain more coupons in a collector by using multi-
ple memory words, if a higher accuracy is desired. Using mq = 64
coupons achieves 9.8% minimum error, while using 128, 256, or
1024 coupons achieves 6.9%, 5.0%, or 3.1% error respectively. These
errors are comparable with the HyperLogLog distinct counting
algorithm using the same memory space.


https://github.com/Princeton-Cabernet/BeauCoup

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

5.2 Query Accuracy

Now we evaluate the accuracy of BeauCoup queries over real-world
network traffic, by first running a single query and comparing Beau-
Coup with related works, then run many queries simultaneously.
Our experiments mostly focus on BeauCoup’s accuracy under the
limited memory access constraint by providing abundant memory
for all algorithms. We also present some results regarding limited
memory space.

5.2.1 One Query and One Key. We first demonstrate BeauCoup’s
coupon collectors are an efficient way to perform distinct count
queries, by comparing them against other approximate distinct
counting algorithms. Here we only focus on counting distinct at-
tributes for one particular query and one particular key, as other
distinct counting algorithms are designed for only one key and
cannot support multiple keys.

In this experiment, we use different algorithms to count the num-
ber of distinct source-destination IP pairs in the traffic, and stop
when the estimate exceeds T = 1000 distinct IP pairs. All algorithms
are implemented in Python. We use the CAIDA Anonymized Inter-
net Traces Dataset 2018 [5] (CAIDA trace), and repeat all runs 100
times with different random seeds.

HyperLogLog [13] is a widely-used approximate distinct count-
ing algorithm, that counts distinct items by counting the maximum
number of leading zeros seen from a random hash function. The
algorithm splits its input and feeds them to multiple independent
estimators, and outputs the harmonic mean across all estimators.
We use a HyperLogLog instance with 64 estimators.

UnivMon [22] is the state-of-the-art multi-purpose measure-
ment sketch that runs on PISA programmable switches, and can
compute various functions over a set of attributes, including dis-
tinct counting. NitroSketch [21] performs sampling over sketch
memory updates to reduce a sketching algorithm’s memory access
while preserving its accuracy. The authors of NitroSketch had pro-
posed applying the NitroSketch technique to UnivMon to reduce
UnivMon’s average memory access per packet. We hereby refer to
the new algorithm as NitroSketch-UnivMon. NitroSketch-UnivMon
supports all the queries supported by UnivMon, including distinct
counting. NitroSketch-UnivMon is the only sketch we are aware
of that achieves fewer than one memory access per packet on av-
erage and supports distinct counting. We use 16 layers of 4x1024
CountSketch for UnivMon, and change NitroSketch’s sampling
parameters to let NitroSketch-UnivMon achieve different average
memory access per packet.

We also include a packet sampling approach in the comparison.
As analyzed by Spang and McKeown [30], it is possible to estimate
the distinct number of flows (attributes) given a sampled subset of
all packets, using a statistical estimator [6]. We sample each packet
with a small probability p, and record each sampled packet’s IP pair.
Subsequently, we feed the sampled subset to the estimator.

We first note that the memory size used by BeauCoup is mini-
mal: a coupon collector uses one word of memory, at most w = 32
bits. Including auxiliary data (timestamp and checksum), each key
uses three words, or 96 bits. Meanwhile, one HyperLogLog in-
stance with 64 estimators uses 320 bits of memory. As we dis-
cussed in Section 5.1, when using the same number of bits of

Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, Jennifer Rexford

_ 100% 1 —— Sampling
2 NS-UnivMon
o/ J
"(']") 80% —+— BeauCoup
.% 60% e HyperlLoglLog
©
T 40% -
c
©
S 20%- )
[ ]
0% - : : :
1072 1071 100

Average memory access per packet (y)

Figure 7: BeauCoup’s coupon collector approach uses 4x
fewer memory access than NitroSketch-UnivMon or sam-
pling to achieve the same accuracy.

memory space, coupon collectors can achieve comparable accu-
racy as HyperLogLog.

On the other hand, NitroSketch-UnivMon uses 256 kilobytes
of memory space and is not directly comparable, as it is a multi-
purpose sketch supporting more than distinct counting,. It is possible
to fit a handful of instances of NitroSketch-UnivMon into a switch’s
data-plane memory space, but it is unfeasible to run multiple queries
with multiple keys, which requires thousands of instances. Packet
sampling uses O(p - L) memory space, proportional to the sampling
probability and stream length.

Since we need to simultaneously answer multiple queries under
a total per-packet memory access constraint, each BeauCoup query
can only make a very small number of memory accesses per packet.
We now compare the accuracy of each distinct counting algorithm
under the same average memory access constraint of y < 1 words
per packet:

e When using packet sampling, for each sampled packet, we need
to access two words of memory to save its IP pair. Thus, we can
satisfy the per-packet memory access constraint by setting the
sampling probability to p = y/2.

o For NitroSketch-UnivMon, we tune each layer’s NitroSketch sam-
pling probability individually to achieve y/16 average memory
access, thus making total memory access across all layers to
fit within y words per packet. Since not all layers use their ac-
cess budgets fully, we record the actual number of total memory
accesses in experiments.

o For BeauCoup coupon collectors, recall that collecting each coupon
requires accessing ¢ = 3 words (for coupon vector, timestamp,
and checksum). We specify an average per-packet coupon limit
Yg = v/c, and use the BeauCoup query compiler to find the
coupon collector configuration that satisfies the constraint. Here
we also record the actual number of memory accesses.

e Finally, although HyperLogLog is very accurate, it always ac-
cesses exactly one word of memory per packet, regardless of
the number of estimators. We nevertheless included its accuracy
for reference.



BeauCoup: Answering Many Network Traffic Queries

100%

80% 1

60%

40%

20%

Mean Relative Error

0% 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Allowed total memory access per packet (I')

Figure 8: The average error of all queries gradually improve
as we allow more memory access per packet, which is shared
among all queries.

In Figure 7, we show that BeauCoup’s coupon collector achieves
the same accuracy (Mean Relative Error, plotted on y-axis) using
at least 4x fewer memory accesses (y, plotted on x-axis with log
scale), compared with NitroSketch-UnivMon, packet sampling, or
HyperLogLog.

We note that the statistical estimator used by the packet sampling
approach [30] is designed for sparse samples, looking at IP pairs
sampled exactly once or twice. Thus, it works better for sparse
samples and performs poorly with a very high sampling rate above
0.5, creating non-monotonicity in the figure.

To achieve less than 25% Mean Relative Error for queries, Beau-
Coup needs 0.04 words of memory access per packet, which means
we can run about 25 queries together per word of memory access
per packet, while NitroSketch-UnivMon requires 0.2 words of mem-
ory access, and can only run about five queries for the same memory
access limit. At higher error ranges (e.g., to achieve less than 50%
Mean Relative Error), BeauCoup only needs 0.009 words of memory
access, while NitroSketch-UnivMon requires 0.09, yielding a 10x
saving. The improvements are similar for other attribute definitions
and thresholds.

5.22  Multiple Queries and Keys. Next, we run BeauCoup with
multiple queries and observe the average relative error under vary-
ing memory access constraints. We wrote |Q| = 26 queries that
resemble monitoring demands a network administrator may have,
with keys and attributes defined using combinations of source and
destination IP addresses and TCP/UDP ports. The queries use vari-
ous different combinations of packet header fields as their key and
attribute definitions. Some queries also use the timestamp as the
attribute definition—recall that we can count the number of packets
by performing distinct counting over timestamps. The thresholds
range from 100 to 10000, and are selected based on the likely use
cases of the particular queries. In each experiment, we set T', the
total memory access constraint for all queries, from 0.1 to 1 ac-
cess per packet. We then run the query compiler to fairly allocate
memory access and generate the coupon-collector configuration
for each query.

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

After obtaining the coupon-collector configurations, we run
BeauCoup in a python-based simulator, which is behaviorally equiv-
alent to the data-plane P4 program, but allows us to freely tune
all parameters and concurrently run many simulations with dif-
ferent random seeds. We once again use the CAIDA trace in the
following experiments.

Average accuracy across queries. Figure 8 shows the overall
accuracy of all queries, measured by Mean Relative Error, given
different total memory access limits I'. We can observe that when
the memory access limit becomes lower, the error becomes higher,
and the accuracy of different queries gradually converges. This is
because when we have abundant memory accesses, the queries with
higher thresholds do not need to use all of their fair share of mem-
ory accesses, and can achieve better accuracy than those actually
constrained by memory access; when all queries are constrained,
the fair allocation policy leads to similar accuracy for all queries.

Per-query accuracy. Now we scrutinize the accuracy of each
query. We first compare the effect of increasing memory access
limit T on each query’s average relative error. In Figure 9, we choose
four different queries with various Ty from 100, 500, 5000, to 10000
and analyze their accuracy. Naturally, the query with the lowest
threshold is the hardest to execute, as it requires coupons with
larger probability pg and easily exhausts its memory access budget.
Increasing T allows the query to increase accuracy significantly.
For queries with larger Ty, the improvement is not as significant.

Notably, the query with T, = 10000 reaches its optimal accuracy
when I' = 0.2, and its accuracy slightly deteriorates when we allow
more memory accesses. This is due to having collisions with other
queries when the system draws more than one coupon and enters
tie-breaking more often, which slightly skews the probability of
drawing each coupon.

We also compare different queries with the same T; = 1000 yet
with different keyq and attrg definitions. Here we use four queries
as an example, the first one being super-spreader. As we can see
from Figure 10, their average relative error has almost the same
relationship regarding the total memory access constraint I'. The
third plot in Figure 10 has a slightly higher variance, and is because
this particular query outputs fewer alarms in our experiment trace,
hence has more outliers for the average relative error statistics.

5.2.3 Memory Size. So far, we have focused on limited mem-
ory access and assumed unlimited memory size and an infinite
time window. However, practical systems have a limited amount of
memory (S) and can run out of space for large window size W.

We first observe that the number of unique query keys present
in the traffic usually follows power law. For a stream of L pack-
ets, we can observe L% unique keys, with ay being specific to
the traffic and different key definitions. For the CAIDA trace, g
ranges between 0.7 to 0.85. Therefore, given the average per-packet
coupon limit y4, we can give an upper bound (y4L)%? for the num-
ber of coupon collectors needed for query g, and therefore the
maximum total memory needed by all queries is upper-bounded
by ZqEQ (qu)aq .

Figure 11 shows the actual memory space requirement of Beau-
Coup with regards to different time window sizes W, when process-
ing the same query set Q under the CAIDA trace, under a log-log
scale. We can observe that the relationship between the memory



SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

Threshold=100 Threshold=500

Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, Jennifer Rexford

Threshold=5000 Threshold=10000

_ 100%] 100% 100% 100%
o

5 80%- 80% 80% 80%

(0]

2 60% 60% | 60% | 60%

©

2 40%1 40% 1 40% 1 40% wum
§ 20% 20% 1 20% 20%

= %] 0% 0% 0%

"02 04 06 08 1.0

2 04 06 08 1.0 2
Allowed total memory access per packet (I)

"02 04 06 08 1.0 "02 04 06 08 10

Figure 9: Query with the lowest threshold experiences the most significant accuracy improvement when allowing more mem-

ory access per packet.

Key=ipv4.src Key=ipv4.src
Distinct(ipv4.dst)>1000 Distinct(ipv4.dst+tcp.dst)>1000
+ 100% 100%
I
o 80%] 80% |
(9]
.E 60% 1 60% 1
©
Ko} o | o |
o 40% 40%
& 20%/ 20%
9]
= o%] 0%

"02 04 06 08 1.0 "02 04 06 08 1.0

Key=ipv4.dst+tcp.dst
Distinct(ipv4.src)>1000

Key=ipv4.dst+tcp.dst
Distinct(ipv4.src+tcp.src)>1000

100% A 100% A
80% A 80% A
60% A 60% A
40% 40% A
20% 20%-

0% 1 0% 1

"02 04 06 08 1.0 "02 04 06 08 10

Allowed total memory access per packet (I)

Figure 10: Queries with the same threshold exhibits similar accuracy improvement trend when given more allowed memory

access, despite different key and attribute definitions.

Memory space (S)

107! 10° 10t 102
Query time window (W, seconds)

Figure 11: The query time window size W and the memory
space S (number of coupon collector bit vectors) required by
BeauCoup follows power law.

size and window size closely follow a power law with an exponent
a = 0.80. For example, for a time window of W = 1 second and
memory access limit of I' = 0.1 word per packet, BeauCoup needs to
store 4096 coupon collectors (48 kilobytes), while doubling the time
window to W = 2 seconds enlarges the memory size requirement
by 2% = 1.74 times, to 7150 collectors (84 kilobytes). A practical
system on PISA switches can easily support 65, 536 collectors, cor-
responding to a time window W = 30 seconds for the CAIDA trace.
Still, BeauCoup is optimized for memory access constraint, and we
defer the discussion on how to adapt BeauCoup with insufficient
memory in Section 6.

Component Match | Extract | Collect Teardown | Overall
Coupons Key Coupons
TCAM 39.6% 2.3% 0% 0% 13.2%
SRAM 9.1% 2.1% 26.3% 0% 12.3%
Instruction 25.0% 7.3% 5.4% 3.1% 12.8%
Hash Unit 50.0% 61.1% 29.1% 0% 41.7%

Table 3: BeauCoup’s hardware resource utilization, catego-
rized into four functional components.

5.3 Hardware Resource Utilization

To run on PISA switches and process packets at 100Gbps line rate,
BeauCoup’s data-plane program must satisfy other resource con-
straints beyond limited memory access. BeauCoup’s auto-generated
P4 data-plane program runs on an EdgeCore Wedge100-32BF pro-
grammable switch. It consumes about 40% of the programmable
switch’s hash calculation units and less than 15% of other resources.
We note that BeauCoup is not bottlenecked by TCAM match ta-
ble size. The current version of our data-plane program supports
matching each attribute’s hash function output to 4096 different
coupons; since every query uses at most 32 coupons, the program
supports at least % = 128 queries for each attribute. 4096 is the
default size for the TCAM match tables set by the compiler, and
can be extended as needed. Resource utilization other than TCAM
is independent of the number of simultaneous queries we run.

To produce a more detailed picture of BeauCoup’s resource uti-
lization, we slice the data-plane program into four sequential func-
tional components, and in Table 3 we drill down the utilization for
different types of resources by each component. We can see different
functional components have distinctive resource utilization profiles.



BeauCoup: Answering Many Network Traffic Queries

054 = Tq=100

<
<

o

£ T4=200

2 041 . 1,=500

o

8 0.3{ - T,=1000

§ 0.2 ~*° Ta=2000

R o

2011 x{{‘
o “o--0—0--0

x

w

0.0 Lo , ,
0.0 0.1 0.2 0.3 0.4
Allowed per-packet coupon limit (yg4)

o

Figure 12: Queries with higher threshold 7; need fewer mem-
ory accesses per packet.

For example, matching coupons extensively uses hash units to calcu-
late random hash functions and uses TCAM to draw coupons, while
not using much SRAM; in contrast, collecting coupons requires no
TCAM, but uses SRAM to store the bit vectors.

Although the BeauCoup data-plane program uses more hardware
resources than running one instance of HyperLogLog or UnivMon
for a single key definition, we note that the data-plane program
already supports various different key and attribute definitions,
allowing us to install new queries on the fly without re-compiling
the data-plane program. Furthermore, BeauCoup does not exhaust
any one switch resource, and its unique resource usage profile co-
habitates well with other typical resource-heavy switch functions or
algorithms. When two algorithms use the same resource heavily but
at different pipeline stages, we can tessellate them without causing
resource contention. For example, performing Equal-Cost Multi-
Path (ECMP) routing requires computing hash functions late in the
switching pipeline, where BeauCoup does not compute many hash
functions when collecting coupons; running network measurement
sketches like UnivMon [22] or PRECISION [4] requires using SRAM
memory early in the pipeline, whereas BeauCoup does not consume
a lot of SRAM early in the pipeline when it is matching coupons.

6 DISCUSSION

Fairness between queries. In this paper, we use a fair alloca-
tion policy to distribute the limited memory access among all
queries.However, queries with larger thresholds require fewer mem-
ory accesses to achieve the same accuracy. Figure 12 evaluates the
optimal configurations found by the query compiler under differ-
ent per-packet coupon limit yg, for various query thresholds Tj.
A query with a small threshold of T; = 100 almost always uses
all of its budget (with mg - pg very close to yq), while queries for
larger thresholds do not need their full share. We can improve the
allocation policy to redistribute these “leftover” budget to improve
the accuracy of the queries with the lowest thresholds. We can
repeat the process until the leftover is negligible or no query can
be improved.

Multi-stage coupon table. Our current prototype uses a single
hash-indexed array for storing coupons. Extending this structure

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

to a multi-stage table would offer several benefits. First, hash colli-
sions are inevitable even when the hash table is lightly filled; using
multiple tables can provide a query-key pair more chances to insert
successfully despite hash collisions. With more memory accesses,
we can also allow simultaneously collecting at most 2 or 3 coupons
per packet. Second, we can use multiple stages of tables to assign
more coupons to each collector, for example by using two tables to
implement m = 64 coupons per collector.

Memory space. In designing BeauCoup our main concern was
supporting multiple queries with limited memory access. If memory
size becomes constrained, BeauCoup has two possible ways to
address the issue. First, we can voluntarily limit memory access
(T') below the limit imposed by the hardware; a smaller T reduces
space requirements, as demonstrated in Figure 11. Second, we can
implement an eviction mechanism that finds the coupon collectors
least likely to succeed; for example, we could look at the number
of coupons not yet collected, and how much time has elapsed since
the last coupon was collected by this collector.

Distributed Monitoring. Currently, BeauCoup processes traf-
fic at a single switch. To extend BeauCoup to multiple vantage
points, we could use multiple switches to run the same random
hash functions and a centralized collector to collect all the coupons.
Each switch only needs to send packet to the centralized collec-
tor when a new coupon is collected. We can minimize the traffic
overhead by specifying a small per-packet coupon limit, and de-
duplicating the coupons at the switches before sending. Similar
to HyperLogLog registers, BeauCoup coupon collector vectors are
trivially mergeable.

Security. Some network queries look for adversarial traffic, and
an attacker is motivated to craft its attacking traffic to disrupt those
queries. As BeauCoup uses random hash functions with random
seeds, the attacker cannot predict which packets lead to coupon col-
lection without knowing the seeds. However, with the seeds leaked,
the attacker can precisely know which packets trigger a coupon,
and thus can deliberately craft traffic to avoid being reported. We
therefore should periodically replace the hash seeds and make sure
they are not leaked.

Our current prototype uses the CRC-32 family of hash functions
with different polynomials, natively available on the programmable
switch hardware. CRC-32 is prone to linear correlation, and an
attacker may recover the seed when it simultaneously controls the
input packets and observes the output coupon activation (perform-
ing a Known Plaintext Attack). To defend against powerful attackers,
a more secure BeauCoup implementation should use cryptographic
hash functions. We leave this as future work.

7 RELATED WORK

Approximate distinct counting. Plenty of related work discusses
how to approximately count distinct elements under limited mem-
ory space, culminating in the widely-used HyperLogLog [13] dis-
tinct counting algorithm. [10] surveyed these prior works, which
can be roughly categorized into two flavors: K-Minimum-Value
and Distinct Sampling. K-Minimum-Value [2] computes a random
hash function over all input elements, and uses the k smallest val-
ues observed to infer how many distinct elements exist. Distinct



SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

Sampling [15] samples new distinct elements at a small probabil-
ity, and infers the count by the number of items sampled. We can
sample an item out of 2" distinct items, if we wait for n consec-
utive leading zeros in the output bits of a random hash function.
HyperLogLog [12, 13] builds upon the idea of Distinct Sampling but
instead partitions the incoming stream into k sub-streams and uses
k independent estimators, and outputs the harmonic mean of their
estimates. Each estimator records the longest consecutive leading
zeros seen from the output bits of a random hash function. We
note that our implementation of a m-bit coupon collector is in fact
equivalent to the HyperLogLog algorithm using 1/p sub-streams,
with the 1/p estimators each output only one bit. However, we only
store the output of first m estimators, truncating the other 1/p —m
estimators to reduce memory access. Alternatively, a coupon col-
lector can be viewed as a 1/p-bit Bloom Filter with only one hash
function, truncated to the first m bits to reduce memory access.
Bloom Filters are originally designed for membership queries but
can also be used for approximate distinct counting, as analyzed by
Assaf et al. [1].

We also note that universal sketching (UnivMon [22]) can com-
pute many different functions over the input frequency vector, as
long as the function is monotonic and bounded by the l;-norm.
In particular, it can compute distinct counting (the lp-norm). For
input length L with A unique items (attributes), UnivMon main-
tains log(A) different count sketches, and requires I' = O(log(A))
memory access per packet in the worst case.

Memory model. In [24], Muthukrishnan surveyed several estab-
lished streaming analysis models, and used an abstraction of main-
taining one high-dimensional vector. Each incoming item changes
one entry in the vector. The streaming models differ in the changes
they can make to items in the vector: cash register is addition only,
turnstile allows addition and subtraction, and strict turnstile allows
addition and subtraction, yet requires the entries to be always non-
negative. Subsequently, queries are made against this high dimen-
sional vector. Our paper falls under the cash register model, for each
individual query and sub-streams of the input stream partitioned
by the query key.

The cell probe model [19, 26, 33] is a limited memory access
model often used to prove data structure lower bounds. In [33], Yao
proved that [log(S)] probes (memory accesses) are necessary to
check whether an item exists in a memory array of size S. Larsen
et al. [19] discussed other similar lower bounds on how many mem-
ory accesses are necessary to solve a certain problem. Usually,
in the cell probe model the algorithm is allowed to be adaptive,
meaning that it can decide which memory address to look at next
based on the content of memory it has already read earlier. We
adapt cell probe into stream processing to allow at most I' memory
words to be accessed per packet, while introducing a new notion
of sub-constant memory access, requiring each query to access
fewer than one memory word per packet on average. This model
is abstracted from our experience working with high-speed pro-
grammable switches, yet we can also identify similar situations in
other computing architectures where low latency is required or a
memory cache hierarchy exists. For example, a modern CPU has
a cache size of a few megabytes. The traditional streaming algo-
rithm model strives to fit an entire data structure (sketch) within
this cache size, while our model resembles limiting the number of

Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, Jennifer Rexford

accesses to external memory or disks, which are slower to access
but considerably larger.

In [27], Pontarelli et al. proposed a related model where a system
has both faster on-chip memory and slower, larger off-chip memory,
and can only perform a limited number of off-chip memory accesses
per packet. In [18], Kim et al. implemented a practical off-chip
memory for PISA switches.

Reducing memory access. NitroSketch [21] is a novel tech-
nique that reduces memory access for sketching algorithms. The
authors identified memory access as one of the most expensive
operations when running network measurement tasks on CPUs,
and proposed to sample on memory accesses to improve perfor-
mance. Given a sampling probability p, all the +1 updates to the
original sketch data structures are changed to +1/p updates with
probability p. A smaller p can further reduce memory accesses and
accommodate faster packet processing. NitroSketch can be applied
to many exising measurement sketches, including Count Sketch [7]
and Count-Min Sketch [11], to improve performance without sig-
nificantly impact accuracy. Compared with the naive approach of
sampling packets, NitroSketch achieves better accuracy when given
the same amount of memory access.

NitroSketch can be applied to UnivMon and produce a distinct
counting algorithm with sub-constant memory access. UnivMon
consists of multiple layers each hosting a Count Sketch. For every
incoming packet, we first select which UnivMon layers to update
using the original UnivMon mechanism, then each layer indepen-
dently samples the counter updates into its Count Sketch using
the NitroSketch mechanism, possibly using different sampling pa-
rameters according to the rate of each layer’s incoming packets.
The combined data structure NitroSketch-Univmon now uses sub-
constant average memory access, and the accuracy loss is negligible
when we reduce memory access by 50%-75% percent. However, the
accuracy for distinct counting suffers greatly when we reduce mem-
ory access by 90%-99%, as we have shown in Section 5.2.

8 CONCLUSION

We present BeauCoup, a system for simultaneously running many
distinct-counting based network monitoring queries, under limited
memory access per packet. BeauCoup is implemented on PISA
programmable switches and consume only moderate hardware
resources, and evaluation showed it uses 4x fewer memory accesses
to achieve the same error rate compared with other state-of-the-art
measurement sketch.

ACKNOWLEDGMENTS

This research is supported in part by NSF Grant No. CNS-1704077,
the NSF Alan T. Waterman Award Grant No. 1933331, a Packard
Fellowship in Science and Engineering, the Simons Collaboration
on Algorithms and Geometry and The Eric and Wendy Schmidt
Fund for Strategic Innovation.

We sincerely thank the anonymous reviewers and our shep-
herd Dave Levin for their thoughtful comments and feedback. We
also thank David Walker, Satadal Sengupta, and Mina Tahmasbi
Arashloo for their help and feedback for this paper.



BeauCoup: Answering Many Network Traffic Queries

REFERENCES

[1] Eran Assaf, Ran Ben Basat, Gil Einziger, and Roy Friedman. 2018. Pay for a sliding
bloom filter and get counting, distinct elements, and entropy for free. In IEEE
INFOCOM 2018. IEEE, 2204-2212.

Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D Sivakumar, and Luca Trevisan. 2002.

Counting distinct elements in a data stream. In International Workshop on Ran-

domization and Approximation Techniques in Computer Science. Springer, 1-10.

[3] Ran Ben Basat, Xiaoqi Chen, Gil Einziger, Shir Landau Feibish, Danny Raz, and

Minlan Yu. 2020. Routing Oblivious Measurement Analytics. In IFIP Networking.
[4] Ran Ben Basat, Xiaoqi Chen, Gil Einziger, and Ori Rottenstreich. 2020. Designing
Heavy-Hitter Detection Algorithms for Programmable Switches. IEEE/ACM
Transactions on Networking 28, 3 (2020), 1172-1185.

[5] CAIDA. 2018. The CAIDA UCSD Anonymized Internet Traces 2018 - March 15th.
(2018). https://www.caida.org/data/passive/passive_dataset.xml

[6] Anne Chao. 1984. Nonparametric estimation of the number of classes in a
population. Scandinavian Journal of Statistics (1984), 265-270.

[7] Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. 2004. Finding frequent
items in data streams. Theoretical Computer Science 312, 1 (2004), 3-15.

[8] Benoit Claise. 2004. Cisco Systems NetFlow Services Export Version 9. RFC 3954
(2004).

[9] The P4 Language Consortium. 2018. P4;¢ Language Specifications. (2018).

https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.pdf

Graham Cormode. 2011. Sketch techniques for approximate query processing.

Foundations and Trends in Databases. NOW publishers (2011).

[11] Graham Cormode and S. Muthukrishnan. 2005. An improved data stream sum-
mary: The count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58-75.

[12] Marianne Durand and Philippe Flajolet. 2003. Loglog counting of large cardinali-

ties. In European Symposium on Algorithms. Springer, 605-617.

Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hyper-

LogLog: The analysis of a near-optimal cardinality estimation algorithm. In

Analysis of Algorithms (AOFA).

Philippe Flajolet, Dani¢le Gardy, and Loys Thimonier. 1992. Birthday Paradox,

Coupon Collectors, Caching Algorithms and Self-Organizing Search. Discrete

Applied Mathematics 39, 3 (1992), 207-229.

[15] Phillip B Gibbons. 2001. Distinct sampling for highly-accurate answers to distinct

values queries and event reports. In VLDB, Vol. 1. 541-550.

Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and

Walter Willinger. 2018. Sonata: Query-driven streaming network telemetry. In

ACM SIGCOMM. 357-371.

[17] Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford. 2018. Network-

Wide Heavy Hitter Detection with Commodity Switches. In ACM SIGCOMM

Symposium on SDN Research. 8:1-8:7.

Daehyeok Kim, Yibo Zhu, Changhoon Kim, Jeongkeun Lee, and Srinivasan Seshan.

2018. Generic External Memory for Switch Data Planes. In ACM Workshop on

Hot Topics in Networks. 1-7.

[19] Kasper Green Larsen, Jelani Nelson, and Huy L Nguyén. 2015. Time lower bounds

for nonadaptive turnstile streaming algorithms. In ACM Symposium on Theory of

Computing. ACM, 803-812.

Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. FlowRadar: A Better

NetFlow for Data Centers. In USENIX NSDI. 311-324.

[21] Zaoxing Liu, Ran Ben Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman, Roy
Friedman, and Vyas Sekar. 2019. NitroSketch: Robust and general sketch-based
monitoring in software switches. In ACM SIGCOMM. 334-350.

[22] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir

Braverman. 2016. One Sketch to Rule Them All: Rethinking Network Flow

Monitoring with UnivMon. In ACM SIGCOMM. 101-114.

Zaoxing Liu, Samson Zhou, Ori Rottenstreich, Vladimir Braverman, and Jennifer

Rexford. 2020. Memory-efficient performance monitoring on programmable

switches with lean algorithms. In SIAM-ACM Symposium on Algorithmic Principles

of Computer Systems. 31-44.

S. Muthukrishnan. 2005. Data Streams: Algorithms and Applications. Foundations

and Trends in Theoretical Computer Science 1, 2 (2005).

Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat

Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim. 2017.

Language-Directed Hardware Design for Network Performance Monitoring. In

ACM SIGCOMM. 85-98.

Mihai Patrascu. 2008. Lower Bound Techniques for Data Structures. Ph.D. Disser-

tation. Massachusetts Institute of Technology, Cambridge, MA, USA.

[27] Salvatore Pontarelli, Pedro Reviriego, and Michael Mitzenmacher. 2018. EMOMA:

Exact Match in One Memory Access. IEEE Transactions on Knowledge and Data

Engineering 30, 11 (2018), 2120-2133.

Daniel Rubio. 2017. Jinja templates in Django. In Beginning Django. Springer,

117-161.

[29] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, Shan Muthukr-
ishnan, and Jennifer Rexford. 2017. Heavy-hitter detection entirely in the data
plane. In ACM SIGCOMM Symposium on SDN Research. 164-176.

[2

[

[10

(13

[14

=
&

[18

[20

[23

[24

[25

[26

[28

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

[30] Bruce Spang and Nick McKeown. 2019. On estimating the number of flows. In
Stanford Workshop on Buffer Sizing.

Shobha Venkataraman, Dawn Xiaodong Song, Phillip B. Gibbons, and Avrim
Blum. 2005. New Streaming Algorithms for Fast Detection of Superspreaders. In
Network and Distributed System Security Symposium.

Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,
Xiaoming Li, and Steve Uhlig. 2018. Elastic Sketch: Adaptive and fast network-
wide measurements. In ACM SIGCOMM. 561-575.

Andrew Chi-Chih Yao. 1978. Should Tables Be Sorted? (Extended Abstract). In
Foundations of Computer Science. 22-27.

[31

(32

[33

Appendices are supporting material that has not been peer-reviewed.

A TEMPLATING P4

We use the python-based Jinja templating library to automatically
expand our code template into P4 code. Here, we show two ex-
cerpts from the template that highlights how templating helps us
efficiently generate the P4 data plane program.

Example 1: generate code for every hash function.

struct ig_metadata_t {
{% for h in hash_functions %}
bit<16> h_{{h.id}};
bit<1> h_{{h.id}}_matched;
bit<8> h_{{h.id}}_query_id;
bit<8> h_{{h.id}}_coupon_id;
bit<8> h_{{h.id}}_query_n;
bit<4> h_{{h.id}}_query_keydefn;
{% endfor %}
bit<32> coupon_onehot;
bit<1> random_coin;
/...
3
{% for h in hash_functions %}
action calc_hash_{{h.id}}(){
ig_md.h_{{h.id}}=hash_{{h.id}}.get({ {{h.fields}} 1});
3
action set_h_{{h.id}}_matched(bit<8> qid, bit<8> cid,
bit<8> n, bit<4> kdf){
ig_.md.h_{{h.id}}_matched=1;
ig_.md.h_{{h.id}}_query_id=qid;
ig_md.h_{{h.id}}_coupon_id=cid;
ig_.md.h_{{h.id}}_query_n=n;
ig.md.h_{{h.id}}_query_keydefn=kdf;
3
action set_h_{{h.id}}_no_match(){
ig_md.h_{{h.id}}_matched=0;
}
{% endfor %}

Example 2: generate match-action logic.

action write_onehot(bit<32> o){
ig_md.coupon_onehot = o;

3
table tb_set_onehot {
key = {
ig_md.h_selected_coupon_id: exact;
3
size = 32;

actions = {
write_onehot;
}
default_action = write_onehot(0);
const entries = {
{% for i in range(32) %}
{{i}} : write_onehot(32w{{2**i}});
{% endfor %}
}
}



https://www.caida.org/data/passive/passive_dataset.xml
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.pdf

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

B COUPON COLLISION PROBABILITY

In this section, we show that ignoring all coupons when there are
more than three coupons simultaneously matched by multiple hash
functions only affects BeauCoup’s accuracy by a few percent.

Although we restrict the expected number of coupons drawn
per packet ;¢ vq be bounded by 1, it is possible to have multi-
ple coupons drawn simultaneously, triggering a tie-break. We can
bound the probability of tie-breaking events as follows:

Recall that coupons defined over the same attribute are all grouped
together and use different output ranges of one random hash func-
tion, so they will never collide. Thus, collision happens across mul-
tiple hash functions. Now we analyze the probability for having
multiple hash functions where each reports drawing one coupon.

We consider the system uses H > 3 random hash functions, each
with activation probability x1, xg, ..., xg, and we have )} x; < 1.
Each random hash function will activate coupons independently,
hence the total number of coupons drawn is the sum of H Bernoulli
random variables.

In our current system implementation, we only perform tie-
breaking when C = 2 and ignore all coupons when C > 3. We can
prove that the probability for having more than C > 3 coupons
drawn is maximized when all hash functions share the same proba-
bility, ie., x; = %, due to the inequality of arithmetic and geometric
means. In this case, the number of coupons drawn follows a bino-
mial distribution B(n = H,p = %) Hence, plug in H = 11 (from
the example query set we used in Section 5), we have

1
Pr(B(n=H,p= ﬁ) > 3| =7.11%.

That is, the probability for a packet matches with more than 3
coupons is at most 7.11%.

This is smaller than or on par with the optimal average relative
error achieved by coupon collectors for distinct counting (about
10% ~ 20%), and therefore not fundamental to BeauCoup’s error.
We further note that this probability grows very slowly with H,
and is only 8.0% when H = 10*.

Still, it creates a small bias for individual coupon’s activation
probability; we leave the correction for this bias in the query com-
piler for future work.

Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, Jennifer Rexford



