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Typically, energy levels change without bifurcating in response to a change of a control parameter.
Bifurcations can lead to loops or swallowtails in the energy spectrum. The simplest quantum Hamiltonian
that supports swallowtails is a nonlinear 2 × 2 Hamiltonian with nonzero off-diagonal elements and
diagonal elements that depend on the population difference of the two states. This work implements
such a Hamiltonian experimentally using ultracold atoms in a moving one-dimensional optical lattice.
Self-trapping and nonexponential tunneling probabilities, a hallmark signature of band structures that
support swallowtails, are observed. The good agreement between theory and experiment validates the
optical lattice system as a powerful platform to study, e.g., Josephson junction physics and superfluidity in
ring-shaped geometries.
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In time-dependent processes, two limiting scenarios
are of particular interest: the regime where the system
Hamiltonian is quenched (i.e., changed essentially instan-
taneously) and the opposite regime where the system
Hamiltonian is changed adiabatically (i.e., so slowly that
transitions between different adiabatic eigenstates are
strongly suppressed). Generally, the adiabatic regime is
reached when the ramp rate α, with which the control
parameter γ is changed, is sufficiently small compared to
the rate that is set by the energy gapΩ (Ω is taken to be real)
at the avoided crossing of neighboring adiabatic eigen-
states. This is captured by the celebrated “linear” Landau-
Zener formula [1,2], which gives the tunneling probability
r between two energy levels, assuming γ changes linearly
with time t [γðtÞ ¼ αt, α > 0],

r ¼ exp ½−πΩ2=ð2ℏαÞ�: ð1Þ

According to the Landau-Zener formula, adiabaticity (i.e.,
the r → 0 limit) can always be approached, at least in
principle, by reducing the ramp rate α.
The presence of a nonlinearity C alters the tunnel-

ing dynamics qualitatively and quantitatively [3–18].
Adiabaticity breaks down for certain parameter combina-
tions of the nonlinear two-statemodel, i.e., even an infinitely
slow ramp induces nonadiabatic population transfer
between states, and the tunneling probability is not given
by the “standard exponential” [5]. The breakdown of
adiabaticity is intimately linked to the phenomenon of
hysteresis and the existence of swallowtails in the adiabatic
energy levels of the nonlinear two-state model [8,19].
Mapping to a classical Hamiltonian shows that the

swallowtail structure emerges when two new fixed points,
one stable and the other unstable, are first supported for
γ ¼ γc;1 [inset of Fig. 1(a)] [5,20]. As the control parameter γ
crosses γc;2 (γc;2 > γc;1), a stable and an unstable fixed point
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FIG. 1. Scaled energy levels of ĤTS for C=ðατÞ ¼ 0.268 as a
function of t=τ for (a) C=Ω ¼ 2.14, (b) 1.07, (c) 0.428, and
(d) 0.306. Black and red solid lines show the adiabatic energy
levels [in (c) and (d), the black lines are covered by the symbols].
Blue circles and green squares show the dynamic energy levels
for ℏ=ðατ2Þ ¼ 7.68 × 10−2 and ℏ=ðατ2Þ ¼ 7.68 × 10−3, respec-
tively [in (d), the blue circles are covered by the green squares].
The tunneling probability is appreciable in (a) and (b) and
essentially zero in (c) and (d). The inset in (a) shows an
enlargement of the swallowtail; γc;1=ðατÞ and γc;2=ðατÞ corre-
spond to the boundaries of the swallowtail. Purple dotted lines in
(c) and (d) show the adiabatic energy levels, labeled by their
eigenstates, for Ω ¼ 0. The parameters used to make the solid
lines and blue circles are the same as those used in Fig. 2.
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collide and annihilate. The diverging period of the associ-
ated trajectory is responsible for deviations fromadiabaticity
[5]. While the nonlinear two-state model captures aspects of
awide range of systems such as themotion of small polarons
[21,22], Josephson junctions [23–25], helium and other
superfluids in annular rings [19,26–29], and Bose-Einstein
condensates (BECs) in optical lattices [30–33], nonexpo-
nential tunneling originating from swallowtails has not yet
been demonstrated experimentally.
Using ultracold 87Rb atoms in a moving one-dimensional

optical lattice, the present joint experiment-theory study
investigates two-state dynamics in the presence of swallow-
tails. The main results are as follows: First, a breakdown of
adiabaticity is observed. The experimental data are repro-
duced by mean-field Gross-Pitaevskii (GP) equation sim-
ulations and interpreted in terms of self-trapping due to
mean-field interactions. Second, nonexponential tunneling
probabilities are observed for parameter combinations for
which the adiabatic band structure supports swallowtails.
Third, intriguing density deformations are revealed.
Consider the time-dependent Schrödinger equation [3]

{ℏ∂t
 bðtÞ¼ĤTS

 bðtÞ, where the nonlinear 2 × 2 Hamiltonian
ĤTS with nonlinearity C is given by

ĤTS ¼
1

2

 
γðtÞ − CΔbðtÞ Ω

Ω −γðtÞ þ CΔbðtÞ

!
ð2Þ

and the state vector  bðtÞ by  bðtÞ ¼ ½b0ðtÞ; b2ðtÞ�T. The
subscripts 0 and 2 are used since our experimental
realization connects two sites of a momentum lattice,
one with momentum zero and one with momentum
2ℏkL [5], where kL denotes the lattice wave vector. In
Eq. (2), ΔbðtÞ denotes the population imbalance, ΔbðtÞ¼
jb0ðtÞj2− jb2ðtÞj2 with normalization jb0ðtÞj2þjb2ðtÞj2¼1.
For − τ ≤ t ≤ τ, the control parameter γðtÞ changes linearly
from γ ¼ −ατ to ατ.
We first consider the case of vanishing nonlinearity

(C ¼ 0). Starting in state  bðtÞ ¼ ð1; 0ÞT ≡ j0i at t ¼ −τ,
the probabilities to be in states j0i and j2i≡ ð0; 1ÞT at time
τ are given by r and 1 − r, respectively, in the τ → ∞ limit.
In practice, τ is finite and the finite time window defines
the “dynamic” energy scale Ud, Ud ¼ ℏ=τ [34]. In addi-
tion, ĤTS is characterized by the “static” energy scale
Us, Us ¼ ατ, and the coupling strength Ω. Equation (1)
provides—“on average”—a reliable description of the state
populations at the end of the ramp if Ω=ðατÞ ≪ 1; we use
the term on average since the finite time window introduces
oscillations around the smooth exponential given in
Eq. (1) [34].
We now turn to the nonlinear two-state model. Solid

lines in Fig. 1 show the adiabatic energy levels of ĤTS for
C=ðατÞ ¼ 0.268 as a function of t=τ for four different C=Ω.
The band structure displays a swallowtail centered at t ¼ 0
for C=Ω > 1 but not for C=Ω < 1. Blue circles and green

squares show the dynamic energy levels of ĤTS [3] for two
different ramp rates, parametrized by the scale ratio
ℏ=ðατ2Þ [34]. For a given parameter combination, the
dynamic energy level is obtained by calculating the energy
expectation value at each time, using the lower adiabatic
eigenstate of ĤTS for γ ¼ −ατ as the initial state [3]. In
Figs. 1(c) and 1(d), the dynamic energy levels depend
rather weakly on the ramp rate and agree well with the
lower adiabatic energy levels. In this case, the probability to
tunnel to the upper adiabatic energy level during the ramp is
very close to zero. In Figs. 1(a) and 1(b), in contrast, the
dynamic energy levels depend on ℏ=ðατ2Þ and deviate,
even for the smaller ℏ=ðατ2Þ considered (this corresponds,
for fixed ατ, to a slower ramp [34]), from the lower
adiabatic energy level. Deviations persist even for infinitely
slow ramp rates [3], i.e., the probability to tunnel to the
upper adiabatic energy level during the ramp is nonzero.
Following earlier experimental work [10,12], we realize

the nonlinear Landau-Zener model by preparing a single-
component BEC consisting of N 87Rb atoms of mass m in
the jF;mFi ¼ j1;−1i hyperfine state in an optical dipole
trap and by then adiabatically loading the BEC into a one-
dimensional optical lattice V latðzÞ [36–39]. While the
largest C=Ω reported in the literature is around 0.7 [12],
we access the C=Ω > 1 regime, where swallowtails exist.
Our optical lattice is created by two 1064 nm beams [with
wave vectors  k1 and  k2, j  k1j ¼ j  k2j, and angular frequencies
ω1ðtÞ and ω2ðtÞ] that cross at an angle of ≈π=2,
V latðz; tÞ ¼ 2Ω cos2½kLz − ϕðtÞ=2�; Ω denotes the effective
coupling strength, kL ≈ j  k1j=

ffiffiffi
2

p
, ϕðtÞ ¼ ½ω1ðtÞ − ω2ðtÞ�t

with ϕðtÞ ¼ 0 for t < −τ, and δLðtÞ ¼ ℏ∂tϕðtÞ. At t ¼ −τ,
the optical dipole trap is turned off and the BEC, which has
a vanishing momentum, sits in the middle of the first
Brillouin zone (state j0i). In our first set of experiments,
δLðtÞ is—for t > −τ—increased linearly from 0 with ramp
rate α ¼ h × 9 kHz=ms. The time sequence is designed
such that δLð0Þ is equal to 4 EL and δLðτÞ is equal to 8 EL,
i.e., such that the edge of the first Brillouin zone and
the middle of the second Brillouin zone are reached when
t ¼ 0 and t ¼ τ, respectively [here, EL ¼ ℏ2k2L=ð2mÞ ¼
h × 1.08 kHz]. In each repetition of the experiment, the
ramp is stopped at various t and the occupations of the
components centered at vanishing momentum along the z
direction (state j0i) and centered at momentum 2ℏkL (state
j2i) are measured after 16.5 ms time of flight, counted from
the end of the ramp. During the time-of-flight expansion,
the two momentum components separate fully in real
space. The turn-off of the lattice beams is essentially
instantaneous on all relevant timescales so that the pop-
ulations of the momentum components are unaffected by
the “lattice quench”; effectively, the measurement is made
in the diabatic basis. Red circles in Fig. 2 show the
experimentally determined population imbalance ΔbðtÞ.
It can be seen that the BEC occupies, for t=τ ≳ 0, primarily
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state j2i when Ω is “large” and primarily state j0i when Ω
is “small.”
The lattice system is described by the time-dependent GP

equation with Hamiltonian ĤGP [37],

ĤGP ¼ ˆ p2=ð2mÞ þ V latðz; tÞ þ gðN − 1ÞjΨð  r; tÞj2: ð3Þ

Here, g is equal to 4πℏ2as=m and the mean-field orbital
Ψð  r; tÞ is normalized according to

R jΨð  r; tÞj2d  r ¼ 1. The
s-wave scattering length as is equal to 100.4 abohr [40].
Following the experimental protocol, blue squares in Fig. 2
show our GP mean-field results. The good agreement with
the experimental data, including the reproduction of the
oscillatory behavior of the population imbalance for t≳ 0
and the small deviations of the population imbalance from
1 for large Ω near t ≈ −τ, indicate that the mean-field
framework captures the dynamics quite accurately.
To bring out the two-state nature of the lattice system, we

write [3,4,36] Ψð  r; tÞ ¼ ψ0ð  r; tÞ þ ψ2ð  r; tÞ expð2{kLzÞ.
Inserting the ansatz into the time-dependent GP equation,
the Supplemental Material [34] develops a semianalytical
framework that yields a spatially independent two-state
Hamiltonian ĤTS;t. The Hamiltonian ĤTS;t is identical to
ĤTS provided the mapping γðtÞ → −4EL þ δLðtÞ and C →
C̃ðtÞ is applied. The time-dependent mean-field energy
C̃ðtÞ, C̃ðtÞ ¼ gðN − 1Þn̄ðtÞ, accounts for the fact that the
BEC expands during the ramp, thereby resulting in a
decrease of the mean density n̄ðtÞ with increasing γðtÞ.

Since we are interested in nonlinear effects, the decrease of
the mean-field energy during the ramp places a constraint
on α for a given C̃ð−τÞ=Ω. Figure S1 [34] shows the
adiabatic and dynamic energy levels of the Hamiltonian
ĤTS;t for the experimental parameters used in Fig. 2.
Comparison with Fig. 1 shows that the adiabatic and
dynamic energy levels supported by ĤTS and ĤTS;t agree
quite well.
Black solid and green dashed lines in Fig. 2 show the

decomposition of the states corresponding to, respectively,
the lower adiabatic and lower dynamic energy levels
supported by ĤTS;t. It can be seen that the green dashed
lines agree reasonably well with the experimental and GP
results; this confirms the applicability of the nonlinear two-
state Hamiltonian to the lattice system. Moreover, it can be
seen that the decomposition of the states corresponding to
the adiabatic and dynamic energy levels agree for the
largest Ω value considered [Fig. 2(d)] but differ for the
otherΩ values. This shows that the system dynamics are, for
fixed ramp rate α, adiabatic for the largest Ω considered in
Fig. 2 but not for the other Ω values. In Fig. 2(c), the
experimental data and populations extracted from the
dynamic energy level oscillate around the populations
extracted from the adiabatic energy level [41]. In Figs. 2(a)
and 2(b), the experimental data and populations extracted
from the dynamic energy level oscillate as well for t≳ 0;
however, the oscillations are not centered around the
populations extracted from the adiabatic energy level but
instead lie notably above. Our theory analysis shows that the
enhanced tunneling probability (enhanced probability to
remain in state j0i) is due to self-trapping, a phenomenon
inherently linked to the presence of swallowtails [30].
While the inhibition of transitions to state j2i due to

nonlinear interactions has been previously observed in an
optical lattice system similar to ours [17] as well as in
coupled double-well type setups [16,42,43] and annular
rings [19], we now show evidence for nonexponential
tunneling. Earlier work quantified the modifications of the
exponential tunneling exponent in the C̃ð0Þ=Ω < 1 regime
using optical lattices but did not observe nonexponential
tunneling, which requires C̃ð0Þ=Ω > 1. Red circles in
Fig. 3 show the experimentally measured population of
state j0i for t ¼ τ and C̃ð−τÞ=Ω ¼ 2.75. It can be seen
that the experimental data, which are obtained by varying
the ramp rate α (and correspondingly τ such that ατ is equal
to 4 EL), display an overall decrease with increasing
πΩ2=ð2ℏαÞ. The experimental data are quite well repro-
duced by our GP simulations (blue squares). The decom-
position of the state corresponding to the lower dynamic
energy level of ĤTS;t (green dashed line) yields notably
larger oscillations but displays the same overall trend. In
the τ → ∞ limit, the tunneling probability of the nonlinear
two-state model ĤTS varies nonexponentially with
πΩ2=ð2ℏαÞ [34]. The gray-shaded region shows the results
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FIG. 2. Experiment-theory comparison of population imbal-
ance ΔbðtÞ for a linear ramp with α¼h×9kHz=ms [ℏ=ðατ2Þ ¼
7.68 × 10−2] as a function of t=τ for various C̃ð0Þ=Ω. The
experimental results (red error bars show the standard deviation
from two independent runs) are for N ¼ 3.1 × 105, ωx;y;z ¼ 2π×
ð147; 160; 29.8Þ Hz, and EL ¼ h × 1.08 kHz. Blue squares and
green dashed lines are obtained from ĤGP and ĤTS;t, respectively
(analyzing the dynamic states). In both cases, the initial state is
prepared in an axially symmetric trap with ωρ ¼ ðωx þ ωyÞ=2.
The mean-field energy C̃ðtÞ is equal to 1.27 EL and 1.07 EL for
t ¼ −τ and t ¼ 0, respectively. Black solid lines show ΔbðtÞ for
the lower adiabatic eigenstate of ĤTS;t.
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for C=Ω values between C̃ð−τÞ=Ω ¼ 2.75 (upper bound)
and C̃ð0Þ=Ω (lower bound; this value varies with the ramp
rate), respectively. The experimental and GP data exhibit
small oscillations around the gray region, which can be
viewed as a “smoothed” version of the green-dashed line.
For comparison, the black solid line shows the results for
the noninteracting two-state model. Because of the finite
time window, the black solid line oscillates around the
“linear Landau-Zener” formula [Eq. (1), gray dash-dotted
line]. A key observation of our work is that the exper-
imental data are much better described by the nonexpo-
nential gray-shaded region than the linear Landau-Zener
formula. Figure 3 provides the first experimental verifica-
tion of nonexponential tunneling dynamics, driven by
swallowtails.
Figure 3 also shows that the oscillation amplitude of

ln½jb0ðtÞj2� is smaller for the experimental and GP data than
for the finite-τ two-state model data. We attribute this to
structural dynamics, which are not accounted for by the
two-state models ĤTS and ĤTS;t. Figures 4(a) and 4(b)
show GP densities for the ramp stopped at t=τ ¼ 0.25 in
Fig. 2(b) (no time-of-flight expansion). The density cuts for
the finite momentum component deviate from a simple
Thomas-Fermi profile; in particular, the density along z for
ρ ¼ 0 is deformed, exhibiting a maximum at negative z,
and the density along x for y ¼ z ¼ 0 exhibits a double
peak structure [black dashed lines in Figs. 4(a) and 4(b),

respectively]. These density deformations develop during
the ramp and are attributed to the interplay between the on-
site and off-site mean-field interactions [34]. We emphasize
that the employed ramps are faster than the characteristic
timescale of a dynamical instability that exists at the edge of
the Brillouin zone [44–48]. Whether or not the observed
density deformations can be interpreted as a comparatively
gentle, nondestructive fingerprint of such a dynamical
instability is an open question that deserves further
investigation.
Figures 4(c) and 4(d) show GP and experimentally

measured integrated densities after 16.5 ms time-of-flight
expansion for the same ramp as considered in Figs. 4(a)
and 4(b). The overall agreement between theory and
experiment is excellent. The zero-momentum component
(centered around z ¼ 0) has its maximum at positive z
while the finite-momentum component (centered around
z ≈ 100 μm) displays an enhanced density that is located
on a half-ring on the right edge of the cloud. During
the time-of-flight expansion, the finite-momentum com-
ponent moves relative to the zero-momentum component:
To reduce mean-field interactions, the finite-momentum
component accumulates density first at the left edge of the
cloud and later at the right edge of the cloud. The theory
data indicate that the relative motion of the two clouds
generates low energy excitations [wavelike density
pattern in Fig. 4(c)]; although not clearly resolved,
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FIG. 3. Experiment-theory comparison of tunneling
probability jb0ðtÞj2 at t ¼ τ for linear ramps with varying α
for C̃ð−τÞ=Ω ¼ 2.75 as a function of πΩ2=ð2ℏαÞ. The exper-
imental results (red circles; error bars show the standard devia-
tion from three independent runs) are for N ¼ 2.3 × 105,
ωx;y;z ¼ 2π × ð193; 218; 29.8Þ Hz, EL ¼ h × 1.08 kHz, andΩ ¼
0.52 EL. Blue squares and green dashed lines are obtained for
ĤGP and ĤTS;t, respectively [analyzing the dynamic states; the
initial state is prepared in an axially symmetric trap with
ωρ ¼ ðωx þ ωyÞ=2]. Both datasets follow the nonexponential
trend of the gray-shaded region, which shows Eq. (S11) for C=Ω
values ranging from C̃ð−τÞ=Ω to C̃ð0Þ=Ω [34]. The black solid
line, which oscillates around the linear Landau-Zener formula
[gray dash-dotted line; Eq. (1)], shows the tunneling probability
for ĤTS with C ¼ 0. The experimental data are better described
by the nonexponential gray-shaded family of curves than by the
linear Landau-Zener formula.

FIG. 4. Theoretical GP and experimental densities for the ramp
ending at t ¼ −τ þ 0.6 ms [t=τ ¼ 0.25 in Fig. 2(b)]. (a) and
(b) Density cuts before time-of-flight expansion for ρ ¼ 0 and
y ¼ z ¼ 0, respectively. Blue solid and black dashed lines are for
states ψ0ð  r; tÞ and ψ2ð  r; tÞ, respectively. Panels (c) and (d) show,
respectively, the theoretical and experimental integrated densities
nðx; z; tÞ, nðx; z; tÞ ¼ R∞−∞ jΨð  r; tÞj2dy, after 16.5 ms time-of-
flight expansion.
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faint indications of these patterns are visible in the
experimental images.
Quantum tunneling is ubiquitous in physics: it plays a

central role in high-energy, nuclear, atomic, and condensed
matter physics as well as in chemistry, biology, and
engineering. Modern physics courses introduce students
to quantum tunneling and exponentially decaying tunneling
probabilities. The full quantum treatment, however, shows
that quantum tunneling is much richer, necessitating
deviations from the exponential decay in both the short-
and long-time regimes [49,50]. Indeed, deviations from
exponential decay were observed in the short-time regime
in a pioneering experiment with cold atoms loaded into an
accelerated optical lattice [51]. The deviations from purely
exponential tunneling probabilities observed in this work
are fundamentally different; they have their origin in the
nonlinearity of the interactions. Nonlinearities also play a
fundamental role in the tunneling of a BEC out of an
external trap into the continuum [52,53]. In that case,
however, the nonlinear Landau-Zener model cannot be
applied. Our work is also fundamentally different from the
nonexponential decay analyzed theoretically in Floquet-
Bloch bands [54], where the emphasis lies on short-time
deviations and oscillations due to a finite energy window
and not due to nonlinear mean-field interactions.
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