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Abstract
We establish versions of Szegő’s distance formula and Widom’s theorem on invert-
ibility of (a family of) Toeplitz operators in a class of finite codimension subalgebras
of uniform algebras, obtained by imposing a finite number of linear constraints. Each
such algebra is naturally represented on a family of reproducing kernel Hilbert spaces,
which play a central role in the proofs.

Keywords Toeplitz · Neil algebra · Uniform algebra · Reproducing Kernel · Widom ·
Szegő

1 Introduction

Let C denote the complex plane, D = {z ∈ C : |z| < 1} denote the unit disk, and let
T = {z ∈ C : |z| = 1} denote the unit circle in the complex plane (so that ∂D = T).
Let t denote Lebesgue measure on T and let L p = L p(T) be the L p spaces on T with
respect to the normalized measure dt

2π .
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Let H∞(D)denote the bounded, analytic functions onD and let H2(D)be theHardy
space of analytic functions on D with square summable power series coefficients. For
p = 2,∞, we adopt the standard identification of H p(D) with H p(T), where H p(T)

is viewed as the subspace of L p(T) containing functions f with vanishing negative
Fourier coefficients.

Let P+ = span{eint | n ∈ N} denote the analytic trigonometric polynomials and
let P2(μ) denote the L2(μ) closure ofP+. With P2

0 (μ) = {p ∈ P2(μ) | p(0) = 0},
the following is a result due to Szegő:

Theorem 1.1 ( Szegő’s Theorem (p. 49 in [18])). If μ > 0 is a finite measure on T,
then

inf

{∫
T

|1 − p|2 dμ : p ∈ P2
0 (μ)

}
= exp

(
1

2π

∫ 2π

0
log(h) dt

)
,

where h is the Radon-Nikodym derivative of μ with respect to Lebesgue measure t.

This paper will generalize Szegő’s theorem under the assumption that the measure
μ is absolutely continuous with respect to Lebesgue measure with a strictly positive,
continuous Radon-Nikodym derivative.

Widom’s theorem provides a characterization of the invertibility of a Toeplitz oper-
ator with symbol φ ∈ L∞ in terms of the distance from φ to H∞. Fix φ ∈ L∞ and
let P : L2 → H2 be the orthogonal projection onto H2. Define Tφ : H2 → H2 be
T f = Pφ f . Such an operator is called a Toeplitz operator (with symbol φ).

Theorem 1.2 ( Widom’s Theorem (Theorem 7.30 in [13])). Suppose φ ∈ L∞ is uni-
modular. Tφ is left-invertible if and only if there dist(φ, H∞) < 1.

Szegő [24] first established his result in 1920, while Widom [26] first established
his result in 1960. Since then, different versions of both have been established for a
variety of settings. Specifically, there are two types of generalizations that we focus
on:

(i) A change to the underlying set on which our functions are defined. In this vein,
let � be a finite (connected) Riemann surface, and let A(�) be the algebra of
holomorphic functions on�. In this setting, we define H2 to be the L2-closure of
A(�)with respect to the representing measure for a point in a nontrivial Gleason
part.

(ii) The introduction of finitelymany algebraic constraints to our algebra of functions
to yield a finite-codimensional subalgebra A ⊆ A(�). As we will record in
Theorem 2.1, if we pass to an arbitrary finite-codimensional subalgebra, then A
arises via the successive application of finitely many algebraic constraints of the
2-point or Neil type.

For example, the classic disk algebra A(D) (functions holomorphic on D and contin-
uous on T) is yielded when � = D and A = A(D) (i.e., no algebraic constraints).

In the direction of (i), there have been a few generalizations established.
For Szegő’s result, we have the following: In 1965, Sarason [23] established a version
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for the annulus. In 1967,Ahern andSarason [4] established a version for hypo-Dirichlet
algebras. For Widom’s result, Abrahamse [1] established a version for multiply con-
nected domains in 1974.

In the direction of (ii), Balasubramanian, McCullough, and Wijesooriya [7] estab-
lished versions of both the Szegő andWidom results for theNeil Algebra, a constrained
subalgebra of H∞(D):

A = { f ∈ H∞(D) : f ′(0) = 0}.

The following is a brief overview of their results:
Let S = {(α, β) ∈ C

2 : |α|2 + |β|2 = 1} be the compact unit sphere in C
2. For

(α, β) ∈ S, define the following Hilbert spaces:

H2
α,β = { f ∈ H2(D) : f (0)β = f ′(0)α}. (1)

In [12], it is observed that these Hilbert spaces each carry a representation of A. They
go on to show that each H2

α,β is a reproducing kernel Hilbert space with kernel

kα,β
w (z) = kα,β(z, w) = (α + βz)(α + βw) + z2w2

1 − zw

for z, w ∈ D. It follows, via the the reproducing property, that

‖kα,β
0 ‖2 = 〈kα,β

0 , kα,β
0 〉 = kα,β

0 = kα,β(0, 0) = |α|2.

Denote by A0 those functions in A that vanish at 0. The following is a rewording of
Theorem 1.3 in [7]:

Theorem 1.3 (Reformulated Szegő for A). Suppose ρ > 0 is a continuous function
on T. Define constants:

Cρ = 1

2π

∫ 2π

0
log(ρ) dt, λ = exp(Cρ)

2π

∫ 2π

0
ρ(t) exp(−i t) dt,

and σ = 1√
1 + |λ|2 (1, λ) ∈ S.

Then,

inf

{
1

2π

∫
T

|1 − p|2ρ dt : p ∈ A0

}
= exp(Cρ)

(
1

‖kσ
0 ‖2

)
.

Observe that exp(Cρ) is exactly the quantity that is found on the right hand side of
Theorem 1.1.

We now record theWidom result for theNeil Algebra (Theorem 1.6 in [7]). For each
(α, β) ∈ S, let Pα,β : L2 → H2

α,β denote the orthogonal projection. Given φ ∈ L∞,
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define the operator T α,β
φ : H2

α,β → H2
α,β by T α,β

φ f = Pα,βφ f . Such an operator is

called the Toeplitz operator with symbol φ with respect to (α, β). Let A−1 denote the
collection of invertible elements of A.

Theorem 1.4 (Widom for Neil Algebra (Theorem 1.6 in [7])). Suppose φ ∈ L∞ is
unimodular. T α,β

φ is left-invertible for each (α, β) ∈ S if and only if dist(φ,A) < 1.

In particular, T α,β
φ is invertible for each (α, β) ∈ S if and only if dist(φ,A−1) < 1.

In the present work, we generalize these results in both of the directions (i) and (ii)
described in the remarks proceeding the statement of Theorem 1.1. However, in the
interest of clarity, we start by stating the results only for the topological generalization
discussed in (i).

When changing one’s underlying domain away from the open disk D, topological
complications arise. For example, when considering D, we have that L2 = H2 ⊕
H2
0 . Passing to the finitely connected case, one finds that H2 ⊕ H2

0 is no longer
all of L2, rather, there is an additional finite-dimensional defect space N such that

L2 = H2 ⊕ H2
0 ⊕ N . This defect space is tied to the number of holes in the domain

and is the complexification of the space of real, regular Borel measures on ∂� that
annihilate A(�) + A(�). Abrahamse, in his consideration of multiply connected
domains, analyzed this defect space and made heavy use of a theorem that related the

space H2
0 ⊕N to the space v−1H2, where v is a function related to theGreen’s function

for �. Abrahamse then used a universal covering space and deck transformations to
establish hisWidom result. (For details on Abrahamse’s work described here, see [1].)
In our work, we will encounter the N -space and Green’s function (see Sect. 4.1).
However, to obtain our version of the Widom theorem, we will circumvent the use
of a universal covering space by instead appealing to the machinery of Ahern and
Sarason for hypo-Dirichlet algebras found in [4] (we review the relevant material in
Sect. 2.2).

For a compact, Hausdorff space X , letC(X) denote the continuous, complex-valued
functions on X . Recall that a uniform algebra A is a uniformly closed subalgebra of
C(X)which contains constants and separates points.When endowedwith the sup norm
‖ f ‖ = sup{| f (x)| : x ∈ X}, it becomes a Banach algebra. A classic example is the
disk algebra A(D) of functions which are continuous on T and extend to be analytic
over D. Let MA denote its maximal ideal space. Given x0 ∈ MA , let Mx0 denote
the convex space of representing measures for x0. Finally, let Px0 denote the Gleason
part that contains x0. Gamelin [16] shows that under the following hypotheses: Mx0
is finite dimensional; the measure dm is taken from the relative interior of Mx0 ; all
of the representing measures for x0 are mutually absolutely continuous; Px0 contains
more than one point, A can be viewed as an algebra of analytic functions defined on
a finite (connected) Riemann surface. From this point forward, we fix x0 and dm as
above and let X denote the finite (connected) Riemann surface on whichA is defined.
In this manner, we see that A = A(X).

Let H2 be the L2 closure ofA and let H2
0 = { f ∈ H2 : ∫

∂X f dm = f (x0) = 0}.
Let H∞ be the weak-∗ closure ofA in L∞. In the same spirit as Abrahamse, Gamelin

showed in §5 of [16] that L2(dm) = H2 ⊕ H2
0 ⊕ N and H∞ = H2 ∩ L∞, where N

is a finite dimensional subspace of L∞ arising from the complexification of a finite
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dimensional real subspace of L∞. For every n ∈ N , let H2
n denote the standard H2

space but endowed with the inner product given by

〈 f , g〉n =
∫

∂X
f gen dm .

Defining the map πn : A → B(H2
n ) : f 
→ M f , where M f : H2

n → H2
n : h 
→ f h,

we have that πn is an isometric homomorphism into the bounded linear operators on
H2
n . In short,we say that each H

2
n carries a representation forA .Wenote that,while it is

reasonable to discusswhen two H2
n spaces are unitarily equivalent, we do not need such

observations in this paper. In our consideration of all H2
n spaces, we allow ourselves

redundancy. Each H2
n is a reproducing kernelHilbert spacewith kernel given by kn . Let

knx0 denote said kernel evaluated at x0.WithA0 = { f ∈ A : ∫
∂X f dm = f (x0) = 0},

the following is a Szegő result for A :

Theorem 1.5 (Szegő Theorem forA ). Suppose ρ > 0 is a continuous function on ∂X.

Let ξ ∈ H2, ζ ∈ H2
0 , n ∈ N be functions such that log(ρ) = ξ⊕ζ⊕n ∈ H2⊕H2

0 ⊕N.
With Cρ := ∫

∂X log(ρ) dm, it follows that

inf

{∫
∂X

|1 − p|2ρ dm : p ∈ A0

}
= exp(Cρ)

(
1

‖knx0‖2
)

.

As mentioned earlier, the above theorem carries the assumption that the measure
ρdμ is absolutely continuous with respect to Lebesgue measure with a strictly pos-
itive, continuous Radon-Nikodym derivative ρ. In this vein, the above theorem is a
generalization of Theorem 1.1 yielded by only changing the topological structure of
the underlying domain. Wermer [25] shows that the uniform algebra A , being an
algebra of analytic functions defined on a finite (connected) Riemann surface, is a
hypo-Dirichlet algebra. Thus, the above Szegő result is simply a reformulated special
case of Ahern and Sarason’s Theorem 10.1 in [4].

To state a Widom result for A = A(X), we construct a slightly different family
of Hilbert-Hardy spaces that carry representations for A. What will be important is
that the family is paramterized by a compact paramater space. Since A can also be
viewed as a hypo-Dirichlet algebra, we can use the machinery developed in [4]. Let
A −1 denote the invertible elements inA and let Sx0 denote the real linear space of the
set of all differences between pairs of measures in Mx0 . Ahern and Sarason [4] record
that, as a byproduct ofA being hypo-Dirichlet, no non-zeromeasure in Sx0 annihilates
log(|A −1|) and Sx0 has finite dimensionσ . Further, it follows that there areσ functions
Z1, . . . , Zσ and σ measures ν1, . . . , νσ in Sx0 such that

∫
∂X log(|Z j |) dνi = δ j i . For

α = (α1, . . . , ασ ), define |Z |α := |Z1|α1 · · · |Zσ |ασ . In Sect. 2.3, we introduce a
compact parameter space � such that, given α ∈ �, the spaces H2

α – defined to be the
usual H2 space but endowed with the inner product given by

〈 f , g〉α =
∫

∂X
f g|Z |αdm
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– each carries a representation for A . As with the H2
n spaces, this representation is

witnessed by the isometric homomorphism πα : A → B(H2
α ) : f 
→ M f , where

M f : H2
α → H2

α : h 
→ f h. In this case, however, our construction of the parameter
space � will involve passing to a quotient space. As such, questions about the unitary
equivalence of two H2

α spaces is more relevant. Proposition 2.5 in Sect. 2.3 establishes
that two tuples α1 and α2 in � belong to the same equivalence class in � if and only
if H2

α1
and H2

α2
are unitarily equivalent.

For φ ∈ L∞, let Mφ denote the operator that multiplies by φ. For α ∈ �, let
Vα : H2

α → L2
α be the inclusion map. Thus, Pα = VαV ∗

α : L2
α → H2

α,D is the orthog-

onal projection onto H2
α . For a fixed φ ∈ L∞, we define T α

φ : H2
α → H2

α by

T α
φ = PαMφ = V ∗

α MφVα.

Call T α
φ the Toeplitz operator with symbol φ with respect to α . The following is the

Widom theorem for A :

Theorem 1.6 (Widom Theorem for A ). Suppose φ ∈ L∞ is unimodular. T α
φ is left-

invertible for each α ∈ � if and only if dist(φ,A ) < 1. In particular, T α
φ is invertible

for each α ∈ � if and only if dist(φ,A −1) < 1.

When X = � is a multiply connected planar domain, the above theorem becomes
Abrahamse’s Theorem 4.1 in [1].

Theorems 1.5 and 1.6 are generalizations of the Szegő and Widom theorems when
the underlying domain is changed to a finite (connected) Riemann surface. The other
type of generalization is obtained by passing to a finite codimension subalgebra,
obtained by imposing a finite number of linear constraints. The prototypical example
for this is the Neil Algebra A. For the Neil Algebra (and therefore Theorems 1.3 and
1.4) the underlying domain is the disk X = D.

To formulate the Szegő and Widom theorems in the constrained case, we again
let A = A(X) and now let A ⊆ A be a finite codimensional subalgebra with
codimension d. Let � := ∏d

1(C∪ {∞}) and denote its elements by D = (t1, . . . , td).
A theorem due to Gamelin (reproduced in this paper as Theorem 2.1) details explicitly
how A is constructed from A via inductively imposing algebraic constrains.

Within each H2
n , we develop a family of Hilbert-Hardy spaces that carry repre-

sentations for A. This family, denoted H2
n,D with (n, D) ∈ N × �, are constructed

iteratively from H2
n by encoding the algebraic constraints that built A from A (see

Sect. 2.4 for their exact construction). Each H2
n,D is a reproducing kernel Hilbert

space with kernel given by kn,D . Let kn,D
x0 denote said kernel evaluated at x0.

With A0 = { f ∈ A : ∫
∂X f dm = f (x0) = 0}, the following is our Szegő

result:

Theorem 1.7 ( Szegő Theorem for A). Suppose ρ > 0 is a continuous function on ∂X.

Let ξ ∈ H2, ζ ∈ H2
0 , n ∈ N be functions such that log(ρ) = ξ⊕ζ⊕n ∈ H2⊕H2

0 ⊕N.
Let D ∈ � be the unique tuple such that eξ ∈ H2

n,D. With Cρ := ∫
∂X log(ρ) dm, it

follows that
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inf

{∫
∂X

|1 − p|2ρ dm : p ∈ A0

}
= exp(Cρ)

(
1

‖kn,D
x0 ‖2

)
.

To state our Widom result, we again use the H2
α spaces instead. Within each H2

α ,
we define a family of Hilbert-Hardy spaces H2

α,D with (α, D) ∈ � ×� such that each

H2
α,D carries a representation for A.
Forφ ∈ L∞, letMφ denote the operator thatmultiplies byφ. For (α, D) ∈ �×�, let

Vα,D : H2
α,D → L2

α be the inclusionmap.Thus, Pα,D = Vα,DV ∗
α,D : L2

α → H2
α,D is the

orthogonal projection onto H2
α,D . For a fixedφ ∈ L∞, we define T α,D

φ : H2
α,D → H2

α,D
by

T α,D
φ = Pα,DMφ = V ∗

α,DMφVα,D .

Call T α,D
φ the Toeplitz operator with symbol φ with respect to (α, D) . Let A−1 denote

the collection of invertible elements of A. The following is the Widom theorem for A:

Theorem 1.8 ( Widom Theorem for A). Suppose φ ∈ L∞ is unimodular. T α,D
φ is

left-invertible for each (α, D) ∈ � × � if and only if dist(φ, A) < 1. In particular,
T α,D

φ is invertible for each (α, D) ∈ � × � if and only if dist(φ, A−1) < 1.

The remainder of the paper is devoted the proofs of Theorems 1.7 and 1.8. These
theorems encode both generalizations due to a change in the underlying domain’s
topology, aswell as those due the introduction of algebraic constraints. Some problems
of this sort have been considered previously in the literature. In the case of the Neil
algebra, a Pick-interpolation result has been established in [12] and an investigation
into the spectrum of its Toeplitz operators has been carried out in [11]. More generally,
for results related to constrained algebras, see [8,14,20–22], and [9]. In particular, in
the special case when the underlying domain is the disk, a Widom-type invertibility
theorem for familiies of Toeplitz operators in the constrained case was obtained by
Anderson and Rochberg [6]. For results on multiply connected domains, see [8] and
[3]. We also note that there has been work on a Szegő theorem in noncommutative
settings. Specifically,where one considersArveson subdiagonal algebras inside a finite
von Neumann algebra. This setting generalizes H∞(D) to a non-commutative H∞.
For work in this direction, see [10] and [19].

1.1 Reader’s Guide

In Sect. 2 we collect some preliminary material on hypo-Dirichlet algebras and their
constrained subalgebras. Of particular importance will be the results of Ahern and
Sarason, [4] and [5], on hypo-Dirichlet algebras and some results of Gamelin [16] on
the structure of constrained subalgebras. In both cases we obtain families of repro-
ducing kernel Hilbert spaces on the underlying domain, paramaterized in a suitable
way. In Sect. 3 we prove Theorem 1.7. Section 4 contains some additional prelimi-
nary material on famillies of Toeplitz operators, and finally Theorem 1.8 is proved in
Sect. 5.
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2 Setup

2.1 Finite-Codimensional Subalgebras A ofA

In this sectionwe reviewGamelin’s characterization of finite codimension subalgebras,
and fix some facts and notation that will be used in the sequel.

Let A be a uniform algebra defined on X . Let x0 ∈ X and dm ∈ Mx0 such that X
is a finite (connected) Riemann surface.

Given a point θ ∈ X , a point derivation at θ is a linear functional Dθ on A which
satisfies

Dθ ( f g) = f (θ)Dθ (g) + g(θ)Dθ ( f ).

A subalgebra B ⊆ A is a θ -subalgebra if there is a sequence of subalgebras A =
A0 ⊇ A1 ⊇ . . . ⊇ Ak = B such that Ai is the kernel of a continuous point derivation
Di of Ai−1 at θ . The following is an explicit description of all finite codimensional
subalgebras A of A :

Theorem 2.1 (Theorem 9.8 in [16]). If A ⊆ A is a finite codimensional subalgebra,
then A can be obtained from A in two steps:

(i) There exists a finite number � and, for 1 ≤ i ≤ �, pairs of points ai , bi ∈ X such
that if

B := { f ∈ A : f (ai ) = f (bi ) for all 1 ≤ i ≤ �},

then A ⊆ B ⊆ A .
(ii) There exists a finite number k, and, for 1 ≤ j ≤ k, distinct points c j ∈ X and

c j -algebras B j of B such that then A = B1 ∩ . . . ∩ Bk.

One may interpret the construction in the following way: All finite codimensional
subalgebras A ofA are obtained by iteratively imposing a finite number of algebraic
constraints. In particular, there exists a chain A = Ad ⊆ Ad−1 ⊆ . . . ⊆ A1 ⊆ A0 =
A such that at the i th step

(i) Ai = { f ∈ Ai−1 : f (a) = f (b)} for some a, b ∈ X or,
(ii) Ai is the kernel of a continuous point derivation of Ai−1 at some point c ∈ X . .

We will refer to the first constraint as 2-point constraint and the second as a Neil
constraint.

In this manner each Ai is a codimension one sublagebra of Ai−1 and d is the
codimension of A in A . The chain of subalgebras A = Ad ⊆ Ad−1 ⊆ . . . ⊆ A1 ⊆
A0 = A is called aGamelin chain. Let� denote the set of points in X that the algebraic
constraints are defined on. Let γ denote the total number of constrained values in the
creation of A. Thus, given a function f ∈ A, we let f� ∈ C

γ be the vector whose
entries consist of f either evaluated at various points or its derivatives evaluated at
various points (depending on how the points are encoded into the construction of A).
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Example 2.2 Given a uniform algebra A0 := A ,

A = { f ∈ A : f (a) = f (b) and f ′(c) = f ′′′(c) = 0}

is a finite codimensional subalgebra. We can construct it in the following way: Con-
struct A1 = { f ∈ A : f (a) = f (b)} ⊆ A . The functional D′

c : A1 → C : f 
→
f ′(c) defines a continuous point derivation of A1 at c. Put A2 = ker(D′

c) = { f ∈
A1 : f ′(c) = 0}.Now consider the functional D′′′

c : A2 → C : f 
→ f ′′′(c). Observe
that, given f , g ∈ A2, we have that f ′(c) = g′(c) = 0 and thus

( f g)′′′(c) = f ′′′(c)g(c) + 3 f ′′(c)g′(c) + 3 f ′(c)g′′(c) + f (c)g′′′(c)
= f ′′′(c)g(c) + f (c)g′′′(c).

Therefore D′′′
c defines a continuous point derivation of A2 at c. With A3 = ker(D′′′

c ) =
{ f ∈ A2 : f ′′′(c) = 0}, it follows that A = A3. Further, we have � = {a, b, c},
γ = 4 and, given f ∈ A, � f = ( f (a), f (b), f ′(c), f ′′′(c))� ∈ C

4.

2.2 Hypo-Dirichlet Algebras

In [25], Wermer showed that algebras defined on finite (connected) Riemann surfaces
are hypo-Dirichlet. In [4], Ahern and Sarason investigated these algebras in further
detail. In this subsection, we reproduce the parts of their work that we’ll use frequently.

Given our uniform algebra A , let A −1 denote the collection of its invertible ele-
ments. Now, A being a hypo-Dirichlet algebra over X guarantees the following:

(I) The real linear span of log(|A −1|) is uniformly dense inCR(X) (the space of real,
continuous functions on X );

(II) The uniform closure of Re(A ) has finite codimension in CR(X).

Algebras that obey property (I) are referred to as logmodular algebras (see, Sect. II.4
of [17]). It is the additional property (II) that distinguishes hypo-Dirichlet algebras.
Letting Sx0 denote the real linear span of the set of all differences between pairs of
measures in Mx0 , we observe that conditions (I) and (II) above imply the following
local variants:

(I′) No non-zero measure in Sx0 annihilates log(|A −1|);
(II′) Sx0 has finite dimension σ .

By (II′), we can put Sx0 = spanR{μ1, . . . , μσ }. Corollary 1 in §3 in [4] shows that
each μi is absolutely continuous with respect to dm. Now, put λi := dμi / dm and
define

N := spanC{λ1, . . . , λσ }.

This N -space turns out to be the same space that was mentioned in the Introduction.
Specifically, it is the same space that Gamelin discussed in §5 of [16]. Details on this
space and its relation to algebras defined on multiply connected domains can be found
in Sect. 4.5 of [15]. We reproduce the necessary information in Sect. 4.1.
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It also follows from (I) and (II) that there are σ functions Z1, . . . , Zσ in A −1 and
σ measures ν1, . . . , νσ in Sx0 such that

∫
∂X

log(|Z j |) dνi = δ j i . (2)

We will fix such functions and measures. A small note on notation: For α =
(α1, . . . , ασ ) ∈ R

σ , we define

|Z |α = |Z1|α1 · · · |Zσ |ασ .

Recalling that H∞ is the weak-* closure of A in L∞, the following lemma is an
essential part of the investigations carried out by Ahern and Sarason:

Lemma 2.3 (Lemma 10.1 in [4]). Let α be a σ -tuple in R
σ . Then there is a function

h ∈ H∞ such that |h| = |Z |α almost everywhere.

Borrowing from Ahern and Sarason, we will refer to a function h ∈ H p as an inner
function if there exists an α ∈ � such that |h| = |Z |α . A function g ∈ H p is an
outer function if log(| ∫

∂X g dm |) = ∫
∂X log(|g|) dm > −∞. These inner functions

contain zeros inside of X but, unlike the in the disk, are not unimodular on the boundary;
however they do act as isometric multipliers between L p

α spaces for different α’s.
For f , a function on X , we let

∫
f dν denote the σ -tuple

(∫
∂X

f dν1, . . . ,

∫
∂X

f dνσ

)

(provided each of the individual integrals exist). We then have the Ahern-Sarason
inner-outer factorization:

Theorem 2.4 (Theorem 7.2 in [4]). Let f be a function in H p (1 ≤ p < ∞ such
that | f | is log-integrable with respect to all representing measures in Mx0 . Then there
are, in H p, an outer function g and an inner function h such that f = gh and∫
∂X log(|g|) dν = (0, . . . , 0). The functions g and h are uniquely determined by f to
within multiplicative constants of unit modulus.

2.3 Representations forA

With the notation inherited from the previous subsection, let

L :=
{∫

∂X
log(|h|) dν : h ∈ A −1

}
⊆ R

σ .

Observe that, since each of the Z j are inA −1, (2) shows that L contains the standard
basis vectors e j = (0, . . . , 0, 1, 0, . . . , 0) where the 1 occurs in the j th entry. Thus L
is at least a σ -dimensional subgroup ofR

σ . Theorem 8.1 in [4] shows thatL is discrete
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as well. Thus, not only is L isomorphic to Z
σ , but the quotient R

σ /L is isomorphic
to the σ -torus T

σ . In particular, this quotient is compact. We will let � denote R
σ /L.

Given any α taken from any equivalence class in [α] ∈ �, let H2
α be the usual H2

space but endowed with the following inner product:

〈 f , g〉α =
∫

∂X
f g|Z |α dm . (3)

As mentioned in the Introduction, each of these spaces carry a representation for A .
The following proposition establishes when two H2

α spaces are unitarily equivalent:

Proposition 2.5 Given two σ -tuples α1 and α2, they both belong to the same equiva-
lence class in � if and only if H2

α1
and H2

α2
are unitarily equivalent.

Proof To start, suppose α1, α2 ∈ [α] ∈ � = R
σ /L. Then there exists � ∈ L such that

α1 = α2 + �. In particular, |Z |α1 = |Z |α2+� so that |Z |� = |Z |α1−α2 .
Since the function |Z |� is non-negative and in L1, it follows from Theorem 6.1 in

[4] that there exists an outer function h in H1 such that |h| = |Z |� almost everywhere.
Since h is an outer function, it has no zeros inside X . The fact that |h| = |Z |�
guarantees that h has no zeros on ∂X as well. Thus h is invertible in A such that
|h| = |Z |� = |Z |α1−α2 . Thus |Z |α1 = |h||Z |α2 . It follows that the H2

α1
and H2

α2
are

unitarily equivalent – witnessed by the multiplication operator M|h|1/2 .
Conversely, suppose H2

α1
and H2

α2
are unitarily equivalent for σ -tuples α1 and α2.

Then there exists a unitary operatorU such that, for all functionsφ ∈ H2,UM1
φ = M2

φ ,

where Mi
φ is the operator on H2

αi
that multiplies by φ.

Now, let kiw(z) be the reproducing kernel for H2
αi
. Observe that if f ∈ H2

αi
, then

〈 f , (Mi
φ)∗kiw〉2 = 〈Mi

φ f , kiw〉2 = 〈φ f , kiw〉2 = φ(w)〈 f , kiw〉2 = 〈 f , φ(w)kiw〉2.

Thus we yield the following eigenvector relationships:

(M1
φ)∗k1w = φ(w)k1w and (M2

φ)∗k1w = φ(w)k2w.

These relationships immediately imply that ker((M1
φ)∗ − φ(w)I ) = Ck1w and

ker((M2
φ)∗ − φ(w)I ) = Ck2w. Since unitary maps map kernel spaces to one another,

we must have Uk1w = f (w)k2w, where f (w) is a scalar valued function in A depen-
dent only on w. In a reproducing kernel Hilbert space, it suffices to show equality
on the kernels, therefore U = M f . We also have that U−1 = M f −1 . Therefore the
unitary operator U is given by multiplication by the invertible function f .

It follows that |Z |α1 = | f ||Z |α2 . Taking logs and integrating both sides shows that
� f := ∫

∂X log(| f |) dν = α1 − α2. Thus, α1 and α2 differ by the coordinate of an
invertible element of A – meaning α1 − α2 ∈ L. This puts α1 and α2 in the same
equivalence class in �. ��
Remark 2.6 In light of Proposition 2.5, we will denote by α the corresponding equiv-
alence class [α] ∈ � = R

σ /L.
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As already mentioned in the Introduction, there is another way to construct
representation-carrying spaces for A (albeit, in a manner that does not produce a
compact space of parameters). For n ∈ N , let H2

n denote the standard H2 space but
with the inner product defined by

〈 f , g〉n =
∫
X
f g endm .

Each H2
n defines a reproducing kernel Hilbert space and carries a representation for

A .

2.4 Representations for A

Let A be a finite codimensional subalgebra of A generated via the Gamelin chain
A = Ad ⊆ Ad−1 ⊆ . . . ⊆ A1 ⊆ A0 = A . While the representations πn : A →
B(H2

n ) : f 
→ M f and πα : A → B(H2
α ) clearly give representations of A , it is less

obvious how to construct spaces H2
n,D ⊆ H2

n and H2
α,D ⊆ H2

α which are invariant
under M f for f ∈ A ⊆ A (but not necessarily invariant for f ∈ A ) and thereby
generate a richer class of representations πn,D : f 
→ M f

∣∣
H2
n,D

and πα,D : f 
→
M f

∣∣∣
H2

α,D

for f ∈ A, the subalgebra of A . We take care of this issue next.

This construction is formally the samewhether we work inside H2
n or H2

α ; therefore
in describing the construction we temporarily write H2 to mean either H2

n or H2
α and

use the notation H2
D to mean either H2

n,D or H2
α,D depending on the choice of meaning

for the notation H2.
The representations will be built inductively via the Gamelin chain. A1 can be

constructed from A0 = A in one of two ways:

(i) A1 = { f ∈ A0 : f (a) = f (b)} for some a, b ∈ X or,
(ii) A1 = { f ∈ A0 : f ′(c) = 0}. for some c ∈ X

If (i) occurs, then we form

H2
t1 = { f ∈ H2 : f (a) = t1 f (b)} = {k0a − t1k

0
b}⊥ ⊆ H2

where t1 ∈ C ∪ {∞}, and k0a and k0b are the reproducing kernels in H2 at a and b
respectively. Observe that H2

t1 is invariant for A1 and hence H2
t1 carries a representation

for A1
If (ii) occurs, then we form

H2
t1 = { f ∈ H2 : f (c) = t1 f

′(c)} = {k0c − t1k
0
c(1)}⊥ ⊆ H2,

where t1 ∈ C∪{∞}, k0c is the reproducing kernel in H2 at c, and k0
c(1)

is the reproducing

function in H2 that returns a function’s first derivative at c. It follows from the Liebniz
rule that H2

t1 is invariant for A1 and hence H2
t1 carries a representation for A1.
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Proceeding in this manner along the Gamelin chain, we assume that H2
ti−1

holds a
representation for Ai−1. Ai can only be built from Ai−1 in one of two ways:

(i) Ai = { f ∈ Ai−1 : f (a) = f (b)} for some a, b ∈ X or,
(ii) Ai is the kernel of a continuous point derivation Dc of Ai−1 at some point c ∈ X .

If (i) occurs, then we form

H2
ti = { f ∈ H2

ti−1
: f (a) = ti f (b)} = {ki−1

a − ti k
i−1
b }⊥ ⊆ H2

ti−1
,

where ti ∈ C ∪ {∞}, and ki−1
a and ki−1

b are the reproducing kernels in H2
ti−1

at

a and b respectively. We claim that H2
ti is invariant for Ai . Since Ai ⊆ Ai−1 and

Ai−1H2
ti−1

⊆ H2
ti−1

, it follows that Ai H2
ti−1

⊆ H2
ti−1

. Finally, given g ∈ Ai and

f ∈ H2
ti , we have that ( f g)(a) = f (a)g(a) = ti f (b)g(b) and thus f g ∈ H2

ti This
shows that H2

ti is invariant for Ai hence H2
ti carries a representation for Ai .

If (ii) occurs at the i th iteration. In this case, there exists a natural number n such
that Ai = ker(Dc) = { f ∈ Ai−1 : Dc( f ) = f (n)(c) = 0}. Form

H2
ti = { f ∈ H2

ti−1
: f (c) = ti f

(n)(c)} = {ki−1
c − ti k

i−1
c(n) }⊥ ⊆ H2

ti−1
,

where ti ∈ C ∪ {∞}, ki−1
c is the reproducing kernel in H2

ti−1
at c, and ki−1

c(n) is the

reproducing function in H2
ti−1

that returns a function’s nth derivative at c. We claim
that this Hilbert space is invariant for Ai .

As before, we know Ai H2
ti−1

⊆ H2
ti−1

. We need only show that, if g ∈ Ai and

f ∈ H2
ti , then ( f g)(c) = ti ( f g)(n)(c). To see this, first take f ∈ M := { f ∈ Ai :

f (c) = ti f (n)(c)} ⊆ H2
ti . Observe that, since f g ∈ Ai−1, the fact that Dc is a

continuous point derivation shows that

ti ( f g)
(n)(c) = ti Dc( f g) = ti (Dc( f )g(c) + Dc(g) f (c))

= ti ( f
(n)(c)g(c) + g(n)(c) f (c)). (4)

However, since g ∈ Ai and f ∈ M ,

ti ( f
(n)(c)g(c) + g(n)(c) f (c)) = ti f

(n)(c)g(c) = f (c)g(c) = ( f g)(c). (5)

(4) and (5) show that ( f g)(c) = ti ( f g)(n)(c). However, since M is dense in H2
ti , it

follows that if g ∈ Ai and f ∈ H2
ti , then f g ∈ H2

ti – guaranteeing that H
2
ti is invariant

for Ai and hence H2
ti carries a representation for Ai .
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Thus, by induction, we have built a reproducing kernel Hilbert space H2
td that

carries a representation for A = Ad . In particular, it is constructed by building a chain
of Hilbert spaces

H2
td ⊆ H2

td−1
⊆ . . . ⊆ H2

t1 ⊆ H2
t0 = H2

where each H2
i is a codimension-1 subspace of H2

i−1 and each H2
ti carries a rep-

resentation for Ai . Thus, our representations for A are parametrized by the d-tuple
(t1, . . . , td) ∈ ∏d

1(C ∪ {∞}).
Asmentioned in the Introduction,wewill denote the compact product

∏d
1(C∪{∞})

by � and its tuples by D. Further, given a tuple D = (t1, . . . , td), we will instead
denote by H2

D the space H2
td that carries the representation for A.

We now introduce a multiplication on � which makes � an algebra. Let D =
(t1, . . . , td) and D̃ = (s1, . . . , sd) both be tuples in �. Let f ∈ H2

D and g ∈ H2
D̃
. It

follows that the product f g will belong to H2
D̂
where D̂ = (r1, . . . , rd) is defined as

follows:

(D̂)i := ri =
⎧⎨
⎩
ti si if the i th constraint in the Gamelin chain is a 2-point constraint

1
1
ti

+ 1
si

if the i th constraint in the Gamelin chain is a Neil constraint

In this manner, D̂ is uniquely defined. Next, given a function f ∈ H2
D where D =

(t1, . . . , td), we have that (provided it exists) f −1 ∈ H2
D−1 where D−1 is given by

(D−1)i =
{

1
ti

if the i th constraint in the Gamelin chain is a 2-point constraint

−ti if the i th constraint in the Gamelin chain is a Neil constraint

Lastly, we will denote by D� the d-tuple defined by:

(D�)i =
{
1 if the i th constraint in the Gamelin chain is a 2-point constraint

∞ if the i th constraint in the Gamelin chain is a Neil constraint

Note that the parameter ∞ is interpreted as the constraint f (a) = ∞ · f (n)(a) –
equivalently, those functions such that f (n)(a) = 0. Therefore, the functions in the
space H2

D�
are then functions that simply obey the constraints imposed on A. We

quickly note here that, given any f ∈ H2
D , if f −1 exists, then f f −1 = 1 ∈ H2

D�
.

The following lemma is now straightforward:

Lemma 2.7 If f , g ∈ H2
D, then, provided g−1 exists, f g−1 ∈ H2

D�

Finally we note that � and �, with their natural topologies, are compact metric
spaces.
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3 The Szegő Theorem for Constrained Algebras

In this section we detail a few lemmas before exhibiting a proof of Theorem 1.7. The
first of which is straightforward to see:

Lemma 3.1 Given a real-valued h ∈ H2 ⊕ H2
0 , if h(x0) = 0, then there exists ξ ∈ H2

such that h = ξ ⊕ ξ∗ ∈ H2 + H2
0 . In particular, ξ(x0) = 0 as well.

Lemma 3.2 Suppose ρ > 0 is a continuous function on ∂X. If
∫
∂X log(ρ) dm = 0,

then there exists ξ ∈ H2 and n ∈ N such that log(ρ) = ξ ⊕ ξ∗ ⊕ n ∈ H2 ⊕ H2
0 ⊕ N,

where ξ(x0) = 0.

Proof To begin with, let log(ρ) = f ⊕ g ⊕ n ∈ H2 ⊕ H2
0 ⊕ N . Let P denote

the orthogonal projection from L2 onto H2. Observe that, since m is a representing
measure for x0 and 1 ∈ H2,

∫
∂X

log(ρ) dm = 〈log(ρ), 1〉2 = 〈log(ρ), P1〉2

= 〈P log(ρ), 1〉2 = 〈 f , 1〉2 =
∫

∂X
f dm = f (x0).

Having assumed that
∫
X log(ρ) dm = 0, it follows that f (x0) = 0.

Now, since log(ρ) is real-valued, we have that f ⊕g ∈ H2⊕H2
0 is also real valued.

By Lemma 3.1, there exists ξ ∈ H2
0 such that f ⊕g = ξ ⊕ξ∗ ∈ H2

0 ⊕H2
0 ⊆ H2⊕H2

0 .
Therefore

log(ρ) = ξ ⊕ ξ∗ ⊕ n ∈ H2 ⊕ H2
0 ⊕ N

with ξ(x0) = 0. ��
Lemma 3.3 Suppose ρ > 0 is a continuous function on ∂X. Put ρ̃ := ecρ for some
constant c. Let ξ, ζ, n and ξ̃ , ζ̃ , ñ be taken such that

log(ρ) = ξ ⊕ ζ ⊕ n and log(ρ̃) = ξ̃ ⊕ ζ̃ ⊕ ñ,

where both decompositions are occurring in H2 ⊕ H2
0 ⊕ N. If D, D̃ ∈ � are chosen

so that eξ and eξ̃ are in H2
n,D and H2

ñ,D̃
respectively, then n = ñ and D = D̃ so that

H2
n,D = H2

ñ,D̃
and, in particular, kn,D

x0 = kñ,D̃
x0

Proof Since ρ̃ = ecρ, we have log(ρ̃) = C + log(ρ). Due to the assumed decompo-
sitions, we have

ξ̃ ⊕ ζ̃ ⊕ ñ = log(ρ̃) = C + log(ρ) = (C + ξ) ⊕ ζ ⊕ n.

Since orthogonal decompositions are unique, we have ñ = n and ξ̃ = C + ξ . Let
D = (t1, . . . , td), D̃ = (t̃1, . . . , t̃d) ∈ � as in the statement of the lemma. To argue
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that D = D̃, it suffices to show that ti = t̃i for all i . To this end, recall that each of the
ti are associated to either a 2-point or Neil constraint.

Suppose first that ti exists such that, at the i th stage of the construction of H2
D , we

have

H2
ti = {ki−1

a − ti k
i−1
b }⊥ = { f ∈ H2

ti−1 : f (a) = ti f (b)},

where ki−1
a and ki−1

b are the reproducing kernels in H2
ti−1

at a and b respectively.

Then, since D was chosen so that eξ ∈ H2
D , we must have that ti = exp(ξ(a)− ξ(b)).

Likewise, t̃i = exp(̃ξ (a) − ξ̃(b)). However, since ξ̃ = C + ξ , it follows that

ξ̃ (a) − ξ̃ (b) = ξ(a) + C − (ξ(b) + C) = ξ(a) − ξ(b)

and therefore t̃i = ti .
Suppose instead that ti exists such that, at the i th stage of the construction of H2

D ,
we have

H2
ti = {ki−1

a − ti k
i−1
a(n) }⊥ = { f ∈ H2

ti−1 : f (a) = ti f
(n)(a)},

where ki−1
a is the reproducing kernel in H2

ti−1
at a, and ki−1

a(n)
is the reproducing function

in H2
ti−1

that returns a functionsnth derivative ata. Since Dwas chosen so that eξ ∈ H2
D ,

we must have exp(ξ(a)) = ti (
dn
dxn exp(ξ))

∣∣∣
a
. Via repeated application of the chain and

Liebniz rules, we find

dn

dxn
exp(ξ) = eξ · G,

where G is a linear combination of products of ξ ′, . . . , ξ (n). In particular, we find that

ti = exp(ξ)

dn
dxn exp(ξ)

∣∣∣∣
a

= exp(ξ)

exp(ξ) · G
∣∣∣∣
a

= 1

G(a)
.

Similarly, t̃i = 1
G̃(a)

where G̃ is a linear combination of products of ξ̃ ′, . . . ξ̃ (n). Since

ξ̃ = C + ξ , it follows that ξ ( j) = ξ̃ ( j) for all 1 ≤ j ≤ n. This immediately implies
that G(a) = G̃(a) so that ti = t̃i .

Having handled both cases, we conclude that D = D̃. This fact, along with ñ = n,

allows us to conclude that H2
n,D = H2

ñ,D̃
and therefore kn,D

x0 = kñ,D̃
x0 . ��

Before stating and proving the Szegő theorem for A, we make a small observation.
Given any function ξ ∈ H2, we know that ξ is bounded below on X , and therefore
eξ will never be zero for any points in X . Due to the nature of the Neil and 2-point
constraints, the only functions that can live in two different H2

D spaces are those whose
constrained values vanish. In other words, functions f for which f� = (0, . . . , 0)� ∈
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C
γ . Due to this fact, the function eξ cannot live in two different H2

D spaces. This
justifies the notion that there exists a unique tuple D ∈ � for which eξ ∈ H2

D .
Theorem 1.7 (Szegő Theorem for A). Suppose ρ > 0 is a continuous function on ∂X .

Let ξ ∈ H2, ζ ∈ H2
0 , n ∈ N be functions such that log(ρ) = ξ⊕ζ⊕n ∈ H2⊕H2

0 ⊕N .
Let D ∈ � be the unique tuple such that eξ ∈ H2

n,D . With Cρ := ∫
∂X log(ρ) dm, it

follows that

inf

{∫
∂X

|1 − p|2ρ dm : p ∈ A0

}
= exp(Cρ)

(
1

‖kn,D
x0 ‖2

)
.

Proof We begin by observing that it suffices to consider Cρ = 0. If not, we consider
ρ̃ = exp(−Cρ)ρ. We have that log(ρ̃) = −Cρ + log(ρ). We see immediately that

Cρ̃ =
∫

∂X
log(ρ̃) dm =

∫
∂X

−Cρ + log(ρ) dm = −Cρ + Cρ = 0.

Thus, provided we establish the result for Cρ̃ = 0, we have that

inf

{∫
∂X

|1 − p|2ρ̃ dm : p ∈ A0

}
= exp(Cρ̃ )

(
1

‖kñ,D̃
x0 ‖2

)
(6)

where ñ ∈ N and D̃ ∈ � are the unique vectors such that log(ρ̃) = ξ̃ ⊕ ζ̃ ⊕ ñ ∈
H2 + H2

0 ⊕ N and eξ̃ ∈ H2
ñ,D̃

. Since −Cρ is a constant, it follows from Lemma 3.3

that kn,D
x0 = kñ,D̃

x0 . Therefore, since Cρ̃ = 0, (6) becomes

inf

{∫
∂X

|1 − p|2ρ̃ dm : p ∈ A0

}
= 1

‖kn,D
x0 ‖2 .

Thus,

inf

{∫
∂X

|1 − p|2ρ dm : p ∈ A0

}
= exp(Cρ) inf

{∫
∂X

|1 − p|2ρ̃ dm : p ∈ A0

}

= exp(Cρ)

(
1

‖kn,D
x0 ‖2

)
.

Henceforth, we assume that Cρ = 0. In view of Lemma 3.2, there exist unique

ξ ∈ H2 and n ∈ N such that log(ρ) = ξ ⊕ ξ∗ ⊕ n ∈ H2 ⊕ H2
0 ⊕ N with ξ(x0) = 0.

Define the space H2(ρ) to be the standard H2 space but with the inner product given
by

〈 f , g〉ρ =
∫
X
f g ρdm .
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Let A0
‖·‖H2(ρ) ⊆ H2(ρ) denote the L2(ρ) closure of A0. It suffices to argue that the

H2(ρ)- distance from the vector 1 to the space A0
‖·‖H2(ρ) is equal to 1

‖kn,D
x0 ‖2 .

By exponentiating, we have that ρ = eξ eξ∗
en . We claim that eξ ∈ H∞. Indeed,

|eξ |2 = eξ eξ∗ = exp(ξ + ξ∗) = exp(log(ρ) − n) = ρe−n .

Since ρ and n ∈ N are both bounded on ∂X , the above shows that |eξ |2 is bounded
and therefore eξ ∈ L∞. However, since ξ ∈ H2, it follows that eξ ∈ H2 as well and
therefore eξ ∈ H∞. Similarly, e−ξ ∈ H∞.

Define the map U : H2(ρ) → H2
n by f 
→ eξ f . (Since eξ is bounded, this map is

both well defined and bounded.) Observe that n ∈ N is the unique value that makes

U act as an isometry from H2(ρ) to H2
n . That is, given f ∈ A0

‖·‖H2(ρ) , we have that

‖U f ‖2n = ‖eξ f ‖2n =
∫

∂X
|eξ f |2 endm =

∫
∂X

| f |2 eξ eξ∗
endm =

∫
∂X

| f |2 ρdm = ‖ f ‖2H2(ρ)
.

In particular, defining its inverse byU∗ : H2
n → H2(ρ) : f 
→ e−ξ f , we find that this

defines an isometry as well. ThusU is a unitary between H2(ρ) and H2
n . Additionally,

recall that D ∈ � was chosen specifically so that eξ ∈ H2
n,D . Now, since U is

surjective, we have that U (A0
‖·‖H2(ρ) ) = { f ∈ H2

n,D : f (x0) = 0} =: H2
n,D;0 is

exactly those functions in H2
n,D that vanish at x0. Since U (1) = eξ , we can transport

our question over to the H2
n,D setting and observe that it suffices to show that the

H2
n,D-distance from eξ to H2

n,D;0 is exactly
1

‖kn,D
x0 ‖2 .

Recall that the assumption Cρ = 0 yields ξ(x0) = 0. Therefore eξ(x0) = 1 �= 0
and hence eξ /∈ H2

n,D;0. Further, we know that H2
n,D;0 is a codimension 1 subspace

of H2
n,D and, in particular, H2

n,D;0 = (span{kn,D
x0 })⊥, where kn,D

x0 is the reproducing

kernel for H2
n,D at x0.

Since H2
n,D;0 is a closed subspace, there exists f ∈ H2

n,D;0 that minimizes ‖eξ −
f ‖2n . This f is exactly f = projH2

n,D;0
(eξ ). Observe that (eξ − f ) ⊥ H2

n,D;0 and

therefore (eξ − f ) ∈ span{kn,D
x0 }. Thus,

eξ − f = proj(H2
n,D;0)⊥

(eξ − f ) = proj(H2
n,D;0)⊥

(eξ ) = eξ(x0) kn,D
x0

‖kn,D
x0 ‖2 = kn,D

x0

‖kn,D
x0 ‖2 .

Therefore ‖eξ − f ‖2n = 1
‖kn,D

x0 ‖2 . But this is exactly the H2
n,D-distance from eξ to the

space H2
n,D;0. We saw earlier that this distance is equal to the desired H2(ρ)-distance

from the vector 1 to the space A0
‖·‖H2(ρ) . Hence the proof is complete. ��

Remark 3.4 We note that the computation carried out in this proof, when restricted
to the classical setting (with suitable notation adjusted appropriately), does the heavy
lifting in establishing a characterization for outer functions in H2(T). Namely, if A0 are
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those functions in the disc algebra that vanish at zero, and f̂ denotes the holomorphic
extension of f over D obtained via the Poisson kernel, then f ∈ H2(T) is outer if and
only if

inf
h∈A0

{
1

2π

∫ 2π

0
|1 − h|2| f |2 dθ

}
=

∣∣∣ f̂ (0)∣∣∣2 .

This characterization can be found as Exercise 6.28 in [13].

4 Invertibility of Toeplitz Operators: Some Preliminary Lemmas

We begin by noting that most of the arguments given here will work in the full set-
ting of a finite (connected) Riemann surface, but one needs to modify the instances
involving the Green’s function (e.g., arguments given in Sect. 4.3). Thus, for simplic-
ity, we instead consider the underlying domain to be a τ -holed planar domain. In this
subsection, details on the Green’s function for planar domains are reproduced largely
from [1] and [15].

4.1 Green’s Function for Planar Domains

Let X be a τ -holed planar domain with x0 ∈ X . The Green’s function of X with pole
at x0 is defined by

G(z, x0) = − log(|z − x0|) + h(z, x0),

where h(z, x0) is the unique harmonic function of z in X with boundary values given
by log(|z − x0|). Such an h exists because the Dirichlet problem is solvable on X (the
fact that h is unique is guaranteed by the maximum principle for harmonic functions).

Equivalently, the Green’s function is the unique function that satisfies the following
properties:

(i) G(z, x0) is harmonic on X \ {x0}
(ii) G(z, x0) + log(|z − x0|) is harmonic near x0
(iii) G(z, x0) → 0 as z → ∂X

The Green’s function allows us to pass between the representing measure dm and
the arclength measure dz. Let H be the multi-valued harmonic conjugate of −G and
let v denote the single-valued derivative of −G + i H . Then:

Proposition 4.1 (Reformulated Proposition 6.5 in [15]). In the notation just intro-
duced,

dm(z) = 1

2π i
v(z) dz

Note that the above proposition can also be found in the discussion immediately
proceeding Proposition 1.3 in [1]. One of the best uses of the above proposition is
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using v to characterize the N -space discussed in Sect. 2.2. Specifically, if Sx0 denotes
the real linear span of the set of all differences between pairs of representing measures
for x0, then each μi ∈ Sx0 is absolutely continuous with respect to dm. Putting
λi := dμi/dm, we define

N := spanC{λ1, . . . , λσ }.

This space turns out to ‘fill out’ L2. Specifically, as noted in Sect. 4.5 of [15] and
Sect. 2 of [1], we have

L2(dm) = H2(∂X) ⊕ H2
0 (∂X) ⊕ N .

Moreover, the following theorem relates this decomposition to the derivative of the
Green’s function, v:

Proposition 4.2 (Theorem 1.7 in [1]) The orthogonal complement of H2(∂X) in
L2(dm) is v−1H2(∂X). Therefore L2(dm) = H2(∂X) ⊕ v−1H2(∂X).

The last result we need involving the Green’s function is the information it encodes
about the domain X .

Proposition 4.3 (Reformulated Proposition 1.4 in [1]). If X is a τ -holed planar
domain, then the following is true of the function v:

(i) It is meromorphic in a neighborhood of X with exactly one pole of order one at
x0 and no other poles.

(ii) It has precisely τ zeros in X, counting multiplicities, and no other zeros in X

A version of the above proposition can also be found as Proposition 6.5 in [15].

4.2 Inner Functions, the Norm of Toeplitz Operators, and Kernels in H2
˛,D

As mentioned in Sect. 2.2, we will refer to a function h ∈ H p as an inner function
if there exists an α ∈ � such that |h| = |Z |α . In this manner, inner functions act as
isometric multipliers between L p

α spaces for different α’s. A function g ∈ H p is an
outer function if log(| ∫

∂X g dm |) = ∫
∂X log(|g|) dm > −∞.

Lemma 4.4 There exists an inner function� ∈ H2 such that�� = (0, . . . , 0)� ∈ C
γ .

In particular, � ∈ H2
α,D for every (α, D) ∈ � × �.

Proof The i th entry of the vector�� ∈ C
γ is of the form�(ni )(ai ) for some ai ∈ X and

ni ≥ 0. Since A is a uniform algebra, we can find an fi ∈ A such that f (ni )
i (ai ) = 0.

Note that, since we have an algebra over a τ -holed planar domain, we can choose fi
in such a manner that log(| fi |) is integrable with respect to all measures in Mx0 . Now,
since H2 is defined to be the L2 closure of A, we have that fi ∈ H2. By Theorem
2.4, there exists H2 functions gi and hi such that gi is outer, hi is inner, fi = gi hi ,∫
∂X log(|gi |) dν = (0, . . . , 0), and h(n)

i (ai ) = 0. Since hi is inner, there exists a
γ -tuple αi such that |hi | = |Z |αi .
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Doing the above for every ai we then form� = ∏γ

i=1 hi and α′ = ∑γ

i=1 αi . In this

manner, � is an inner function in H2 such that �� = (0, . . . , 0)� and |�| = |Z |α′
.

Technically, every H2
α is the same set of functions for every α. Thus, � ∈ H2

α for
every α. Note further that, since �� = (0, . . . , 0)�, we have that � ∈ H2

α,D for every
(α, D) ∈ � × �. ��
Lemma 4.5 If φ ∈ L∞, then ‖T α,D

φ ‖ = ‖φ‖ and (T α,D
φ )∗ = T α,D

φ
.

Proof Since M∗
φ = Mφ , we have

(T α,D
φ )∗ = V ∗

α,DM
∗
φVα,D = V ∗

α,DMφVα,D = T α,D
φ .

Since Vα,D is an isometry,

‖T α,D
φ ‖ ≤ ‖V ∗

α,D‖‖Mφ‖‖Vα,D‖ ≤ ‖Mφ‖ = ‖φ‖.

Thus, it suffices to show that ‖T α,D
φ ‖ ≥ ‖φ‖. To this end, let � be the inner function

from Lemma 4.4 such that �� = (0, . . . , 0)�. If we denote by H2 the unweighted
H2

β space and let β ∈ � be the σ -tuple such that |�| = |Z |−β , then it follows that �

is an isometric multiplier from H2 into H2
β,D for every D ∈ �.

Now, denoting by L2 the unweighted L2
α space, let V : H2 → L2 denote the

inclusion map. Likewise, let W : �H2 → L2
β be the inclusion map. (Note here that

with this setup, V ∗MφV = Tφ is the usual Toeplitz operator on H2.) Now, let � ∈
H∞ ⊆ H2 be the inner function given by |�| = |Z |β−α (such a function exists by
Lemma 2.3). Observe that �� is an isometric multiplier from L2 to L2

α . Further,

W ∗MφW = W ∗�∗V ∗
α,DMφVα,D�W = W ∗�∗T α,D

φ �W (7)

Now define the mapU : H2 → �H2 ⊆ H2
β,D sending f 
→ � f . As noted earlier,

this map is an isometry into H2
β,D . Thus, for f , g ∈ H2,

〈MφWU f ,WUg〉H2
β

= 〈MφW� f ,W�g〉H2
β

= 〈Mφ� f ,�g〉L2
β

= 〈�φ f ,�g〉L2
β

= 〈φ f , g〉L2

= 〈Mφ f , g〉L2

= 〈Mφ f , Pg〉L2

= 〈Tφ f , g〉H2 .

Therefore U∗(W ∗MφW )U = Tφ . Combining this with (7), we have that

U∗(W ∗�∗T α,D
φ �W )U = Tφ.
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It follows that,

‖Tφ‖ = ‖U∗(W ∗�∗T α,D
φ �W )U‖ ≤ ‖T α,D

φ ‖

and therefore ‖φ‖ = ‖Tφ‖ ≤ ‖T α,D
φ ‖. ��

Let wα
i ∈ H2

α be the linear combination of reproducing functions in H2
α such that

for all f ∈ H2
α , either 〈 f , wα

i 〉α = f (a) − ti f (b) or 〈 f , wα
i 〉α = f (a) − ti f (n)(a). It

follows that

span{wα
1 , . . . , wα

d } = (H2
α,D)⊥.

Further, let hα
i ∈ H2

α be the reproducing functions such that 〈 f , hα
i 〉α returns

either f (a) or f (n)(a) (for some finite n), depending on how a is integrated into the
construction of A. In this manner,

f� =
⎡
⎢⎣

〈 f , hα
1 〉α

...

〈 f , hα
γ 〉α

⎤
⎥⎦ ∈ C

γ .

An immediate observation is that wα
i ∈ span{hα

1 , . . . , hα
γ } for every 1 ≤ i ≤ d. This

discussion is recorded in the following proposition:

Proposition 4.6 Given an (α, D) ∈ � × �, there exists reproducing functions
hα
1 , . . . , hα

γ and wα
1 , . . . , wα

d ∈ H2
α such that

(1) f� =
⎡
⎢⎣

〈 f , hα
1 〉α

...

〈 f , hα
γ 〉α

⎤
⎥⎦ ∈ C

γ and

(2) (H2
α,D)⊥ = span{wα

1 , . . . , wα
d },

where wα
i ∈ span{hα

1 , . . . , hα
γ } for every 1 ≤ i ≤ d.

4.3 Pre-Annihilator for A and a Factorization Lemma

In this subsection we begin by asserting the existence of a spaceM such that L∞/A
is isometrically isomorphic to M ∗. Due to the Hahn-Banach Theorem, this goal is
equivalent to finding M ⊆ L1 such that Ann(M ) = A. We will continue to use the
machinery introduced and discussed in Sect. 4.1. Specifically, recall that, since our
uniform algebraA is a hypo-Dirichlet algebra, the real linear span of the set of differ-
ences between pairs of representing measures for x0, denoted Sx0 , was σ -dimensional.
Putting Sx0 = spanR{μ1, . . . , μσ }, we noted that eachμi is absolutely continuouswith
respect to dm. Thus, with λi := dμi / dm, we can form N = spanC{λ1, . . . , λσ }.
Specifically, this N space exists such that L2 = H2 ⊕ H2

0 ⊕ N . In [4], it is shown
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that N has a basis consisting of real functions so that, as sets, N = N . Further, the
aforementioned L2 decomposition can be weighed:

L2
α = H2

α ⊕ H2
0,α ⊕ N . (8)

where H2
0,α is the complement of H2

α with the additional condition that
∫
X f dm =

f (x0) = 0. Note further that when we consider the unweighted L2 space (α = 0), the

above is written without the subscript adornment: H2
0 .

Now, observe that if φ ∈ A, then we have that

∫
∂X

φλi dm =
∫

∂X
φ
dμi

dm
dm =

∫
∂X

φ dμi = 0.

Thus, every function in N is annihilated by φ ∈ A.
Proposition 4.6 asserted the existence of reproducing functions h1, . . . , hγ ∈ H2

such that, given f ∈ H2,

f� =
⎡
⎢⎣

〈 f , h1〉2
...

〈 f , hγ 〉2

⎤
⎥⎦ ∈ C

γ .

Recall that the construction of the finite codimensional subalgebra A started with the
uniform algebra A and iteratively imposed either 2-point or Neil constraints. Recall
that d ≤ γ denoted the number of iterations necessary to yield our algebra A. For
1 ≤ i ≤ d, let si denote the linear combination of vectors in span{h1, . . . , hγ } such
that 〈φ, si 〉2 = 0 for all φ ∈ A. This directly implies that, given φ ∈ A,

∫
∂X

φsi dm = 〈φ, si 〉2 = 0

for every 1 ≤ i ≤ d. With S := span{s1, . . . , sd}, we’ve shown that every function in
S is annihilated by φ ∈ A.

Example 4.7 Suppose we start with a uniform algebra A and impose a single 2-point
constraint at a, b ∈ X . If we let ha and hb be the H2 functions that reproduce at the
points a and b – that is, f (a) = 〈 f , ha〉2 and f (b) = 〈 f , hb〉2, then sa,b := ha − hb.
In this manner, we find that all functions φ ∈ A must obey φ(a) = φ(b) and thus,

0 = φ(a) − φ(b) = 〈φ, hb〉2 − 〈φ, hb〉2 = 〈φ, ha − hb〉2 = 〈φ, sa,b〉2.

Finally, recall that H1 is defined to be the L1 closure of the algebra A . If we put
H1
0 := { f ∈ H1 : ∫

X f dm = f (x0) = 0}, then we find that, given φ ∈ A,

∫
∂X

φ f dm = (φ f )(x0) = 0
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for all f ∈ H1
0 . Therefore every function in H1

0 is annihilated by φ ∈ A. Put M =
H1
0 + N + S.

Lemma 4.8 Ann(M ) = A.

Proof As noted in the previous discussion, we know that H1
0 + N + S = M is

annihilated by any function φ ∈ A. This shows that A ⊆ Ann(M ). To argue the other
inclusion, since A ⊆ L∞, it is enough to show that if φ ∈ L∞ such that

∫
X φh dm = 0

for every h ∈ M , then φ ∈ A. To this end, we first note that our algebra A can be
interpreted as

A = { f ∈ H∞ : f satisfies the constraints of A}. (9)

Since φ ∈ L∞, we also have that φ ∈ L2. Recall from (8),

L2 = H2 ⊕ H2 ⊕ N .

Additionally, recall that N = N . Since 〈φ, λ〉2 = ∫
∂X φλ dm = 0 for every λ ∈ N ,

we must have φ ∈ H2 ⊕ H2
0 . Further, since H2

0 ⊆ H1
0 and

∫
∂X φh dm = 0 for every

h ∈ H1
0 , it follows that 〈φ, h〉2 = ∫

∂X φh dm = 0 for every h ∈ H2
0 as well. Hence

φ ⊥ H2
0 . This puts φ ∈ H2. Since H∞ = H2 ∩ L∞ and φ ∈ L∞, it follows that

φ ∈ H∞.
Lastly, since

∫
∂X φsi dm = 0 for every 1 ≤ i ≤ d, this implies (by the construction

of the functions si ) that φ must satisfy the constraints of A. Thus, using the formulation
given in (9), we find that φ ∈ A. ��
Proposition 4.9 L∞/A ∼= M ∗.

Proof By the Hahn-Banach Theorem, X∗/Ann(Y ) ∼= Y ∗. In our case, we know that
(L1)∗ ∼= L∞. Thus, since Lemma 4.8 showed that A = Ann(M ), it follows that
L∞/A ∼= M ∗ as desired. In particular, if we let � be the isometric isomorphism
from L∞/A toM ∗, then it is interpreted as the map sending π(φ) 
→ (λφ)

∣∣
M , where

λφ : L1 → C is the functional sending ψ 
→ ∫
∂X φψ dm. ��

Recalling the notation from Sect. 4.1, let G be the Green’s function for the τ -holed
planar domain X with pole at x0, H be the multi-valued harmonic conjugate of −G,
and v be the single-valued derivative of −G + i H .

The following lemma is a weighted version of Proposition 4.2:

Lemma 4.10 The orthogonal complement of H2
α in L2

α is v−1H2
0,α .

In light of the decomposition L2
α = H2

α ⊕ H2
0,α ⊕ N , and recalling that (as sets)

N = N , the above lemma implies that

H2
0,α ⊕ N = v−1H2

α .

Hence M = H1
0 + N + S = v−1H1 + S.
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Let M ⊆ H1 be the dense subset of functions analytic on X , continuous on ∂X
and with no zeros on ∂X . Note that M is dense in H2 as well. With this, let

MM := v−1M + S.

This set is dense inM . We prove a factorization theorem forMM. Before we do so,
however, we need a technical lemma. For a ω ∈ �, let H1

ω denote the usual H1 space
but with norm ‖ f ‖1,ω = ∫

∂X | f ||Z |ω dm. (In this manner, we will let the subscript
denote the fact that this is the 1-norm. Similarly, ‖·‖2,ω will denote the 2-norm coming
from the inner product discussed in (3) but with ω ∈ �. )

Lemma 4.11 Given h ∈ M ⊆ H1
γ for someγ ∈ �, there existsω ∈ � and F,G ∈ H2

such that h = FG, ‖h‖1,γ = ‖F‖2,γ−ω‖G‖2,γ+ω, F is invertible, and F ∈ M.

Proof Let h ∈ M ⊆ H1
γ . It follows from the definition of M that h has at most

finitely many zeros in X . The proof of Lemma 4.4 guarantees the existence of an
inner function g that shares exactly these finitely manner zeros (with multiplicity). Let
ω ∈ � be taken such that |g| = |Z |ω. Putting f := h/g, we have that f is analytic in
X , has no zeros on X and is continuous on ∂X – therefore f is invertible. In particular,
we find that

√
f is also invertible and lies in M ⊆ H2.

Observe that

‖h‖1,γ =
∫

∂X
|h||Z |γ dm =

∫
∂X

|g|| f ||Z |γ dm

=
∫

∂X
| f ||Z |γ+ω dm = ‖ f ‖1,γ+ω = ‖√ f ‖22,γ+ω.

Further,

‖g√ f ‖22,γ−ω =
∫

∂X
(|g||√ f |)2|Z |γ−ω dm =

∫
∂X

|√ f |2|Z |γ+ω dm = ‖√ f ‖22,γ+ω.

Therefore

‖h‖1,γ = (‖h‖1,γ )
1
2 (‖h‖1,γ )

1
2 = ‖√ f ‖2,γ+ω‖g√ f ‖2,γ−ω.

Putting F = √
f and G = g

√
f , we find that h = FG, ‖h‖1,γ =

‖F‖2,γ−ω‖G‖2,γ+ω, F is invertible, and F ∈ M. ��

Proposition 4.12 For h ∈ MM = v−1M + S, there exists (β, D) ∈ � × �, f ∈
H2−β,D, and g ∈ L2−β such that

(i) h = f g
(ii) ‖h‖1 = ‖ f ‖2,−β‖g‖2,β
(iii) 〈ψ, g〉2 = 0 for all ψ ∈ H2−β,D



   83 Page 26 of 37 D. T. Pfeffer and M. T. Jury

Proof Let h = v−1r+hs ∈ MM = v−1M+S. Let z1, . . . , zτ be the zeros of v in X .
The proof of Lemma 4.4 guarantees the existence of an inner function �v ∈ H2 such
that �v(zi ) = 0 for 1 ≤ i ≤ τ . Let �� be the actual function produced by Lemma
4.4 so that ��

� = (0, . . . , 0)� ∈ C
γ . It follows that the product � := �v�

� is inner
as well and thus there exists α ∈ � such that |�| = |Z |α .

Our first order of business will be showing that

(a) �h ∈ H1−α and
(b) �h(x0) = 0.

To show (a), we first show that ��hs ∈ v−1H2. To see this, it suffices to argue that
��hs ⊥ H2. To this end, let g ∈ H2. Since hs ∈ S = span{s1, . . . , sd}, it suffices to
argue that 〈��s j , g〉2 = 0 for all 1 ≤ j ≤ d. Recall, however, that the s j is simply a
linear combination of reproducing functions at the points involved in the construction
of A. Therefore, since ��

� = (0, . . . , 0)�,

〈��s j , g〉2 =
∫

∂X
��s j g dm =

∫
∂X

(��g)s j dm = 〈��g, s j 〉2 = 0.

Thus we indeed have ��hs ∈ v−1H2. Next we show that the product of �v and
v−1 is bounded and analytic. By Proposition 4.3, we know v has exactly τ many zeros.
Thus, the τ zeros of v will act as poles in v−1 (including multiplicity), but will be
canceled when multiplied by �v . Since there were exactly τ many poles, the product
has no unbounded components and only a zero at x0 (coming from the single pole
at x0 in v.) In this manner, �v(v

−1H2) ⊆ H2. In particular, since we showed that
��hs ∈ v−1H2, it follows that

�hs = �v(�
�hs) ∈ �v(v

−1H2) ⊆ H2.

Thus

�h = �(v−1r) + �hs = ��(�vv
−1r) + �hs ∈ H1.

Since �h ∈ H1, it is also in H1−α . This shows (a)
We noted that ��hs ∈ v−1H2. Therefore there exists a function b ∈ H2 such that

��hs = v−1b. Since v−1 has a zero at x0, �vv
−1 is an analytic function with a zero

at x0. Therefore,

∫
∂X

�h dm =
∫

∂X
�(v−1r) + �hs dm

=
∫

∂X
��r�vv

−1 dm +
∫

∂X
�vv

−1b dm

= (��r�vv
−1)(x0) + (�vv

−1b)(x0)

= 0

This shows (b).
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Since �h ∈ M ⊆ H1−α , it follows from Lemma 4.11 that there exists ω ∈ � and
F,G ∈ H2 such that �h = FG and ‖�h‖1,−α = ‖F‖2,−(α+ω)‖G‖2,−α+ω, F is
invertible, and F ∈ M. In this manner, we find that

‖h‖1 = ‖�h‖1,−α = ‖F‖2,−(α−ω)‖G‖2,−α+ω.

There must exist some D ∈ � such that F ∈ H2
−(α+ω),D . Since F is invertible, G will

have to inherit the zero at x0.
Now consider the function �−1. This function is not necessarily analytic, but we

do have that |�−1| = |Z |−α on the boundary. Form the function g = �−1G. Observe
that, since �h = FG, not only do we have

h = �−1FG = Fg,

but also

‖g‖22,α+ω =
∫

∂X
|g|2|Z |α+ω dm =

∫
∂X

|G|2|�−1|2|Z |α+ω dm

=
∫

∂X
|G|2|Z |−α+ω dm = ‖G‖22,−α+ω

so that we have the desired norm-factorization for h:

‖h‖1 = ‖�h‖1,−α = ‖F‖2,−(α−ω)‖G‖2,−α+ω = ‖F‖2,−(α−ω)‖g‖2,α+ω.

Put β := α + ω ∈ �. It remains to show that 〈ψ, g〉2 = 0 for all ψ ∈ H2−β,D .

Since��
� = (0, . . . , 0)�, it follows that�H2 = �v(�

�H2) is a finite codimensional
subspace of H2−β,D . Thus, there must exist ρ vectors w1, . . . , wρ ∈ H2−β,D such that

H2−β,D = �H2 ⊕ span{w1, . . . , wρ}.

Observe that if f ∈ H2, then (since G(x0) = 0),

〈� f , g〉2 =
∫

∂X
� f g dm =

∫
∂X

f ��−1G dm =
∫

∂X
f G dm = 0.

Therefore, it suffices to show that 〈w j , g〉2 = 0 for 1 ≤ j ≤ ρ.
To this end, recall that Proposition 4.1 gives us that dm = 1

2π i vdz. It follows that
v−1dm = 1

2π i dz. Moreover, it follows from the Cauchy integral theorem that, since
∂X is a finite union of closed curves,

∫
∂X f v−1dm = 1

2π i

∮
f dz = 0 for any analytic,

L1 function f . With these observations (along with the fact that �−1h−1G = F−1),

〈w j , g〉2 =
∫
∂X

w j�
−1G dm =

∫
∂X

w j�
−1Gh−1h dm =

∫
∂X

w j F
−1(v−1r + hs) dm .

(10)
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Weendeavor to show that the right-most integral in (10) is equal to zero. Sincew j F−1r
is an analytic, L1 function on ∂X ,

∫
∂X (w j F−1r)v−1 dm = 0. Thus, it suffices to show

that
∫
∂X w j F−1hs dm = 0 for all w j . However, since hs ∈ S = span{s1, . . . , sd}, it

actually suffices to show that

∫
∂X

w j F
−1si dm = 0

for any i, j .
Since w j , F ∈ H2−β,D , it follows from Lemma 2.7 that w j F−1 ∈ H2

D�
. That is, it

satisfies the constraints of A. Recall that the si are linear combination of reproducing
functions at the various points involved in the construction of A. In particular, if any
analytic function φ satisfies the constraints of A, then 〈φ, si 〉2 = 0 for all i . This
implies that

∫
∂X

w j F
−1si dm =

〈
w j F

−1, si
〉
2

= 0

for all i and j . Therefore 〈ψ, g〉2 = 0 for ψ ∈ H2−β,D . This completes the proof. ��

4.4 Universal Lower Bound for the Left-Invertible Toeplitz Operators

Let φ ∈ L∞ be fixed and consider the Toeplitz operator T α,D
φ . If we assume this

operator is left-invertible, one can find εα,D > 0 such that ‖T α,D
φ f ‖ ≥ εα,D‖ f ‖

for all f ∈ H2
α,D . The goal of this subsection is to prove a uniform version of this

statement:

Proposition 4.13 Ifφ ∈ L∞ and T α,D
φ is left-invertible for every (α, D) ∈ �×�, then

there exists 0 < ε < 1 (independent of (α, D)) such that, for every (α, D) ∈ � × �

and every f ∈ H2
α,D,

‖T α,D
φ f ‖ ≥ ε‖ f ‖α

We first need a few lemmas. Let L2
0 denote the usual, unweighted L2 space and we

equip � with its usual metric.

Lemma 4.14 There is a universal constant C such that for all h1, h2 ∈ L2
0 and all

α, β ∈ �

|〈h1, h2〉α − 〈h1, h2〉β | ≤ C‖h1‖0‖h2‖0dist(α, β).

Proof Wefirst note that, since the functions Z are uniformly bounded above and below
on X , there is a uniform constant C such that for all α, β ∈ �,

||Z |α−β − 1| ≤ C · dist(α, β)
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on X . The proof is now straightforward: we have

〈h1, h2〉α − 〈h1, h2〉β =
∫

h1h2(|Z |α − |Z |β) dm

=
∫

h1h2(|Z |α−β − 1)|Z |β dm

so

|〈h1, h2〉α − 〈h1, h2〉β | ≤ C · dist(α, β)

∫
|h1h2||Z |β dm ≤ C · dist(α, β)‖h1‖β‖h2‖β

and the conclusion follows by the uniform equivalence of the β and 0 norms. ��
Lemma 4.15 LetH be a closed subspace of L2

0. For each α ∈ �, letHα be the image
of the space H = H0 under the identity mapping ια : L2

0 → L2
α . let Pα denote the

orthogonal projection of L2
α onto Hα . We let Qα denote the corresponding operator

in L2
0:

Qα := ι−1
α Pαια.

Then there exists an absolute constant C such that for all f ∈ L2
0 and all α, β ∈ �,

‖Qα f − Qβ f ‖20 ≤ C · dist(α, β)‖ f ‖20.

Proof Fix f . To unclutter the notation let gα = Pα f and gβ = Pβ f . By definition,
gα is the unique vector in Hα such that

〈 f − gα, h〉α = 0 for all h ∈ H = Hα

and similarly for gβ . We then have, since the spaces Hα all coincide withH,

‖gα − gβ‖2α = 〈gα − gβ, gα − gβ〉α
= 〈 f − gβ, gα − gβ〉α − 〈 f − gα, gα − gβ〉α
= 〈 f − gβ, gα − gβ〉α − 〈 f − gβ, gα − gβ〉β

This last expression has the form 〈h1, h2〉α − 〈h1, h2〉β , where we have put

h1 = f − gβ, h2 = gα − gβ.

Observe that ‖gα‖α ≤ ‖ f ‖α ≤ C‖ f ‖0, similarly for β, so that ‖h1‖0, ‖h2‖0 ≤
C‖ f ‖0. Hence, by the continuity of the inner product (Lemma 4.14),

‖gα − gβ‖2α ≤ |〈h1, h2〉α − 〈h1, h2〉β | ≤ C‖h1‖0‖h2‖0 · dist(α, β) ≤ C‖ f ‖20 · dist(α, β),
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and the proof is finished by the mutual equivalence (with a universal constant) of the
α and 0 norms. ��
We observe that the constants in the above argument do not depend on the choice of
the original subspace H. It then follows immediately that

Lemma 4.16 There is a universal constant C such that for all f ∈ L2
0 and all D ∈ �,

‖Qα,D f − Qβ,D f ‖20 ≤ C · dist(α, β)‖ f ‖20.

In particular, for fixed D ∈ �, the map from � to B(L2
0) given by

α → Qα,D := ι−1
α Pα,Dια

is Hölder continuous, with constant independent of D ∈ �:

‖Qα,D − Qβ,D‖B(L2
0)

≤ C · dist(α, β)1/2.

Lemma 4.17 For fixed α ∈ �, the map from � to B(L2
α) given by

D → Pα,D

is Lipschitz continuous, with constant independent of α, that is, for D, D′ ∈ �

‖Pα,D − Pα,D′ ‖B(L2
α) ≤ C · dist(D, D′).

Proof We give the proof in the case of a single 2-point constraint; the case of a single
derivation is similar. The general case then follows by a straightforward induction on
the codimension, we leave the details to the reader.

Suppose we have a 2-point constraint f (a) = f (b). In this case � is a copy of the
Riemann sphere, and for fixed D ∈ � there exist complex numbers ta, tb such that
|ta |2 +|tb|2 = 1, and such that the subspace H2

α,D consists of those functions f ∈ H2
α

for which

ta f (a) + tb f (b) = 0.

The ta, tb are uniquely determined if we impose the additional requirement that ta ≥ 0,
which we do from now on. The space� is then a metric space if we impose, say, the �1

metric. Since I − Pα,D is the rank-one projection onto the difference of reproducing
kernels takα

a + tbkα
b , to prove the desired continuity it suffices to observe that for fixed

a and b, the norms of the reproducing kernels kα
a , kα

b are uniformly bounded above
and below (away from zero), independently of α. ��
Proposition 4.18 The map from � × � to B(L2

0) given by

(α,�) → Qα,D := ι−1
α Pα,Dια

is continuous.
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Proof This follows immediately from Lemmas 4.15 and 4.17, and the fact that the L2
α

norms are all mutually equivalent, with uniform constants. ��
Proposition 4.13 For (α, D) ∈ � × �, we define operators Qα,D and Xα,D in L2

0 by

Qα,D := ι−1
α Pα,Dια

and

Xα,D := Qα,DMφQα,D + (I − Qα,D).

By Proposition (4.18), we have that the map (α, D) → Xα,D is norm continuous.
For fixed (α, D), there is by hypothesis an ε(α, D) ∈ (0, 1] such that

‖Vα,DT
α,D
φ f ‖ = ‖T α,D

φ f ‖ ≥ ε(α, D)‖ f ‖ for f ∈ H2
α . Thus, given F ∈ L2

0 and

decomposing it as F = f + g with f ∈ H2
α,D and g ∈ (H2

α,D)⊥, (the orthogonal

complement taken in L2
α), we have

‖Xα,DF‖2 ≥ C‖ι−1
α Xα,DF‖2α

= C(‖VαT
α,D
φ f ‖2α + ‖g‖2α)

≥ Cε(α, D)2(‖ f ‖2α + ‖g‖2α)

≥ C ′ε(α, D)2‖F‖20.

Absorbing the constantC ′ into the definition of ε, it follows that there exists ε(α, D) >

0 such that ‖Xα,DF‖ ≥ ε(α, D)‖F‖ for all F ∈ L2
0.

To show that this holds with a uniform choice of ε > 0, suppose no such uniform
choice exists; then there exists a sequence (αn, Dn) from � × � and unit vectors
Fn ∈ L2

0 such that ‖Xαn ,Dn Fn‖ → 0. By compactness, we may assume (αn, Dn)

converges to some (α, D). Then

0 < ε(α, D) ≤ ‖Xα,DFn‖ ≤ ‖Xαn ,Dn F‖ + ‖(Xα,D − Xαn ,Dn )F‖

By norm continuity of Xα,D , the right hand side tends to 0 as n tends to infinity, which
is a contradiction. ��

4.5 Invertibility for Toeplitz Operators and Symbols

In this section we collect a few necessary lemmas on the invertibility of not only the
Toeplitz operators themselves, but their relation to the invertibility of their symbols as
functions in the algebra A.

Lemma 4.19 If φ ∈ L∞ and ψ ∈ A, then for all (α, D) ∈ � × �,

T α,D
ψφ

= T α,D
ψ

T α,D
φ and T α,D

ψφ
= T α,D

φ
T α,D

ψ .
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Proof Let f , g ∈ H2
α,D . Since A acts as a multiplier algebra for H2

α,D , we also have

ψg ∈ H2
α,D . It follows from Lemma 4.5 that

〈T α,D
ψ

T α,D
φ f , g〉α = 〈T α,D

φ f , T α,D
ψ g〉α = 〈V ∗

α,DMφVα,D f , V ∗
α,DMψVα,Dg〉α.

(11)

Now, since ψg ∈ H2
α,D , we have that V

∗
α,DMψVα,Dg = ψg. However, since φ f may

not be in H2
α,D , we have V ∗

α,DMφVα,D f = V ∗
α,Dφ f . These observations allow us to

see that

〈V ∗
α,DMφVα,D f , V ∗

α,DMψVα,Dg〉α = 〈V ∗
α,Dφ f , ψg〉α = 〈φ f , Vα,Dψg〉α = 〈ψφ f , g〉α.

(12)

Combining (11) and (12), we have

〈T α,D
ψ

T α,D
φ f , g〉α = 〈ψφ f , g〉α = 〈Vα,Dψφ f , Vα,Dg〉α = 〈ψφVα,D f , Vα,Dg〉α

= 〈V ∗
α,DψφVα,D f , g〉α.

But, by definition V ∗
α,DψφVα,D = T α,D

ψφ
, so the above becomes:

〈T α,D
ψ

T α,D
φ f , g〉α = 〈T α,D

ψφ
f , g〉α.

Since this holds for all f , g ∈ H2
α,D , it follows that T

α,D
ψφ

= T α,D
ψ

T α,D
φ . By taking

adjoints (and therefore another application of Lemma 4.5), we conclude

T α,D
ψφ

= (T α,D
ψφ

)∗ = (T α,D
ψ

T α,D
φ )∗ = (T α,D

φ )∗(T α,D
ψ

)∗ = T α,D
φ

T α,D
ψ .

��
Declare an element φ ∈ A to be invertible in A if φ(z) �= 0 for all z ∈ X and

φ−1 = 1
φ

∈ A.

Lemma 4.20 Let ψ ∈ A. The following are equivalent:

(i) ψ is invertible in A;
(ii) There exists (α, D) ∈ � × � such that T α,D

ψ is right invertible;

(iii) T α,D
ψ is invertible for every (α, D) ∈ � × �.

Moreover, (T α,D
ψ )−1 = T α,D

ψ−1 .

Proof To begin, we supposeψ is invertible in A and let (α, D) ∈ �×�. By definition,
ψ does not vanish on X andψ−1 ∈ A. In particular,ψ−1ψ = ψψ−1 = 1. This implies
that

T α,D
ψψ−1 = T α,D

1 = I = T α,D
ψ−1ψ

.
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Where I is the identity operator. Now, we observe that both ψ and ψ−1 are in L∞.
Therefore, by applying Lemma 4.19, we find that

T α,D
ψ−1 T

α,D
ψ = T α,D

ψψ−1 = I = T α,D
ψ−1ψ

= T α,D
ψ T α,D

ψ−1 .

This shows that T α,D
ψ is invertible for every (α, D) ∈ � × �. Moreover, we see that

its inverse is T α,D
ψ−1 . This establishes that (i) implies (i i i). It is clear that (i i i) implies

(i i). Therefore it remains to show that (i i) implies (i).
To this end, let (α, D) ∈ � × � be a parameter such that T α,D

ψ is right invertible.

Then there exists an operator Xα,D
ψ such that T α,DXα,D

ψ = I and so, by taking adjoints,

(Xα,D
ψ )∗(T α,D

ψ )∗ = I . It therefore follows that, for any f ∈ H2
α,D ,

‖ f ‖ = ‖(Xα,D
ψ )∗(T α,D

ψ )∗ f ‖ ≤ ‖(Xα,D
ψ )∗‖‖(T α,D

ψ )∗ f ‖.

Thus, if we put δ := 1
‖(Xα,D

ψ )∗‖ > 0, we have that ‖(T α,D
ψ )∗ f ‖ ≥ δ‖ f ‖. Let kα,D

w (z)

be the reproducing kernel for H2
α,D . Observe that if f ∈ H2

α,D , then

〈 f , (T α,D
ψ )∗kα,D

w 〉α = 〈T α,D
ψ f , kα,D

w 〉α = 〈ψ f , kα,D
w 〉α = ψ(w)〈 f , kα,D

w 〉α
= 〈 f , ψ(w)kα,D

w 〉α.

Thus we yield the following eigenvector relationship:

(T α,D
ψ )∗kα,D

w = ψ(w)kα,D
w .

Since kα,D
w ∈ H2

α,D , we have that

|ψ(w)|‖kα,D
w ‖ = ‖(T α,D

ψ )∗kα,D
w ‖ ≥ δ‖kα,D

w ‖. (13)

Let � = {w ∈ X : ψ(w) �= 0 and kα,D
w �= 0}. Observe that � is a dense subset

of X . Moreover, on �, we can form 1
ψ
and divide by ‖kα,D

w ‖. Thus, (13) implies that

| 1
ψ

(w)| ≤ 1
δ
for w ∈ � and hence everywhere by continuity. Thus ψ does not vanish

on X and therefore ψ is invertible in A. ��

5 TheWidom Theorem for Constrained Algebras

Lemma 5.1 Let φ ∈ L∞ be unimodular. If there exists ψ ∈ A such that ‖φ −ψ‖ < 1,
then T α,D

φ is left-invertible for every (α, D) ∈ � × �. Further, if ψ is invertible in A,

then T α,D
φ is invertible for every (α, D) ∈ � × �.
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Proof Supposeψ ∈ A is such that ‖φ−ψ‖ < 1. Sinceφ is unimodular, ‖1−ψφ‖ ≤ 1.
Therefore, it follows from Lemma 4.5, that

‖1 − T α,D
φφ

‖ = ‖T α,D
1−ψφ

‖ = ‖1 − ψφ‖ < 1.

This directly implies that T α,D
ψφ

is invertible. Thus, by Lemma 4.19, it follows that

T α,D
φ is left-invertible. Suppose further that ψ is invertible in A. By Lemma 4.20, we

have that T α,D
ψ is invertible. It follows that T α,D

φ is right invertible and therefore T α,D
φ

is totally invertible. ��

Lemma 5.2 If f , g ∈ L2, then for all α ∈ �,

|〈 f , g〉2| ≤ ‖ f ‖2,−α‖g‖2,α.

Proof Let α ∈ �. By the classic Cauchy-Schwarz inequality,

|〈 f , g〉2| =
∣∣∣∣
∫

∂X
f g dm

∣∣∣∣ =
∣∣∣∣
∫

∂X
f g|Z |− α

2 |Z | α
2 dm

∣∣∣∣
=

∣∣∣〈 f |Z |− α
2 , g|Z | α

2 〉2
∣∣∣ ≤ ‖ f |Z |− α

2 ‖2‖g|Z | α
2 ‖2

Therefore

|〈 f , g〉2| ≤
∫

∂X
| f |2|Z |−α dm

∫
∂X

|g|2|Z |α dm = ‖ f ‖2,−α‖g‖2,α.

��

Lemma 5.3 Suppose φ ∈ L∞ is unimodular. The distance from φ to A is strictly less
than one if and only if T α,D

φ is left-invertible for every (α, D) ∈ � × �.

Proof Suppose that the distance from φ to A is strictly less than one. Lemma 5.1
implies that T α,D

φ is left-invertible for every (α, D) ∈ � × �. Now assume that T α,D
φ

is left-invertible for every (α, D) ∈ � × �.
By Proposition 4.13, there exists a uniform ε > 0 (independent of (α, D)) such

that, for all (α, D) and f ∈ H2
α,D ,

‖T α,D
φ f ‖ ≥ ε‖ f ‖α. (14)

Let h ∈ MM = v−1M + S. By Lemma 4.12, there exists (−β, D) ∈ � × �,
f ∈ H2−β,D , and g ∈ L2−β such that h = f g, ‖h‖1 = ‖ f ‖2,−β‖g‖2,β , and 〈ψ, g〉2 = 0

for all ψ ∈ H2−β,D . Recall that P−β,D is the orthogonal projection from L2−β onto
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H2−β,D . Thus, on one hand Lemma 5.2 gives rise to the following estimate:

∣∣∣∣
∫

∂X
φh dm

∣∣∣∣ =
∣∣∣∣
∫

∂X
φ f g dm

∣∣∣∣
= |〈φ f , g〉2|
= |〈φ f , (I − P−β,D)g〉2|
= |〈(I − P−β,D)φ f , g〉2|
≤ ‖(I − P−β,D)φ f ‖2,−β‖g‖2,β .

While on the other hand, the Pythagorean theorem and the fact that φ is unimodular
asserts that

‖ f ‖22,−β = ‖φ f ‖22,−β = ‖P−β,Dφ f + (I − P−β,D)φ f ‖22,−β

= ‖P−β,Dφ f ‖22,−β + ‖(I − P−β,D)φ f ‖22,−β.

Now, combining (14) and the fact that P−β,Dφ f = T−β,D
φ f , the above equality

becomes

‖ f ‖22,−β = ‖T−β,D
φ φ f ‖22,−β + ‖(I − P−β,D)φ f ‖22,−β ≥ ε2‖ f ‖22,−β

+‖(I − P−β,D)φ f ‖22,−β.

and therefore

‖(I − P−β,D)φ f ‖22,−β ≤
√
1 − ε2‖ f ‖2,−β.

The above estimate, along with the estimate we had on the integral of φh guarantee
that

∣∣∣∣
∫

∂X
φh dm

∣∣∣∣ ≤ ‖(I − P−β,D)φ f ‖2,−β‖g‖2,β
≤

√
1 − ε2‖ f ‖2,−β‖g‖2,β =

√
1 − ε2‖h‖1. (15)

Note that the above estimate is holding for h ∈ MM, a dense subset of M . Since
integrating against φ and ‖ · ‖1 are each continuous linear functionals, the fact that
inequality in (15) holds for a dense subset of M immediately implies that it will
hold for all h ∈ M . Recall that by Lemma 4.9, the map � : L∞/A → M ∗ sending
π(φ) 
→ (λφ)

∣∣
M , where λφ : L1 → C is the functional sending ψ 
→ ∫

∂X φψ , is an
isometric isomorphism.

Since (15) holds for h ∈ M , we find that ‖λφ(h)
∣∣
M ‖ < 1. Since � is an isometry,

this implies that ‖π(φ)‖ < 1. Since the norm of a vector is interpreted as its distance
from the ‘zero’ element, this implies that the distance from φ to A is strictly less than
one. ��
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Theorem 1.8 (Widom Theorem for A.) Suppose φ ∈ L∞ is unimodular. T α,D
φ is

left-invertible for each (α, D) ∈ � × � if and only if dist(φ, A) < 1. In particular,
T α,D

φ is invertible for each (α, D) ∈ � × � if and only if dist(φ, A−1) < 1.

Proof Everything aside from the ‘in particular’ statement has been proven in Lemmas
5.1 and 5.3.

Thus, suppose T α,D
φ is invertible for reach (α, D) ∈ � ×�. Lemma 5.3 guarantees

that there exists ψ ∈ A such that ‖ψ − φ‖ < 1. We need to argue that ψ is invertible
in A.

By Lemma 5.1, we know that T α,D
φ

T α,D
ψ and T α,D

φ are invertible. By taking its

adjoint, we have that (T α,D
φ )∗ = T α,D

φ
is invertible. Since both T α,D

φ
T α,D

ψ and T α,D
φ

are invertible, we find that T α,D
ψ is necessarily invertible. Applying Lemma 4.20, we

conclude that ψ is invertible in A as desired.
Conversely, suppose there exists an invertible ψ ∈ A such that ‖ψ − φ‖ < 1.

Lemma 5.1 asserts that T α,D
φ is invertible for all (α, D) ∈ � × �. ��

Data Availability Data sharing not applicable to this article as no data sets were generated or analyzed
during the current study.
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