Complex Analysis and Operator Theory (2021) 15:83 Complex Analysis
https://doi.org/10.1007/511785-021-01129-z and Operator Theory

®

Check for
updates

Szeg6 and Widom Theorems for Finite Codimensional
Subalgebras of a Class of Uniform Algebras

Douglas T. Pfeffer' @ - Michael T. Jury?

Received: 9 October 2020 / Accepted: 20 May 2021
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract

We establish versions of Szegd’s distance formula and Widom’s theorem on invert-
ibility of (a family of) Toeplitz operators in a class of finite codimension subalgebras
of uniform algebras, obtained by imposing a finite number of linear constraints. Each
such algebra is naturally represented on a family of reproducing kernel Hilbert spaces,
which play a central role in the proofs.
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Szegd

1 Introduction

Let C denote the complex plane, D = {z € C : |z| < 1} denote the unit disk, and let
T = {z € C : |z] = 1} denote the unit circle in the complex plane (so that 0D = T).

Let ¢ denote Lebesgue measure on T and let L? = L?(T) be the L? spaces on T with

respect to the normalized measure 5’—;.
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Let H°° (D) denote the bounded, analytic functions on D and let H 2(D) be the Hardy
space of analytic functions on ID with square summable power series coefficients. For
p = 2, 0o, we adopt the standard identification of H” (D) with HP(T), where H? (T)
is viewed as the subspace of L”(T) containing functions f with vanishing negative
Fourier coefficients.

Let 2% = span{e’™ | n € N} denote the analytic trigonometric polynomials and
let P2(w) denote the L (1) closure of 2. With P3 (1) = {p € P?(1) | p(0) = 0},
the following is a result due to Szegd:

Theorem 1.1 ( Szeg6’s Theorem (p. 49 in [18])). If u > 0 is a finite measure on T,

then
1 2
inf{/ 11— p|2du I pE Poz(pc)} =exp (—/ log(h)dt) ,
T 21 Jo

where h is the Radon-Nikodym derivative of | with respect to Lebesgue measure t.

P

This paper will generalize Szeg6’s theorem under the assumption that the measure
W is absolutely continuous with respect to Lebesgue measure with a strictly positive,
continuous Radon-Nikodym derivative.

Widom'’s theorem provides a characterization of the invertibility of a Toeplitz oper-
ator with symbol ¢ € L* in terms of the distance from ¢ to H*°. Fix ¢ € L and
let P: L> — H? be the orthogonal projection onto H>. Define Tp: H 2 > H?be
Tf = P¢ f. Such an operator is called a Toeplitz operator (with symbol ¢).

Theorem 1.2 ( Widom’s Theorem (Theorem 7.30 in [13])). Suppose ¢ € L*° is uni-
modular. Ty is left-invertible if and only if there dist(¢p, H*) < 1.

Szegd [24] first established his result in 1920, while Widom [26] first established
his result in 1960. Since then, different versions of both have been established for a
variety of settings. Specifically, there are two types of generalizations that we focus
on:

(1) A change to the underlying set on which our functions are defined. In this vein,
let ©2 be a finite (connected) Riemann surface, and let A(£2) be the algebra of
holomorphic functions on . In this setting, we define H? to be the L>-closure of
A(2) with respect to the representing measure for a point in a nontrivial Gleason
part.

(i) The introduction of finitely many algebraic constraints to our algebra of functions
to yield a finite-codimensional subalgebra A € A(2). As we will record in
Theorem 2.1, if we pass to an arbitrary finite-codimensional subalgebra, then A
arises via the successive application of finitely many algebraic constraints of the
2-point or Neil type.

For example, the classic disk algebra A(ID) (functions holomorphic on D and contin-
uous on T) is yielded when 2 =D and A = A(D) (i.e., no algebraic constraints).

In the direction of (i), there have been a few generalizations established.
For Szeg®’s result, we have the following: In 1965, Sarason [23] established a version
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for the annulus. In 1967, Ahern and Sarason [4] established a version for hypo-Dirichlet
algebras. For Widom’s result, Abrahamse [1] established a version for multiply con-
nected domains in 1974.

In the direction of (ii), Balasubramanian, McCullough, and Wijesooriya [7] estab-
lished versions of both the Szeg6 and Widom results for the Neil Algebra, a constrained
subalgebra of H*°(D):

A={fe H®M) : f'(0)=0}.
The following is a brief overview of their results:

Let S = {(a, B) € C* : |a|?> + |B|*> = 1} be the compact unit sphere in C2. For
(, B) € S, define the following Hilbert spaces:

Hiﬁ ={feH*D) : f(0B = f(0)a}. (1

In [12], it is observed that these Hilbert spaces each carry a representation of 2(. They
go on to show that each H 5 8 is a reproducing kernel Hilbert space with kernel

2w?
—zZw

k%P (2) = k4P (z, w) = (a + B2)(a + Pw) + .

for z, w € D. It follows, via the the reproducing property, that
Ik P12 = (ki ko Py = kg P = kP (0,0) = |,

Denote by 2 those functions in 2( that vanish at 0. The following is a rewording of
Theorem 1.3 in [7]:

Theorem 1.3 (Reformulated Szeg6 for (). Suppose p > 0 is a continuous function
on T. Define constants:

1 2 C 27
Cp,= —/ log(p)dt, A= M/ p(t) exp(—it)dt,
21 Jo 2z 0

1
and o0 =——=(1,A) € S.

V1412

Then,

1 1
inf —f|1—p|2pdt : pteo}zexp(C )<—>
{2n T SaNTHE

Observe that exp(C)) is exactly the quantity that is found on the right hand side of
Theorem 1.1.

We now record the Widom result for the Neil Algebra (Theorem 1.6 in [7]). For each
(a,B) € S,let Pyg: L? — Hi g denote the orthogonal projection. Given ¢ € L*,
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define the operator Td‘:’ﬁ: H(f’ﬁ — Hiﬁ by Tg’ﬂf = Py p¢ f. Such an operator is

called the Toeplitz operator with symbol ¢ with respect to («, 8). Let 2A~! denote the
collection of invertible elements of 2I.

Theorem 1.4 (Widom for Neil Algebra (Theorem 1.6 in [7])). Suppose ¢ € L™ is

unimodular. T(;f s left-invertible for each («, B) € S if and only if dist(¢, ) < 1.

In particular, T;’ﬂ is invertible for each (a, B) € S if and only if dist(¢, A™) < 1.

In the present work, we generalize these results in both of the directions (i) and (ii)
described in the remarks proceeding the statement of Theorem 1.1. However, in the
interest of clarity, we start by stating the results only for the topological generalization
discussed in (1).

When changing one’s underlying domain away from the open disk DD, topological
complications arise. For example, when considering ID, we have that L?> = H? @
Hg. Passing to the finitely connected case, one finds that H> @ Hg is no longer
all of L2, rather, there is an additional finite-dimensional defect space N such that
L>’=H’® Hg @ N. This defect space is tied to the number of holes in the domain
and is the complexification of the space of real, regular Borel measures on 02 that
annihilate A(2) + A(2). Abrahamse, in his consideration of multiply connected
domains, analyzed this defect space and made heavy use of a theorem that related the

space Hg @® N to the space v~' H2, where v is a function related to the Green’s function
for 2. Abrahamse then used a universal covering space and deck transformations to
establish his Widom result. (For details on Abrahamse’s work described here, see [1].)
In our work, we will encounter the N-space and Green’s function (see Sect. 4.1).
However, to obtain our version of the Widom theorem, we will circumvent the use
of a universal covering space by instead appealing to the machinery of Ahern and
Sarason for hypo-Dirichlet algebras found in [4] (we review the relevant material in
Sect. 2.2).

For a compact, Hausdorff space X, let C (X) denote the continuous, complex-valued
functions on X. Recall that a uniform algebra </ is a uniformly closed subalgebra of
C(X) which contains constants and separates points. When endowed with the sup norm
£l =sup{|f(x)|] : x € X}, it becomes a Banach algebra. A classic example is the
disk algebra A(DD) of functions which are continuous on T and extend to be analytic
over . Let M., denote its maximal ideal space. Given xo € M./, let My, denote
the convex space of representing measures for x(. Finally, let P, denote the Gleason
part that contains xo. Gamelin [16] shows that under the following hypotheses: M,
is finite dimensional; the measure dm is taken from the relative interior of M,,; all
of the representing measures for xo are mutually absolutely continuous; Py, contains
more than one point, .7 can be viewed as an algebra of analytic functions defined on
a finite (connected) Riemann surface. From this point forward, we fix xo and dm as
above and let X denote the finite (connected) Riemann surface on which .27 is defined.
In this manner, we see that &/ = A(X).

Let H? be the L2 closure of .7 and let Hg ={feH?*: faX fdm = f(xo) =0}
Let H be the weak-x closure of .27 in L. In the same spirit as Abrahamse, Gamelin
showed in §5 of [16] that L?>(dm) = H*> & H} & N and H® = H? N L*°, where N
is a finite dimensional subspace of L° arising from the complexification of a finite
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dimensional real subspace of L°°. For every n € N, let an denote the standard H?
space but endowed with the inner product given by

(f. g = f fFge"dm.
0X

Defining the map 7,: &/ — B(H?): f + My, where My: H> — H?: h + fh,
we have that m,, is an isometric homomorphism into the bounded linear operators on
H?.Inshort, we say thateach H? carries arepresentation for .. We note that, while itis
reasonable to discuss when two an spaces are unitarily equivalent, we do not need such
observations in this paper. In our consideration of all an spaces, we allow ourselves
redundancy. Each H,% is areproducing kernel Hilbert space with kernel given by £". Let
k., denote said kernel evaluated atxg. Withey = {f € & : faX fdm = f(xo) =0},
the following is a Szegs result for o7

Theorem 1.5 (Szegd Theorem for o). Suppose p > 0 is a continuous functionon 9X.

Leté € H>, ¢ € Hoz, n € N befunctions suchthatlog(p) = EB{Pn € H%BH&@N.
With C, := [,y log(p) dm, it follows that

1
inf / |1—p|2,odm:pe%}:ex(C) — .
{ax AN

As mentioned earlier, the above theorem carries the assumption that the measure
pd is absolutely continuous with respect to Lebesgue measure with a strictly pos-
itive, continuous Radon-Nikodym derivative p. In this vein, the above theorem is a
generalization of Theorem 1.1 yielded by only changing the topological structure of
the underlying domain. Wermer [25] shows that the uniform algebra <7, being an
algebra of analytic functions defined on a finite (connected) Riemann surface, is a
hypo-Dirichlet algebra. Thus, the above Szegd result is simply a reformulated special
case of Ahern and Sarason’s Theorem 10.1 in [4].

To state a Widom result for &7 = A(X), we construct a slightly different family
of Hilbert-Hardy spaces that carry representations for A. What will be important is
that the family is paramterized by a compact paramater space. Since .2/ can also be
viewed as a hypo-Dirichlet algebra, we can use the machinery developed in [4]. Let
7 ~! denote the invertible elements in <7 and let Sy, denote the real linear space of the
set of all differences between pairs of measures in M,,. Ahern and Sarason [4] record
that, as a byproduct of .o being hypo-Dirichlet, no non-zero measure in Sy, annihilates
log(|.<7~!|) and Sy has finite dimension o . Further, it follows that there are o functions
Zy,...,Zy and 0 measures vy, ..., Vy in Sy, such that faxlog(|Zj|)dvi =4j;. For
o = (a1,...,0), define |Z|* = |Z1]|*'---|Zys|%. In Sect. 2.3, we introduce a
compact parameter space X such that, given o € X, the spaces HO% — defined to be the
usual H? space but endowed with the inner product given by

(f. 8)a = /d 71z
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— each carries a representation for 7. As with the H,% spaces, this representation is
witnessed by the isometric homomorphism 7y : &/ — B(Hj): f = My, where
My Ho% — HO%: h — fh.In this case, however, our construction of the parameter
space X will involve passing to a quotient space. As such, questions about the unitary
equivalence of two H(f spaces is more relevant. Proposition 2.5 in Sect. 2.3 establishes
that two tuples o and «; in X belong to the same equivalence class in X if and only
if HZ and HZ, are unitarily equivalent.

For ¢ € L*, let My denote the operator that multiplies by ¢. For « € X, let
Vy: H(f — ng be the inclusion map. Thus, P, = V, V;: Lg — HO%’D is the orthog-
onal projection onto H. For a fixed ¢ € L*°, we define Tj: Hy — Hy by

T = PuMy = VMgV

Call qu‘ the Toeplitz operator with symbol ¢ with respect to « . The following is the
Widom theorem for .o7:

Theorem 1.6 (Widom Theorem for 7). Suppose ¢ € L™ is unimodular. TJ)" is left-
invertible for each o € X if and only if dist(¢, <) < 1. In particular, Td‘j‘ is invertible

for each a € X if and only if dist(¢p, o/ 1) < 1.

When X = 2 is a multiply connected planar domain, the above theorem becomes
Abrahamse’s Theorem 4.1 in [1].

Theorems 1.5 and 1.6 are generalizations of the Szegé and Widom theorems when
the underlying domain is changed to a finite (connected) Riemann surface. The other
type of generalization is obtained by passing to a finite codimension subalgebra,
obtained by imposing a finite number of linear constraints. The prototypical example
for this is the Neil Algebra 2. For the Neil Algebra (and therefore Theorems 1.3 and
1.4) the underlying domain is the disk X = D.

To formulate the Szeg6 and Widom theorems in the constrained case, we again
let & = A(X) and now let A C & be a finite codimensional subalgebra with
codimensiond. Let A := ]_[f (CU {o0}) and denote its elements by D = (¢4, ..., tg).
A theorem due to Gamelin (reproduced in this paper as Theorem 2.1) details explicitly
how A is constructed from .7 via inductively imposing algebraic constrains.

Within each an, we develop a family of Hilbert-Hardy spaces that carry repre-
sentations for A. This family, denoted an’ p With (n, D) € N x A, are constructed
iteratively from H? by encoding the algebraic constraints that built A from <7 (see
Sect. 2.4 for their exact construction). Each an’ p 18 a reproducing kernel Hilbert

space with kernel given by k™. Let k;l(;D denote said kernel evaluated at xp.
With Ag = {f € A : fax fdm = f(xo) = 0}, the following is our Szegd
result:

Theorem 1.7 (Szegd Theorem for A). Suppose p > 0 is a continuous function on 9 X.
Leté € H*, ¢ € Hoz, n € N befunctions suchthatlog(p) = EB{®n € H2®Hg€BN.
Let D € A be the unique tuple such that ¢f € an’D. With C, = faX log(p) dm, it
follows that
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1
inf{/ |1—p|2pdm : per}:exp(Cp) (—)
ax Ik 12

To state our Widom result, we again use the Ho% spaces instead. Within each H(f,
we define a family of Hilbert-Hardy spaces Hi p With (@, D) € ¥ x A such that each

H 3 p carries a representation for A.

Forqb € L™, let My denote the operator that multiplies by ¢. For (o, D) € £ x A, let
Va.D: H‘S’D — L2 be the inclusion map. Thus, Py, p = V. p Vip: L2 — HiD isthe

orthogonal projection onto Hi p-Forafixed¢ € L, we define Td‘; P H 3 p— H 3 D
by

T3P = Po.pMy = Vi pMyVap.

Call Tg D the Toeplitz operator with symbol ¢ with respect to (a, D) . Let A~! denote
the collection of invertible elements of A. The following is the Widom theorem for A:

Theorem 1.8 ( Widom Theorem for A). Suppose ¢ € L*° is unimodular. Tg’D is
left-invertible for each (o, D) € ¥ x A if and only if dist(¢, A) < 1. In particular,
T(;;’D is invertible for each (o, D) € £ x A if and only if dist(¢, A™') < 1.

The remainder of the paper is devoted the proofs of Theorems 1.7 and 1.8. These
theorems encode both generalizations due to a change in the underlying domain’s
topology, as well as those due the introduction of algebraic constraints. Some problems
of this sort have been considered previously in the literature. In the case of the Neil
algebra, a Pick-interpolation result has been established in [12] and an investigation
into the spectrum of its Toeplitz operators has been carried out in [11]. More generally,
for results related to constrained algebras, see [8,14,20-22], and [9]. In particular, in
the special case when the underlying domain is the disk, a Widom-type invertibility
theorem for familiies of Toeplitz operators in the constrained case was obtained by
Anderson and Rochberg [6]. For results on multiply connected domains, see [8] and
[3]. We also note that there has been work on a Szeg6 theorem in noncommutative
settings. Specifically, where one considers Arveson subdiagonal algebras inside a finite
von Neumann algebra. This setting generalizes H° (D) to a non-commutative H°.
For work in this direction, see [10] and [19].

1.1 Reader’s Guide

In Sect. 2 we collect some preliminary material on hypo-Dirichlet algebras and their
constrained subalgebras. Of particular importance will be the results of Ahern and
Sarason, [4] and [5], on hypo-Dirichlet algebras and some results of Gamelin [16] on
the structure of constrained subalgebras. In both cases we obtain families of repro-
ducing kernel Hilbert spaces on the underlying domain, paramaterized in a suitable
way. In Sect. 3 we prove Theorem 1.7. Section 4 contains some additional prelimi-
nary material on famillies of Toeplitz operators, and finally Theorem 1.8 is proved in
Sect. 5.
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2 Setup
2.1 Finite-Codimensional Subalgebras A of .o/

In this section we review Gamelin’s characterization of finite codimension subalgebras,
and fix some facts and notation that will be used in the sequel.

Let &7 be a uniform algebra defined on X. Let xo € X and dm € My, such that X
is a finite (connected) Riemann surface.

Given a point € X, a point derivation at 6 is a linear functional Dy on # which
satisfies

Dy (fg) = f(0)Dy(g) + g(@)Dy(f).

A subalgebra B C &7 is a 6-subalgebra if there is a sequence of subalgebras &/ =
Ap 2 A1 2 ... D A = B such that A; is the kernel of a continuous point derivation
D; of A;_ at 6. The following is an explicit description of all finite codimensional
subalgebras A of «:

Theorem 2.1 (Theorem 9.8 in [16]). If A C <7 is a finite codimensional subalgebra,
then A can be obtained from <7 in two steps:

(i) There exists a finite number £ and, for 1 <i < ¥, pairs of points a;, b; € X such
that if

B:={fed : f(aj))= f(bi)foralll <i <{},

then A C B C «&.
(ii) There exists a finite number k, and, for 1 < j < k, distinct points c; € X and
cj-algebras Bj of B such that then A = By N ... N By.

One may interpret the construction in the following way: All finite codimensional
subalgebras A of &7 are obtained by iteratively imposing a finite number of algebraic
constraints. In particular, there exists achain A = Ay C Ayj_1 S ... C A C Ay =
o/ such that at the i step

1) Ai={fe€Ai—1: f(a)= f(b)}forsomea,b € X or,
(i) Aj; is the kernel of a continuous point derivation of A;_; at some pointc € X. .

We will refer to the first constraint as 2-point constraint and the second as a Neil
constraint.

In this manner each A; is a codimension one sublagebra of A;_; and d is the
codimension of A in 7. The chain of subalgebras A = A; C Ay € ... C A] C
Ao = of is called a Gamelin chain. Let " denote the set of points in X that the algebraic
constraints are defined on. Let y denote the total number of constrained values in the
creation of A. Thus, given a function f € A, we let fr € CY be the vector whose
entries consist of f either evaluated at various points or its derivatives evaluated at
various points (depending on how the points are encoded into the construction of A).
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Example 2.2 Given a uniform algebra Ay := <7,

A={fed : f(@=f(b)and f'(c) = f"(c) =0}

is a finite codimensional subalgebra. We can construct it in the following way: Con-
struct Ay = {f € & : f(a) = f(b)} € . The functional D.: Ay — C: f
f'(c) defines a continuous point derivation of A; at ¢. Put Ay = ker(D)) = {f €
Ay @ f'(c) = 0}. Now consider the functional D": Ay — C: f — f"’(c). Observe
that, given f, g € Ay, we have that f/(c) = g’(c) = 0 and thus

(£9)"(©) = f"(@8() +3f"(©)g () +3f(©)g" () + f(©)8"(©)
= 1"(©8(©) + f(©)g" (©).

Therefore D, defines a continuous point derivation of A; at c. With A3 = ker(D)") =
{f € Ay : f"(c) = 0}, it follows that A = As. Further, we have I' = {a, b, ¢},
y =4and, given f € A, Ty = (f(a), f(b), f'(c), ()" € c.

2.2 Hypo-Dirichlet Algebras

In [25], Wermer showed that algebras defined on finite (connected) Riemann surfaces
are hypo-Dirichlet. In [4], Ahern and Sarason investigated these algebras in further
detail. In this subsection, we reproduce the parts of their work that we’ll use frequently.
Given our uniform algebra <7, let &/ —1 denote the collection of its invertible ele-
ments. Now, <7 being a hypo-Dirichlet algebra over X guarantees the following:

(I) The real linear span of log(].7 ~!|) is uniformly dense in Cg (X) (the space of real,
continuous functions on X);
(I1) The uniform closure of Re(%) has finite codimension in Cg(X).

Algebras that obey property (I) are referred to as logmodular algebras (see, Sect. I1.4
of [17]). It is the additional property (II) that distinguishes hypo-Dirichlet algebras.
Letting Sy, denote the real linear span of the set of all differences between pairs of
measures in M,,, we observe that conditions (I) and (II) above imply the following
local variants:

(I') No non-zero measure in Sy, annihilates log(|.<7 -1,
(I') Sy, has finite dimension o.

By (II'), we can put Sy, = spanp{/t1, ..., is}. Corollary 1 in §3 in [4] shows that
each u; is absolutely continuous with respect to dm. Now, put A; := du; /dm and
define

N :=spang{Ai, ..., Aq}.

This N-space turns out to be the same space that was mentioned in the Introduction.
Specifically, it is the same space that Gamelin discussed in §5 of [16]. Details on this
space and its relation to algebras defined on multiply connected domains can be found
in Sect. 4.5 of [15]. We reproduce the necessary information in Sect. 4.1.
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It also follows from (I) and (II) that there are o functions Zi, ..., Z, in o7~ and
0 measures Vi, ..., Vy in Sy, such that
/ log(1Z;])dv; = dj;. (2)
X

We will fix such functions and measures. A small note on notation: For ¢« =
(a1, ..., 0s) € R, we define

1 ZI* = |Z1|*" - | Zg |

Recalling that H* is the weak-* closure of ./ in L°°, the following lemma is an
essential part of the investigations carried out by Ahern and Sarason:

Lemma 2.3 (Lemma 10.1 in [4]). Let o be a o-tuple in R?. Then there is a function
h € H® such that |h| = |Z|* almost everywhere.

Borrowing from Ahern and Sarason, we will refer to a function 4 € H? as an inner

function if there exists an @ € X such that |h| = |Z|*. A function g € H? is an

outer function if log(| [,y gdm|) = [,y log(|g]) dm > —oo. These inner functions

contain zeros inside of X but, unlike the in the disk, are not unimodular on the boundary;

however they do act as isometric multipliers between L% spaces for different o’s.
For f, a function on X, we let | f dv denote the o-tuple

</Bxfdv1,...,/axfdvg>

(provided each of the individual integrals exist). We then have the Ahern-Sarason
inner-outer factorization:

Theorem 2.4 (Theorem 7.2 in [4]). Let f be a function in HP? (1 < p < oo such
that | f| is log-integrable with respect to all representing measures in My,. Then there
are, in H?, an outer function g and an inner function h such that f = gh and
fax log(lg)dv = (0, ..., 0). The functions g and h are uniquely determined by f to
within multiplicative constants of unit modulus.

2.3 Representations for .o/
With the notation inherited from the previous subsection, let

L= {/ log(|k])dv : h e;z%_l} C RY.
X

Observe that, since each of the Z; are in &/ -1 (2) shows that £ contains the standard
basis vectors e; = (0,...,0,1,0,...,0) where the 1 occurs in the jth entry. Thus £
is at least a o -dimensional subgroup of R?. Theorem 8.1 in [4] shows that L is discrete
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as well. Thus, not only is £ isomorphic to Z, but the quotient R? /£ is isomorphic
to the o -torus T. In particular, this quotient is compact. We will let X denote R? /L.

Given any « taken from any equivalence class in [¢] € X, let HO% be the usual H?
space but endowed with the following inner product:

(f,g)a=/ f31Z|1*dm. 3)
aX

As mentioned in the Introduction, each of these spaces carry a representation for .o7.
The following proposition establishes when two Ho% spaces are unitarily equivalent:

Proposition 2.5 Given two o-tuples a1 and aa, they both belong to the same equiva-
lence class in X if and only if Ha%l and H(fz are unitarily equivalent.

Proof To start, suppose o1, @y € [¢] € ¥ = R? /L. Then there exists £ € L such that
o) = an + €. In particular, | Z|*! = |Z|%2t¢ so that | Z|¢ = |Z|¥1 2,

Since the function |Z |’Z is non-negative and in L', it follows from Theorem 6.1 in
[4] that there exists an outer function / in H! such that |4| = | Z|¢ almost everywhere.
Since & is an outer function, it has no zeros inside X. The fact that |h| = |Z|¢
guarantees that 4 has no zeros on dX as well. Thus % is invertible in A such that
lh| = 1Z|* = |Z|"'~®. Thus |Z|*' = |h||Z|*>. It follows that the HZ and HZ, are
unitarily equivalent — witnessed by the multiplication operator My i/2.

Conversely, suppose H(fl and HO%Z are unitarily equivalent for o-tuples o1 and «».
Then there exists a unitary operator U such that, for all functions ¢ € H UM 415 = Mq%,
where M ;5 is the operator on HO%I, that multiplies by ¢.

Now, let /. (z) be the reproducing kernel for Hi_. Observe thatif f e HO%_ , then

(fs (M) k)2 = (My [ k)2 = (D f k)2 = dw) ([, kyy)2 = (f, (w)ky,)a.

Thus we yield the following eigenvector relationships:

(My)*ky, = p(w)k,,  and  (Mg)*ky, = p(w)k,,.

These relationships immediately imply that ker((Mqlb)* —ow)l) = (Ck,lv and
ker((Mq%)* —d(w)l) = (Ckﬁ). Since unitary maps map kernel spaces to one another,

we must have U k}u =f (w)ka, where f(w) is a scalar valued function in &7 depen-
dent only on w. In a reproducing kernel Hilbert space, it suffices to show equality
on the kernels, therefore U = M. We also have that U~! = M ;1. Therefore the
unitary operator U is given by multiplication by the invertible function f.

It follows that | Z|*! = | f||Z|*2. Taking logs and integrating both sides shows that
Ly = fax log(] f])dv = a1 — ap. Thus, oy and «» differ by the coordinate of an
invertible element of A — meaning oy — a» € L. This puts «; and a» in the same
equivalence class in X. O

Remark 2.6 In light of Proposition 2.5, we will denote by « the corresponding equiv-
alence class [¢] € X =R /L.
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As already mentioned in the Introduction, there is another way to construct
representation-carrying spaces for .7 (albeit, in a manner that does not produce a
compact space of parameters). For n € N, let an denote the standard H> space but
with the inner product defined by

(. ghn = fX fgedm.

Each an defines a reproducing kernel Hilbert space and carries a representation for
o .

2.4 Representations for A

Let A be a finite codimensional subalgebra of o7 generated via the Gamelin chain
A=A; CAj_1 C...C A C Ay = &. While the representations 7, : &/ —
B(an): fr= Mpandn,: o/ — B(H(f) clearly give representations of 7, it is less
obvious how to construct spaces an’ p S an and Hi n S H(f which are invariant
under My for f € A C &/ (but not necessarily invariant for f € /) and thereby
generate a richer class of representations 7, p: f — M f| H2, and 7y p: f

My " for f € A, the subalgebra of <. We take care of this issue next.
a,D

This construction is formally the same whether we work inside H2 or H?; therefore
in describing the construction we temporarily write H> to mean either an or Ho% and
use the notation le) to mean either H,i porH 3 p depending on the choice of meaning
for the notation H?.

The representations will be built inductively via the Gamelin chain. A; can be
constructed from Ay = o7 in one of two ways:

1) Ay ={f €Ay : f(a) = f(b)}forsomea,b € X or,
(i) Ay ={f € Ay : f'(c) =0}.forsome c € X

If (i) occurs, then we form
H2=(feH”: f(a)=nfb)} =k —nk}* C H?

where 11 € C U {oo}, and k(a) and kl(,) are the reproducing kernels in H? at a and b
respectively. Observe that Ht21 is invariant for A1 and hence Ht21 carries a representation
for Ay

If (ii) occurs, then we form

HY =(feH”: fo)=nf ()} =k — ik} € H?,

0
(1)
function in H? that returns a function’s first derivative at c. It follows from the Liebniz
rule that Ht2| is invariant for A and hence H,zI carries a representation for Aj.

where t; € CU{oc}, k? is the reproducing kernel in H? at ¢, and k% is the reproducing



Szeg6and Widom Theorems for Finite Codimensional Subalgebras... Page130f37 83

Proceeding in this manner along the Gamelin chain, we assume that Hz,z-,l holds a
representation for A;_1. A; can only be built from A;_; in one of two ways:

1) A;j={feA_1 : f(a) = f(b)} forsomea,b € X or,
(ii) A; is the kernel of a continuous point derivation D, of A;_| at some pointc € X.

If (i) occurs, then we form

HX={(f e H., : f(@=06f®b)) =K " —uki™y" € H?

L1’

where #; € C U {oo}, and k! and ké_l are the reproducing kernels in H,l{ , at
a and b respectively. We claim that H,% is invariant for A;. Since A; € A;_1 and
Ai_lHtlz_l - Ht%_l, it follows that A,~Ht12__1 c H,?_l. Finally, given ¢ € A; and
f € HZ, we have that (fg)(a) = f(a)g(a) = 1 f(b)g(b) and thus fg € H This
shows that H,IQ, is invariant for A; hence Hg carries a representation for A;.

If (ii) occurs at the i™ iteration. In this case, there exists a natural number n such
that A; = ker(D.) = {f € Ai_1 : D.(f) = f®™(c) = 0}. Form

HX={feH} : f©=6f"@)=k"—uki;ly < H}

cm) ti—1°

where t; € C U {00}, ké‘l is the reproducing kernel in H,%ﬁ ,ate, and ké(_n)l is the

reproducing function in H,lz__ , that returns a function’s n™ derivative at c. We claim
that this Hilbert space is invariant for A;.

As before, we know Ain,z-,l - H,%ﬁl. We need only show that, if g € A; and

f e H;,z-, then (fg)(c) = t;(fg)"™(c). To see this, first take f € M = {f € A;

flo) = tif™()}) € HS. Observe that, since fg € A;_i, the fact that D, is a
continuous point derivation shows that

t:(f2)"(c) = ;De(fg) = t;(De(f)g(c) + De(g) £ (c))
=6(f™()gle) + g™ () f ). 4)

However, since g € A; and f € M,
1(FM(0ge) + g™ @ f(©) =t fM(O)gle) = fOgle) = (fo)e).  (5)

(4) and (5) show that (fg)(c) = t;:(fg)" (c). However, since M is dense in H[lz, it
follows thatif g € A; and f € H,%, then fg € H,% — guaranteeing that H,% is invariant
for A; and hence Ht? carries a representation for A;.
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Thus, by induction, we have built a reproducing kernel Hilbert space Hé that
carries a representation for A = Ay. In particular, it is constructed by building a chain
of Hilbert spaces

2 2 2 TY)
H:CH} C..CHCH}=H

where each Hi2 is a codimension-1 subspace of Hl.z_1 and each Hg carries a rep-
resentation for A;. Thus, our representations for A are parametrized by the d-tuple
(t1, ..., 1) € [1{(C U {oo}).

As mentioned in the Introduction, we will denote the compact product I—[’f (CU{eo))
by A and its tuples by D. Further, given a tuple D = (¢, ..., t7), we will instead
denote by H% the space H,i that carries the representation for A.

We now introduce a multiplication on A which makes A an algebra. Let D =
(t1,...,t7) and D= (S1,...,8q) both be tuples in A. Let f € H[z) and g € Hl%. It

follows that the product fg will belong to H 123 where D = (r1, ..., rq) is defined as
follows:

. 1;S; if the i™h constraint in the Gamelin chain is a 2-point constraint
(D)i i=ri = 1 if the /™M constraint in the Gamelin chain is a Neil constraint

In this manner, D is uniquely defined. Next, given a function f € le) where D =
(t1,...,1tq7), we have that (provided it exists) f_1 € le)_, where D71 is given by

(D1 { tl if the i constraint in the Gamelin chain is a 2-point constraint
i=3"

—t; if the i™ constraint in the Gamelin chain is a Neil constraint
Lastly, we will denote by Dr the d-tuple defined by:

1 if the i™ constraint in the Gamelin chain is a 2-point constraint
oo if the i constraint in the Gamelin chain is a Neil constraint

(Dr); = {

Note that the parameter oo is interpreted as the constraint f(a) = oo - f"(a) —

equivalently, those functions such that £ (a) = 0. Therefore, the functions in the

space ng are then functions that simply obey the constraints imposed on A. We

quickly note here that, given any f € H2,if f~! exists, then ff~ ! =1 ¢ le)r.
The following lemma is now straightforward:

Lemma 2.7 If f, g € H?, then, provided g~ exists, fg~ ! € H%r

Finally we note that ¥ and A, with their natural topologies, are compact metric
spaces.
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3 The Szeg6 Theorem for Constrained Algebras

In this section we detail a few lemmas before exhibiting a proof of Theorem 1.7. The
first of which is straightforward to see:

Lemma 3.1 Given a real-valued h € H? EB?, if h(xg) = O, then there exists & € H?
suchthath = € @ £* € H*> + H02. In particular, & (xg) = 0 as well.

Lemma 3.2 Suppose p > 0 is a continuous function on dX. Iffax log(p)dm = 0,

then there exists € € H> andn € N such thatlog(p) = £ ®E*Pn € H?® Hg @ N,
where & (xg) = 0.

Proof To begin with, let log(p) = f® gD n € H> @ H_O2 @ N. Let P denote
the orthogonal projection from L? onto HZ2. Observe that, since m is a representing
measure for xo and 1 € H 2

/3 10g(p) dim = (lg(p), )2 = (og(p), P12
— (Plog(p), 1)2 = (. 1)2 = /ax fdm= f(xo).

Having assumed that fx log(p) dm = 0, it follows that f'(xp) = 0.
Now, since log(p) is real-valued, we have that f ®g € H>® Hg is also real valued.

By Lemma 3.1, there exists £ € HO2 suchthat fg = EPE* € H§®H_g - HZGBH_(%.
Therefore

log(p) =§ ®E* Gne H*GH ®N

with & (xo) = 0. O

Lemma 3.3 Suppose p > 0 is a continuous function on dX. Put p := e“p for some
constant c. Let £, £, n and &, {, 11 be taken such that

log(p) =@t @dn and log(P) =EDL DT,

where both decompositions are occurring in H* @ Hg @ N.IfD, D € A are chosen
so that ¢¢ and ¢ are in H,% p and Hr% 5 respectively, thenn =7 and D = D so that

2 _ g2 . . nD _ D
H = Hﬂ,ﬁ and, in particular, ky;~ = ky;

Proof Since p = ¢“p, we have log(p) = C + log(p). Due to the assumed decompo-
sitions, we have

F@l@i=log(p) =C+log(p) = (C+&) D Dn.

Since orthogonal decompositions are unique, we have 7 = n and E =C+E&. Let
D= (t,...,t3),D = (f,...,17) € A as in the statement of the lemma. To argue
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that D = 5, it suffices to show that#; = 7 for all i. To this end, recall that each of the
t; are associated to either a 2-point or Neil constraint.

Suppose first that #; exists such that, at the i stage of the construction of H3, we
have

HY = (ki7" — k™" =(f e H.| : f@) =1, f(b)).

where k,if] and kz_l are the reproducing kernels in Ht,{l at a and b respectively.
Then, since D was chosen so that ¢f € Hé, we must have that #; = exp(§(a) — £(b)).
Likewise, 1; = exp(g(a) — &(b)). However, since & = C + &, it follows that

E(a) —E(b) =&(a) + C — (£(b) + C) = £(a) — £(b)

and therefore #; = ;.
Suppose instead that 7; exists such that, at the i stage of the construction of H?,
we have

HY = (k' =1k, (ni} ={feH | : fla=1tf" )

where kfl_l is the reproducing kernel in H,%_ , ata,and ki(_nl) is the reproducing function

in Hz,z, , thatreturns a functions n'M derivative ata. Since D was chosenso thate® € H3,

we must have exp(£(a)) = ; (%ﬂ exp(£))| . Viarepeated application of the chain and
a

Liebniz rules, we find

n

T exp) =" - G,

where G is a linear combination of products of &', . . ., “g‘(”). In particular, we find that

1
T Ga)’

exp(§)
L exp(£)

__ep®)
a exp(é) -G a

i =

Similarly, #; = ~— where G is a linear combination of products of £/, g §<"> Since

G( )
E = C + &, it follows that é(f) = E(f) forall 1 < j < n. This 1mmed1ate1y implies
that G(a) = G(a) sothat = 7. ~

Having handled both cases, we conclude that D = D. This fact, glong with# = n,

allows us to conclude that Hi D= Hﬁzy 7 and therefore kﬁ(;D = k;‘(’)D- o

Before stating and proving the Szegd theorem for A, we make a small observation.
Given any function & € H 2 we know that & is bounded below on X, and therefore
5 will never be zero for any points in X. Due to the nature of the Neil and 2-point
constraints, the only functions that can live in two different le) spaces are those whose
constrained values vanish. In other words, functions f for which fr = (0,...,0)" €
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C”. Due to this fact, the function ¢® cannot live in two different Hé spaces. This
justifies the notion that there exists a unique tuple D € A for which e¢* € Hj, 2
Theorem 1.7 (Szegd Theorem for A). Suppose p > 0 is a continuous functzon ondX.

Leté € H?, ¢ € Hz, n € N befunctions suchthatlog(p) = §BL®n € HZ@H269N
Let D € A be the unique tuple such that ¢f € HnZ.D. With C,, = fax log(p) dm it
follows that '

1
inf / 11— pl?pdm : per}zexp(C)
{ ax P\ kPR

Proof We begin by observing that it suffices to consider C,, = 0. If not, we consider
P = exp(—C,)p. We have that log(p) = —C,, + log(p). We see immediately that

Cy = / log(p) dm = / —Cp +log(p)dm = —-C, + C, = 0.
ax X

Thus, provided we establish the result for Cy = 0, we have that

~ 1
inf{f 1= pl?pdm : pe Ao} = exp(Cp) <T) (6)
ax Ik~ 112

where 7 € N and D € A are the unique vectors such that log(p) = Epr®n e
H? + Hg @ N and ¢f € Hﬁ2 5 Since —C), is a constant, it follows from Lemma 3.3

that kfﬁ(;D = kf(’)D . Therefore, since Cy = 0, (6) becomes

~ 1
e { [ 1= pPBan s penn) =
9 Ik~ 112

Thus,

inf{/ 11— plPpodm : pGAo}zexp(Cp)inf{/ 11— pl*pdm : pGAo}
0X D¢

1
= exp(Cp) (—) .
1K1

Henceforth, we assume that C, = 0. In view of Lemma 3.2, there exist unique

£ € H2andn € N such that log(p) = & ® £* ®n € H> ® HZ & N with £(xo) = 0.
Define the space H>(p) to be the standard H? space but with the inner product given
by

(fog)y = /X £ pdm.
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Let Ag Ao N2 C H?(p) denote the L%(p) closure of Ag. It suffices to argue that the

H?(p)- distance from the vector 1 to the space Aol 2w i equal to M
0
By exponentiating, we have that p = ¢fef" ¢”. We claim that ¢ € H>. Indeed,

—n

51> = e5et” = exp(€ + &%) = exp(log(p) — n) = pe

Since p and n € N are both bounded on 8 X, the above shows that |ef |2 is bounded
and therefore ¢ € L°°. However, since EeH 2 it follows that ¢ € H? as well and
therefore ¢¢ € H. Similarly, e f e H™.

Define the map U : H?(p) — H? by f +> e° f. (Since ¢° is bounded, this map is
both well defined and bounded.) Observe that n € N is the unique value that makes

—— Il 2

U act as an isometry from H?(p) to Hy. 2 That is, given f € Ag ) we have that

WUFI2 = ek 712 =/ ¢ f17 ¢"dm :f \f\zeseg*end’“/ 11 pdm = 1 f 2.
X X X

In particular, defining its inverse by U™ : H,% — H*(p): f +— e % f, we find that this
defines an isometry as well. Thus U is a unitary between H?(p) and an. Additionally,
recall that D € A was chosen specifically so that ¢ € Hf, p- Now, since U is
surjective, we have that U(A_O”'”Hzm)) ={f ¢ HnZ’D : f(xo) =0} =: anD,O is
exactly those functions in an, p that vanish at xo. Since U (1) = ¢5, we can transport
our question over to the an p setting and observe that it suffices to show that the
an’ p-distance from et to H’i p-o 18 exactly W

Recall that the assumption C, = 0 yields £(xo) = 0. Therefore 50 =1 £ 0
and hence ¢ ¢ H; 2 _p.o- Further, we know that Hn% p-o 1S a codimension 1 subspace
of H; 2 D and, in particular, H D0 = = (span{ky; })J-, where k;Z(;D is the reproducing
kernel for H . p at xo.

Since Hn’ D:0 is a closed subspace, there exists f € H nz D:0 that minimizes || —
fI2. This f is exactly f = proj HzD.O(eE ). Observe that (e — f) L H?, ; and

therefore (¢ — f) € span{kﬁ(’)D}. Thus,

3 - 3 - &y — of(x0) kg ’ - kz’D
— i _ 3 X0 0
e f - prOJ(HnZ,D;O)L (e f) - prOJ(anvp;())l (e ) =e ”k;lOD”Z - ”k;l(,)Dllz ’

Therefore [|ef — |2 = But this is exactly the H p-distance from e® to the

Iy Duz
space H p.o- We saw earlier that this distance is equal to the desired H 2(p)-distance
from the vector 1 to the space AOH I *( . Hence the proof is complete. O
Remark 3.4 We note that the computation carried out in this proof, when restricted

to the classical setting (with suitable notation adjusted appropriately), does the heavy
lifting in establishing a characterization for outer functions in H 2(T).N amely, if Ag are



Szeg6and Widom Theorems for Finite Codimensional Subalgebras... Page190f37 83

those functions in the disc algebra that vanish at zero, and f denotes the holomorphic
extension of f over D obtained via the Poisson kernel, then f € H 2(']I‘) is outer if and
only if

inf {if% |1—h|2|f|2d9} - )f<0)\2
heAg 2 0 ’

This characterization can be found as Exercise 6.28 in [13].

4 Invertibility of Toeplitz Operators: Some Preliminary Lemmas

We begin by noting that most of the arguments given here will work in the full set-
ting of a finite (connected) Riemann surface, but one needs to modify the instances
involving the Green’s function (e.g., arguments given in Sect. 4.3). Thus, for simplic-
ity, we instead consider the underlying domain to be a t-holed planar domain. In this
subsection, details on the Green’s function for planar domains are reproduced largely
from [1] and [15].

4.1 Green’s Function for Planar Domains

Let X be a t-holed planar domain with xo € X. The Green’s function of X with pole
at xq is defined by

G(z, x0) = —log(|z — xol) + h(z, x0).

where /(z, xo) is the unique harmonic function of z in X with boundary values given
by log(]z — xo]). Such an & exists because the Dirichlet problem is solvable on X (the
fact that / is unique is guaranteed by the maximum principle for harmonic functions).
Equivalently, the Green’s function is the unique function that satisfies the following

properties:

(1) G(z, xp) is harmonic on X \ {x¢}

(ii) G(z,x0) + log(]z — xol) is harmonic near x
(iii) G(z,x9) —> 0asz — 90X

The Green’s function allows us to pass between the representing measure dm and
the arclength measure dz. Let H be the multi-valued harmonic conjugate of —G and
let v denote the single-valued derivative of —G + i H. Then:

Proposition 4.1 (Reformulated Proposition 6.5 in [15]). In the notation just intro-
duced,

1
dm(z) = %U(Z) dz

Note that the above proposition can also be found in the discussion immediately
proceeding Proposition 1.3 in [1]. One of the best uses of the above proposition is
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using v to characterize the N-space discussed in Sect. 2.2. Specifically, if Sy, denotes
the real linear span of the set of all differences between pairs of representing measures
for xq, then each u; € Sy, is absolutely continuous with respect to dm. Putting
X :=du;/dm, we define

N = spanc{Aiy, ..., Ao}

This space turns out to ‘fill out’ L. Specifically, as noted in Sect. 4.5 of [15] and
Sect. 2 of [1], we have

L*(dm) = H*(3X) @ HZ(3X) ® N.

Moreover, the following theorem relates this decomposition to the derivative of the
Green’s function, v:

Proposition 4.2 (Theorem 1.7 in [1]) The orthogonal complement of H*(dX) in
L%(dm) is v~ "H2(3X). Therefore L*(dm) = H*(3X) ® v~ 'H2(3X).

The last result we need involving the Green’s function is the information it encodes
about the domain X.

Proposition 4.3 (Reformulated Proposition 1.4 in [1]). If X is a t-holed planar
domain, then the following is true of the function v:

(i) It is meromorphic in a neighborhood of X with exactly one pole of order one at
xo and no other poles.
(ii) It has precisely t zeros in X, counting multiplicities, and no other zeros in X

A version of the above proposition can also be found as Proposition 6.5 in [15].

4.2 Inner Functions, the Norm of Toeplitz Operators, and Kernels in H(zz D

As mentioned in Sect. 2.2, we will refer to a function 2 € H? as an inner function
if there exists an @ € X such that |2| = |Z|%. In this manner, inner functions act as
isometric multipliers between L} spaces for different a’s. A function g € H” is an
outer function if log(| [, gdm |) = [, log(|g]) dm > —oc.

Lemma 4.4 There exists an inner function ® € H? suchthat ®r = (0,...,0)T € C.
In particular, ® € Hj’Dfor every (o, D) € ¥ x A.

Proof Thei®™ entry of the vector & € C? is of the form &™) (q;) forsomeq; € X and
n; > 0. Since A is a uniform algebra, we can find an f; € A such that ]‘i("i)(ai) =0.
Note that, since we have an algebra over a t-holed planar domain, we can choose f;
in such a manner that log(| f;|) is integrable with respect to all measures in M,,. Now,
since H? is defined to be the L? closure of A, we have that fi e H 2, By Theorem
2.4, there exists H? functions gi and h; such that g; is outer, h; is inner, f; = g;h;,
[5x log(lgihdv = (0,...,0), and h;’l)(ai) = 0. Since h; is inner, there exists a
y-tuple «; such that |h;| = |Z]|%.
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Doing the above for every a; we then form & = []/_, h; ando’ = >/_ o;. In this
manner, ® is an inner function in H? such that ®r = (0,...,0)" and |®| = |Z|*.
Technically, every Ho% is the same set of functions for every «. Thus, ® € HD% for
every «. Note further that, since r = (0, ..., O)T, we have that & € Hi p forevery
(o, D) € ¥ x A. O

Lemma4.5 If ¢ € L, then | T, || = ||¢|| and (T;0P)* = T D

Proof Since M; = M$, we have
(TEPY =V \MiVyp =V yMzVap = T*P
¢ = Ya,pMpVa,D = Vo pMpVa,D = Ly -
Since V,, p is an isometry,
.D
17,71 < IVy p Mgl Ve, Il < 1Myl = 11l.

Thus, it suffices to show that || Tq‘;‘ D I > ||@|l. To this end, let @ be the inner function

from Lemma 4.4 such that ®r = (0, ..., O)T. If we denote by H 2 the unweighted
H; space and let 8 € X be the o-tuple such that |®| = |Z|~#, then it follows that ®

is an isometric multiplier from H? into H é p forevery D € A.

Now, denoting by L? the unweighted Lé space, let V: H> — L? denote the
inclusion map. Likewise, let W: ®H> — L/ZS be the inclusion map. (Note here that

with this setup, V*MyV = Ty is the usual Toeplitz operator on H 2) Now, let W €
H® C H? be the inner function given by |¥| = |Z|#~% (such a function exists by
Lemma 2.3). Observe that W ® is an isometric multiplier from L to Lé. Further,

W MW = W*W* V) [, My Vo pUW = WU TP ww )

Now define themap U : H 2 5, dH? C Hé p sending f — ® f. As noted earlier,

this map is an isometry into H, é p- Thus, for f, g € H 2,
(MyWUS. WUg) o = (MyW® f, WDg) 12
= (P f, Pg) )2
=(pf. 82

= (Mg f. 82
= (Mg f, Pg)2
=
Therefore U*(W*MyW)U = T,. Combining this with (7), we have that

U (W T PO W)U = Ty,
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It follows that,

1Tyl = U W e T Pew)u)| < 11,07

and therefore [|¢|| = || Tyl < ||Tg’D||. O

Let w} € H? be the linear combination of reproducing functions in H2 such that

forall f € HZ2, either (f, w¥)y = f(a) —t; f(b) or (f, w¥)q = f(a) —t; f™(a). Tt
follows that

span{w{, ..., wi} = (HiD)L.
Further, let hf‘ € HO% be the reproducing functions such that (f, h;?‘)a returns

either f(a) or f" (a) (for some finite n), depending on how a is integrated into the
construction of A. In this manner,

(fsh)a
Jr= : eCr.
()
An immediate observation is that w:?‘ € span{h{, ..., h;‘j} forevery 1 <i < d. This

discussion is recorded in the following proposition:

Proposition 4.6 Given an (o, D) € X x A, there exists reproducing functions

h‘i‘h‘;‘, andw‘f‘,...,wg € Ho%suchthat
(fshY)a

(1) fr = € CY and
(f )

(2) (HiD)J- = span{wy, ..., wy},

where wf‘ € span{h$, ..., h;‘j}for everyl <i <d.

4.3 Pre-Annihilator for A and a Factorization Lemma

In this subsection we begin by asserting the existence of a space .# such that L*°/A
is isometrically isomorphic to .#*. Due to the Hahn-Banach Theorem, this goal is
equivalent to finding .# C L' such that Ann(.#) = A. We will continue to use the
machinery introduced and discussed in Sect. 4.1. Specifically, recall that, since our
uniform algebra <7 is a hypo-Dirichlet algebra, the real linear span of the set of differ-
ences between pairs of representing measures for xq, denoted Sy,,, was o -dimensional.
Putting Sy, = spang{u1, ..., We}, wenoted thateach ; is absolutely continuous with
respect to dm. Thus, with A; := du; /dm, we can form N = spanc{Ai,..., Aq}.

Specifically, this N space exists such that L> = H> @ H_g @ N. In [4], it is shown
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that N has a basis consisting of real functions so that, as sets, ‘N = N. Further, the
aforementioned L? decomposition can be weighed:

L;=H;®H}, ®N. ®)

where H&a is the complement of H? with the additional condition that | x fdm =
f(x0) = 0. Note further that when we consider the aneighted L? space (¢ = 0), the

above is written without the subscript adornment: HOZ.
Now, observe that if ¢ € A, then we have that

d .
/qbkidm:/ o am = | pdu; =o.
axX ax dm X

Thus, every function in N is annihilated by ¢ € A.
Proposition 4.6 asserted the existence of reproducing functions Ay, ..., h, € H 2
such that, given f € H 2

(fshi)2
fr = e Cv.
<f7 h]/)2

Recall that the construction of the finite codimensional subalgebra A started with the
uniform algebra o7 and iteratively imposed either 2-point or Neil constraints. Recall
that d < y denoted the number of iterations necessary to yield our algebra A. For
1 <i < d, lets; denote the linear combination of vectors in span{/, ..., h;,} such
that (¢, s;)» = 0 for all ¢ € A. This directly implies that, given ¢ € A,

¢sidm = (¢, si)2 =0
ax

forevery 1 <i <d.With S := span{sy, ..., 57}, we’ve shown that every function in
S is annihilated by ¢ € A.

Example 4.7 Suppose we start with a uniform algebra <7 and impose a single 2-point
constraint at a, b € X. If we let h, and hj, be the H 2 functions that reproduce at the
points a and b —that is, f(a) = (f, ha)2 and f(b) = (f, hp)2, then s, p := hg — hp.
In this manner, we find that all functions ¢ € A must obey ¢ (a) = ¢ (b) and thus,

0=¢@)— @) = (P, hp)2 — (P, hp)2 = (¢, ha — hp)2 = (@, Sap)2-

Finally, recall that H' is defined to be the L' closure of the algebra <. If we put
Hy :=={feH": [, fdm = f(xo) = 0}, then we find that, given ¢ € A,

/ 6 dm = ($1)(x0) = 0
D¢
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forall f € Hol. Therefore every function in H(} is annihilated by ¢ € A. Put # =
Hj+N+S.

Lemma 4.8 Ann(#) = A.

Proof As noted in the previous discussion, we know that HOl +N+S = 4 is
annihilated by any function ¢ € A. This shows that A € Ann(.#). To argue the other
inclusion, since A € L, itis enough to show thatif ¢ € L°° such that fX ¢hdm =0
for every h € .#, then ¢ € A. To this end, we first note that our algebra A can be
interpreted as

A={f € H® : f satisfies the constraints of A}. 9
Since ¢ € L, we also have that ¢ € L. Recall from (8),
L>=H>®H>®N.

Additionally, recall that N = N. Since (¢, 1)y = fa x A dm = 0 for every A € N,

we must have ¢ € H> @ Hg. Further, since HO2 - HO1 and fax ¢hdm = 0 for every
h e Hi,it follows that (¢, h)y = fax ¢hdm = 0 for every h € H& as well. Hence
¢ L H02. This puts ¢ € H?. Since H® = H> N L*® and ¢ € L™, it follows that
¢ € H®.

Lastly, since f ax PSidm = Oforevery 1 <i < d, this implies (by the construction
of the functions s;) that ¢ must satisfy the constraints of A. Thus, using the formulation
given in (9), we find that ¢ € A. m|

Proposition4.9 L°/A = #*.

Proof By the Hahn-Banach Theorem, X*/Ann(Y) = Y™*. In our case, we know that
(LYHY* = L. Thus, since Lemma 4.8 showed that A = Ann(.#), it follows that
L®/A = #* as desired. In particular, if we let A be the isometric isomorphism
from L*°/A to .#*, then it is interpreted as the map sending 7 (¢) — (1¢) | _y» Where

Ao L' — C is the functional sending v > fax oY dm. O

Recalling the notation from Sect. 4.1, let G be the Green’s function for the t-holed
planar domain X with pole at xg, H be the multi-valued harmonic conjugate of —G,
and v be the single-valued derivative of —G + i H.

The following lemma is a weighted version of Proposition 4.2:

Lemma 4.10 The orthogonal complement of HO% in Li isv! Hoz,a-

In light of the decomposition Li = H§ <) H& o @ N, and recalling that (as sets)
N = N, the above lemma implies that

Hj,®N =v"'H,.

Hence///:Hé%—N—i—S:v_lHl—i-S.
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Let M C H! be the dense subset of functions analytic on X, continuous on 94X
and with no zeros on 9 X. Note that M is dense in H? as well. With this, let

Mg =v M+ S.

This set is dense in .. We prove a factorization theorem for .# 5. Before we do so,
however, we need a technical lemma. Fora w € X, let Hal) denote the usual H'! space
but with norm || f|[1,, = fi)X |f11Z|® dm. (In this manner, we will let the subscript
denote the fact that this is the 1-norm. Similarly, || - ||2,, Will denote the 2-norm coming
from the inner product discussed in (3) but withw € X.)

Lemma 4.11 Givenh ¢ M C H)lforsomey € X, thereexistsw € Tand F, G € H?
such thath = FG, ||h|l1,y, = |Fll2,y—llGll2,y+w, F is invertible, and F € M.

Proof Let h €¢ M C H,}. It follows from the definition of M that 4 has at most
finitely many zeros in X. The proof of Lemma 4.4 guarantees the existence of an
inner function g that shares exactly these finitely manner zeros (with multiplicity). Let
w € X be taken such that |g| = |Z|“. Putting f := h/g, we have that f is analytic in
X, has no zeros on X and is continuous on d X — therefore f is invertible. In particular,

we find that /7 is also invertible and lies in M C H?.
Observe that

1Al =/ |h||Z|Vdm=/ 18l £11Z17 dm
X X
= /BX FIZI7H dm = 1 f o = IV 13 o

Further,

eV fII3, 0 = /8X<|g||ﬁ|>2|zv—“’dm = /BX WIRIZ T dm = 1V F13, 4o

Therefore

1 1
Irlly = (Rl )2 AR = IV fll2ytollgy fll2y—o.

Putting F = /f and G = g./f, we find that h = FG, |hli,
1 Fll2,y—llGll2,y +w, F is invertible, and F € M. O

Proposition4.12 For h € .# ) = vIM + S, there exists (B, D) € £ X A, f €
HEﬁ,D’ and g € Lz_ﬂ such that

(i) h=fg
(ii) Nl = 1 fll2.—pligll2.p
(iii) (Y, 8)2 =0 forally € H?4 |,
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Proof Leth = v~ 'r+hy € Mpg = v ' M+S.Letzy, ..., z; bethe zeros of vin X.
The proof of Lemma 4.4 guarantees the existence of an inner function ®, € H? such
that ®,(z;) = 0 for 1 <i < 7. Let ® be the actual function produced by Lemma
4.4 so that <I>F =(0,...,0)" e C”. It follows that the product ® := ®,®d" is inner
as well and thus there exists « € ¥ such that |®| = | Z|%.

Our first order of business will be showing that

(a) ®h € H', and
(b) ®h(xp) = 0.

To show (a), we first show that ®' i, € v—! H2. To see this, it suffices to argue that
®"hy L H2. To this end, let g € H2. Since hy € S = span{s7, ..., 54}, it suffices to
argue that (®'57,g), = 0 forall 1 < j < d. Recall, however, that the s; is simply a
linear combination of reproducing functions at the points involved in the construction
of A. Therefore, since @F =(Q,..., O)T,

(@757, 8)0 = / o'sjgdm = / (@ g)s7dm = (d"g,s5;)2 = 0.
9X 9X

Thus we indeed have ®'i; € v~! H?. Next we show that the product of &, and
v~ !is bounded and analytic. By Proposition 4.3, we know v has exactly T many zeros.
Thus, the 7 zeros of v will act as poles in v~! (including multiplicity), but will be
canceled when multiplied by ®,. Since there were exactly T many poles, the product
has no unbounded components and only a zero at xo (coming from the single pole
at xo in v.) In this manner, ®,(v"'H?) € HZ. In particular, since we showed that
&' hy € v~ H?, it follows that

dhy = Oy (P hy) € D,(v ' H?) € H.
Thus
Oh = d( r) + dhy = T (Pyv'r) + Phy € H'.
Since ®h € H!, itis also in Hla. This shows (a)
We noted that ®'' i, € v—! H?. Therefore there exists a function b € H? such that

®"hy = v~ b, Since v~! has a zero at xg, ®,v~! is an analytic function with a zero
at xg. Therefore,

/@hdm:/ (') + Ohydm
X X

=/ d>rrd>vv_1dm+/ @Uv_lbdm
X 20X

= (@"rd,v ) (x0) + (®yv ') (x0)
=0

This shows (b).
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Since ®h € M C Hla, it follows from Lemma 4.11 that there exists w € % and
F,G € H? such that ®h = FG and 1P, = IFll2,—@+) |Gll2,—a+w> F is

invertible, and F € M. In this manner, we find that
2l = I PAlI1,—« = 1 Fll2,— (@) |1Gll2,~a+tw-

There must exist some D € A such that F € HE((H_LU),D.
have to inherit the zero at x.

Now consider the function ®~!. This function is not necessarily analytic, but we
do have that |®~!| = | Z| = on the boundary. Form the function g = ®~'G. Observe
that, since ®h = F G, not only do we have

Since F is invertible, G will

h=® 'FG = Fg,
but also
1813 4t = / 81?1217 dm = / G2 @~ 221" dm
0X 0X

27— 2
= / IGIPI1ZI™* ™ dm = G5, _gt0
X
so that we have the desired norm-factorization for /:

Il = 1PAlI1,—a = 1 Fll2,~(@-o) G2, ~a+0 = 1 Fll2,~(@-w) 1&]12,0+0-

Put 8 := o + w € X. It remains to show that (¥, g)» = 0 for all ¥y € HE,B,D’

Since @ = (0, ..., 0) ", it follows that H? = &, (P! H?) is a finite codimensional
subspace of HE,B,D' Thus, there must exist p vectors wy, ..., w, € Hzﬂ p such that

HE/S,D — dH?® span{wy, ..., wp,}.

Observe that if f € H?, then (since G (xg) = 0),

(d>f,§)2:/ @fgdm:/ fOd 'Gdm= | fGdm=0.
X X X

Therefore, it suffices to show that (w;, g), =0for1 < j < p.
To this end, recall that Proposition 4.1 gives us that dm = %vdz. It follows that

v ldm = #dz. Moreover, it follows from the Cauchy integral theorem that, since
0X is a finite union of closed curves, fax fv’ldm = sz f fdz = 0 for any analytic,

L' function f. With these observations (along with the fact that o 'hlG = F,

(wj,§)2=/ qurlde:/ chb—lGh—lhdm=/ wi F ™ + hg) dm.
X aX X
(10)
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We endeavor to show that the right-most integral in (10) is equal to zero. Since w; F~ Iy
is an analytic, L! functionon 8 X, fax(wj F’lr)v’1 dm = 0. Thus, it suffices to show
that faX ij_lhs dm = 0 for all w;. However, since hy € & = span{sy, ..., 54}, it
actually suffices to show that

f wiF's7dm =0
X
for any i, j.

Since wj, F' € H D> it follows from Lemma 2.7 that w; F~ I e H2 That is, it
satisfies the constraints of A. Recall that the s; are linear combination of reproducmg
functions at the various points involved in the construction of A. In particular, if any
analytic function ¢ satisfies the constraints of A, then (¢, s;)2 = O for all i. This
implies that

/ ij_ls_idm = <ij_l,s,-> =0
ax 2

for all i and j. Therefore (v, g)o = 0 for v € H? B.D This completes the proof. O

4.4 Universal Lower Bound for the Left-Invertible Toeplitz Operators

Let ¢ € L be fixed and consider the Toeplitz operator T(;"D . If we assume this
operator is left-invertible, one can find &, p > 0 such that IITOZ’Df | = eanlfll

forall f € H; 2 “p- The goal of this subsection is to prove a uniform version of this
statement:

Proposition 4.13 [f¢ € L™ and Tg’D is left-invertible for every (o, D) € ¥ X A, then
there exists 0 < ¢ < 1 (independent of (o, D)) such that, for every (a, D) € ¥ x A
and every f € HiD,

.D
IT, 7 Fll = el flla

We first need a few lemmas. Let L% denote the usual, unweighted L? space and we
equip X with its usual metric.

Lemma 4.14 There is a universal constant C such that for all hy, hy € L% and all
o, feX

[{h1, h2)o — (B, h2)gl < Cllhillollh2llodist(a, B).

Proof We first note that, since the functions Z are uniformly bounded above and below
on X, there is a uniform constant C such that for all o, € X,

1Z|“7F 1| < C - dist(a, B)
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on X. The proof is now straightforward: we have

(i1 hale = (b s = [ T2 = 121 dm
:/hlh_z(|2|“*ﬂ—1>|2|ﬂdm

SO

[{h1, h2)a — (h1, ho)gl < C - dist(a, ﬁ)/|hIE||Z|'B dm < C-dist(e, ) h1ligllh2llg

and the conclusion follows by the uniform equivalence of the § and 0 norms. O

Lemma 4.15 Let H be a closed subspace ofL%. Foreach o € %, let H, be the image
of the space H = Ho under the identity mapping (o : L% — Li. let P, denote the
orthogonal projection of Lg onto Hy. We let Q4 denote the corresponding operator
in L:

0

N
O« =1y Pylg.

Then there exists an absolute constant C such that for all f € L% andalla, B € %,

1Quf — Qs fl3 < C-dist(a, )| f13.

Proof Fix f. To unclutter the notation let g, = P, f and gg = Pg f. By definition,
8« 18 the unique vector in H, such that

(f — 8ash)a =0 forallh € H= Hy,

and similarly for gg. We then have, since the spaces H,, all coincide with H,

g — g8l12 = (ga — 88+ 8u — 8B)a
=(f — 888« — 88)a — (f — 8u» 8« — 8B«
=(f—8p8 —8pla — (f — 88> 8« — 8B)B

This last expression has the form (A1, h2)y — (h1, h2) g, where we have put
hi=f—gpg, h2=ge—gs.

Observe that [Igalle < Iflla = Cllfllo, similarly for g, so that |[A1llo, lh2llo <

C|l fllo- Hence, by the continuity of the inner product (Lemma 4.14),

g — g1l < 1(h1. h2)a — (i, ha)gl < Cllhllolihallo - dist(e. B) < CIIfIG - dist(a, B,
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and the proof is finished by the mutual equivalence (with a universal constant) of the
« and 0 norms. O

We observe that the constants in the above argument do not depend on the choice of
the original subspace H. It then follows immediately that

Lemma 4.16 There is a universal constant C such that forall f < L(z) andall D € A,

1Qanf — Qp.pfl2 < C-dist(a, B3

In particular, for fixed D € A, the map from X to B(L(z)) given by

o= Qup =1, Pupla
is Holder continuous, with constant independent of D € A:
Qa0 = Qp.pllg(2) < C - dist(e, p)!/2.
Lemma 4.17 For fixed o« € X, the map from A to B(Lg) given by
D — Pyp
is Lipschitz continuous, with constant independent of a, that is, for D, D' € A
| Pap — Paprllp2) < C - dist(D, D).

Proof We give the proof in the case of a single 2-point constraint; the case of a single
derivation is similar. The general case then follows by a straightforward induction on
the codimension, we leave the details to the reader.

Suppose we have a 2-point constraint f(a) = f(b). In this case A is a copy of the
Riemann sphere, and for fixed D € A there exist complex numbers 7, t, such that
|7.)? + 15> = 1, and such that the subspace Hi p consists of those functions f € Ho%
for which

taf (@) + 1, f(b) =0.

The t,, t;, are uniquely determined if we impose the additional requirement thatz, > 0,
which we do from now on. The space A is then a metric space if we impose, say, the £
metric. Since I — P, p is the rank-one projection onto the difference of reproducing
kernels 7,k§ + tpkj,, to prove the desired continuity it suffices to observe that for fixed
a and b, the norms of the reproducing kernels k7, kj are uniformly bounded above
and below (away from zero), independently of . O

Proposition 4.18 The map from ¥ x A to B(L%) given by

(a, A) — Qa,D = L;]Pa,Dla

is continuous.
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Proof This follows immediately from Lemmas 4.15 and 4.17, and the fact that the Lg
norms are all mutually equivalent, with uniform constants. O

Proposition 4.13 For («, D) € ¥ x A, we define operators Qy p and Xy p in L% by

. —1
Qa,D =y PD{,DL(X

and

Xo,p := Qu,pMyQu,p + U — Qu D).

By Proposition (4.18), we have that the map (¢, D) — X, p is norm continuous.

For fixed (o, D), there is by hypothesis an e(a, D) € (0,1] such that
WVan Ty P £l = IT, P £1| = €(@. D)|| f]| for f € H2. Thus, given F € L} and
decomposing it as F = f + g with f € HiD and g € (H(iD)J-, (the orthogonal
complement taken in Lg), we have

IXa.nFII* = Clig' X nFIlg
D
= C(IVaTy P £12 + 11812
> Ce(a, D> (I £15 + 18112
> C'e(a. D)||F 5.
Absorbing the constant C” into the definition of ¢, it follows that there exists € (a, D) >
0 such that || Xo,p F|| > (e, D)|| F| forall F € L3.
To show that this holds with a uniform choice of € > 0, suppose no such uniform
choice exists; then there exists a sequence (o, D) from ¥ x A and unit vectors

F, € L% such that || X, p, Full — 0. By compactness, we may assume (o, D;)
converges to some (o, D). Then

0 <e(, D) < | Xa,pFall = 1 Xa,,0, FIl + |(Xe,p0 — Xa,,0,) F |

By norm continuity of X, p, the right hand side tends to 0 as n tends to infinity, which
is a contradiction. O

4.5 Invertibility for Toeplitz Operators and Symbols

In this section we collect a few necessary lemmas on the invertibility of not only the
Toeplitz operators themselves, but their relation to the invertibility of their symbols as
functions in the algebra A.

Lemma4.19 If ¢ € L°° and ¢ € A, then for all (a, D) € ¥ x A,

o, D _ pa,Dya,D o, D _ pa,Dpa,D
T%5 _TJ T¢ and Tv/a —Ta Tw .
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Proof Let f, g € H, 2 . Since A acts as a multiplier algebra for H, (3 p» We also have
Vg e H, 2 D It follows from Lemma 4.5 that

(TEPTEP f )y = (T3P £ T3P )y = (V2 p MV £ Ve oMy Ve p8)er
()

Now, since ¥ g € Htf p-» e have that V¥ My V,, pg = ¥ g. However, since ¢ f may
not be in HiD, we have V;DM(p Ve.nf = V;’D¢f. These observations allow us to
see that

(Vi pMgVap f. VE pMy Ve p8)a = (Ve pdfo¥8)a = (6 f. VapV8)a = (¥ f. 8)a-
(12)

Combining (11) and (12), we have

(T PTy P fL8)a = WS 8)a = Va0V S Vapg)a = (¥ Vap [, Ve p8)a

= (Vyp¥¢Vanf, 8)a

But, by definition V; qubVa D= W ¢ , so the above becomes:

(TrPTy P fL8)a = (T . 8)a

Since this holds for all f, g € H(f p- it follows that T%d) =T 7 T By taking
adjoints (and therefore another application of Lemma 4.5), we conclude

Ta;D — (T%;f))* — (TE’DT(X’

D\x __ o, D\x pet,D\x __ po,Dpa,D
; SOy = (@ Py Py = TP TP

é 14
O
Declare an element ¢ € A to be invertible in A if ¢(z) # 0 for all z € X and
¢~ = eA
Lemma 4.20 Let r € A. The following are equivalent:
(i) W is invertible in A;
(ii) There exists (o, D) € ¥ x A such that T$’D is right invertible;
(iii) Tl/'f’D is invertible for every (a, D) € ¥ x A.
| - lel ?
Proof Tobegin, we suppose v is invertible in A and let (a, D) € ¥ x A. By definition,
¥ does not vanishon X and ¢ ~! € A.Inparticular, y "' = ¥~ = 1. This implies
that

Moreover, (T]Z’D)

,D ,D ,D
Tel =T =1 =130 .
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Where [ is the identity operator. Now, we observe that both ¥ and ¢ ~! are in L.
Therefore, by applying Lemma 4.19, we find that

This shows that T&f’D is invertible for every (o, D) € ¥ x A. Moreover, we see that
its inverse is TIZ’,?. This establishes that (i) implies (iii). It is clear that (iii) implies
(ii). Therefore it remains to show that (i) implies (i).

To this end, let (¢, D) € ¥ x A be a parameter such that Tv‘f D s right invertible.

Then there exists an operator X ;’Z’D such that 7%P X ; D = I and so, by taking adjoints,
(X; Dy« (TO‘ Dyx — I 1t therefore follows that, for any f € HiD,

LFI = 12y @2y £ < 1 D ey 2y  £11.

Thus, if we put § := ||(X03D)*H > 0, we have that ||(T°‘ D) Sl =S8l fll. Let k%D(z)
v

be the reproducing kernel for H 3 p- Observe thatif f € H 3 p- then

TPV Ry = (T3P f kP e = (W F kS P ) = Y () f RSP e
= (f, Y (W)k%P),.

Thus we yield the following eigenvector relationship:

(TC{ D) kol D ( )
Since k%P € H 5 p» We have that
@)L = 1Ty Py kP = 81k Pl (13)

LetQ={weX : ¢yw) #0 and ko D £ 0}. Observe that Q is a dense subset
of X. Moreover on €2, we can form and divide by [|k3; D||. Thus, (13) implies that

|l(w)| < 3 for w € Q and hence everywhere by continuity. Thus ¢ does not vanish

on X and therefore v is invertible in A. O

5 The Widom Theorem for Constrained Algebras

Lemma5.1 Let ¢ € L be unimodular. If there exists r € A such that || — || < 1,
then Tq‘;’D is left-invertible for every (o, D) € ¥ x A. Further, if ¢ is invertible in A,

then Tg’D is invertible for every (a, D) € ¥ x A.
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Proof Suppose y € Aissuchthat||¢p—v | < 1.Since ¢ is unimodular, ||| —y¢|| < 1.
Therefore, it follows from Lemma 4.5, that

a,Dy o, D _ T
1= TPl =170 = =gl < 1.
This directly implies that TlZ?iD is invertible. Thus, by Lemma 4.19, it follows that
Tq‘; ‘D is left-invertible. Suppose further that i is invertible in A. By Lemma 4.20, we
have that 7} ‘P is invertible. It follows that Ty ‘D is right invertible and therefore Ty D
is totally invertible. O
Lemma5.2 If f, g € L?, thenforalla € %,
(S5 gl = 1 fll2,—allgl2.a-
Proof Let « € X. By the classic Cauchy-Schwarz inequality,
I(f. &)l = / f§dm' = ‘/ f81ZI721Z]> dm
ax ax
= (112178, 81ZI%)2| < 1£1Z1 ¥ 120g1Z I
Therefore
(/. 82l < f 171217 dm/ 18171Z1* dm = || fl12.~allg 2.0
ax ED'¢
O

Lemma 5.3 Suppose ¢ € L*° is unimodular. The distance from ¢ to A is strictly less
than one if and only ifT(;;’D is left-invertible for every (o, D) € £ x A.

Proof Suppose that the distance from ¢ to A is strictly less than one. Lemma 5.1
implies that T(;"D is left-invertible for every (o, D) € £ x A. Now assume that Tg’D
is left-invertible for every (o, D) € ¥ x A.

By Proposition 4.13, there exists a uniform ¢ > 0 (independent of (&, D)) such
that, for all (a, D) and f € Hy p,

TP £l = ell f o (14)

Leth € # = v-'M + S. By Lemma 4.12, there exists (=8, D) € = x A,
feH?y pandg € L2 gsuchthath = fg, |t = || fll2,-pllgll2,p.and (¥, )2 = 0
forall y € H? 6.0 Recall that P_g p is the orthogonal projection from L?> p onto
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H? 8.D" Thus, on one hand Lemma 5.2 gives rise to the following estimate:

thdm‘ = ’/ ¢>fgdm‘
ED'e

=|of.8)2l

=Nof. (I — P-p D)8l
=|{((I — P_g.p)pf,2)l

< = P-g.p)Pfll2.-pligl2.p-

X

While on the other hand, the Pythagorean theorem and the fact that ¢ is unimodular
asserts that

”f”%7ﬂ — ||¢f||%7'3 =|P_gpof+U— P_ﬁ,D)‘ﬁf”%,—ﬁ
— ||P7,3,D¢f||%,—,3 + |1 — Pfﬁ,D)dl’f“%,—ﬂ'

Now, combining (14) and the fact that P_g popf = T¢_ﬁ b f, the above equality
becomes

—B,D
L3 g = 1T, 2P0 f13 5+ 1 = P_pp)d f13 5 = 1 FI3. 5

+I( = P_g p)$ I3, _p-

and therefore

I = P_p.0)f 155 < V1=l fll2—p.

The above estimate, along with the estimate we had on the integral of ¢h guarantee

that
Va phdm| < ||(I — P_g.p)p fll2,—pligl2p
X

< V1= 21 flaplighap = 1 - 2Ilall. as)

Note that the above estimate is holding for 7 € .#4, a dense subset of .#. Since
integrating against ¢ and || - ||; are each continuous linear functionals, the fact that
inequality in (15) holds for a dense subset of .# immediately implies that it will
hold for all i € .# . Recall that by Lemma 4.9, the map A: L®/A — .#* sending
() — (k¢)‘///, where A : L' — C is the functional sending v > fax ¢, is an
isometric isomorphism.

Since (15) holds for h € .#, we find that ||A4(h) |/// || < 1. Since A is an isometry,
this implies that || (¢)|| < 1. Since the norm of a vector is interpreted as its distance
from the ‘zero’ element, this implies that the distance from ¢ to A is strictly less than
one. O
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Theorem 1.8 (Widom Theorem for A.) Suppose ¢ € L™ is unimodular. TP s
left-invertible for each (a, D) € ¥ x A if and only if dist(¢, A) < 1. In particular,

Tg’D is invertible for each (o, D) € £ x A if and only if dist(¢p, A™") < 1.

Proof Everything aside from the ‘in particular’ statement has been proven in Lemmas
5.1 and 5.3.

Thus, suppose 72 is invertible for reach (a, D) € & x A. Lemma 5.3 guarantees
that there exists ¢ € A such that ||y — ¢|| < 1. We need to argue that ¥ is invertible

in A.
By Lemma 5.1, we know that Tg’DTIZ’D and Ty ‘D" are invertible. By taking its

adjoint, we have that (T(;’D ) = Tg’D is invertible. Since both Tg’D T$’D and Tg’D

are invertible, we find that TIZ‘ s necessarily invertible. Applying Lemma 4.20, we
conclude that v is invertible in A as desired.

Conversely, suppose there exists an invertible ¥ € A such that || — @] < 1.

Lemma 5.1 asserts that T;f ‘D is invertible for all (@, D) € ¥ x A. O

Data Availability Data sharing not applicable to this article as no data sets were generated or analyzed
during the current study.
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