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Abstract

Autism spectrum disorder (ASD) is comprised of several conditions characterized by alterations in
social interaction, communication and repetitive behaviors. Genetic and environmental factors
contribute to the heterogeneous development of ASD behaviors. Several rodent models display ASD-
like phenotypes, including repetitive behaviors. In this review, we discuss the potential neural
mechanisms involved in repetitive behaviors in rodent models of ASD and related neuropsychiatric
disorders. We review signaling pathways, neural circuits and anatomical alterations in rodent models
that display robust stereotypic behaviors. Understanding the mechanisms and circuit alterations
underlying repetitive behaviors in rodent models of ASD will inform translational research and
provide useful insight into therapeutic strategies for the treatment of repetitive behaviors in ASD and
other neuropsychiatric disorders.

1 Introduction

Autism spectrum disorder (ASD) consists of a group of neurodevelopmental disorders with shared,
yet heterogeneous, behaviors. With the introduction of improved diagnostic criteria, there has been a
substantial rise in the prevalence of autistic cases in the last few decades, reported between 3-6
children per 1000 worldwide (Kassim and Mohamed, 2019; Lord et al., 2020) and 1 in 54 children in
the US (Zablotsky et al., 2019; Maenner et al., 2020). The variability in global prevalence is largely
due to differences in methodological assessment and environmental and/or geographical factors
(Chiarotti and Venerosi, 2020; Lord et al., 2020). Both genetic and environmental factors influence
the development of ASD and may converge on similar neural outcomes, such as altered connectivity,
excitation/inhibition imbalance and signaling system alterations (Muhle et al., 2004; Satterstrom et
al., 2020). Several candidate genes have been associated with the development of ASD (Levitt and
Campbell, 2009; Yuen et al., 2017; Feliciano et al., 2019; Grove et al., 2019; Guo et al., 2019);
siblings born in families with ASD are particularly high risk indicating a strong genetic basis (Stubbs
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et al., 2016). Environmental factors involved in the development of ASD include prenatal and
postnatal complications, viral infections and nutrient deficiencies (Grabrucker, 2013; Sealey et al.,
2016; Karimi et al., 2017; Modabbernia et al., 2017). Understanding these environmental and genetic
interactions in autism risk will help guide treatment strategies for ASD (Chaste and Leboyer, 2012;
LaSalle, 2013; Tordjman et al., 2014; Kim and Leventhal, 2015; Nardone and Elliott, 2016).

Children with ASD are characterized by social and communication challenges and restricted,
repetitive behaviors (Baranek, 1999; Lord et al., 2000). These core behaviors are often accompanied
by comorbidities such as epilepsy, anxiety, hyperactivity and aggression (Richler et al., 2007; King et
al., 2009). The restricted, repetitive behaviors (RRBs) in ASD are clustered into two categories. The
repetitive behaviors include stereotypic motor movements, repetitive use of objects, self-injurious
behaviors, and the circumscribed behaviors include compulsions, desire for sameness, rituals, and
restricted interests (Zandt et al., 2007; Whitehouse and Lewis, 2015). The restricted, repetitive
behaviors in ASD share similarities with obsessive compulsive disorder (OCD) and other
neuropsychiatric and neurodevelopmental disorders (Scahill and Challa, 2016; Jiujias et al., 2017;
Gulisano et al., 2020). Currently, behavioral and pharmacological interventions target specific
symptoms and/or associated comorbidities, which are personalized according to individual needs
(Eissa et al., 2018; Chahin et al., 2020). Yet, more robust therapeutic interventions are required that
target the underlying neural mechanisms that govern these core autistic symptoms.

Behavioral approaches are typically used to treat repetitive behaviors in ASD and related
neurodevelopmental disorders. Behavioral approaches usually employ reinforcement procedures,
altering the environment and promoting variability and flexibility in behavior (Boyd et al., 2012).
Pharmacological interventions for irritability and some forms of repetitive behavior, such as self-
injurious behavior include selective serotonin reuptake inhibitor (SSRIs) like Fluoxetine and
antipsychotics such as haloperidol (typical) and Risperidone (atypical) (Gencer et al., 2008; Miral et
al., 2008; Malone and Waheed, 2009; Doyle and McDougle, 2012; DeFilippis and Wagner, 2016;
Masi et al., 2017; Maneeton et al., 2018). Risperidone is a second-generation antipsychotic
medication that has been FDA approved for the treatment of irritability in children and adolescents
(McDougle et al., 2005; Scahill et al., 2007; McDougle et al., 2008; Aman et al., 2009; Scahill et al.,
2012). It is an antagonist at the serotonin 2A and dopamine D2 receptors and is useful in alleviating
irritability, aggression and self-injurious behavior in young ASD subjects (McCracken et al., 2002;
Shea et al., 2004; Chavez et al., 2006; Kent et al., 2013; Fung et al., 2016; Maneeton et al., 2018). In
addition, in controlled clinical trials, some of these pharmacological medications also reduce
repetitive behaviors, but with potential side-effects that limit the widespread usage of these drugs in
treatment of ASD and as such is not approved by the FDA for repetitive disorders (McPheeters et al.,
2011; Sharma and Shaw, 2012; Whitehouse and Lewis, 2015). Additionally, benefits of
pharmacological medications in improving ASD behavior are highly variable across studies and
clinical populations. There is also a paucity of long-term clinical trials with large sample size on
pharmacological interventions against restricted/repetitive behavior in ASD (Yu et al., 2020; Zhou et
al., 2020). Furthermore, there is a lack of evidence-based treatment strategies targeting diverse
repetitive/restricted behaviors in ASD. Hence, novel treatment strategies are required that target core
autistic deficits, while limiting the detrimental side effects of such medications. In this review, we
have discussed preclinical studies demonstrating efficacy of the pharmacological treatments on
restricted/repetitive behaviors, which are still under development for targeting repetitive/restricted
behaviors in a clinical population. In addition, we have also reviewed studies pointing in the direction
of circuit-based strategies for targeting repetitive/restricted behaviors in rodent models of ASD.

This is a provisional file, not the final typeset article
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As an approach to developing new therapeutics, several rodent models of ASD have been generated
with good construct validity that recapitulate many of the behavioral phenotypes observed in autistic
individuals. The behavioral tasks assessing repetitive behaviors are more developed than behavioral
tasks assaying resistance to change or restricted behaviors (Lewis et al., 2007). The studies we will
review mainly discuss rodent models primarily displaying lower-order stereotyped motor behaviors,
which are generally better characterized and easier to model than models of insistence on sameness
or restricted behaviors (higher-order). Nevertheless, in this review, we have also discussed a few
rodent models that show both the repetitive and restricted behavioral phenotypes. The repetitive
behaviors observed in rodent models of autism are complex and diverse, including self-grooming,
jumping, circling, marble burying, hanging, rearing and forelimb movements and involve several
molecular and neural pathways (Whitehouse and Lewis, 2015; Kim et al., 2016). In addition,
complex restricted behaviors such as resistance to change and narrow interests represent cognitive
rigidity to routines and obsessions that correspond with executive function deficits (Lopez et al.,
2005). Behavioral assays for resistance to change or cognitive inflexibility in rodents include
response extinction, reversal learning, and set shifting tasks, assessing inability to change the
developed spatial habit (Colacicco et al., 2002; Roullet and Crawley, 2011). Understanding of the
complex neural mechanisms underlying repetitive behaviors in these models is expected to boost
translational research and provide valuable insight into potential treatments for repetitive behaviors
observed in ASD. Therefore, in this review, we will discuss the underlying mechanisms that mediate
the complex motor activities and consequent repetitive behavioral repertoire in different rodent
models of ASD.

2 Rodent models of autism: genetic mutations, environmental risk factors and some inbred
strains displaying repetitive/restricted behaviors

Genetic mutations account for a significant proportion of ASD risk (Ronemus et al., 2014). Genetic
mutations in ASD are complex and diverse depending on structure type (i.e. large-scale chromosome
abnormalities, small scale insertions, deletions, substitutions, copy number variation (CNV) and
single nucleotide variation (SNV)), inheritance type (i.e. germline, somatic, de novo mutation (non-
inherited)), frequencies (i.e. common, rare and very rare) and protein sequence affected (i.e.
frameshift mutation, point substitution) (De Rubeis and Buxbaum, 2015; de la Torre-Ubieta et al.,
2016; Ramaswami and Geschwind, 2018). Over the last decade, with the advancement of sequencing
technology, many genes have been implicated in autism pathogenesis (Geschwind and State, 2015).
This review covers many of the most common of these factors, which underscores the range of
molecular and cellular factors implicated in ASD. Such diversity of neurobiological factors in ASD
further highlights the challenges of treatment development, where seemingly divergent neural factors
may converge on similar behavioral outcomes, i.e., restrictive and repetitive behaviors. When
possible, we have attempted to highlight some of these similarities and differences in risk factors
(Figure 1), which remains a major challenge for the field to define and address.

Many genes are linked to syndromic ASD, in which monogenic syndromes exhibit phenotypic
overlap with ASDs (i.e., ASD is secondary to a known genetic cause and disorder with clinically
defined presentation) (Walsh et al., 2008; Schaefer and Mendelsohn, 2013; Ramaswami and
Geschwind, 2018). Monogenic disorders accounted for in ASD include Fragile X Syndrome (FMR1),
Tuberous Sclerosis (TSC1, TSC2), Angelman and Prader-Willi Syndromes (15q11-q13
deletion/UBE3A and GABRB3 deletion), Rett Syndrome (MECP2), Phelan-McDermid Syndrome
(22q13.3 deletion/SHANK3 mutation), Smith-Lemli-Opitz Syndrome (DHCR?7), Neurofibromatosis
(NF1), Timothy Syndrome (CACNAIC) etc. (Muhle et al., 2004; Moss and Howlin, 2009;
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Geschwind, 2011; Ramaswami and Geschwind, 2018). Whereas in idiopathic autism, the cause is
unknown.

Susceptibility genes linked with non-syndromic autism involve multiple common and rare variants,
copy number variations (CNVs) and de novo mutations. This genetic heterogeneity is associated with
idiopathic ASD and accounts for a substantial fraction of autism risk, indicating involvement of
multiple genetic pathways in its etiology (Swanwick et al., 2011; Devlin and Scherer, 2012). Multiple
genes with different functions implicated in ASD include SHANK1,2, CNTNAP2, NLGN, NRXN,
16p11.2 microdeletion/microduplication, SCN1A etc. (Cook Jr and Scherer, 2008; Geschwind and
State, 2015; Ramaswami and Geschwind, 2018; Sultana et al., 2018). Most ASD related genes affect
neural circuit structure and function, with defects in either a single neural circuit component
(localized) or multiple neural systems (distributed) impacting overall network activity (Figure 1)
(Rubenstein, 2010). These neurodevelopmental defects can lead to abnormal neural structure and
connectivity, as well as alterations to neurotransmitter systems and their receptors.

Animal models of repetitive and restricted behaviors are classified into different categories by causal
factors. The categories of models of repetitive and restricted behavior include: 1) subsequent to CNS
insult (e.g. specific genetic mutations, lesions or environmental factors); 2) caused by
pharmacological agents (e.g. apomorphine (dopamine agonist), amphetamine, cocaine, NMDA
(glutamate receptor ligand)); 3) resulting from restricted housing (e.g. laboratory cage, social
deprivation); and 4) linked with particular inbred rodent strains (BTBR, C58) (Lewis et al., 2007;
Bechard and Lewis, 2012).

Many of the genetic and environmental factors implicated in the etiology of autism have been
modeled using rodents. However, not all rodent models of ASD manifest repetitive behavior. For
example, mice with knockout of neuroligin-2 and -4 genes or mutations of the Scn2a (Scn2a*-) gene
do not exhibit alterations in intensity or frequency of repetitive behavior (El-Kordi et al., 2013; Wohr
et al., 2013; Shin et al., 2019; Cao et al., 2020). Hence, we will review preclinical studies with
particular emphasis on rodent models displaying robust stereotypic behavior (Table 1), as discussed
below.

Fragile X syndrome (FXS) is caused by an expansion of a single trinucleotide sequence (CGQ)
resulting in silencing of FMR1, an X-linked gene coding for fragile X mental retardation protein
(FMRP). FMR-1 protein, an RNA binding protein plays an important role in regulating synaptic
proteins via mRNA translation and development of neural synapses. In addition to mRNA binding,
FMRP protein has diverse functions including protein-protein interactions, DNA damage repair via
chromatin binding, regulation of Ca®* signaling and neuronal excitation/inhibition balance (Brown et
al., 2010; Alpatov et al., 2014; Davis and Broadie, 2017; Filippini et al., 2017; Zhou et al., 2017).
Hence, failure to express the FMR-1 protein results in development of autistic symptoms such as
repetitive and restricted behavior (Turner et al., 1996; Mazzocco et al., 1998; Spencer et al., 2005).
Fragile X mutant models exhibit increased marble burying (Thomas et al., 2012; Gandhi et al., 2014),
resistance to change in an operant task (Moon et al., 2006), learning deficits on water maze task,
hyperactivity, anxiety and inadequate pre-pulse inhibition of acoustic startle (D'Hooge et al., 1997;
Peier et al., 2000; Spencer et al., 2005; Lauterborn et al., 2007; Errijgers et al., 2008). Fmr-1 null
mice exhibit altered spine density and morphology on apical dendrites of occipital cortical layer 5
pyramidal cells (Comery et al., 1997; Beckel-Mitchener and Greenough, 2004). In addition, Fmr1
knockout mice exhibit dysfunctional cortico-striatal circuitry, reduced long-term potentiation (LTP)
and decrease in levels of synaptic proteins like NMDAR subunits NR1, NR2A and NR2B in medial
prefrontal cortex (Lauterborn et al., 2007; Krueger et al., 2011; Zerbi et al., 2018). Gene therapy
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using human FRM] alleviates the low pre-pulse inhibition, hyperactivity and anxiety behaviors in
Fmr1-KO mice (Peier et al., 2000; Paylor et al., 2008; Spencer et al., 2008; Gholizadeh et al., 2014).
Application of brain-derived neurotrophic factor, mGluR5 antagonists, anti-purinergic therapy
(suramin), minocycline, phosphodiesterase-4D negative allosteric modulator (BPN14770) and PI3K
antagonist (GSK2702926A (GSK6A)) attenuates dendritic spine development aberrations, long-term
potentiation impairments and behavioral abnormalities in Fmr/ mutant mice (Dolen et al., 2007;
Lauterborn et al., 2007; Dolen and Bear, 2008; Bilousova et al., 2009; Naviaux et al., 2015; Gurney
etal., 2017; Yau et al., 2018; Gross et al., 2019).

Angelman syndrome involves chromosome 15 deletions, particularly the q11-13 region, comprising
the GABAA receptor beta 3 subunit (GABRB3) and ubiquitin ligase (UBE3A) genes. GABRB3 and
UBE3A genes play a role in regulating protein synthesis and synaptic plasticity (Weeber et al., 2003;
Moy et al., 2006; Mardirossian et al., 2009). Mouse models of GABRB3 and UBE3A deletions
exhibit ASD phenotype including developmental delay, hyperactivity, epilepsy, impaired motor
function, learning deficits and anxiety-related behaviors (DeLorey et al., 1998; Jiang et al., 2010;
Tanaka et al., 2012). Mice with mutation in Ube3A™/?* (maternal null mutation) exhibit deficits in
long-term potentiation (LTP) and changes in calcium-dependent CaMKII activity in the hippocampus
(Weeber et al., 2003). The Ube3A™P" mice show decreased marble burying, rearing behavior and
reversal learning deficits in the Morris water maze (Huang et al., 2013). Additionally, Gabrb3
deletions cause neuronal dysfunction via alterations in protein synthesis and GABA-A receptor
mediated synaptic transmission. The Gabrb3”~ mice also exhibit repetitive circling behavior (Mercer
et al., 2016; Orefice et al., 2016).

Another condition, tuberous sclerosis (TSC), involves mutation of either TSC1 and TSC2 genes that
codes for proteins hamartin and tuberin, which act as tumor suppressors that regulate cell growth and
the mTORCI1 complex (Astrinidis and Henske, 2005; Inoki et al., 2005; Curatolo and Bombardieri,
2007). mTOR is a crucial part of signaling pathways involved in cell growth, protein synthesis and
axon formation (Choi et al., 2008; Huang and Manning, 2008). Tsc2"- mice with heterozygous TSC2
gene mutations exhibit learning, and memory deficits associated with aberrant mTOR signaling
mediated LTP in the hippocampal CAl region (Ehninger et al., 2008). Mice with Tsc2 loss in
cerebellar Purkinje cells (Tsc2{/-;Cre mice) display ASD-like behaviors, including social deficits and
repetitive behavior (Reith et al., 2013). Further, Tsc2 mutant mice with Tsc2 gene deletion from
radial glial progenitor cells exhibit lamination aberrations, enlargement of neurons and glia,
myelination defects and astrocytosis (Way et al., 2009). In addition, mice with ablated TSCI
expression in neurons show seizures and neuropathological aberrations including enlarged, ectopic
neurons in hippocampus, cortical, thalamic brain areas, alterations in glutamatergic synapses,
abnormalities in cortical lamination, cytoskeleton, dendritic spine structure and myelination
(Tavazoie et al., 2005; Meikle et al., 2007). Application of mTORCI1 inhibitors rapamycin and
RADO01 [40-O-(2-hydroxyethyl)-rapamycin] ameliorates synaptic, cognitive and behavioral deficits
in mouse model of tuberous sclerosis (Ehninger et al., 2008; Meikle et al., 2008; Zeng et al., 2008;
Ehninger and Silva, 2011; Bateup et al., 2013).

Rett syndrome (RTT) is caused by mutations in the MECP2 gene located on the X-chromosome,
which encodes for methyl-CpG-binding protein 2 (MeCP2) and affects brain development mostly in
females (Ghidoni, 2007). Several mouse models of autism have been developed to study the effects
of MeCP2 mutations (Chahrour and Zoghbi, 2007; Samaco et al., 2008). Mutant mice with truncated
MeCP2 protein show repeated forelimb motions similar to repetitive hand movements in individuals
with Rett syndrome (Table 1) (Shahbazian et al., 2002; Moretti et al., 2005). Dopaminergic deficits
are implicated in RTT, such as decreased levels of dopamine transporter (DAT) (Wong et al., 1997),
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altered density of dopamine D2 receptors in the striatum (Chiron et al., 1993), and reduced levels of
tyrosine hydroxylase (TH), dopamine synthetic enzyme, in the striatum (Panayotis et al., 2011),
suggesting striatal dysfunction in RTT individuals. Additionally, MeCP2 null mice exhibit deficits in
motor coordination and motor learning along with memory deficits in the Morris water maze.
Environmental enrichment alters excitatory synaptic density in cortex and cerebellum, LTP deficit,
increased brain-derived neurotrophic factor (BDNF) levels in cortex and rescued motor learning
deficits (Lonetti et al., 2010).

Autism susceptibility genes, such as neuroligin genes (NL1, 2, 3, 4) encode the eponymous members
of postsynaptic cell surface adhesion proteins that are crucial for synapse formation and maintenance
(Stidhof, 2008). Deletion and point mutation of neuroligin-3 (NL3) are associated with autistic
behavioral phenotypes (Jamain et al., 2003; Levy et al., 2011). Overexpression of neuroligin-2 (NL2)
in PFC leads to repetitive jumping behavior in mice (Table 1) (Hines et al., 2008). Moreover, deficits
in neurexins, which are presynaptic cell adhesion proteins that serve as ligands for neuroligins and
modulates synapse differentiation and maturation, control transmitter release, result in stereotypic
grooming and altered nest-building behaviors in neurexinla mutant mice (Etherton et al., 2009; Li
and Pozzo-Miller, 2020).

SH3 and multiple ankyrin repeat domains 1, 2 and 3 (SHANKI1, SHANK2 and SHANK3) are
postsynaptic scaffolding proteins present in excitatory synapses that are important for synaptic
development and function (Grabrucker et al., 2011; Guilmatre et al., 2014). The Shank3 protein
contains multiple conserved motifs, comprising an ANK repeat, PDZ and SAM domains, a proline
rich cluster and SH3 (Gundelfinger et al., 2006; Kreienkamp, 2008). The SHANK proteins also
regulate spine morphology and receptor endocytosis, promote interaction of signaling pathways and
facilitate synaptic plasticity, crucial for the process of learning and memory (Ehlers, 1999; Sheng and
Kim, 2000; Monteiro and Feng, 2017). Mutations in Shank genes are implicated in ASD
(Schmeisser, 2015). In particular, Phelan-McDermid syndrome (PMS) or 22q13.3 deletion syndrome
is characterized by developmental and speech delays, intellectual disability, reduced motor function
and ASD. PMS is caused by loss of function of SHANK3 gene resulting in reduced expression of
SHANK3 protein, affecting synaptic transmission and plasticity (Costales and Kolevzon, 2015). SH3
and multiple ankyrin repeat domains 3b mutant mice (Shank3b”-) show repetitive grooming behavior
(Table 1) (Peca et al., 2011; Schmeisser et al., 2012). Moreover, Shank3B mutant mice manifest
functionally impaired AMPA and NMDA receptors (Peca et al., 2011; Sala et al., 2015; Peixoto et
al., 2016) (Figure 2). Shankl™~ mice display increased self-grooming behavior during adulthood
(Sungur et al., 2014), while Shank2”- mice manifest hyperactivity and repetitive jumping behavior
along with reduced activity of NMDA receptors (Table 1) (Schmeisser et al., 2012; Won et al.,
2012). In contrast, Shankl genotypes (Shank1™*, Shank1"-, Shank1”) exhibit high self-grooming
behaviors, but which are confounded by behavioral testing or housing conditions. Shank1 null mutant
mice show decreased transitions in the light-dark test, suggesting anxiety-related phenotypes and
reduced motor abilities (Silverman et al., 2011).

Contactin associated protein-like 2 (CASPR-2) transmembrane protein is encoded by the CNTNAP2
gene of the neurexin superfamily that primarily mediates cell-cell adhesions in the nervous system
(Rodenas-Cuadrado et al., 2014). In addition, the CNTNAP2 gene plays an important role in the
formation of dendritic spines and dendritic arborization (Anderson et al., 2012). Cntnap2 KO mice
exhibit neuronal migration abnormalities, decreased cortical interneurons number and aberrant
hippocampal and cortical network activity (Penagarikano et al., 2011). In addition, the Cntnap2
mutant mice show reduced densities of dendritic spines along with decreased levels of AMPA
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receptors subunit GluAl in the spines (Gdalyahu et al., 2015; Varea et al., 2015; Gao et al., 2019).
Further, the decreased number of parvalbumin-positive interneurons in the striatum results in altered
activity of the cortico-striatal-thalamic pathway underlying repetitive behaviors (Lauber et al., 2018).
Mice with the CNTNAP2 mutation display repetitive self-grooming behavior, rescued by
risperidone, a dopamine D2 receptor antagonist (Table 1) (Penagarikano et al., 2011), thereby,
decreasing dopaminergic function and cortical activation (Parr-Brownlie and Hyland, 2005).

In addition to the above autism susceptibility genes, many other genes implicated in autistic
phenotypes have been investigated in preclinical studies. Mutations in protocadherin 19 (PCDH19)
chromosome X-linked gene, leads to Epilepsy in Females with Mental Retardation (EFMR) disease,
cognitive impairments and autistic phenotype (Ryan et al., 1997; Dibbens et al., 2008; Hynes et al.,
2010; Specchio et al., 2011). PCDHI9 gene encodes PCDH19 protein which is a cell-adhesion
protein. PCDHI19 regulates hippocampal neurons maturation, migration and GABAergic
transmission via binding with GABA-A receptor alpha subunit (Bassani et al., 2018). Additionally,
PCDHI19 interacts with intracellular protein NONO, involved in the modulation of steroid hormone
receptors (Pham et al., 2017). Male mice with Pcdhl9 knockout (Pcdhl9 X *4/Y) exhibit increased
rearing and stereotypic grooming behaviors (Lim et al., 2019).

Ephrins are membrane bound proteins acting as ligands of ephrin receptors, belonging to receptor
tyrosine kinases (RTKs) family which are transmembrane proteins. They serve important functions
including angiogenesis, axon guidance, cell migration, tissue border formation and synaptic plasticity
(Chin-Sang et al., 1999; Kullander and Klein, 2002; Martinez and Soriano, 2005; Héroult et al.,
2006; Aoto and Chen, 2007; Klein, 2009). In CNS, ephrins and Eph receptors are involved in axon
pathfinding, topographic development of different brain regions and connectivity, neuronal
migration, dendritic spine maturation, synapse formation and plasticity (Gao et al., 1996; Dalva et al.,
2000; Ethell et al., 2001; Grunwald et al., 2001; Henkemeyer et al., 2003; Murai et al., 2003; Palmer
and Klein, 2003; Bolz et al., 2004; Grunwald et al., 2004; Klein, 2004; Yamaguchi and Pasquale,
2004; Egea and Klein, 2007; Akaneya et al., 2010; Triplett and Feldheim, 2012). Deletion of ephrin-
A2 in mice exhibit impairment of behavioral flexibility in visual discrimination reversal learning task
(Arnall et al., 2010). Mice with double knockout of ephrin-A2 and ephrin-A3 manifest excessive
stereotypic facial grooming behaviors, resulting in face lesions. In addition, they also show reduced
locomotor activity, shift towards grooming in marble burying assay and increased pre-pulse
inhibition of acoustic startle (Wurzman et al., 2015). The repetitive grooming behavior in double
knockout mice suggests abnormalities in sensorimotor gating (Ben-Sasson et al., 2007; Perry et al.,
2007; Wurzman et al., 2015). Ephrin-A2 and ephrin-A3 are located at excitatory synapses in multiple
brain regions. Their deletions may result in altered excitability of forebrain networks suggesting
defective processing of sensory information (Qiu et al., 2012; Wurzman et al., 2015).

Phosphoinositide signaling is important for cell survival and proliferation. Phosphoinositide 3-kinase
(PI3K), Akt (serine/threonine kinase) and mammalian target of rapamycin (mTOR) are important
interlinks in the PI3K pathway and are activated by upstream receptor tyrosine kinases (RTKs) and
regulates protein synthesis for cell growth and proliferation (Cantley, 2002). PTEN (phosphatase and
tensin homolog deleted on chromosome 10), a tumor suppressor gene is a negative regulator of the
PI3K/AKT/mTOR signaling pathway (Ali et al., 1999; Sansal and Sellers, 2004). Pten is an ASD
candidate risk gene and its mutation is reported in a subset of autistic cases with macrocephaly
(Butler et al., 2005; Herman et al., 2007; Varga et al., 2009). Mice with PTEN deletions in cortical
and hippocampal neurons show macrocephaly and ASD behavioral deficits, including seizures,
increased anxiety and learning deficits. The conditional Pten mutant mice exhibit neuronal
hypertrophy associated with abnormal activation of Akt/mTOR pathway and Gsk3b inactivation

7
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(Kwon et al., 2006). Additionally, conditional Pten knockout in astrocytes results in increases to their
size (Fraser et al., 2004). Further, Pfen conditional KO mice exhibit increased spine number,
myelination defects and changes in synaptic structure and transmission (Fraser et al., 2008).
Germline Pten™” male mice also exhibit increased marble burying and digging, suggesting repetitive
behavioral phenotype (Clipperton-Allen and Page, 2014; 2015). Deletion of PTEN causes changes in
synaptic scaffolding proteins (PSD-95, Sapapl, sap-102) and reduced mGluR expression in the
hippocampus (Lugo et al., 2014). PTEN also exhibits critical functions during development, with
significant implications for autism and neurodevelopmental disorders (Rademacher and Eickholt,
2019). Hence, PTEN dysfunction in neurons has profound effects on neuronal morphology and
connectivity resulting in ASD-like behaviors.

Additionally, Homeobox protein (Hoxb8) protein is encoded by the HOXBS8 gene, member of
homeobox containing group of transcription factors, involved in developmental processes such as
positioning along the anterior-posterior axis and other physiological functions. Hoxb8 mutant mice
display excessive grooming behavior resulting in skin lesions and anxiety-like behavior (Greer and
Capecchi, 2002). In mouse brains, Hoxb8 cell lineage is present in the microglia. Hoxh8 mutant mice
with Hoxb8 mutations in microglia, exhibit increased cortical dendritic spine density and dendritic
spines in the striatum, defects in synapse structure, LTP and miniature postsynaptic currents. Long-
term application of fluoxetine (SSRI) attenuates excessive grooming and hyperactivity in Hoxb8
mutant mice. Hence, Hoxb8 in microglia may play role in modulation of cortico-striatal circuits and
associated grooming behavior (Chen et al., 2010; Nagarajan et al., 2018).

KCNQ/K,7 channels mediate voltage-dependent outward potassium currents regulating resting
membrane potential and decreasing neuronal excitability. KCNQ2 encodes subunits of neuronal
KCNQ/Ky7- K* channels, Kv7.2, which are present in the hippocampus and cortex. Mutations in
Kv7.2 are associated with developmental delay and autism (Cooper et al., 2001; Yue and Yaari,
2006; Shah et al., 2008; Brown and Passmore, 2009). Mice with heterozygous null mutations in
KCNQ2 gene (KCNQ2') exhibit elevated locomotor activity, hyperactivity, exploratory and
repetitive grooming, suggesting loss of Kv7.2 is linked to ASD behavioral abnormalities (Kim et al.,
2020).

Kin of Irregular Chiasm-like 3 (K/RREL3) gene mutations are linked with neurodevelopmental
disorders including autism and intellectual disability (Bhalla et al., 2008; Iossifov et al., 2012; Baig et
al., 2017). The KIRREL3 gene encodes Kin of IRRE-like protein 1 (KIRREL3), also called NEPH2
(Sellin et al.,, 2003). KIRREL3 (NEPH2) is a member of the KIRREL protein family of
transmembrane proteins that includes KIRREL (NEPH1) and KIRREL2 (NEPH3). KIRREL3 plays a
role in kidney blood filtration function and is a synaptic cell-cell adhesion molecule (Gerke et al.,
2006; Neumann-Haefelin et al., 2010). Kirrel3 in mice is present in the developing cochlea, retina
and olfactory neuroepithelial regions and in adult nervous system comprising sensory regions
(Morikawa et al., 2007). Disruption of function of the KIRREL3 gene is associated with alterations in
brain function. The gene is implicated in neural circuit development including neuronal migration,
axonal fasciculation and synapse formation (Serizawa et al., 2006; Nishida et al., 2011; Prince et al.,
2013). KIRREL3 gene knockout in mice leads to alterations in synapses connecting dentate gyrus
(DG) neurons to GABAergic neurons but no changes were observed in synapses linking DG neurons
to CA3 neurons. This resulted in disruption of DG synaptic activity and overactivation of CA3
neurons (Basu et al., 2015). KIRREL3 KO mice display increased rearing repetitive behavior,
hyperactivity, impaired novel object recognition and sensory abnormalities (Choi et al., 2015;
Hisaoka et al., 2018).
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Furthermore, Integrin-beta3 gene encodes integrin beta-3 protein which is a cell-surface protein
(member of alpha/beta heterodimeric receptors) and is involved in various functions including cell
adhesion/migration, cell-extracellular matrix interactions and axon/dendrite outgrowth (Sosnoski et
al., 1988; De Arcangelis and Georges-Labouesse, 2000; Clegg et al., 2003). Increased integrin-beta3
activity leads to elevated SERT transport of 5-HT and increased blood serotonin levels which is
reported in autistic individuals (Carneiro et al., 2008). Mice with mutation in the integrin-beta3 gene
exhibit elevated grooming in novel environments with no changes in activity in open field test.
Disruption of integrin-beta3 protein impairs platelet aggregation resulting in increased bleeding times
and hemorrhages. Additional studies are required to ascertain behavioral abnormalities in integerin-
beta3 deficient mice (Carter et al., 2011).

Netrin-G ligand 2 (NGL-2)/LRRC4 is leucine-rich repeat comprising postsynaptic cell adhesion
molecule which interacts with PSD-95, excitatory postsynaptic scaffolding protein and netrin-G2, a
presynaptic cell adhesion molecule (Lin et al., 2003; Kim et al., 2006; Woo et al., 2009; Matsukawa
et al., 2014). NGL-2 is implicated in intellectual disability and ASD (Jiang et al., 2013; Sangu et al.,
2017). NGL-2 is involved in regulation of glutamatergic synapse development and excitatory
transmission (DeNardo et al., 2012). Mice with mutations in NGL-2 (Lrrc4”") exhibit reduced
hippocampal NMDA receptor synaptic plasticity (Soto et al., 2013; Soto et al., 2018; Um et al.,
2018). Lrrc4”- mice show repetitive self-grooming behavior which is rescued by D-cycloserine,
NMDAR agonist. In addition, Lrre4”" mice exhibit impaired spatial learning in the Morris water
maze test and mild anxiety-like behavior (Um et al., 2018).

Similarly, Nerve injury induced protein 1 (Ninjurinl/Ninjl), is a cell-adhesion molecule involved in
nerve regeneration, angiogenesis, inflammation and cancer (Araki and Milbrandt, 1996; Ifergan et al.,
2011; Matsuki et al., 2015; Jang et al., 2016). Ninjl is expressed in cortico-thalamic circuits and is
implicated in regulation of synaptic transmission. Mutation in Ninjurinl (Ninjl) in mice leads to
excessive grooming to the point of inducing hair loss and lesions and increased anxiety like behavior.
In addition, Ninjl mutant mice exhibit glutamatergic alterations in the brain, including elevated
ionotropic glutamate receptors synaptic expression and mEPSCs amplitude. Stereotypic grooming in
these mice is alleviated by fluoxetine (SSRI), correlating with direct inhibitory effects of fluoxetine
on NMDA receptors (Le et al., 2017).

SH3RF2 gene present in the 1.8 Mb microdeletion at 5q32 is implicated in autism (Gau et al., 2012;
Yuen et al., 2017). It plays a role as an anti-apoptotic regulator of the JNK pathway via degrading
SH3RFI1 protein that activates JNK pathway (Wilhelm et al., 2012; Kim et al., 2014). Mice with
haploinsufficiency of Sh3rf2 (Sh3rf2"~) show increased jumping, rearing behavior, bury more
marbles in the marble burying test correlating with elevated digging behavior and hyperactivity.
Abnormalities in dendritic spine development in hippocampus, AMPA receptor mediated excitatory
synaptic transmission in CA1 hippocampus, altered hippocampal pyramidal neurons membrane
properties and increases in NR2A and GluR2 glutamate receptor subunits in hippocampus are
observed Sh3rf2"- mutant mice (Wang et al., 2018a).

Additionally, the p2l-activated kinase 2 (PAK2), a serine/threonine kinase, activated by Rho
GTPases plays a crucial role in regulating cytoskeleton remodeling, dynamics, formation of
postsynaptic dendritic spines and cortical neuronal migration (Bokoch, 2003; Boda et al., 2006; Asrar
et al., 2009; Causeret et al., 2009; De La Torre-Ubieta et al., 2010). Mutations in PAK2 gene are
implicated in ASD (Willatt et al., 2005; Quintero-Rivera et al., 2010; Sagar et al., 2013).
Haploinsufficiency of Pak2 leads to reduced spine densities in cortex and hippocampus, impaired
hippocampal CA1 LTP, decreased phosphorylation of actin regulators LIMK1, cofilin and reduced
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actin polymerization. Pak2*- mice show repetitive grooming behavior and bury more marbles in the
marble burying test (Wang et al., 2018b). This suggests PAK2 is critical in brain development and its
mutation contributes to autistic phenotypes.

The SCNIA gene heterozygous loss of function mutation results in Dravet Syndrome.
Haploinsufficiency of the SCN1A gene affects the o subunit of voltage-gated sodium channel
(Navl.1) in mice leading to autistic behavioral phenotypes, including hyperactivity and stereotypic
behaviors such as self-grooming and circling behaviors. Scnla™* mouse model of autism exhibit
increased excitation in the prefrontal cortex (PFC). Deletion of sodium channels (Nav1.1) in cortical
interneurons causes reduced sodium (Na') currents and neurotransmission of GABAergic
interneurons resulting in altered GABAergic activity, hyperexcitability and behavioral impairments
in the mutant mice (Table 1) (Han et al., 2012).

Mutations in receptor proteins are also involved in autistic phenotypes. Oxytocin is a peptide
produced in the brain, particularly in the paraventricular nuclei and hypothalamic supraoptic. It is
secreted primarily by the posterior pituitary gland into the circulation (Lee et al., 2009). Oxytocin
facilitates biological effects by binding to oxytocin receptor (Oxtr). Oxytocin receptor is mainly
found in the amygdala, hippocampus, olfactory lobe and hypothalamus areas of the brain (Gould and
Zingg, 2003). Oxtr - mice exhibit autistic like phenotypes, increased self-grooming behavior in a
visible burrow system (VBS) (Pobbe et al., 2012). Oxtr 7~ mice also exhibit cognitive inflexibility
during reversal phase in the T-maze test and increased aggression. Oxtr 7~ mice exhibit alterations in
excitatory synaptic markers including PSD95, gephyrin scaffolding proteins and glutamatergic,
GABAergic receptors along with changes in striatal dendritic spines, indicating striatal dysfunction
(Salaetal., 2011; Leonzino et al., 2019).

Environmentally induced alterations to developing nervous system, such as through specific
teratogenic agents or restricted housing also contributes to the etiology of ASD. In utero valproic
acid (VPA), an antiepileptic drug, exposed mice and rats show increased repetitive behaviors, such as
self-grooming along with reduced social interactions and communication dysfunction (Schneider and
Przewtocki, 2005; Bromley et al., 2008).

C58/J, an inbred mice strain, show social deficits, repetitive backward somersaulting and hind limb
jumping behaviors, restricted novel hole-board exploration, and reversal learning deficits in
appetitive operant task (Moy et al., 2008b; Ryan et al., 2010; Muehlmann et al., 2012; Whitehouse et
al., 2017). The hole-board test measures the number of nose pokes (head-dipping) into holes in the
floor arena as a measure of exploratory behavior (Moy et al., 2008a). Moreover, BTBR, an inbred
mouse strain, shows ASD-like behavioral phenotype including social, communication deficits and
stereotypic behaviors (McFarlane et al., 2008; Silverman et al., 2010; Woéhr et al., 2011). Balb/c
mice, another inbred strain shows ASD-like behaviors, such as sociability deficits and stereotypic
behaviors. Functional alterations in NMDAR mediated activity and elicitation of jumping and
circling behavior by NMDAR antagonist MK-801 application is described in Balb/c strain (Deutsch
et al., 1997; Burket et al., 2010).

Deer mice belong to a diverse Peromyscus genus of cricetidae rodent family that are native to North
America and utilized as a laboratory animal model for basic and applied research (Joyner et al., 1998;
Crossland and Lewandowski, 2006). Deer mice exhibit repetitive behavior including hindlimb
jumping and backward somersaulting upon being maintained in standard laboratory housing. The
repetitive behaviors showed by deer mice occur at increased rate, apparent during initial development
and continuing across the lifespan. Deer mice also display reversal learning deficits in a procedural
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learning behavioral task involving learning to change spatial habits upon relocation of reinforcement
in a T-maze (Hadley et al., 2006). Hence, deer mice are used as animal models of repetitive/restricted
behaviors in autism (Powell et al., 2000; Lewis et al., 2007; Bechard et al., 2017).

3 Glutamatergic and GABAergic Signaling

The normal balance of excitation and inhibition (E/I) in the forebrain is maintained by excitatory
glutamatergic neurons and inhibitory GABAergic interneurons. The major excitatory
neurotransmitter in the cortex is glutamate, which activates two types of receptors, i.e. ionotropic and
metabotropic G-protein coupled receptors (Mehta et al., 2011). Increased excitatory signaling, hyper-
excitable local connectivity and decreases in inhibitory interneurons accompany repetitive behavioral
changes in the brains of ASD animals (Rinaldi et al., 2007; Gogolla et al., 2009). Interestingly, these
behaviors are ameliorated by environmental enrichment, correlating to functional alterations in neural
circuitry by modifying cortical excitatory and inhibitory synaptic density, LTP, increasing BDNF
expression and synaptic plasticity in the cortical network (Schneider et al., 2006; Baroncelli et al.,
2010; Lonetti et al., 2010; Reynolds et al., 2013; Jung and Herms, 2014).

Glutamatergic signaling plays a crucial role in the modulation of repetitive behaviors. On the one
hand, NMDA receptors play important roles in the regulation of neurotransmitter release such as
glutamate affecting excitatory neural pathways. For instance, intra-striatal injections of NMDA,
glutamate receptor ligand, induces repetitive behaviors caused by elevated glutamatergic activity in
the basal ganglia motor circuits (Karler et al., 1997). Deer mice exhibit repetitive behaviors, such as
excessive jumping and backwards flips, attenuated by interrupting cortico-striatal glutamatergic
projections via striatal injection of NMDA receptor antagonist MK-801 (dizocilpine) (Presti et al.,
2003). Mice with astrocyte specific inducible deletion of GLT-1 (GLASTCERT2+/GLT11¥/Mox {K O)
manifesting stereotypic grooming behavior is alleviated by memantine, NMDA receptor antagonist
(Aida et al., 2015).

On the other hand, NMDA receptors are also expressed on the surface of GABAergic neurons
modulating their inhibitory tone and controlling oscillations of pyramidal neurons involved in
regulation of neuronal rhythms and activity (Benes, 2010; Deutsch et al., 2010). For instance,
systemic application of anti-glutamatergic agents, phencyclidine (PCP), an NMDA receptor
antagonist, evokes stereotypic behaviors, including self-grooming in rodents. NMDA antagonist
application might inhibit excitation of GABAergic inputs onto pyramidal neurons causing
disinhibitory (i.e. hyperexcitation of pyramidal neurons) increase in glutamate efflux and
glutamatergic neurotransmission via AMPA and non-NMDA receptors in the PFC, activating motor
pathways (Liu and Moghaddam, 1995). This PCP or non-NMDA receptor induced stereotypic
grooming is alleviated by blocking AMPA receptor (non-NMDAR) mediated glutamatergic
transmission between prefrontal cortex (PFC) and ventral tegmental area (VTA) (Takahata and
Moghaddam, 2003; Audet et al., 2006)(Figure 2). In addition, neuroligin-1 (NL1) knockout mice
exhibit a reduced NMDA/AMPA ratio in the dorsal striatum that correlates with repetitive grooming
behavior, which is rescued by systemic administration of D-cycloserine, an NMDA receptor partial
co-agonist (Blundell et al., 2010). Shank2”- mice manifest reduced NMDA receptor function and
social deficits, normalized by application of D-cycloserine (Won et al., 2012). D-cycloserine is also
revealed to improve sociability deficits and stereotypies in BTBR and Balb/c inbred mouse strains of
ASDs (Deutsch et al., 1997; Deutsch et al., 2011a; Deutsch et al., 2011b; Burket et al., 2013).

Dysfunction of glutamatergic signaling at the metabotropic glutamate receptor 5 (mGIuRS) is
implicated in neuropsychiatric disorders such as autism (Carlson, 2012) (Figure 2). As noted above,
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Fragile X Syndrome is a genetic disorder associated with autism and mental retardation. This
disorder is caused by loss of fragile X mental retardation protein (FMRP) (Hagerman et al., 2017;
Niu et al., 2017). The “mGIluR theory of fragile X suggests that FMRP and Group I metabotropic
glutamate receptors (mGluRs) regulate protein synthesis at the synapse in an antagonist manner.
mRNA translation at the synapse is activated by mGluRs and repressed by FMRP (Bear et al., 2004;
Bear, 2005; Doélen and Bear, 2008). Fmrl-KO mice manifest increased expression of mGluR-
dependent long-term depression (LTD) in the hippocampus, which is likely associated with
alterations in mGluR signaling that contribute to repetitive behaviors in mutant mice (Table 1) (Yan
et al., 2005; Nosyreva and Huber, 2006; D6len and Bear, 2008; McNaughton et al., 2008; Pietropaolo

et al., 2011). In addition, Shank32+22" mice (exons 4-22 deletion) exhibit excessive grooming and
have reduced striatal postsynaptic mGluR5-Homer scaffolding proteins, altered mGIluRS signaling in
the striatum and cortico-striatal circuit abnormalities (Wang et al., 2016a). Interestingly, in the
Ube3A™P* (maternal null mutation) mouse model of Angelman Syndrome, mGluR-dependent long-
term depression (LTD) and coupling of mGluRS5 to Homer proteins in the hippocampus is enhanced
(Pignatelli et al., 2014). A mouse model of Tuberous Sclerosis Tsc2*- exhibits reduced mGluR-LTD
(long-term depression) in the hippocampus and altered levels of mGluR signaling Arc (activity-
regulated cytoskeleton-associated) protein, which is crucial for AMPA receptor internalization in
cerebellar LTD (Auerbach et al., 2011). This suggests that altered mGluR5 function may underlie
cognitive and behavioral impairments in mutant mice models (Table 1) (Auerbach et al., 2011;
Pignatelli et al., 2014).

Several studies have demonstrated the therapeutic efficacy of the mGluRS receptor antagonist, 2-
methyl-6-phenyethyl-pyrididine (MPEP), on core behavioral deficits of autism. MPEP reduces
repetitive and stereotypic behaviors in the VPA and BTBR mouse models of autism (Silverman et al.,
2010; Mehta et al., 2011) (Figure 3). Additionally, MPEP application decreases marble burying

stereotypic behavior in Fmrl KO mice and excessive repetitive grooming in Shank3¢+22"" mice via
modulation of mGIluRS5 signaling (Thomas et al., 2012; Gandhi et al., 2014; Wang et al., 2016a). In
addition, in C58/J] mice that exhibit stereotypic jumping behavior, backflips and decreased
exploratory behavior, blocking mGIuRS signaling via GRN-529, a mGIuRS negative allosteric
modulator, rescues normal behavior (Silverman et al., 2012). The suppression of mGIuRS activity
may modify NMDA receptor activity, since they are closely associates at the postsynaptic density,
suggesting NMDA receptor hyperfunction underlies jumping behavior in C58/J mice (Kim et al.,
2016). In addition, repetitive behavior and reversal learning deficits were attenuated by
environmental enrichment in C58/J mice (Muehlmann et al., 2012; Whitehouse et al., 2017).

GABAergic signaling also plays a critical role in the regulation of stereotypic behaviors. For
example, application of GABA-enhancing drugs reduces self-grooming behavior in rodents
(Silverman et al., 2015). Administration of R-baclofen, a selective GABAg receptors agonist,
alleviates repetitive self-grooming behavior in several ASD models, including the BTBR, Fragile X,
(C58/], and idiopathic mice models (Han et al., 2014; Silverman et al., 2015). In addition, application
of a GABAA receptor selective agonist, muscimol, into the bed nucleus of the stria terminalis (BNST)
decreases self-grooming behavior induced by exposure to cat urine (Xu et al., 2012). Additionally,
GABRB-3 knockout mice show hyperactivity and stereotypic behaviors such as circling (Moy et al.,
2006). GABA also plays an important role in regulating stress and anxiety related behaviors, with
increased GABAergic signaling exerting anxiolytic effects and inhibition of stress and anxiety-
induced grooming behaviors (Chao et al., 2010).

GABA receptor agonists regulate excitation and inhibition (E/I) balance, resulting in minimizing
elevated excitation in motor cortical areas and parts of basal ganglia-thalamic circuitry (Lewis and
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Kim, 2009; Kim et al., 2016) (Figure 3). For instance, stereotypic behaviors evoked by amphetamine
are diminished by application of GABA receptor agonists (Lewis and Kim, 2009). Likewise,
application of GABAA receptors antagonist, bicuculline, in the ventral tegmental area (VTA)
enhances self-grooming in mice induced by alpha-melanocyte stimulating hormone (MSH) (De
Barioglio et al., 1991). In addition, muscimol injections into the substantia nigra pars reticulata (SNr)
evokes repeated circling behavior in rats (Velisek et al., 2005). Thus, altered GABA levels may
modify basal ganglia activity by affecting dopaminergic neurons, leading to repetitive behaviors in
rodents, as discussed further below (De Barioglio et al., 1991; Kim et al, 2016).
Antidepressants/anxiolytics like fluvoxamine, bupropion, and diazepam alleviate repetitive digging
behaviors (Hayashi et al., 2010). Moreover, Fmr1”- mice, discussed above, exhibit hyperexcitability
due to reduced activity of fast spiking interneurons (FSI) in somatosensory and barrel cortex (Figure
2). GABA-receptor agonists decrease marble burying behavior in these Fmr1 knockout mice (Draper
et al., 2014). Hence, altered neural signaling and E/I balance underlies repetitive behaviors associated
with ASD. Enhanced GABAergic function results in reduced cortical excitation and alleviates
repetitive self-grooming behavior (Kalueff et al., 2016).

4 Serotonergic Signaling

Serotonergic SHT2A receptors are found mainly in prefrontal cortical and striatal brain regions (Xu
and Pandey, 2000), which are associated with repetitive behaviors in ASD (Di Martino et al., 2011;
Langen et al., 2012; Delmonte et al., 2013). Differences in serotonergic components in the basal
ganglia are associated with repetitive behaviors (Di Giovanni et al., 2006). For instance, deer mice
exhibit decreased density of serotonin transporters in the striatum (Wolmarans et al., 2013). And,
injection of escitalopram, a selective serotonergic reuptake inhibitor (SSRI) alleviates some of the
repetitive movements in deer mice, but with no effect on jumping behavior (Wolmarans et al., 2013).
Additionally, optogenetic repetitive stimulation of the medial orbitofrontal cortex-ventromedial
striatum pathway in mice leads to abnormal grooming behavior, which is rescued by fluoxetine
administration, also an SSRI (Schmeisser et al., 2012). Family-based genetic association studies
demonstrate linkages between serotonin transporter locus (SLC6A4) variants and rigid compulsive
behavior (Sutcliffe et al., 2005), with the serotonin transporter gene (SLC6A4) subtype, SHTTLPR,
consistently associated with repetitive sensory and motor behaviors (Brune et al., 2006). In addition,
depleting tryptophan, a precursor of serotonin, augments repetitive motor behaviors in autistic adults
(McDougle et al., 1996).

Clinical and preclinical studies have implicated alterations in serotonin receptor activity, particularly
SHT2A receptor signaling, in ASD symptomology (McBride et al., 1989; Veenstra-VanderWeele et
al., 2012) (Figure 2). Systemic treatment with a serotonin SHT2A receptor antagonist decreases
repetitive behaviors in the BTBR mouse model of autism, an inbred strain that shows similar ASD-
like behavioral deficits to an idiopathic mouse model of autism (McFarlane et al., 2008; Amodeo et
al., 2012; 2014; Amodeo et al., 2016). Further, infusion of M100907, a highly selective antagonist
for SHT2A receptors into the dorsomedial striatum reduces grooming behavior and reversal learning
deficits in BTBR mice. This regulation of reversal learning and grooming behavior by SHT2A
receptor antagonist infusion into the dorsomedial striatum may be associated with reduction in
striatal direct pathway activation (Reiner and Anderson, 1990; Amodeo et al., 2017). However,
SHT2A receptor antagonist infusion into orbitofrontal cortex results in increased grooming behavior
and perseveration in reversal learning (Amodeo et al., 2017). This altered grooming behavior by
blocking of SHT2A receptor activity in orbitofrontal cortex may be associated with increased output
by orbitofrontal cortex via reduced interneuron activity, as orbitofrontal infusion of GABA receptor
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agonist, muscimol, results in decreased grooming behavior in BTBR mice (Amodeo et al., 2017)
(Figure 3).

Thus, elevated serotonin SHT2A receptor signaling in the dorsomedial striatum plays a critical role in
the development of stereotyped behaviors, whereas normal 5SHT2A receptor activity in the
orbitofrontal cortex contributes to attenuation of stereotyped behaviors in BTBR mice. Hence,
abnormal serotonin receptor activity in various brain regions may contribute to restricted and
repetitive behaviors.

5 Dopaminergic Signaling and Basal Ganglia Circuitry

The cortico-basal ganglia-thalamic pathway implements motor patterned behaviors and is implicated
in repetitive behaviors (Haber and Calzavara, 2009; Kalueff et al., 2016). Sequential patterns of
behaviors, such as stereotyped sequential grooming movements, also called grooming chains, are
carried out by these circuits in rodents (Berridge et al., 2005; Denys et al., 2013). Striatal lesions,
particularly in the anterior dorsolateral region of the striatum, result in an inability to complete
sequential grooming movements. Additionally, lesions of the ventral pallidum and globus pallidus
results in disruption of grooming movements (Cromwell and Berridge, 1996), further underscoring
their role in the regulation of complex and mechanistic sequenced behaviors.

Enhanced activity of basal ganglia circuitry results in increased hyperactivity and repetitive behaviors
(Kim et al., 2015). In particular, the prefrontal cortical (PFC) projection to the substantia nigra pars
compacta (SNc), leads to dopaminergic release in the striatum, which promotes movement through
opposing actions on direct and indirect basal ganglia pathways. Dopamine through D1 receptors are
involved in the activation of the direct pathway, which in turn activates the motor cortex, resulting in
movement. In contrast, dopamine through D2 receptors on neurons present in the indirect pathway,
results in inhibition of the indirect pathway, also promoting movement (Gerfen et al., 1990; Gerfen,
1995). For example, amphetamine pretreated rats, when injected with a dopamine D2, D3 receptor
antagonist, sulpiride, or the GABA antagonist, bicuculine, leads to repetitive behavior (Morency et
al., 1985; Karler et al., 1998; Kiyatkin and Rebec, 1999). Further, these circuits are disrupted in
autistic mouse models, which display PFC abnormalities. Namely, mice with mutations in the
SCNI1A gene leads to autistic-like phenotypes, including hyperactivity and stereotypic self-grooming
and circling behaviors and increased excitation in the PFC (Han et al., 2012).

Dopamine plays a major role in modulating striatal pathways resulting in locomotion and repetitive
motor behaviors. Application of Risperidone, that acts on different molecular receptors, including
blocking of dopamine D2 receptors, leads to decreases in repetitive self-grooming behavior,
perseveration, hyperactivity and rescues nesting deficits in Cntnap2”~ mice. Similarly, systemic
administration of haloperidol, a dopamine D2 receptor antagonist decreases motor cortex activity,
thereby impeding locomotor movements in rats (Parr-Brownlie and Hyland, 2005). Interestingly,
increased striatal dopamine D2 receptor expression leads to deficits in GABAergic activity, thereby
enhancing prefrontal cortical (PFC) excitation (Li et al., 2011) (Figure 3). Hence, reduced repetitive
and locomotory behavior caused by altered dopamine D2 receptor expression may be linked to
heightened cortical GABAergic function and reduced PFC excitability.

Manipulation of the nigrostriatal dopamine pathway is sufficient for modulating many stereotyped
behaviors (Lewis and Bodfish, 1998). Altered striatal dopamine activity is implicated in repetitive
circling behaviors, which are observed in several mouse models of ASD (Vaccarino and Franklin,
1982; Ishiguro et al., 2007). Systemic administration of a dopamine precursor, L-DOPA and a non-

.. .. . 14
This is a provisional file, not the final typeset article



634
635
636
637
638
639
640
641
642
643
644
645

646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663

664
665
666
667
668
669

670
671
672
673
674

675

676
677
678

Neural mechanisms in ASD

selective dopamine agonist, apomorphine into the striatum induces stereotyped behaviors in rodents
(Ernst and Smelik, 1966; Presti et al., 2004). Likewise, injection of dopamine D1 receptor agonists
evokes stereotypic and rigid behavioral phenotype in rodents (Berridge and Aldridge, 2000a; b).
Furthermore, deer mice exhibit stereotyped behaviors, such as excessive jumping and backwards
flips, which is attenuated by intrastriatal injection of dopamine D1 receptor antagonist, SCH23390
(Presti et al., 2003) (Figure 3). Spontaneous motor stereotypies observed in deer mice exhibit
negative association with neuropeptide enkephalin expression, a marker of striatopallidal neurons and
is attenuated by combined administration of adenosine A2A receptor agonist CGS21680 and Al
receptor agonist CPA in a dose-dependent manner, indicating altered striatal pathway activity
(Tanimura et al., 2010b). Environmental enrichment attenuates repetitive behavior by increasing
activation through the indirect basal ganglia pathway, which also results in changes in dendritic spine
density in the subthalamic nucleus (STN) and globus pallidus (GP) (Bechard et al., 2016).

Several ASD mice models exhibit alterations to dopaminergic nigrostriatal signaling. Mutant mice
with heterozygous deletion of the syntenic region on chromosome 7F3 (16p117-) display decreased
self-grooming behavior along with hyperactivity and increased stereotypic circling behavior.
Neuroanatomically, these mice have increased numbers of dopamine D2 receptor expressing neurons
in the striatum, reduced number of cortical neurons manifesting dopamine D1 receptors, and synaptic
function defects (Portmann et al., 2014) (Figure 2). Mice deficient in the dopamine transporter (DAT)
have elevated levels of dopamine and increased stereotypic sequential grooming behavior. Dopamine
DI1A receptor deficient mice manifest disrupted and shorter duration grooming bouts (Cromwell et
al., 1998). Neuroligin NL3 mutations result in selective decrease of synaptic inhibition onto
dopamine D1-expressing medium spiny neurons (MSNs) in the nucleus accumbens (NAc) and result
in behavioral changes in mutant mice via reduced selective striatal synaptic function in the nucleus
accumbens/ventral striatum (Rothwell et al., 2014). Apart from this, neuroligin-1 and 3 mutant mice
show abnormal function of dopamine D1 MSNs leading to autistic-like repetitive behaviors
(Rothwell et al., 2014; Espinosa et al., 2015). In the Shank3 gene deletion mouse model,
striatopallidal D2 MSNs show postsynaptic defects and decreased AMPA receptor responses (Mei et
al., 2016; Zhou et al., 2016). Repetitive grooming in Shank3B mutant mice is rescued by enhancing
indirect striatopallidal pathway activity (Wang et al., 2017). Additionally, synaptic plasticity is
impaired in dorsolateral striatal medium spiny neurons (MSN) in mutant mice carrying full Shank3

deletion in exons 4-22 (Ae4—22_/_), which also exhibit decreased striatal spine density and altered
striatal synapse postsynaptic density (Pega et al., 2011; Sala et al., 2015; Peixoto et al., 2016; Wang
et al.,, 2016a). Finally, BTBR T+ Itpr3tf/] mice show impairments in mesolimbic and striatal
synaptic dopamine D2 receptor signaling resulting in reduced dopamine neurotransmission.
Reductions in pre- and post-synaptic adenosine A2A receptor function also indicate associations with
altered dopamine neurotransmission (Squillace et al., 2014).

Overall, dopaminergic circuitry in the basal ganglia mediates rigid and sequential behavioral
phenotypes associated with ASD. As dopamine containing neurons and pathways are crucial in
movement and sequencing behaviors, the regulation of the dopaminergic system may provide a
valuable tool for modulating repetitive behaviors. Hence, basal ganglia circuits play an instrumental
role in regulation of compulsive and repetitive behavioral phenotype associated with ASD.

6 Glutamatergic Signaling at Cortico-Striatal Synapses

Striatal glutamatergic synapses express synapse-associated protein 90/postsynaptic density protein 95
(SAP90/PSD95) associated proteins (SAPAP), which form scaffolding protein complexes involved
in regulation of neurotransmitters trafficking and targeting to the post-synaptic membrane (Wu et al.,
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2012). Mutations in synapse-associated protein 90/postsynaptic density protein 95-associated protein
3 (SAPAP3) that also binds to SHANK3 postsynaptic scaffolding protein is associated with
stereotypic behaviors in mice (Sapap3”), such as compulsive self-grooming to the point of inducing
lesions, which is rescued by Sapap3 re-expression in the striatum and optogenetic stimulation of
lateral orbitofrontal cortex (Welch et al., 2007; Bienvenu et al., 2009; Burguiére et al., 2013).

Sapap3 mutant mice exhibit glutamatergic transmission defects at cortico-striatal synapses and
elevated mGIluRS signaling, leading to abnormal striatal output and stereotyped behavior, which is
alleviated by mGIluRS5 inhibition (Ade et al., 2016). This suppression of mGIuRS5 possibly inhibits the
direct basal ganglia pathway resulting in reduced repetitive behaviors (Conn et al., 2005). NMDA
and AMPA receptor dependent cortico-striatal synaptic transmission is also altered. Intriguingly,
systemic administration of fluoxetine, a serotonin uptake inhibitor attenuates obsessive grooming in
mutant mice (Welch et al., 2007).

7 Endocannabinoid Signaling in Striatal Synapses

Endocannabinoid signaling plays a crucial part in modulating striatal synaptic transmission and in
regulating stereotypic behaviors (Chen et al.,, 2011; Gremel et al., 2016). The abundant
endocannabinoid, 2-arachidonoyl glycerol (2-AG), activates cannabinoid-1 receptor (CBIR),
mediating suppression of glutamatergic release via feedback inhibition at direct and indirect medium
spiny neuron (MSN) synapses (Kano et al., 2009). Synthesis of 2-AG in the postsynaptic neuron is
mediated by diacylglycerol lipase alpha (DGLa) (Gao et al., 2010; Tanimura et al., 2010a; Shonesy
et al., 2014). Mice with DGLa knockout in direct-pathway MSN exhibit reduced levels of 2-AG in
the striatum and absence of feedback inhibition mediated by 2-AG at glutamatergic direct-pathway
MSN synapses, resulting in excessive glutamatergic drive in direct-pathway MSNs (Figure 3). In
addition, DGLa deletion in direct-pathway MSNs does not change GABAergic synaptic
transmission, suggesting that alterations to excitation/inhibition balance may contribute to increased
direct-pathway MSN output, resulting in excessive grooming behavior (Figure 4). Furthermore, mice
with regional DGLa deletions in the ventral striatum (nucleus accumbens) exhibit repetitive
grooming behavior (Shonesy et al., 2018). Thus, 2-AG signaling impairment in direct pathway MSNs
leads to circuit alterations and ASD behavioral phenotypes, such as repetitive self-grooming behavior
(Figure 2).

Groupl mGluRs play a role in mobilizing endocannabinoids in the hippocampus, contributing to
increased excitability. In FMR1 null mice, mGluRS5 dependent LTD is absent at excitatory synapses
of PFC and ventral striatum, which is moderated by endocannabinoid 2-arachidonoylglycerol (2-
AGQG). The Homer scaffolding complex linking mGIluRS5 to diacylglycerol lipase alpha is disrupted
resulting in impairment of endocannabinoid mediated LTD at excitatory synapses. Application of
CBI1R antagonist rimonabant improves cognitive deficits in Fmrl KO mice (Busquets-Garcia et al.,
2013). Hence, endocannabinoid signaling contributes to increased excitability in FXS (Jung et al.,
2012; Tang and Alger, 2015). Intriguingly, CB1 and CB2 receptor expression is upregulated in the
brain of MeCP2 mutant mice. Treatment with cannabinoid cannabidivarin (CBDV) ameliorates
memory deficits in MeCP2 mutant mice. CBDV also regulates BDNF, CB1, CB2 receptor levels and
PI3K/AKT/mTOR pathway which is dysregulated in MeCP2 deficient mice (Zamberletti et al.,
2019). Hence, altered endocannabinoid signaling is associated with behavioral abnormalities in
neurodevelopmental disorders.

8 Astrocytic calcium signaling regulating striatal circuitry
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Astrocytes perform numerous functions, including maintenance of the blood-brain barrier,
extracellular ion homeostasis, synapse formation and regulation of synaptic transmission (Khakh and
Sofroniew, 2015). Astrocytes also propagate intercellular Ca®" waves upon stimulation and modulate
neuronal function through Ca** dependent signaling (Bazargani and Attwell, 2016). Astrocytic Ca**
signaling stimulates release of gliotransmitters such as glutamate, GABA, ATP and D-serine that
regulate neuronal activity (Bazargani and Attwell, 2016). Astrocytes regulate extracellular levels of
glutamate via transporters like GLT1, hence influencing excitatory and inhibitory neuronal balance
(Wu et al., 2012). High levels of glutamate in the extracellular space leads to over activation of
glutamate receptors, i.e. neuronal excitotoxicity. Astrocytes protect against neurotoxicity by
mediating glutamate clearance from synaptic space via glutamate uptake transporters, thereby
modulating neuronal activity. Astrocytes also supply ATP that is crucial for the process of glutamate
uptake. In astrocytes, glutamate is converted to glutamine that acts as a precursor for resynthesis of
neurotransmitters like glutamate/GABA in neurons. Further, glutamate in the synapse induces
astrocytic Ca?" increase that results in release of glutamate from astrocytes to adjoining neurons,
stimulating NMDA receptors and iGluRs (ionotropic glutamate receptors), modulating their activity.
Therefore, astrocytes have dual roles in maintaining glutamate release and uptake (Bazargani and
Attwell, 2016; Mahmoud et al., 2019). Astrocytes also modulate synaptic GABA levels via GABA
transporters (GAT) that mediates GABA uptake. Expression of synaptic GAT1 regulates GABA
levels in the synapses, thereby modulating neuronal excitability. Rise in astroglial Ca** signaling
leads to inhibition of neuronal activity. This is associated with elevated GABA levels in the synapse
caused by decreases in astroglial membrane GAT levels via endocytosis into astrocytes. The
membrane trafficking of GAT is regulated by Rab11, Rab family small GTPases. Rab11 suppression
counteracts the decrease in neuronal activity by elevated astroglial Ca*" levels via repressing GAT
endocytosis. Therefore, astrocytes regulate activity of neuronal circuits (Zhang et al., 2017).
Alterations in astroglial uptake processes or gliotransmitters release is implicated in the pathogenesis
of neurological disorders including epilepsy and may contribute to the development of behavioral
impairments in these disorders (Mahmoud et al., 2019).

In addition, astrocytic dysfunction is implicated in stereotypic behaviors associated with
neuropsychiatric disorders (Molofsky et al., 2012; Aida et al., 2015; Yu et al., 2018). Mutant mice
with GLT-1 inducible deletion in astrocytes (GLASTCERTZ*/GLT1fo¥flox " iKO) display excessive
self-grooming repetitive behavior resulting in self-induced injury. The knockout of astroglial GLT1
leads to alteration in cortico-striatal synapse, suggesting glial dysfunction involvement in
pathophysiology of repetitive behaviors (Aida et al., 2015). In wild-type C57BL/6NTac mice,
decreased astrocyte Ca?" signaling in the striatum leads to increased stereotypic grooming behavior
(Figure 2). In these experiments, wild-type C57BL/6NTac mice were injected with hPMCA2w/b
construct to impair striatal astrocytic Ca?" signals. The hPMCA2w/b construct consists of w/b splice
variant in human plasma membrane Ca?’-ATPases pump (hPMCA2) deficient in the cytosolic
interaction domains (Yu et al., 2018). Membrane targeting of PMCA?2 is determined by alternative
splicing of protein cytosolic loop, in which “w” form (w splice variant) containing 45 amino acid
residue insertion, display membrane localization of PMCA2. The b splice variant is generated at
COOH terminal site of protein, an important regulatory region of the pump and its terminal sequence
interacts with PDZ proteins (Chicka and Strehler, 2003). Astrocytes express the plasma membrane
Ca?" pump (PMCA?2) that function to expel cytosolic Ca**. The generated hPMCA2w/b mice exhibit
excessive repetitive self-grooming behavior. Reduced astrocyte Ca®* signaling decreases ambient
GABA levels via enhanced GABA transporter 3 (GAT-3) activity (Figure 5). In addition, Rablla
gene downregulation leads to increased GAT-3 functional activity, thereby reducing inhibition of
MSNs in striatum. The elevated self-grooming behavior is also observed in a mouse model of
Huntington’s disease, R6/2 that is associated with decreases in astrocytic Ca?* signals and alleviated
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by blocking astrocytic GAT-3. Hence, attenuated astrocytic Ca?" signaling decreases striatal MSN
inhibition, via altered GABA levels resulting in repetitive behavior (Yu et al., 2018) (Figure 5).
Moreover, astrocytic GLT1 deficient mice show increased grooming, rearing and jumping behavior,
suggesting reduced synaptic glutamate clearance resulting in glutamatergic dysfunction underlying
these behaviors (Jia et al., 2020). Hence, astrocytes regulate striatal activity and associated
stereotypic behavior.

Further, mice with inactivation of Tsc/ gene in astrocytes (Tsc/S"APCKO) displays epilepsy, learning
deficits, reduced GLT-1 protein expression, elevated levels of glutamate in hippocampus and
impairment of hippocampus-LTP suggesting altered glutamate homeostasis and synaptic plasticity in
mouse model of Tuberous Sclerosis (Wong et al., 2003; Zeng et al., 2007).

Glial ephrin-A3 also plays an important role in modulating hippocampal activity. In adult
hippocampus, dendritic spines of pyramidal neurons expresses EphA4 tyrosine kinase receptor, the
activation of which is dependent on ligand ephrin-A3, present in the perisynaptic processes of
astrocytes, is involved in regulation of dendritic spine morphology and synapse formation (Murai et
al., 2003; Klein, 2009). Mice with knockout of ephrin-A3 or EphA4 exhibits spine irregularities and
results in increased expression of astroglial glutamate transporters GLT-1 and GLAST in the
hippocampus. Hence, bidirectional signals between neuronal EphA4 and astroglial ephrin-A3
regulate spine morphology, glutamate transport and excitatory synaptic function (Carmona et al.,
2009; Filosa et al., 2009).

Neural circuit refinement is associated with experience-dependent synaptic pruning. In the cortex of
ephrin-A2 knockout mice, experience-dependent removal of postsynaptic dendritic spines was
mediated by activation of NMDA glutamate receptors, thereby leading to changes in adult neural
circuits. Ephrin-A2 null mice also showed reduced glutamate transporters, contributing to increase
synaptic glutamate and promoting spine elimination (Yu et al., 2013).

Hence, astroglial expressed ephrin-A3 and ephrin-A2 in the hippocampus and cortex, respectively,
have opposite effects on modulation of glutamate transporters and spine morphology. Treatment
interventions targeting astroglial ephrin-A3/A2 signaling may alter expression of glutamate
transporters and protect against glutamate excitotoxicity, maintaining the synapse structure and
dynamics.

9 Amygdala and limbic circuitry in repetitive behaviors

The amygdala is involved in the regulation of emotions, anxiety and fear, as well as regulating
repetitive behaviors. High levels of anxiety in rodents are accompanied by increased self-grooming
behaviors, rescued by anxiolytic treatments (Kalueff and Tuohimaa, 2004a; Ahmari and Dougherty,
2015). Anxiety-related behavior in rats is correlated with reduced dopamine release in the amygdala
and increased grooming episodes. In the medial nucleus of the amygdala (MeA), activation of
vesicular glutamate transporter 2 (vVGLUT2) expressing glutamatergic neurons increases repetitive
self-grooming behavior (Figure 2), whereas activation of vesicular GABA transporter (VGAT)-
positive GABAergic neurons represses self-grooming behavior in mice (Figure 3) (Hong et al.,
2014). In addition, injections of Orexin-B, a neuropeptide that regulates food intake, mood and
wakefulness in the central nucleus of amygdala (CeA), leads to enhanced grooming frequency in
hamsters. Orexin-B induced grooming behavior is potentiated by infusion of NMDA receptor
agonists (Alo et al., 2015). In lateral amygdala, Fmrl KO mouse model shows synaptic defects
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including impaired mGluR-dependent LTP and reduced AMPA receptor subunit, GluR1 surface
expression (Suvrathan et al., 2010).

The basolateral nucleus of the amygdala (BLA) sends projections to the hippocampus and the
prefrontal cortex (PFC) (Obeso and Lanciego, 2011). Activation of glutamatergic projections from
the basolateral amygdala (BLA) to the ventral hippocampus heightens self-grooming in mice (Felix-
Ortiz and Tye, 2014) (Figure 2), while its inhibition leads to reduced locomotor activity, suggesting a
crucial role for the ventral hippocampus in repetitive behaviors (Figure 3) (Bast et al., 2001; Zhang et
al., 2002). Shank3 deficient rats show attention deficit and decreased synaptic plasticity in the
hippocampal-medial prefrontal cortex pathway. Mouse models of Shank3 deletion also exhibit
impaired synaptic plasticity in the hippocampus, associated with deficits in actin cytoskeleton
remodeling, along with changes in NMDA glutamatergic receptors and mGluR-Homer scaffolding
complex, resulting in abnormalities in cortico-striatal circuits underlying repetitive behaviors
(Bozdagi et al., 2010; Duftney et al., 2013; Kouser et al., 2013; Wang et al., 2016a). In addition, the
Shank postsynaptic protein scaffold helps regulate synaptic transmission at hippocampal Schaffer
Collateral-CA1 synapses (Shi et al., 2017). Further, altered synaptic transmission at thalamo-
amygdala circuits is associated with obsessive self-grooming behavior in rodents (Ullrich et al.,
2018).

The hypothalamus is another limbic brain region involved in regulating numerous behaviors,
including self-grooming in rodents (Qualls-Creekmore and Miinzberg, 2018). The hypothalamic
paraventricular nucleus and the dorsal hypothalamus are associated with grooming behavior observed
by local electrical stimulation in the hypothalamus that induces self-grooming in rats. The
paraventricular nucleus projects to the posterior dorsal part of medial amygdala (MeApd) which is
involved in self-grooming behavior (Roeling et al., 1993). Lateral hypothalamic glutamatergic
neurons adjacent to the MeApd play roles in repetitive self-grooming behaviors in mice (Figure 3).
Moreover, MeApd also projects to the medial hypothalamus (Hong et al., 2014). Finally, the central
nucleus of amygdala (CeA) and MeA projects to the bed nucleus of the stria terminalis (BNST) that
connects the amygdala and hypothalamus (Heimer et al., 2007). Hence, the limbic system,
incorporating the amygdala, hippocampus, hypothalamus and basal ganglia regions, play important
roles in regulating repetitive behaviors.

10 Neuroanatomy of ASD

Magnetic resonance imaging (MRI) studies in humans have contributed to the understanding of the
neuroanatomical basis of ASD, such as a period of early brain overgrowth in autism, particularly in
frontal, temporal and cingulate cortices, hippocampus, cerebellum and amygdala (Palmen and van
Engeland, 2004; Bauman and Kemper, 2005; Courchesne et al., 2007; Amaral et al., 2008). Further,
atypical functional connectivity between caudate and cortical areas has been observed in autistic
subjects (Turner et al., 2006). These findings match neuroanatomical alterations observed in several
of the mice models discussed above, which also show alterations to the hippocampal commissure,
decreased frontal-cortical, occipital and thalamic grey matter volume along with reduced cortical
thickness (Wahlsten et al., 2003).

Neuroimaging studies also suggest an association of repetitive behaviors, with the volume of basal
ganglia areas, such as the caudate-putamen (Sears et al., 1999; Calderoni et al., 2014). Autistic
individuals show significantly larger right caudate and putamen volumes compared to matched
controls. Moreover, total putamen and right caudate volumes reveal positive association with ADI-C
domain repetitive behavior scores (Hollander et al., 2005). Neuroimaging of individuals with fragile
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X syndrome (FXS) also exhibit altered gray matter volume in the caudate and white matter of the
ventral fronto-striatal pathway (Haas et al., 2009; Hallahan et al., 2011). Moreover, imaging studies
of RTT individuals show reduced caudate nucleus and midbrain volumes (Casanova et al., 1991;
Reiss et al., 1993; Subramaniam et al., 1997).

The medial frontal gyri, right fusiform gyrus and left hippocampal volumes are also enlarged in
autistic groups (Rojas et al., 2006; Verhoeven et al., 2010). The increased regional brain volumes
show positive correlation with stereotypic behaviors; however, decreased volume of the cerebellum
in autistic subjects show negative correlation with repetitive behavioral measures (Rojas et al., 2006).
One study on autistic children demonstrated positive association of repetitive behavior and frontal
lobe volume and negative association with cerebellar vermis volume (Pierce and Courchesne, 2001).
In addition, developmental studies in rodents and non-human primates show that damage to
amygdala, hippocampus and temporal cortex induce ASD-like behaviors such as stereotypies
(Bachevalier and Loveland, 2006). Early in life, amygdala and hippocampal lesions result in self-
directed and stereotypic head twisting behaviors in juvenile monkeys (Bauman et al., 2008).

The anterior cingulate cortex (ACC) is also implicated in repetitive behaviors in ASD (Thakkar et al.,
2008). An fMRI study in high-functioning autistic individuals revealed a negative correlation of
repetitive/restricted behaviors with ACC and posterior parietal activation implicating frontal-striatal
circuitry in stereotyped behaviors (Shafritz et al., 2008). Additional consistent neuroimaging findings
are required to understand neural circuitry of stereotypic behaviors in neurodevelopmental disorders.

Imaging studies in preclinical animal models are limited and research in this area is still ongoing
(Wilkes and Lewis, 2018). There are a few MRI studies that have utilized diffusion tensor imaging
(DTI) and functional magnetic resonance imaging (fMRI) in animal models of repetitive behaviors
(Ellegood et al., 2010; Dodero et al., 2013; Ellegood et al., 2013; Squillace et al., 2014; Haberl et al.,
2015; Allemang-Grand et al., 2017). Mice with hemizygous (-/Y), heterozygous (-/+) and
homozygous (-/-) Mecp2 mutation show enlarged cerebellar volume, including the vermis, cerebellar
cortex region and smaller cortical volumes including somatosensory, frontal, motor and cingulate
regions. In addition, Mecp2 hemizygous male mice (-/Y) exhibit increased brainstem volume and
reduced volumes in striatum, thalamus, frontal cortex and corpus callosum. These studies correlate
with imaging findings in individuals with Rett syndrome (Dunn et al., 2002; Carter et al., 2008;
Ellegood et al., 2015; Allemang-Grand et al., 2017).

MRI imaging in Fmrl KO mice reveal decreased cerebellar nuclei and striatal volumes (Ellegood et
al., 2010). In addition, diffusion tensor MRI and functional MRI (fMRI) studies show changes in
structural connectivity of the corpus callosum and functional connectivity between cortical regions
such as visual, somatosensory, auditory and motor regions (Haberl et al., 2015). MRI analysis of
16p11.2 CNV mice demonstrate volumetric alterations in brain regions including basal forebrain,
hypothalamus, midbrain and superior colliculus (Horev et al., 2011). Additionally, 16p11*- pups
show reduced brain volume at postnatal day 7, while the elative volume i.e., normalized to total brain
volume of nucleus accumbens (NAc) and globus pallidus (GP) regions are increased. Structural
abnormalities in cortical areas are also observed in 16p11*~ pups (Portmann et al., 2014). Adult
heterozygous 16p11.2 mice after controlling for total brain volume show neuroanatomical alterations
in different brain regions including increased midbrain, hypothalamus, superior colliculus volumes
and reduced striatal volume (Ellegood et al., 2015). Mice with chromosome 15 mutations,
particularly with duplication of 15q11-13 region show reduced relative volumes for different brain
areas like basal forebrain, midbrain, hypothalamus and thalamus (Ellegood et al., 2015).
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Decreases in parvalbumin containing interneurons in the medial prefrontal cortex are observed in
ASD individuals (Hashemi et al., 2017). Parvalbumin knockout mice show ASD behavioral
phenotypes, such as deficits in social interaction behaviors, ultrasonic vocalizations and higher-order
reversal learning in the T-maze assay (Wohr et al., 2015). An MRI study of juvenile Parvalbumin
knockout mice revealed reduced cortical volume and increased cerebellar volume. However, these
anatomical alterations are not consistent in adult Parvalbumin knockout mice (Wohr et al., 2015).
Additional studies are required for elucidating other repetitive behaviors and brain regions structural
alterations in this mouse model. In utero VPA exposed rats exhibit decreased total brain volume,
relative cortical and brainstem volumes and hippocampus volume (Frisch et al., 2009; Petrenko et al.,
2013).

BTBR mice exhibit reduced cerebral white and grey matter, ventricular volumes and larger olfactory,
brainstem and cerebellum volumes compared to C67BL/6 mice (Ellegood et al., 2013). An fMRI
study of BTBR mice showed decreased bilateral functional connectivity for cingulate, striatum,
insular, motor cortex and reduced striatal-thalamic connectivity. However, hippocampus, temporal
and occipital areas show increased interhemispheric connectivity in BTBR mice (Sforazzini et al.,
2016).

Molecularly, scaffolding proteins, glutamate receptor interacting proteins 1/2 (Grip1/2), plays a role
in AMPA receptor (AMPAR) trafficking and its absence contributes to cerebellar LTD deficit in
cultured Purkinje cells and social preference changes in cell-specific Grip1/2 mutant mice (Takamiya
et al., 2008; Mejias et al., 2011). Grip1/2 KO mice exhibit repetitive grooming with no changes in
social interaction and anxiety, normal mEPSCs but weakened mGluR-LTD at the parallel fiber-PC
synapses and altered expression of arc, mGIuRS, phosphorylated P38 and AKT in the Purkinje cells.
So, defects in Gripl/2 mediating AMPAR trafficking at cerebellar purkinje cells along with impaired
mGluRS signaling in cerebellum results in pathogenesis of repetitive behaviors (Mejias et al., 2019).
Mice with conditional Pfen inactivation in Purkinje cells show stereotyped jumping and decreased
motor learning with structural aberration in PC dendrites, axons, reduced excitability, altered parallel
fiber and climbing fiber synapses (Cupolillo et al., 2016). Further, mouse model of Tuberous
Sclerosis with 7sc2 loss in Purkinje cells (Tsc2f/-;Cre mice) displays increased marble burying
repetitive behavior and Purkinje cell dysfunction, suggesting Purkinje cell loss contribution to ASD
phenotype (Reith et al., 2013). Therefore, the cerebellum, particularly purkinje cells and associated
signaling pathways play important role in regulation of repetitive behaviors.

Post-mortem studies of autistic cases have also implicated many of these same brain regions.
Purkinje cells (PC) in the cerebellum are consistently altered in neuropathological analyses of ASD
brain samples (Fatemi et al., 2002; Palmen and van Engeland, 2004; Whitney et al., 2008). However,
the limitation of imaging studies include poor tissue quality and small sample sizes, as well as an
analysis of samples from adult brains which does not provide information regarding development
(Amaral et al., 2008).

Overall, neuroanatomical alterations are largely found in frontal, temporal cortical regions, basal
ganglia areas and cerebellum in human studies and mouse models showing repetitive behaviors
(Ellegood et al., 2010; Ellegood et al., 2013; Portmann et al., 2014; Ellegood et al., 2015; Haberl et
al., 2015; Wohr et al., 2015). Basal ganglia areas such as striatum and globus pallidus show
volumetric alterations related to stereotyped behaviors (Ellegood et al., 2010; Ellegood et al., 2013;
Portmann et al., 2014; Ellegood et al., 2015). Associations between repetitive behavioral phenotypes
and changes in specific brain region structural and functional aspects requires additional studies in
animal models of ASD and other neurodevelopmental disorders.
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11  Anxiety and Repetitive behaviors

ASD is associated with anxiety disorders and the prevalence estimates of anxiety in ASD individuals
vary widely from 22% to 84% (van Steensel et al., 2011; Lai et al., 2014; Vasa and Mazurek, 2015;
Lever and Geurts, 2016; Russell et al., 2016; Nimmo-Smith et al., 2020). There is also a significant
relationship between anxiety and restricted/repetitive behaviors in the ASD population (Gotham et
al., 2013; Stratis and Lecavalier, 2013; Postorino et al., 2017; Russell et al., 2019; Baribeau et al.,
2020). Association of anxiety with ritualistic behaviors are related to abnormal sensory gating
suggesting altered sensory processing (Green et al., 2012; Mazurek et al., 2013; Lidstone et al.,
2014).

Grooming behavior reflects repetitive, stress coping behavior and complex interplay with anxiety and
motor activity in rodents (Kalueff and Tuohimaa, 2005a; Lewis et al., 2007; O’Leary et al., 2013).
Some ASD mouse models demonstrate both anxiety and repetitive behaviors. In a mouse model of
Rett syndrome, deletion of MeCP2 in basolateral amygdala causes increases anxiety and learning
deficits (Adachi et al., 2009). The increased grooming behavior in EphrinA2/A3 double KO mice
may correlate with sensorimotor gating deficits and abnormal sensory processing as a result of
exposure to novel environments (Wurzman et al., 2015). The Shankl mice model of ASD manifests
mild anxiety and repetitive behavior (Hung et al., 2008). ASD mice models with FMR1, PTEN,
UBE3A and GABRB3 mutations exhibit learning deficits, stereotypic behaviors and anxiety
phenotypes (Jiang et al., 2010; Tanaka et al., 2012; Gandhi et al., 2014; Clipperton-Allen and Page,
2015; Zieba et al., 2019). Additionally, the BTBR mouse model of autism displays anxiety traits and
repetitive behaviors (McFarlane et al., 2008; Pobbe et al., 2011). In contrast, some mouse models
exhibiting repetitive behaviors do not show anxiety-like behaviors or are not reported in some cases.
Mouse models including mutations in CNTNAP2, neuroliginl, oxytocin receptor and 16p11.2
chromosomal deletions do not display anxiety behaviors or are not reported in some studies
(Penagarikano et al., 2011; Crawley, 2012; Kazdoba et al., 2016). Thus, future studies are required to
elucidate the anxiety phenotype along with the repetitive behavior in different rodent models of ASD.

Acute and chronic stress plays a role in alterations of grooming activity (Katz and Roth, 1979;
Fentress, 1988; Kalueff and Tuohimaa, 2004b; Komorowska and Pellis, 2004). For instance,
C57BL/6J male mice following chronic social defeat stressor, display disorganized cephalo-caudal
grooming patterning and induces anxiety (Veenema et al., 2003; Kinsey et al., 2007; Denmark et al.,
2010). Additionally, Wistar rats exposed to light box show increased grooming frequency and
duration as compared to rats exposed to dark box. The light-dark paradigm helps in assessing stress
levels in rats via counting the number of defecation boli and urination spots, indicating more anxiety
in rats exposed to the light box. This may suggest that stress and anxiety may affect grooming
activity and its microstructure in rodents (Kalueff and Tuohimaa, 2004b; 2005b). Surprisingly, some
inbred mouse strains demonstrate high or low grooming in response to anxiety. The BALB/c mice
show increased grooming compared to 129S1 mice. The high grooming in BALB/c mice may
correlate with increased anxiety as assessed by high defecation boli scores, one of the stress markers
in rodents. In contrast, 129S1 mice show low-grooming and high anxiety levels, indicating that
different rodent strains exhibit variation in anxiety-induced behaviors (Kalueff and Tuohimaa, 2004a;
2005a). Anxiolytics like bupropion (noradrenaline and dopamine reuptake inhibitor), fluvoxamine
(SSRI), diazepam (benzodiazepine) and imipramine (tricyclic antidepressant) decreased marble
burying and digging behavior in mice (Hayashi et al., 2010). Further, minocycline ameliorates
marble burying behavior and correlates with proper dendritic spines maturation in Fmrl KO mice
(Dansie et al., 2013). Studies on marble burying are controversial as some indicate that marble
burying correlates with anxiety whereas others indicate that it reflects repetitive digging (Njung'e and
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Handley, 1991; Thomas et al., 2009; Taylor et al., 2017; de Brouwer et al., 2019). Minocycline also
alleviates aberrant grooming behavior and modulates hippocampal GABA levels in rats (Zhang et al.,
2019).

Neuropsychiatric and neurodevelopmental disorders including autism, OCD, schizophrenia and
anxiety share some symptoms and overlap in common pathological genes, circuits and mechanisms
(Shavitt et al., 2006; Kalueff and Nutt, 2007; Kalueff et al., 2008; Szechtman et al., 2017). For
instance, GABAergic activity alterations are associated with anxiety, depression and autistic
phenotypes, indicating common underlying neural pathology (Persico and Bourgeron, 2006; Kalueff
and Nutt, 2007). Altered GABA receptor activity by anxiolytic (GABA enhancing) and anxiogenic
(GABA inhibiting) drugs correlates with decrease and increase in stress induced grooming behavior.
This may indicate that these drugs regulate the strength of the anxiogenic stimuli perception and
grooming behavior (Kalueff and Tuohimaa, 2005¢; Nin et al., 2012; Xu et al., 2012; Kalueff et al.,
2016). Similarly, BDNF and serotonin transporter (SERT) gene has been linked to cognitive deficits,
anxiety, depression, schizophrenia, OCD and autism (Devlin et al., 2005; Hu et al., 2006; Kaufman et
al., 2006; Kalueff et al., 2007; Kas et al., 2007; Moy and Nadler, 2008). Rodents manifest heightened
grooming behavior in response to changes in the environment by stressful and/or anxiogenic stimuli
(Gispen and Isaacson, 1981; Florijn et al., 1993; Gargiulo and Donoso, 1996). Dopaminergic activity
in the basal ganglia pathways likely mediates the stress-coping grooming behavior (Spruijt et al.,
1986; Cools et al., 1988; Kametani, 1988; Spruijt et al., 1992; Reis-Silva et al., 2019). Anxiety-like
behaviors correlate with decreased dopamine release in PFC, substantia nigra and amygdala of rats
spending more time self-grooming induced by stress on exposure to elevated plus maze (EPM). This
suggests that self-grooming is associated with reward systems and may be reflective of de-arousal
activity instead of a direct response to anxiety (Homberg et al., 2002). Additionally, serotonin plays a
role in regulating stress-coping behavior such as self-grooming (Houwing et al., 2019). Hence, rodent
grooming may represent one method for stress reduction or de-arousal, instead of directly involved in
the stress response (Estanislau et al., 2013; Estanislau et al., 2019).

In addition, several common brain regions have been associated with anxiety and repetitive
behavioral disorders, particularly the amygdala and PFC. For instance, muscimol (GABA agonist)
infusion into basolateral nucleus of amygdala and PFC decreases anxiety in rats (Shah et al., 2004;
Bueno et al., 2005). Intriguingly, muscimol injection into BNST (extended amygdala), a region that
regulates innate fear responses leads to decreased self-grooming behavior in rats (Xu et al., 2012).
Additionally, GABAergic neurons in MeApD region reduces self-grooming behavior (Hong et al.,
2014). Further, injections of GABA-A receptor antagonist bicuculline into the basolateral amygdala
increases anxiety in rats (Sajdyk and Shekhar, 2000). In the MeApD region, glutamatergic neurons
promote stereotypic self-grooming (Hong et al., 2014). Alterations in GABA, serotonin, kainate and
glutamate receptor densities in various amygdala nuclei correlates with anxiety-like behavior in some
inbred mouse strains (Yilmazer-Hanke et al., 2003; Caldji et al., 2004). Amygdala stimulation leads
to increases in anxiety and facilitates compulsive behaviors (McGrath et al., 1999). In the case of
OCD, basolateral amygdala projections to medial PFC modulate repetitive checking behavior in
rodents (Sun et al.,, 2019). One of the brain regions involved in stress coping responses, the
periaqueductal grey (PAG) and its pathways, influence self-grooming behavior (Bandler et al., 2000).
Alteration in striatal neurons, CeA and mPFC projections to PAG region may affect self-grooming
behavior (Spruijt et al., 1992; Floyd et al., 2000). Increased expression of c-fos is observed in
hippocampus, hypothalamus, PFC after administration of anxiogenic drugs and hypothalamic
injection of GABAergic anxiolytic drugs reduces anxiety in rats (Jardim and Guimardes, 2001;
Singewald et al, 2003). Hence, regulated GABAergic activity and consequent excitatory
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Neural mechanisms in ASD

neurotransmission in these brain regions is critical for the modulation of anxiety and repetitive
behaviors, indicating overlapping circuits in anxiety and repetitive behaviors.

However, further studies are required to ascertain regional and circuit differences between anxiety-
induced and repetitive self-grooming behavior. Investigations of animal models displaying both
anxiety and repetitive behavior simultaneously or induction of one disorder by another will help in
providing innovative insight into the common and specific neural alterations underlying these
disorders.

12 Summary

Animal models of neuropsychiatric and neurodevelopmental disorders such as autism have provided
relevant knowledge on the neuronal circuitry and receptor targets implicated in the etiology and
pathophysiology of repetitive behaviors. Several brain regions and neural circuits including cortico-
basal ganglia-thalamic circuits, limbic circuits, prefrontal cortex, cerebellum, hypothalamus and
striatum are involved in the regulation of core autistic behaviors. Genetic mutations and
environmental risk factors resulting in presentation of repetitive behaviors in rodent models involve
multiple cellular, molecular and network factors. The majority of ASD alterations involve excitatory
glutamatergic, inhibitory GABAergic, serotonergic and dopaminergic neurons, receptors,
neurotransmitters, neuronal migration and spine densities resulting in changes in signaling pathways
and synaptic activity which may converge on common neural circuits (Golden et al., 2018).

Genome-wide association studies (GWAS) have indicated various ASD risk genes including
neuronal cell adhesion molecules (neurexins, neuroligins, CNTNAP), postsynaptic scaffolding
proteins (Shanks, SAPAP), neurotransmitter signaling and trafficking (Glutamate, GABA, EphA3)
and molecules involved in protein synthesis in the brain (Fmrl, TSC, MeCP2) (Stearns et al., 2007;
Tabuchi et al., 2007; Hung et al., 2008; Samaco et al., 2008; Etherton et al., 2009; Radyushkin et al.,
2009; Pega et al., 2011; Penagarikano et al., 2011; Silverman et al., 2011; Casey et al., 2012; Eadie et
al., 2012; Schmeisser et al., 2012; Grayton et al., 2013; Monteiro and Feng, 2017; Wang et al., 2017;
Zerbi et al., 2018). Many of the autism risk genes encode for proteins involved in excitatory
glutamatergic signaling, converging at excitatory synapses (Pega et al., 2011; Qiu et al., 2012). For
instance, Shank3 forms a scaffolding complex comprised of SAPAP that also interconnects with
ephrins/Ephs and neurexin/neuroligin complexes (Qiu et al., 2012). This suggests that alterations in
these molecules may converge on common synaptic and circuit mechanism underlying autistic
behavioral phenotypes. Understanding the mechanisms by which these factors affect neuronal
circuits will provide insight into relevant targets of sensorimotor repetitive behaviors.

Although ASD etiological heterogeneity leads to complex and sometimes divergent behavioral
outcomes in affected populations, a large literature exists, including neuroimaging studies, that have
determined the crucial role of cortico-basal ganglia and limbic circuit alterations in mediating
stereotypic behaviors. Altogether, common neural modifications in specific pathways and neural
circuits lead to the emergence of repetitive behaviors in ASD. Inconsistencies in some studies and
factors influencing generality of the repetitive behavioral findings may be related to sample,
environment and experimental heterogeneity. Future research integrating disparate findings hold
immense potential to ascertain the involvement of common neural changes converging at the level of
circuit alterations in neurodevelopmental disorders. More detailed work with additional animal
models is required to dissect the molecular and neuroanatomical alterations in other pathways and
brain regions implicated in repetitive behavioral phenotypes, in order to identify potential targets and
treatment strategies for attenuating repetitive behaviors in affected individuals. Finally, early
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interventions for repetitive behaviors hold great promise for improving quality of life for affected
individuals.

13  Future directions and limitations

The scope of this review is narrowed to neural mechanisms underlying lower-order repetitive
behaviors in rodent models of ASD. Most of the literature in rodent models of ASD discuss lower
order stereotyped sensory motor behaviors. However, some studies address higher-order insistence
on sameness behaviors, such as circumscribed interests and resistance to change in few rodent
models. Future studies are required to evaluate common underlying molecular and circuit alterations
in repetitive and restricted behaviors in autism. Further, characterization of both repetitive motor
behaviors and insistence on sameness behaviors should be performed in different rodent models of
ASD and other neurodevelopmental disorders in order to increase their translational value and to
identify overlapping neurobiological alterations underlying these behaviors.

Although the studies reviewed here contribute to our understanding of the underlying neural
alterations in rodent models displaying robust repetitive behaviors, the relation of such alterations
with repetitive behavioral expression is unresolved. A focus of most investigations has been on the
pathophysiology of mutations resulting in the expression of general ASD phenotype and rescuing the
core ASD behavioral deficits rather than focusing exclusively on repetitive behaviors. Future
findings targeting specific brain regions and focusing on neural alterations elemental to repetitive
behaviors solely, while controlling for other behaviors, will provide a better understanding of how
individual genetic and environmental changes converge at molecular and circuit levels to mediate
repetitive behaviors. Alternatively, generation of mutant rodent models with targeted knockout of
susceptibility genes in circumscribed brain regions may help in clarifying particular behavioral
phenotypes. For instance, in NL3 mice, inhibition is elevated in somatosensory cortex, whereas
AMPAR mediated excitation is heightened in the CA1 hippocampal region (Etherton et al., 2011).
Consequently, the specific neural circuitry associated with particular cognitive and behavioral
components in ASD remain to be fully dissected. Regardless of these challenges, common circuits
and molecular alterations provide a basis for understanding ASD etiological factors and behavioral
abnormalities.

In addition, very few studies have incorporated different methodological approaches to elucidate
changes fundamental in mediating repetitive behaviors in rodents (Sforazzini et al., 2016; Wohr
2015, Squillace 2014). Combination of different methodological approaches such as neuroimaging,
histological and molecular analysis may provide a more comprehensive understanding of alterations
in specific brain regions and their neural projections primarily mediating repetitive behaviors in
rodent models of ASD. In addition, future studies incorporating both male and female rodent models
may help in elucidating any gender differences in brain structure and function associated with
repetitive behaviors. Another important requirement is to evaluate molecular and circuit
modifications fundamental to repetitive behaviors in other neurodevelopmental and neuropsychiatric
disorders. Corroboration of findings across varied rodent models displaying repetitive behaviors may
illuminate similar and dissimilar changes in brain pathways underlying these disorders.

A somewhat underexplored therapeutic avenue in rodent models is environmental enrichment (EE),
which attenuates the repetitive behaviors in models of ASD. The EE reduces repetitive behaviors in
deer mice by elevating indirect basal ganglia pathway function via increasing neuronal activation and
dendritic spine densities in the subthalamic nucleus (STN) and globus pallidus (GP) (Bechard et al.,
2016). However, mechanisms by which environmental enrichment alters repetitive behavior and
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correlations with structural, functional and molecular modifications in brain regions demands
detailed investigation. Also, investigations of effectiveness of environmental enrichment in
attenuating repetitive behaviors should be extended to different rodent models of repetitive
behavioral and neurodevelopmental disorders. This may help in probing the efficacy of
environmental enrichment in relation to repetitive behaviors.

Pharmacologically, systemic and local applications of glutamatergic inhibitors, GABAergic,
serotonergic and dopaminergic agents have varied effects in different brain regions and circuits
mediating repetitive behaviors. However, it remains to be determined whether these agents are
applicable for alleviating behaviors beyond lower order motor stereotypies in rodent models. Further
research is required to ascertain if these various receptor agents also play a role in higher-order
stereotypies in rodent models. In addition, investigating the cross-over effects of these agents in
different neural pathways may help to understand the underlying cellular and molecular pathologies
in relation to repetitive behaviors.

In addition, future research studying overlapping or common pathways underlying stress, anxiety and
repetitive behaviors may provide some critical insight into targets directed towards these behavioral
domains.

This review summarizes findings on molecular, signaling pathways, circuit and neuroanatomical
alterations in rodent models of ASD displaying robust repetitive behaviors. These findings emphasize
important molecular, structural and functional connectivity changes in brain regions like the
prefrontal cortex, basal ganglia structures, limbic areas and cerebellum, suggesting a major role of
cortical-basal ganglia circuits. In addition, signaling pathways involving different neurotransmitters
and their receptors such as glutamate, GABA, serotonin and dopamine are also involved in the
pathophysiology of stereotypic motor behaviors. Understanding the hierarchy of changes in different
brain regions molecular, structure, function and connectivity aspects mediating repetitive behaviors
in rodent models will provide an important platform for translational study.

Lastly, comparative research involving human clinical population and animal models of ASD and
other neurodevelopmental disorders hold enormous potential for unraveling the underlying neural
alterations mediating repetitive behaviors and identifying directed pharmacological and circuit-based
targets for treatment interventions.
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Table 1. Neural alterations underlying repetitive behaviors and rescue of repetitive behaviors in
rodent models of ASDs. Treatment strategies discussed are from preclinical studies in rodent models
targeting behavioral abnormalities including stereotypic behaviors.

MODEL REPETITIVE NEURAL RESCUE OF REFERENCES
AND ALTERATIONS REPETITIVE
RELATED BEHAVIORS
BEHAVIORS
BTBR T+l | * Repetitive . Reduped GABAergic | . mGluR§ receptor (Wahlsten ct al.,
self- inhibitory antagonist (MPEP) 2003; Moy et al.
grooming transmission . Selective GABAy 2007f McFarlané
« Increased « Upregulation of receptor agonist (R- ot al., 2008:
marble serotonin SHT2A baclofen) Silve’rman é ¢ al
burying receptor density and | « Dorsomedial striatal 2010: Gould et ';11
behavior activity injection of i N
« Reversal « Increased in selective SHT2A gg} }f Xﬁlgiizgff
learning glutamatergic receptor antagonist al. 2 (’) 12
deficit in transmission in (M100907) Sifverme;n ot al.
Morris water cortico-striatal « Risperidone 2012: Burket ot ’al
maze circuitry « Muscarinic ; N
(MWM) « Impaired dopamine receptor(mAChR) ilo ! 32)11)3)9(1};;1(;;)0 d
D2 receptor function agonist et';ll. 20’13_

« Reduced expression (Oxotremorine) Reyn’ol ds e; al
of BDNF in » Nicotinic receptor | 573 1y o af
hippocampus and (nAChR) agonist 201 4f Karvat an,d
cortex (nicotine) Kimc’hi 2014-

. Absence of corpus . Acetylocholinestera Wang e’t al 2’01 5.
callosum, lack of se inhibitor Wang ct al:’ ’
hippocampal (AChEI) 2016b: Me};za and
commissure (Donepezil) reduced Blanc}’lar d,2017)

« Reduced cortical behavioral rigidity ’
thickness in water T-maze

- Reduced cerebral task

white and gray matter
Impaired cortico-
thalamic function

Retinoic acid
receptor-related
orphan receptor

« Altered volumes of alpha (ROR a)
cerebellum, agonist (SR1078)
brainstem, striatum
and hippocampus
Cntnap2”- . Repetitive » Decrease in . » Dopamine D2 (Penagarikano et
self- parvalbumin-positive receptor antagonist, al. 2011: Lauber
interneurons in Risperidone ; i

grooming and
digging

- Reversal
learning
deficit

striatum resulting in
altered activity of
cortico-striatal-
thalamic pathway

et al., 2018)
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(MWM)
« Hyperactivity
- Seizures

« Cortical migration
abnormalities

« Increased mGluR5

« mGluRS5 negative

C58/J « Repetitive . . . (Moy et al., 2008Db;

self- signaling allosteric modulator Ryan et al., 2010:
. « NMDA receptor (GRN-529) ’ ’
grooming . . Muehlmann et al.,
. Hind Limb hyperfunction R Selective GABAb 2012: Silverman ot
jumping . deuqed GABAergic receptor agonist (R- al., 2(’)12;
. Backflips signaling . baclpfen) Whitehouse et al.,
. Decreased . quuced dendritic . Eneronmental 2017)
exploratory spines enrichment
behavior - Increased
« Reversal dopamlnerglc .
learning funp‘uqn and cortical
deficit activation
« Aberrant hippocampal
and cortical activity
. « Enhanced Cortico- « Striatal injections of . )

Deer ) Eii%elzﬁge strigtal .glutamatergic NMDA receptor Sl“};rrfisrtrilfrtaaé; 2121903’
jumping and projections antagonist (MK- 2008; Tanimura’l et
backflips . Decreas',e density of 801) ' al., 2010b:

. Perseverative | SCrotonin transporters | « Dopamine DI . Tanimura et al.,
L In striatum receptor antagonist .
E:f:rvsﬁr M4 Reduced indirect (SCH23390) gtoill ;’gcl’g_namns
learning task bas'al' ganglia pathway | . Co-admlqlstratlon Bech’ar d ot ’al.,
(T-maze) activity : of adenosine AZA 2017; Lewis et al.
« Dorsomedial striatum | receptor agonist 201 93 ’
alterations (CGS21680) and A
receptor agonist
(CPA)
« Selective SSRI
(Escitalopram)
« Triple drug cocktail
(D2R antagonist L-
741,626 +
Adenosine AxaR
agonist CGS21680
+ mGIluRS5 positive
allosteric modulator
CDPPB)
« Environmental
enrichment (EE)

DGLa . Repetitive « Reduced levels of 2- (Shonesy et al.,
self- acyl glycerol in 2014; Shonesy et
grooming striatum al., 2018)

« Excessive
glutamatergic drive in
28
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direct-pathway MSNs

EphA2/43
double KO

. Stereotypic
facial
grooming

« Reduced
locomotor
activity

. Increased
pre-pulse
inhibition of
acoustic
startle

- Sensorimotor gating
abnormalities

« Altered excitability of
forebrain pathways

(Qiu et al., 2012;
Wurzman et al.,
2015)

FMRI”

« Repetitive
self-grooming

« Increased/decr
eased marble
burying

« Deficit in
novelty
preference (T-
maze
Spontaneous
alternation)

« Learning task
deficits

« Hyperactivity

. Anxiety

« Reduced
motor learning

« Olfactory
learning
deficits

Increased mGluR-
LTD in hippocampal
CAL and cerebellum
Increased
endocannabinoid
mediated transmission
at GABAergic
synapses of
hippocampus and
dorsal striatum
Dysfunctional
cortico-striatal
circuitry

Decrease activity of
fast spiking
interneurons in
cortical areas
(hyperexcitability)

« Abnormal
sensorimotor gating
Altered dendritic
spine density and
morphology

« Impaired long-term
potentiation

« PSD-95 protein
deficits

« PI3K/AKT pathway
abnormal activity

« AMPAR and
NMDAR dysfunction

« Purinergic signaling
alteration

. Selective GABA-B
receptor agonist (R-
baclofen)

« mGluRS5 receptor
antagonist (MPEP)

« Minocycline
(antibiotic inhibiting
MMP9)

« Antipurinergic
therapy (suramin)

- CBIR antagonist
(rimonabant)

« Small-molecule
PAK [p21-activated
kinase regulates
actin cytoskeleton
dynamics] inhibitor
(FRAX486)

« BDNF application

« Gene therapy with
human FMR1

« Delta-subunit
containing
extrasynaptic
GABA-A receptors
agonist (Gaboxadol)

« Intracranial
injection of
CRISPR-Gold
targeting mGluRS

« Chronic application
of Bryostatin-1
(Protein Kinase C

(Peier et al., 2000;
Spencer et al.,
2005; Lauterborn
et al., 2007; Délen
and Bear, 2008;
Errijgers et al.,
2008;
McNaughton et al.,
2008; Paylor et al.,
2008; Spencer et
al., 2008;
Bilousova et al.,
2009; Zhang and
Alger, 2010;
Pietropaolo et al.,
2011; Henderson
et al., 2012; Jung
etal., 2012;
Thomas et al.,
2012; Busquets-
Garcia et al., 2013;
Dolan et al., 2013;
Berry-Kravis,
2014; Gandhi et
al., 2014; Naviaux
etal., 2015; Tang
and Alger, 2015;
Bhattacharya et al.,
2016; Gurney et
al., 2017; Sinclair
etal., 2017; Lee et
al., 2018; Nolan
and Lugo, 2018;
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« Altered cerebellar and
striatal volumes

potent activator)
« eFT508, MNK

(mitogen-activated

protein kinase

interacting protein

kinase) inhibitor

Yau et al., 2018;
Zerbi et al., 2018;
Cogram et al.,
2019; Gross et al.,
2019; Cogram et
al., 2020; Shukla

. BPN14770, et al., 2020)
phosphodiesterase-
4D negative
allosteric modulator
(PDE4DNAM)
« GSK6A (PI3K
antagonist)
« FS-115, S6KI
(mTORCI1-p70
ribosomal S6 kinase
1) inhibitor
Gabrb3™” . Repetitive » Cerebellar vermis (DeLorey et al.,
circling hypoplasia 1998; DeLorey et
0 .. « Abnormal GABA-A nne.
. Hyperactivity .. al., 2008; Mercer
receptor function in )
hippocampus et al., 2016;
u
. Altered GABA-A Orefice et al,
: 2016)
receptor mediated
neurotransmission
Hoxb8 KO in | « Increased : Increqsgd cqrtlcal Fluoxetine (SSRI) (Greer and
. . . dendritic spine . .
microglia grooming densit Capecchi, 2002;
. Anxiety-like ensity . Chen et al., 2010;
. « Increased dendritic .
behavior . s Nagarajan et al.,
spines 1n striatum 2018)
« Defects in LTP,
miniature
postsynaptic currents
Itgh3” « Increased » Alterations n (De Arcangelis and
. axon/dendrite
grooming in Georges-

novel
environment

outgrowth, cell
adhesion and synapse
formation

« Reduced corpus
callosum,
hippocampus,
striatum and
cerebellum

« Increased amygdala
volume

Labouesse, 2000;
Clegg et al., 2003;
Carter et al., 2011;
Ellegood et al.,
2012)
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« Increased neuronal

KCNQ2"" « Repetitive NN (Yue and Yaari,
grooming excitability 2006; Shah et al.,
« Hyperactivity 2008; Brown and
« Increased Passmore, 2009;
locomotor Kim et al., 2020)
activity
Kirrel3™” « Repetitive : Abnormal (Gerke et al., 2006;
. hippocampal mossy .
rearing fiber svnanse Serlzawg et al.,
behavior ! ynap 2006; Nishida et
. Increased formation al., 2011; Prince et
locomotor . Inc‘re'ased C'A3 neuron al.. 2013: Basu et
activity thlvllty during al., 2015; Choi et
« Hypersensitiv cvelopment al., 2015; Hisaoka
. . | « Abnormal neuronal
ity to acoustic o et al., 2018)
startle migration
(acoustic
startle test)
« Hyperactivity
Lrred” « Repetitive » Reduced NM.D A ) NM[.)A receptor (DeNardo et al.,
self- receptor medlgtfed agonist (.D i 2012; Soto et al.,
grooming synaptic plastlclty cycloserine) 2013: Soto et al.,
« Impaired » Abnormal synaptic 2018; Um et al.,
spatial transmission 2018)
learning
(MWM)

MeCP2 « Repeated ' I(?ecreqs edtlevels of (Shahbazian et al.,
forelimb ([(;IXI{“I;IEE drtar;sp?rllrter 2002; Moretti et
movements hvd . y"l?I?I N al., 2005; Lonetti

« Deficits in St};i;gl);r}ll ase (TH) in etal., 2010; Lu et
motor « Altered cortical and al., 2016;
coordination cerebellar volumes Allemang-Grand
imd rpotor « Cortical LTP deficit etal, 2017-’

earning ) Zamberletti et al.,

Moy | Dol i 215
deficits « Impaired

PI3K/AKT/mTOR
pathway
« Upregulated CB1 and
CB2 receptor levels
« Hippocampal circuit
dysfunction
Ninjl . Fxcessive « Altered synaptic « Fluoxetine (SSRI) (Le ctal., 2017)

grooming
inducing hair
loss and

function in
thalamocortical
neurons
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lesions

. Increased
anxiety-like
behavior

« Increased expression
of ionotropic
glutamate receptor

« Increased amplitude
of miniature EPSCs

NLI”

« Repetitive
self-
grooming

« Spatial
learning
deficits

« Reduced
NMDA/AMPA
receptor ratio in
hippocampus and
dorsal striatum

« Reduced hippocampal
LTP

« Abnormal function of
dopamine D1 MSNs

« Reduced GIuN2A
containing NMDARs
expression in direct-
pathway MSNs

« Reduced frequency of
miniature excitatory
neurotransmission in
indirect-pathway
MSNs

« NMDA receptor
partial co-agonist,
D-cycloserine

(Blundell et al.,
2010; Espinosa et
al., 2015)

NL2
overexpressi
on

« Repetitive
Jumping

« Reduced E/I balance
in PFC

(Hines et al., 2008)

NL3™”

« Repetitive
motor routine
« Hyperactivity

« Reduced striatal
synaptic function in
nucleus
accumbens/ventral
striatum

« Abnormal function of
dopamine D1 MSNs

. Altered GABAergic
signaling and E/I
balance in CA2
hippocampal area

(Radyushkin et al.,

2009; Rothwell et

al., 2014; Modi et
al., 2019)

NL 3R45 1C

« Repetitive
behavior
(object
exploration
task)

« Aggression

« Smaller striatal
volume

« Increased striatal
postsynaptic density
95 (PSD-95) protein
levels

« Altered synaptic
activity in
hippocampus,

« Risperidone, CB1
receptor agonist
(WINS55,212-2)
targeting aggression

(Tabuchi et al.,
2007; Etherton et
al., 2011; Kumar et
al., 2014;
Bornstein et al.,
2016; Hosie et al.,
2018; Matta et al.,
2020)
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somatosensory cortex
and basolateral

amygdala
« Increased AMPA
mediated
neurotransmission
and LTP in
hippocampus
NRXNla”" « Repetitive ' Deqie?se in miniature (Etherton et al.,
self- excitatory | 2009; Grayton et
grooming postsynaptic current al., 2013)
. Altered nest fr'equency n
building hlppqcamp us
. Impaired pre- | * Impalrfed excitatory
pulse §yna}ptlc transmission
inhibition in hippocampus
. Aggressive . Sensgrlmotor gating
behaviors impairments
. Mild anxiety- | * Increased cortical
like behavior volume and decreased
cerebellar volume
Oxtr”- . Cognitive » Alterations in (Sala et al., 2011;
inflexibility excitatory synaptic Pobbe et al., 2012;
. markers (PSD-95, . ' ’
in reversal . . Leonzino et al.,
phase in T — gephyrln scaffolding 2019)
maze proteins)
. Tncreased « Altered glutamatergic
aggression and GABAergic
receptors
« Changes in striatal
dendritic spines
Pak2*" « Repetitive » Reduced spine density (Wang et al
in cortex and "
self- . 2018b)
grooming hlppqcamp us
behavior . Irppalred LTP in CA1
. Increased hippocampal region
marble . Reduceq act.in
burying polymerization and
behavior perturbation of actin
network
Pcdhl9 « Repetitive » Impaired migration (Bassani et al.,
XtacZjy grooming and d.e nd.I‘ltIC 2018; Lim et al.,
behavior arborization of 2019)

« Increased

hippocampal CA1
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rearing
behavior

neurons

« Decreased GABA-A
receptor surface
expression and

transmission
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complexity accumulation) 2019)

« Decreased PTEN
expression and
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Increased dopamine
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« Increased
locomotion

Decreased dopamine
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expressing cortical
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Synaptic function
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in striatum,
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5Ko (deletion | « Elevated self- | * Imp .alred. (Xu et al., 2017)
of 5 kainate grooming cortlcqstrlatal .
receptor . Increased synaptic transmission
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perseverative frequencies . '
behavior (Y- | Reduced spine density
maze) of spiny projections
. Motor neurons in dorsal
problems striatum
Figure Legends

Figure 1. Implicated brain regions in mouse models of autism. Different mouse models of autism
exhibit alterations in various brain areas such as the striatum, cortex, thalamus, hippocampus,
cerebellum, hypothalamus and amygdala. These brain regions are involved in cortico-striatal and
limbic circuitry. Molecular and/or neuroanatomical changes in these structures are correlated with
pathophysiology of repetitive behaviors. Some mice models implicates multiple brain regions in
pathology of restricted/repetitive behaviors. PFC, prefrontal cortex; VTA, ventral tegmental area;
SNc, substantia nigra pars compacta; SNr, substantia nigra pars reticulata; PVH, paraventricular
nucleus of hypothalamus; Cntnap2, Contactin Associated Protein-like 2 gene; FMRI, Fragile X

39




1190
1191
1192
1193
1194
1195
1196
1197
1198
1199

1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222

1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236

Neural mechanisms in ASD

mental retardation 1; Gabrb3; Gamma-aminobutyric acid receptor subunit beta-3; Hoxb8, Homeobox
protein; Itgb3, Integrin beta-3; KCNQ, Potassium voltage-gated channel subfamily; Kirrel3, Kin of
Irregular Chiasm-like 3; Lrrc4, Leucine-rich repeat-containing 4; MeCP2, Methyl CpG binding
protein 2; Ninjl, Nerve injury-induced protein-1; NL, Neuroligin; NRXNla, Neurexin la; Oxtr;
Oxytocin receptor; Pcdh19, Protocadherin-19; PV; Parvalbumin; Pak2, p21 activated kinase 2; Pten,
Phosphatase and tensin homolog; Sapap3, Synapse-associated protein 90/postsynaptic density protein
95 associated protein 3; Shank, SH3 and multiple ankyrin repeat domains 3; Sh3rf2, SH3 Domain
Containing Ring Finger 2; Scnl, Sodium Voltage-Gated Channel Alpha Subunit 1; Tsc2, Tuberous
Sclerosis Complex 2; Ube3A, Ubiquitin Protein Ligase E3A; VPA, Valproic acid; 5Ko, 5 kainate
receptor subunit.

Figure 2. Neural mechanisms underlying repetitive behaviors. Increased mGluRS signaling activates
the striatal direct pathway leading to heightened motor cortex activity inducing repetitive behaviors.
Impaired NMDA and AMPA receptors in the striatum and hippocampus also mediates stereotypic
behaviors. Cortico-striatal and PFC-VTA glutamatergic projections induces repetitive behavior. PFC
projections to the SNc causes striatal dopaminergic release promoting movement. Decrease in
interneuron activity in the cortex and increase in dopamine D2, DI receptor expression in the
striatum leads to reduced GABAergic signaling in the cortex, enhancing motor cortical activity and
repetitive behaviors. Elevation of serotonin SHT2A receptor signaling in the dorsomedial striatum
gives rise to stereotypic behaviors. Activation of VGLUT-positive glutamatergic neurons in
amygdala nucleus, MeA also results in stereotypic behaviors. Activation of glutamatergic projection
from BLA to ventral hippocampus leads to increase in locomotor activity. Further, activation of
lateral hypothalamic GABAergic neurons mediates increase in locomotor activity and repetitive
behaviors. Reduction in endocannabinoid 2-AG signaling in striatum leads to increase in
glutamatergic output, enhancing motor cortex activity resulting in repetitive behaviors. Low
astrocytic Ca?" signals in the striatum elevates membrane GAT-3 expression that modulates striatal
MSN activity via reduced ambient GABA levels inducing repetitive behavior. mGIuRS, metabotropic
glutamate receptor 5. mGIluRS, metabotropic glutamate receptor 5; NMDA, N-Methyl-d-aspartate;
AMPA, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; PFC, prefrontal cortex; VTA,
ventral tegmental area; SNc, substantia nigra pars compacta; SNr, substantia nigra pars reticulata;
PVH, paraventricular nucleus of hypothalamus; GABA, gamma-Aminobutyric acid; D2R, dopamine
receptor D2; DIR, dopamine receptor D1; SHT2A, 5-hydroxy-tryptamine receptor 2A subtype;
VGAT, vesicular GABA transporter; MeA, medial nucleus of amygdala; BLA, basolateral amygdala;
2-AG, 2-arachidonoyl glycerol; GAT-3, GABA transporter 3; MSN, medium spiny neuron.

Figure 3. Possible mechanisms alleviating repetitive behaviors. Inhibition of mGIluRS signaling
inhibits striatal direct pathway via suppressing dopamine D1 receptor signaling. The reduced D1R
signaling results in decreased motor cortex activity. Inhibition of cortico-striatal and PFC-VTA
glutamatergic projections alleviates repetitive behaviors. Application of GABA agonists in the cortex
and dopamine D2R, D1R antagonist in the striatum leads to increase in GABAergic signaling in the
cortex, reducing motor cortical activity and repetitive behaviors. Application of serotonin SHT2A
antagonist in the dorsomedial striatum also results in rescue of repetitive behavior. Activation of
VGAT-positive GABAergic neurons in amygdala nucleus, MeA reduces repetitive behaviors.
Inhibition of glutamatergic projection from BLA to ventral hippocampus results in decreased
locomotor activity. Inhibition of lateral hypothalamic GABAergic neurons leads to decrease in
locomotor activity and repetitive behaviors. Endocannabinoid 2-AG signaling in striatum leads to
reduced glutamatergic output, decreasing repetitive behaviors. Regulated astrocytes Ca?* signals in
the striatum modulates GAT-3 activity which maintains synaptic GABA levels, regulating striatal
MSN activity and associated repetitive behavior. mGIluRS5, metabotropic glutamate receptor 5;
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NMDA, N-Methyl-d-aspartate; AMPA, o-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid;
PFC, prefrontal cortex; VTA, ventral tegmental area; SNc, substantia nigra pars compacta; SN,
substantia nigra pars reticulata; PVH, paraventricular nucleus of hypothalamus; GABA, gamma-
Aminobutyric acid; D2R, dopamine receptor D2; D1R, dopamine receptor D1; SHT2A, 5-hydroxy-
tryptamine receptor 2A subtype; VGAT, vesicular GABA transporter; MeA, medial nucleus of
amygdala; BLA, basolateral amygdala; 2-AG, 2-arachidonoyl glycerol; GAT-3, GABA transporter 3;
MSN, medium spiny neuron.

Figure 4. Endocannabinoid signaling in striatal neurons. DGLa synthesize 2-AG in the postsynaptic
neuron. Postsynaptic 2-AG activates presynaptic cannabinoid-1 receptor (CB1R). The activated CB1
receptor via feedback inhibition leads to suppression of glutamate release at MSN synapses, thereby
relieving repetitive behavior. However, mice with knockout of DGLa exhibit decreased striatal 2-AG
levels, resulting in unrestricted synaptic glutamate release via absence of feedback inhibition, thereby
leading to elevated grooming behavior in mice. Impaired endocannabinoid signaling is involved in
alteration of striatal activity, contributing to development of repetitive behavior. CBIR, cannabinoid
type 1 receptor; DGLa, diacylglycerol lipase alpha; 2-AG, 2-arachidonoyl glycerol; dMSN, direct
pathway medium spiny neurons.

Figure 5. Astrocytic regulation of synaptic glutamate and GABA levels. Normal astrocytic Ca**
signals modulate GAT-3 levels in the presence of Rabl1a GTPase mediating GAT-3 endocytosis. As
a result, controlled ambient GABA levels in the synapses regulate striatal MSNs activity, resulting in
normal behavior. Reduced striatal astrocyte Ca?" signaling contributes to elevated self-grooming
behavior via altered striatal MSN activity. Astrocytes also regulate synaptic glutamate levels via
transporters like GLT-1. Elevated glutamate levels in the extracellular space induces over activation
of glutamate receptors resulting in excitotoxicity. Astrocytes provides protection against this
excitotoxicity by clearance of synaptic glutamate via glutamate uptake transporters. In astrocytes,
glutamate is converted to glutamine that acts as a precursor for re-synthesis of glutamate in neurons,
mediating both uptake and release of glutamate. Astrocytes regulate glutamate and GABA in the
synapse, thereby modulating neuronal activity and behavior. GABA, gamma-Aminobutyric acid;
GAT-3, GABA transporter 3; GLT-1, glutamate transporter 1; Rab, small Rab GTPase.
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