

Neural Mechanisms Underlying Repetitive Behaviors in Rodent Models of Autism Spectrum Disorders

3 Tanya Gandhi* and Charles C. Lee

- 4 Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary
- 5 Medicine. Baton Rouge, LA70803
- 6 * Correspondence:
- 7 Corresponding Author
- 8 tgandh1@lsu.edu

1

2

- 9 Keywords: Autism models, repetitive behavior, neural mechanisms, signaling, circuitry,
- 10 neuroanatomical alterations
- Number of words: 17736
- 12 Number of Figures: 5
- Number of Tables: 1
- 14 Abstract

25

- 15 Autism spectrum disorder (ASD) is comprised of several conditions characterized by alterations in
- social interaction, communication and repetitive behaviors. Genetic and environmental factors
- 17 contribute to the heterogeneous development of ASD behaviors. Several rodent models display ASD-
- 18 like phenotypes, including repetitive behaviors. In this review, we discuss the potential neural
- mechanisms involved in repetitive behaviors in rodent models of ASD and related neuropsychiatric
- disorders. We review signaling pathways, neural circuits and anatomical alterations in rodent models
- 21 that display robust stereotypic behaviors. Understanding the mechanisms and circuit alterations
- 22 underlying repetitive behaviors in rodent models of ASD will inform translational research and
- 23 provide useful insight into therapeutic strategies for the treatment of repetitive behaviors in ASD and
- 24 other neuropsychiatric disorders.

1 Introduction

- 26 Autism spectrum disorder (ASD) consists of a group of neurodevelopmental disorders with shared,
- 27 yet heterogeneous, behaviors. With the introduction of improved diagnostic criteria, there has been a
- 28 substantial rise in the prevalence of autistic cases in the last few decades, reported between 3-6
- children per 1000 worldwide (Kassim and Mohamed, 2019; Lord et al., 2020) and 1 in 54 children in
- 30 the US (Zablotsky et al., 2019; Maenner et al., 2020). The variability in global prevalence is largely
- 31 due to differences in methodological assessment and environmental and/or geographical factors
- 32 (Chiarotti and Venerosi, 2020; Lord et al., 2020). Both genetic and environmental factors influence
- 33 the development of ASD and may converge on similar neural outcomes, such as altered connectivity,
- excitation/inhibition imbalance and signaling system alterations (Muhle et al., 2004; Satterstrom et
- al., 2020). Several candidate genes have been associated with the development of ASD (Levitt and
- 36 Campbell, 2009; Yuen et al., 2017; Feliciano et al., 2019; Grove et al., 2019; Guo et al., 2019);
- 37 siblings born in families with ASD are particularly high risk indicating a strong genetic basis (Stubbs

- 38 et al., 2016). Environmental factors involved in the development of ASD include prenatal and
- 39 postnatal complications, viral infections and nutrient deficiencies (Grabrucker, 2013; Sealey et al.,
- 40 2016; Karimi et al., 2017; Modabbernia et al., 2017). Understanding these environmental and genetic
- 41 interactions in autism risk will help guide treatment strategies for ASD (Chaste and Leboyer, 2012;
- 42 LaSalle, 2013; Tordiman et al., 2014; Kim and Leventhal, 2015; Nardone and Elliott, 2016).
- 43 Children with ASD are characterized by social and communication challenges and restricted,
- 44 repetitive behaviors (Baranek, 1999; Lord et al., 2000). These core behaviors are often accompanied
- 45 by comorbidities such as epilepsy, anxiety, hyperactivity and aggression (Richler et al., 2007; King et
- 46 al., 2009). The restricted, repetitive behaviors (RRBs) in ASD are clustered into two categories. The
- repetitive behaviors include stereotypic motor movements, repetitive use of objects, self-injurious 47
- 48 behaviors, and the circumscribed behaviors include compulsions, desire for sameness, rituals, and
- 49 restricted interests (Zandt et al., 2007; Whitehouse and Lewis, 2015). The restricted, repetitive
- 50 behaviors in ASD share similarities with obsessive compulsive disorder (OCD) and other
- neuropsychiatric and neurodevelopmental disorders (Scahill and Challa, 2016; Jiujias et al., 2017; 51
- 52 Gulisano et al., 2020). Currently, behavioral and pharmacological interventions target specific
- symptoms and/or associated comorbidities, which are personalized according to individual needs 53
- 54 (Eissa et al., 2018; Chahin et al., 2020). Yet, more robust therapeutic interventions are required that
- 55 target the underlying neural mechanisms that govern these core autistic symptoms.
- Behavioral approaches are typically used to treat repetitive behaviors in ASD and related 56
- 57 neurodevelopmental disorders. Behavioral approaches usually employ reinforcement procedures,
- 58 altering the environment and promoting variability and flexibility in behavior (Boyd et al., 2012).
- 59 Pharmacological interventions for irritability and some forms of repetitive behavior, such as self-
- injurious behavior include selective serotonin reuptake inhibitor (SSRIs) like Fluoxetine and 60
- 61 antipsychotics such as haloperidol (typical) and Risperidone (atypical) (Gencer et al., 2008; Miral et
- al., 2008; Malone and Waheed, 2009; Doyle and McDougle, 2012; DeFilippis and Wagner, 2016; 62
- Masi et al., 2017; Maneeton et al., 2018). Risperidone is a second-generation antipsychotic 63
- medication that has been FDA approved for the treatment of irritability in children and adolescents 64
- (McDougle et al., 2005; Scahill et al., 2007; McDougle et al., 2008; Aman et al., 2009; Scahill et al., 65
- 2012). It is an antagonist at the serotonin 2A and dopamine D2 receptors and is useful in alleviating 66
- irritability, aggression and self-injurious behavior in young ASD subjects (McCracken et al., 2002; 67
- Shea et al., 2004; Chavez et al., 2006; Kent et al., 2013; Fung et al., 2016; Maneeton et al., 2018). In 68
- 69 addition, in controlled clinical trials, some of these pharmacological medications also reduce
- 70 repetitive behaviors, but with potential side-effects that limit the widespread usage of these drugs in
- 71
- treatment of ASD and as such is not approved by the FDA for repetitive disorders (McPheeters et al., 72 2011; Sharma and Shaw, 2012; Whitehouse and Lewis, 2015). Additionally, benefits of
- pharmacological medications in improving ASD behavior are highly variable across studies and 73
- 74 clinical populations. There is also a paucity of long-term clinical trials with large sample size on
- pharmacological interventions against restricted/repetitive behavior in ASD (Yu et al., 2020; Zhou et 75
- 76 al., 2020). Furthermore, there is a lack of evidence-based treatment strategies targeting diverse
- 77 repetitive/restricted behaviors in ASD. Hence, novel treatment strategies are required that target core
- 78 autistic deficits, while limiting the detrimental side effects of such medications. In this review, we
- 79 have discussed preclinical studies demonstrating efficacy of the pharmacological treatments on
- 80 restricted/repetitive behaviors, which are still under development for targeting repetitive/restricted
- 81 behaviors in a clinical population. In addition, we have also reviewed studies pointing in the direction
- 82 of circuit-based strategies for targeting repetitive/restricted behaviors in rodent models of ASD.

As an approach to developing new therapeutics, several rodent models of ASD have been generated with good construct validity that recapitulate many of the behavioral phenotypes observed in autistic individuals. The behavioral tasks assessing repetitive behaviors are more developed than behavioral tasks assaying resistance to change or restricted behaviors (Lewis et al., 2007). The studies we will review mainly discuss rodent models primarily displaying lower-order stereotyped motor behaviors, which are generally better characterized and easier to model than models of insistence on sameness or restricted behaviors (higher-order). Nevertheless, in this review, we have also discussed a few rodent models that show both the repetitive and restricted behavioral phenotypes. The repetitive behaviors observed in rodent models of autism are complex and diverse, including self-grooming, jumping, circling, marble burying, hanging, rearing and forelimb movements and involve several molecular and neural pathways (Whitehouse and Lewis, 2015; Kim et al., 2016). In addition, complex restricted behaviors such as resistance to change and narrow interests represent cognitive rigidity to routines and obsessions that correspond with executive function deficits (Lopez et al., 2005). Behavioral assays for resistance to change or cognitive inflexibility in rodents include response extinction, reversal learning, and set shifting tasks, assessing inability to change the developed spatial habit (Colacicco et al., 2002; Roullet and Crawley, 2011). Understanding of the complex neural mechanisms underlying repetitive behaviors in these models is expected to boost translational research and provide valuable insight into potential treatments for repetitive behaviors observed in ASD. Therefore, in this review, we will discuss the underlying mechanisms that mediate the complex motor activities and consequent repetitive behavioral repertoire in different rodent models of ASD.

83

84

85

86

87 88

89

90

91

92

93

94

95

96

97

98

99

100 101

102

103

104

105

121

2 Rodent models of autism: genetic mutations, environmental risk factors and some inbred strains displaying repetitive/restricted behaviors

106 Genetic mutations account for a significant proportion of ASD risk (Ronemus et al., 2014). Genetic 107 mutations in ASD are complex and diverse depending on structure type (i.e. large-scale chromosome 108 abnormalities, small scale insertions, deletions, substitutions, copy number variation (CNV) and 109 single nucleotide variation (SNV)), inheritance type (i.e. germline, somatic, de novo mutation (non-110 inherited)), frequencies (i.e. common, rare and very rare) and protein sequence affected (i.e. frameshift mutation, point substitution) (De Rubeis and Buxbaum, 2015; de la Torre-Ubieta et al., 111 112 2016; Ramaswami and Geschwind, 2018). Over the last decade, with the advancement of sequencing 113 technology, many genes have been implicated in autism pathogenesis (Geschwind and State, 2015). 114 This review covers many of the most common of these factors, which underscores the range of 115 molecular and cellular factors implicated in ASD. Such diversity of neurobiological factors in ASD 116 further highlights the challenges of treatment development, where seemingly divergent neural factors 117 may converge on similar behavioral outcomes, i.e., restrictive and repetitive behaviors. 118 possible, we have attempted to highlight some of these similarities and differences in risk factors 119 (Figure 1), which remains a major challenge for the field to define and address. 120

Many genes are linked to syndromic ASD, in which monogenic syndromes exhibit phenotypic 122 overlap with ASDs (i.e., ASD is secondary to a known genetic cause and disorder with clinically 123 defined presentation) (Walsh et al., 2008; Schaefer and Mendelsohn, 2013; Ramaswami and Geschwind, 2018). Monogenic disorders accounted for in ASD include Fragile X Syndrome (FMR1), 124 125 Tuberous Sclerosis (TSC1, TSC2), Angelman and Prader-Willi Syndromes (15q11-q13 126 deletion/UBE3A and GABRB3 deletion), Rett Syndrome (MECP2), Phelan-McDermid Syndrome

(22q13.3 deletion/SHANK3 mutation), Smith-Lemli-Opitz Syndrome (DHCR7), Neurofibromatosis 127 128

(NF1), Timothy Syndrome (CACNA1C) etc. (Muhle et al., 2004; Moss and Howlin, 2009;

- 129 Geschwind, 2011; Ramaswami and Geschwind, 2018). Whereas in idiopathic autism, the cause is
- 130 unknown.
- 131 Susceptibility genes linked with non-syndromic autism involve multiple common and rare variants,
- copy number variations (CNVs) and de novo mutations. This genetic heterogeneity is associated with 132
- 133 idiopathic ASD and accounts for a substantial fraction of autism risk, indicating involvement of
- 134 multiple genetic pathways in its etiology (Swanwick et al., 2011; Devlin and Scherer, 2012). Multiple
- genes with different functions implicated in ASD include SHANK1,2, CNTNAP2, NLGN, NRXN, 135
- 136 16p11.2 microdeletion/microduplication, SCN1A etc. (Cook Jr and Scherer, 2008; Geschwind and
- 137 State, 2015; Ramaswami and Geschwind, 2018; Sultana et al., 2018). Most ASD related genes affect
- 138 neural circuit structure and function, with defects in either a single neural circuit component
- 139 (localized) or multiple neural systems (distributed) impacting overall network activity (Figure 1)
- 140 (Rubenstein, 2010). These neurodevelopmental defects can lead to abnormal neural structure and
- connectivity, as well as alterations to neurotransmitter systems and their receptors. 141
- 142 Animal models of repetitive and restricted behaviors are classified into different categories by causal
- factors. The categories of models of repetitive and restricted behavior include: 1) subsequent to CNS 143
- insult (e.g. specific genetic mutations, lesions or environmental factors); 2) caused by 144
- 145 pharmacological agents (e.g. apomorphine (dopamine agonist), amphetamine, cocaine, NMDA
- 146 (glutamate receptor ligand)); 3) resulting from restricted housing (e.g. laboratory cage, social
- 147 deprivation); and 4) linked with particular inbred rodent strains (BTBR, C58) (Lewis et al., 2007;
- 148 Bechard and Lewis, 2012).
- 149 Many of the genetic and environmental factors implicated in the etiology of autism have been
- modeled using rodents. However, not all rodent models of ASD manifest repetitive behavior. For 150
- example, mice with knockout of neuroligin-2 and -4 genes or mutations of the Scn2a (Scn2a^{+/-}) gene 151
- 152 do not exhibit alterations in intensity or frequency of repetitive behavior (El-Kordi et al., 2013; Wöhr
- 153 et al., 2013; Shin et al., 2019; Cao et al., 2020). Hence, we will review preclinical studies with
- 154 particular emphasis on rodent models displaying robust stereotypic behavior (Table 1), as discussed
- 155 below.
- 156 Fragile X syndrome (FXS) is caused by an expansion of a single trinucleotide sequence (CGG)
- resulting in silencing of FMR1, an X-linked gene coding for fragile X mental retardation protein 157
- 158 (FMRP). FMR-1 protein, an RNA binding protein plays an important role in regulating synaptic
- 159 proteins via mRNA translation and development of neural synapses. In addition to mRNA binding,
- 160 FMRP protein has diverse functions including protein-protein interactions, DNA damage repair via
- chromatin binding, regulation of Ca²⁺ signaling and neuronal excitation/inhibition balance (Brown et 161
- al., 2010; Alpatov et al., 2014; Davis and Broadie, 2017; Filippini et al., 2017; Zhou et al., 2017). 162
- 163 Hence, failure to express the FMR-1 protein results in development of autistic symptoms such as
- 164 repetitive and restricted behavior (Turner et al., 1996; Mazzocco et al., 1998; Spencer et al., 2005).
- Fragile X mutant models exhibit increased marble burying (Thomas et al., 2012; Gandhi et al., 2014), 165
- 166 resistance to change in an operant task (Moon et al., 2006), learning deficits on water maze task,
- hyperactivity, anxiety and inadequate pre-pulse inhibition of acoustic startle (D'Hooge et al., 1997; 167
- Peier et al., 2000; Spencer et al., 2005; Lauterborn et al., 2007; Errijgers et al., 2008). Fmr-1 null 168
- 169 mice exhibit altered spine density and morphology on apical dendrites of occipital cortical layer 5
- 170 pyramidal cells (Comery et al., 1997; Beckel-Mitchener and Greenough, 2004). In addition, Fmr1
- knockout mice exhibit dysfunctional cortico-striatal circuitry, reduced long-term potentiation (LTP) 171
- 172 and decrease in levels of synaptic proteins like NMDAR subunits NR1, NR2A and NR2B in medial
- 173 prefrontal cortex (Lauterborn et al., 2007; Krueger et al., 2011; Zerbi et al., 2018). Gene therapy

- 174 using human FRM1 alleviates the low pre-pulse inhibition, hyperactivity and anxiety behaviors in
- 175 Fmr1-KO mice (Peier et al., 2000; Paylor et al., 2008; Spencer et al., 2008; Gholizadeh et al., 2014).
- 176 Application of brain-derived neurotrophic factor, mGluR5 antagonists, anti-purinergic therapy
- 177 (suramin), minocycline, phosphodiesterase-4D negative allosteric modulator (BPN14770) and PI3K
- 178 antagonist (GSK2702926A (GSK6A)) attenuates dendritic spine development aberrations, long-term
- 179 potentiation impairments and behavioral abnormalities in Fmr1 mutant mice (Dölen et al., 2007;
- 180 Lauterborn et al., 2007; Dölen and Bear, 2008; Bilousova et al., 2009; Naviaux et al., 2015; Gurney
- 181 et al., 2017; Yau et al., 2018; Gross et al., 2019).
- Angelman syndrome involves chromosome 15 deletions, particularly the q11-13 region, comprising 182
- 183 the GABAA receptor beta 3 subunit (GABRB3) and ubiquitin ligase (UBE3A) genes. GABRB3 and
- 184 UBE3A genes play a role in regulating protein synthesis and synaptic plasticity (Weeber et al., 2003;
- 185 Moy et al., 2006; Mardirossian et al., 2009). Mouse models of GABRB3 and UBE3A deletions
- 186 exhibit ASD phenotype including developmental delay, hyperactivity, epilepsy, impaired motor
- 187 function, learning deficits and anxiety-related behaviors (DeLorey et al., 1998; Jiang et al., 2010;
- Tanaka et al., 2012). Mice with mutation in Ube3A^{m-/p+} (maternal null mutation) exhibit deficits in 188
- 189
- long-term potentiation (LTP) and changes in calcium-dependent CaMKII activity in the hippocampus
- (Weeber et al., 2003). The Ube3A^{m-/p+} mice show decreased marble burying, rearing behavior and 190
- 191 reversal learning deficits in the Morris water maze (Huang et al., 2013). Additionally, Gabrb3
- deletions cause neuronal dysfunction via alterations in protein synthesis and GABA-A receptor 192
- 193 mediated synaptic transmission. The Gabrb3^{-/-} mice also exhibit repetitive circling behavior (Mercer
- 194 et al., 2016; Orefice et al., 2016).
- 195 Another condition, tuberous sclerosis (TSC), involves mutation of either TSC1 and TSC2 genes that
- 196 codes for proteins hamartin and tuberin, which act as tumor suppressors that regulate cell growth and
- 197 the mTORC1 complex (Astrinidis and Henske, 2005; Inoki et al., 2005; Curatolo and Bombardieri,
- 198 2007), mTOR is a crucial part of signaling pathways involved in cell growth, protein synthesis and
- 199 axon formation (Choi et al., 2008; Huang and Manning, 2008). Tsc2^{+/-} mice with heterozygous TSC2
- 200 gene mutations exhibit learning, and memory deficits associated with aberrant mTOR signaling
- 201 mediated LTP in the hippocampal CA1 region (Ehninger et al., 2008). Mice with Tsc2 loss in
- 202
- cerebellar Purkinje cells (Tsc2f/-;Cre mice) display ASD-like behaviors, including social deficits and
- 203 repetitive behavior (Reith et al., 2013). Further, Tsc2 mutant mice with Tsc2 gene deletion from
- 204 radial glial progenitor cells exhibit lamination aberrations, enlargement of neurons and glia,
- 205 myelination defects and astrocytosis (Way et al., 2009). In addition, mice with ablated TSC1
- 206 expression in neurons show seizures and neuropathological aberrations including enlarged, ectopic
- 207 neurons in hippocampus, cortical, thalamic brain areas, alterations in glutamatergic synapses,
- 208 abnormalities in cortical lamination, cytoskeleton, dendritic spine structure and myelination
- 209 (Tavazoie et al., 2005; Meikle et al., 2007). Application of mTORC1 inhibitors rapamycin and
- 210 RAD001 [40-O-(2-hydroxyethyl)-rapamycin] ameliorates synaptic, cognitive and behavioral deficits
- 211 in mouse model of tuberous sclerosis (Ehninger et al., 2008; Meikle et al., 2008; Zeng et al., 2008;
- 212 Ehninger and Silva, 2011; Bateup et al., 2013).
- 213 Rett syndrome (RTT) is caused by mutations in the MECP2 gene located on the X-chromosome,
- 214 which encodes for methyl-CpG-binding protein 2 (MeCP2) and affects brain development mostly in
- 215 females (Ghidoni, 2007). Several mouse models of autism have been developed to study the effects
- 216 of MeCP2 mutations (Chahrour and Zoghbi, 2007; Samaco et al., 2008). Mutant mice with truncated
- 217 MeCP2 protein show repeated forelimb motions similar to repetitive hand movements in individuals
- 218 with Rett syndrome (Table 1) (Shahbazian et al., 2002; Moretti et al., 2005). Dopaminergic deficits
- are implicated in RTT, such as decreased levels of dopamine transporter (DAT) (Wong et al., 1997), 219

- 220 altered density of dopamine D2 receptors in the striatum (Chiron et al., 1993), and reduced levels of
- 221 tyrosine hydroxylase (TH), dopamine synthetic enzyme, in the striatum (Panavotis et al., 2011).
- 222 suggesting striatal dysfunction in RTT individuals. Additionally, MeCP2 null mice exhibit deficits in
- 223 motor coordination and motor learning along with memory deficits in the Morris water maze.
- Environmental enrichment alters excitatory synaptic density in cortex and cerebellum, LTP deficit, 224
- 225 increased brain-derived neurotrophic factor (BDNF) levels in cortex and rescued motor learning
- 226 deficits (Lonetti et al., 2010).
- 227 Autism susceptibility genes, such as neuroligin genes (NL1, 2, 3, 4) encode the eponymous members
- 228 of postsynaptic cell surface adhesion proteins that are crucial for synapse formation and maintenance
- 229 (Südhof, 2008). Deletion and point mutation of neuroligin-3 (NL3) are associated with autistic
- 230 behavioral phenotypes (Jamain et al., 2003; Levy et al., 2011). Overexpression of neuroligin-2 (NL2)
- 231 in PFC leads to repetitive jumping behavior in mice (Table 1) (Hines et al., 2008). Moreover, deficits
- 232 in neurexins, which are presynaptic cell adhesion proteins that serve as ligands for neuroligins and
- 233 modulates synapse differentiation and maturation, control transmitter release, result in stereotypic
- 234 grooming and altered nest-building behaviors in neurexin1a mutant mice (Etherton et al., 2009; Li
- 235 and Pozzo-Miller, 2020).
- 236 SH3 and multiple ankyrin repeat domains 1, 2 and 3 (SHANK1, SHANK2 and SHANK3) are
- 237 postsynaptic scaffolding proteins present in excitatory synapses that are important for synaptic
- 238 development and function (Grabrucker et al., 2011; Guilmatre et al., 2014). The Shank3 protein
- 239 contains multiple conserved motifs, comprising an ANK repeat, PDZ and SAM domains, a proline
- 240 rich cluster and SH3 (Gundelfinger et al., 2006; Kreienkamp, 2008). The SHANK proteins also
- 241 regulate spine morphology and receptor endocytosis, promote interaction of signaling pathways and
- 242 facilitate synaptic plasticity, crucial for the process of learning and memory (Ehlers, 1999; Sheng and
- 243 Kim, 2000; Monteiro and Feng, 2017). Mutations in Shank genes are implicated in ASD
- 244 (Schmeisser, 2015). In particular, Phelan-McDermid syndrome (PMS) or 22q13.3 deletion syndrome
- 245 is characterized by developmental and speech delays, intellectual disability, reduced motor function
- 246 and ASD. PMS is caused by loss of function of SHANK3 gene resulting in reduced expression of
- 247 SHANK3 protein, affecting synaptic transmission and plasticity (Costales and Kolevzon, 2015). SH3
- and multiple ankyrin repeat domains 3b mutant mice (Shank3b-/-) show repetitive grooming behavior 248
- 249 (Table 1) (Peça et al., 2011; Schmeisser et al., 2012). Moreover, Shank3B mutant mice manifest
- 250 functionally impaired AMPA and NMDA receptors (Peça et al., 2011; Sala et al., 2015; Peixoto et
- al., 2016) (Figure 2). Shank1+/- mice display increased self-grooming behavior during adulthood 251
- (Sungur et al., 2014), while Shank2-/- mice manifest hyperactivity and repetitive jumping behavior 252
- along with reduced activity of NMDA receptors (Table 1) (Schmeisser et al., 2012; Won et al., 253
- 2012). In contrast, Shank1 genotypes (Shank1+/+, Shank1+/-, Shank1-/-) exhibit high self-grooming 254
- behaviors, but which are confounded by behavioral testing or housing conditions. Shank1 null mutant 255
- 256 mice show decreased transitions in the light-dark test, suggesting anxiety-related phenotypes and
- 257 reduced motor abilities (Silverman et al., 2011).

- 259 Contactin associated protein-like 2 (CASPR-2) transmembrane protein is encoded by the CNTNAP2
- 260 gene of the neurexin superfamily that primarily mediates cell-cell adhesions in the nervous system 261 (Rodenas-Cuadrado et al., 2014). In addition, the CNTNAP2 gene plays an important role in the
- 262
- formation of dendritic spines and dendritic arborization (Anderson et al., 2012). Cntnap2 KO mice
- 263 exhibit neuronal migration abnormalities, decreased cortical interneurons number and aberrant
- hippocampal and cortical network activity (Penagarikano et al., 2011). In addition, the Cntnap2 264
- 265 mutant mice show reduced densities of dendritic spines along with decreased levels of AMPA

- 266 receptors subunit GluA1 in the spines (Gdalyahu et al., 2015; Varea et al., 2015; Gao et al., 2019).
- Further, the decreased number of parvalbumin-positive interneurons in the striatum results in altered 267
- activity of the cortico-striatal-thalamic pathway underlying repetitive behaviors (Lauber et al., 2018). 268
- Mice with the CNTNAP2 mutation display repetitive self-grooming behavior, rescued by 269
- 270 risperidone, a dopamine D2 receptor antagonist (Table 1) (Penagarikano et al., 2011), thereby,
- 271 decreasing dopaminergic function and cortical activation (Parr-Brownlie and Hyland, 2005).
- 272 In addition to the above autism susceptibility genes, many other genes implicated in autistic
- 273 phenotypes have been investigated in preclinical studies. Mutations in protocadherin 19 (PCDH19)
- chromosome X-linked gene, leads to Epilepsy in Females with Mental Retardation (EFMR) disease, 274
- 275 cognitive impairments and autistic phenotype (Ryan et al., 1997; Dibbens et al., 2008; Hynes et al.,
- 276 2010; Specchio et al., 2011). PCDH19 gene encodes PCDH19 protein which is a cell-adhesion
- 277 protein. PCDH19 regulates hippocampal neurons maturation, migration and GABAergic
- transmission via binding with GABA-A receptor alpha subunit (Bassani et al., 2018). Additionally, 278
- PCDH19 interacts with intracellular protein NONO, involved in the modulation of steroid hormone 279
- receptors (Pham et al., 2017). Male mice with Pcdh19 knockout (Pcdh19 X^{LacZ}/Y) exhibit increased 280
- rearing and stereotypic grooming behaviors (Lim et al., 2019). 281
- 282 Ephrins are membrane bound proteins acting as ligands of ephrin receptors, belonging to receptor
- 283 tyrosine kinases (RTKs) family which are transmembrane proteins. They serve important functions
- 284 including angiogenesis, axon guidance, cell migration, tissue border formation and synaptic plasticity
- (Chin-Sang et al., 1999; Kullander and Klein, 2002; Martínez and Soriano, 2005; Héroult et al., 285
- 286 2006; Aoto and Chen, 2007; Klein, 2009). In CNS, ephrins and Eph receptors are involved in axon
- 287 pathfinding, topographic development of different brain regions and connectivity, neuronal
- 288 migration, dendritic spine maturation, synapse formation and plasticity (Gao et al., 1996; Dalva et al.,
- 289 2000; Ethell et al., 2001; Grunwald et al., 2001; Henkemeyer et al., 2003; Murai et al., 2003; Palmer
- 290 and Klein, 2003; Bolz et al., 2004; Grunwald et al., 2004; Klein, 2004; Yamaguchi and Pasquale,
- 291 2004; Egea and Klein, 2007; Akaneya et al., 2010; Triplett and Feldheim, 2012). Deletion of ephrin-
- 292 A2 in mice exhibit impairment of behavioral flexibility in visual discrimination reversal learning task
- 293 (Arnall et al., 2010). Mice with double knockout of ephrin-A2 and ephrin-A3 manifest excessive
- 294 stereotypic facial grooming behaviors, resulting in face lesions. In addition, they also show reduced
- 295
- locomotor activity, shift towards grooming in marble burying assay and increased pre-pulse
- inhibition of acoustic startle (Wurzman et al., 2015). The repetitive grooming behavior in double 296
- 297 knockout mice suggests abnormalities in sensorimotor gating (Ben-Sasson et al., 2007; Perry et al.,
- 298 2007; Wurzman et al., 2015). Ephrin-A2 and ephrin-A3 are located at excitatory synapses in multiple
- 299 brain regions. Their deletions may result in altered excitability of forebrain networks suggesting
- 300 defective processing of sensory information (Qiu et al., 2012; Wurzman et al., 2015).

- 302 Phosphoinositide signaling is important for cell survival and proliferation. Phosphoinositide 3-kinase (PI3K), Akt (serine/threonine kinase) and mammalian target of rapamycin (mTOR) are important
- 303 304 interlinks in the PI3K pathway and are activated by upstream receptor tyrosine kinases (RTKs) and
- 305 regulates protein synthesis for cell growth and proliferation (Cantley, 2002). PTEN (phosphatase and
- 306 tensin homolog deleted on chromosome 10), a tumor suppressor gene is a negative regulator of the
- 307 PI3K/AKT/mTOR signaling pathway (Ali et al., 1999; Sansal and Sellers, 2004). Pten is an ASD
- 308 candidate risk gene and its mutation is reported in a subset of autistic cases with macrocephaly
- (Butler et al., 2005; Herman et al., 2007; Varga et al., 2009). Mice with PTEN deletions in cortical 309
- 310 and hippocampal neurons show macrocephaly and ASD behavioral deficits, including seizures,
- 311 increased anxiety and learning deficits. The conditional Pten mutant mice exhibit neuronal
- 312 hypertrophy associated with abnormal activation of Akt/mTOR pathway and Gsk3b inactivation

313 (Kwon et al., 2006). Additionally, conditional *Pten* knockout in astrocytes results in increases to their 314 size (Fraser et al., 2004). Further, Pten conditional KO mice exhibit increased spine number. 315 myelination defects and changes in synaptic structure and transmission (Fraser et al., 2008). Germline Pten^{+/-} male mice also exhibit increased marble burying and digging, suggesting repetitive 316 317 behavioral phenotype (Clipperton-Allen and Page, 2014; 2015). Deletion of PTEN causes changes in synaptic scaffolding proteins (PSD-95, Sapap1, sap-102) and reduced mGluR expression in the 318 319 hippocampus (Lugo et al., 2014). PTEN also exhibits critical functions during development, with 320 significant implications for autism and neurodevelopmental disorders (Rademacher and Eickholt, 321 2019). Hence, PTEN dysfunction in neurons has profound effects on neuronal morphology and 322 connectivity resulting in ASD-like behaviors. 323

Additionally, Homeobox protein (Hoxb8) protein is encoded by the HOXB8 gene, member of homeobox containing group of transcription factors, involved in developmental processes such as positioning along the anterior-posterior axis and other physiological functions. *Hoxb8* mutant mice display excessive grooming behavior resulting in skin lesions and anxiety-like behavior (Greer and Capecchi, 2002). In mouse brains, Hoxb8 cell lineage is present in the microglia. *Hoxb8* mutant mice with Hoxb8 mutations in microglia, exhibit increased cortical dendritic spine density and dendritic spines in the striatum, defects in synapse structure, LTP and miniature postsynaptic currents. Long-term application of fluoxetine (SSRI) attenuates excessive grooming and hyperactivity in *Hoxb8* mutant mice. Hence, Hoxb8 in microglia may play role in modulation of cortico-striatal circuits and associated grooming behavior (Chen et al., 2010; Nagarajan et al., 2018).

 $KCNQ/K_v7$ channels mediate voltage-dependent outward potassium currents regulating resting membrane potential and decreasing neuronal excitability. KCNQ2 encodes subunits of neuronal $KCNQ/K_v7$ - K^+ channels, $K_v7.2$, which are present in the hippocampus and cortex. Mutations in $K_v7.2$ are associated with developmental delay and autism (Cooper et al., 2001; Yue and Yaari, 2006; Shah et al., 2008; Brown and Passmore, 2009). Mice with heterozygous null mutations in KCNQ2 gene ($KCNQ2^{+/-}$) exhibit elevated locomotor activity, hyperactivity, exploratory and repetitive grooming, suggesting loss of $K_v7.2$ is linked to ASD behavioral abnormalities (Kim et al., 2020).

Kin of Irregular Chiasm-like 3 (KIRREL3) gene mutations are linked with neurodevelopmental disorders including autism and intellectual disability (Bhalla et al., 2008; Iossifov et al., 2012; Baig et al., 2017). The KIRREL3 gene encodes Kin of IRRE-like protein 1 (KIRREL3), also called NEPH2 (Sellin et al., 2003). KIRREL3 (NEPH2) is a member of the KIRREL protein family of transmembrane proteins that includes KIRREL (NEPH1) and KIRREL2 (NEPH3). KIRREL3 plays a role in kidney blood filtration function and is a synaptic cell-cell adhesion molecule (Gerke et al., 2006; Neumann-Haefelin et al., 2010). Kirrel3 in mice is present in the developing cochlea, retina and olfactory neuroepithelial regions and in adult nervous system comprising sensory regions (Morikawa et al., 2007). Disruption of function of the KIRREL3 gene is associated with alterations in brain function. The gene is implicated in neural circuit development including neuronal migration, axonal fasciculation and synapse formation (Serizawa et al., 2006; Nishida et al., 2011; Prince et al., 2013). KIRREL3 gene knockout in mice leads to alterations in synapses connecting dentate gyrus (DG) neurons to GABAergic neurons but no changes were observed in synapses linking DG neurons to CA3 neurons. This resulted in disruption of DG synaptic activity and overactivation of CA3 neurons (Basu et al., 2015). KIRREL3 KO mice display increased rearing repetitive behavior, hyperactivity, impaired novel object recognition and sensory abnormalities (Choi et al., 2015; Hisaoka et al., 2018).

360361

324

325

326

327

328

329

330

331332

333

334335

336337

338

339

340341

342

343344

345

346

347

348

349

350

351

352

353

354

355

356

357358

Furthermore, Integrin-beta3 gene encodes integrin beta-3 protein which is a cell-surface protein (member of alpha/beta heterodimeric receptors) and is involved in various functions including cell adhesion/migration, cell-extracellular matrix interactions and axon/dendrite outgrowth (Sosnoski et al., 1988; De Arcangelis and Georges-Labouesse, 2000; Clegg et al., 2003). Increased integrin-beta3 activity leads to elevated SERT transport of 5-HT and increased blood serotonin levels which is reported in autistic individuals (Carneiro et al., 2008). Mice with mutation in the integrin-beta3 gene exhibit elevated grooming in novel environments with no changes in activity in open field test. Disruption of integrin-beta3 protein impairs platelet aggregation resulting in increased bleeding times and hemorrhages. Additional studies are required to ascertain behavioral abnormalities in integerin-beta3 deficient mice (Carter et al., 2011).

 Netrin-G ligand 2 (NGL-2)/LRRC4 is leucine-rich repeat comprising postsynaptic cell adhesion molecule which interacts with PSD-95, excitatory postsynaptic scaffolding protein and netrin-G2, a presynaptic cell adhesion molecule (Lin et al., 2003; Kim et al., 2006; Woo et al., 2009; Matsukawa et al., 2014). NGL-2 is implicated in intellectual disability and ASD (Jiang et al., 2013; Sangu et al., 2017). NGL-2 is involved in regulation of glutamatergic synapse development and excitatory transmission (DeNardo et al., 2012). Mice with mutations in NGL-2 (*Lrrc4*-/-) exhibit reduced hippocampal NMDA receptor synaptic plasticity (Soto et al., 2013; Soto et al., 2018; Um et al., 2018). Lrrc4-/- mice show repetitive self-grooming behavior which is rescued by D-cycloserine, NMDAR agonist. In addition, Lrrc4-/- mice exhibit impaired spatial learning in the Morris water maze test and mild anxiety-like behavior (Um et al., 2018).

Similarly, Nerve injury induced protein 1 (Ninjurin1/Ninj1), is a cell-adhesion molecule involved in nerve regeneration, angiogenesis, inflammation and cancer (Araki and Milbrandt, 1996; Ifergan et al., 2011; Matsuki et al., 2015; Jang et al., 2016). Ninj1 is expressed in cortico-thalamic circuits and is implicated in regulation of synaptic transmission. Mutation in Ninjurin1 (Ninj1) in mice leads to excessive grooming to the point of inducing hair loss and lesions and increased anxiety like behavior. In addition, Ninj1 mutant mice exhibit glutamatergic alterations in the brain, including elevated ionotropic glutamate receptors synaptic expression and mEPSCs amplitude. Stereotypic grooming in these mice is alleviated by fluoxetine (SSRI), correlating with direct inhibitory effects of fluoxetine on NMDA receptors (Le et al., 2017).

SH3RF2 gene present in the 1.8 Mb microdeletion at 5q32 is implicated in autism (Gau et al., 2012; Yuen et al., 2017). It plays a role as an anti-apoptotic regulator of the JNK pathway via degrading SH3RF1 protein that activates JNK pathway (Wilhelm et al., 2012; Kim et al., 2014). Mice with haploinsufficiency of Sh3rf2 (Sh3rf2^{+/-}) show increased jumping, rearing behavior, bury more marbles in the marble burying test correlating with elevated digging behavior and hyperactivity. Abnormalities in dendritic spine development in hippocampus, AMPA receptor mediated excitatory synaptic transmission in CA1 hippocampus, altered hippocampal pyramidal neurons membrane properties and increases in NR2A and GluR2 glutamate receptor subunits in hippocampus are observed Sh3rf2^{+/-} mutant mice (Wang et al., 2018a).

Additionally, the p21-activated kinase 2 (*PAK2*), a serine/threonine kinase, activated by Rho GTPases plays a crucial role in regulating cytoskeleton remodeling, dynamics, formation of postsynaptic dendritic spines and cortical neuronal migration (Bokoch, 2003; Boda et al., 2006; Asrar et al., 2009; Causeret et al., 2009; De La Torre-Ubieta et al., 2010). Mutations in *PAK2* gene are implicated in ASD (Willatt et al., 2005; Quintero-Rivera et al., 2010; Sagar et al., 2013). Haploinsufficiency of Pak2 leads to reduced spine densities in cortex and hippocampus, impaired hippocampal CA1 LTP, decreased phosphorylation of actin regulators LIMK1, cofilin and reduced

- 411 actin polymerization. Pak2+/- mice show repetitive grooming behavior and bury more marbles in the
- 412 marble burying test (Wang et al., 2018b). This suggests PAK2 is critical in brain development and its
- 413 mutation contributes to autistic phenotypes.
- 414 The SCN1A gene heterozygous loss of function mutation results in Dravet Syndrome.
- Haploinsufficiency of the SCN1A gene affects the α subunit of voltage-gated sodium channel 415
- 416 (Nav1.1) in mice leading to autistic behavioral phenotypes, including hyperactivity and stereotypic
- behaviors such as self-grooming and circling behaviors. Scn1a+/- mouse model of autism exhibit 417
- increased excitation in the prefrontal cortex (PFC). Deletion of sodium channels (Nav1.1) in cortical 418
- 419 interneurons causes reduced sodium (Na⁺) currents and neurotransmission of GABAergic
- 420 interneurons resulting in altered GABAergic activity, hyperexcitability and behavioral impairments
- in the mutant mice (Table 1) (Han et al., 2012). 421
- 422 Mutations in receptor proteins are also involved in autistic phenotypes. Oxytocin is a peptide
- 423 produced in the brain, particularly in the paraventricular nuclei and hypothalamic supraoptic. It is
- 424 secreted primarily by the posterior pituitary gland into the circulation (Lee et al., 2009). Oxytocin
- 425 facilitates biological effects by binding to oxytocin receptor (Oxtr). Oxytocin receptor is mainly
- 426 found in the amygdala, hippocampus, olfactory lobe and hypothalamus areas of the brain (Gould and
- 427 Zingg, 2003). Oxtr -/- mice exhibit autistic like phenotypes, increased self-grooming behavior in a
- visible burrow system (VBS) (Pobbe et al., 2012). Oxtr -/- mice also exhibit cognitive inflexibility 428
- 429 during reversal phase in the T-maze test and increased aggression. Oxtr -/- mice exhibit alterations in
- 430 excitatory synaptic markers including PSD95, gephyrin scaffolding proteins and glutamatergic,
- 431 GABAergic receptors along with changes in striatal dendritic spines, indicating striatal dysfunction
- 432 (Sala et al., 2011; Leonzino et al., 2019).
- 433
- 434 Environmentally induced alterations to developing nervous system, such as through specific
- 435 teratogenic agents or restricted housing also contributes to the etiology of ASD. In utero valproic
- 436 acid (VPA), an antiepileptic drug, exposed mice and rats show increased repetitive behaviors, such as
- 437 self-grooming along with reduced social interactions and communication dysfunction (Schneider and
- 438 Przewłocki, 2005; Bromley et al., 2008).
- 439 C58/J, an inbred mice strain, show social deficits, repetitive backward somersaulting and hind limb
- 440 jumping behaviors, restricted novel hole-board exploration, and reversal learning deficits in
- 441 appetitive operant task (Moy et al., 2008b; Ryan et al., 2010; Muehlmann et al., 2012; Whitehouse et
- 442 al., 2017). The hole-board test measures the number of nose pokes (head-dipping) into holes in the
- 443 floor arena as a measure of exploratory behavior (Moy et al., 2008a). Moreover, BTBR, an inbred
- 444 mouse strain, shows ASD-like behavioral phenotype including social, communication deficits and
- 445 stereotypic behaviors (McFarlane et al., 2008; Silverman et al., 2010; Wöhr et al., 2011). Balb/c
- 446 mice, another inbred strain shows ASD-like behaviors, such as sociability deficits and stereotypic
- 447 behaviors. Functional alterations in NMDAR mediated activity and elicitation of jumping and
- 448 circling behavior by NMDAR antagonist MK-801 application is described in Balb/c strain (Deutsch
- 449 et al., 1997; Burket et al., 2010).
- 450 Deer mice belong to a diverse *Peromyscus* genus of cricetidae rodent family that are native to North
- 451 America and utilized as a laboratory animal model for basic and applied research (Joyner et al., 1998;
- 452 Crossland and Lewandowski, 2006). Deer mice exhibit repetitive behavior including hindlimb
- 453 jumping and backward somersaulting upon being maintained in standard laboratory housing. The
- 454 repetitive behaviors showed by deer mice occur at increased rate, apparent during initial development
- 455 and continuing across the lifespan. Deer mice also display reversal learning deficits in a procedural

- 456 learning behavioral task involving learning to change spatial habits upon relocation of reinforcement
- in a T-maze (Hadley et al., 2006). Hence, deer mice are used as animal models of repetitive/restricted 457
- behaviors in autism (Powell et al., 2000; Lewis et al., 2007; Bechard et al., 2017). 458

Glutamatergic and GABAergic Signaling 3

- 460 The normal balance of excitation and inhibition (E/I) in the forebrain is maintained by excitatory
- glutamatergic neurons and inhibitory GABAergic interneurons. 461 The major excitatory
- 462 neurotransmitter in the cortex is glutamate, which activates two types of receptors, i.e. ionotropic and
- 463 metabotropic G-protein coupled receptors (Mehta et al., 2011). Increased excitatory signaling, hyper-
- 464 excitable local connectivity and decreases in inhibitory interneurons accompany repetitive behavioral
- 465 changes in the brains of ASD animals (Rinaldi et al., 2007; Gogolla et al., 2009). Interestingly, these
- 466 behaviors are ameliorated by environmental enrichment, correlating to functional alterations in neural
- 467 circuitry by modifying cortical excitatory and inhibitory synaptic density, LTP, increasing BDNF
- 468
- expression and synaptic plasticity in the cortical network (Schneider et al., 2006; Baroncelli et al.,
- 469 2010; Lonetti et al., 2010; Reynolds et al., 2013; Jung and Herms, 2014).
- 470 Glutamatergic signaling plays a crucial role in the modulation of repetitive behaviors. On the one
- 471 hand, NMDA receptors play important roles in the regulation of neurotransmitter release such as
- 472 glutamate affecting excitatory neural pathways. For instance, intra-striatal injections of NMDA,
- 473 glutamate receptor ligand, induces repetitive behaviors caused by elevated glutamatergic activity in
- 474 the basal ganglia motor circuits (Karler et al., 1997). Deer mice exhibit repetitive behaviors, such as
- 475 excessive jumping and backwards flips, attenuated by interrupting cortico-striatal glutamatergic
- 476 projections via striatal injection of NMDA receptor antagonist MK-801 (dizocilpine) (Presti et al.,
- 2003). Mice with astrocyte specific inducible deletion of GLT-1 (GLAST^{CreERT2/+}/GLT1^{flox/flox}. iKO) 477
- manifesting stereotypic grooming behavior is alleviated by memantine, NMDA receptor antagonist 478
- 479 (Aida et al., 2015).

- On the other hand, NMDA receptors are also expressed on the surface of GABAergic neurons 480
- 481 modulating their inhibitory tone and controlling oscillations of pyramidal neurons involved in
- 482 regulation of neuronal rhythms and activity (Benes, 2010; Deutsch et al., 2010). For instance,
- 483 systemic application of anti-glutamatergic agents, phencyclidine (PCP), an NMDA receptor
- 484 antagonist, evokes stereotypic behaviors, including self-grooming in rodents. NMDA antagonist
- 485 application might inhibit excitation of GABAergic inputs onto pyramidal neurons causing
- 486 disinhibitory (i.e. hyperexcitation of pyramidal neurons) increase in glutamate efflux and
- 487 glutamatergic neurotransmission via AMPA and non-NMDA receptors in the PFC, activating motor
- 488 pathways (Liu and Moghaddam, 1995). This PCP or non-NMDA receptor induced stereotypic
- 489 grooming is alleviated by blocking AMPA receptor (non-NMDAR) mediated glutamatergic
- 490 transmission between prefrontal cortex (PFC) and ventral tegmental area (VTA) (Takahata and
- 491 Moghaddam, 2003; Audet et al., 2006)(Figure 2). In addition, neuroligin-1 (NL1) knockout mice
- 492 exhibit a reduced NMDA/AMPA ratio in the dorsal striatum that correlates with repetitive grooming
- 493 behavior, which is rescued by systemic administration of D-cycloserine, an NMDA receptor partial
- co-agonist (Blundell et al., 2010). Shank2-/- mice manifest reduced NMDA receptor function and 494
- 495 social deficits, normalized by application of D-cycloserine (Won et al., 2012). D-cycloserine is also
- 496 revealed to improve sociability deficits and stereotypies in BTBR and Balb/c inbred mouse strains of
- 497 ASDs (Deutsch et al., 1997; Deutsch et al., 2011a; Deutsch et al., 2011b; Burket et al., 2013).
- 498 Dysfunction of glutamatergic signaling at the metabotropic glutamate receptor 5 (mGluR5) is
- 499 implicated in neuropsychiatric disorders such as autism (Carlson, 2012) (Figure 2). As noted above,

500 Fragile X Syndrome is a genetic disorder associated with autism and mental retardation. This 501 disorder is caused by loss of fragile X mental retardation protein (FMRP) (Hagerman et al., 2017: 502 Niu et al., 2017). The "mGluR theory of fragile X" suggests that FMRP and Group I metabotropic 503 glutamate receptors (mGluRs) regulate protein synthesis at the synapse in an antagonist manner. 504 mRNA translation at the synapse is activated by mGluRs and repressed by FMRP (Bear et al., 2004; 505 Bear, 2005; Dölen and Bear, 2008). Fmr1-KO mice manifest increased expression of mGluR-506 dependent long-term depression (LTD) in the hippocampus, which is likely associated with 507 alterations in mGluR signaling that contribute to repetitive behaviors in mutant mice (Table 1) (Yan et al., 2005; Nosyreva and Huber, 2006; Dölen and Bear, 2008; McNaughton et al., 2008; Pietropaolo 508 et al., 2011). In addition, Shank $3^{\Delta e^4-22^{-/-}}$ mice (exons 4-22 deletion) exhibit excessive grooming and 509 have reduced striatal postsynaptic mGluR5-Homer scaffolding proteins, altered mGluR5 signaling in 510 the striatum and cortico-striatal circuit abnormalities (Wang et al., 2016a). Interestingly, in the 511 512 Ube3A^{m-/p+} (maternal null mutation) mouse model of Angelman Syndrome, mGluR-dependent longterm depression (LTD) and coupling of mGluR5 to Homer proteins in the hippocampus is enhanced 513 (Pignatelli et al., 2014). A mouse model of Tuberous Sclerosis Tsc2+/- exhibits reduced mGluR-LTD 514 515 (long-term depression) in the hippocampus and altered levels of mGluR signaling Arc (activityregulated cytoskeleton-associated) protein, which is crucial for AMPA receptor internalization in 516 cerebellar LTD (Auerbach et al., 2011). This suggests that altered mGluR5 function may underlie 517 518 cognitive and behavioral impairments in mutant mice models (Table 1) (Auerbach et al., 2011; 519 Pignatelli et al., 2014).

- Several studies have demonstrated the therapeutic efficacy of the mGluR5 receptor antagonist, 2-520 521 methyl-6-phenyethyl-pyrididine (MPEP), on core behavioral deficits of autism. MPEP reduces repetitive and stereotypic behaviors in the VPA and BTBR mouse models of autism (Silverman et al., 522 2010; Mehta et al., 2011) (Figure 3). Additionally, MPEP application decreases marble burying 523 stereotypic behavior in Fmr1 KO mice and excessive repetitive grooming in Shank3^{\Delta e4-22-/-} mice via 524 modulation of mGluR5 signaling (Thomas et al., 2012; Gandhi et al., 2014; Wang et al., 2016a). In 525 addition, in C58/J mice that exhibit stereotypic jumping behavior, backflips and decreased 526 exploratory behavior, blocking mGluR5 signaling via GRN-529, a mGluR5 negative allosteric 527 528 modulator, rescues normal behavior (Silverman et al., 2012). The suppression of mGluR5 activity 529 may modify NMDA receptor activity, since they are closely associates at the postsynaptic density, 530 suggesting NMDA receptor hyperfunction underlies jumping behavior in C58/J mice (Kim et al., 2016). In addition, repetitive behavior and reversal learning deficits were attenuated by 531 532 environmental enrichment in C58/J mice (Muehlmann et al., 2012; Whitehouse et al., 2017).
- 533 GABAergic signaling also plays a critical role in the regulation of stereotypic behaviors. For 534 example, application of GABA-enhancing drugs reduces self-grooming behavior in rodents (Silverman et al., 2015). Administration of R-baclofen, a selective GABA_B receptors agonist, 535 536 alleviates repetitive self-grooming behavior in several ASD models, including the BTBR, Fragile X, 537 C58/J, and idiopathic mice models (Han et al., 2014; Silverman et al., 2015). In addition, application of a GABA_A receptor selective agonist, muscimol, into the bed nucleus of the stria terminalis (BNST) 538 539 decreases self-grooming behavior induced by exposure to cat urine (Xu et al., 2012). Additionally, 540 GABRB-3 knockout mice show hyperactivity and stereotypic behaviors such as circling (Moy et al., 541
- 2006). GABA also plays an important role in regulating stress and anxiety related behaviors, with
- 542 increased GABAergic signaling exerting anxiolytic effects and inhibition of stress and anxiety-
- 543 induced grooming behaviors (Chao et al., 2010).
- GABA receptor agonists regulate excitation and inhibition (E/I) balance, resulting in minimizing 544
- 545 elevated excitation in motor cortical areas and parts of basal ganglia-thalamic circuitry (Lewis and

546 Kim, 2009; Kim et al., 2016) (Figure 3). For instance, stereotypic behaviors evoked by amphetamine are diminished by application of GABA receptor agonists (Lewis and Kim, 2009). Likewise, 547 548 application of GABA_A receptors antagonist, bicuculline, in the ventral tegmental area (VTA) 549 enhances self-grooming in mice induced by alpha-melanocyte stimulating hormone (MSH) (De Barioglio et al., 1991). In addition, muscimol injections into the substantia nigra pars reticulata (SNr) 550 551 evokes repeated circling behavior in rats (Velíšek et al., 2005). Thus, altered GABA levels may 552 modify basal ganglia activity by affecting dopaminergic neurons, leading to repetitive behaviors in 553 rodents, as discussed further below (De Barioglio et al., 1991; Kim et al., 2016). 554 Antidepressants/anxiolytics like fluvoxamine, bupropion, and diazepam alleviate repetitive digging behaviors (Hayashi et al., 2010). Moreover, Fmr1-/- mice, discussed above, exhibit hyperexcitability 555 556 due to reduced activity of fast spiking interneurons (FSI) in somatosensory and barrel cortex (Figure 557 2). GABA-receptor agonists decrease marble burying behavior in these Fmr1 knockout mice (Draper 558 et al., 2014). Hence, altered neural signaling and E/I balance underlies repetitive behaviors associated 559 with ASD. Enhanced GABAergic function results in reduced cortical excitation and alleviates 560 repetitive self-grooming behavior (Kalueff et al., 2016).

4 Serotonergic Signaling

561

562 Serotonergic 5HT2A receptors are found mainly in prefrontal cortical and striatal brain regions (Xu 563 and Pandey, 2000), which are associated with repetitive behaviors in ASD (Di Martino et al., 2011; 564 Langen et al., 2012; Delmonte et al., 2013). Differences in serotonergic components in the basal 565 ganglia are associated with repetitive behaviors (Di Giovanni et al., 2006). For instance, deer mice exhibit decreased density of serotonin transporters in the striatum (Wolmarans et al., 2013). And, 566 567 injection of escitalopram, a selective serotonergic reuptake inhibitor (SSRI) alleviates some of the 568 repetitive movements in deer mice, but with no effect on jumping behavior (Wolmarans et al., 2013). 569 Additionally, optogenetic repetitive stimulation of the medial orbitofrontal cortex-ventromedial 570 striatum pathway in mice leads to abnormal grooming behavior, which is rescued by fluoxetine 571 administration, also an SSRI (Schmeisser et al., 2012). Family-based genetic association studies 572 demonstrate linkages between serotonin transporter locus (SLC6A4) variants and rigid compulsive 573 behavior (Sutcliffe et al., 2005), with the serotonin transporter gene (SLC6A4) subtype, 5HTTLPR, 574 consistently associated with repetitive sensory and motor behaviors (Brune et al., 2006). In addition, 575 depleting tryptophan, a precursor of serotonin, augments repetitive motor behaviors in autistic adults 576 (McDougle et al., 1996).

577 Clinical and preclinical studies have implicated alterations in serotonin receptor activity, particularly 578 5HT2A receptor signaling, in ASD symptomology (McBride et al., 1989; Veenstra-VanderWeele et 579 al., 2012) (Figure 2). Systemic treatment with a serotonin 5HT2A receptor antagonist decreases 580 repetitive behaviors in the BTBR mouse model of autism, an inbred strain that shows similar ASD-581 like behavioral deficits to an idiopathic mouse model of autism (McFarlane et al., 2008; Amodeo et 582 al., 2012; 2014; Amodeo et al., 2016). Further, infusion of M100907, a highly selective antagonist 583 for 5HT2A receptors into the dorsomedial striatum reduces grooming behavior and reversal learning deficits in BTBR mice. This regulation of reversal learning and grooming behavior by 5HT2A 584 585 receptor antagonist infusion into the dorsomedial striatum may be associated with reduction in 586 striatal direct pathway activation (Reiner and Anderson, 1990; Amodeo et al., 2017). However, 587 5HT2A receptor antagonist infusion into orbitofrontal cortex results in increased grooming behavior 588 and perseveration in reversal learning (Amodeo et al., 2017). This altered grooming behavior by 589 blocking of 5HT2A receptor activity in orbitofrontal cortex may be associated with increased output 590 by orbitofrontal cortex via reduced interneuron activity, as orbitofrontal infusion of GABA receptor

- 591 agonist, muscimol, results in decreased grooming behavior in BTBR mice (Amodeo et al., 2017)
- 592 (Figure 3).

- 593 Thus, elevated serotonin 5HT2A receptor signaling in the dorsomedial striatum plays a critical role in
- 594 the development of stereotyped behaviors, whereas normal 5HT2A receptor activity in the
- 595 orbitofrontal cortex contributes to attenuation of stereotyped behaviors in BTBR mice. Hence,
- abnormal serotonin receptor activity in various brain regions may contribute to restricted and 596
- 597 repetitive behaviors.

5 Dopaminergic Signaling and Basal Ganglia Circuitry

- 599 The cortico-basal ganglia-thalamic pathway implements motor patterned behaviors and is implicated
- in repetitive behaviors (Haber and Calzavara, 2009; Kalueff et al., 2016). Sequential patterns of 600
- 601 behaviors, such as stereotyped sequential grooming movements, also called grooming chains, are
- 602 carried out by these circuits in rodents (Berridge et al., 2005; Denys et al., 2013). Striatal lesions,
- particularly in the anterior dorsolateral region of the striatum, result in an inability to complete 603
- 604 sequential grooming movements. Additionally, lesions of the ventral pallidum and globus pallidus
- 605 results in disruption of grooming movements (Cromwell and Berridge, 1996), further underscoring
- 606 their role in the regulation of complex and mechanistic sequenced behaviors.
- 607 Enhanced activity of basal ganglia circuitry results in increased hyperactivity and repetitive behaviors
- 608 (Kim et al., 2015). In particular, the prefrontal cortical (PFC) projection to the substantia nigra pars
- 609 compacta (SNc), leads to dopaminergic release in the striatum, which promotes movement through
- 610 opposing actions on direct and indirect basal ganglia pathways. Dopamine through D1 receptors are
- involved in the activation of the direct pathway, which in turn activates the motor cortex, resulting in 611
- movement. In contrast, dopamine through D2 receptors on neurons present in the indirect pathway, 612
- 613 results in inhibition of the indirect pathway, also promoting movement (Gerfen et al., 1990; Gerfen,
- 614 1995). For example, amphetamine pretreated rats, when injected with a dopamine D2, D3 receptor
- 615 antagonist, sulpiride, or the GABA antagonist, bicuculine, leads to repetitive behavior (Morency et
- 616 al., 1985; Karler et al., 1998; Kiyatkin and Rebec, 1999). Further, these circuits are disrupted in
- autistic mouse models, which display PFC abnormalities. Namely, mice with mutations in the 617
- 618 SCN1A gene leads to autistic-like phenotypes, including hyperactivity and stereotypic self-grooming
- 619 and circling behaviors and increased excitation in the PFC (Han et al., 2012).
- 620 Dopamine plays a major role in modulating striatal pathways resulting in locomotion and repetitive
- 621 motor behaviors. Application of Risperidone, that acts on different molecular receptors, including
- blocking of dopamine D2 receptors, leads to decreases in repetitive self-grooming behavior, 622
- perseveration, hyperactivity and rescues nesting deficits in Cntnap2^{-/-} mice. Similarly, systemic 623
- 624
- administration of haloperidol, a dopamine D2 receptor antagonist decreases motor cortex activity,
- 625 thereby impeding locomotor movements in rats (Parr-Brownlie and Hyland, 2005). Interestingly,
- increased striatal dopamine D2 receptor expression leads to deficits in GABAergic activity, thereby 626
- 627 enhancing prefrontal cortical (PFC) excitation (Li et al., 2011) (Figure 3). Hence, reduced repetitive
- 628 and locomotory behavior caused by altered dopamine D2 receptor expression may be linked to
- 629 heightened cortical GABAergic function and reduced PFC excitability.
- 630 Manipulation of the nigrostriatal dopamine pathway is sufficient for modulating many stereotyped
- behaviors (Lewis and Bodfish, 1998). Altered striatal dopamine activity is implicated in repetitive 631
- 632 circling behaviors, which are observed in several mouse models of ASD (Vaccarino and Franklin,
- 633 1982; Ishiguro et al., 2007). Systemic administration of a dopamine precursor, L-DOPA and a non-

634 selective dopamine agonist, apomorphine into the striatum induces stereotyped behaviors in rodents (Ernst and Smelik, 1966; Presti et al., 2004). Likewise, injection of dopamine D1 receptor agonists 635 636 evokes stereotypic and rigid behavioral phenotype in rodents (Berridge and Aldridge, 2000a; b). Furthermore, deer mice exhibit stereotyped behaviors, such as excessive jumping and backwards 637 flips, which is attenuated by intrastriatal injection of dopamine D1 receptor antagonist, SCH23390 638 639 (Presti et al., 2003) (Figure 3). Spontaneous motor stereotypies observed in deer mice exhibit 640 negative association with neuropeptide enkephalin expression, a marker of striatopallidal neurons and is attenuated by combined administration of adenosine A2A receptor agonist CGS21680 and A1 641 642 receptor agonist CPA in a dose-dependent manner, indicating altered striatal pathway activity 643 (Tanimura et al., 2010b). Environmental enrichment attenuates repetitive behavior by increasing activation through the indirect basal ganglia pathway, which also results in changes in dendritic spine 644 645 density in the subthalamic nucleus (STN) and globus pallidus (GP) (Bechard et al., 2016).

Several ASD mice models exhibit alterations to dopaminergic nigrostriatal signaling. Mutant mice with heterozygous deletion of the syntenic region on chromosome 7F3 (16p11^{+/-}) display decreased self-grooming behavior along with hyperactivity and increased stereotypic circling behavior. Neuroanatomically, these mice have increased numbers of dopamine D2 receptor expressing neurons in the striatum, reduced number of cortical neurons manifesting dopamine D1 receptors, and synaptic function defects (Portmann et al., 2014) (Figure 2). Mice deficient in the dopamine transporter (DAT) have elevated levels of dopamine and increased stereotypic sequential grooming behavior. Dopamine D1A receptor deficient mice manifest disrupted and shorter duration grooming bouts (Cromwell et al., 1998). Neuroligin NL3 mutations result in selective decrease of synaptic inhibition onto dopamine D1-expressing medium spiny neurons (MSNs) in the nucleus accumbens (NAc) and result in behavioral changes in mutant mice via reduced selective striatal synaptic function in the nucleus accumbens/ventral striatum (Rothwell et al., 2014). Apart from this, neuroligin-1 and 3 mutant mice show abnormal function of dopamine D1 MSNs leading to autistic-like repetitive behaviors (Rothwell et al., 2014; Espinosa et al., 2015). In the Shank3 gene deletion mouse model, striatopallidal D2 MSNs show postsynaptic defects and decreased AMPA receptor responses (Mei et al., 2016; Zhou et al., 2016). Repetitive grooming in Shank3B mutant mice is rescued by enhancing indirect striatopallidal pathway activity (Wang et al., 2017). Additionally, synaptic plasticity is impaired in dorsolateral striatal medium spiny neurons (MSN) in mutant mice carrying full Shank3 deletion in exons 4-22 (Δ e4–22^{-/-}), which also exhibit decreased striatal spine density and altered striatal synapse postsynaptic density (Peca et al., 2011; Sala et al., 2015; Peixoto et al., 2016; Wang et al., 2016a). Finally, BTBR T+ Itpr3tf/J mice show impairments in mesolimbic and striatal synaptic dopamine D2 receptor signaling resulting in reduced dopamine neurotransmission. Reductions in pre- and post-synaptic adenosine A2A receptor function also indicate associations with altered dopamine neurotransmission (Squillace et al., 2014).

Overall, dopaminergic circuitry in the basal ganglia mediates rigid and sequential behavioral phenotypes associated with ASD. As dopamine containing neurons and pathways are crucial in movement and sequencing behaviors, the regulation of the dopaminergic system may provide a valuable tool for modulating repetitive behaviors. Hence, basal ganglia circuits play an instrumental role in regulation of compulsive and repetitive behavioral phenotype associated with ASD.

6 Glutamatergic Signaling at Cortico-Striatal Synapses

646

647

648

649

650

651

652

653

654

655

656

657

658 659

660

661

662

663

664

665

666

667 668

669

- Striatal glutamatergic synapses express synapse-associated protein 90/postsynaptic density protein 95
- 677 (SAP90/PSD95) associated proteins (SAPAP), which form scaffolding protein complexes involved
- 678 in regulation of neurotransmitters trafficking and targeting to the post-synaptic membrane (Wu et al.,

- 679 2012). Mutations in synapse-associated protein 90/postsynaptic density protein 95-associated protein
- 3 (SAPAP3) that also binds to SHANK3 postsynaptic scaffolding protein is associated with 680
- stereotypic behaviors in mice (Sapap3^{-/-}), such as compulsive self-grooming to the point of inducing 681
- lesions, which is rescued by Sapap3 re-expression in the striatum and optogenetic stimulation of 682
- 683 lateral orbitofrontal cortex (Welch et al., 2007; Bienvenu et al., 2009; Burguière et al., 2013).
- 684 Sapap3 mutant mice exhibit glutamatergic transmission defects at cortico-striatal synapses and
- elevated mGluR5 signaling, leading to abnormal striatal output and stereotyped behavior, which is 685
- 686 alleviated by mGluR5 inhibition (Ade et al., 2016). This suppression of mGluR5 possibly inhibits the
- direct basal ganglia pathway resulting in reduced repetitive behaviors (Conn et al., 2005). NMDA 687
- 688 and AMPA receptor dependent cortico-striatal synaptic transmission is also altered. Intriguingly,
- 689 systemic administration of fluoxetine, a serotonin uptake inhibitor attenuates obsessive grooming in
- 690 mutant mice (Welch et al., 2007).

7 **Endocannabinoid Signaling in Striatal Synapses**

- 692 Endocannabinoid signaling plays a crucial part in modulating striatal synaptic transmission and in
- 693 regulating stereotypic behaviors (Chen et al., 2011; Gremel et al., 2016). The abundant
- endocannabinoid, 2-arachidonoyl glycerol (2-AG), activates cannabinoid-1 receptor (CB1R), 694
- 695 mediating suppression of glutamatergic release via feedback inhibition at direct and indirect medium
- 696 spiny neuron (MSN) synapses (Kano et al., 2009). Synthesis of 2-AG in the postsynaptic neuron is
- mediated by diacylglycerol lipase alpha (DGLα) (Gao et al., 2010; Tanimura et al., 2010a; Shonesy 697
- 698 et al., 2014). Mice with DGLα knockout in direct-pathway MSN exhibit reduced levels of 2-AG in
- 699
- the striatum and absence of feedback inhibition mediated by 2-AG at glutamatergic direct-pathway
- 700 MSN synapses, resulting in excessive glutamatergic drive in direct-pathway MSNs (Figure 3). In
- 701 addition, DGLa deletion in direct-pathway MSNs does not change GABAergic synaptic
- 702 transmission, suggesting that alterations to excitation/inhibition balance may contribute to increased
- 703 direct-pathway MSN output, resulting in excessive grooming behavior (Figure 4). Furthermore, mice
- 704 with regional DGLα deletions in the ventral striatum (nucleus accumbens) exhibit repetitive
- 705 grooming behavior (Shonesy et al., 2018). Thus, 2-AG signaling impairment in direct pathway MSNs
- 706 leads to circuit alterations and ASD behavioral phenotypes, such as repetitive self-grooming behavior
- 707 (Figure 2).

721

691

- 708 Group1 mGluRs play a role in mobilizing endocannabinoids in the hippocampus, contributing to
- 709 increased excitability. In FMR1 null mice, mGluR5 dependent LTD is absent at excitatory synapses
- 710 of PFC and ventral striatum, which is moderated by endocannabinoid 2-arachidonovlglycerol (2-
- AG). The Homer scaffolding complex linking mGluR5 to diacylglycerol lipase alpha is disrupted 711
- 712 resulting in impairment of endocannabinoid mediated LTD at excitatory synapses. Application of
- 713 CB1R antagonist rimonabant improves cognitive deficits in Fmr1 KO mice (Busquets-Garcia et al.,
- 714 2013). Hence, endocannabinoid signaling contributes to increased excitability in FXS (Jung et al.,
- 2012; Tang and Alger, 2015). Intriguingly, CB1 and CB2 receptor expression is upregulated in the 715
- brain of MeCP2 mutant mice. Treatment with cannabinoid cannabidivarin (CBDV) ameliorates 716
- memory deficits in MeCP2 mutant mice. CBDV also regulates BDNF, CB1, CB2 receptor levels and 717
- 718 PI3K/AKT/mTOR pathway which is dysregulated in MeCP2 deficient mice (Zamberletti et al.,
- 719 2019). Hence, altered endocannabinoid signaling is associated with behavioral abnormalities in
- 720 neurodevelopmental disorders.

8 Astrocytic calcium signaling regulating striatal circuitry

Astrocytes perform numerous functions, including maintenance of the blood-brain barrier, extracellular ion homeostasis, synapse formation and regulation of synaptic transmission (Khakh and Sofroniew, 2015). Astrocytes also propagate intercellular Ca²⁺ waves upon stimulation and modulate neuronal function through Ca²⁺ dependent signaling (Bazargani and Attwell, 2016). Astrocytic Ca²⁺ signaling stimulates release of gliotransmitters such as glutamate, GABA, ATP and D-serine that regulate neuronal activity (Bazargani and Attwell, 2016). Astrocytes regulate extracellular levels of glutamate via transporters like GLT1, hence influencing excitatory and inhibitory neuronal balance (Wu et al., 2012). High levels of glutamate in the extracellular space leads to over activation of glutamate receptors, i.e. neuronal excitotoxicity. Astrocytes protect against neurotoxicity by mediating glutamate clearance from synaptic space via glutamate uptake transporters, thereby modulating neuronal activity. Astrocytes also supply ATP that is crucial for the process of glutamate uptake. In astrocytes, glutamate is converted to glutamine that acts as a precursor for resynthesis of neurotransmitters like glutamate/GABA in neurons. Further, glutamate in the synapse induces astrocytic Ca²⁺ increase that results in release of glutamate from astrocytes to adjoining neurons, stimulating NMDA receptors and iGluRs (ionotropic glutamate receptors), modulating their activity. Therefore, astrocytes have dual roles in maintaining glutamate release and uptake (Bazargani and Attwell, 2016; Mahmoud et al., 2019). Astrocytes also modulate synaptic GABA levels via GABA transporters (GAT) that mediates GABA uptake. Expression of synaptic GAT1 regulates GABA levels in the synapses, thereby modulating neuronal excitability. Rise in astroglial Ca²⁺ signaling leads to inhibition of neuronal activity. This is associated with elevated GABA levels in the synapse caused by decreases in astroglial membrane GAT levels via endocytosis into astrocytes. The membrane trafficking of GAT is regulated by Rab11, Rab family small GTPases. Rab11 suppression counteracts the decrease in neuronal activity by elevated astroglial Ca²⁺ levels via repressing GAT endocytosis. Therefore, astrocytes regulate activity of neuronal circuits (Zhang et al., 2017). Alterations in astroglial uptake processes or gliotransmitters release is implicated in the pathogenesis of neurological disorders including epilepsy and may contribute to the development of behavioral impairments in these disorders (Mahmoud et al., 2019).

722

723

724

725

726 727

728

729

730

731

732

733

734

735 736

737

738

739

740

741

742

743

744 745

746

747

748

749

750

751 752

753

754

755

756

757

758 759

760

761

762

763

764 765

766

767

768 769

In addition, astrocytic dysfunction is implicated in stereotypic behaviors associated with neuropsychiatric disorders (Molofsky et al., 2012; Aida et al., 2015; Yu et al., 2018). Mutant mice with GLT-1 inducible deletion in astrocytes (GLAST^{CreERT2/+}/GLT1^{flox/flox}, iKO) display excessive self-grooming repetitive behavior resulting in self-induced injury. The knockout of astroglial GLT1 leads to alteration in cortico-striatal synapse, suggesting glial dysfunction involvement in pathophysiology of repetitive behaviors (Aida et al., 2015). In wild-type C57BL/6NTac mice, decreased astrocyte Ca²⁺ signaling in the striatum leads to increased stereotypic grooming behavior (Figure 2). In these experiments, wild-type C57BL/6NTac mice were injected with hPMCA2w/b construct to impair striatal astrocytic Ca²⁺ signals. The hPMCA2w/b construct consists of w/b splice variant in human plasma membrane Ca²⁺-ATPases pump (hPMCA2) deficient in the cytosolic interaction domains (Yu et al., 2018). Membrane targeting of PMCA2 is determined by alternative splicing of protein cytosolic loop, in which "w" form (w splice variant) containing 45 amino acid residue insertion, display membrane localization of PMCA2. The b splice variant is generated at COOH terminal site of protein, an important regulatory region of the pump and its terminal sequence interacts with PDZ proteins (Chicka and Strehler, 2003). Astrocytes express the plasma membrane Ca²⁺ pump (PMCA2) that function to expel cytosolic Ca²⁺. The generated hPMCA2w/b mice exhibit excessive repetitive self-grooming behavior. Reduced astrocyte Ca²⁺ signaling decreases ambient GABA levels via enhanced GABA transporter 3 (GAT-3) activity (Figure 5). In addition, Rabl1a gene downregulation leads to increased GAT-3 functional activity, thereby reducing inhibition of MSNs in striatum. The elevated self-grooming behavior is also observed in a mouse model of Huntington's disease, R6/2 that is associated with decreases in astrocytic Ca²⁺ signals and alleviated

- by blocking astrocytic GAT-3. Hence, attenuated astrocytic Ca²⁺ signaling decreases striatal MSN
- 771 inhibition, via altered GABA levels resulting in repetitive behavior (Yu et al., 2018) (Figure 5).
- Moreover, astrocytic GLT1 deficient mice show increased grooming, rearing and jumping behavior,
- suggesting reduced synaptic glutamate clearance resulting in glutamatergic dysfunction underlying
- 774 these behaviors (Jia et al., 2020). Hence, astrocytes regulate striatal activity and associated
- stereotypic behavior.
- Further, mice with inactivation of *Tsc1* gene in astrocytes (*Tsc1*^{GFAP}CKO) displays epilepsy, learning
- deficits, reduced GLT-1 protein expression, elevated levels of glutamate in hippocampus and
- impairment of hippocampus-LTP suggesting altered glutamate homeostasis and synaptic plasticity in
- mouse model of Tuberous Sclerosis (Wong et al., 2003; Zeng et al., 2007).
- 780 Glial ephrin-A3 also plays an important role in modulating hippocampal activity. In adult
- hippocampus, dendritic spines of pyramidal neurons expresses EphA4 tyrosine kinase receptor, the
- activation of which is dependent on ligand ephrin-A3, present in the perisynaptic processes of
- astrocytes, is involved in regulation of dendritic spine morphology and synapse formation (Murai et
- 784 al., 2003; Klein, 2009). Mice with knockout of ephrin-A3 or EphA4 exhibits spine irregularities and
- 785 results in increased expression of astroglial glutamate transporters GLT-1 and GLAST in the
- 786 hippocampus. Hence, bidirectional signals between neuronal EphA4 and astroglial ephrin-A3
- 787 regulate spine morphology, glutamate transport and excitatory synaptic function (Carmona et al.,
- 788 2009; Filosa et al., 2009).
- Neural circuit refinement is associated with experience-dependent synaptic pruning. In the cortex of
- 790 ephrin-A2 knockout mice, experience-dependent removal of postsynaptic dendritic spines was
- mediated by activation of NMDA glutamate receptors, thereby leading to changes in adult neural
- 792 circuits. Ephrin-A2 null mice also showed reduced glutamate transporters, contributing to increase
- 793 synaptic glutamate and promoting spine elimination (Yu et al., 2013).
- Hence, astroglial expressed ephrin-A3 and ephrin-A2 in the hippocampus and cortex, respectively,
- have opposite effects on modulation of glutamate transporters and spine morphology. Treatment
- 796 interventions targeting astroglial ephrin-A3/A2 signaling may alter expression of glutamate
- 797 transporters and protect against glutamate excitotoxicity, maintaining the synapse structure and
- 798 dynamics.

9 Amygdala and limbic circuitry in repetitive behaviors

- 800 The amygdala is involved in the regulation of emotions, anxiety and fear, as well as regulating
- 801 repetitive behaviors. High levels of anxiety in rodents are accompanied by increased self-grooming
- behaviors, rescued by anxiolytic treatments (Kalueff and Tuohimaa, 2004a; Ahmari and Dougherty,
- 803 2015). Anxiety-related behavior in rats is correlated with reduced dopamine release in the amygdala
- and increased grooming episodes. In the medial nucleus of the amygdala (MeA), activation of
- vesicular glutamate transporter 2 (vGLUT2) expressing glutamatergic neurons increases repetitive
- 806 self-grooming behavior (Figure 2), whereas activation of vesicular GABA transporter (VGAT)-
- 807 positive GABAergic neurons represses self-grooming behavior in mice (Figure 3) (Hong et al.,
- 808 2014). In addition, injections of Orexin-B, a neuropeptide that regulates food intake, mood and
- wakefulness in the central nucleus of amygdala (CeA), leads to enhanced grooming frequency in
- 810 hamsters. Orexin-B induced grooming behavior is potentiated by infusion of NMDA receptor
- agonists (Alò et al., 2015). In lateral amygdala, Fmr1 KO mouse model shows synaptic defects

- 812 including impaired mGluR-dependent LTP and reduced AMPA receptor subunit, GluR1 surface
- 813 expression (Suvrathan et al., 2010).
- The basolateral nucleus of the amygdala (BLA) sends projections to the hippocampus and the 814
- 815 prefrontal cortex (PFC) (Obeso and Lanciego, 2011). Activation of glutamatergic projections from
- 816 the basolateral amygdala (BLA) to the ventral hippocampus heightens self-grooming in mice (Felix-
- 817 Ortiz and Tye, 2014) (Figure 2), while its inhibition leads to reduced locomotor activity, suggesting a
- 818 crucial role for the ventral hippocampus in repetitive behaviors (Figure 3) (Bast et al., 2001; Zhang et
- 819 al., 2002). Shank3 deficient rats show attention deficit and decreased synaptic plasticity in the
- 820 hippocampal-medial prefrontal cortex pathway. Mouse models of Shank3 deletion also exhibit
- 821 impaired synaptic plasticity in the hippocampus, associated with deficits in actin cytoskeleton
- 822 remodeling, along with changes in NMDA glutamatergic receptors and mGluR-Homer scaffolding
- 823 complex, resulting in abnormalities in cortico-striatal circuits underlying repetitive behaviors
- 824 (Bozdagi et al., 2010; Duffney et al., 2013; Kouser et al., 2013; Wang et al., 2016a). In addition, the
- 825 Shank postsynaptic protein scaffold helps regulate synaptic transmission at hippocampal Schaffer
- 826 Collateral-CA1 synapses (Shi et al., 2017). Further, altered synaptic transmission at thalamo-
- amygdala circuits is associated with obsessive self-grooming behavior in rodents (Ullrich et al., 827
- 828 2018).

- 829 The hypothalamus is another limbic brain region involved in regulating numerous behaviors,
- 830 including self-grooming in rodents (Qualls-Creekmore and Münzberg, 2018). The hypothalamic
- 831 paraventricular nucleus and the dorsal hypothalamus are associated with grooming behavior observed
- 832 by local electrical stimulation in the hypothalamus that induces self-grooming in rats. The
- 833 paraventricular nucleus projects to the posterior dorsal part of medial amygdala (MeApd) which is
- 834 involved in self-grooming behavior (Roeling et al., 1993). Lateral hypothalamic glutamatergic
- 835 neurons adjacent to the MeApd play roles in repetitive self-grooming behaviors in mice (Figure 3).
- 836 Moreover, MeApd also projects to the medial hypothalamus (Hong et al., 2014). Finally, the central
- nucleus of amygdala (CeA) and MeA projects to the bed nucleus of the stria terminalis (BNST) that 837
- connects the amygdala and hypothalamus (Heimer et al., 2007). Hence, the limbic system, 838
- 839 incorporating the amygdala, hippocampus, hypothalamus and basal ganglia regions, play important
- 840 roles in regulating repetitive behaviors.

10 **Neuroanatomy of ASD**

- 842 Magnetic resonance imaging (MRI) studies in humans have contributed to the understanding of the
- 843 neuroanatomical basis of ASD, such as a period of early brain overgrowth in autism, particularly in
- frontal, temporal and cingulate cortices, hippocampus, cerebellum and amygdala (Palmen and van 844
- 845 Engeland, 2004; Bauman and Kemper, 2005; Courchesne et al., 2007; Amaral et al., 2008). Further,
- 846 atypical functional connectivity between caudate and cortical areas has been observed in autistic
- 847 subjects (Turner et al., 2006). These findings match neuroanatomical alterations observed in several
- of the mice models discussed above, which also show alterations to the hippocampal commissure, 848
- decreased frontal-cortical, occipital and thalamic grey matter volume along with reduced cortical 849
- 850 thickness (Wahlsten et al., 2003).
- 851 Neuroimaging studies also suggest an association of repetitive behaviors, with the volume of basal
- ganglia areas, such as the caudate-putamen (Sears et al., 1999; Calderoni et al., 2014). Autistic 852
- individuals show significantly larger right caudate and putamen volumes compared to matched 853
- 854 controls. Moreover, total putamen and right caudate volumes reveal positive association with ADI-C
- 855 domain repetitive behavior scores (Hollander et al., 2005). Neuroimaging of individuals with fragile

- 856 X syndrome (FXS) also exhibit altered gray matter volume in the caudate and white matter of the
- ventral fronto-striatal pathway (Haas et al., 2009; Hallahan et al., 2011). Moreover, imaging studies 857
- 858 of RTT individuals show reduced caudate nucleus and midbrain volumes (Casanova et al., 1991;
- 859 Reiss et al., 1993; Subramaniam et al., 1997).
- 860 The medial frontal gyri, right fusiform gyrus and left hippocampal volumes are also enlarged in
- 861 autistic groups (Rojas et al., 2006; Verhoeven et al., 2010). The increased regional brain volumes
- show positive correlation with stereotypic behaviors; however, decreased volume of the cerebellum 862
- 863 in autistic subjects show negative correlation with repetitive behavioral measures (Rojas et al., 2006).
- 864 One study on autistic children demonstrated positive association of repetitive behavior and frontal
- lobe volume and negative association with cerebellar vermis volume (Pierce and Courchesne, 2001). 865
- 866 In addition, developmental studies in rodents and non-human primates show that damage to
- amygdala, hippocampus and temporal cortex induce ASD-like behaviors such as stereotypies 867
- 868 (Bachevalier and Loveland, 2006). Early in life, amygdala and hippocampal lesions result in self-
- 869 directed and stereotypic head twisting behaviors in juvenile monkeys (Bauman et al., 2008).
- 870 The anterior cingulate cortex (ACC) is also implicated in repetitive behaviors in ASD (Thakkar et al.,
- 871 2008). An fMRI study in high-functioning autistic individuals revealed a negative correlation of
- 872 repetitive/restricted behaviors with ACC and posterior parietal activation implicating frontal-striatal
- circuitry in stereotyped behaviors (Shafritz et al., 2008). Additional consistent neuroimaging findings 873
- 874 are required to understand neural circuitry of stereotypic behaviors in neurodevelopmental disorders.
- 875 Imaging studies in preclinical animal models are limited and research in this area is still ongoing
- 876 (Wilkes and Lewis, 2018). There are a few MRI studies that have utilized diffusion tensor imaging
- 877 (DTI) and functional magnetic resonance imaging (fMRI) in animal models of repetitive behaviors
- (Ellegood et al., 2010; Dodero et al., 2013; Ellegood et al., 2013; Squillace et al., 2014; Haberl et al., 878
- 879 2015; Allemang-Grand et al., 2017). Mice with hemizygous (-/Y), heterozygous (-/+) and
- 880 homozygous (-/-) Mecp2 mutation show enlarged cerebellar volume, including the vermis, cerebellar
- 881 cortex region and smaller cortical volumes including somatosensory, frontal, motor and cingulate
- 882 regions. In addition, Mecp2 hemizygous male mice (-/Y) exhibit increased brainstem volume and
- 883 reduced volumes in striatum, thalamus, frontal cortex and corpus callosum. These studies correlate
- 884 with imaging findings in individuals with Rett syndrome (Dunn et al., 2002; Carter et al., 2008;
- 885 Ellegood et al., 2015; Allemang-Grand et al., 2017).
- 886 MRI imaging in Fmr1 KO mice reveal decreased cerebellar nuclei and striatal volumes (Ellegood et
- 887 al., 2010). In addition, diffusion tensor MRI and functional MRI (fMRI) studies show changes in
- 888 structural connectivity of the corpus callosum and functional connectivity between cortical regions
- 889 such as visual, somatosensory, auditory and motor regions (Haberl et al., 2015). MRI analysis of
- 16p11.2 CNV mice demonstrate volumetric alterations in brain regions including basal forebrain, 890
- 891 hypothalamus, midbrain and superior colliculus (Horev et al., 2011). Additionally, 16p11^{+/-} pups
- 892 show reduced brain volume at postnatal day 7, while the elative volume i.e., normalized to total brain
- 893 volume of nucleus accumbens (NAc) and globus pallidus (GP) regions are increased. Structural
- abnormalities in cortical areas are also observed in 16p11+/- pups (Portmann et al., 2014). Adult 894
- heterozygous 16p11.2 mice after controlling for total brain volume show neuroanatomical alterations 895
- 896 in different brain regions including increased midbrain, hypothalamus, superior colliculus volumes
- 897 and reduced striatal volume (Ellegood et al., 2015). Mice with chromosome 15 mutations,
- particularly with duplication of 15q11-13 region show reduced relative volumes for different brain 898
- 899 areas like basal forebrain, midbrain, hypothalamus and thalamus (Ellegood et al., 2015).

- Decreases in parvalbumin containing interneurons in the medial prefrontal cortex are observed in ASD individuals (Hashemi et al., 2017). *Parvalbumin* knockout mice show ASD behavioral phenotypes, such as deficits in social interaction behaviors, ultrasonic vocalizations and higher-order
- 903 reversal learning in the T-maze assay (Wöhr et al., 2015). An MRI study of juvenile *Parvalbumin*
- hockout mice revealed reduced cortical volume and increased cerebellar volume. However, these
- anatomical alterations are not consistent in adult *Parvalbumin* knockout mice (Wöhr et al., 2015).
- Additional studies are required for elucidating other repetitive behaviors and brain regions structural
- 907 alterations in this mouse model. *In utero* VPA exposed rats exhibit decreased total brain volume,
- 908 relative cortical and brainstem volumes and hippocampus volume (Frisch et al., 2009; Petrenko et al.,
- 909 2013).
- 910 BTBR mice exhibit reduced cerebral white and grey matter, ventricular volumes and larger olfactory,
- 911 brainstem and cerebellum volumes compared to C67BL/6 mice (Ellegood et al., 2013). An fMRI
- 912 study of BTBR mice showed decreased bilateral functional connectivity for cingulate, striatum,
- 913 insular, motor cortex and reduced striatal-thalamic connectivity. However, hippocampus, temporal
- and occipital areas show increased interhemispheric connectivity in BTBR mice (Sforazzini et al.,
- 915 2016).
- 916 Molecularly, scaffolding proteins, glutamate receptor interacting proteins 1/2 (Grip1/2), plays a role
- 917 in AMPA receptor (AMPAR) trafficking and its absence contributes to cerebellar LTD deficit in
- 918 cultured Purkinje cells and social preference changes in cell-specific Grip1/2 mutant mice (Takamiya
- 919 et al., 2008; Mejias et al., 2011). Grip1/2 KO mice exhibit repetitive grooming with no changes in
- 920 social interaction and anxiety, normal mEPSCs but weakened mGluR-LTD at the parallel fiber-PC
- 921 synapses and altered expression of arc, mGluR5, phosphorylated P38 and AKT in the Purkinje cells.
- So, defects in Grip1/2 mediating AMPAR trafficking at cerebellar purkinje cells along with impaired
- 923 mGluR5 signaling in cerebellum results in pathogenesis of repetitive behaviors (Mejias et al., 2019).
- 924 Mice with conditional *Pten* inactivation in Purkinie cells show stereotyped jumping and decreased
- motor learning with structural aberration in PC dendrites, axons, reduced excitability, altered parallel
- 926 fiber and climbing fiber synapses (Cupolillo et al., 2016). Further, mouse model of Tuberous
- 927 Sclerosis with *Tsc2* loss in Purkinje cells (Tsc2f/-;Cre mice) displays increased marble burying
- Selections with 1522 loss in Turking cents (1522), are linee) displays increased marble outlying
- 928 repetitive behavior and Purkinje cell dysfunction, suggesting Purkinje cell loss contribution to ASD
- 929 phenotype (Reith et al., 2013). Therefore, the cerebellum, particularly purkinje cells and associated
- 930 signaling pathways play important role in regulation of repetitive behaviors.
- 931 Post-mortem studies of autistic cases have also implicated many of these same brain regions.
- Purkinje cells (PC) in the cerebellum are consistently altered in neuropathological analyses of ASD
- brain samples (Fatemi et al., 2002; Palmen and van Engeland, 2004; Whitney et al., 2008). However,
- 934 the limitation of imaging studies include poor tissue quality and small sample sizes, as well as an
- analysis of samples from adult brains which does not provide information regarding development
- 936 (Amaral et al., 2008).
- 937 Overall, neuroanatomical alterations are largely found in frontal, temporal cortical regions, basal
- 938 ganglia areas and cerebellum in human studies and mouse models showing repetitive behaviors
- 939 (Ellegood et al., 2010; Ellegood et al., 2013; Portmann et al., 2014; Ellegood et al., 2015; Haberl et
- 940 al., 2015; Wöhr et al., 2015). Basal ganglia areas such as striatum and globus pallidus show
- volumetric alterations related to stereotyped behaviors (Ellegood et al., 2010; Ellegood et al., 2013;
- Portmann et al., 2014; Ellegood et al., 2015). Associations between repetitive behavioral phenotypes
- and changes in specific brain region structural and functional aspects requires additional studies in
- animal models of ASD and other neurodevelopmental disorders.

11 Anxiety and Repetitive behaviors

946 ASD is associated with anxiety disorders and the prevalence estimates of anxiety in ASD individuals 947 vary widely from 22% to 84% (van Steensel et al., 2011; Lai et al., 2014; Vasa and Mazurek, 2015; 948 Lever and Geurts, 2016; Russell et al., 2016; Nimmo-Smith et al., 2020). There is also a significant 949 relationship between anxiety and restricted/repetitive behaviors in the ASD population (Gotham et 950 al., 2013; Stratis and Lecavalier, 2013; Postorino et al., 2017; Russell et al., 2019; Baribeau et al., 2020). Association of anxiety with ritualistic behaviors are related to abnormal sensory gating 951 952 suggesting altered sensory processing (Green et al., 2012; Mazurek et al., 2013; Lidstone et al., 953 2014).

954 955

956 957

958

959

960

961

962 963

964 965

966

967

968

969

970

945

Grooming behavior reflects repetitive, stress coping behavior and complex interplay with anxiety and motor activity in rodents (Kalueff and Tuohimaa, 2005a; Lewis et al., 2007; O'Leary et al., 2013). Some ASD mouse models demonstrate both anxiety and repetitive behaviors. In a mouse model of Rett syndrome, deletion of MeCP2 in basolateral amygdala causes increases anxiety and learning deficits (Adachi et al., 2009). The increased grooming behavior in EphrinA2/A3 double KO mice may correlate with sensorimotor gating deficits and abnormal sensory processing as a result of exposure to novel environments (Wurzman et al., 2015). The Shank1 mice model of ASD manifests mild anxiety and repetitive behavior (Hung et al., 2008). ASD mice models with FMR1, PTEN, UBE3A and GABRB3 mutations exhibit learning deficits, stereotypic behaviors and anxiety phenotypes (Jiang et al., 2010; Tanaka et al., 2012; Gandhi et al., 2014; Clipperton-Allen and Page, 2015; Zieba et al., 2019). Additionally, the BTBR mouse model of autism displays anxiety traits and repetitive behaviors (McFarlane et al., 2008; Pobbe et al., 2011). In contrast, some mouse models exhibiting repetitive behaviors do not show anxiety-like behaviors or are not reported in some cases. Mouse models including mutations in CNTNAP2, neuroligin1, oxytocin receptor and 16p11.2 chromosomal deletions do not display anxiety behaviors or are not reported in some studies (Penagarikano et al., 2011; Crawley, 2012; Kazdoba et al., 2016). Thus, future studies are required to elucidate the anxiety phenotype along with the repetitive behavior in different rodent models of ASD.

971972973

974

975

976

977

978

979

980

981

982

983

984

985

986

987 988

989

990 991

992

Acute and chronic stress plays a role in alterations of grooming activity (Katz and Roth, 1979; Fentress, 1988; Kalueff and Tuohimaa, 2004b; Komorowska and Pellis, 2004). For instance, C57BL/6J male mice following chronic social defeat stressor, display disorganized cephalo-caudal grooming patterning and induces anxiety (Veenema et al., 2003; Kinsey et al., 2007; Denmark et al., 2010). Additionally, Wistar rats exposed to light box show increased grooming frequency and duration as compared to rats exposed to dark box. The light-dark paradigm helps in assessing stress levels in rats via counting the number of defecation boli and urination spots, indicating more anxiety in rats exposed to the light box. This may suggest that stress and anxiety may affect grooming activity and its microstructure in rodents (Kalueff and Tuohimaa, 2004b; 2005b). Surprisingly, some inbred mouse strains demonstrate high or low grooming in response to anxiety. The BALB/c mice show increased grooming compared to 129S1 mice. The high grooming in BALB/c mice may correlate with increased anxiety as assessed by high defecation boli scores, one of the stress markers in rodents. In contrast, 129S1 mice show low-grooming and high anxiety levels, indicating that different rodent strains exhibit variation in anxiety-induced behaviors (Kalueff and Tuohimaa, 2004a; 2005a). Anxiolytics like bupropion (noradrenaline and dopamine reuptake inhibitor), fluvoxamine (SSRI), diazepam (benzodiazepine) and imipramine (tricyclic antidepressant) decreased marble burying and digging behavior in mice (Hayashi et al., 2010). Further, minocycline ameliorates marble burying behavior and correlates with proper dendritic spines maturation in Fmr1 KO mice (Dansie et al., 2013). Studies on marble burying are controversial as some indicate that marble burying correlates with anxiety whereas others indicate that it reflects repetitive digging (Njung'e and Handley, 1991; Thomas et al., 2009; Taylor et al., 2017; de Brouwer et al., 2019). Minocycline also alleviates aberrant grooming behavior and modulates hippocampal GABA levels in rats (Zhang et al., 2019).

995 996 997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

993

994

Neuropsychiatric and neurodevelopmental disorders including autism, OCD, schizophrenia and anxiety share some symptoms and overlap in common pathological genes, circuits and mechanisms (Shavitt et al., 2006; Kalueff and Nutt, 2007; Kalueff et al., 2008; Szechtman et al., 2017). For instance, GABAergic activity alterations are associated with anxiety, depression and autistic phenotypes, indicating common underlying neural pathology (Persico and Bourgeron, 2006; Kalueff and Nutt, 2007). Altered GABA receptor activity by anxiolytic (GABA enhancing) and anxiogenic (GABA inhibiting) drugs correlates with decrease and increase in stress induced grooming behavior. This may indicate that these drugs regulate the strength of the anxiogenic stimuli perception and grooming behavior (Kalueff and Tuohimaa, 2005c; Nin et al., 2012; Xu et al., 2012; Kalueff et al., 2016). Similarly, BDNF and serotonin transporter (SERT) gene has been linked to cognitive deficits, anxiety, depression, schizophrenia, OCD and autism (Devlin et al., 2005; Hu et al., 2006; Kaufman et al., 2006; Kalueff et al., 2007; Kas et al., 2007; Moy and Nadler, 2008). Rodents manifest heightened grooming behavior in response to changes in the environment by stressful and/or anxiogenic stimuli (Gispen and Isaacson, 1981; Florijn et al., 1993; Gargiulo and Donoso, 1996). Dopaminergic activity in the basal ganglia pathways likely mediates the stress-coping grooming behavior (Spruijt et al., 1986; Cools et al., 1988; Kametani, 1988; Spruijt et al., 1992; Reis-Silva et al., 2019). Anxiety-like behaviors correlate with decreased dopamine release in PFC, substantia nigra and amygdala of rats spending more time self-grooming induced by stress on exposure to elevated plus maze (EPM). This suggests that self-grooming is associated with reward systems and may be reflective of de-arousal activity instead of a direct response to anxiety (Homberg et al., 2002). Additionally, serotonin plays a role in regulating stress-coping behavior such as self-grooming (Houwing et al., 2019). Hence, rodent grooming may represent one method for stress reduction or de-arousal, instead of directly involved in the stress response (Estanislau et al., 2013; Estanislau et al., 2019).

1019 1020 1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

In addition, several common brain regions have been associated with anxiety and repetitive behavioral disorders, particularly the amygdala and PFC. For instance, muscimol (GABA agonist) infusion into basolateral nucleus of amygdala and PFC decreases anxiety in rats (Shah et al., 2004; Bueno et al., 2005). Intriguingly, muscimol injection into BNST (extended amygdala), a region that regulates innate fear responses leads to decreased self-grooming behavior in rats (Xu et al., 2012). Additionally, GABAergic neurons in MeApD region reduces self-grooming behavior (Hong et al., 2014). Further, injections of GABA-A receptor antagonist bicuculline into the basolateral amygdala increases anxiety in rats (Sajdyk and Shekhar, 2000). In the MeApD region, glutamatergic neurons promote stereotypic self-grooming (Hong et al., 2014). Alterations in GABA, serotonin, kainate and glutamate receptor densities in various amygdala nuclei correlates with anxiety-like behavior in some inbred mouse strains (Yilmazer-Hanke et al., 2003; Caldji et al., 2004). Amygdala stimulation leads to increases in anxiety and facilitates compulsive behaviors (McGrath et al., 1999). In the case of OCD, basolateral amygdala projections to medial PFC modulate repetitive checking behavior in rodents (Sun et al., 2019). One of the brain regions involved in stress coping responses, the periaqueductal grey (PAG) and its pathways, influence self-grooming behavior (Bandler et al., 2000). Alteration in striatal neurons, CeA and mPFC projections to PAG region may affect self-grooming behavior (Spruijt et al., 1992; Floyd et al., 2000). Increased expression of c-fos is observed in hippocampus, hypothalamus, PFC after administration of anxiogenic drugs and hypothalamic injection of GABAergic anxiolytic drugs reduces anxiety in rats (Jardim and Guimarães, 2001; Singewald et al., 2003). Hence, regulated GABAergic activity and consequent excitatory

neurotransmission in these brain regions is critical for the modulation of anxiety and repetitive behaviors, indicating overlapping circuits in anxiety and repetitive behaviors.

However, further studies are required to ascertain regional and circuit differences between anxiety-induced and repetitive self-grooming behavior. Investigations of animal models displaying both anxiety and repetitive behavior simultaneously or induction of one disorder by another will help in providing innovative insight into the common and specific neural alterations underlying these disorders.

12 Summary

Animal models of neuropsychiatric and neurodevelopmental disorders such as autism have provided relevant knowledge on the neuronal circuitry and receptor targets implicated in the etiology and pathophysiology of repetitive behaviors. Several brain regions and neural circuits including cortico-basal ganglia-thalamic circuits, limbic circuits, prefrontal cortex, cerebellum, hypothalamus and striatum are involved in the regulation of core autistic behaviors. Genetic mutations and environmental risk factors resulting in presentation of repetitive behaviors in rodent models involve multiple cellular, molecular and network factors. The majority of ASD alterations involve excitatory glutamatergic, inhibitory GABAergic, serotonergic and dopaminergic neurons, receptors, neurotransmitters, neuronal migration and spine densities resulting in changes in signaling pathways and synaptic activity which may converge on common neural circuits (Golden et al., 2018).

Genome-wide association studies (GWAS) have indicated various ASD risk genes including neuronal cell adhesion molecules (neurexins, neuroligins, CNTNAP), postsynaptic scaffolding proteins (Shanks, SAPAP), neurotransmitter signaling and trafficking (Glutamate, GABA, EphA3) and molecules involved in protein synthesis in the brain (Fmr1, TSC, MeCP2) (Stearns et al., 2007; Tabuchi et al., 2007; Hung et al., 2008; Samaco et al., 2008; Etherton et al., 2009; Radyushkin et al., 2009; Peça et al., 2011; Penagarikano et al., 2011; Silverman et al., 2011; Casey et al., 2012; Eadie et al., 2012; Schmeisser et al., 2012; Grayton et al., 2013; Monteiro and Feng, 2017; Wang et al., 2017; Zerbi et al., 2018). Many of the autism risk genes encode for proteins involved in excitatory glutamatergic signaling, converging at excitatory synapses (Peça et al., 2011; Qiu et al., 2012). For instance, Shank3 forms a scaffolding complex comprised of SAPAP that also interconnects with ephrins/Ephs and neurexin/neuroligin complexes (Qiu et al., 2012). This suggests that alterations in these molecules may converge on common synaptic and circuit mechanism underlying autistic behavioral phenotypes. Understanding the mechanisms by which these factors affect neuronal circuits will provide insight into relevant targets of sensorimotor repetitive behaviors.

Although ASD etiological heterogeneity leads to complex and sometimes divergent behavioral outcomes in affected populations, a large literature exists, including neuroimaging studies, that have determined the crucial role of cortico-basal ganglia and limbic circuit alterations in mediating stereotypic behaviors. Altogether, common neural modifications in specific pathways and neural circuits lead to the emergence of repetitive behaviors in ASD. Inconsistencies in some studies and factors influencing generality of the repetitive behavioral findings may be related to sample, environment and experimental heterogeneity. Future research integrating disparate findings hold immense potential to ascertain the involvement of common neural changes converging at the level of circuit alterations in neurodevelopmental disorders. More detailed work with additional animal models is required to dissect the molecular and neuroanatomical alterations in other pathways and brain regions implicated in repetitive behavioral phenotypes, in order to identify potential targets and treatment strategies for attenuating repetitive behaviors in affected individuals. Finally, early

interventions for repetitive behaviors hold great promise for improving quality of life for affected individuals.

13 Future directions and limitations

1089

1090 The scope of this review is narrowed to neural mechanisms underlying lower-order repetitive 1091 behaviors in rodent models of ASD. Most of the literature in rodent models of ASD discuss lower 1092 order stereotyped sensory motor behaviors. However, some studies address higher-order insistence 1093 on sameness behaviors, such as circumscribed interests and resistance to change in few rodent models. Future studies are required to evaluate common underlying molecular and circuit alterations 1094 1095 in repetitive and restricted behaviors in autism. Further, characterization of both repetitive motor 1096 behaviors and insistence on sameness behaviors should be performed in different rodent models of 1097 ASD and other neurodevelopmental disorders in order to increase their translational value and to 1098 identify overlapping neurobiological alterations underlying these behaviors.

1099 Although the studies reviewed here contribute to our understanding of the underlying neural alterations in rodent models displaying robust repetitive behaviors, the relation of such alterations 1100 1101 with repetitive behavioral expression is unresolved. A focus of most investigations has been on the 1102 pathophysiology of mutations resulting in the expression of general ASD phenotype and rescuing the 1103 core ASD behavioral deficits rather than focusing exclusively on repetitive behaviors. Future 1104 findings targeting specific brain regions and focusing on neural alterations elemental to repetitive behaviors solely, while controlling for other behaviors, will provide a better understanding of how 1105 individual genetic and environmental changes converge at molecular and circuit levels to mediate 1106 1107 repetitive behaviors. Alternatively, generation of mutant rodent models with targeted knockout of 1108 susceptibility genes in circumscribed brain regions may help in clarifying particular behavioral 1109 phenotypes. For instance, in NL3 mice, inhibition is elevated in somatosensory cortex, whereas 1110 AMPAR mediated excitation is heightened in the CA1 hippocampal region (Etherton et al., 2011). 1111 Consequently, the specific neural circuitry associated with particular cognitive and behavioral 1112 components in ASD remain to be fully dissected. Regardless of these challenges, common circuits 1113 and molecular alterations provide a basis for understanding ASD etiological factors and behavioral 1114 abnormalities.

1115 In addition, very few studies have incorporated different methodological approaches to elucidate changes fundamental in mediating repetitive behaviors in rodents (Sforazzini et al., 2016; Wohr 1116 1117 2015, Squillace 2014). Combination of different methodological approaches such as neuroimaging, 1118 histological and molecular analysis may provide a more comprehensive understanding of alterations 1119 in specific brain regions and their neural projections primarily mediating repetitive behaviors in 1120 rodent models of ASD. In addition, future studies incorporating both male and female rodent models 1121 may help in elucidating any gender differences in brain structure and function associated with 1122 repetitive behaviors. Another important requirement is to evaluate molecular and circuit modifications fundamental to repetitive behaviors in other neurodevelopmental and neuropsychiatric 1123 1124 disorders. Corroboration of findings across varied rodent models displaying repetitive behaviors may illuminate similar and dissimilar changes in brain pathways underlying these disorders. 1125

- 1126 A somewhat underexplored therapeutic avenue in rodent models is environmental enrichment (EE),
- which attenuates the repetitive behaviors in models of ASD. The EE reduces repetitive behaviors in
- deer mice by elevating indirect basal ganglia pathway function via increasing neuronal activation and
- dendritic spine densities in the subthalamic nucleus (STN) and globus pallidus (GP) (Bechard et al.,
- 1130 2016). However, mechanisms by which environmental enrichment alters repetitive behavior and

1131 correlations with structural, functional and molecular modifications in brain regions demands
1132 detailed investigation. Also, investigations of effectiveness of environmental enrichment in
1133 attenuating repetitive behaviors should be extended to different rodent models of repetitive
1134 behavioral and neurodevelopmental disorders. This may help in probing the efficacy of
1135 environmental enrichment in relation to repetitive behaviors.

Pharmacologically, systemic and local applications of glutamatergic inhibitors, GABAergic, serotonergic and dopaminergic agents have varied effects in different brain regions and circuits mediating repetitive behaviors. However, it remains to be determined whether these agents are applicable for alleviating behaviors beyond lower order motor stereotypies in rodent models. Further research is required to ascertain if these various receptor agents also play a role in higher-order stereotypies in rodent models. In addition, investigating the cross-over effects of these agents in different neural pathways may help to understand the underlying cellular and molecular pathologies in relation to repetitive behaviors.

- In addition, future research studying overlapping or common pathways underlying stress, anxiety and repetitive behaviors may provide some critical insight into targets directed towards these behavioral domains.
- This review summarizes findings on molecular, signaling pathways, circuit and neuroanatomical alterations in rodent models of ASD displaying robust repetitive behaviors. These findings emphasize important molecular, structural and functional connectivity changes in brain regions like the prefrontal cortex, basal ganglia structures, limbic areas and cerebellum, suggesting a major role of cortical-basal ganglia circuits. In addition, signaling pathways involving different neurotransmitters and their receptors such as glutamate, GABA, serotonin and dopamine are also involved in the pathophysiology of stereotypic motor behaviors. Understanding the hierarchy of changes in different brain regions molecular, structure, function and connectivity aspects mediating repetitive behaviors
- brain regions molecular, structure, function and connectivity aspects mediating repetitive behavior
- in rodent models will provide an important platform for translational study.

Lastly, comparative research involving human clinical population and animal models of ASD and other neurodevelopmental disorders hold enormous potential for unraveling the underlying neural alterations mediating repetitive behaviors and identifying directed pharmacological and circuit-based targets for treatment interventions.

Table 1. Neural alterations underlying repetitive behaviors and rescue of repetitive behaviors in rodent models of ASDs. Treatment strategies discussed are from preclinical studies in rodent models targeting behavioral abnormalities including stereotypic behaviors.

MODEL	REPETITIVE AND RELATED BEHAVIORS	NEURAL ALTERATIONS	RESCUE OF REPETITIVE BEHAVIORS	REFERENCES
BTBR T+tf/J	Repetitive self-grooming Increased marble burying behavior Reversal learning deficit in Morris water maze (MWM)	 Reduced GABAergic inhibitory transmission Upregulation of serotonin 5HT2A receptor density and activity Increased in glutamatergic transmission in cortico-striatal circuitry Impaired dopamine D2 receptor function Reduced expression of BDNF in hippocampus and cortex Absence of corpus callosum, lack of hippocampal commissure Reduced cortical thickness Reduced cerebral white and gray matter Impaired volumes of cerebellum, brainstem, striatum and hippocampus 	 mGluR5 receptor antagonist (MPEP) Selective GABAb receptor agonist (R-baclofen) Dorsomedial striatal injection of selective 5HT2A receptor antagonist (M100907) Risperidone Muscarinic receptor (mAChR) agonist (Oxotremorine) Nicotinic receptor (nAChR) agonist (nicotine) Acetylocholinestera se inhibitor (AChEI) (Donepezil) reduced behavioral rigidity in water T-maze task Retinoic acid receptor-related orphan receptor alpha (ROR a) agonist (SR1078) 	(Wahlsten et al., 2003; Moy et al., 2007; McFarlane et al., 2008; Silverman et al., 2010; Gould et al., 2011; Wöhr et al., 2011; Amodeo et al., 2012; Silverman et al., 2012; Burket et al., 2013; Dodero et al., 2013; Ellegood et al., 2013; Reynolds et al., 2013; Han et al., 2014; Karvat and Kimchi, 2014; Wang et al., 2015; Wang et al., 2016b; Meyza and Blanchard, 2017)
Cntnap2-/-	 Repetitive self-grooming and digging Reversal learning deficit 	Decrease in parvalbumin-positive interneurons in striatum resulting in altered activity of cortico-striatal-thalamic pathway	Dopamine D2 receptor antagonist, Risperidone	(Penagarikano et al., 2011; Lauber et al., 2018)

C58/J	(MWM) • Hyperactivity • Seizures • Repetitive self-grooming • Hind limbjumping • Backflips • Decreased exploratory behavior • Reversal learning deficit	 Cortical migration abnormalities Increased mGluR5 signaling NMDA receptor hyperfunction Reduced GABAergic signaling Reduced dendritic spines Increased dopaminergic function and cortical activation Aberrant hippocampal and cortical activity 	mGluR5 negative allosteric modulator (GRN-529) Selective GABAb receptor agonist (R-baclofen) Environmental enrichment	(Moy et al., 2008b; Ryan et al., 2010; Muehlmann et al., 2012; Silverman et al., 2012; Whitehouse et al., 2017)
Deer	Repetitive hindlimb jumping and backflips Perseverative behavior in a reversal learning task (T-maze)	 Enhanced Corticostriatal glutamatergic projections Decrease density of serotonin transporters in striatum Reduced indirect basal ganglia pathway activity Dorsomedial striatum alterations 	 Striatal injections of NMDA receptor antagonist (MK-801) Dopamine D1 receptor antagonist (SCH23390) Co-administration of adenosine A_{2A} receptor agonist (CGS21680) and A₁ receptor agonist (CPA) Selective SSRI (Escitalopram) Triple drug cocktail (D2R antagonist L-741,626 + Adenosine A_{2A}R agonist CGS21680 + mGluR5 positive allosteric modulator CDPPB) Environmental enrichment (EE) 	(Presti et al., 2003; Tanimura et al., 2008; Tanimura et al., 2010b; Tanimura et al., 2011; Wolmarans et al., 2013; Bechard et al., 2017; Lewis et al., 2019)
DGLa ^{flx/flx}	• Repetitive self-grooming	 Reduced levels of 2- acyl glycerol in striatum Excessive glutamatergic drive in 		(Shonesy et al., 2014; Shonesy et al., 2018)

		direct-pathway MSNs		
EphA2/A3 double KO	 Stereotypic facial grooming Reduced locomotor activity Increased pre-pulse inhibition of acoustic startle 	Sensorimotor gating abnormalities Altered excitability of forebrain pathways		(Qiu et al., 2012; Wurzman et al., 2015)
FMR1-/-	Repetitive self-grooming Increased/decr eased marble burying Deficit in novelty preference (T-maze spontaneous alternation) Learning task deficits Hyperactivity Anxiety Reduced motor learning Olfactory learning deficits	 Increased mGluR-LTD in hippocampal CA1 and cerebellum Increased endocannabinoid mediated transmission at GABAergic synapses of hippocampus and dorsal striatum Dysfunctional cortico-striatal circuitry Decrease activity of fast spiking interneurons in cortical areas (hyperexcitability) Abnormal sensorimotor gating Altered dendritic spine density and morphology Impaired long-term potentiation PSD-95 protein deficits PI3K/AKT pathway abnormal activity AMPAR and NMDAR dysfunction Purinergic signaling alteration 	Selective GABA-B receptor agonist (R-baclofen) mGluR5 receptor antagonist (MPEP) Minocycline (antibiotic inhibiting MMP9) Antipurinergic therapy (suramin) CB1R antagonist (rimonabant) Small-molecule PAK [p21-activated kinase regulates actin cytoskeleton dynamics] inhibitor (FRAX486) BDNF application Gene therapy with human FMR1 Delta-subunit containing extrasynaptic GABA-A receptors agonist (Gaboxadol) Intracranial injection of CRISPR-Gold targeting mGluR5 Chronic application of Bryostatin-1 (Protein Kinase C	(Peier et al., 2000; Spencer et al., 2005; Lauterborn et al., 2007; Dölen and Bear, 2008; Errijgers et al., 2008; McNaughton et al., 2008; Paylor et al., 2008; Spencer et al., 2008; Spencer et al., 2009; Zhang and Alger, 2010; Pietropaolo et al., 2011; Henderson et al., 2012; Jung et al., 2012; Thomas et al., 2012; Thomas et al., 2013; Dolan et al., 2013; Dolan et al., 2013; Berry-Kravis, 2014; Gandhi et al., 2014; Naviaux et al., 2015; Tang and Alger, 2015; Bhattacharya et al., 2016; Gurney et al., 2017; Sinclair et al., 2017; Lee et al., 2018; Nolan and Lugo, 2018;

		Altered cerebellar and striatal volumes	potent activator) • eFT508, MNK (mitogen-activated protein kinase interacting protein kinase) inhibitor • BPN14770, phosphodiesterase-4D negative allosteric modulator (PDE4DNAM) • GSK6A (PI3K antagonist) • FS-115, S6KI (mTORC1-p70 ribosomal S6 kinase 1) inhibitor	Yau et al., 2018; Zerbi et al., 2018; Cogram et al., 2019; Gross et al., 2019; Cogram et al., 2020; Shukla et al., 2020)
Gabrb3 ^{-/-}	Repetitive circling Hyperactivity	 Cerebellar vermis hypoplasia Abnormal GABA-A receptor function in hippocampus Altered GABA-A receptor mediated neurotransmission 		(DeLorey et al., 1998; DeLorey et al., 2008; Mercer et al., 2016; Orefice et al., 2016)
Hoxb8 KO in microglia	 Increased grooming Anxiety-like behavior 	 Increased cortical dendritic spine density Increased dendritic spines in striatum Defects in LTP, miniature postsynaptic currents 	Fluoxetine (SSRI)	(Greer and Capecchi, 2002; Chen et al., 2010; Nagarajan et al., 2018)
Itgb3 ^{-/-}	Increased grooming in novel environment	 Alterations in axon/dendrite outgrowth, cell adhesion and synapse formation Reduced corpus callosum, hippocampus, striatum and cerebellum Increased amygdala volume 		(De Arcangelis and Georges- Labouesse, 2000; Clegg et al., 2003; Carter et al., 2011; Ellegood et al., 2012)

KCNQ2+/-	Repetitive groomingHyperactivityIncreased locomotor activity	Increased neuronal excitability		(Yue and Yaari, 2006; Shah et al., 2008; Brown and Passmore, 2009; Kim et al., 2020)
Kirrel3-/-	 Repetitive rearing behavior Increased locomotor activity Hypersensitiv ity to acoustic startle (acoustic startle test) Hyperactivity 	 Abnormal hippocampal mossy fiber synapse formation Increased CA3 neuron activity during development Abnormal neuronal migration 		(Gerke et al., 2006; Serizawa et al., 2006; Nishida et al., 2011; Prince et al., 2013; Basu et al., 2015; Choi et al., 2015; Hisaoka et al., 2018)
Lrrc4 ^{-/-}	 Repetitive self-grooming Impaired spatial learning (MWM) 	 Reduced NMDA receptor mediated synaptic plasticity Abnormal synaptic transmission 	NMDA receptor agonist (D- cycloserine)	(DeNardo et al., 2012; Soto et al., 2013; Soto et al., 2018; Um et al., 2018)
MeCP2	 Repeated forelimb movements Deficits in motor coordination and motor learning Memory deficits 	 Decreased levels of dopamine transporter (DAT) and tyrosine hydroxylase (TH) in striatum Altered cortical and cerebellar volumes Cortical LTP deficit Decreased cortical BDNF levels Impaired PI3K/AKT/mTOR pathway Upregulated CB1 and CB2 receptor levels Hippocampal circuit dysfunction 		(Shahbazian et al., 2002; Moretti et al., 2005; Lonetti et al., 2010; Lu et al., 2016; Allemang-Grand et al., 2017; Zamberletti et al., 2019)
Ninj I	• Excessive grooming inducing hair loss and	Altered synaptic function in thalamocortical neurons	• Fluoxetine (SSRI)	(Le et al., 2017)

	lesions • Increased anxiety-like behavior	 Increased expression of ionotropic glutamate receptor Increased amplitude of miniature EPSCs 		
NL1-/-	 Repetitive self-grooming Spatial learning deficits 	 Reduced NMDA/AMPA receptor ratio in hippocampus and dorsal striatum Reduced hippocampal LTP Abnormal function of dopamine D1 MSNs Reduced GluN2A containing NMDARs expression in direct- pathway MSNs Reduced frequency of miniature excitatory neurotransmission in indirect-pathway MSNs 	NMDA receptor partial co-agonist, D-cycloserine	(Blundell et al., 2010; Espinosa et al., 2015)
NL2 overexpressi on	• Repetitive Jumping	Reduced E/I balance in PFC		(Hines et al., 2008)
NL3-/-	Repetitive motor routine Hyperactivity	 Reduced striatal synaptic function in nucleus accumbens/ventral striatum Abnormal function of dopamine D1 MSNs Altered GABAergic signaling and E/I balance in CA2 hippocampal area 		(Radyushkin et al., 2009; Rothwell et al., 2014; Modi et al., 2019)
NL3 ^{R451C}	 Repetitive behavior (object exploration task) Aggression 	 Smaller striatal volume Increased striatal postsynaptic density 95 (PSD-95) protein levels Altered synaptic activity in hippocampus, 	• Risperidone, CB1 receptor agonist (WIN55,212-2) targeting aggression	(Tabuchi et al., 2007; Etherton et al., 2011; Kumar et al., 2014; Bornstein et al., 2016; Hosie et al., 2018; Matta et al., 2020)

NRXN1a-/-	 Repetitive self-grooming Altered nest building Impaired prepulse inhibition Aggressive behaviors Mild anxiety-like behavior 	somatosensory cortex and basolateral amygdala Increased AMPA mediated neurotransmission and LTP in hippocampus Decrease in miniature excitatory postsynaptic current frequency in hippocampus Impaired excitatory synaptic transmission in hippocampus Sensorimotor gating impairments Increased cortical volume and decreased cerebellar volume	(Etherton et al., 2009; Grayton et al., 2013)
Oxtr ^{-/-}	Cognitive inflexibility in reversal phase in T – maze Increased aggression	 Alterations in excitatory synaptic markers (PSD-95, gephyrin scaffolding proteins) Altered glutamatergic and GABAergic receptors Changes in striatal dendritic spines 	(Sala et al., 2011; Pobbe et al., 2012; Leonzino et al., 2019)
Pak2+/-	 Repetitive self-grooming behavior Increased marble burying behavior 	Reduced spine density in cortex and hippocampus Impaired LTP in CA1 hippocampal region Reduced actin polymerization and perturbation of actin network	(Wang et al., 2018b)
Pcdh19 X ^{LacZ} /Y	 Repetitive grooming behavior Increased 	Impaired migration and dendritic arborization of hippocampal CA1	(Bassani et al., 2018; Lim et al., 2019)

	rearing behavior	neurons • Decreased GABA-A receptor surface expression and transmission		
Pten ^{+/-}	 Repetitive digging and increased marble burying behavior Reduced sensorimotor gating Increased depression-like behavior 	 Increased mTOR signaling Alterations in serotonin system Altered synaptic scaffolding proteins (PSD-95, sapap1, sap-102) Decreased mGluR in hippocampus Structural aberrations in Purkinje cells dendrites and axons 		(Page et al., 2009; Clipperton-Allen and Page, 2014; Lugo et al., 2014; Clipperton-Allen and Page, 2015; Rademacher and Eickholt, 2019)
PV-/-	Higher order reversal learning in T- maze	 Decreased parvalbumin levels Altered excitatory and inhibitory synaptic transmission Decreased inhibition of pyramidal neuron output Loss of inhibitory synapses resulting in hyperexcitation of cortical circuits Reduced cortical volume, increased cerebellar volume 	• 17-beta estradiol	(Filice et al., 2018)
Sapap3-/-	• Compulsive self-grooming	Glutamatergic transmission defects at cortico-striatal synapses Elevated mGluR5 signaling	Sapap3 re- expression in striatum Optogenetic stimulation of lateral orbitofrontal cortex mGluR5 inhibition Serotonin uptake inhibitor (fluoxetine)	(Welch et al., 2007; Bienvenu et al., 2009; Burguière et al., 2013)
Scn1a ^{+/-}	• Repetitive	Increased PFC excitation		(Han et al., 2012)

	self- grooming and circling • Hyperactivity	Altered GABAergic activity in PFC	
Shank1 ^{+/-} , Shank1 ^{-/-}	 Repetitive self-grooming increased acquisition of spatial memory motor deficits mild anxiety-like phenotype Reduced exploratory locomotion 	 Decrease in mEPSC, altered glutamatergic synapse Altered maturation of postsynaptic dendritic spines Reduced density of CA1 pyramidal neurons dendritic spines 	(Hung et al., 2008; Silverman et al., 2011; Sungur et al., 2014; Sala et al., 2015)
Shank2 ^{-/-} (exon 7 deletion)	 Repetitive grooming Hyperactivity Anxiety-like behavior Increased locomotor activity 	Increased NMDAR-dependent LTP and altered NMDAR-mediated synaptic transmission Reduced spine density Increased levels of GluN2A, GluN1, GluN2B, GluA2 glutamate receptor subunits in hippocampus and striatum	(Schmeisser et al., 2012)
Shank2 (exons 6, 7 deletions and frameshift affecting both splice variants Shank2a and Shank2b)	Stereotypic jumping Impaired spatial learning and memory (Morris water maze) Impaired nesting behavior Hyperactivity Anxiety-like behavior Increased	Reduced activity of glutamatergic NMDA receptors Impaired LTP and LTD at Schaffer-collateral-CA1-pyramidal (SC-CA1) synapses Reduced NMDA/AMPA ratio at SC-CA1 synapses Decreased NMDAR-mediated synaptic transmission	(Won et al., 2012)

	grooming in novel object recognition area			
Shank3 (exon 21 deletion including Homer binding domain)	Repetitive grooming in older mice Deficit in spatial learning and memory Impaired motor coordination Aberrant locomotor response to novelty Increased novel object avoidance (in marble burying test)	Decreased excitatory postsynaptic NMDA/AMPA current ratio in hippocampal CA1 region Reduced LTP in CA1 hippocampus Increased mGluR5 levels in synaptic fractions		(Kouser et al., 2013)
Shank3 ^{e4-22} (exons 4-22 deletion)	 Excessive Repetitive self- grooming Reduced locomotion Deficient motor performance Anxiety-like behavior Impaired striatal learning 	 Impaired postsynaptic SAPAP, mGluR5-Homer scaffolding proteins and mGluR5 signaling in striatal neurons Impaired striatal LTD and synaptic plasticity Decreased neurotransmission in corticostriatal circuits Reduced striatal spine density 	• mGluR5 antagonist (MPEP)	(Wang et al., 2016a)
Shank3A ^{e4-9} heterozygou s and knockout (exons 4-9 deletion encoding ANK domain)	 Repetitive self-grooming Enhanced head pokes (hole board test) Mild motor abnormalities including difficulty in 	Reduced Homer1b/c, GKAP and AMPAR subunit GluA1, GluA2, GluA3 levels at PSD in KO mice indicating altered synaptic scaffolding proteins and receptor subunits Impaired activity- dependent		(Bozdagi et al., 2010; Wang et al., 2011; Yang et al., 2012; Drapeau et al., 2014; Jaramillo et al., 2016)

	motor coordination in KO mice Motor learning deficits in KO mice Impaired novel and spatial object recognition learning and memory	redistribution of GluA1 subunits of AMPAR Reduced spine density and increased spine length in CA1 hippocampus Impaired hippocampal LTP (in both KO and HTZ), glutamatergic synaptic transmission and synaptic plasticity in knockout mice Reduced NMDA/AMPA ratio at excitatory synapses onto striatal MSNs (in both KO and HTZ)		
Shank3b ^{-/-}	 Repetitive self-grooming Attention deficit 	 Functionally impaired AMPA and NMDA receptors Decreased D2 MSNs AMPA receptor responses Deficits of hippocampal synaptic plasticity and its association with impaired remodeling of actin cytoskeleton 	 Enhancing activity of indirect striatopallidal pathway Subthalamic nucleus stimulation Partial 5-HT1A receptor agonist (tandospirone) in Shank3B+/- 	(Bozdagi et al., 2010; Peça et al., 2011; Wang et al., 2011; Schmeisser et al., 2012; Duffney et al., 2013; Sala et al., 2015; Chang et al., 2016; Peixoto et al., 2016; Harony-Nicolas et al., 2017; Dunn et al., 2020)
Shank3B ^{-/-} (PDZ domain deletion)	 Excessive and self-injurious self-grooming Anxiety-like behavior 	 Reduced levels of synaptic scaffolding proteins SAPAP3, Homer-1b/c, PSD93 and glutamate receptor subunits GluR2, NR2A and NR2B at PSD Neuronal hypertrophy Reduced dendritic spine density Increased caudate volume Decreased C-S 		(Peça et al., 2011)

		circuits neurotransmission		
Sh3rf2+/-	 Increased jumping and rearing behavior Increased marble burying and digging Hyperactivity 	Abnormal dendritic spine development in hippocampus Changes in composition of glutamate receptor subunits NR2A and GluR2 Altered AMPA receptor mediated synaptic transmission in CA1 hippocampus		(Wang et al., 2018a)
Tsc2f/-;Cre (Tsc2 deletion in cerebellar Purkinje cells)	• Increase marble burying	 Cerebellar GABAergic Purkinje cell loss Abnormalities in axonal pathfinding 		(Reith et al., 2013)
Ube3A ^{m-/p+}	 Decrease marble burying and rearing Reversal learning deficit (MWM) Impaired motor coordination 	Reduced mGluR-LTD Altered mGluR signaling Changes in calcium dependent CAMKII activity in hippocampus		(Weeber et al., 2003; Huang et al., 2013; Pignatelli et al., 2014)
VPA	 Repetitive self-grooming Marble burying Decrease prepulse inhibition Reduced social behaviors 	 Increased glutamatergic excitatory signaling Hyperexcitable local connectivity Decrease in parvalbumin-positive inhibitory interneurons Elevated brain serotonin levels Apical dendritic arborization 	 mGluR5 receptor antagonist, MPEP Environmental enrichment NMDA receptor antagonist (agmatine) Betaine (methyl group donor in homocysteine metabolism, prevents homocysteine 	(Schneider and Przewłocki, 2005; Schneider et al., 2006; Rinaldi et al., 2007; Tsujino et al., 2007; Snow et al., 2008; Mehta et al., 2011; Choi et al., 2016; Kim et al., 2017; Mahmood et al., 2018; Huang et al., 2018; Huang et al.,

		complexity • Decreased PTEN expression and increased p-AKT protein levels in hippocampus and cortex	accumulation)	2019)
16p11 ^{+/-}	 Repetitive circling and climbing Hyperactivity Increased locomotion 	 Increased dopamine D2 receptor expressing striatal neurons Decreased dopamine D2 receptor expressing cortical neurons Synaptic function defects Volumetric alterations in striatum, hypothalamus and midbrain area 		(Horev et al., 2011; Portmann et al., 2014)
5Ko (deletion of 5 kainate receptor subunits)	 Elevated self-grooming Increased marble burying and digging Increased perseverative behavior (Y-maze) Motor problems 	 Impaired corticostriatal synaptic transmission in dorsal striatum Altered NMDA/AMPA ratio Reduced mEPSC frequencies Reduced spine density of spiny projections neurons in dorsal striatum 		(Xu et al., 2017)

Figure Legends

Figure 1. Implicated brain regions in mouse models of autism. Different mouse models of autism exhibit alterations in various brain areas such as the striatum, cortex, thalamus, hippocampus, cerebellum, hypothalamus and amygdala. These brain regions are involved in cortico-striatal and limbic circuitry. Molecular and/or neuroanatomical changes in these structures are correlated with pathophysiology of repetitive behaviors. Some mice models implicates multiple brain regions in pathology of restricted/repetitive behaviors. PFC, prefrontal cortex; VTA, ventral tegmental area; SNc, substantia nigra pars compacta; SNr, substantia nigra pars reticulata; PVH, paraventricular nucleus of hypothalamus; Cntnap2, Contactin Associated Protein-like 2 gene; FMR1, Fragile X

protein: Itgb3, Integrin beta-3; KCNO, Potassium voltage-gated channel subfamily; Kirrel3, Kin of 1191 1192 Irregular Chiasm-like 3; Lrrc4, Leucine-rich repeat-containing 4; MeCP2, Methyl CpG binding protein 2; Ninj1, Nerve injury-induced protein-1; NL, Neuroligin; NRXN1a, Neurexin 1a; Oxtr; 1193 1194 Oxytocin receptor; Pcdh19, Protocadherin-19; PV; Parvalbumin; Pak2, p21 activated kinase 2; Pten,

mental retardation 1; Gabrb3; Gamma-aminobutyric acid receptor subunit beta-3; Hoxb8, Homeobox

- 1195 Phosphatase and tensin homolog; Sapap3, Synapse-associated protein 90/postsynaptic density protein 1196 95 associated protein 3; Shank, SH3 and multiple ankyrin repeat domains 3; Sh3rf2, SH3 Domain
- Containing Ring Finger 2; Scn1, Sodium Voltage-Gated Channel Alpha Subunit 1; Tsc2, Tuberous 1197
- Sclerosis Complex 2; Ube3A, Ubiquitin Protein Ligase E3A; VPA, Valproic acid; 5Ko, 5 kainate 1198
- 1199 receptor subunit.

1190

1200 Figure 2. Neural mechanisms underlying repetitive behaviors. Increased mGluR5 signaling activates 1201 the striatal direct pathway leading to heightened motor cortex activity inducing repetitive behaviors. Impaired NMDA and AMPA receptors in the striatum and hippocampus also mediates stereotypic 1202 1203 behaviors. Cortico-striatal and PFC-VTA glutamatergic projections induces repetitive behavior. PFC 1204 projections to the SNc causes striatal dopaminergic release promoting movement. Decrease in interneuron activity in the cortex and increase in dopamine D2, D1 receptor expression in the 1205 1206 striatum leads to reduced GABAergic signaling in the cortex, enhancing motor cortical activity and 1207 repetitive behaviors. Elevation of serotonin 5HT2A receptor signaling in the dorsomedial striatum 1208 gives rise to stereotypic behaviors. Activation of VGLUT-positive glutamatergic neurons in 1209 amygdala nucleus, MeA also results in stereotypic behaviors. Activation of glutamatergic projection 1210 from BLA to ventral hippocampus leads to increase in locomotor activity. Further, activation of lateral hypothalamic GABAergic neurons mediates increase in locomotor activity and repetitive 1211 1212 behaviors. Reduction in endocannabinoid 2-AG signaling in striatum leads to increase in 1213 glutamatergic output, enhancing motor cortex activity resulting in repetitive behaviors. Low 1214 astrocytic Ca²⁺ signals in the striatum elevates membrane GAT-3 expression that modulates striatal 1215 MSN activity via reduced ambient GABA levels inducing repetitive behavior. mGluR5, metabotropic 1216 glutamate receptor 5. mGluR5, metabotropic glutamate receptor 5; NMDA, N-Methyl-d-aspartate; 1217 AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; PFC, prefrontal cortex; VTA, ventral tegmental area; SNc, substantia nigra pars compacta; SNr, substantia nigra pars reticulata; 1218 1219 PVH, paraventricular nucleus of hypothalamus; GABA, gamma-Aminobutyric acid; D2R, dopamine 1220 receptor D2; D1R, dopamine receptor D1; 5HT2A, 5-hydroxy-tryptamine receptor 2A subtype; VGAT, vesicular GABA transporter; MeA, medial nucleus of amygdala; BLA, basolateral amygdala; 1221 1222 2-AG, 2-arachidonovl glycerol; GAT-3, GABA transporter 3; MSN, medium spiny neuron.

1223 Figure 3. Possible mechanisms alleviating repetitive behaviors. Inhibition of mGluR5 signaling inhibits striatal direct pathway via suppressing dopamine D1 receptor signaling. The reduced D1R 1224 signaling results in decreased motor cortex activity. Inhibition of cortico-striatal and PFC-VTA 1225 1226 glutamatergic projections alleviates repetitive behaviors. Application of GABA agonists in the cortex 1227 and dopamine D2R, D1R antagonist in the striatum leads to increase in GABAergic signaling in the 1228 cortex, reducing motor cortical activity and repetitive behaviors. Application of serotonin 5HT2A 1229 antagonist in the dorsomedial striatum also results in rescue of repetitive behavior. Activation of 1230 VGAT-positive GABAergic neurons in amygdala nucleus, MeA reduces repetitive behaviors. 1231 Inhibition of glutamatergic projection from BLA to ventral hippocampus results in decreased locomotor activity. Inhibition of lateral hypothalamic GABAergic neurons leads to decrease in 1232 1233 locomotor activity and repetitive behaviors. Endocannabinoid 2-AG signaling in striatum leads to reduced glutamatergic output, decreasing repetitive behaviors. Regulated astrocytes Ca²⁺ signals in 1234 1235 the striatum modulates GAT-3 activity which maintains synaptic GABA levels, regulating striatal 1236 MSN activity and associated repetitive behavior. mGluR5, metabotropic glutamate receptor 5;

- 1237 NMDA, N-Methyl-d-aspartate; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid;
- 1238 PFC, prefrontal cortex; VTA, ventral tegmental area; SNc, substantia nigra pars compacta; SNr,
- substantia nigra pars reticulata; PVH, paraventricular nucleus of hypothalamus; GABA, gamma-
- Aminobutyric acid; D2R, dopamine receptor D2; D1R, dopamine receptor D1; 5HT2A, 5-hydroxy-
- 1241 tryptamine receptor 2A subtype; VGAT, vesicular GABA transporter; MeA, medial nucleus of
- amygdala; BLA, basolateral amygdala; 2-AG, 2-arachidonoyl glycerol; GAT-3, GABA transporter 3;
- 1243 MSN, medium spiny neuron.
- **Figure 4.** Endocannabinoid signaling in striatal neurons. DGLα synthesize 2-AG in the postsynaptic
- neuron. Postsynaptic 2-AG activates presynaptic cannabinoid-1 receptor (CB1R). The activated CB1
- receptor via feedback inhibition leads to suppression of glutamate release at MSN synapses, thereby
- 1247 relieving repetitive behavior. However, mice with knockout of DGLα exhibit decreased striatal 2-AG
- levels, resulting in unrestricted synaptic glutamate release via absence of feedback inhibition, thereby
- leading to elevated grooming behavior in mice. Impaired endocannabinoid signaling is involved in
- alteration of striatal activity, contributing to development of repetitive behavior. CB1R, cannabinoid
- 1251 type 1 receptor; DGLα, diacylglycerol lipase alpha; 2-AG, 2-arachidonoyl glycerol; dMSN, direct
- pathway medium spiny neurons.
- Figure 5. Astrocytic regulation of synaptic glutamate and GABA levels. Normal astrocytic Ca²⁺
- signals modulate GAT-3 levels in the presence of Rab11a GTPase mediating GAT-3 endocytosis. As
- a result, controlled ambient GABA levels in the synapses regulate striatal MSNs activity, resulting in
- normal behavior. Reduced striatal astrocyte Ca²⁺ signaling contributes to elevated self-grooming
- behavior via altered striatal MSN activity. Astrocytes also regulate synaptic glutamate levels via
- transporters like GLT-1. Elevated glutamate levels in the extracellular space induces over activation
- of glutamate receptors resulting in excitotoxicity. Astrocytes provides protection against this
- excitotoxicity by clearance of synaptic glutamate via glutamate uptake transporters. In astrocytes,
- glutamate is converted to glutamine that acts as a precursor for re-synthesis of glutamate in neurons,
- mediating both uptake and release of glutamate. Astrocytes regulate glutamate and GABA in the
- synapse, thereby modulating neuronal activity and behavior. GABA, gamma-Aminobutyric acid;
- 1264 GAT-3, GABA transporter 3; GLT-1, glutamate transporter 1; Rab, small Rab GTPase.

1265

1266

References

- Adachi, M., Autry, A.E., Covington, H.E., 3rd, and Monteggia, L.M. (2009). MeCP2-mediated
- transcription repression in the basolateral amygdala may underlie heightened anxiety in a
- mouse model of Rett syndrome. *J Neurosci* 29(13), 4218-4227. doi: 10.1523/jneurosci.4225-
- 1270 08.2009.
- 1271 Ade, K.K., Wan, Y., Hamann, H.C., O'Hare, J.K., Guo, W., Quian, A., et al. (2016). Increased
- metabotropic glutamate receptor 5 signaling underlies obsessive-compulsive disorder-like
- behavioral and striatal circuit abnormalities in mice. *Biological psychiatry* 80(7), 522-533.
- 1274 Ahmari, S.E., and Dougherty, D.D. (2015). Dissecting OCD circuits: from animal models to targeted treatments. *Depression and anxiety* 32(8), 550-562.
- 1276 Aida, T., Yoshida, J., Nomura, M., Tanimura, A., Iino, Y., Soma, M., et al. (2015). Astroglial
- 1277 glutamate transporter deficiency increases synaptic excitability and leads to pathological
- repetitive behaviors in mice. *Neuropsychopharmacology* 40(7), 1569-1579.

- Akaneya, Y., Sohya, K., Kitamura, A., Kimura, F., Washburn, C., Zhou, R., et al. (2010). Ephrin-A5 and EphA5 interaction induces synaptogenesis during early hippocampal development. *PloS* one 5(8), e12486.
- Ali, I.U., Schriml, L.M., and Dean, M. (1999). Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. *J Natl Cancer Inst* 91(22), 1922-1932. doi: 10.1093/jnci/91.22.1922.
- Allemang-Grand, R., Ellegood, J., Noakes, L.S., Ruston, J., Justice, M., Nieman, B.J., et al. (2017).

 Neuroanatomy in mouse models of Rett syndrome is related to the severity of Mecp2

 mutation and behavioral phenotypes. *Molecular autism* 8(1), 32.
- Alò, R., Avolio, E., Mele, M., Di Vito, A., and Canonaco, M. (2015). Central amygdalar nucleus treated with orexin neuropeptides evoke differing feeding and grooming responses in the hamster. *Journal of the neurological sciences* 351(1-2), 46-51.
- Alpatov, R., Lesch, B.J., Nakamoto-Kinoshita, M., Blanco, A., Chen, S., Stützer, A., et al. (2014). A chromatin-dependent role of the fragile X mental retardation protein FMRP in the DNA damage response. *Cell* 157(4), 869-881.
- Aman, M.G., McDougle, C.J., Scahill, L., Handen, B., Arnold, L.E., Johnson, C., et al. (2009).

 Medication and parent training in children with pervasive developmental disorders and serious behavior problems: results from a randomized clinical trial. *J Am Acad Child Adolesc Psychiatry* 48(12), 1143-1154. doi: 10.1097/CHI.0b013e3181bfd669.
- Amaral, D.G., Schumann, C.M., and Nordahl, C.W. (2008). Neuroanatomy of autism. *Trends in neurosciences* 31(3), 137-145.
- Amodeo, D.A., Jones, J.H., Sweeney, J.A., and Ragozzino, M.E. (2012). Differences in BTBR T+ tf/J and C57BL/6J mice on probabilistic reversal learning and stereotyped behaviors. *Behavioural brain research* 227(1), 64-72.
- Amodeo, D.A., Jones, J.H., Sweeney, J.A., and Ragozzino, M.E. (2014). Risperidone and the 5-HT2A Receptor Antagonist M 100907 Improve Probabilistic Reversal Learning in BTBR T+ tf/J Mice. *Autism Research* 7(5), 555-567.
- Amodeo, D.A., Rivera, E., Cook Jr, E., Sweeney, J.A., and Ragozzino, M.E. (2017). 5HT2A receptor blockade in dorsomedial striatum reduces repetitive behaviors in BTBR mice. *Genes, Brain and Behavior* 16(3), 342-351.
- Amodeo, D.A., Rivera, E., Dunn, J.T., and Ragozzino, M.E. (2016). M100907 attenuates elevated grooming behavior in the BTBR mouse. *Behavioural brain research* 313, 67-70.
- Anderson, G.R., Galfin, T., Xu, W., Aoto, J., Malenka, R.C., and Südhof, T.C. (2012). Candidate autism gene screen identifies critical role for cell-adhesion molecule CASPR2 in dendritic arborization and spine development. *Proceedings of the National Academy of Sciences* 1314 109(44), 18120-18125.
- Aoto, J., and Chen, L. (2007). Bidirectional ephrin/Eph signaling in synaptic functions. *Brain research* 1184, 72-80.
- Araki, T., and Milbrandt, J. (1996). Ninjurin, a novel adhesion molecule, is induced by nerve injury and promotes axonal growth. *Neuron* 17(2), 353-361.
- Arnall, S., Cheam, L., Smart, C., Rengel, A., Fitzgerald, M., Thivierge, J., et al. (2010). Abnormal strategies during visual discrimination reversal learning in ephrin-A2-/- mice. *Behavioural brain research* 209(1), 109-113.

- Asrar, S., Meng, Y., Zhou, Z., Todorovski, Z., Huang, W.W., and Jia, Z. (2009). Regulation of
- hippocampal long-term potentiation by p21-activated protein kinase 1 (PAK1).
- 1324 *Neuropharmacology* 56(1), 73-80.
- Astrinidis, A., and Henske, E.P. (2005). Tuberous sclerosis complex: linking growth and energy signaling pathways with human disease. *Oncogene* 24(50), 7475-7481.
- Audet, M.C., Goulet, S., and Doré, F.Y. (2006). Repeated subchronic exposure to phencyclidine elicits excessive atypical grooming in rats. *Behav Brain Res* 167(1), 103-110. doi:
- 1329 10.1016/j.bbr.2005.08.026.
- Auerbach, B.D., Osterweil, E.K., and Bear, M.F. (2011). Mutations causing syndromic autism define an axis of synaptic pathophysiology. *Nature* 480(7375), 63-68.
- Bachevalier, J., and Loveland, K.A. (2006). The orbitofrontal—amygdala circuit and self-regulation of social—emotional behavior in autism. *Neuroscience & Biobehavioral Reviews* 30(1), 97-117.
- Baig, D.N., Yanagawa, T., and Tabuchi, K. (2017). Distortion of the normal function of synaptic cell adhesion molecules by genetic variants as a risk for autism spectrum disorders. *Brain* research bulletin 129, 82-90.
- Bandler, R., Keay, K.A., Floyd, N., and Price, J. (2000). Central circuits mediating patterned autonomic activity during active vs. passive emotional coping. *Brain Res Bull* 53(1), 95-104. doi: 10.1016/s0361-9230(00)00313-0.
- Baranek, G.T. (1999). Autism during infancy: A retrospective video analysis of sensory-motor and social behaviors at 9–12 months of age. *Journal of autism and developmental disorders* 29(3), 213-224.
- Baribeau, D.A., Vigod, S., Pullenayegum, E., Kerns, C.M., Mirenda, P., Smith, I.M., et al. (2020).

 Repetitive behavior severity as an early indicator of risk for elevated anxiety symptoms in
- autism spectrum disorder. *Journal of the American Academy of Child & Adolescent Psychiatry* 59(7), 890-899. e893.
- Baroncelli, L., Braschi, C., Spolidoro, M., Begenisic, T., Sale, A., and Maffei, L. (2010). Nurturing brain plasticity: impact of environmental enrichment. *Cell Death & Differentiation* 17(7), 1092-1103.
- Bassani, S., Cwetsch, A.W., Gerosa, L., Serratto, G.M., Folci, A., Hall, I.F., et al. (2018). The female epilepsy protein PCDH19 is a new GABAAR-binding partner that regulates GABAergic transmission as well as migration and morphological maturation of hippocampal neurons.
- 1353 *Human molecular genetics* 27(6), 1027-1038.
- Bast, T., Zhang, W.-N., and Feldon, J. (2001). The ventral hippocampus and fear conditioning in rats. *Experimental Brain Research* 139(1), 39-52.
- Basu, R., Taylor, M.R., Hunter, J., Cutforth, T., Wilke, S.A., Ghosh, A., et al. (2015). The intellectual disability gene Kirrel3 regulates target-specific mossy fiber synapse development in the hippocampus.
- Bateup, H.S., Johnson, C.A., Denefrio, C.L., Saulnier, J.L., Kornacker, K., and Sabatini, B.L. (2013). Excitatory/inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse
- models of tuberous sclerosis. *Neuron* 78(3), 510-522.
- Bauman, M.D., Toscano, J., Babineau, B., Mason, W., and Amaral, D.G. (2008). Emergence of stereotypies in juvenile monkeys (Macaca mulatta) with neonatal amygdala or hippocampus
- lesions. *Behavioral neuroscience* 122(5), 1005.

- Bauman, M.L., and Kemper, T.L. (2005). Neuroanatomic observations of the brain in autism: a
- review and future directions. *International journal of developmental neuroscience* 23(2-3),
- 1367 183-187.
- Bazargani, N., and Attwell, D. (2016). Astrocyte calcium signaling: the third wave. *Nature* neuroscience 19(2), 182.
- Bear, M.F. (2005). Therapeutic implications of the mGluR theory of fragile X mental retardation.

 Genes Brain Behav 4(6), 393-398. doi: 10.1111/j.1601-183X.2005.00135.x.
- Bear, M.F., Huber, K.M., and Warren, S.T. (2004). The mGluR theory of fragile X mental retardation. *Trends Neurosci* 27(7), 370-377. doi: 10.1016/j.tins.2004.04.009.
- Bechard, A., and Lewis, M. (2012). Modeling restricted repetitive behavior in animals. *Autism S1* 6, 2.
- Bechard, A.R., Bliznyuk, N., and Lewis, M.H. (2017). The development of repetitive motor
- behaviors in deer mice: Effects of environmental enrichment, repeated testing, and differential
- mediation by indirect basal ganglia pathway activation. *Developmental psychobiology* 59(3), 390-399.
- Bechard, A.R., Cacodcar, N., King, M.A., and Lewis, M.H. (2016). How does environmental enrichment reduce repetitive motor behaviors? Neuronal activation and dendritic morphology

1383 122-131.

1382

Beckel-Mitchener, A., and Greenough, W.T. (2004). Correlates across the structural, functional, and molecular phenotypes of fragile X syndrome. *Mental retardation and developmental disabilities research reviews* 10(1), 53-59.

in the indirect basal ganglia pathway of a mouse model. Behavioural brain research 299,

- Ben-Sasson, A., Cermak, S.A., Orsmond, G.I., Tager-Flusberg, H., Carter, A.S., Kadlec, M.B., et al. (2007). Extreme sensory modulation behaviors in toddlers with autism spectrum disorders.

 American Journal of Occupational Therapy 61(5), 584-592.
- Benes, F.M. (2010). Amygdalocortical circuitry in schizophrenia: from circuits to molecules.

 Neuropsychopharmacology 35(1), 239-257. doi: 10.1038/npp.2009.116.
- Berridge, K.C., and Aldridge, J.W. (2000a). Super-stereotypy I: Enhancement of a complex movement sequence by systemic dopamine D1 agonists. *Synapse* 37(3), 194-204.
- Berridge, K.C., and Aldridge, J.W. (2000b). Super-stereotypy II: Enhancement of a complex movement sequence by intraventricular dopamine D1 agonists. *Synapse* 37(3), 205-215.
- Berridge, K.C., Aldridge, J.W., Houchard, K.R., and Zhuang, X. (2005). Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: a model of obsessive compulsive disorder and Tourette's. *BMC biology* 3(1), 4.
- Berry-Kravis, E. (2014). Mechanism-based treatments in neurodevelopmental disorders: fragile X syndrome. *Pediatric neurology* 50(4), 297-302.
- Bhalla, K., Luo, Y., Buchan, T., Beachem, M.A., Guzauskas, G.F., Ladd, S., et al. (2008). Alterations
 in CDH15 and KIRREL3 in patients with mild to severe intellectual disability. *The American Journal of Human Genetics* 83(6), 703-713.
- 1404 Bhattacharya, A., Mamcarz, M., Mullins, C., Choudhury, A., Boyle, R.G., Smith, D.G., et al. (2016).
- Targeting translation control with p70 S6 kinase 1 inhibitors to reverse phenotypes in fragile
- 1406 X syndrome mice. *Neuropsychopharmacology* 41(8), 1991-2000.

- Bienvenu, O.J., Wang, Y., Shugart, Y., Welch, J., Grados, M., Fyer, A., et al. (2009). Sapap3 and pathological grooming in humans: Results from the OCD collaborative genetics study.
- 1409 American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 150(5), 710-720.
- Bilousova, T., Dansie, L., Ngo, M., Aye, J., Charles, J.R., Ethell, D.W., et al. (2009). Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. *Journal of medical genetics* 46(2), 94-102.
- Blundell, J., Blaiss, C.A., Etherton, M.R., Espinosa, F., Tabuchi, K., Walz, C., et al. (2010).

 Neuroligin-1 deletion results in impaired spatial memory and increased repetitive behavior.
- *Journal of Neuroscience* 30(6), 2115-2129.
- Boda, B., Nikonenko, I., Alberi, S., and Muller, D. (2006). Central nervous system functions of PAK protein family. *Molecular neurobiology* 34(1), 67-80.
- Bokoch, G.M. (2003). Biology of the p21-activated kinases. *Annual review of biochemistry* 72(1), 743-781.
- Bolz, J., Uziel, D., Mühlfriedel, S., Güllmar, A., Peuckert, C., Zarbalis, K., et al. (2004). Multiple roles of ephrins during the formation of thalamocortical projections: maps and more. *Journal* of neurobiology 59(1), 82-94.
- Bornstein, J.C., Burrows, E.L., Churilov, L., Hannan, A.J., Hill-Yardin, E.L., Koyama, L., et al. (2016). A neuroligin-3 mutation implicated in autism causes abnormal aggression and increases repetitive behavior in mice.
- Boyd, B.A., McDonough, S.G., and Bodfish, J.W. (2012). Evidence-based behavioral interventions for repetitive behaviors in autism. *Journal of autism and developmental disorders* 42(6), 1236-1248.
- Bozdagi, O., Sakurai, T., Papapetrou, D., Wang, X., Dickstein, D.L., Takahashi, N., et al. (2010).
 Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. *Mol Autism* 1(1), 15. doi:
- 1432 10.1186/2040-2392-1-15.
- Bromley, R., Mawer, G., Clayton-Smith, J., and Baker, G. (2008). Autism spectrum disorders following in utero exposure to antiepileptic drugs. *Neurology* 71(23), 1923-1924.
- Brown, D.A., and Passmore, G.M. (2009). Neural KCNQ (kv7) channels. *British journal of pharmacology* 156(8), 1185-1195.
- Brown, M.R., Kronengold, J., Gazula, V.-R., Chen, Y., Strumbos, J.G., Sigworth, F.J., et al. (2010).

 Fragile X mental retardation protein controls gating of the sodium-activated potassium
- channel Slack. *Nature neuroscience* 13(7), 819-821.
- Brune, C.W., Kim, S.-J., Salt D Clin Psy, J., Leventhal, B.L., Lord, C., and Cook Jr, M., Edwin H (2006). 5-HTTLPR genotype-specific phenotype in children and adolescents with autism. *American Journal of Psychiatry* 163(12), 2148-2156.
- Bueno, C.H., Zangrossi, H., Jr., and Viana, M.B. (2005). The inactivation of the basolateral nucleus of the rat amygdala has an anxiolytic effect in the elevated T-maze and light/dark transition tests. *Braz J Med Biol Res* 38(11), 1697-1701. doi: 10.1590/s0100-879x2005001100019.
- Burguière, E., Monteiro, P., Feng, G., and Graybiel, A.M. (2013). Optogenetic stimulation of lateral orbitofronto-striatal pathway suppresses compulsive behaviors. *Science* 340(6137), 1243-1246.

- Burket, J.A., Benson, A.D., Tang, A.H., and Deutsch, S.I. (2013). D-Cycloserine improves
- sociability in the BTBR T+ Itpr3tf/J mouse model of autism spectrum disorders with altered Ras/Raf/ERK1/2 signaling. *Brain research bulletin* 96, 62-70.
- Burket, J.A., Cannon, W.R., Jacome, L.F., and Deutsch, S.I. (2010). MK-801, a noncompetitive
- NMDA receptor antagonist, elicits circling behavior in the genetically inbred Balb/c mouse strain. *Brain research bulletin* 83(6), 337-339.
- Busquets-Garcia, A., Gomis-González, M., Guegan, T., Agustín-Pavón, C., Pastor, A., Mato, S., et al. (2013). Targeting the endocannabinoid system in the treatment of fragile X syndrome.
- *Nature medicine* 19(5), 603-607.
- Butler, M.G., Dasouki, M.J., Zhou, X.P., Talebizadeh, Z., Brown, M., Takahashi, T.N., et al. (2005).
- Subset of individuals with autism spectrum disorders and extreme macrocephaly associated
- with germline PTEN tumour suppressor gene mutations. *J Med Genet* 42(4), 318-321. doi:
- 1461 10.1136/jmg.2004.024646.
- 1462 Calderoni, S., Bellani, M., Hardan, A., Muratori, F., and Brambilla, P. (2014). Basal ganglia and 1463 restricted and repetitive behaviours in Autism Spectrum Disorders: current status and future 1464 perspectives. *Epidemiology and psychiatric sciences* 23(3), 235-238.
- Caldji, C., Diorio, J., Anisman, H., and Meaney, M.J. (2004). Maternal behavior regulates benzodiazepine/GABAA receptor subunit expression in brain regions associated with fear in BALB/c and C57BL/6 mice. *Neuropsychopharmacology* 29(7), 1344-1352. doi: 10.1038/sj.npp.1300436.
- 1469 Cantley, L.C. (2002). The phosphoinositide 3-kinase pathway. *Science* 296(5573), 1655-1657. doi: 10.1126/science.296.5573.1655.
- 1471 Cao, F., Liu, J.J., Zhou, S., Cortez, M.A., Snead, O.C., Han, J., et al. (2020). Neuroligin 2 regulates 1472 absence seizures and behavioral arrests through GABAergic transmission within the 1473 thalamocortical circuitry. *Nature communications* 11(1), 1-15.
- 1474 Carlson, G.C. (2012). Glutamate receptor dysfunction and drug targets across models of autism spectrum disorders. *Pharmacology Biochemistry and Behavior* 100(4), 850-854.
- 1476 Carmona, M.A., Murai, K.K., Wang, L., Roberts, A.J., and Pasquale, E.B. (2009). Glial ephrin-A3 1477 regulates hippocampal dendritic spine morphology and glutamate transport. *Proceedings of* 1478 the National Academy of Sciences 106(30), 12524-12529.
- Carneiro, A.M.D., Cook, E.H., Murphy, D.L., and Blakely, R.D. (2008). Interactions between
 integrin αIIbβ3 and the serotonin transporter regulate serotonin transport and platelet
 aggregation in mice and humans. *The Journal of clinical investigation* 118(4), 1544-1552.
- 1482 Carter, J., Lanham, D., Pham, D., Bibat, G., Naidu, S., and Kaufmann, W.E. (2008). Selective 1483 cerebral volume reduction in Rett syndrome: a multiple-approach MR imaging study. 1484 *American Journal of Neuroradiology* 29(3), 436-441.
- Carter, M.D., Shah, C.R., Muller, C.L., Crawley, J.N., Carneiro, A.M., and Veenstra-VanderWeele, J. (2011). Absence of preference for social novelty and increased grooming in integrin β3 knockout mice: initial studies and future directions. *Autism Research* 4(1), 57-67.
- 1488 Casanova, M., Naidu, S., Goldberg, T., Moser, H., Khoromi, S., Kumar, A., et al. (1991).
- Quantitative magnetic resonance imaging in Rett syndrome. *The Journal of neuropsychiatry* and clinical neurosciences 3(1), 66-72.

- Casey, J.P., Magalhaes, T., Conroy, J.M., Regan, R., Shah, N., Anney, R., et al. (2012). A novel
- approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder. *Human genetics* 131(4), 565-579.
- Causeret, F., Terao, M., Jacobs, T., Nishimura, Y.V., Yanagawa, Y., Obata, K., et al. (2009). The
- p21-activated kinase is required for neuronal migration in the cerebral cortex. *Cerebral Cortex* 19(4), 861-875.
- 1497 Chahin, S.S., Apple, R.W., Kuo, K.H., and Dickson, C.A. (2020). Autism spectrum disorder:
- psychological and functional assessment, and behavioral treatment approaches. *Translational Pediatrics* 9(Suppl 1), S66.
- 1500 Chahrour, M., and Zoghbi, H.Y. (2007). The story of Rett syndrome: from clinic to neurobiology. 1501 *Neuron* 56(3), 422-437.
- 1502 Chang, A.D., Berges, V.A., Chung, S.J., Fridman, G.Y., Baraban, J.M., and Reti, I.M. (2016). High-1503 frequency stimulation at the subthalamic nucleus suppresses excessive self-grooming in 1504 autism-like mouse models. *Neuropsychopharmacology* 41(7), 1813-1821.
- 1505 Chao, H.-T., Chen, H., Samaco, R.C., Xue, M., Chahrour, M., Yoo, J., et al. (2010). Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. *Nature* 468(7321), 263-269.
- 1508 Chaste, P., and Leboyer, M. (2012). Autism risk factors: genes, environment, and gene-environment interactions. *Dialogues in clinical neuroscience* 14(3), 281.
- 1510 Chavez, B., Chavez-Brown, M., and Rey, J.A. (2006). Role of risperidone in children with autism spectrum disorder. *Ann Pharmacother* 40(5), 909-916. doi: 10.1345/aph.1G389.
- 1512 Chen, M., Wan, Y., Ade, K., Ting, J., Feng, G., and Calakos, N. (2011). Sapap3 deletion
- anomalously activates short-term endocannabinoid-mediated synaptic plasticity. *Journal of Neuroscience* 31(26), 9563-9573.
- 1515 Chen, S.K., Tvrdik, P., Peden, E., Cho, S., Wu, S., Spangrude, G., et al. (2010). Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. *Cell* 141(5), 775-785. doi: 10.1016/j.cell.2010.03.055.
- 1517 10.1010/J.ccn.2010.05.055.
- 1518 Chiarotti, F., and Venerosi, A. (2020). Epidemiology of Autism Spectrum Disorders: A Review of Worldwide Prevalence Estimates Since 2014. *Brain Sciences* 10(5), 274.
- 1520 Chicka, M.C., and Strehler, E.E. (2003). Alternative splicing of the first intracellular loop of plasma 1521 membrane Ca2+-ATPase isoform 2 alters its membrane targeting. *Journal of Biological* 1522 *Chemistry* 278(20), 18464-18470.
- 1523 Chin-Sang, I.D., George, S.E., Ding, M., Moseley, S.L., Lynch, A.S., and Chisholm, A.D. (1999).
- The ephrin VAB-2/EFN-1 functions in neuronal signaling to regulate epidermal morphogenesis in C. elegans. *Cell* 99(7), 781-790.
- 1526 Chiron, C., Bulteau, C., Loc'h, C., Raynaud, C., Garreau, B., Syrota, A., et al. (1993). Dopaminergic 1527 D2 receptor SPECT imaging in Rett syndrome: increase of specific binding in striatum.
- Journal of nuclear medicine: official publication, Society of Nuclear Medicine 34(10), 1717-1729 1721.
- 1530 Choi, C.S., Gonzales, E.L., Kim, K.C., Yang, S.M., Kim, J.-W., Mabunga, D.F., et al. (2016). The
- transgenerational inheritance of autism-like phenotypes in mice exposed to valproic acid
- during pregnancy. Scientific reports 6, 36250.

- 1533 Choi, S.Y., Han, K., Cutforth, T., Chung, W., Park, H., Lee, D., et al. (2015). Mice lacking the
- synaptic adhesion molecule Neph2/Kirrel3 display moderate hyperactivity and defective
- novel object preference. Frontiers in cellular neuroscience 9, 283.
- 1536 Choi, Y.-J., Di Nardo, A., Kramvis, I., Meikle, L., Kwiatkowski, D.J., Sahin, M., et al. (2008).
- Tuberous sclerosis complex proteins control axon formation. *Genes & development* 22(18), 2485-2495.
- 1539 Clegg, D.O., Wingerd, K.L., Hikita, S.T., and Tolhurst, E.C. (2003). Integrins in the development, function and dysfunction of the nervous system. *Frontiers in Bioscience* 8.
- 1541 Clipperton-Allen, A.E., and Page, D.T. (2014). Pten haploinsufficient mice show broad brain 1542 overgrowth but selective impairments in autism-relevant behavioral tests. *Hum Mol Genet* 1543 23(13), 3490-3505. doi: 10.1093/hmg/ddu057.
- 1544 Clipperton-Allen, A.E., and Page, D.T. (2015). Decreased aggression and increased repetitive 1545 behavior in Pten haploinsufficient mice. *Genes Brain Behav* 14(2), 145-157. doi: 1546 10.1111/gbb.12192.
- 1547 Cogram, P., Alkon, D.L., Crockford, D., Deacon, R.M., Hurley, M.J., Altimiras, F., et al. (2020).
 1548 Chronic bryostatin-1 rescues autistic and cognitive phenotypes in the fragile X mice.
 1549 Scientific reports 10(1), 1-10.
- Cogram, P., Deacon, R.J., Warner-Schmidt, J., von Schimmelmann, M.J., Abrahams, B.S., and During, M.J. (2019). Gaboxadol normalizes behavioral abnormalities in a mouse model of fragile X syndrome. *Frontiers in behavioral neuroscience* 13, 141.
- 1553 Colacicco, G., Welzl, H., Lipp, H.-P., and Würbel, H. (2002). Attentional set-shifting in mice: 1554 modification of a rat paradigm, and evidence for strain-dependent variation. *Behavioural* 1555 *brain research* 132(1), 95-102.
- 1556 Comery, T.A., Harris, J.B., Willems, P.J., Oostra, B.A., Irwin, S.A., Weiler, I.J., et al. (1997).

 1557 Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits.

 1558 Proceedings of the National Academy of Sciences 94(10), 5401-5404.
- 1559 Conn, P.J., Battaglia, G., Marino, M.J., and Nicoletti, F. (2005). Metabotropic glutamate receptors in the basal ganglia motor circuit. *Nature Reviews Neuroscience* 6(10), 787-798.
- 1561 Cook Jr, E.H., and Scherer, S.W. (2008). Copy-number variations associated with neuropsychiatric conditions. *Nature* 455(7215), 919-923.
- 1563 Cools, A.R., Spruijt, B.M., and Ellenbroek, B.A. (1988). Role of central dopamine in ACTH-induced grooming behavior in rats. *Ann N Y Acad Sci* 525, 338-349. doi: 10.1111/j.1749-6632.1988.tb38618.x.
- 1566 Cooper, E.C., Harrington, E., Jan, Y.N., and Jan, L.Y. (2001). M channel KCNQ2 subunits are
 1567 localized to key sites for control of neuronal network oscillations and synchronization in
 1568 mouse brain. *Journal of Neuroscience* 21(24), 9529-9540.
- 1569 Costales, J.L., and Kolevzon, A. (2015). Phelan-McDermid Syndrome and SHANK3: Implications for Treatment. *Neurotherapeutics* 12(3), 620-630. doi: 10.1007/s13311-015-0352-z.
- 1571 Courchesne, E., Pierce, K., Schumann, C.M., Redcay, E., Buckwalter, J.A., Kennedy, D.P., et al. (2007). Mapping early brain development in autism. *Neuron* 56(2), 399-413.
- 1573 Crawley, J.N. (2012). Translational animal models of autism and neurodevelopmental disorders.

 1574 Dialogues in clinical neuroscience 14(3), 293.

- 1575 Cromwell, H.C., and Berridge, K.C. (1996). Implementation of action sequences by a neostriatal site: a lesion mapping study of grooming syntax. *Journal of Neuroscience* 16(10), 3444-3458.
- 1577 Cromwell, H.C., Berridge, K.C., Drago, J., and Levine, M.S. (1998). Action sequencing is impaired in D1A-deficient mutant mice. *European Journal of Neuroscience* 10(7), 2426-2432.
- 1579 Crossland, J., and Lewandowski, A. (2006). Peromyscus—a fascinating laboratory animal model.
 1580 *Techtalk* 11, 1-2.
- Cupolillo, D., Hoxha, E., Faralli, A., De Luca, A., Rossi, F., Tempia, F., et al. (2016). Autistic-Like Traits and Cerebellar Dysfunction in Purkinje Cell PTEN Knock-Out Mice. Neuropsychopharmacology 41(6), 1457-1466. doi: 10.1038/npp.2015.339.
- 1584 Curatolo, P., and Bombardieri, R. (2007). Tuberous sclerosis. *Handbook of clinical neurology* 87, 1585 129-151.
- D'Hooge, R., Nagels, G., Franck, F., Bakker, C., Reyniers, E., Storm, K., et al. (1997). Mildly impaired water maze performance in maleFmr1 knockout mice. *Neuroscience* 76(2), 367-376.
- Dalva, M.B., Takasu, M.A., Lin, M.Z., Shamah, S.M., Hu, L., Gale, N.W., et al. (2000). EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. *Cell* 103(6), 945-956.
- Dansie, L.E., Phommahaxay, K., Okusanya, A.G., Uwadia, J., Huang, M., Rotschafer, S.E., et al. (2013). Long-lasting effects of minocycline on behavior in young but not adult Fragile X mice. *Neuroscience* 246, 186-198. doi: 10.1016/j.neuroscience.2013.04.058.
- Davis, J.K., and Broadie, K. (2017). Multifarious functions of the fragile X mental retardation protein. *Trends in Genetics* 33(10), 703-714.
- De Arcangelis, A., and Georges-Labouesse, E. (2000). Integrin and ECM functions: roles in vertebrate development. *Trends in Genetics* 16(9), 389-395.
- De Barioglio, S.R., Lezcano, N., and Celis, M.E. (1991). Alpha MSH-induced excessive grooming behavior involves a GABAergic mechanism. *Peptides* 12(1), 203-205.
- de Brouwer, G., Fick, A., Harvey, B.H., and Wolmarans, W. (2019). A critical inquiry into marble-burying as a preclinical screening paradigm of relevance for anxiety and obsessive-compulsive disorder: Mapping the way forward. *Cogn Affect Behav Neurosci* 19(1), 1-39. doi: 10.3758/s13415-018-00653-4.
- De La Torre-Ubieta, L., Gaudillière, B., Yang, Y., Ikeuchi, Y., Yamada, T., DiBacco, S., et al. (2010). A FOXO–Pak1 transcriptional pathway controls neuronal polarity. *Genes & Development* 24(8), 799-813.
- de la Torre-Ubieta, L., Won, H., Stein, J.L., and Geschwind, D.H. (2016). Advancing the understanding of autism disease mechanisms through genetics. *Nature Medicine* 22(4), 345-361. doi: 10.1038/nm.4071.
- De Rubeis, S., and Buxbaum, J.D. (2015). Genetics and genomics of autism spectrum disorder: embracing complexity. *Human Molecular Genetics* 24(R1), R24-R31. doi: 10.1093/hmg/ddv273.
- DeFilippis, M., and Wagner, K.D. (2016). Treatment of Autism Spectrum Disorder in Children and Adolescents. *Psychopharmacol Bull* 46(2), 18-41.

- Delmonte, S., Gallagher, L., O'hanlon, E., Mc Grath, J., and Balsters, J.H. (2013). Functional and structural connectivity of frontostriatal circuitry in Autism Spectrum Disorder. *Frontiers in human neuroscience* 7, 430.
- DeLorey, T., Handforth, A., Anagnostaras, S., Homanics, G., Minassian, B., Asatourian, A., et al. (1998). Mice lacking the β3 subunit of the GABAA receptor have the epilepsy phenotype and many of the behavioral characteristics of Angelman syndrome. *Journal of Neuroscience* 18(20), 8505-8514.
- DeLorey, T.M., Sahbaie, P., Hashemi, E., Homanics, G.E., and Clark, J.D. (2008). Gabrb3 gene deficient mice exhibit impaired social and exploratory behaviors, deficits in non-selective attention and hypoplasia of cerebellar vermal lobules: a potential model of autism spectrum disorder. *Behavioural brain research* 187(2), 207-220.
- DeNardo, L.A., de Wit, J., Otto-Hitt, S., and Ghosh, A. (2012). NGL-2 regulates input-specific synapse development in CA1 pyramidal neurons. *Neuron* 76(4), 762-775.
- Denmark, A., Tien, D., Wong, K., Chung, A., Cachat, J., Goodspeed, J., et al. (2010). The effects of chronic social defeat stress on mouse self-grooming behavior and its patterning. *Behav Brain Res* 208(2), 553-559. doi: 10.1016/j.bbr.2009.12.041.
- Denys, D., de Vries, F., Cath, D., Figee, M., Vulink, N., Veltman, D.J., et al. (2013). Dopaminergic activity in Tourette syndrome and obsessive-compulsive disorder. *European neuropsychopharmacology* 23(11), 1423-1431.
- Deutsch, S.I., Burket, J.A., Jacome, L.F., Cannon, W.R., and Herndon, A.L. (2011a). D-Cycloserine improves the impaired sociability of the Balb/c mouse. *Brain Research Bulletin* 84(1), 8-11.
- Deutsch, S.I., Burket, J.A., Urbano, M.R., Herndon, A.L., and Winebarger, E.E. (2011b). "Impaired sociability of the Balb/c mouse, an animal model of autism spectrum disorders, is attenuated by NMDA receptor agonist interventions: clinical implications," in *A Comprehensive Book on Autism Spectrum Disorders*. IntechOpen).
- Deutsch, S.I., Rosse, R.B., Paul, S.M., Riggs, R.L., and Mastropaolo, J. (1997). Inbred mouse strains differ in sensitivity to "popping" behavior elicited by MK-801. *Pharmacol Biochem Behav* 57(1-2), 315-317. doi: 10.1016/s0091-3057(96)00347-4.
- Deutsch, S.I., Rosse, R.B., Schwartz, B.L., Mastropaolo, J., Burket, J.A., and Weizman, A. (2010).
 Regulation of intermittent oscillatory activity of pyramidal cell neurons by GABA inhibitory interneurons is impaired in schizophrenia: rationale for pharmacotherapeutic GABAergic interventions. *Isr J Psychiatry Relat Sci* 47(1), 17-26.
- Devlin, B., Cook, E., Coon, H., Dawson, G., Grigorenko, E., McMahon, W., et al. (2005). Autism and the serotonin transporter: the long and short of it. *Molecular psychiatry* 10(12), 1110-1116.
- Devlin, B., and Scherer, S.W. (2012). Genetic architecture in autism spectrum disorder. *Current opinion in genetics & development* 22(3), 229-237.
- Di Giovanni, G., Di Matteo, V., Pierucci, M., Benigno, A., and Esposito, E. (2006). Serotonin involvement in the basal ganglia pathophysiology: could the 5-HT2C receptor be a new target for therapeutic strategies? *Current medicinal chemistry* 13(25), 3069-3081.
- Di Martino, A., Kelly, C., Grzadzinski, R., Zuo, X.-N., Mennes, M., Mairena, M.A., et al. (2011).

 Aberrant striatal functional connectivity in children with autism. *Biological psychiatry* 69(9), 847-856.

- Dibbens, L.M., Tarpey, P.S., Hynes, K., Bayly, M.A., Scheffer, I.E., Smith, R., et al. (2008). X-
- linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment.
- *Nature genetics* 40(6), 776-781.
- Dodero, L., Damiano, M., Galbusera, A., Bifone, A., Tsaftsaris, S.A., Scattoni, M.L., et al. (2013).
- Neuroimaging evidence of major morpho-anatomical and functional abnormalities in the BTBR T+ TF/J mouse model of autism. *PloS one* 8(10), e76655.
- Dolan, B.M., Duron, S.G., Campbell, D.A., Vollrath, B., Rao, B.S., Ko, H.-Y., et al. (2013). Rescue
- of fragile X syndrome phenotypes in Fmr1 KO mice by the small-molecule PAK inhibitor
- 1666 FRAX486. Proceedings of the National Academy of Sciences 110(14), 5671-5676.
- Dölen, G., and Bear, M.F. (2008). Role for metabotropic glutamate receptor 5 (mGluR5) in the pathogenesis of fragile X syndrome. *The Journal of physiology* 586(6), 1503-1508.
- Dölen, G., Osterweil, E., Rao, B.S., Smith, G.B., Auerbach, B.D., Chattarji, S., et al. (2007).
- 1670 Correction of fragile X syndrome in mice. *Neuron* 56(6), 955-962.
- Doyle, C.A., and McDougle, C.J. (2012). Pharmacologic treatments for the behavioral symptoms
- associated with autism spectrum disorders across the lifespan. *Dialogues in clinical*
- *neuroscience* 14(3), 263.
- Drapeau, E., Dorr, N.P., Elder, G.A., and Buxbaum, J.D. (2014). Absence of strong strain effects in behavioral analyses of Shank3-deficient mice. *Disease models & mechanisms* 7(6), 667-681.
- Draper, A., Stephenson, M.C., Jackson, G.M., Pépés, S., Morgan, P.S., Morris, P.G., et al. (2014).
- Increased GABA contributes to enhanced control over motor excitability in Tourette
- syndrome. *Current Biology* 24(19), 2343-2347.
- Duffney, L.J., Wei, J., Cheng, J., Liu, W., Smith, K.R., Kittler, J.T., et al. (2013). Shank3 deficiency
- induces NMDA receptor hypofunction via an actin-dependent mechanism. *J Neurosci* 33(40),
- 1681 15767-15778. doi: 10.1523/jneurosci.1175-13.2013.
- Dunn, H.G., Stoessl, A.J., Ho, H.H., MacLeod, P.M., Poskitt, K.J., Doudet, D.J., et al. (2002). Rett
- syndrome: investigation of nine patients, including PET scan. Canadian journal of
- 1684 *neurological sciences* 29(4), 345-357.
- Dunn, J.T., Mroczek, J., Patel, H.R., and Ragozzino, M.E. (2020). Tandospirone, a partial 5-HT1A
- receptor agonist, administered systemically or into anterior cingulate attenuates repetitive
- behaviors in Shank3B mice. *International Journal of Neuropsychopharmacology*.
- Eadie, B.D., Cushman, J., Kannangara, T.S., Fanselow, M.S., and Christie, B.R. (2012). NMDA
- receptor hypofunction in the dentate gyrus and impaired context discrimination in adult Fmr1
- 1690 knockout mice. *Hippocampus* 22(2), 241-254.
- Egea, J., and Klein, R. (2007). Bidirectional Eph–ephrin signaling during axon guidance. *Trends in*
- 1692 *cell biology* 17(5), 230-238.
- Ehlers, M.D. (1999). Synapse structure: glutamate receptors connected by the shanks. *Curr Biol*
- 1694 9(22), R848-850. doi: 10.1016/s0960-9822(00)80043-3.
- 1695 Ehninger, D., Han, S., Shilyansky, C., Zhou, Y., Li, W., Kwiatkowski, D.J., et al. (2008). Reversal of
- learning deficits in a Tsc2+/- mouse model of tuberous sclerosis. *Nature medicine* 14(8),
- 1697 843-848.
- Ehninger, D., and Silva, A.J. (2011). Rapamycin for treating Tuberous sclerosis and Autism spectrum
- disorders. Trends in molecular medicine 17(2), 78-87.

- 1700 Eissa, N., Al-Houqani, M., Sadeq, A., Ojha, S.K., Sasse, A., and Sadek, B. (2018). Current
- enlightenment about etiology and pharmacological treatment of autism spectrum disorder.
- 1702 Frontiers in neuroscience 12, 304.
- 1703 El-Kordi, A., Winkler, D., Hammerschmidt, K., Kästner, A., Krueger, D., Ronnenberg, A., et al.
- 1704 (2013). Development of an autism severity score for mice using Nlgn4 null mutants as a
- 1705 construct-valid model of heritable monogenic autism. *Behav Brain Res* 251, 41-49. doi:
- 1706 10.1016/j.bbr.2012.11.016.
- 1707 Ellegood, J., Anagnostou, E., Babineau, B., Crawley, J., Lin, L., Genestine, M., et al. (2015).
- 1708 Clustering autism: using neuroanatomical differences in 26 mouse models to gain insight into the heterogeneity. *Molecular psychiatry* 20(1), 118-125.
- 1710 Ellegood, J., Babineau, B.A., Henkelman, R.M., Lerch, J.P., and Crawley, J.N. (2013).
- Neuroanatomical analysis of the BTBR mouse model of autism using magnetic resonance
- imaging and diffusion tensor imaging. *Neuroimage* 70, 288-300.
- 1713 Ellegood, J., Henkelman, R.M., and Lerch, J.P. (2012). Neuroanatomical assessment of the integrin
- β3 mouse model related to autism and the serotonin system using high resolution MRI.
- 1715 Frontiers in psychiatry 3, 37.
- 1716 Ellegood, J., Pacey, L.K., Hampson, D.R., Lerch, J.P., and Henkelman, R.M. (2010). Anatomical
- phenotyping in a mouse model of fragile X syndrome with magnetic resonance imaging.
- 1718 *Neuroimage* 53(3), 1023-1029.
- Ernst, A., and Smelik, P. (1966). Site of action of dopamine and apomorphine on compulsive
- gnawing behaviour in rats. *Experientia* 22(12), 837-838.
- Errijgers, V., Fransen, E., D'HOOGE, R., De Deyn, P.P., and Kooy, R.F. (2008). Effect of genetic
- background on acoustic startle response in fragile X knockout mice. Genetics research 90(4),
- 1723 341-345.
- Espinosa, F., Xuan, Z., Liu, S., and Powell, C.M. (2015). Neuroligin 1 modulates striatal
- glutamatergic neurotransmission in a pathway and NMDAR subunit-specific manner.
- 1726 Frontiers in synaptic neuroscience 7, 11.
- 1727 Estanislau, C., Díaz-Morán, S., Cañete, T., Blázquez, G., Tobeña, A., and Fernández-Teruel, A.
- 1728 (2013). Context-dependent differences in grooming behavior among the NIH heterogeneous
- stock and the Roman high- and low-avoidance rats. *Neurosci Res* 77(4), 187-201. doi:
- 1730 10.1016/j.neures.2013.09.012.
- Estanislau, C., Veloso, A.W.N., Filgueiras, G.B., Maio, T.P., Dal-Cól, M.L.C., Cunha, D.C., et al.
- 1732 (2019). Rat self-grooming and its relationships with anxiety, dearousal and perseveration:
- Evidence for a self-grooming trait. *Physiol Behav* 209, 112585. doi:
- 1734 10.1016/j.physbeh.2019.112585.
- Ethell, I.M., Irie, F., Kalo, M.S., Couchman, J.R., Pasquale, E.B., and Yamaguchi, Y. (2001).
- EphB/syndecan-2 signaling in dendritic spine morphogenesis. *Neuron* 31(6), 1001-1013.
- Etherton, M., Földy, C., Sharma, M., Tabuchi, K., Liu, X., Shamloo, M., et al. (2011). Autism-linked
- neuroligin-3 R451C mutation differentially alters hippocampal and cortical synaptic function.
- 1739 *Proc Natl Acad Sci U S A* 108(33), 13764-13769. doi: 10.1073/pnas.1111093108.
- 1740 Etherton, M.R., Blaiss, C.A., Powell, C.M., and Südhof, T.C. (2009). Mouse neurexin-1α deletion
- causes correlated electrophysiological and behavioral changes consistent with cognitive
- impairments. Proceedings of the National Academy of Sciences 106(42), 17998-18003.

- Fatemi, S.H., Halt, A.R., Realmuto, G., Earle, J., Kist, D.A., Thuras, P., et al. (2002). Purkinje cell size is reduced in cerebellum of patients with autism. *Cellular and molecular neurobiology* 22(2), 171-175.
- Feliciano, P., Zhou, X., Astrovskaya, I., Turner, T.N., Wang, T., Brueggeman, L., et al. (2019).

 Exome sequencing of 457 autism families recruited online provides evidence for autism risk genes. *NPJ genomic medicine* 4(1), 1-14.
- Felix-Ortiz, A.C., and Tye, K.M. (2014). Amygdala inputs to the ventral hippocampus bidirectionally modulate social behavior. *Journal of Neuroscience* 34(2), 586-595.
- Fentress, J.C. (1988). Expressive contexts, fine structure, and central mediation of rodent grooming.

 Ann N Y Acad Sci 525, 18-26. doi: 10.1111/j.1749-6632.1988.tb38592.x.
- Filice, F., Lauber, E., Vörckel, K.J., Wöhr, M., and Schwaller, B. (2018). 17-β estradiol increases parvalbumin levels in Pvalb heterozygous mice and attenuates behavioral phenotypes with relevance to autism core symptoms. *Molecular autism* 9(1), 1-13.
- Filippini, A., Bonini, D., Lacoux, C., Pacini, L., Zingariello, M., Sancillo, L., et al. (2017). Absence of the Fragile X Mental Retardation Protein results in defects of RNA editing of neuronal mRNAs in mouse. *RNA biology* 14(11), 1580-1591.
- Filosa, A., Paixão, S., Honsek, S.D., Carmona, M.A., Becker, L., Feddersen, B., et al. (2009).
 Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. *Nat Neurosci* 12(10), 1285-1292. doi: 10.1038/nn.2394.
- Florijn, W.J., Holtmaat, A.J., de Lang, H., Spierenburg, H., Gispen, W.H., and Versteeg, D.H. (1993). Peptide-induced grooming behavior and caudate nucleus dopamine release. *Brain Res* 625(1), 169-172. doi: 10.1016/0006-8993(93)90151-c.
- Floyd, N.S., Price, J.L., Ferry, A.T., Keay, K.A., and Bandler, R. (2000). Orbitomedial prefrontal cortical projections to distinct longitudinal columns of the periaqueductal gray in the rat. *J Comp Neurol* 422(4), 556-578. doi: 10.1002/1096-9861(20000710)422:4<556::aid-cne6>3.0.co;2-u.
- Fraser, M.M., Bayazitov, I.T., Zakharenko, S.S., and Baker, S.J. (2008). Phosphatase and tensin homolog, deleted on chromosome 10 deficiency in brain causes defects in synaptic structure, transmission and plasticity, and myelination abnormalities. *Neuroscience* 151(2), 476-488. doi: 10.1016/j.neuroscience.2007.10.048.
- Fraser, M.M., Zhu, X., Kwon, C.H., Uhlmann, E.J., Gutmann, D.H., and Baker, S.J. (2004). Pten loss causes hypertrophy and increased proliferation of astrocytes in vivo. *Cancer Res* 64(21), 7773-7779. doi: 10.1158/0008-5472.Can-04-2487.
- Frisch, C., Hüsch, K., Angenstein, F., Kudin, A., Kunz, W., Elger, C.E., et al. (2009). Dosedependent memory effects and cerebral volume changes after in utero exposure to valproate in the rat. *Epilepsia* 50(6), 1432-1441.
- Fung, L.K., Mahajan, R., Nozzolillo, A., Bernal, P., Krasner, A., Jo, B., et al. (2016). Pharmacologic Treatment of Severe Irritability and Problem Behaviors in Autism: A Systematic Review and Meta-analysis. *Pediatrics* 137 Suppl 2, S124-135. doi: 10.1542/peds.2015-2851K.
- Gandhi, R.M., Kogan, C.S., and Messier, C. (2014). 2-Methyl-6-(phenylethynyl) pyridine (MPEP) reverses maze learning and PSD-95 deficits in Fmr1 knock-out mice. *Frontiers in Cellular Neuroscience* 8, 70.

- Gao, P., Zhang, J., Yokoyama, M., Racey, B., Dreyfus, C., Black, I., et al. (1996). Regulation of topographic projection in the brain: Elf-1 in the hippocamposeptal system. *Proceedings of the National Academy of Sciences* 93(20), 11161-11166.
- Gao, R., Zaccard, C.R., Shapiro, L.P., Dionisio, L.E., Martin-de-Saavedra, M.D., Piguel, N.H., et al. (2019). The CNTNAP2-CASK complex modulates GluA1 subcellular distribution in interneurons. *Neuroscience letters* 701, 92-99.
- Gao, Y., Vasilyev, D.V., Goncalves, M.B., Howell, F.V., Hobbs, C., Reisenberg, M., et al. (2010).
 Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in
 diacylglycerol lipase knock-out mice. *Journal of Neuroscience* 30(6), 2017-2024.
- Gargiulo, P.A., and Donoso, A.O. (1996). Distinct grooming patterns induced by intracerebroventricular injection of CRH, TRH and LHRH in male rats. *Braz J Med Biol Res* 29(3), 375-379.
- Gau, S.S.F., Liao, H.M., Hong, C.C., Chien, W.H., and Chen, C.H. (2012). Identification of two inherited copy number variants in a male with autism supports two-hit and compound heterozygosity models of autism. *American Journal of Medical Genetics Part B:*Neuropsychiatric Genetics 159(6), 710-717.
- 1801 Gdalyahu, A., Lazaro, M., Penagarikano, O., Golshani, P., Trachtenberg, J.T., and Gescwind, D.H.
 1802 (2015). The autism related protein contactin-associated protein-like 2 (CNTNAP2) stabilizes
 1803 new spines: an in vivo mouse study. *PloS one* 10(5), e0125633.
- Gencer, O., Emiroglu, F.N., Miral, S., Baykara, B., Baykara, A., and Dirik, E. (2008). Comparison of long-term efficacy and safety of risperidone and haloperidol in children and adolescents with autistic disorder. An open label maintenance study. *Eur Child Adolesc Psychiatry* 17(4), 217-225. doi: 10.1007/s00787-007-0656-6.
- 1808 Gerfen, C.R. (1995). Dopamine receptor function in the basal ganglia. *Clinical neuropharmacology* 1809 18, S162-S177.
- 1810 Gerfen, C.R., Engber, T.M., Mahan, L.C., Susel, Z., Chase, T.N., Monsma, F.J., et al. (1990). D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons.

 Science 250(4986), 1429-1432.
- Gerke, P., Benzing, T., Höhne, M., Kispert, A., Frotscher, M., Walz, G., et al. (2006). Neuronal expression and interaction with the synaptic protein CASK suggest a role for Neph1 and Neph2 in synaptogenesis. *Journal of Comparative Neurology* 498(4), 466-475.
- Geschwind, D.H. (2011). Genetics of autism spectrum disorders. *Trends in cognitive sciences* 15(9), 409-416.
- Geschwind, D.H., and State, M.W. (2015). Gene hunting in autism spectrum disorder: on the path to precision medicine. *The Lancet Neurology* 14(11), 1109-1120.
- 1820 Ghidoni, B.B.Z. (2007). Rett syndrome. *Child and Adolescent Psychiatric Clinics of North America* 16(3), 723-743.
- Gholizadeh, S., Arsenault, J., Xuan, I.C.Y., Pacey, L.K., and Hampson, D.R. (2014). Reduced phenotypic severity following adeno-associated virus-mediated Fmr1 gene delivery in fragile X mice. *Neuropsychopharmacology* 39(13), 3100-3111.
- 1825 Gispen, W.H., and Isaacson, R.L. (1981). ACTH-induced excessive grooming in the rat. *Pharmacol Ther* 12(1), 209-246. doi: 10.1016/0163-7258(81)90081-4.

- 1827 Gogolla, N., LeBlanc, J.J., Quast, K.B., Südhof, T.C., Fagiolini, M., and Hensch, T.K. (2009).
- 1828 Common circuit defect of excitatory-inhibitory balance in mouse models of autism. *Journal* of neurodevelopmental disorders 1(2), 172-181.
- 1830 Golden, C.E., Buxbaum, J.D., and De Rubeis, S. (2018). Disrupted circuits in mouse models of
- autism spectrum disorder and intellectual disability. *Current opinion in neurobiology* 48, 106-1832 112.
- 1833 Gotham, K., Bishop, S.L., Hus, V., Huerta, M., Lund, S., Buja, A., et al. (2013). Exploring the
- relationship between anxiety and insistence on sameness in autism spectrum disorders. *Autism Res* 6(1), 33-41. doi: 10.1002/aur.1263.
- Gould, B.R., and Zingg, H.H. (2003). Mapping oxytocin receptor gene expression in the mouse brain and mammary gland using an oxytocin receptor-LacZ reporter mouse. *Neuroscience* 122(1), 155-167. doi: 10.1016/s0306-4522(03)00283-5.
- Gould, G.G., Hensler, J.G., Burke, T.F., Benno, R.H., Onaivi, E.S., and Daws, L.C. (2011). Density and function of central serotonin (5-HT) transporters, 5-HT1A and 5-HT2A receptors, and
- effects of their targeting on BTBR T+ tf/J mouse social behavior. *Journal of neurochemistry* 116(2), 291-303.
- Grabrucker, A.M. (2013). Environmental factors in autism. Frontiers in psychiatry 3, 118.
- Grabrucker, A.M., Schmeisser, M.J., Schoen, M., and Boeckers, T.M. (2011). Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies. *Trends Cell Biol* 21(10), 594-

1846 603. doi: 10.1016/j.tcb.2011.07.003.

- Grayton, H.M., Missler, M., Collier, D.A., and Fernandes, C. (2013). Altered social behaviours in neurexin 1α knockout mice resemble core symptoms in neurodevelopmental disorders. *PloS* one 8(6), e67114.
- Green, S.A., Ben-Sasson, A., Soto, T.W., and Carter, A.S. (2012). Anxiety and sensory overresponsivity in toddlers with autism spectrum disorders: Bidirectional effects across time.
- *Journal of autism and developmental disorders* 42(6), 1112-1119.
- Greer, J.M., and Capecchi, M.R. (2002). Hoxb8 is required for normal grooming behavior in mice. Neuron 33(1), 23-34. doi: 10.1016/s0896-6273(01)00564-5.
- Gremel, C.M., Chancey, J.H., Atwood, B.K., Luo, G., Neve, R., Ramakrishnan, C., et al. (2016).
- Endocannabinoid modulation of orbitostriatal circuits gates habit formation. *Neuron* 90(6), 1312-1324.
- 1858 Gross, C., Banerjee, A., Tiwari, D., Longo, F., White, A.R., Allen, A., et al. (2019). Isoform-selective phosphoinositide 3-kinase inhibition ameliorates a broad range of fragile X syndrome-
- associated deficits in a mouse model. *Neuropsychopharmacology* 44(2), 324-333.
- Grove, J., Ripke, S., Als, T.D., Mattheisen, M., Walters, R.K., Won, H., et al. (2019). Identification of common genetic risk variants for autism spectrum disorder. *Nature genetics* 51(3), 431-
- 1863 444.
- Grunwald, I.C., Korte, M., Adelmann, G., Plueck, A., Kullander, K., Adams, R.H., et al. (2004).
- Hippocampal plasticity requires postsynaptic ephrinBs. *Nature neuroscience* 7(1), 33-40.
- 1866 Grunwald, I.C., Korte, M., Wolfer, D., Wilkinson, G.A., Unsicker, K., Lipp, H.-P., et al. (2001).
- 1867 Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity.
- 1868 Neuron 32(6), 1027-1040.

- Guilmatre, A., Huguet, G., Delorme, R., and Bourgeron, T. (2014). The emerging role of SHANK genes in neuropsychiatric disorders. *Developmental neurobiology* 74(2), 113-122.
- 1871 Gulisano, M., Barone, R., Alaimo, S., Ferro, A., Pulvirenti, A., Cirnigliaro, L., et al. (2020).
- Disentangling Restrictive and Repetitive Behaviors and Social Impairments in Children and
- 1873 Adolescents with Gilles de la Tourette Syndrome and Autism Spectrum Disorder. *Brain* 1874 *Sciences* 10(5), 308.
- Gundelfinger, E.D., Boeckers, T.M., Baron, M.K., and Bowie, J.U. (2006). A role for zinc in postsynaptic density asSAMbly and plasticity? *Trends in biochemical sciences* 31(7), 366-373.
- Guo, H., Duyzend, M.H., Coe, B.P., Baker, C., Hoekzema, K., Gerdts, J., et al. (2019). Genome sequencing identifies multiple deleterious variants in autism patients with more severe phenotypes. *Genetics in Medicine* 21(7), 1611-1620.
- Gurney, M.E., Cogram, P., Deacon, R.M., Rex, C., and Tranfaglia, M. (2017). Multiple behavior phenotypes of the fragile-X syndrome mouse model respond to chronic inhibition of phosphodiesterase-4D (PDE4D). *Scientific reports* 7(1), 1-11.
- Haas, B.W., BARNEA-GORALY, N., Lightbody, A.A., Patnaik, S.S., Hoeft, F., Hazlett, H., et al. (2009). Early white-matter abnormalities of the ventral frontostriatal pathway in fragile X syndrome. *Developmental Medicine & Child Neurology* 51(8), 593-599.
- Haber, S.N., and Calzavara, R. (2009). The cortico-basal ganglia integrative network: the role of the thalamus. *Brain research bulletin* 78(2-3), 69-74.
- Haberl, M.G., Zerbi, V., Veltien, A., Ginger, M., Heerschap, A., and Frick, A. (2015). Structural-functional connectivity deficits of neocortical circuits in the Fmr1-/y mouse model of autism.

 Science advances 1(10), e1500775.
- Hadley, C., Hadley, B., Ephraim, S., Yang, M., and Lewis, M.H. (2006). Spontaneous stereotypy and environmental enrichment in deer mice (Peromyscus maniculatus): reversibility of experience. *Applied Animal Behaviour Science* 97(2-4), 312-322.
- Hagerman, R.J., Berry-Kravis, E., Hazlett, H.C., Bailey, D.B., Jr., Moine, H., Kooy, R.F., et al. (2017). Fragile X syndrome. *Nat Rev Dis Primers* 3, 17065. doi: 10.1038/nrdp.2017.65.
- Hallahan, B.P., Craig, M.C., Toal, F., Daly, E.M., Moore, C.J., Ambikapathy, A., et al. (2011). In vivo brain anatomy of adult males with Fragile X syndrome: an MRI study. *Neuroimage* 54(1), 16-24.
- Han, S., Tai, C., Jones, C.J., Scheuer, T., and Catterall, W.A. (2014). Enhancement of inhibitory
 neurotransmission by GABAA receptors having α2, 3-subunits ameliorates behavioral
 deficits in a mouse model of autism. *Neuron* 81(6), 1282-1289.
- Han, S., Tai, C., Westenbroek, R.E., Frank, H.Y., Cheah, C.S., Potter, G.B., et al. (2012). Autistic-like behaviour in Scn1a+/– mice and rescue by enhanced GABA-mediated neurotransmission. *Nature* 489(7416), 385-390.
- Harony-Nicolas, H., Kay, M., du Hoffmann, J., Klein, M.E., Bozdagi-Gunal, O., Riad, M., et al. (2017). Oxytocin improves behavioral and electrophysiological deficits in a novel Shank3-deficient rat. *Elife* 6. doi: 10.7554/eLife.18904.
- Hashemi, E., Ariza, J., Rogers, H., Noctor, S.C., and Martínez-Cerdeño, V. (2017). The number of parvalbumin-expressing interneurons is decreased in the prefrontal cortex in autism. *Cerebral cortex* 27(3), 1931-1943.

- Hayashi, E., Kuratani, K., Kinoshita, M., and Hara, H. (2010). Pharmacologically distinctive
- behaviors other than burying marbles during the marble burying test in mice. *Pharmacology*
- 1914 86(5-6), 293-296.
- Heimer, L., Van Hoesen, G.W., Trimble, M., and Zahm, D.S. (2007). Anatomy of neuropsychiatry:
- the new anatomy of the basal forebrain and its implications for neuropsychiatric illness.
- 1917 Academic Press.
- 1918 Henderson, C., Wijetunge, L., Kinoshita, M.N., Shumway, M., Hammond, R.S., Postma, F.R., et al.
- 1919 (2012). Reversal of disease-related pathologies in the fragile X mouse model by selective
- activation of GABAB receptors with arbaclofen. Science translational medicine 4(152),
- 1921 152ra128-152ra128.
- Henkemeyer, M., Itkis, O.S., Ngo, M., Hickmott, P.W., and Ethell, I.M. (2003). Multiple EphB
- receptor tyrosine kinases shape dendritic spines in the hippocampus. *The Journal of cell*
- 1924 *biology* 163(6), 1313-1326.
- Herman, G.E., Butter, E., Enrile, B., Pastore, M., Prior, T.W., and Sommer, A. (2007). Increasing
- knowledge of PTEN germline mutations: Two additional patients with autism and
- 1927 macrocephaly. *Am J Med Genet A* 143a(6), 589-593. doi: 10.1002/ajmg.a.31619.
- 1928 Héroult, M., Schaffner, F., and Augustin, H.G. (2006). Eph receptor and ephrin ligand-mediated
- interactions during angiogenesis and tumor progression. Experimental cell research 312(5),
- 1930 642-650.
- Hines, R.M., Wu, L., Hines, D.J., Steenland, H., Mansour, S., Dahlhaus, R., et al. (2008). Synaptic
- imbalance, stereotypies, and impaired social interactions in mice with altered neuroligin 2
- 1933 expression. *Journal of Neuroscience* 28(24), 6055-6067.
- 1934 Hisaoka, T., Komori, T., Kitamura, T., and Morikawa, Y. (2018). Abnormal behaviours relevant to
- neurodevelopmental disorders in Kirrel3-knockout mice. *Scientific reports* 8(1), 1-12.
- Hollander, E., Anagnostou, E., Chaplin, W., Esposito, K., Haznedar, M.M., Licalzi, E., et al. (2005).
- 1937 Striatal volume on magnetic resonance imaging and repetitive behaviors in autism. *Biological*
- 1938 psychiatry 58(3), 226-232.
- 1939 Homberg, J.R., van den Akker, M., Raasø, H.S., Wardeh, G., Binnekade, R., Schoffelmeer, A.N., et
- al. (2002). Enhanced motivation to self-administer cocaine is predicted by self-grooming
- behaviour and relates to dopamine release in the rat medial prefrontal cortex and amygdala.
- 1942 Eur J Neurosci 15(9), 1542-1550. doi: 10.1046/j.1460-9568.2002.01976.x.
- Hong, W., Kim, D.-W., and Anderson, D.J. (2014). Antagonistic control of social versus repetitive
- self-grooming behaviors by separable amygdala neuronal subsets. *Cell* 158(6), 1348-1361.
- Horey, G., Ellegood, J., Lerch, J.P., Son, Y.-E.E., Muthuswamy, L., Vogel, H., et al. (2011). Dosage-
- dependent phenotypes in models of 16p11. 2 lesions found in autism. *Proceedings of the*
- 1947 *National Academy of Sciences* 108(41), 17076-17081.
- Hosie, S., Malone, D.T., Liu, S., Glass, M., Adlard, P.A., Hannan, A.J., et al. (2018). Altered
- amygdala excitation and CB1 receptor modulation of aggressive behavior in the neuroligin-
- 3R451C mouse model of autism. Frontiers in cellular neuroscience 12, 234.
- Houwing, D.J., Heijkoop, R., Olivier, J.D.A., and Snoeren, E.M.S. (2019). Perinatal fluoxetine
- exposure changes social and stress-coping behavior in adult rats housed in a seminatural
- 1953 environment. *Neuropharmacology* 151, 84-97. doi: 10.1016/j.neuropharm.2019.03.037.

- Hu, X.Z., Lipsky, R.H., Zhu, G., Akhtar, L.A., Taubman, J., Greenberg, B.D., et al. (2006). Serotonin transporter promoter gain-of-function genotypes are linked to obsessive-compulsive disorder. Am J Hum Genet 78(5), 815-826. doi: 10.1086/503850.
- Huang, F., Chen, X., Jiang, X., Niu, J., Cui, C., Chen, Z., et al. (2019). Betaine ameliorates prenatal
 valproic-acid-induced autism-like behavioral abnormalities in mice by promoting
 homocysteine metabolism. *Psychiatry and clinical neurosciences* 73(6), 317-322.
- Huang, H.-S., Burns, A.J., Nonneman, R.J., Baker, L.K., Riddick, N.V., Nikolova, V.D., et al.
 (2013). Behavioral deficits in an Angelman syndrome model: effects of genetic background and age. *Behavioural brain research* 243, 79-90.
- Huang, J., and Manning, B.D. (2008). The TSC1–TSC2 complex: a molecular switchboard controlling cell growth. *Biochemical Journal* 412(2), 179-190.
- Hung, A.Y., Futai, K., Sala, C., Valtschanoff, J.G., Ryu, J., Woodworth, M.A., et al. (2008). Smaller
 dendritic spines, weaker synaptic transmission, but enhanced spatial learning in mice lacking
 Shank1. *Journal of Neuroscience* 28(7), 1697-1708.
- Hynes, K., Tarpey, P., Dibbens, L.M., Bayly, M.A., Berkovic, S.F., Smith, R., et al. (2010). Epilepsy and mental retardation limited to females with PCDH19 mutations can present de novo or in single generation families. *Journal of medical genetics* 47(3), 211-216.
- 1971 Ifergan, I., Kebir, H., Terouz, S., Alvarez, J.I., Lécuyer, M.A., Gendron, S., et al. (2011). Role of
 1972 Ninjurin-1 in the migration of myeloid cells to central nervous system inflammatory lesions.
 1973 Annals of neurology 70(5), 751-763.
- Inoki, K., Corradetti, M.N., and Guan, K.-L. (2005). Dysregulation of the TSC-mTOR pathway in human disease. *Nature genetics* 37(1), 19-24.
- 1976 Iossifov, I., Ronemus, M., Levy, D., Wang, Z., Hakker, I., Rosenbaum, J., et al. (2012). De novo gene disruptions in children on the autistic spectrum. *Neuron* 74(2), 285-299.
- 1978 Ishiguro, A., Inagaki, M., and Kaga, M. (2007). Stereotypic circling behavior in mice with vestibular 1979 dysfunction: asymmetrical effects of intrastriatal microinjection of a dopamine agonist. 1980 *International Journal of Neuroscience* 117(7), 1049-1064.
- Jamain, S., Quach, H., Betancur, C., Råstam, M., Colineaux, C., Gillberg, I.C., et al. (2003).

 Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. *Nature genetics* 34(1), 27-29.
- Jang, Y.S., Kang, J.H., Woo, J.K., Kim, H.M., Hwang, J.I., Lee, S.J., et al. (2016). Ninjurin1 suppresses metastatic property of lung cancer cells through inhibition of interleukin 6 signaling pathway. *International Journal of Cancer* 139(2), 383-395.
- Jaramillo, T.C., Speed, H.E., Xuan, Z., Reimers, J.M., Liu, S., and Powell, C.M. (2016). Altered striatal synaptic function and abnormal behaviour in Shank3 exon4-9 deletion mouse model of autism. *Autism Research* 9(3), 350-375.
- Jardim, M.C., and Guimarães, F.S. (2001). GABAergic and glutamatergic modulation of exploratory behavior in the dorsomedial hypothalamus. *Pharmacol Biochem Behav* 69(3-4), 579-584. doi: 10.1016/s0091-3057(01)00560-3.
- Jia, Y.F., Wininger, K., Peyton, L., Ho, A.M., and Choi, D.S. (2020). Astrocytic glutamate
 transporter 1 (GLT1) deficient mice exhibit repetitive behaviors. *Behav Brain Res* 396,
 112906. doi: 10.1016/j.bbr.2020.112906.

- Jiang, Y.-h., Pan, Y., Zhu, L., Landa, L., Yoo, J., Spencer, C., et al. (2010). Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion from Ube3a to Gabrb3. *PloS one* 5(8), e12278.
- Jiang, Y.-h., Yuen, R.K., Jin, X., Wang, M., Chen, N., Wu, X., et al. (2013). Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. *The American Journal of Human Genetics* 93(2), 249-263.
- Jiujias, M., Kelley, E., and Hall, L. (2017). Restricted, repetitive behaviors in autism spectrum disorder and obsessive—compulsive disorder: a comparative review. *Child Psychiatry & Human Development* 48(6), 944-959.
- Joyner, C.P., Myrick, L.C., Crossland, J.P., and Dawson, W.D. (1998). Deer Mice As Laboratory Animals. *Ilar j* 39(4), 322-330. doi: 10.1093/ilar.39.4.322.
- Jung, C.K., and Herms, J. (2014). Structural dynamics of dendritic spines are influenced by an environmental enrichment: an in vivo imaging study. *Cerebral cortex* 24(2), 377-384.
- Jung, K.-M., Sepers, M., Henstridge, C.M., Lassalle, O., Neuhofer, D., Martin, H., et al. (2012).
 Uncoupling of the endocannabinoid signalling complex in a mouse model of fragile X
 syndrome. *Nature communications* 3(1), 1-11.
- 2012 Kalueff, A.V., and Nutt, D.J. (2007). Role of GABA in anxiety and depression. *Depress Anxiety* 2013 24(7), 495-517. doi: 10.1002/da.20262.
- Kalueff, A.V., Ren-Patterson, R.F., LaPorte, J.L., and Murphy, D.L. (2008). Domain interplay concept in animal models of neuropsychiatric disorders: a new strategy for high-throughput neurophenotyping research. *Behav Brain Res* 188(2), 243-249. doi: 10.1016/j.bbr.2007.11.011.
- Kalueff, A.V., Ren-Patterson, R.F., and Murphy, D.L. (2007). The developing use of heterozygous mutant mouse models in brain monoamine transporter research. *Trends Pharmacol Sci* 28(3), 122-127. doi: 10.1016/j.tips.2007.01.002.
- Kalueff, A.V., Stewart, A.M., Song, C., Berridge, K.C., Graybiel, A.M., and Fentress, J.C. (2016).
 Neurobiology of rodent self-grooming and its value for translational neuroscience. *Nature Reviews Neuroscience* 17(1), 45.
- 2024 Kalueff, A.V., and Tuohimaa, P. (2004a). Contrasting grooming phenotypes in C57Bl/6 and 2025 129S1/SvImJ mice. *Brain Res* 1028(1), 75-82. doi: 10.1016/j.brainres.2004.09.001.
- Kalueff, A.V., and Tuohimaa, P. (2004b). Grooming analysis algorithm for neurobehavioural stress research. *Brain Res Brain Res Protoc* 13(3), 151-158. doi: 10.1016/j.brainresprot.2004.04.002.
- Kalueff, A.V., and Tuohimaa, P. (2005a). Contrasting grooming phenotypes in three mouse strains markedly different in anxiety and activity (129S1, BALB/c and NMRI). *Behav Brain Res* 160(1), 1-10. doi: 10.1016/j.bbr.2004.11.010.
- Kalueff, A.V., and Tuohimaa, P. (2005b). The grooming analysis algorithm discriminates between different levels of anxiety in rats: potential utility for neurobehavioural stress research. *J Neurosci Methods* 143(2), 169-177. doi: 10.1016/j.jneumeth.2004.10.001.
- Kalueff, A.V., and Tuohimaa, P. (2005c). Mouse grooming microstructure is a reliable anxiety marker bidirectionally sensitive to GABAergic drugs. *Eur J Pharmacol* 508(1-3), 147-153. doi: 10.1016/j.ejphar.2004.11.054.

- 2038 Kametani, H. (1988). Analysis of age-related changes in stress-induced grooming in the rat.
- 2039 Differential behavioral profile of adaptation to stress. *Ann N Y Acad Sci* 525, 101-113. doi: 10.1111/j.1749-6632.1988.tb38599.x.
- Kano, M., Ohno-Shosaku, T., Hashimotodani, Y., Uchigashima, M., and Watanabe, M. (2009).
- Endocannabinoid-mediated control of synaptic transmission. *Physiological reviews* 89(1), 309-380.
- Karimi, P., Kamali, E., Mousavi, S.M., and Karahmadi, M. (2017). Environmental factors
- influencing the risk of autism. *Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences* 22.
- Karler, R., Bedingfield, J.B., Thai, D.K., and Calder, L.D. (1997). The role of the frontal cortex in the mouse in behavioral sensitization to amphetamine. *Brain research* 757(2), 228-235.
- Karler, R., Calder, L.D., Thai, D.K., and Bedingfield, J.B. (1998). The role of dopamine in the mouse frontal cortex: a new hypothesis of behavioral sensitization to amphetamine and cocaine.

 Pharmacology Biochemistry and Behavior 61(4), 435-443.
- Karvat, G., and Kimchi, T. (2014). Acetylcholine elevation relieves cognitive rigidity and social deficiency in a mouse model of autism. *Neuropsychopharmacology* 39(4), 831-840.
- Kas, M.J., Fernandes, C., Schalkwyk, L.C., and Collier, D.A. (2007). Genetics of behavioural domains across the neuropsychiatric spectrum; of mice and men. *Mol Psychiatry* 12(4), 324-330. doi: 10.1038/sj.mp.4001979.
- 2057 Kassim, A.B.B.M., and Mohamed, N.H.B. (2019). THE GLOBAL PREVALENCE AND
 2058 DIAGNOSIS OF AUTISM SPECTRUM DISORDER (ASD) AMONG YOUNG
 2059 CHILDREN.
- 2060 Katz, R.J., and Roth, K.A. (1979). Stress induced grooming in the rat--an endorphin mediated syndrome. *Neurosci Lett* 13(2), 209-212. doi: 10.1016/0304-3940(79)90043-0.
- Kaufman, J., Yang, B.Z., Douglas-Palumberi, H., Grasso, D., Lipschitz, D., Houshyar, S., et al.
 (2006). Brain-derived neurotrophic factor-5-HTTLPR gene interactions and environmental modifiers of depression in children. *Biol Psychiatry* 59(8), 673-680. doi: 10.1016/j.biopsych.2005.10.026.
- Kazdoba, T.M., Leach, P.T., and Crawley, J.N. (2016). Behavioral phenotypes of genetic mouse models of autism. *Genes Brain Behav* 15(1), 7-26. doi: 10.1111/gbb.12256.
- Kent, J.M., Kushner, S., Ning, X., Karcher, K., Ness, S., Aman, M., et al. (2013). Risperidone dosing in children and adolescents with autistic disorder: a double-blind, placebo-controlled study. *J Autism Dev Disord* 43(8), 1773-1783. doi: 10.1007/s10803-012-1723-5.
- Khakh, B.S., and Sofroniew, M.V. (2015). Diversity of astrocyte functions and phenotypes in neural circuits. *Nature neuroscience* 18(7), 942.
- Kim, E.C., Patel, J., Zhang, J., Soh, H., Rhodes, J.S., Tzingounis, A.V., et al. (2020). Heterozygous loss of epilepsy gene KCNQ2 alters social, repetitive and exploratory behaviors. *Genes, Brain and Behavior* 19(1), e12599.
- Kim, H., Lim, C.-S., and Kaang, B.-K. (2016). Neuronal mechanisms and circuits underlying repetitive behaviors in mouse models of autism spectrum disorder. *Behavioral and Brain Functions* 12(1), 3.

- Kim, I.H., Rossi, M.A., Aryal, D.K., Racz, B., Kim, N., Uezu, A., et al. (2015). Spine pruning drives antipsychotic-sensitive locomotion via circuit control of striatal dopamine. *Nature* neuroscience 18(6), 883.
- Kim, J.-W., Seung, H., Kim, K.C., Gonzales, E.L.T., Oh, H.A., Yang, S.M., et al. (2017). Agmatine rescues autistic behaviors in the valproic acid-induced animal model of autism.
 Neuropharmacology 113, 71-81.
- Kim, S., Burette, A., Chung, H.S., Kwon, S.-K., Woo, J., Lee, H.W., et al. (2006). NGL family PSD-95-interacting adhesion molecules regulate excitatory synapse formation. *Nature* neuroscience 9(10), 1294-1301.
- Kim, T.W., Kang, Y.K., Park, Z.Y., Kim, Y.-H., Hong, S.W., Oh, S.J., et al. (2014). SH3RF2 functions as an oncogene by mediating PAK4 protein stability. *Carcinogenesis* 35(3), 624-634.
- Kim, Y.S., and Leventhal, B.L. (2015). Genetic epidemiology and insights into interactive genetic and environmental effects in autism spectrum disorders. *Biological psychiatry* 77(1), 66-74.
- King, B.H., Hollander, E., Sikich, L., McCracken, J.T., Scahill, L., Bregman, J.D., et al. (2009). Lack of efficacy of citalopram in children with autism spectrum disorders and high levels of repetitive behavior: citalopram ineffective in children with autism. *Archives of general psychiatry* 66(6), 583-590.
- Kinsey, S.G., Bailey, M.T., Sheridan, J.F., Padgett, D.A., and Avitsur, R. (2007). Repeated social defeat causes increased anxiety-like behavior and alters splenocyte function in C57BL/6 and CD-1 mice. *Brain Behav Immun* 21(4), 458-466. doi: 10.1016/j.bbi.2006.11.001.
- Kiyatkin, E.A., and Rebec, G.V. (1999). Striatal neuronal activity and responsiveness to dopamine and glutamate after selective blockade of D1 and D2 dopamine receptors in freely moving rats. *Journal of Neuroscience* 19(9), 3594-3609.
- Klein, R. (2004). Eph/ephrin signaling in morphogenesis, neural development and plasticity. *Current opinion in cell biology* 16(5), 580-589.
- Klein, R. (2009). Bidirectional modulation of synaptic functions by Eph/ephrin signaling. *Nature* neuroscience 12(1), 15-20.
- Komorowska, J., and Pellis, S.M. (2004). Regulatory mechanisms underlying novelty-induced
 grooming in the laboratory rat. *Behav Processes* 67(2), 287-293. doi:
 10.1016/j.beproc.2004.05.001.
- Kouser, M., Speed, H.E., Dewey, C.M., Reimers, J.M., Widman, A.J., Gupta, N., et al. (2013). Loss of predominant Shank3 isoforms results in hippocampus-dependent impairments in behavior and synaptic transmission. *J Neurosci* 33(47), 18448-18468. doi: 10.1523/jneurosci.3017-13.2013.
- Kreienkamp, H.-J. (2008). "Scaffolding proteins at the postsynaptic density: shank as the
 architectural framework," in *Protein-Protein Interactions as New Drug Targets*. Springer),
 365-380.
- Krueger, D.D., Osterweil, E.K., Chen, S.P., Tye, L.D., and Bear, M.F. (2011). Cognitive dysfunction
 and prefrontal synaptic abnormalities in a mouse model of fragile X syndrome. *Proceedings* of the National Academy of Sciences 108(6), 2587-2592.
- Kullander, K., and Klein, R. (2002). Mechanisms and functions of Eph and ephrin signalling. *Nature* reviews Molecular cell biology 3(7), 475-486.

- Kumar, M., Duda, J.T., Hwang, W.T., Kenworthy, C., Ittyerah, R., Pickup, S., et al. (2014). High
- 2123 resolution magnetic resonance imaging for characterization of the neuroligin-3 knock-in
- mouse model associated with autism spectrum disorder. *PLoS One* 9(10), e109872. doi:
- 2125 10.1371/journal.pone.0109872.
- Kwon, C.H., Luikart, B.W., Powell, C.M., Zhou, J., Matheny, S.A., Zhang, W., et al. (2006). Pten
- regulates neuronal arborization and social interaction in mice. *Neuron* 50(3), 377-388. doi:
- 2128 10.1016/j.neuron.2006.03.023.
- 2129 Lai, M.C., Lombardo, M.V., and Baron-Cohen, S. (2014). Autism. *Lancet* 383(9920), 896-910. doi:
- 2130 10.1016/s0140-6736(13)61539-1.
- Langen, M., Leemans, A., Johnston, P., Ecker, C., Daly, E., Murphy, C.M., et al. (2012). Fronto-
- striatal circuitry and inhibitory control in autism: findings from diffusion tensor imaging
- 2133 tractography. *Cortex* 48(2), 183-193.
- 2134 LaSalle, J.M. (2013). Epigenomic strategies at the interface of genetic and environmental risk factors
- for autism. *Journal of human genetics* 58(7), 396-401.
- 2136 Lauber, E., Filice, F., and Schwaller, B. (2018). Dysregulation of parvalbumin expression in the
- 2137 Cntnap2-/- mouse model of autism spectrum disorder. Frontiers in molecular neuroscience
- 2138 11, 262.
- 2139 Lauterborn, J.C., Rex, C.S., Kramár, E., Chen, L.Y., Pandyarajan, V., Lynch, G., et al. (2007). Brain-
- derived neurotrophic factor rescues synaptic plasticity in a mouse model of fragile X
- 2141 syndrome. *Journal of neuroscience* 27(40), 10685-10694.
- 2142 Le, H., Ahn, B.J., Lee, H.S., Shin, A., Chae, S., Lee, S.Y., et al. (2017). Disruption of Ninjurin1 leads
- 2143 to repetitive and anxiety-like behaviors in mice. *Molecular neurobiology* 54(9), 7353-7368.
- Lee, B., Lee, K., Panda, S., Gonzales-Rojas, R., Chong, A., Bugay, V., et al. (2018). Nanoparticle
- delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from
- exaggerated repetitive behaviours. *Nature Biomedical Engineering* 2(7), 497-507.
- Lee, H.J., Macbeth, A.H., Pagani, J.H., and Young, W.S., 3rd (2009). Oxytocin: the great facilitator
- 2148 of life. *Prog Neurobiol* 88(2), 127-151. doi: 10.1016/j.pneurobio.2009.04.001.
- Leonzino, M., Ponzoni, L., Braida, D., Gigliucci, V., Busnelli, M., Ceresini, I., et al. (2019).
- 2150 Impaired approach to novelty and striatal alterations in the oxytocin receptor deficient mouse
- 2151 model of autism. *Horm Behav* 114, 104543. doi: 10.1016/j.vhbeh.2019.06.007.
- Lever, A.G., and Geurts, H.M. (2016). Psychiatric Co-occurring Symptoms and Disorders in Young,
- 2153 Middle-Aged, and Older Adults with Autism Spectrum Disorder. J Autism Dev Disord 46(6),
- 2154 1916-1930. doi: 10.1007/s10803-016-2722-8.
- Levitt, P., and Campbell, D.B. (2009). The genetic and neurobiologic compass points toward
- 2156 common signaling dysfunctions in autism spectrum disorders. *The Journal of clinical*
- 2157 investigation 119(4), 747-754.
- Levy, D., Ronemus, M., Yamrom, B., Lee, Y.-h., Leotta, A., Kendall, J., et al. (2011). Rare de novo
- and transmitted copy-number variation in autistic spectrum disorders. *Neuron* 70(5), 886-897.
- Lewis, M., and Kim, S.-J. (2009). The pathophysiology of restricted repetitive behavior. *Journal of*
- 2161 neurodevelopmental disorders 1(2), 114.
- Lewis, M.H., and Bodfish, J.W. (1998). Repetitive behavior disorders in autism. *Mental retardation*
- and developmental disabilities research reviews 4(2), 80-89.

- Lewis, M.H., Primiani, C.T., and Muehlmann, A.M. (2019). Targeting dopamine D2, adenosine
 A2A, and glutamate mGlu5 receptors to reduce repetitive behaviors in deer mice. *Journal of Pharmacology and Experimental Therapeutics* 369(1), 88-97.
- Lewis, M.H., Tanimura, Y., Lee, L.W., and Bodfish, J.W. (2007). Animal models of restricted repetitive behavior in autism. *Behavioural brain research* 176(1), 66-74.
- Li, W., and Pozzo-Miller, L. (2020). Dysfunction of the corticostriatal pathway in autism spectrum disorders. *Journal of neuroscience research* 98(11), 2130-2147.
- Li, Y.-C., Kellendonk, C., Simpson, E.H., Kandel, E.R., and Gao, W.-J. (2011). D2 receptor overexpression in the striatum leads to a deficit in inhibitory transmission and dopamine sensitivity in mouse prefrontal cortex. *Proceedings of the National Academy of Sciences* 108(29), 12107-12112.
- Lidstone, J., Uljarević, M., Sullivan, J., Rodgers, J., McConachie, H., Freeston, M., et al. (2014).
 Relations among restricted and repetitive behaviors, anxiety and sensory features in children with autism spectrum disorders. *Research in Autism Spectrum Disorders* 8(2), 82-92.
- Lim, J., Ryu, J., Kang, S., Noh, H.J., and Kim, C.H. (2019). Autism-like behaviors in male mice with a Pcdh19 deletion. *Molecular brain* 12(1), 1-4.
- Lin, J.C., Ho, W.-H., Gurney, A., and Rosenthal, A. (2003). The netrin-G1 ligand NGL-1 promotes the outgrowth of thalamocortical axons. *Nature neuroscience* 6(12), 1270-1276.
- Liu, J., and Moghaddam, B. (1995). Regulation of glutamate efflux by excitatory amino acid receptors: evidence for tonic inhibitory and phasic excitatory regulation. *J Pharmacol Exp Ther* 274(3), 1209-1215.
- Lonetti, G., Angelucci, A., Morando, L., Boggio, E.M., Giustetto, M., and Pizzorusso, T. (2010).

 Early environmental enrichment moderates the behavioral and synaptic phenotype of MeCP2 null mice. *Biological psychiatry* 67(7), 657-665.
- Lopez, B.R., Lincoln, A.J., Ozonoff, S., and Lai, Z. (2005). Examining the relationship between executive functions and restricted, repetitive symptoms of autistic disorder. *Journal of autism and developmental disorders* 35(4), 445-460.
- Lord, C., Brugha, T.S., Charman, T., Cusack, J., Dumas, G., Frazier, T., et al. (2020). Autism spectrum disorder. *Nature reviews Disease primers* 6(1), 1-23.
- Lord, C., Cook, E.H., Leventhal, B.L., and Amaral, D.G. (2000). Autism spectrum disorders. *Neuron* 28(2), 355-363.
- Lu, H., Ash, R.T., He, L., Kee, S.E., Wang, W., Yu, D., et al. (2016). Loss and gain of MeCP2 cause similar hippocampal circuit dysfunction that is rescued by deep brain stimulation in a Rett syndrome mouse model. *Neuron* 91(4), 739-747.
- Lugo, J.N., Smith, G.D., Arbuckle, E.P., White, J., Holley, A.J., Floruta, C.M., et al. (2014). Deletion
 of PTEN produces autism-like behavioral deficits and alterations in synaptic proteins. *Front Mol Neurosci* 7, 27. doi: 10.3389/fnmol.2014.00027.
- Maenner, M.J., Shaw, K.A., and Baio, J. (2020). Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2016. MMWR Surveillance Summaries 69(4), 1.

- Mahmood, U., Ahn, S., Yang, E.-J., Choi, M., Kim, H., Regan, P., et al. (2018). Dendritic spine
- anomalies and PTEN alterations in a mouse model of VPA-induced autism spectrum disorder.
- 2206 Pharmacological Research 128, 110-121.
- 2207 Mahmoud, S., Gharagozloo, M., Simard, C., and Gris, D. (2019). Astrocytes maintain glutamate
- homeostasis in the CNS by controlling the balance between glutamate uptake and release.
- 2209 *Cells* 8(2), 184.
- Malone, R.P., and Waheed, A. (2009). The role of antipsychotics in the management of behavioural
- symptoms in children and adolescents with autism. *Drugs* 69(5), 535-548. doi:
- 2212 10.2165/00003495-200969050-00003.
- Maneeton, N., Maneeton, B., Putthisri, S., Woottiluk, P., Narkpongphun, A., and Srisurapanont, M.
- 2214 (2018). Risperidone for children and adolescents with autism spectrum disorder: a systematic
- 2215 review. *Neuropsychiatr Dis Treat* 14, 1811-1820. doi: 10.2147/ndt.S151802.
- Mardirossian, S., Rampon, C., Salvert, D., Fort, P., and Sarda, N. (2009). Impaired hippocampal
- 2217 plasticity and altered neurogenesis in adult Ube3a maternal deficient mouse model for
- 2218 Angelman syndrome. *Experimental neurology* 220(2), 341-348.
- Martínez, A., and Soriano, E. (2005). Functions of ephrin/Eph interactions in the development of the
- nervous system: emphasis on the hippocampal system. Brain Research Reviews 49(2), 211-
- 2221 226.
- Masi, A., DeMayo, M.M., Glozier, N., and Guastella, A.J. (2017). An Overview of Autism Spectrum
- Disorder, Heterogeneity and Treatment Options. *Neurosci Bull* 33(2), 183-193. doi:
- 2224 10.1007/s12264-017-0100-y.
- Matsukawa, H., Akiyoshi-Nishimura, S., Zhang, Q., Luján, R., Yamaguchi, K., Goto, H., et al.
- 2226 (2014). Netrin-G/NGL complexes encode functional synaptic diversification. *Journal of*
- 2227 *Neuroscience* 34(47), 15779-15792.
- Matsuki, M., Kabara, M., Saito, Y., Shimamura, K., Minoshima, A., Nishimura, M., et al. (2015).
- Ninjurin 1 is a novel factor to regulate angiogenesis through the function of pericytes.
- 2230 *Circulation Journal*, CJ-14-1376.
- Matta, S.M., Moore, Z., Walker, F.R., Hill-Yardin, E.L., and Crack, P.J. (2020). An altered glial
- phenotype in the NL3(R451C) mouse model of autism. Sci Rep 10(1), 14492. doi:
- 2233 10.1038/s41598-020-71171-v.
- Mazurek, M.O., Vasa, R.A., Kalb, L.G., Kanne, S.M., Rosenberg, D., Keefer, A., et al. (2013).
- Anxiety, sensory over-responsivity, and gastrointestinal problems in children with autism
- spectrum disorders. *Journal of abnormal child psychology* 41(1), 165-176.
- Mazzocco, M.M., Pulsifer, M., Fiumara, A., Cocuzza, M., Nigro, F., Incorpora, G., et al. (1998).
- Brief report: autistic behaviors among children with fragile X or Rett syndrome: implications
- for the classification of pervasive developmental disorder. *Journal of Autism and*
- 2240 *Developmental Disorders* 28(4), 321-328.
- McBride, P.A., Anderson, G.M., Hertzig, M.E., Sweeney, J.A., Kream, J., Cohen, D.J., et al. (1989).
- Serotonergic responsivity in male young adults with autistic disorder: results of a pilot study.
- 2243 Archives of general psychiatry 46(3), 213-221.
- McCracken, J.T., McGough, J., Shah, B., Cronin, P., Hong, D., Aman, M.G., et al. (2002).
- 2245 Risperidone in children with autism and serious behavioral problems. *N Engl J Med* 347(5),
- 2246 314-321. doi: 10.1056/NEJMoa013171.

- McDougle, C., Naylor, S.T., Cohen, D.J., Aghajanian, G.K., Heninger, G.R., and Price, L.H. (1996).
- Effects of tryptophan depletion in drug-free adults with autistic disorder. *Archives of general*
- 2249 psychiatry 53(11), 993-1000.
- 2250 McDougle, C.J., Scahill, L., Aman, M.G., McCracken, J.T., Tierney, E., Davies, M., et al. (2005).
- Risperidone for the core symptom domains of autism: results from the study by the autism
- network of the research units on pediatric psychopharmacology. American Journal of
- 2253 Psychiatry 162(6), 1142-1148.
- McDougle, C.J., Stigler, K.A., Erickson, C.A., and Posey, D.J. (2008). Atypical antipsychotics in children and adolescents with autistic and other pervasive developmental disorders. *J Clin*
- 2256 *Psychiatry* 69 Suppl 4, 15-20.
- McFarlane, H.G., Kusek, G., Yang, M., Phoenix, J., Bolivar, V., and Crawley, J. (2008). Autism-like behavioral phenotypes in BTBR T+ tf/J mice. *Genes, Brain and Behavior* 7(2), 152-163.
- McGrath, M.J., Campbell, K.M., Veldman, M.B., and Burton, F.H. (1999). Anxiety in a transgenic mouse model of cortical-limbic neuro-potentiated compulsive behavior. *Behav Pharmacol* 10(5), 435-443. doi: 10.1097/00008877-199909000-00001.
- McNaughton, C.H., Moon, J., Strawderman, M.S., Maclean, K.N., Evans, J., and Strupp, B.J. (2008).
- Evidence for social anxiety and impaired social cognition in a mouse model of fragile X syndrome. *Behavioral neuroscience* 122(2), 293.
- 2265 McPheeters, M.L., Warren, Z., Sathe, N., Bruzek, J.L., Krishnaswami, S., Jerome, R.N., et al. (2011).
- A systematic review of medical treatments for children with autism spectrum disorders.
- 2267 *Pediatrics* 127(5), e1312-e1321.
- Mehta, M.V., Gandal, M.J., and Siegel, S.J. (2011). mGluR5-antagonist mediated reversal of elevated stereotyped, repetitive behaviors in the VPA model of autism. *PloS one* 6(10).
- Mei, Y., Monteiro, P., Zhou, Y., Kim, J.-A., Gao, X., Fu, Z., et al. (2016). Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. *Nature* 530(7591), 481-484.
- Meikle, L., Pollizzi, K., Egnor, A., Kramvis, I., Lane, H., Sahin, M., et al. (2008). Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors:
- 2274 effects on mTORC1 and Akt signaling lead to improved survival and function. *Journal of Neuroscience* 28(21), 5422-5432.
- Meikle, L., Talos, D.M., Onda, H., Pollizzi, K., Rotenberg, A., Sahin, M., et al. (2007). A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons,
- reduced myelination, seizure activity, and limited survival. *Journal of Neuroscience* 27(21),
- 2279 5546-5558.
- 2280 Mejias, R., Adamczyk, A., Anggono, V., Niranjan, T., Thomas, G.M., Sharma, K., et al. (2011).
- Gain-of-function glutamate receptor interacting protein 1 variants alter GluA2 recycling and
- surface distribution in patients with autism. *Proceedings of the National Academy of Sciences* 108(12), 4920-4925.
- Mejias, R., Chiu, S.-L., Han, M., Rose, R., Gil-Infante, A., Zhao, Y., et al. (2019). Purkinje cell-specific Grip1/2 knockout mice show increased repetitive self-grooming and enhanced
- 2286 mGluR5 signaling in cerebellum. *Neurobiology of disease* 132, 104602.
- Mercer, A.A., Palarz, K.J., Tabatadze, N., Woolley, C.S., and Raman, I.M. (2016). Sex differences in
- 2288 cerebellar synaptic transmission and sex-specific responses to autism-linked Gabrb3
- mutations in mice. *Elife* 5, e07596.

- Meyza, K., and Blanchard, D. (2017). The BTBR mouse model of idiopathic autism—Current view on mechanisms. *Neuroscience & Biobehavioral Reviews* 76, 99-110.
- 2292 Miral, S., Gencer, O., Inal-Emiroglu, F.N., Baykara, B., Baykara, A., and Dirik, E. (2008).
- Risperidone versus haloperidol in children and adolescents with AD: a randomized,
- 2294 controlled, double-blind trial. *Eur Child Adolesc Psychiatry* 17(1), 1-8. doi: 10.1007/s00787-2295 007-0620-5.
- Modabbernia, A., Velthorst, E., and Reichenberg, A. (2017). Environmental risk factors for autism: an evidence-based review of systematic reviews and meta-analyses. *Molecular autism* 8(1), 13.
- Modi, B., Pimpinella, D., Pazienti, A., Zacchi, P., Cherubini, E., and Griguoli, M. (2019). Possible implication of the CA2 hippocampal circuit in social cognition deficits observed in the neuroligin 3 knock-out mouse, a non-syndromic animal model of Autism. *Frontiers in psychiatry* 10, 513.
- Molofsky, A.V., Krenick, R., Ullian, E., Tsai, H.-h., Deneen, B., Richardson, W.D., et al. (2012).

 Astrocytes and disease: a neurodevelopmental perspective. *Genes & development* 26(9), 891-907.
- Monteiro, P., and Feng, G. (2017). SHANK proteins: roles at the synapse and in autism spectrum disorder. *Nat Rev Neurosci* 18(3), 147-157. doi: 10.1038/nrn.2016.183.
- Moon, J.-s., Beaudin, A., Verosky, S., Driscoll, L., Weiskopf, M., Levitsky, D., et al. (2006).

 Attentional dysfunction, impulsivity, and resistance to change in a mouse model of fragile X syndrome. *Behavioral neuroscience* 120(6), 1367.
- Morency, M.A., Stewart, R.J., and Beninger, R.J. (1985). Effects of unilateral microinjections of sulpiride into the medial prefrontal cortex on circling behavior of rats. *Progress in Neuro-Psychopharmacology and Biological Psychiatry* 9(5-6), 735-738.
- Moretti, P., Bouwknecht, J.A., Teague, R., Paylor, R., and Zoghbi, H.Y. (2005). Abnormalities of social interactions and home-cage behavior in a mouse model of Rett syndrome. *Human molecular genetics* 14(2), 205-220.
- Morikawa, Y., Komori, T., Hisaoka, T., Ueno, H., Kitamura, T., and Senba, E. (2007). Expression of mKirre in the developing sensory pathways: its close apposition to nephrin-expressing cells.

 Neuroscience 150(4), 880-886.
- Moss, J., and Howlin, P. (2009). Autism spectrum disorders in genetic syndromes: implications for diagnosis, intervention and understanding the wider autism spectrum disorder population. *Journal of Intellectual Disability Research* 53(10), 852-873.
- Moy, S.S., and Nadler, J.J. (2008). Advances in behavioral genetics: mouse models of autism. *Mol Psychiatry* 13(1), 4-26. doi: 10.1038/sj.mp.4002082.
- Moy, S.S., Nadler, J.J., Magnuson, T.R., and Crawley, J.N. (Year). "Mouse models of autism spectrum disorders: the challenge for behavioral genetics", in: *American Journal of Medical Genetics Part C: Seminars in Medical Genetics*: Wiley Online Library), 40-51.
- 2328 Moy, S.S., Nadler, J.J., Poe, M.D., Nonneman, R.J., Young, N.B., Koller, B.H., et al. (2008a).
- Development of a mouse test for repetitive, restricted behaviors: relevance to autism.
- 2330 *Behavioural brain research* 188(1), 178-194.

- 2331 Moy, S.S., Nadler, J.J., Young, N.B., Nonneman, R.J., Segall, S.K., Andrade, G.M., et al. (2008b).
- Social approach and repetitive behavior in eleven inbred mouse strains. *Behavioural brain*
- 2333 research 191(1), 118-129.
- 2334 Moy, S.S., Nadler, J.J., Young, N.B., Perez, A., Holloway, L.P., Barbaro, R.P., et al. (2007). Mouse
- behavioral tasks relevant to autism: phenotypes of 10 inbred strains. *Behavioural brain*
- 2336 research 176(1), 4-20.
- 2337 Muehlmann, A., Edington, G., Mihalik, A., Buchwald, Z., Koppuzha, D., Korah, M., et al. (2012).
- Further characterization of repetitive behavior in C58 mice: developmental trajectory and
- effects of environmental enrichment. *Behavioural brain research* 235(2), 143-149.
- Muhle, R., Trentacoste, S.V., and Rapin, I. (2004). The genetics of autism. *Pediatrics* 113(5), e472-2341 e486.
- 2342 Murai, K.K., Nguyen, L.N., Irie, F., Yamaguchi, Y., and Pasquale, E.B. (2003). Control of
- hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. *Nature*
- 2344 *neuroscience* 6(2), 153-160.
- Nagarajan, N., Jones, B.W., West, P.J., Marc, R.E., and Capecchi, M.R. (2018). Corticostriatal circuit
- defects in Hoxb8 mutant mice. *Mol Psychiatry* 23(9), 1868-1877. doi: 10.1038/mp.2017.180.
- Nardone, S., and Elliott, E. (2016). The interaction between the immune system and epigenetics in
- the etiology of autism spectrum disorders. Frontiers in neuroscience 10, 329.
- Naviaux, J.C., Wang, L., Li, K., Bright, A.T., Alaynick, W.A., Williams, K.R., et al. (2015).
- 2350 Antipurinergic therapy corrects the autism-like features in the Fragile X (Fmr1 knockout)
- mouse model. *Molecular autism* 6(1), 1.
- Neumann-Haefelin, E., Kramer-Zucker, A., Slanchev, K., Hartleben, B., Noutsou, F., Martin, K., et
- 2353 al. (2010). A model organism approach: defining the role of Neph proteins as regulators of
- neuron and kidney morphogenesis. *Hum Mol Genet* 19(12), 2347-2359. doi:
- 2355 10.1093/hmg/ddq108.
- Nimmo-Smith, V., Heuvelman, H., Dalman, C., Lundberg, M., Idring, S., Carpenter, P., et al. (2020).
- 2357 Anxiety Disorders in Adults with Autism Spectrum Disorder: A Population-Based Study. J
- 2358 Autism Dev Disord 50(1), 308-318. doi: 10.1007/s10803-019-04234-3.
- Nin, M.S., Ferri, M.K., Couto-Pereira, N.S., Souza, M.F., Azeredo, L.A., Agnes, G., et al. (2012).
- The effect of intra-nucleus accumbens administration of allopregnanolone on δ and $\gamma 2$
- GABA(A) receptor subunit mRNA expression in the hippocampus and on depressive-like and
- 2362 grooming behaviors in rats. *Pharmacol Biochem Behav* 103(2), 359-366. doi:
- 2363 10.1016/j.pbb.2012.09.002.
- Nishida, K., Nakayama, K., Yoshimura, S., and Murakami, F. (2011). Role of Neph2 in pontine
- nuclei formation in the developing hindbrain. *Molecular and Cellular Neuroscience* 46(3),
- 2366 662-670.
- Niu, M., Han, Y., Dy, A.B.C., Du, J., Jin, H., Qin, J., et al. (2017). Autism Symptoms in Fragile X
- 2368 Syndrome. *J Child Neurol* 32(10), 903-909. doi: 10.1177/0883073817712875.
- Njung'e, K., and Handley, S.L. (1991). Evaluation of marble-burying behavior as a model of anxiety.
- 2370 *Pharmacol Biochem Behav* 38(1), 63-67. doi: 10.1016/0091-3057(91)90590-x.
- Nolan, S.O., and Lugo, J.N. (2018). Reversal learning paradigm reveals deficits in cognitive
- flexibility in the Fmr1 knockout male mouse. F1000Research 7.

- Nosyreva, E.D., and Huber, K.M. (2006). Metabotropic receptor-dependent long-term depression
- persists in the absence of protein synthesis in the mouse model of fragile X syndrome.
- 2375 *Journal of neurophysiology* 95(5), 3291-3295.
- O'Leary, T.P., Gunn, R.K., and Brown, R.E. (2013). What are we measuring when we test strain differences in anxiety in mice? *Behavior genetics* 43(1), 34-50.
- Obeso, J.A., and Lanciego, J.L. (2011). Past, present, and future of the pathophysiological model of the Basal Ganglia. *Frontiers in neuroanatomy* 5, 39.
- Orefice, L.L., Zimmerman, A.L., Chirila, A.M., Sleboda, S.J., Head, J.P., and Ginty, D.D. (2016).
- Peripheral mechanosensory neuron dysfunction underlies tactile and behavioral deficits in mouse models of ASDs. *Cell* 166(2), 299-313.
- Page, D.T., Kuti, O.J., Prestia, C., and Sur, M. (2009). Haploinsufficiency for Pten and Serotonin transporter cooperatively influences brain size and social behavior. *Proceedings of the National Academy of Sciences* 106(6), 1989-1994.
- Palmen, S.J., and van Engeland, H. (2004). Review on structural neuroimaging findings in autism. *Journal of neural transmission* 111(7), 903-929.
- Palmer, A., and Klein, R. (2003). Multiple roles of ephrins in morphogenesis, neuronal networking, and brain function. *Genes & development* 17(12), 1429-1450.
- Panayotis, N., Pratte, M., Borges-Correia, A., Ghata, A., Villard, L., and Roux, J.-C. (2011).
- Morphological and functional alterations in the substantia nigra pars compacta of the Mecp2null mouse. *Neurobiology of disease* 41(2), 385-397.
- Parr-Brownlie, L.C., and Hyland, B.I. (2005). Bradykinesia induced by dopamine D2 receptor blockade is associated with reduced motor cortex activity in the rat. *Journal of Neuroscience* 25(24), 5700-5709.
- Paylor, R., Yuva-Paylor, L.A., Nelson, D.L., and Spencer, C.M. (2008). Reversal of sensorimotor gating abnormalities in Fmr1 knockout mice carrying a human Fmr1 transgene. *Behavioral neuroscience* 122(6), 1371.
- Peça, J., Feliciano, C., Ting, J.T., Wang, W., Wells, M.F., Venkatraman, T.N., et al. (2011). Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. *Nature* 472(7344), 437-442.
- Peier, A.M., McIlwain, K.L., Kenneson, A., Warren, S.T., Paylor, R., and Nelson, D.L. (2000).
 (Over) correction of FMR1 deficiency with YAC transgenics: behavioral and physical
- features. *Human molecular genetics* 9(8), 1145-1159.
- Peixoto, R.T., Wang, W., Croney, D.M., Kozorovitskiy, Y., and Sabatini, B.L. (2016). Early hyperactivity and precocious maturation of corticostriatal circuits in Shank3B-/- mice.

 Nature neuroscience 19(5), 716.
- Penagarikano, O., Abrahams, B.S., Herman, E.I., Winden, K.D., Gdalyahu, A., Dong, H., et al. (2011). Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. *Cell* 147(1), 235-246. doi: 10.1016/j.cell.2011.08.040.
- Perry, W., Minassian, A., Lopez, B., Maron, L., and Lincoln, A. (2007). Sensorimotor gating deficits in adults with autism. *Biological psychiatry* 61(4), 482-486.

- Persico, A.M., and Bourgeron, T. (2006). Searching for ways out of the autism maze: genetic,
- 2414 epigenetic and environmental clues. *Trends Neurosci* 29(7), 349-358. doi:
- 2415 10.1016/j.tins.2006.05.010.
- Petrenko, A., Gulyaev, M., Tischenko, D., Petuchov, V., and Abbasova, K. (2013). Effects of
- Prenatal Treatment with Valproic Acid (VPA) on Offspring of Epileptic Adult Rats: MRI Investigation. *Journal of Neuroscience and Neuroengineering* 2(6), 562-568.
- 2419 Pham, D.H., Tan, C.C., Homan, C.C., Kolc, K.L., Corbett, M.A., McAninch, D., et al. (2017).
- 2420 Protocadherin 19 (PCDH19) interacts with paraspeckle protein NONO to co-regulate gene
- expression with estrogen receptor alpha (ERα). Human molecular genetics 26(11), 2042-
- 2422 2052.
- Pierce, K., and Courchesne, E. (2001). Evidence for a cerebellar role in reduced exploration and
- stereotyped behavior in autism. *Biological psychiatry* 49(8), 655-664.
- Pietropaolo, S., Guilleminot, A., Martin, B., d'Amato, F.R., and Crusio, W.E. (2011). Genetic-
- background modulation of core and variable autistic-like symptoms in Fmr1 knock-out mice.
- 2427 *PloS one* 6(2).
- Pignatelli, M., Piccinin, S., Molinaro, G., Di Menna, L., Riozzi, B., Cannella, M., et al. (2014).
- 2429 Changes in mGlu5 receptor-dependent synaptic plasticity and coupling to homer proteins in
- 2430 the hippocampus of Ube3A hemizygous mice modeling angelman syndrome. *Journal of*
- 2431 *neuroscience* 34(13), 4558-4566.
- Pobbe, R.L., Defensor, E.B., Pearson, B.L., Bolivar, V.J., Blanchard, D.C., and Blanchard, R.J.
- 2433 (2011). General and social anxiety in the BTBR T+ tf/J mouse strain. Behav Brain Res
- 2434 216(1), 446-451. doi: 10.1016/j.bbr.2010.08.039.
- Pobbe, R.L., Pearson, B.L., Defensor, E.B., Bolivar, V.J., Young, W.S., 3rd, Lee, H.J., et al. (2012).
- Oxytocin receptor knockout mice display deficits in the expression of autism-related
- 2437 behaviors. *Horm Behav* 61(3), 436-444. doi: 10.1016/j.yhbeh.2011.10.010.
- Portmann, T., Yang, M., Mao, R., Panagiotakos, G., Ellegood, J., Dolen, G., et al. (2014). Behavioral
- abnormalities and circuit defects in the basal ganglia of a mouse model of 16p11. 2 deletion
- 2440 syndrome. *Cell reports* 7(4), 1077-1092.
- Postorino, V., Kerns, C.M., Vivanti, G., Bradshaw, J., Siracusano, M., and Mazzone, L. (2017).
- Anxiety disorders and obsessive-compulsive disorder in individuals with autism spectrum
- disorder. Current psychiatry reports 19(12), 92.
- Powell, S.B., Newman, H.A., McDonald, T.A., Bugenhagen, P., and Lewis, M.H. (2000).
- Development of spontaneous stereotyped behavior in deer mice: effects of early and late
- 2446 exposure to a more complex environment. Developmental Psychobiology: The Journal of the
- 2447 International Society for Developmental Psychobiology 37(2), 100-108.
- Presti, M.F., Gibney, B.C., and Lewis, M.H. (2004). Effects of intrastriatal administration of
- selective dopaminergic ligands on spontaneous stereotypy in mice. *Physiology & behavior*
- 2450 80(4), 433-439.
- 2451 Presti, M.F., Mikes, H.M., and Lewis, M.H. (2003). Selective blockade of spontaneous motor
- stereotypy via intrastriatal pharmacological manipulation. *Pharmacology Biochemistry and*
- 2453 Behavior 74(4), 833-839.

- Prince, J.E., Brignall, A.C., Cutforth, T., Shen, K., and Cloutier, J.-F. (2013). Kirrel3 is required for the coalescence of vomeronasal sensory neuron axons into glomeruli and for male-male aggression. *Development* 140(11), 2398-2408.
- Qiu, S., Aldinger, K.A., and Levitt, P. (2012). Modeling of autism genetic variations in mice: focusing on synaptic and microcircuit dysfunctions. *Developmental neuroscience* 34(2-3), 88-100.
- Qualls-Creekmore, E., and Münzberg, H. (2018). Modulation of feeding and associated behaviors by lateral hypothalamic circuits. *Endocrinology* 159(11), 3631-3642.
- Quintero-Rivera, F., Sharifi-Hannauer, P., and Martinez-Agosto, J.A. (2010). Autistic and psychiatric
 findings associated with the 3q29 microdeletion syndrome: case report and review. *American Journal of Medical Genetics Part A* 152(10), 2459-2467.
- 2465 Rademacher, S., and Eickholt, B.J. (2019). PTEN in Autism and Neurodevelopmental Disorders. 2466 *Cold Spring Harb Perspect Med* 9(11). doi: 10.1101/cshperspect.a036780.
- Radyushkin, K., Hammerschmidt, K., Boretius, S., Varoqueaux, F., El-Kordi, A., Ronnenberg, A., et al. (2009). Neuroligin-3-deficient mice: model of a monogenic heritable form of autism with an olfactory deficit. *Genes, Brain and Behavior* 8(4), 416-425.
- 2470 Ramaswami, G., and Geschwind, D.H. (2018). "Genetics of autism spectrum disorder," in *Handbook* of clinical neurology. Elsevier), 321-329.
- Reiner, A., and Anderson, K.D. (1990). The patterns of neurotransmitter and neuropeptide cooccurrence among striatal projection neurons: conclusions based on recent findings. *Brain* research reviews 15(3), 251-265.
- Reis-Silva, T.M., Sandini, T.M., Calefi, A.S., Orlando, B.C.G., Moreira, N., Lima, A.P.N., et al. (2019). Stress resilience evidenced by grooming behaviour and dopamine levels in male mice selected for high and low immobility using the tail suspension test. *Eur J Neurosci* 50(6), 2942-2954. doi: 10.1111/ejn.14409.
- Reiss, A.L., Faruque, F., Naidu, S., Abrams, M., Beaty, T., Bryan, R.N., et al. (1993). Neuroanatomy of Rett syndrome: a volumetric imaging study. *Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society* 34(2), 227-234.
- Reith, R.M., McKenna, J., Wu, H., Hashmi, S.S., Cho, S.-H., Dash, P.K., et al. (2013). Loss of Tsc2 in Purkinje cells is associated with autistic-like behavior in a mouse model of tuberous sclerosis complex. *Neurobiology of disease* 51, 93-103.
- Reynolds, S., Urruela, M., and Devine, D.P. (2013). Effects of environmental enrichment on repetitive behaviors in the BTBR T+ tf/J mouse model of autism. *Autism Research* 6(5), 337-343.
- 2488 Richler, J., Bishop, S.L., Kleinke, J.R., and Lord, C. (2007). Restricted and repetitive behaviors in young children with autism spectrum disorders. *Journal of autism and developmental* disorders 37(1), 73-85.
- Rinaldi, T., Kulangara, K., Antoniello, K., and Markram, H. (2007). Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid. *Proceedings of the National Academy of Sciences* 104(33), 13501-13506.
- 2494 Rodenas-Cuadrado, P., Ho, J., and Vernes, S.C. (2014). Shining a light on CNTNAP2: complex functions to complex disorders. *European journal of human genetics* 22(2), 171-178.

- 2496 Roeling, T., Veening, J., Peters, J., Vermelis, M., and Nieuwenhuys, R. (1993). Efferent connections 2497 of the hypothalamic "grooming area" in the rat. Neuroscience 56(1), 199-225.
- 2498 Rojas, D.C., Peterson, E., Winterrowd, E., Reite, M.L., Rogers, S.J., and Tregellas, J.R. (2006).
- 2499 Regional gray matter volumetric changes in autism associated with social and repetitive behavior symptoms. BMC psychiatry 6(1), 56. 2500
- Ronemus, M., Iossifov, I., Levy, D., and Wigler, M. (2014). The role of de novo mutations in the 2501 2502 genetics of autism spectrum disorders. Nature Reviews Genetics 15(2), 133-141. doi: 2503 10.1038/nrg3585.
- 2504 Rothwell, P.E., Fuccillo, M.V., Maxeiner, S., Hayton, S.J., Gokce, O., Lim, B.K., et al. (2014). 2505 Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost 2506 repetitive behaviors. Cell 158(1), 198-212.
- 2507 Roullet, F.I., and Crawley, J.N. (2011). "Mouse models of autism: testing hypotheses about 2508 molecular mechanisms," in Molecular and Functional Models in Neuropsychiatry. Springer), 2509 187-212.
- 2510 Rubenstein, J.L. (2010). Three hypotheses for developmental defects that may underlie some forms 2511 of autism spectrum disorder. Current opinion in neurology 23(2), 118-123.
- 2512 Russell, A.J., Murphy, C.M., Wilson, E., Gillan, N., Brown, C., Robertson, D.M., et al. (2016). The mental health of individuals referred for assessment of autism spectrum disorder in adulthood: 2513 2514 A clinic report. Autism 20(5), 623-627. doi: 10.1177/1362361315604271.
- 2515 Russell, K.M., Frost, K.M., and Ingersoll, B. (2019). The relationship between subtypes of repetitive 2516 behaviors and anxiety in children with autism spectrum disorder. Research in Autism 2517 Spectrum Disorders 62, 48-54.
- 2518 Ryan, B.C., Young, N.B., Crawley, J.N., Bodfish, J.W., and Moy, S.S. (2010). Social deficits, 2519 stereotypy and early emergence of repetitive behavior in the C58/J inbred mouse strain. 2520 Behavioural brain research 208(1), 178-188.
- 2521 Ryan, S.G., Chance, P.F., Zou, C.-H., Spinner, N.B., Golden, J.A., and Smietana, S. (1997). Epilepsy 2522 and mental retardation limited to females: an X-linked dominant disorder with male sparing. 2523 *Nature genetics* 17(1), 92-95.
- 2524 Sagar, A., Bishop, J.R., Tessman, D.C., Guter, S., Martin, C.L., and Cook, E.H. (2013). Co-2525 occurrence of autism, childhood psychosis, and intellectual disability associated with a de 2526 novo 3q29 microdeletion. American journal of medical genetics Part A 161(4), 845-849.
- 2527 Sajdyk, T.J., and Shekhar, A. (2000). Sodium lactate elicits anxiety in rats after repeated GABA 2528 receptor blockade in the basolateral amygdala. Eur J Pharmacol 394(2-3), 265-273. doi: 2529 10.1016/s0014-2999(00)00128-x.
- 2530 Sala, C., Vicidomini, C., Bigi, I., Mossa, A., and Verpelli, C. (2015). Shank synaptic scaffold 2531 proteins: keys to understanding the pathogenesis of autism and other synaptic disorders. 2532 Journal of neurochemistry 135(5), 849-858.
- 2533 Sala, M., Braida, D., Lentini, D., Busnelli, M., Bulgheroni, E., Capurro, V., et al. (2011).
- 2534 Pharmacologic rescue of impaired cognitive flexibility, social deficits, increased aggression,
- 2535 and seizure susceptibility in oxytocin receptor null mice: a neurobehavioral model of autism.
- 2536 Biol Psychiatry 69(9), 875-882. doi: 10.1016/j.biopsych.2010.12.022.

- Samaco, R.C., Fryer, J.D., Ren, J., Fyffe, S., Chao, H.-T., Sun, Y., et al. (2008). A partial loss of function allele of methyl-CpG-binding protein 2 predicts a human neurodevelopmental syndrome. *Human molecular genetics* 17(12), 1718-1727.
- Sangu, N., Shimojima, K., Takahashi, Y., Ohashi, T., Tohyama, J., and Yamamoto, T. (2017). A 7q31. 33q32. 1 microdeletion including LRRC4 and GRM8 is associated with severe intellectual disability and characteristics of autism. *Human genome variation* 4(1), 1-3.
- Sansal, I., and Sellers, W.R. (2004). The biology and clinical relevance of the PTEN tumor suppressor pathway. *J Clin Oncol* 22(14), 2954-2963. doi: 10.1200/jco.2004.02.141.
- Satterstrom, F.K., Kosmicki, J.A., Wang, J., Breen, M.S., De Rubeis, S., An, J.-Y., et al. (2020).

 Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. *Cell* 180(3), 568-584. e523.
- Scahill, L., and Challa, S.A. (2016). "Repetitive behavior in children with autism spectrum disorder: similarities and differences with obsessive-compulsive disorder," in *Psychiatric symptoms and comorbidities in autism spectrum disorder*. Springer), 39-50.
- Scahill, L., Koenig, K., Carroll, D.H., and Pachler, M. (2007). Risperidone approved for the treatment of serious behavioral problems in children with autism. *Journal of Child and Adolescent Psychiatric Nursing* 20(3), 188.
- Scahill, L., McDougle, C.J., Aman, M.G., Johnson, C., Handen, B., Bearss, K., et al. (2012). Effects of risperidone and parent training on adaptive functioning in children with pervasive developmental disorders and serious behavioral problems. *J Am Acad Child Adolesc Psychiatry* 51(2), 136-146. doi: 10.1016/j.jaac.2011.11.010.
- Schaefer, G.B., and Mendelsohn, N.J. (2013). Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions. *Genetics in Medicine* 15(5), 399-407.
- Schmeisser, M.J. (2015). Translational neurobiology in Shank mutant mice-Model systems for neuropsychiatric disorders. *Annals of Anatomy-Anatomischer Anzeiger* 200, 115-117.
- Schmeisser, M.J., Ey, E., Wegener, S., Bockmann, J., Stempel, A.V., Kuebler, A., et al. (2012).

 Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. *Nature*486(7402), 256-260.
- Schneider, T., and Przewłocki, R. (2005). Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. *Neuropsychopharmacology* 30(1), 80-89.
- Schneider, T., Turczak, J., and Przewłocki, R. (2006). Environmental enrichment reverses behavioral alterations in rats prenatally exposed to valproic acid: issues for a therapeutic approach in autism. *Neuropsychopharmacology* 31(1), 36-46.
- Sealey, L., Hughes, B., Sriskanda, A., Guest, J., Gibson, A., Johnson-Williams, L., et al. (2016). Environmental factors in the development of autism spectrum disorders. *Environment international* 88, 288-298.
- Sears, L.L., Vest, C., Mohamed, S., Bailey, J., Ranson, B.J., and Piven, J. (1999). An MRI study of the basal ganglia in autism. *Progress in neuro-psychopharmacology & biological psychiatry*.
- 2575 Sellin, L., Huber, T.B., Gerke, P., Quack, I., Pavenstädt, H., and Walz, G. (2003). NEPH1 defines a novel family of podocin interacting proteins. *Faseb j* 17(1), 115-117. doi: 10.1096/fj.02-0242fje.

- Serizawa, S., Miyamichi, K., Takeuchi, H., Yamagishi, Y., Suzuki, M., and Sakano, H. (2006). A neuronal identity code for the odorant receptor-specific and activity-dependent axon sorting. *Cell* 127(5), 1057-1069.
- Sforazzini, F., Bertero, A., Dodero, L., David, G., Galbusera, A., Scattoni, M.L., et al. (2016).

 Altered functional connectivity networks in acallosal and socially impaired BTBR mice.

 Brain Structure and function 221(2), 941-954.
- Shafritz, K.M., Dichter, G.S., Baranek, G.T., and Belger, A. (2008). The neural circuitry mediating shifts in behavioral response and cognitive set in autism. *Biological psychiatry* 63(10), 974-980.
- Shah, A.A., Sjovold, T., and Treit, D. (2004). Inactivation of the medial prefrontal cortex with the GABAA receptor agonist muscimol increases open-arm activity in the elevated plus-maze and attenuates shock-probe burying in rats. *Brain Res* 1028(1), 112-115. doi: 10.1016/j.brainres.2004.08.061.
- Shah, M.M., Migliore, M., Valencia, I., Cooper, E.C., and Brown, D.A. (2008). Functional significance of axonal Kv7 channels in hippocampal pyramidal neurons. *Proceedings of the National Academy of Sciences* 105(22), 7869-7874.
- Shahbazian, M.D., Young, J.I., Yuva-Paylor, L.A., Spencer, C.M., Antalffy, B.A., Noebels, J.L., et al. (2002). Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. *Neuron* 35(2), 243-254.
- Sharma, A., and Shaw, S.R. (2012). Efficacy of risperidone in managing maladaptive behaviors for children with autistic spectrum disorder: a meta-analysis. *J Pediatr Health Care* 26(4), 291-299. doi: 10.1016/j.pedhc.2011.02.008.
- 2600 Shavitt, R.G., Hounie, A.G., Rosário Campos, M.C., and Miguel, E.C. (2006). Tourette's Syndrome. 2601 *Psychiatr Clin North Am* 29(2), 471-486. doi: 10.1016/j.psc.2006.02.005.
- Shea, S., Turgay, A., Carroll, A., Schulz, M., Orlik, H., Smith, I., et al. (2004). Risperidone in the treatment of disruptive behavioral symptoms in children with autistic and other pervasive developmental disorders. *Pediatrics* 114(5), e634-641. doi: 10.1542/peds.2003-0264-F.
- 2605 Sheng, M., and Kim, E. (2000). The Shank family of scaffold proteins. *J Cell Sci* 113 (Pt 11), 1851-2606 1856.
- Shi, R., Redman, P., Ghose, D., Hwang, H., Liu, Y., Ren, X., et al. (2017). Shank Proteins
 Differentially Regulate Synaptic Transmission. *eNeuro* 4(6). doi: 10.1523/eneuro.0163-15.2017.
- Shin, W., Kweon, H., Kang, R., Kim, D., Kim, K., Kang, M., et al. (2019). Scn2a haploinsufficiency in mice suppresses hippocampal neuronal excitability, excitatory synaptic drive, and long-term potentiation, and spatial learning and memory. *Frontiers in molecular neuroscience* 12, 145.
- Shonesy, B.C., Bluett, R.J., Ramikie, T.S., Báldi, R., Hermanson, D.J., Kingsley, P.J., et al. (2014).
 Genetic disruption of 2-arachidonoylglycerol synthesis reveals a key role for endocannabinoid signaling in anxiety modulation. *Cell reports* 9(5), 1644-1653.
- Shonesy, B.C., Parrish, W.P., Haddad, H.K., Stephenson, J.R., Báldi, R., Bluett, R.J., et al. (2018).
 Role of striatal direct pathway 2-arachidonoylglycerol signaling in sociability and repetitive

behavior. *Biological psychiatry* 84(4), 304-315.

- Shukla, T., de la Peña, J.B., Perish, J.M., Ploski, J.E., Stumpf, C.R., Webster, K.R., et al. (2020). A Highly Selective MNK Inhibitor Rescues Deficits Associated with Fragile X Syndrome in Mice. *Neurotherapeutics*, 1-16.
- Silverman, J.L., Pride, M., Hayes, J., Puhger, K., Butler-Struben, H., Baker, S., et al. (2015). GABA
 B receptor agonist R-baclofen reverses social deficits and reduces repetitive behavior in Two
 mouse models of autism. *Neuropsychopharmacology* 40(9), 2228-2239.
- Silverman, J.L., Smith, D.G., Rizzo, S.J.S., Karras, M.N., Turner, S.M., Tolu, S.S., et al. (2012).

 Negative allosteric modulation of the mGluR5 receptor reduces repetitive behaviors and rescues social deficits in mouse models of autism. *Science translational medicine* 4(131), 131ra151-131ra151.
- Silverman, J.L., Tolu, S.S., Barkan, C.L., and Crawley, J.N. (2010). Repetitive self-grooming
 behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP.

 Neuropsychopharmacology 35(4), 976-989.
- Silverman, J.L., Turner, S.M., Barkan, C.L., Tolu, S.S., Saxena, R., Hung, A.Y., et al. (2011).
 Sociability and motor functions in Shank1 mutant mice. *Brain research* 1380, 120-137.
- Sinclair, D., Featherstone, R., Naschek, M., Nam, J., Du, A., Wright, S., et al. (2017). GABA-B agonist baclofen normalizes auditory-evoked neural oscillations and behavioral deficits in the Fmr1 knockout mouse model of fragile X syndrome. *Eneuro* 4(1).
- Singewald, N., Salchner, P., and Sharp, T. (2003). Induction of c-Fos expression in specific areas of the fear circuitry in rat forebrain by anxiogenic drugs. *Biol Psychiatry* 53(4), 275-283. doi: 10.1016/s0006-3223(02)01574-3.
- Snow, W.M., Hartle, K., and Ivanco, T.L. (2008). Altered morphology of motor cortex neurons in the VPA rat model of autism. *Dev Psychobiol* 50(7), 633-639. doi: 10.1002/dev.20337.
- Sosnoski, D., Emanuel, B., Hawkins, A., Van Tuinen, P., Ledbetter, D., Nussbaum, R., et al. (1988).
 Chromosomal localization of the genes for the vitronectin and fibronectin receptors alpha subunits and for platelet glycoproteins IIb and IIIa. *The Journal of clinical investigation* 81(6), 1993-1998.
- Soto, F., Watkins, K.L., Johnson, R.E., Schottler, F., and Kerschensteiner, D. (2013). NGL-2 regulates pathway-specific neurite growth and lamination, synapse formation, and signal transmission in the retina. *Journal of Neuroscience* 33(29), 11949-11959.
- Soto, F., Zhao, L., and Kerschensteiner, D. (2018). Synapse maintenance and restoration in the retina by NGL2. *Elife* 7, e30388.
- Specchio, N., Marini, C., Terracciano, A., Mei, D., Trivisano, M., Sicca, F., et al. (2011). Spectrum of phenotypes in female patients with epilepsy due to protocadherin 19 mutations. *Epilepsia* 52(7), 1251-1257.
- Spencer, C., Alekseyenko, O., Serysheva, E., Yuva-Paylor, L., and Paylor, R. (2005). Altered anxiety-related and social behaviors in the Fmr1 knockout mouse model of fragile X syndrome. *Genes, Brain and Behavior* 4(7), 420-430.
- Spencer, C.M., Graham, D.F., Yuva-Paylor, L.A., Nelson, D.L., and Paylor, R. (2008). Social behavior in Fmr1 knockout mice carrying a human FMR1 transgene. *Behavioral neuroscience* 122(3), 710.

- 2661 Spruijt, B.M., Cools, A.R., Ellenbroek, B.A., and Gispen, W.H. (1986). Dopaminergic modulation of ACTH-induced grooming. *Eur J Pharmacol* 120(3), 249-256. doi: 10.1016/0014-2999(86)90465-6.
- Spruijt, B.M., van Hooff, J.A., and Gispen, W.H. (1992). Ethology and neurobiology of grooming behavior. *Physiol Rev* 72(3), 825-852. doi: 10.1152/physrev.1992.72.3.825.
- Squillace, M., Dodero, L., Federici, M., Migliarini, S., Errico, F., Napolitano, F., et al. (2014).
 Dysfunctional dopaminergic neurotransmission in asocial BTBR mice. *Translational psychiatry* 4(8), e427-e427.
- Stearns, N., Schaevitz, L., Bowling, H., Nag, N., Berger, U., and Berger-Sweeney, J. (2007).

 Behavioral and anatomical abnormalities in Mecp2 mutant mice: a model for Rett syndrome.

 Neuroscience 146(3), 907-921.
- Stratis, E.A., and Lecavalier, L. (2013). Restricted and repetitive behaviors and psychiatric symptoms in youth with autism spectrum disorders. *Research in Autism Spectrum Disorders* 7(6), 757-766.
- Stubbs, G., Henley, K., and Green, J. (2016). Autism: will vitamin D supplementation during pregnancy and early childhood reduce the recurrence rate of autism in newborn siblings?

 Medical hypotheses 88, 74-78.
- Subramaniam, B., Naidu, S., and Reiss, A.L. (1997). Neuroanatomy in Rett syndrome: cerebral cortex and posterior fossa. *Neurology* 48(2), 399-407.
- Südhof, T.C. (2008). Neuroligins and neurexins link synaptic function to cognitive disease. *Nature* 455(7215), 903-911.
- Sultana, R., Ghandi, T., M. Davila, A., Lee, C.C., and Ogundele, O.M. (2018). Upregulated SK2 expression and impaired CaMKII phosphorylation are shared synaptic defects between 16p11. 2del and 129S: Δdisc1 mutant mice. *ASN neuro* 10, 1759091418817641.
- Sun, T., Song, Z., Tian, Y., Tian, W., Zhu, C., Ji, G., et al. (2019). Basolateral amygdala input to the medial prefrontal cortex controls obsessive-compulsive disorder-like checking behavior. *Proc Natl Acad Sci U S A* 116(9), 3799-3804. doi: 10.1073/pnas.1814292116.
- Sungur, A.Ö., Vörckel, K.J., Schwarting, R.K., and Wöhr, M. (2014). Repetitive behaviors in the Shank1 knockout mouse model for autism spectrum disorder: developmental aspects and effects of social context. *Journal of neuroscience methods* 234, 92-100.
- Sutcliffe, J.S., Delahanty, R.J., Prasad, H.C., McCauley, J.L., Han, Q., Jiang, L., et al. (2005). Allelic heterogeneity at the serotonin transporter locus (SLC6A4) confers susceptibility to autism and rigid-compulsive behaviors. *The American Journal of Human Genetics* 77(2), 265-279.
- Suvrathan, A., Hoeffer, C.A., Wong, H., Klann, E., and Chattarji, S. (2010). Characterization and reversal of synaptic defects in the amygdala in a mouse model of fragile X syndrome. *Proceedings of the National Academy of Sciences* 107(25), 11591-11596.
- Swanwick, C.C., Larsen, E.C., and Banerjee-Basu, S. (2011). Genetic heterogeneity of autism spectrum disorders. *Autism Spectrum Disorders: The Role of Genetics in Diagnosis and Treatment*, 65-82.
- Szechtman, H., Ahmari, S.E., Beninger, R.J., Eilam, D., Harvey, B.H., Edemann-Callesen, H., et al.
 (2017). Obsessive-compulsive disorder: Insights from animal models. *Neurosci Biobehav Rev* 76(Pt B), 254-279. doi: 10.1016/j.neubiorev.2016.04.019.

- Tabuchi, K., Blundell, J., Etherton, M.R., Hammer, R.E., Liu, X., Powell, C.M., et al. (2007). A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 318(5847), 71-76. doi: 10.1126/science.1146221.
- Takahata, R., and Moghaddam, B. (2003). Activation of glutamate neurotransmission in the prefrontal cortex sustains the motoric and dopaminergic effects of phencyclidine.

 Neuropsychopharmacology 28(6), 1117-1124.
- Takamiya, K., Mao, L., Huganir, R.L., and Linden, D.J. (2008). The glutamate receptor-interacting protein family of GluR2-binding proteins is required for long-term synaptic depression expression in cerebellar Purkinje cells. *Journal of Neuroscience* 28(22), 5752-5755.
- Tanaka, M., DeLorey, T.M., Delgado-Escueta, A., and Olsen, R.W. (2012). "GABRB3, epilepsy, and
 neurodevelopment," in *Jasper's Basic Mechanisms of the Epilepsies [Internet]. 4th edition.* National Center for Biotechnology Information (US)).
- Tang, A.-H., and Alger, B.E. (2015). Homer Protein–Metabotropic Glutamate Receptor Binding
 Regulates Endocannabinoid Signaling and Affects Hyperexcitability in a Mouse Model of
 Fragile X Syndrome. *Journal of Neuroscience* 35(9), 3938-3945.
- Tanimura, A., Yamazaki, M., Hashimotodani, Y., Uchigashima, M., Kawata, S., Abe, M., et al.
 (2010a). The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase α mediates retrograde suppression of synaptic transmission. *Neuron* 65(3), 320-327.
- Tanimura, Y., King, M.A., Williams, D.K., and Lewis, M.H. (2011). Development of repetitive behavior in a mouse model: roles of indirect and striosomal basal ganglia pathways. *International Journal of Developmental Neuroscience* 29(4), 461-467.
- Tanimura, Y., Vaziri, S., and Lewis, M.H. (2010b). Indirect basal ganglia pathway mediation of repetitive behavior: attenuation by adenosine receptor agonists. *Behavioural brain research* 210(1), 116-122.
- Tanimura, Y., Yang, M.C., and Lewis, M.H. (2008). Procedural learning and cognitive flexibility in a mouse model of restricted, repetitive behaviour. *Behavioural brain research* 189(2), 250-256.
- Tavazoie, S.F., Alvarez, V.A., Ridenour, D.A., Kwiatkowski, D.J., and Sabatini, B.L. (2005).
 Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2.
 Nature neuroscience 8(12), 1727-1734.
- Taylor, G.T., Lerch, S., and Chourbaji, S. (2017). Marble burying as compulsive behaviors in male and female mice. *Acta Neurobiol Exp (Wars)* 77(3), 254-260.
- Thakkar, K.N., Polli, F.E., Joseph, R.M., Tuch, D.S., Hadjikhani, N., Barton, J.J., et al. (2008).
 Response monitoring, repetitive behaviour and anterior cingulate abnormalities in autism spectrum disorders (ASD). *Brain* 131(9), 2464-2478.
- Thomas, A., Burant, A., Bui, N., Graham, D., Yuva-Paylor, L.A., and Paylor, R. (2009). Marble burying reflects a repetitive and perseverative behavior more than novelty-induced anxiety.

 Psychopharmacology (Berl) 204(2), 361-373. doi: 10.1007/s00213-009-1466-y.
- Thomas, A.M., Bui, N., Perkins, J.R., Yuva-Paylor, L.A., and Paylor, R. (2012). Group I
 metabotropic glutamate receptor antagonists alter select behaviors in a mouse model for
 fragile X syndrome. *Psychopharmacology* 219(1), 47-58.
- Tordjman, S., Somogyi, E., Coulon, N., Kermarrec, S., Cohen, D., Bronsard, G., et al. (2014). Gene×
 Environment interactions in autism spectrum disorders: role of epigenetic mechanisms.
 Frontiers in psychiatry 5, 53.

- Triplett, J.W., and Feldheim, D.A. (Year). "Eph and ephrin signaling in the formation of topographic maps", in: *Seminars in cell & developmental biology*: Elsevier), 7-15.
- Tsujino, N., Nakatani, Y., Seki, Y., Nakasato, A., Nakamura, M., Sugawara, M., et al. (2007).
- Abnormality of circadian rhythm accompanied by an increase in frontal cortex serotonin in animal model of autism. *Neurosci Res* 57(2), 289-295. doi: 10.1016/j.neures.2006.10.018.
- Turner, G., Webb, T., Wake, S., and Robinson, H. (1996). Prevalence of fragile X syndrome.

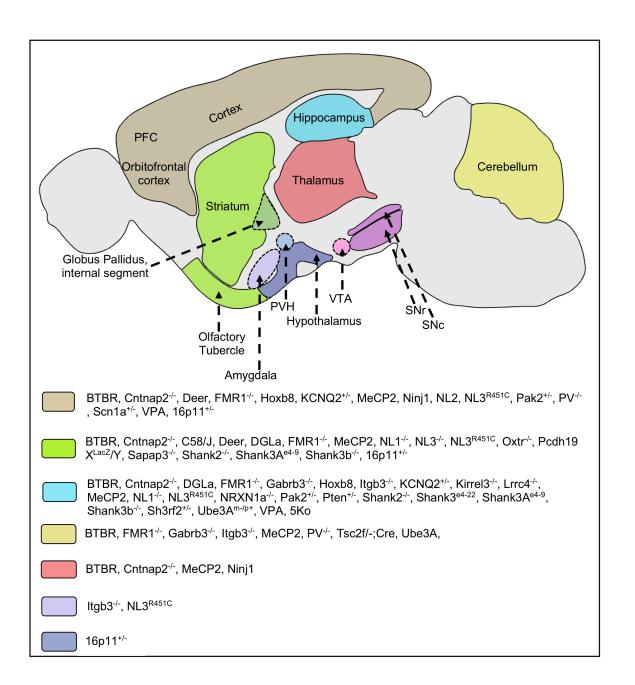
 American journal of medical genetics 64(1), 196-197.
- Turner, K.C., Frost, L., Linsenbardt, D., McIlroy, J.R., and Müller, R.-A. (2006). Atypically diffuse functional connectivity between caudate nuclei and cerebral cortex in autism. *Behavioral and Brain Functions* 2(1), 34.
- Ullrich, M., Weber, M., Post, A., Popp, S., Grein, J., Zechner, M., et al. (2018). OCD-like behavior is caused by dysfunction of thalamo-amygdala circuits and upregulated TrkB/ERK-MAPK signaling as a result of SPRED2 deficiency. *Molecular psychiatry* 23(2), 444-458.
- Um, S.M., Ha, S., Lee, H., Kim, J., Kim, K., Shin, W., et al. (2018). NGL-2 deletion leads to autisticlike behaviors responsive to NMDAR modulation. *Cell reports* 23(13), 3839-3851.
- Vaccarino, F.J., and Franklin, K. (1982). Dopamine mediates ipsi-and contraversive circling elicited from the substantia nigra. *Pharmacology Biochemistry and Behavior* 17(3), 431-434.
- van Steensel, F.J., Bögels, S.M., and Perrin, S. (2011). Anxiety disorders in children and adolescents with autistic spectrum disorders: a meta-analysis. *Clin Child Fam Psychol Rev* 14(3), 302-317. doi: 10.1007/s10567-011-0097-0.
- Varea, O., Martin-de-Saavedra, M.D., Kopeikina, K.J., Schürmann, B., Fleming, H.J., Fawcett-Patel, J.M., et al. (2015). Synaptic abnormalities and cytoplasmic glutamate receptor aggregates in contactin associated protein-like 2/Caspr2 knockout neurons. *Proceedings of the National Academy of Sciences* 112(19), 6176-6181.
- Varga, E.A., Pastore, M., Prior, T., Herman, G.E., and McBride, K.L. (2009). The prevalence of PTEN mutations in a clinical pediatric cohort with autism spectrum disorders, developmental delay, and macrocephaly. *Genet Med* 11(2), 111-117. doi: 10.1097/GIM.0b013e31818fd762.
- Vasa, R.A., and Mazurek, M.O. (2015). An update on anxiety in youth with autism spectrum disorders. *Curr Opin Psychiatry* 28(2), 83-90. doi: 10.1097/yco.00000000000133.
- Veenema, A.H., Meijer, O.C., de Kloet, E.R., Koolhaas, J.M., and Bohus, B.G. (2003). Differences in basal and stress-induced HPA regulation of wild house mice selected for high and low aggression. *Horm Behav* 43(1), 197-204. doi: 10.1016/s0018-506x(02)00013-2.
- Veenstra-VanderWeele, J., Muller, C.L., Iwamoto, H., Sauer, J.E., Owens, W.A., Shah, C.R., et al. (2012). Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior. *Proceedings of the National Academy of Sciences* 109(14), 5469-5474.
- Velíšek, L., Velíšková, J., Ravizza, T., Giorgi, F.S., and Moshé, S.L. (2005). Circling behavior and
 [14C] 2-deoxyglucose mapping in rats: possible implications for autistic repetitive behaviors.
 Neurobiology of disease 18(2), 346-355.
- Verhoeven, J.S., De Cock, P., Lagae, L., and Sunaert, S. (2010). Neuroimaging of autism. *Neuroradiology* 52(1), 3-14.

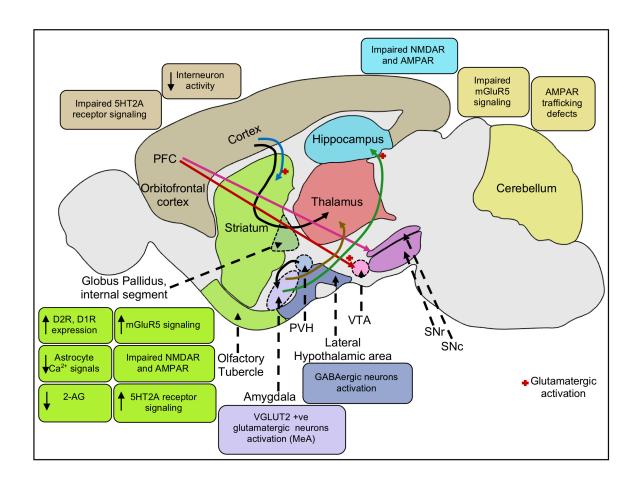
- Wahlsten, D., Metten, P., and Crabbe, J.C. (2003). Survey of 21 inbred mouse strains in two laboratories reveals that BTBR T/+ tf/tf has severely reduced hippocampal commissure and absent corpus callosum. *Brain research* 971(1), 47-54.
- Walsh, T., McClellan, J.M., McCarthy, S.E., Addington, A.M., Pierce, S.B., Cooper, G.M., et al. (2008). Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. *science* 320(5875), 539-543.
- Wang, L., Almeida, L.E., Spornick, N.A., Kenyon, N., Kamimura, S., Khaibullina, A., et al. (2015).

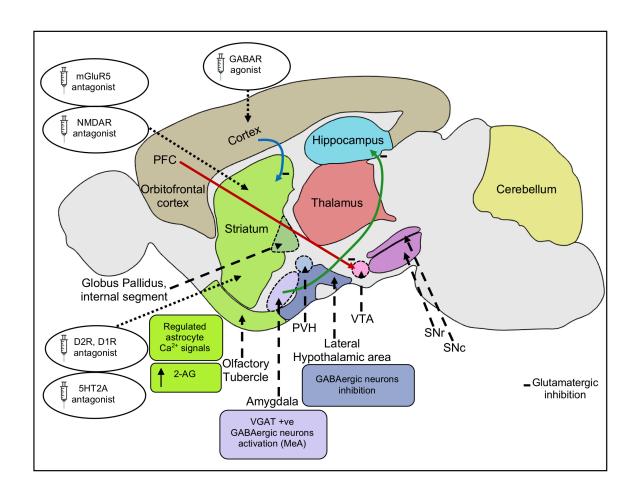
 Modulation of social deficits and repetitive behaviors in a mouse model of autism: the role of the nicotinic cholinergic system. *Psychopharmacology* 232(23), 4303-4316.
- Wang, S., Tan, N., Zhu, X., Yao, M., Wang, Y., Zhang, X., et al. (2018a). Sh3rf2 haploinsufficiency leads to unilateral neuronal development deficits and autistic-like behaviors in mice. *Cell Reports* 25(11), 2963-2971. e2966.
- Wang, W., Li, C., Chen, Q., van der Goes, M.-S., Hawrot, J., Yao, A.Y., et al. (2017). Striatopallidal dysfunction underlies repetitive behavior in Shank3-deficient model of autism. *The Journal of clinical investigation* 127(5), 1978-1990.
- Wang, X., Bey, A.L., Katz, B.M., Badea, A., Kim, N., David, L.K., et al. (2016a). Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. *Nature Communications* 7, 11459.
- Wang, X., McCoy, P.A., Rodriguiz, R.M., Pan, Y., Je, H.S., Roberts, A.C., et al. (2011). Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. *Human molecular genetics* 20(15), 3093-3108.
- Wang, Y., Billon, C., Walker, J.K., and Burris, T.P. (2016b). Therapeutic effect of a synthetic RORα/γ agonist in an animal model of autism. *ACS chemical neuroscience* 7(2), 143-148.
- Wang, Y., Zeng, C., Li, J., Zhou, Z., Ju, X., Xia, S., et al. (2018b). PAK2 haploinsufficiency results in synaptic cytoskeleton impairment and autism-related behavior. *Cell reports* 24(8), 2029-2041.
- Way, S.W., McKenna III, J., Mietzsch, U., Reith, R.M., Wu, H.C.-j., and Gambello, M.J. (2009).

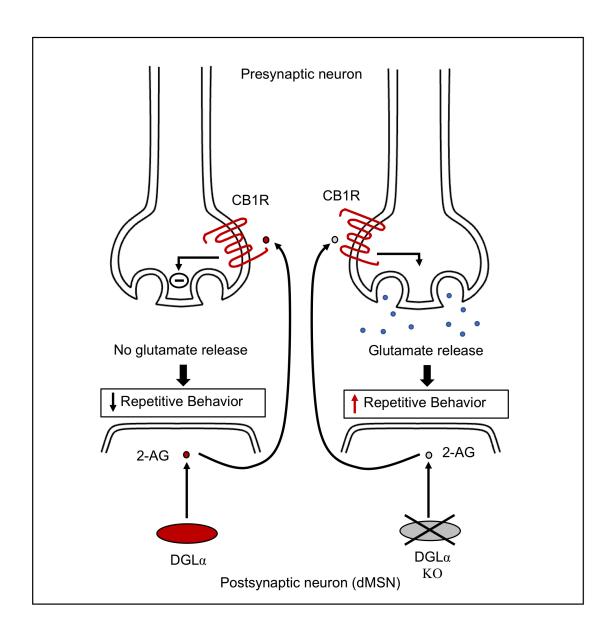
 Loss of Tsc2 in radial glia models the brain pathology of tuberous sclerosis complex in the mouse. *Human molecular genetics* 18(7), 1252-1265.
- Weeber, E.J., Jiang, Y.-H., Elgersma, Y., Varga, A.W., Carrasquillo, Y., Brown, S.E., et al. (2003).
 Derangements of hippocampal calcium/calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome. *Journal of Neuroscience* 23(7), 2634-2819
 2644.
- Welch, J.M., Lu, J., Rodriguiz, R.M., Trotta, N.C., Peca, J., Ding, J.-D., et al. (2007). Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. *Nature* 448(7156), 894-900.
- Whitehouse, C.M., Curry-Pochy, L.S., Shafer, R., Rudy, J., and Lewis, M.H. (2017). Reversal learning in C58 mice: Modeling higher order repetitive behavior. *Behavioural brain research* 332, 372-378.
- Whitehouse, C.M., and Lewis, M.H. (2015). Repetitive behavior in neurodevelopmental disorders: clinical and translational findings. *The Behavior Analyst* 38(2), 163-178.

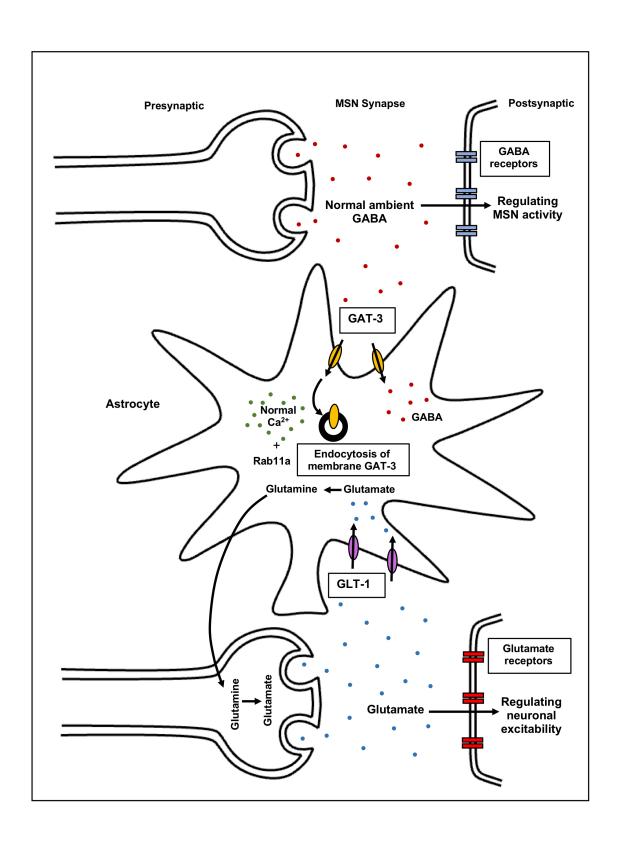
- Whitney, E.R., Kemper, T.L., Bauman, M.L., Rosene, D.L., and Blatt, G.J. (2008). Cerebellar Purkinje cells are reduced in a subpopulation of autistic brains: a stereological experiment using calbindin-D28k. *The Cerebellum* 7(3), 406-416.
- Wilhelm, M., Kukekov, N.V., Schmit, T.L., Biagas, K.V., Sproul, A.A., Gire, S., et al. (2012).
 Sh3rf2/POSHER protein promotes cell survival by ring-mediated proteasomal degradation of
 the c-Jun N-terminal kinase scaffold POSH (Plenty of SH3s) protein. *Journal of Biological* Chemistry 287(3), 2247-2256.
- Wilkes, B., and Lewis, M. (2018). The neural circuitry of restricted repetitive behavior: Magnetic resonance imaging in neurodevelopmental disorders and animal models. *Neuroscience & Biobehavioral Reviews* 92, 152-171.
- Willatt, L., Cox, J., Barber, J., Cabanas, E.D., Collins, A., Donnai, D., et al. (2005). 3q29
 microdeletion syndrome: clinical and molecular characterization of a new syndrome. *The American Journal of Human Genetics* 77(1), 154-160.
- Wöhr, M., Orduz, D., Gregory, P., Moreno, H., Khan, U., Vörckel, K.J., et al. (2015). Lack of parvalbumin in mice leads to behavioral deficits relevant to all human autism core symptoms and related neural morphofunctional abnormalities. *Translational psychiatry* 5(3), e525-e525.
- Wöhr, M., Roullet, F.I., and Crawley, J.N. (2011). Reduced scent marking and ultrasonic vocalizations in the BTBR T+ tf/J mouse model of autism. *Genes, Brain and Behavior* 10(1), 35-43.
- Wöhr, M., Silverman, J.L., Scattoni, M.L., Turner, S.M., Harris, M.J., Saxena, R., et al. (2013).


 Developmental delays and reduced pup ultrasonic vocalizations but normal sociability in mice lacking the postsynaptic cell adhesion protein neuroligin2. *Behav Brain Res* 251, 50-64. doi: 10.1016/j.bbr.2012.07.024.
- Wolmarans, D.W., Brand, L., Stein, D.J., and Harvey, B.H. (2013). Reappraisal of spontaneous stereotypy in the deer mouse as an animal model of obsessive-compulsive disorder (OCD): response to escitalopram treatment and basal serotonin transporter (SERT) density.


 Behavioural brain research 256, 545-553.
- Won, H., Lee, H.-R., Gee, H.Y., Mah, W., Kim, J.-I., Lee, J., et al. (2012). Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. *Nature* 486(7402), 261.
- Wong, D.F., Ricaurte, G., Gründer, G., Rothman, R., Naidu, S., Singer, H., et al. (1997). "Dopamine transporter changes in neuropsychiatric disorders," in *Advances in Pharmacology*. Elsevier), 219-223.
- Wong, M., Ess, K.C., Uhlmann, E.J., Jansen, L.A., Li, W., Crino, P.B., et al. (2003). Impaired glial glutamate transport in a mouse tuberous sclerosis epilepsy model. *Annals of neurology* 54(2), 251-256.
- Woo, J., Kwon, S.-K., Choi, S., Kim, S., Lee, J.-R., Dunah, A.W., et al. (2009). Trans-synaptic adhesion between NGL-3 and LAR regulates the formation of excitatory synapses. *Nature neuroscience* 12(4), 428-437.
- Wu, K., Hanna, G.L., Rosenberg, D.R., and Arnold, P.D. (2012). The role of glutamate signaling in the pathogenesis and treatment of obsessive—compulsive disorder. *Pharmacology Biochemistry and Behavior* 100(4), 726-735.


- Wurzman, R., Forcelli, P.A., Griffey, C.J., and Kromer, L.F. (2015). Repetitive grooming and sensorimotor abnormalities in an ephrin-A knockout model for Autism Spectrum Disorders. *Behavioural brain research* 278, 115-128.
- Xu, H.-Y., Liu, Y.-J., Xu, M.-Y., Zhang, Y.-H., Zhang, J.-X., and Wu, Y.-J. (2012). Inactivation of the bed nucleus of the stria terminalis suppresses the innate fear responses of rats induced by the odor of cat urine. *Neuroscience* 221, 21-27.
- Xu, J., Marshall, J.J., Fernandes, H.B., Nomura, T., Copits, B.A., Procissi, D., et al. (2017). Complete
 disruption of the kainate receptor gene family results in corticostriatal dysfunction in mice.
 Cell reports 18(8), 1848-1857.
- Xu, T., and Pandey, S.C. (2000). Cellular localization of serotonin2A (5HT2A) receptors in the rat brain. *Brain research bulletin* 51(6), 499-505.
- Yamaguchi, Y., and Pasquale, E.B. (2004). Eph receptors in the adult brain. *Current opinion in neurobiology* 14(3), 288-296.
- Yan, Q., Rammal, M., Tranfaglia, M., and Bauchwitz, R. (2005). Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. *Neuropharmacology* 49(7), 1053-1066.
- Yang, M., Bozdagi, O., Scattoni, M.L., Wöhr, M., Roullet, F.I., Katz, A.M., et al. (2012). Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. *Journal of Neuroscience* 32(19), 6525-6541.
- Yau, S., Bettio, L., Vetrici, M., Truesdell, A., Chiu, C., Chiu, J., et al. (2018). Chronic minocycline treatment improves hippocampal neuronal structure, NMDA receptor function, and memory processing in Fmr1 knockout mice. *Neurobiology of disease* 113, 11-22.
- Yilmazer-Hanke, D.M., Roskoden, T., Zilles, K., and Schwegler, H. (2003). Anxiety-related behavior and densities of glutamate, GABAA, acetylcholine and serotonin receptors in the amygdala of seven inbred mouse strains. *Behav Brain Res* 145(1-2), 145-159. doi: 10.1016/s0166-4328(03)00107-4.
- Yu, X., Taylor, A.M., Nagai, J., Golshani, P., Evans, C.J., Coppola, G., et al. (2018). Reducing
 astrocyte calcium signaling in vivo alters striatal microcircuits and causes repetitive behavior.
 Neuron 99(6), 1170-1187. e1179.
- Yu, X., Wang, G., Gilmore, A., Yee, A.X., Li, X., Xu, T., et al. (2013). Accelerated experiencedependent pruning of cortical synapses in ephrin-A2 knockout mice. *Neuron* 80(1), 64-71. doi: 10.1016/j.neuron.2013.07.014.
- Yu, Y., Chaulagain, A., Pedersen, S.A., Lydersen, S., Leventhal, B.L., Szatmari, P., et al. (2020).


 Pharmacotherapy of restricted/repetitive behavior in autism spectrum disorder:a systematic review and meta-analysis. *BMC Psychiatry* 20(1), 121. doi: 10.1186/s12888-020-2477-9.
- Yue, C., and Yaari, Y. (2006). Axo-somatic and apical dendritic Kv7/M channels differentially regulate the intrinsic excitability of adult rat CA1 pyramidal cells. *Journal of neurophysiology* 95(6), 3480-3495.
- Yuen, R.K., Merico, D., Bookman, M., Howe, J.L., Thiruvahindrapuram, B., Patel, R.V., et al.
 (2017). Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. *Nature neuroscience* 20(4), 602-611.


- Zablotsky, B., Black, L.I., Maenner, M.J., Schieve, L.A., Danielson, M.L., Bitsko, R.H., et al. (2019).
- 2912 Prevalence and trends of developmental disabilities among children in the United States:
- 2913 2009–2017. *Pediatrics* 144(4), e20190811.
- 2914 Zamberletti, E., Gabaglio, M., Piscitelli, F., Brodie, J.S., Woolley-Roberts, M., Barbiero, I., et al.
- 2915 (2019). Cannabidivarin completely rescues cognitive deficits and delays neurological and motor defects in male Mecp2 mutant mice. *Journal of Psychopharmacology* 33(7), 894-907.
- Zandt, F., Prior, M., and Kyrios, M. (2007). Repetitive behaviour in children with high functioning autism and obsessive compulsive disorder. *Journal of autism and developmental disorders* 37(2), 251-259.
- Zeng, L.-H., Ouyang, Y., Gazit, V., Cirrito, J.R., Jansen, L.A., Ess, K.C., et al. (2007). Abnormal glutamate homeostasis and impaired synaptic plasticity and learning in a mouse model of tuberous sclerosis complex. *Neurobiology of disease* 28(2), 184-196.
- Zeng, L.H., Xu, L., Gutmann, D.H., and Wong, M. (2008). Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. *Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society* 63(4), 444-453.
- Zerbi, V., Ielacqua, G.D., Markicevic, M., Haberl, M.G., Ellisman, M.H., A-Bhaskaran, A., et al. (2018). Dysfunctional autism risk genes cause circuit-specific connectivity deficits with distinct developmental trajectories. *Cerebral Cortex* 28(7), 2495-2506.
- Zhang, C., Kalueff, A.V., and Song, C. (2019). Minocycline ameliorates anxiety-related self-grooming behaviors and alters hippocampal neuroinflammation, GABA and serum cholesterol levels in female Sprague-Dawley rats subjected to chronic unpredictable mild stress. *Behav Brain Res* 363, 109-117. doi: 10.1016/j.bbr.2019.01.045.
- Zhang, L., and Alger, B.E. (2010). Enhanced endocannabinoid signaling elevates neuronal excitability in fragile X syndrome. *Journal of Neuroscience* 30(16), 5724-5729.
- Zhang, W.-N., Bast, T., and Feldon, J. (2002). Effects of hippocampal N-methyl-[D]-aspartate infusion on locomotor activity and prepulse inhibition: Differences between the dorsal and ventral hippocampus. *Behavioral neuroscience* 116(1), 72.
- Zhang, Y.V., Ormerod, K.G., and Littleton, J.T. (2017). Astrocyte Ca2+ influx negatively regulates neuronal activity. *Eneuro* 4(2).
- Zhou, L.-T., Ye, S.-H., Yang, H.-X., Zhou, Y.-T., Zhao, Q.-H., Sun, W.-W., et al. (2017). A novel role of fragile X mental retardation protein in pre-mRNA alternative splicing through RNA-binding protein 14. *Neuroscience* 349, 64-75.
- Zhou, M.S., Nasir, M., Farhat, L.C., Kook, M., Artukoglu, B.B., and Bloch, M.H. (2020). Metaanalysis: Pharmacologic Treatment of Restricted and Repetitive Behaviors in Autism Spectrum Disorders. *Journal of the American Academy of Child & Adolescent Psychiatry*.
- Zhou, Y., Kaiser, T., Monteiro, P., Zhang, X., Van der Goes, M.S., Wang, D., et al. (2016). Mice with Shank3 mutations associated with ASD and schizophrenia display both shared and distinct defects. *Neuron* 89(1), 147-162.
- Zieba, J., Sinclair, D., Sebree, T., Bonn-Miller, M., Gutterman, D., Siegel, S., et al. (2019).
 Cannabidiol (CBD) reduces anxiety-related behavior in mice via an FMRP-independent mechanism. *Pharmacol Biochem Behav* 181, 93-100. doi: 10.1016/j.pbb.2019.05.002.

