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Abstract 14 

Autism spectrum disorder (ASD) is comprised of several conditions characterized by alterations in 15 
social interaction, communication and repetitive behaviors. Genetic and environmental factors 16 
contribute to the heterogeneous development of ASD behaviors. Several rodent models display ASD-17 
like phenotypes, including repetitive behaviors. In this review, we discuss the potential neural 18 
mechanisms involved in repetitive behaviors in rodent models of ASD and related neuropsychiatric 19 
disorders. We review signaling pathways, neural circuits and anatomical alterations in rodent models 20 
that display robust stereotypic behaviors. Understanding the mechanisms and circuit alterations 21 
underlying repetitive behaviors in rodent models of ASD will inform translational research and 22 
provide useful insight into therapeutic strategies for the treatment of repetitive behaviors in ASD and 23 
other neuropsychiatric disorders. 24 

1 Introduction 25 

Autism spectrum disorder (ASD) consists of a group of neurodevelopmental disorders with shared, 26 
yet heterogeneous, behaviors. With the introduction of improved diagnostic criteria, there has been a 27 
substantial rise in the prevalence of autistic cases in the last few decades, reported between 3-6 28 
children per 1000 worldwide (Kassim and Mohamed, 2019; Lord et al., 2020) and 1 in 54 children in 29 
the US (Zablotsky et al., 2019; Maenner et al., 2020). The variability in global prevalence is largely 30 
due to differences in methodological assessment and environmental and/or geographical factors 31 
(Chiarotti and Venerosi, 2020; Lord et al., 2020). Both genetic and environmental factors influence 32 
the development of ASD and may converge on similar neural outcomes, such as altered connectivity, 33 
excitation/inhibition imbalance and signaling system alterations (Muhle et al., 2004; Satterstrom et 34 
al., 2020). Several candidate genes have been associated with the development of ASD (Levitt and 35 
Campbell, 2009; Yuen et al., 2017; Feliciano et al., 2019; Grove et al., 2019; Guo et al., 2019); 36 
siblings born in families with ASD are particularly high risk indicating a strong genetic basis (Stubbs 37 
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et al., 2016). Environmental factors involved in the development of ASD include prenatal and 38 
postnatal complications, viral infections and nutrient deficiencies (Grabrucker, 2013; Sealey et al., 39 
2016; Karimi et al., 2017; Modabbernia et al., 2017). Understanding these environmental and genetic 40 
interactions in autism risk will help guide treatment strategies for ASD (Chaste and Leboyer, 2012; 41 
LaSalle, 2013; Tordjman et al., 2014; Kim and Leventhal, 2015; Nardone and Elliott, 2016). 42 

Children with ASD are characterized by social and communication challenges and restricted, 43 
repetitive behaviors (Baranek, 1999; Lord et al., 2000).  These core behaviors are often accompanied 44 
by comorbidities such as epilepsy, anxiety, hyperactivity and aggression (Richler et al., 2007; King et 45 
al., 2009). The restricted, repetitive behaviors (RRBs) in ASD are clustered into two categories. The 46 
repetitive behaviors include stereotypic motor movements, repetitive use of objects, self-injurious 47 
behaviors, and the circumscribed behaviors include compulsions, desire for sameness, rituals, and 48 
restricted interests (Zandt et al., 2007; Whitehouse and Lewis, 2015). The restricted, repetitive 49 
behaviors in ASD share similarities with obsessive compulsive disorder (OCD) and other 50 
neuropsychiatric and neurodevelopmental disorders (Scahill and Challa, 2016; Jiujias et al., 2017; 51 
Gulisano et al., 2020). Currently, behavioral and pharmacological interventions target specific 52 
symptoms and/or associated comorbidities, which are personalized according to individual needs 53 
(Eissa et al., 2018; Chahin et al., 2020). Yet, more robust therapeutic interventions are required that 54 
target the underlying neural mechanisms that govern these core autistic symptoms.  55 

Behavioral approaches are typically used to treat repetitive behaviors in ASD and related 56 
neurodevelopmental disorders. Behavioral approaches usually employ reinforcement procedures, 57 
altering the environment and promoting variability and flexibility in behavior (Boyd et al., 2012). 58 
Pharmacological interventions for irritability and some forms of repetitive behavior, such as self-59 
injurious behavior include selective serotonin reuptake inhibitor (SSRIs) like Fluoxetine and 60 
antipsychotics such as haloperidol (typical) and Risperidone (atypical) (Gencer et al., 2008; Miral et 61 
al., 2008; Malone and Waheed, 2009; Doyle and McDougle, 2012; DeFilippis and Wagner, 2016; 62 
Masi et al., 2017; Maneeton et al., 2018). Risperidone is a second-generation antipsychotic 63 
medication that has been FDA approved for the treatment of irritability in children and adolescents 64 
(McDougle et al., 2005; Scahill et al., 2007; McDougle et al., 2008; Aman et al., 2009; Scahill et al., 65 
2012).  It is an antagonist at the serotonin 2A and dopamine D2 receptors and is useful in alleviating 66 
irritability, aggression and self-injurious behavior in young ASD subjects (McCracken et al., 2002; 67 
Shea et al., 2004; Chavez et al., 2006; Kent et al., 2013; Fung et al., 2016; Maneeton et al., 2018). In 68 
addition, in controlled clinical trials, some of these pharmacological medications also reduce 69 
repetitive behaviors, but with potential side-effects that limit the widespread usage of these drugs in 70 
treatment of ASD and as such is not approved by the FDA for repetitive disorders (McPheeters et al., 71 
2011; Sharma and Shaw, 2012; Whitehouse and Lewis, 2015).  Additionally, benefits of 72 
pharmacological medications in improving ASD behavior are highly variable across studies and 73 
clinical populations. There is also a paucity of long-term clinical trials with large sample size on 74 
pharmacological interventions against restricted/repetitive behavior in ASD (Yu et al., 2020; Zhou et 75 
al., 2020). Furthermore, there is a lack of evidence-based treatment strategies targeting diverse 76 
repetitive/restricted behaviors in ASD. Hence, novel treatment strategies are required that target core 77 
autistic deficits, while limiting the detrimental side effects of such medications. In this review, we 78 
have discussed preclinical studies demonstrating efficacy of the pharmacological treatments on 79 
restricted/repetitive behaviors, which are still under development for targeting repetitive/restricted 80 
behaviors in a clinical population. In addition, we have also reviewed studies pointing in the direction 81 
of circuit-based strategies for targeting repetitive/restricted behaviors in rodent models of ASD.  82 
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As an approach to developing new therapeutics, several rodent models of ASD have been generated 83 
with good construct validity that recapitulate many of the behavioral phenotypes observed in autistic 84 
individuals. The behavioral tasks assessing repetitive behaviors are more developed than behavioral 85 
tasks assaying resistance to change or restricted behaviors (Lewis et al., 2007). The studies we will 86 
review mainly discuss rodent models primarily displaying lower-order stereotyped motor behaviors, 87 
which are generally better characterized and easier to model than models of insistence on sameness 88 
or restricted behaviors (higher-order). Nevertheless, in this review, we have also discussed a few 89 
rodent models that show both the repetitive and restricted behavioral phenotypes. The repetitive 90 
behaviors observed in rodent models of autism are complex and diverse, including self-grooming, 91 
jumping, circling, marble burying, hanging, rearing and forelimb movements and involve several 92 
molecular and neural pathways (Whitehouse and Lewis, 2015; Kim et al., 2016). In addition, 93 
complex restricted behaviors such as resistance to change and narrow interests represent cognitive 94 
rigidity to routines and obsessions that correspond with executive function deficits (Lopez et al., 95 
2005). Behavioral assays for resistance to change or cognitive inflexibility in rodents include 96 
response extinction, reversal learning, and set shifting tasks, assessing inability to change the 97 
developed spatial habit (Colacicco et al., 2002; Roullet and Crawley, 2011). Understanding of the 98 
complex neural mechanisms underlying repetitive behaviors in these models is expected to boost 99 
translational research and provide valuable insight into potential treatments for repetitive behaviors 100 
observed in ASD. Therefore, in this review, we will discuss the underlying mechanisms that mediate 101 
the complex motor activities and consequent repetitive behavioral repertoire in different rodent 102 
models of ASD. 103 

2 Rodent models of autism: genetic mutations, environmental risk factors and some inbred 104 
strains displaying repetitive/restricted behaviors 105 

Genetic mutations account for a significant proportion of ASD risk (Ronemus et al., 2014). Genetic 106 
mutations in ASD are complex and diverse depending on structure type (i.e. large-scale chromosome 107 
abnormalities, small scale insertions, deletions, substitutions, copy number variation (CNV) and 108 
single nucleotide variation (SNV)), inheritance type (i.e. germline, somatic, de novo mutation (non-109 
inherited)), frequencies (i.e. common, rare and very rare) and protein sequence affected (i.e. 110 
frameshift mutation, point substitution) (De Rubeis and Buxbaum, 2015; de la Torre-Ubieta et al., 111 
2016; Ramaswami and Geschwind, 2018). Over the last decade, with the advancement of sequencing 112 
technology, many genes have been implicated in autism pathogenesis (Geschwind and State, 2015).  113 
This review covers many of the most common of these factors, which underscores the range of 114 
molecular and cellular factors implicated in ASD.  Such diversity of neurobiological factors in ASD 115 
further highlights the challenges of treatment development, where seemingly divergent neural factors 116 
may converge on similar behavioral outcomes, i.e., restrictive and repetitive behaviors.  When 117 
possible, we have attempted to highlight some of these similarities and differences in risk factors 118 
(Figure 1), which remains a major challenge for the field to define and address. 119 
 120 

Many genes are linked to syndromic ASD, in which monogenic syndromes exhibit phenotypic 121 
overlap with ASDs (i.e., ASD is secondary to a known genetic cause and disorder with clinically 122 
defined presentation) (Walsh et al., 2008; Schaefer and Mendelsohn, 2013; Ramaswami and 123 
Geschwind, 2018). Monogenic disorders accounted for in ASD include Fragile X Syndrome (FMR1), 124 
Tuberous Sclerosis (TSC1, TSC2), Angelman and Prader-Willi Syndromes (15q11-q13 125 
deletion/UBE3A and GABRB3 deletion), Rett Syndrome (MECP2), Phelan-McDermid Syndrome 126 
(22q13.3 deletion/SHANK3 mutation), Smith-Lemli-Opitz Syndrome (DHCR7), Neurofibromatosis 127 
(NF1), Timothy Syndrome (CACNA1C) etc. (Muhle et al., 2004; Moss and Howlin, 2009; 128 
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Geschwind, 2011; Ramaswami and Geschwind, 2018). Whereas in idiopathic autism, the cause is 129 
unknown. 130 

Susceptibility genes linked with non-syndromic autism involve multiple common and rare variants, 131 
copy number variations (CNVs) and de novo mutations. This genetic heterogeneity is associated with 132 
idiopathic ASD and accounts for a substantial fraction of autism risk, indicating involvement of 133 
multiple genetic pathways in its etiology (Swanwick et al., 2011; Devlin and Scherer, 2012). Multiple 134 
genes with different functions implicated in ASD include SHANK1,2, CNTNAP2, NLGN, NRXN, 135 
16p11.2 microdeletion/microduplication, SCN1A etc. (Cook Jr and Scherer, 2008; Geschwind and 136 
State, 2015; Ramaswami and Geschwind, 2018; Sultana et al., 2018). Most ASD related genes affect 137 
neural circuit structure and function, with defects in either a single neural circuit component 138 
(localized) or multiple neural systems (distributed) impacting overall network activity (Figure 1) 139 
(Rubenstein, 2010). These neurodevelopmental defects can lead to abnormal neural structure and 140 
connectivity, as well as alterations to neurotransmitter systems and their receptors.  141 

Animal models of repetitive and restricted behaviors are classified into different categories by causal 142 
factors. The categories of models of repetitive and restricted behavior include: 1) subsequent to CNS 143 
insult (e.g. specific genetic mutations, lesions or environmental factors); 2) caused by 144 
pharmacological agents (e.g. apomorphine (dopamine agonist), amphetamine, cocaine, NMDA 145 
(glutamate receptor ligand)); 3) resulting from restricted housing (e.g. laboratory cage, social 146 
deprivation); and 4) linked with particular inbred rodent strains (BTBR, C58) (Lewis et al., 2007; 147 
Bechard and Lewis, 2012). 148 

Many of the genetic and environmental factors implicated in the etiology of autism have been 149 
modeled using rodents. However, not all rodent models of ASD manifest repetitive behavior. For 150 
example, mice with knockout of neuroligin-2 and -4 genes or mutations of the Scn2a (Scn2a+/-) gene 151 
do not exhibit alterations in intensity or frequency of repetitive behavior (El-Kordi et al., 2013; Wöhr 152 
et al., 2013; Shin et al., 2019; Cao et al., 2020). Hence, we will review preclinical studies with 153 
particular emphasis on rodent models displaying robust stereotypic behavior (Table 1), as discussed 154 
below.  155 

Fragile X syndrome (FXS) is caused by an expansion of a single trinucleotide sequence (CGG) 156 
resulting in silencing of FMR1, an X-linked gene coding for fragile X mental retardation protein 157 
(FMRP). FMR-1 protein, an RNA binding protein plays an important role in regulating synaptic 158 
proteins via mRNA translation and development of neural synapses. In addition to mRNA binding, 159 
FMRP protein has diverse functions including protein-protein interactions, DNA damage repair via 160 
chromatin binding, regulation of Ca2+ signaling and neuronal excitation/inhibition balance (Brown et 161 
al., 2010; Alpatov et al., 2014; Davis and Broadie, 2017; Filippini et al., 2017; Zhou et al., 2017). 162 
Hence, failure to express the FMR-1 protein results in development of autistic symptoms such as 163 
repetitive and restricted behavior (Turner et al., 1996; Mazzocco et al., 1998; Spencer et al., 2005). 164 
Fragile X mutant models exhibit increased marble burying (Thomas et al., 2012; Gandhi et al., 2014), 165 
resistance to change in an operant task (Moon et al., 2006), learning deficits on water maze task, 166 
hyperactivity, anxiety and inadequate pre-pulse inhibition of acoustic startle (D'Hooge et al., 1997; 167 
Peier et al., 2000; Spencer et al., 2005; Lauterborn et al., 2007; Errijgers et al., 2008). Fmr-1 null 168 
mice exhibit altered spine density and morphology on apical dendrites of occipital cortical layer 5 169 
pyramidal cells (Comery et al., 1997; Beckel‐Mitchener and Greenough, 2004). In addition, Fmr1 170 
knockout mice exhibit dysfunctional cortico-striatal circuitry, reduced long-term potentiation (LTP) 171 
and decrease in levels of synaptic proteins like NMDAR subunits NR1, NR2A and NR2B in medial 172 
prefrontal cortex (Lauterborn et al., 2007; Krueger et al., 2011; Zerbi et al., 2018). Gene therapy 173 
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using human FRM1 alleviates the low pre-pulse inhibition, hyperactivity and anxiety behaviors in 174 
Fmr1-KO mice (Peier et al., 2000; Paylor et al., 2008; Spencer et al., 2008; Gholizadeh et al., 2014). 175 
Application of brain-derived neurotrophic factor, mGluR5 antagonists, anti-purinergic therapy 176 
(suramin), minocycline, phosphodiesterase-4D negative allosteric modulator (BPN14770) and PI3K 177 
antagonist (GSK2702926A (GSK6A)) attenuates dendritic spine development aberrations, long-term 178 
potentiation impairments and behavioral abnormalities in Fmr1 mutant mice (Dölen et al., 2007; 179 
Lauterborn et al., 2007; Dölen and Bear, 2008; Bilousova et al., 2009; Naviaux et al., 2015; Gurney 180 
et al., 2017; Yau et al., 2018; Gross et al., 2019). 181 

Angelman syndrome involves chromosome 15 deletions, particularly the q11-13 region, comprising 182 
the GABAA receptor beta 3 subunit (GABRB3) and ubiquitin ligase (UBE3A) genes. GABRB3 and 183 
UBE3A genes play a role in regulating protein synthesis and synaptic plasticity (Weeber et al., 2003; 184 
Moy et al., 2006; Mardirossian et al., 2009). Mouse models of GABRB3 and UBE3A deletions 185 
exhibit ASD phenotype including developmental delay, hyperactivity, epilepsy, impaired motor 186 
function, learning deficits and anxiety-related behaviors (DeLorey et al., 1998; Jiang et al., 2010; 187 
Tanaka et al., 2012). Mice with mutation in Ube3Am-/p+ (maternal null mutation) exhibit deficits in 188 
long-term potentiation (LTP) and changes in calcium-dependent CaMKII activity in the hippocampus 189 
(Weeber et al., 2003). The Ube3Am-/p+ mice show decreased marble burying, rearing behavior and 190 
reversal learning deficits in the Morris water maze (Huang et al., 2013). Additionally, Gabrb3 191 
deletions cause neuronal dysfunction via alterations in protein synthesis and GABA-A receptor 192 
mediated synaptic transmission. The Gabrb3-/- mice also exhibit repetitive circling behavior (Mercer 193 
et al., 2016; Orefice et al., 2016).  194 

Another condition, tuberous sclerosis (TSC), involves mutation of either TSC1 and TSC2 genes that 195 
codes for proteins hamartin and tuberin, which act as tumor suppressors that regulate cell growth and 196 
the mTORC1 complex (Astrinidis and Henske, 2005; Inoki et al., 2005; Curatolo and Bombardieri, 197 
2007). mTOR is a crucial part of signaling pathways involved in cell growth, protein synthesis and 198 
axon formation (Choi et al., 2008; Huang and Manning, 2008). Tsc2+/- mice with heterozygous TSC2 199 
gene mutations exhibit learning, and memory deficits associated with aberrant mTOR signaling 200 
mediated LTP in the hippocampal CA1 region (Ehninger et al., 2008). Mice with Tsc2 loss in 201 
cerebellar Purkinje cells (Tsc2f/-;Cre mice) display ASD-like behaviors, including social deficits and 202 
repetitive behavior (Reith et al., 2013). Further, Tsc2 mutant mice with Tsc2 gene deletion from 203 
radial glial progenitor cells exhibit lamination aberrations, enlargement of neurons and glia, 204 
myelination defects and astrocytosis (Way et al., 2009). In addition, mice with ablated TSC1 205 
expression in neurons show seizures and neuropathological aberrations including enlarged, ectopic 206 
neurons in hippocampus, cortical, thalamic brain areas, alterations in glutamatergic synapses, 207 
abnormalities in cortical lamination, cytoskeleton, dendritic spine structure and myelination 208 
(Tavazoie et al., 2005; Meikle et al., 2007). Application of mTORC1 inhibitors rapamycin and 209 
RAD001 [40-O-(2-hydroxyethyl)-rapamycin] ameliorates synaptic, cognitive and behavioral deficits 210 
in mouse model of tuberous sclerosis (Ehninger et al., 2008; Meikle et al., 2008; Zeng et al., 2008; 211 
Ehninger and Silva, 2011; Bateup et al., 2013).  212 

Rett syndrome (RTT) is caused by mutations in the MECP2 gene located on the X-chromosome, 213 
which encodes for methyl-CpG-binding protein 2 (MeCP2) and affects brain development mostly in 214 
females (Ghidoni, 2007). Several mouse models of autism have been developed to study the effects 215 
of MeCP2 mutations (Chahrour and Zoghbi, 2007; Samaco et al., 2008). Mutant mice with truncated 216 
MeCP2 protein show repeated forelimb motions similar to repetitive hand movements in individuals 217 
with Rett syndrome (Table 1) (Shahbazian et al., 2002; Moretti et al., 2005). Dopaminergic deficits 218 
are implicated in RTT, such as decreased levels of dopamine transporter (DAT) (Wong et al., 1997), 219 
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altered density of dopamine D2 receptors in the striatum (Chiron et al., 1993), and reduced levels of 220 
tyrosine hydroxylase (TH), dopamine synthetic enzyme, in the striatum (Panayotis et al., 2011), 221 
suggesting striatal dysfunction in RTT individuals. Additionally, MeCP2 null mice exhibit deficits in 222 
motor coordination and motor learning along with memory deficits in the Morris water maze. 223 
Environmental enrichment alters excitatory synaptic density in cortex and cerebellum, LTP deficit, 224 
increased brain-derived neurotrophic factor (BDNF) levels in cortex and rescued motor learning 225 
deficits (Lonetti et al., 2010).  226 

Autism susceptibility genes, such as neuroligin genes (NL1, 2, 3, 4) encode the eponymous members 227 
of postsynaptic cell surface adhesion proteins that are crucial for synapse formation and maintenance 228 
(Südhof, 2008). Deletion and point mutation of neuroligin-3 (NL3) are associated with autistic 229 
behavioral phenotypes (Jamain et al., 2003; Levy et al., 2011). Overexpression of neuroligin-2 (NL2) 230 
in PFC leads to repetitive jumping behavior in mice (Table 1) (Hines et al., 2008). Moreover, deficits 231 
in neurexins, which are presynaptic cell adhesion proteins that serve as ligands for neuroligins and 232 
modulates synapse differentiation and maturation, control transmitter release, result in stereotypic 233 
grooming and altered nest-building behaviors in neurexin1a mutant mice (Etherton et al., 2009; Li 234 
and Pozzo‐Miller, 2020). 235 

SH3 and multiple ankyrin repeat domains 1, 2 and 3 (SHANK1, SHANK2 and SHANK3) are 236 
postsynaptic scaffolding proteins present in excitatory synapses that are important for synaptic 237 
development and function (Grabrucker et al., 2011; Guilmatre et al., 2014). The Shank3 protein 238 
contains multiple conserved motifs, comprising an ANK repeat, PDZ and SAM domains, a proline 239 
rich cluster and SH3 (Gundelfinger et al., 2006; Kreienkamp, 2008). The SHANK proteins also 240 
regulate spine morphology and receptor endocytosis, promote interaction of signaling pathways and 241 
facilitate synaptic plasticity, crucial for the process of learning and memory (Ehlers, 1999; Sheng and 242 
Kim, 2000; Monteiro and Feng, 2017). Mutations in Shank genes are implicated in ASD 243 
(Schmeisser, 2015). In particular, Phelan-McDermid syndrome (PMS) or 22q13.3 deletion syndrome 244 
is characterized by developmental and speech delays, intellectual disability, reduced motor function 245 
and ASD. PMS is caused by loss of function of SHANK3 gene resulting in reduced expression of 246 
SHANK3 protein, affecting synaptic transmission and plasticity (Costales and Kolevzon, 2015). SH3 247 
and multiple ankyrin repeat domains 3b mutant mice (Shank3b-/-) show repetitive grooming behavior 248 
(Table 1) (Peça et al., 2011; Schmeisser et al., 2012). Moreover, Shank3B mutant mice manifest 249 
functionally impaired AMPA and NMDA receptors (Peça et al., 2011; Sala et al., 2015; Peixoto et 250 
al., 2016) (Figure 2). Shank1+/- mice display increased self-grooming behavior during adulthood 251 
(Sungur et al., 2014), while Shank2-/- mice manifest hyperactivity and repetitive jumping behavior 252 
along with reduced activity of NMDA receptors (Table 1) (Schmeisser et al., 2012; Won et al., 253 
2012). In contrast, Shank1 genotypes (Shank1+/+, Shank1+/-, Shank1-/-) exhibit high self-grooming 254 
behaviors, but which are confounded by behavioral testing or housing conditions. Shank1 null mutant 255 
mice show decreased transitions in the light-dark test, suggesting anxiety-related phenotypes and 256 
reduced motor abilities (Silverman et al., 2011). 257 
 258 

Contactin associated protein-like 2 (CASPR-2) transmembrane protein is encoded by the CNTNAP2 259 
gene of the neurexin superfamily that primarily mediates cell-cell adhesions in the nervous system 260 
(Rodenas-Cuadrado et al., 2014). In addition, the CNTNAP2 gene plays an important role in the 261 
formation of dendritic spines and dendritic arborization (Anderson et al., 2012). Cntnap2 KO mice 262 
exhibit neuronal migration abnormalities, decreased cortical interneurons number and aberrant 263 
hippocampal and cortical network activity (Penagarikano et al., 2011). In addition, the Cntnap2 264 
mutant mice show reduced densities of dendritic spines along with decreased levels of AMPA 265 
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receptors subunit GluA1 in the spines (Gdalyahu et al., 2015; Varea et al., 2015; Gao et al., 2019). 266 
Further, the decreased number of parvalbumin-positive interneurons in the striatum results in altered 267 
activity of the cortico-striatal-thalamic pathway underlying repetitive behaviors (Lauber et al., 2018). 268 
Mice with the CNTNAP2 mutation display repetitive self-grooming behavior, rescued by 269 
risperidone, a dopamine D2 receptor antagonist (Table 1) (Penagarikano et al., 2011), thereby, 270 
decreasing dopaminergic function and cortical activation (Parr-Brownlie and Hyland, 2005). 271 

In addition to the above autism susceptibility genes, many other genes implicated in autistic 272 
phenotypes have been investigated in preclinical studies. Mutations in protocadherin 19 (PCDH19) 273 
chromosome X-linked gene, leads to Epilepsy in Females with Mental Retardation (EFMR) disease, 274 
cognitive impairments and autistic phenotype (Ryan et al., 1997; Dibbens et al., 2008; Hynes et al., 275 
2010; Specchio et al., 2011). PCDH19 gene encodes PCDH19 protein which is a cell-adhesion 276 
protein. PCDH19 regulates hippocampal neurons maturation, migration and GABAergic 277 
transmission via binding with GABA-A receptor alpha subunit (Bassani et al., 2018). Additionally, 278 
PCDH19 interacts with intracellular protein NONO, involved in the modulation of steroid hormone 279 
receptors (Pham et al., 2017). Male mice with Pcdh19 knockout (Pcdh19 XLacZ/Y) exhibit increased 280 
rearing and stereotypic grooming behaviors (Lim et al., 2019).  281 

Ephrins are membrane bound proteins acting as ligands of ephrin receptors, belonging to receptor 282 
tyrosine kinases (RTKs) family which are transmembrane proteins. They serve important functions 283 
including angiogenesis, axon guidance, cell migration, tissue border formation and synaptic plasticity 284 
(Chin-Sang et al., 1999; Kullander and Klein, 2002; Martínez and Soriano, 2005; Héroult et al., 285 
2006; Aoto and Chen, 2007; Klein, 2009). In CNS, ephrins and Eph receptors are involved in axon 286 
pathfinding, topographic development of different brain regions and connectivity, neuronal 287 
migration, dendritic spine maturation, synapse formation and plasticity (Gao et al., 1996; Dalva et al., 288 
2000; Ethell et al., 2001; Grunwald et al., 2001; Henkemeyer et al., 2003; Murai et al., 2003; Palmer 289 
and Klein, 2003; Bolz et al., 2004; Grunwald et al., 2004; Klein, 2004; Yamaguchi and Pasquale, 290 
2004; Egea and Klein, 2007; Akaneya et al., 2010; Triplett and Feldheim, 2012). Deletion of ephrin-291 
A2 in mice exhibit impairment of behavioral flexibility in visual discrimination reversal learning task 292 
(Arnall et al., 2010). Mice with double knockout of ephrin-A2 and ephrin-A3 manifest excessive 293 
stereotypic facial grooming behaviors, resulting in face lesions. In addition, they also show reduced 294 
locomotor activity, shift towards grooming in marble burying assay and increased pre-pulse 295 
inhibition of acoustic startle (Wurzman et al., 2015). The repetitive grooming behavior in double 296 
knockout mice suggests abnormalities in sensorimotor gating (Ben-Sasson et al., 2007; Perry et al., 297 
2007; Wurzman et al., 2015). Ephrin-A2 and ephrin-A3 are located at excitatory synapses in multiple 298 
brain regions. Their deletions may result in altered excitability of forebrain networks suggesting 299 
defective processing of sensory information (Qiu et al., 2012; Wurzman et al., 2015).  300 
 301 
Phosphoinositide signaling is important for cell survival and proliferation. Phosphoinositide 3-kinase 302 
(PI3K), Akt (serine/threonine kinase) and mammalian target of rapamycin (mTOR) are important 303 
interlinks in the PI3K pathway and are activated by upstream receptor tyrosine kinases (RTKs) and 304 
regulates protein synthesis for cell growth and proliferation (Cantley, 2002). PTEN (phosphatase and 305 
tensin homolog deleted on chromosome 10), a tumor suppressor gene is a negative regulator of the 306 
PI3K/AKT/mTOR signaling pathway (Ali et al., 1999; Sansal and Sellers, 2004). Pten is an ASD 307 
candidate risk gene and its mutation is reported in a subset of autistic cases with macrocephaly 308 
(Butler et al., 2005; Herman et al., 2007; Varga et al., 2009). Mice with PTEN deletions in cortical 309 
and hippocampal neurons show macrocephaly and ASD behavioral deficits, including seizures, 310 
increased anxiety and learning deficits. The conditional Pten mutant mice exhibit neuronal 311 
hypertrophy associated with abnormal activation of Akt/mTOR pathway and Gsk3b inactivation 312 
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(Kwon et al., 2006). Additionally, conditional Pten knockout in astrocytes results in increases to their 313 
size (Fraser et al., 2004). Further, Pten conditional KO mice exhibit increased spine number, 314 
myelination defects and changes in synaptic structure and transmission (Fraser et al., 2008). 315 
Germline Pten+/- male mice also exhibit increased marble burying and digging, suggesting repetitive 316 
behavioral phenotype (Clipperton-Allen and Page, 2014; 2015). Deletion of PTEN causes changes in 317 
synaptic scaffolding proteins (PSD-95, Sapap1, sap-102) and reduced mGluR expression in the 318 
hippocampus (Lugo et al., 2014). PTEN also exhibits critical functions during development, with 319 
significant implications for autism and neurodevelopmental disorders (Rademacher and Eickholt, 320 
2019). Hence, PTEN dysfunction in neurons has profound effects on neuronal morphology and 321 
connectivity resulting in ASD-like behaviors. 322 
 323 
Additionally, Homeobox protein (Hoxb8) protein is encoded by the HOXB8 gene, member of 324 
homeobox containing group of transcription factors, involved in developmental processes such as 325 
positioning along the anterior-posterior axis and other physiological functions. Hoxb8 mutant mice 326 
display excessive grooming behavior resulting in skin lesions and anxiety-like behavior (Greer and 327 
Capecchi, 2002). In mouse brains, Hoxb8 cell lineage is present in the microglia. Hoxb8 mutant mice 328 
with Hoxb8 mutations in microglia, exhibit increased cortical dendritic spine density and dendritic 329 
spines in the striatum, defects in synapse structure, LTP and miniature postsynaptic currents. Long-330 
term application of fluoxetine (SSRI) attenuates excessive grooming and hyperactivity in Hoxb8 331 
mutant mice. Hence, Hoxb8 in microglia may play role in modulation of cortico-striatal circuits and 332 
associated grooming behavior (Chen et al., 2010; Nagarajan et al., 2018). 333 
 334 
KCNQ/Kv7 channels mediate voltage-dependent outward potassium currents regulating resting 335 
membrane potential and decreasing neuronal excitability. KCNQ2 encodes subunits of neuronal 336 
KCNQ/KV7- K+ channels, KV7.2, which are present in the hippocampus and cortex. Mutations in 337 
KV7.2 are associated with developmental delay and autism (Cooper et al., 2001; Yue and Yaari, 338 
2006; Shah et al., 2008; Brown and Passmore, 2009). Mice with heterozygous null mutations in 339 
KCNQ2 gene (KCNQ2+/-) exhibit elevated locomotor activity, hyperactivity, exploratory and 340 
repetitive grooming, suggesting loss of KV7.2 is linked to ASD behavioral abnormalities (Kim et al., 341 
2020).  342 
 343 
Kin of Irregular Chiasm-like 3 (KIRREL3) gene mutations are linked with neurodevelopmental 344 
disorders including autism and intellectual disability (Bhalla et al., 2008; Iossifov et al., 2012; Baig et 345 
al., 2017). The KIRREL3 gene encodes Kin of IRRE-like protein 1 (KIRREL3), also called NEPH2 346 
(Sellin et al., 2003). KIRREL3 (NEPH2) is a member of the KIRREL protein family of 347 
transmembrane proteins that includes KIRREL (NEPH1) and KIRREL2 (NEPH3). KIRREL3 plays a 348 
role in kidney blood filtration function and is a synaptic cell-cell adhesion molecule (Gerke et al., 349 
2006; Neumann-Haefelin et al., 2010). Kirrel3 in mice is present in the developing cochlea, retina 350 
and olfactory neuroepithelial regions and in adult nervous system comprising sensory regions 351 
(Morikawa et al., 2007). Disruption of function of the KIRREL3 gene is associated with alterations in 352 
brain function. The gene is implicated in neural circuit development including neuronal migration, 353 
axonal fasciculation and synapse formation (Serizawa et al., 2006; Nishida et al., 2011; Prince et al., 354 
2013). KIRREL3 gene knockout in mice leads to alterations in synapses connecting dentate gyrus 355 
(DG) neurons to GABAergic neurons but no changes were observed in synapses linking DG neurons 356 
to CA3 neurons. This resulted in disruption of DG synaptic activity and overactivation of CA3 357 
neurons (Basu et al., 2015). KIRREL3 KO mice display increased rearing repetitive behavior, 358 
hyperactivity, impaired novel object recognition and sensory abnormalities (Choi et al., 2015; 359 
Hisaoka et al., 2018). 360 
 361 
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Furthermore, Integrin-beta3 gene encodes integrin beta-3 protein which is a cell-surface protein 362 
(member of alpha/beta heterodimeric receptors) and is involved in various functions including cell 363 
adhesion/migration, cell-extracellular matrix interactions and axon/dendrite outgrowth (Sosnoski et 364 
al., 1988; De Arcangelis and Georges-Labouesse, 2000; Clegg et al., 2003).  Increased integrin-beta3 365 
activity leads to elevated SERT transport of 5-HT and increased blood serotonin levels which is  366 
reported in autistic individuals (Carneiro et al., 2008). Mice with mutation in the integrin-beta3 gene 367 
exhibit elevated grooming in novel environments with no changes in activity in open field test. 368 
Disruption of integrin-beta3 protein impairs platelet aggregation resulting in increased bleeding times 369 
and hemorrhages. Additional studies are required to ascertain behavioral abnormalities in integerin-370 
beta3 deficient mice (Carter et al., 2011).  371 
 372 
Netrin-G ligand 2 (NGL-2)/LRRC4 is leucine-rich repeat comprising postsynaptic cell adhesion 373 
molecule which interacts with PSD-95, excitatory postsynaptic scaffolding protein and netrin-G2, a 374 
presynaptic cell adhesion molecule (Lin et al., 2003; Kim et al., 2006; Woo et al., 2009; Matsukawa 375 
et al., 2014). NGL-2 is implicated in intellectual disability and ASD (Jiang et al., 2013; Sangu et al., 376 
2017). NGL-2 is involved in regulation of glutamatergic synapse development and excitatory 377 
transmission (DeNardo et al., 2012). Mice with mutations in NGL-2 (Lrrc4-/-) exhibit reduced 378 
hippocampal NMDA receptor synaptic plasticity (Soto et al., 2013; Soto et al., 2018; Um et al., 379 
2018). Lrrc4-/- mice show repetitive self-grooming behavior which is rescued by D-cycloserine, 380 
NMDAR agonist. In addition, Lrrc4-/- mice exhibit impaired spatial learning in the Morris water 381 
maze test and mild anxiety-like behavior (Um et al., 2018).  382 
 383 
Similarly, Nerve injury induced protein 1 (Ninjurin1/Ninj1), is a cell-adhesion molecule involved in 384 
nerve regeneration, angiogenesis, inflammation and cancer (Araki and Milbrandt, 1996; Ifergan et al., 385 
2011; Matsuki et al., 2015; Jang et al., 2016). Ninj1 is expressed in cortico-thalamic circuits and is 386 
implicated in regulation of synaptic transmission. Mutation in Ninjurin1 (Ninj1) in mice leads to 387 
excessive grooming to the point of inducing hair loss and lesions and increased anxiety like behavior. 388 
In addition, Ninj1 mutant mice exhibit glutamatergic alterations in the brain, including elevated 389 
ionotropic glutamate receptors synaptic expression and mEPSCs amplitude. Stereotypic grooming in 390 
these mice is alleviated by fluoxetine (SSRI), correlating with direct inhibitory effects of fluoxetine 391 
on NMDA receptors (Le et al., 2017).  392 
 393 
SH3RF2 gene present in the 1.8 Mb microdeletion at 5q32 is implicated in autism (Gau et al., 2012; 394 
Yuen et al., 2017). It plays a role as an anti-apoptotic regulator of the JNK pathway via degrading 395 
SH3RF1 protein that activates JNK pathway (Wilhelm et al., 2012; Kim et al., 2014). Mice with 396 
haploinsufficiency of Sh3rf2 (Sh3rf2+/-) show increased jumping, rearing behavior, bury more 397 
marbles in the marble burying test correlating with elevated digging behavior and hyperactivity. 398 
Abnormalities in dendritic spine development in hippocampus, AMPA receptor mediated excitatory 399 
synaptic transmission in CA1 hippocampus, altered hippocampal pyramidal neurons membrane 400 
properties and increases in NR2A and GluR2 glutamate receptor subunits in hippocampus are 401 
observed  Sh3rf2+/- mutant mice (Wang et al., 2018a).  402 
 403 
Additionally, the p21-activated kinase 2 (PAK2), a serine/threonine kinase, activated by Rho 404 
GTPases plays a crucial role in regulating cytoskeleton remodeling, dynamics, formation of 405 
postsynaptic dendritic spines and cortical neuronal migration (Bokoch, 2003; Boda et al., 2006; Asrar 406 
et al., 2009; Causeret et al., 2009; De La Torre-Ubieta et al., 2010). Mutations in PAK2 gene are 407 
implicated in ASD (Willatt et al., 2005; Quintero‐Rivera et al., 2010; Sagar et al., 2013). 408 
Haploinsufficiency of Pak2 leads to reduced spine densities in cortex and hippocampus, impaired 409 
hippocampal CA1 LTP, decreased phosphorylation of actin regulators LIMK1, cofilin and reduced 410 
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actin polymerization. Pak2+/- mice show repetitive grooming behavior and bury more marbles in the 411 
marble burying test (Wang et al., 2018b). This suggests PAK2 is critical in brain development and its 412 
mutation contributes to autistic phenotypes.  413 

The SCN1A gene heterozygous loss of function mutation results in Dravet Syndrome. 414 
Haploinsufficiency of the SCN1A gene affects the α subunit of voltage-gated sodium channel 415 
(NaV1.1) in mice leading to autistic behavioral phenotypes, including hyperactivity and stereotypic 416 
behaviors such as self-grooming and circling behaviors. Scn1a+/- mouse model of autism exhibit 417 
increased excitation in the prefrontal cortex (PFC). Deletion of sodium channels (Nav1.1) in cortical 418 
interneurons causes reduced sodium (Na+) currents and neurotransmission of GABAergic 419 
interneurons resulting in altered GABAergic activity, hyperexcitability and behavioral impairments 420 
in the mutant mice (Table 1) (Han et al., 2012). 421 

Mutations in receptor proteins are also involved in autistic phenotypes. Oxytocin is a peptide 422 
produced in the brain, particularly in the paraventricular nuclei and hypothalamic supraoptic. It is 423 
secreted primarily by the posterior pituitary gland into the circulation (Lee et al., 2009). Oxytocin 424 
facilitates biological effects by binding to oxytocin receptor (Oxtr). Oxytocin receptor is mainly 425 
found in the amygdala, hippocampus, olfactory lobe and hypothalamus areas of the brain (Gould and 426 
Zingg, 2003). Oxtr -/- mice exhibit autistic like phenotypes, increased self-grooming behavior in a 427 
visible burrow system (VBS)  (Pobbe et al., 2012). Oxtr -/- mice also exhibit cognitive inflexibility 428 
during reversal phase in the T-maze test and increased aggression.  Oxtr -/- mice exhibit alterations in 429 
excitatory synaptic markers including PSD95, gephyrin scaffolding proteins and glutamatergic, 430 
GABAergic receptors along with changes in striatal dendritic spines, indicating striatal dysfunction 431 
(Sala et al., 2011; Leonzino et al., 2019).  432 
 433 

Environmentally induced alterations to developing nervous system, such as through specific 434 
teratogenic agents or restricted housing also contributes to the etiology of ASD. In utero valproic 435 
acid (VPA), an antiepileptic drug, exposed mice and rats show increased repetitive behaviors, such as 436 
self-grooming along with reduced social interactions and communication dysfunction (Schneider and 437 
Przewłocki, 2005; Bromley et al., 2008).  438 

C58/J, an inbred mice strain, show social deficits, repetitive backward somersaulting and hind limb 439 
jumping behaviors, restricted novel hole-board exploration, and reversal learning deficits in 440 
appetitive operant task (Moy et al., 2008b; Ryan et al., 2010; Muehlmann et al., 2012; Whitehouse et 441 
al., 2017). The hole-board test measures the number of nose pokes (head-dipping) into holes in the 442 
floor arena as a measure of exploratory behavior (Moy et al., 2008a). Moreover, BTBR, an inbred 443 
mouse strain, shows ASD-like behavioral phenotype including social, communication deficits and 444 
stereotypic behaviors (McFarlane et al., 2008; Silverman et al., 2010; Wöhr et al., 2011). Balb/c 445 
mice, another inbred strain shows ASD-like behaviors, such as sociability deficits and stereotypic 446 
behaviors. Functional alterations in NMDAR mediated activity and elicitation of jumping and 447 
circling behavior by NMDAR antagonist MK-801 application is described in Balb/c strain (Deutsch 448 
et al., 1997; Burket et al., 2010).  449 

Deer mice belong to a diverse Peromyscus genus of cricetidae rodent family that are native to North 450 
America and utilized as a laboratory animal model for basic and applied research (Joyner et al., 1998; 451 
Crossland and Lewandowski, 2006). Deer mice exhibit repetitive behavior including hindlimb 452 
jumping and backward somersaulting upon being maintained in standard laboratory housing. The 453 
repetitive behaviors showed by deer mice occur at increased rate, apparent during initial development 454 
and continuing across the lifespan. Deer mice also display reversal learning deficits in a procedural 455 
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learning behavioral task involving learning to change spatial habits upon relocation of reinforcement 456 
in a T-maze (Hadley et al., 2006). Hence, deer mice are used as animal models of repetitive/restricted 457 
behaviors in autism (Powell et al., 2000; Lewis et al., 2007; Bechard et al., 2017). 458 

3 Glutamatergic and GABAergic Signaling 459 

The normal balance of excitation and inhibition (E/I) in the forebrain is maintained by excitatory 460 
glutamatergic neurons and inhibitory GABAergic interneurons. The major excitatory 461 
neurotransmitter in the cortex is glutamate, which activates two types of receptors, i.e. ionotropic and 462 
metabotropic G-protein coupled receptors (Mehta et al., 2011). Increased excitatory signaling, hyper-463 
excitable local connectivity and decreases in inhibitory interneurons accompany repetitive behavioral 464 
changes in the brains of ASD animals (Rinaldi et al., 2007; Gogolla et al., 2009).  Interestingly, these 465 
behaviors are ameliorated by environmental enrichment, correlating to functional alterations in neural 466 
circuitry by modifying cortical excitatory and inhibitory synaptic density, LTP, increasing BDNF 467 
expression and synaptic plasticity in the cortical network (Schneider et al., 2006; Baroncelli et al., 468 
2010; Lonetti et al., 2010; Reynolds et al., 2013; Jung and Herms, 2014). 469 

Glutamatergic signaling plays a crucial role in the modulation of repetitive behaviors. On the one 470 
hand, NMDA receptors play important roles in the regulation of neurotransmitter release such as 471 
glutamate affecting excitatory neural pathways. For instance, intra-striatal injections of NMDA, 472 
glutamate receptor ligand, induces repetitive behaviors caused by elevated glutamatergic activity in 473 
the basal ganglia motor circuits (Karler et al., 1997). Deer mice exhibit repetitive behaviors, such as 474 
excessive jumping and backwards flips, attenuated by interrupting cortico-striatal glutamatergic 475 
projections via striatal injection of NMDA receptor antagonist MK-801 (dizocilpine) (Presti et al., 476 
2003). Mice with astrocyte specific inducible deletion of GLT-1 (GLASTCreERT2/+/GLT1flox/flox, iKO) 477 
manifesting stereotypic grooming behavior is alleviated by memantine, NMDA receptor antagonist 478 
(Aida et al., 2015).  479 

On the other hand, NMDA receptors are also expressed on the surface of GABAergic neurons 480 
modulating their inhibitory tone and controlling oscillations of pyramidal neurons involved in 481 
regulation of neuronal rhythms and activity (Benes, 2010; Deutsch et al., 2010). For instance, 482 
systemic application of anti-glutamatergic agents, phencyclidine (PCP), an NMDA receptor 483 
antagonist, evokes stereotypic behaviors, including self-grooming in rodents. NMDA antagonist 484 
application might inhibit excitation of GABAergic inputs onto pyramidal neurons causing 485 
disinhibitory (i.e. hyperexcitation of pyramidal neurons) increase in glutamate efflux and 486 
glutamatergic neurotransmission via AMPA and non-NMDA receptors in the PFC, activating motor 487 
pathways (Liu and Moghaddam, 1995). This PCP or non-NMDA receptor induced stereotypic 488 
grooming is alleviated by blocking AMPA receptor (non-NMDAR) mediated glutamatergic 489 
transmission between prefrontal cortex (PFC) and ventral tegmental area (VTA) (Takahata and 490 
Moghaddam, 2003; Audet et al., 2006)(Figure 2). In addition, neuroligin-1 (NL1) knockout mice 491 
exhibit a reduced NMDA/AMPA ratio in the dorsal striatum that correlates with repetitive grooming 492 
behavior, which is rescued by systemic administration of D-cycloserine, an NMDA receptor partial 493 
co-agonist (Blundell et al., 2010). Shank2-/- mice manifest reduced NMDA receptor function and 494 
social deficits, normalized by application of D-cycloserine (Won et al., 2012). D-cycloserine is also 495 
revealed to improve sociability deficits and stereotypies in BTBR and Balb/c inbred mouse strains of 496 
ASDs (Deutsch et al., 1997; Deutsch et al., 2011a; Deutsch et al., 2011b; Burket et al., 2013).  497 

Dysfunction of glutamatergic signaling at the metabotropic glutamate receptor 5 (mGluR5) is 498 
implicated in neuropsychiatric disorders such as autism (Carlson, 2012) (Figure 2). As noted above, 499 
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Fragile X Syndrome is a genetic disorder associated with autism and mental retardation.  This 500 
disorder is caused by loss of fragile X mental retardation protein (FMRP) (Hagerman et al., 2017; 501 
Niu et al., 2017). The “mGluR theory of fragile X” suggests that FMRP and Group I metabotropic 502 
glutamate receptors (mGluRs) regulate protein synthesis at the synapse in an antagonist manner. 503 
mRNA translation at the synapse is activated by mGluRs and repressed by FMRP (Bear et al., 2004; 504 
Bear, 2005; Dölen and Bear, 2008). Fmr1-KO mice manifest increased expression of mGluR-505 
dependent long-term depression (LTD) in the hippocampus, which is likely associated with 506 
alterations in mGluR signaling that contribute to repetitive behaviors in mutant mice (Table 1) (Yan 507 
et al., 2005; Nosyreva and Huber, 2006; Dölen and Bear, 2008; McNaughton et al., 2008; Pietropaolo 508 

et al., 2011). In addition, Shank3Δe4–22−/− mice (exons 4-22 deletion) exhibit excessive grooming and 509 
have reduced striatal postsynaptic mGluR5-Homer scaffolding proteins, altered mGluR5 signaling in 510 
the striatum and cortico-striatal circuit abnormalities (Wang et al., 2016a). Interestingly, in the 511 
Ube3Am-/p+ (maternal null mutation) mouse model of Angelman Syndrome, mGluR-dependent long-512 
term depression (LTD) and coupling of mGluR5 to Homer proteins in the hippocampus is enhanced 513 
(Pignatelli et al., 2014). A mouse model of Tuberous Sclerosis Tsc2+/- exhibits reduced mGluR-LTD 514 
(long-term depression) in the hippocampus and altered levels of mGluR signaling Arc (activity-515 
regulated cytoskeleton-associated) protein, which is crucial for AMPA receptor internalization in 516 
cerebellar LTD (Auerbach et al., 2011). This suggests that altered mGluR5 function may underlie 517 
cognitive and behavioral impairments in mutant mice models (Table 1) (Auerbach et al., 2011; 518 
Pignatelli et al., 2014).  519 

Several studies have demonstrated the therapeutic efficacy of the mGluR5 receptor antagonist, 2-520 
methyl-6-phenyethyl-pyrididine (MPEP), on core behavioral deficits of autism. MPEP reduces 521 
repetitive and stereotypic behaviors in the VPA and BTBR mouse models of autism (Silverman et al., 522 
2010; Mehta et al., 2011) (Figure 3). Additionally, MPEP application decreases marble burying 523 
stereotypic behavior in Fmr1 KO mice and excessive repetitive grooming in Shank3Δe4–22−/− mice via 524 
modulation of mGluR5 signaling (Thomas et al., 2012; Gandhi et al., 2014; Wang et al., 2016a). In 525 
addition, in C58/J mice that exhibit stereotypic jumping behavior, backflips and decreased 526 
exploratory behavior, blocking mGluR5 signaling via GRN-529, a mGluR5 negative allosteric 527 
modulator, rescues normal behavior (Silverman et al., 2012). The suppression of mGluR5 activity 528 
may modify NMDA receptor activity, since they are closely associates at the postsynaptic density, 529 
suggesting NMDA receptor hyperfunction underlies jumping behavior in C58/J mice (Kim et al., 530 
2016). In addition, repetitive behavior and reversal learning deficits were attenuated by 531 
environmental enrichment in C58/J mice (Muehlmann et al., 2012; Whitehouse et al., 2017).  532 

GABAergic signaling also plays a critical role in the regulation of stereotypic behaviors. For 533 
example, application of GABA-enhancing drugs reduces self-grooming behavior in rodents 534 
(Silverman et al., 2015). Administration of R-baclofen, a selective GABAB receptors agonist, 535 
alleviates repetitive self-grooming behavior in several ASD models, including the BTBR, Fragile X, 536 
C58/J, and idiopathic mice models (Han et al., 2014; Silverman et al., 2015). In addition, application 537 
of a GABAA receptor selective agonist, muscimol, into the bed nucleus of the stria terminalis (BNST) 538 
decreases self-grooming behavior induced by exposure to cat urine (Xu et al., 2012). Additionally, 539 
GABRB-3 knockout mice show hyperactivity and stereotypic behaviors such as circling (Moy et al., 540 
2006).  GABA also plays an important role in regulating stress and anxiety related behaviors, with 541 
increased GABAergic signaling exerting anxiolytic effects and inhibition of stress and anxiety-542 
induced grooming behaviors (Chao et al., 2010).  543 

GABA receptor agonists regulate excitation and inhibition (E/I) balance, resulting in minimizing 544 
elevated excitation in motor cortical areas and parts of basal ganglia-thalamic circuitry (Lewis and 545 
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Kim, 2009; Kim et al., 2016) (Figure 3). For instance, stereotypic behaviors evoked by amphetamine 546 
are diminished by application of GABA receptor agonists (Lewis and Kim, 2009). Likewise, 547 
application of GABAA receptors antagonist, bicuculline, in the ventral tegmental area (VTA) 548 
enhances self-grooming in mice induced by alpha-melanocyte stimulating hormone (MSH) (De 549 
Barioglio et al., 1991). In addition, muscimol injections into the substantia nigra pars reticulata (SNr) 550 
evokes repeated circling behavior in rats (Velíšek et al., 2005). Thus, altered GABA levels may 551 
modify basal ganglia activity by affecting dopaminergic neurons, leading to repetitive behaviors in 552 
rodents, as discussed further below (De Barioglio et al., 1991; Kim et al., 2016). 553 
Antidepressants/anxiolytics like fluvoxamine, bupropion, and diazepam alleviate repetitive digging 554 
behaviors (Hayashi et al., 2010). Moreover, Fmr1-/- mice, discussed above, exhibit hyperexcitability 555 
due to reduced activity of fast spiking interneurons (FSI) in somatosensory and barrel cortex (Figure 556 
2). GABA-receptor agonists decrease marble burying behavior in these Fmr1 knockout mice (Draper 557 
et al., 2014). Hence, altered neural signaling and E/I balance underlies repetitive behaviors associated 558 
with ASD. Enhanced GABAergic function results in reduced cortical excitation and alleviates 559 
repetitive self-grooming behavior (Kalueff et al., 2016). 560 

4 Serotonergic Signaling 561 

Serotonergic 5HT2A receptors are found mainly in prefrontal cortical and striatal brain regions (Xu 562 
and Pandey, 2000), which are associated with repetitive behaviors in ASD (Di Martino et al., 2011; 563 
Langen et al., 2012; Delmonte et al., 2013). Differences in serotonergic components in the basal 564 
ganglia are associated with repetitive behaviors (Di Giovanni et al., 2006). For instance, deer mice 565 
exhibit decreased density of serotonin transporters in the striatum (Wolmarans et al., 2013). And, 566 
injection of escitalopram, a selective serotonergic reuptake inhibitor (SSRI) alleviates some of the 567 
repetitive movements in deer mice, but with no effect on jumping behavior (Wolmarans et al., 2013).  568 
Additionally, optogenetic repetitive stimulation of the medial orbitofrontal cortex-ventromedial 569 
striatum pathway in mice leads to abnormal grooming behavior, which is rescued by fluoxetine 570 
administration, also an SSRI (Schmeisser et al., 2012). Family-based genetic association studies 571 
demonstrate linkages between serotonin transporter locus (SLC6A4) variants and rigid compulsive 572 
behavior (Sutcliffe et al., 2005), with the serotonin transporter gene (SLC6A4) subtype, 5HTTLPR, 573 
consistently associated with repetitive sensory and motor behaviors (Brune et al., 2006). In addition, 574 
depleting tryptophan, a precursor of serotonin, augments repetitive motor behaviors in autistic adults 575 
(McDougle et al., 1996). 576 

Clinical and preclinical studies have implicated alterations in serotonin receptor activity, particularly 577 
5HT2A receptor signaling, in ASD symptomology (McBride et al., 1989; Veenstra-VanderWeele et 578 
al., 2012) (Figure 2). Systemic treatment with a serotonin 5HT2A receptor antagonist decreases 579 
repetitive behaviors in the BTBR mouse model of autism, an inbred strain that shows similar ASD-580 
like behavioral deficits to an idiopathic mouse model of autism (McFarlane et al., 2008; Amodeo et 581 
al., 2012; 2014; Amodeo et al., 2016).  Further, infusion of M100907, a highly selective antagonist 582 
for 5HT2A receptors into the dorsomedial striatum reduces grooming behavior and reversal learning 583 
deficits in BTBR mice. This regulation of reversal learning and grooming behavior by 5HT2A 584 
receptor antagonist infusion into the dorsomedial striatum may be associated with reduction in 585 
striatal direct pathway activation (Reiner and Anderson, 1990; Amodeo et al., 2017). However, 586 
5HT2A receptor antagonist infusion into orbitofrontal cortex results in increased grooming behavior 587 
and perseveration in reversal learning (Amodeo et al., 2017). This altered grooming behavior by 588 
blocking of 5HT2A receptor activity in orbitofrontal cortex may be associated with increased output 589 
by orbitofrontal cortex via reduced interneuron activity, as orbitofrontal infusion of GABA receptor 590 
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agonist, muscimol, results in decreased grooming behavior in BTBR mice (Amodeo et al., 2017) 591 
(Figure 3).  592 

Thus, elevated serotonin 5HT2A receptor signaling in the dorsomedial striatum plays a critical role in 593 
the development of stereotyped behaviors, whereas normal 5HT2A receptor activity in the 594 
orbitofrontal cortex contributes to attenuation of stereotyped behaviors in BTBR mice. Hence, 595 
abnormal serotonin receptor activity in various brain regions may contribute to restricted and 596 
repetitive behaviors.  597 

5 Dopaminergic Signaling and Basal Ganglia Circuitry 598 

The cortico-basal ganglia-thalamic pathway implements motor patterned behaviors and is implicated 599 
in repetitive behaviors (Haber and Calzavara, 2009; Kalueff et al., 2016). Sequential patterns of 600 
behaviors, such as stereotyped sequential grooming movements, also called grooming chains, are 601 
carried out by these circuits in rodents (Berridge et al., 2005; Denys et al., 2013). Striatal lesions, 602 
particularly in the anterior dorsolateral region of the striatum, result in an inability to complete 603 
sequential grooming movements. Additionally, lesions of the ventral pallidum and globus pallidus 604 
results in disruption of grooming movements (Cromwell and Berridge, 1996), further underscoring 605 
their role in the regulation of complex and mechanistic sequenced behaviors.  606 

Enhanced activity of basal ganglia circuitry results in increased hyperactivity and repetitive behaviors 607 
(Kim et al., 2015). In particular, the prefrontal cortical (PFC) projection to the substantia nigra pars 608 
compacta (SNc), leads to dopaminergic release in the striatum, which promotes movement through 609 
opposing actions on direct and indirect basal ganglia pathways. Dopamine through D1 receptors are 610 
involved in the activation of the direct pathway, which in turn activates the motor cortex, resulting in 611 
movement. In contrast, dopamine through D2 receptors on neurons present in the indirect pathway, 612 
results in inhibition of the indirect pathway, also promoting movement (Gerfen et al., 1990; Gerfen, 613 
1995). For example, amphetamine pretreated rats, when injected with a dopamine D2, D3 receptor 614 
antagonist, sulpiride, or the GABA antagonist, bicuculine, leads to repetitive behavior (Morency et 615 
al., 1985; Karler et al., 1998; Kiyatkin and Rebec, 1999). Further, these circuits are disrupted in 616 
autistic mouse models, which display PFC abnormalities. Namely, mice with mutations in the 617 
SCN1A gene leads to autistic-like phenotypes, including hyperactivity and stereotypic self-grooming 618 
and circling behaviors and increased excitation in the PFC (Han et al., 2012).  619 

Dopamine plays a major role in modulating striatal pathways resulting in locomotion and repetitive 620 
motor behaviors. Application of Risperidone, that acts on different molecular receptors, including 621 
blocking of dopamine D2 receptors, leads to decreases in repetitive self-grooming behavior, 622 
perseveration, hyperactivity and rescues nesting deficits in Cntnap2-/- mice. Similarly, systemic 623 
administration of haloperidol, a dopamine D2 receptor antagonist decreases motor cortex activity, 624 
thereby impeding locomotor movements in rats (Parr-Brownlie and Hyland, 2005). Interestingly, 625 
increased striatal dopamine D2 receptor expression leads to deficits in GABAergic activity, thereby 626 
enhancing prefrontal cortical (PFC) excitation (Li et al., 2011) (Figure 3). Hence, reduced repetitive 627 
and locomotory behavior caused by altered dopamine D2 receptor expression may be linked to 628 
heightened cortical GABAergic function and reduced PFC excitability.  629 

Manipulation of the nigrostriatal dopamine pathway is sufficient for modulating many stereotyped 630 
behaviors (Lewis and Bodfish, 1998). Altered striatal dopamine activity is implicated in repetitive 631 
circling behaviors, which are observed in several mouse models of ASD (Vaccarino and Franklin, 632 
1982; Ishiguro et al., 2007). Systemic administration of a dopamine precursor, L-DOPA and a non-633 
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selective dopamine agonist, apomorphine into the striatum induces stereotyped behaviors in rodents 634 
(Ernst and Smelik, 1966; Presti et al., 2004). Likewise, injection of dopamine D1 receptor agonists 635 
evokes stereotypic and rigid behavioral phenotype in rodents (Berridge and Aldridge, 2000a; b). 636 
Furthermore, deer mice exhibit stereotyped behaviors, such as excessive jumping and backwards 637 
flips, which is attenuated by intrastriatal injection of dopamine D1 receptor antagonist, SCH23390 638 
(Presti et al., 2003) (Figure 3). Spontaneous motor stereotypies observed in deer mice exhibit 639 
negative association with neuropeptide enkephalin expression, a marker of striatopallidal neurons and 640 
is attenuated by combined administration of adenosine A2A receptor agonist CGS21680 and A1 641 
receptor agonist CPA in a dose-dependent manner, indicating altered striatal pathway activity 642 
(Tanimura et al., 2010b). Environmental enrichment attenuates repetitive behavior by increasing 643 
activation through the indirect basal ganglia pathway, which also results in changes in dendritic spine 644 
density in the subthalamic nucleus (STN) and globus pallidus (GP) (Bechard et al., 2016).   645 

Several ASD mice models exhibit alterations to dopaminergic nigrostriatal signaling. Mutant mice 646 
with heterozygous deletion of the syntenic region on chromosome 7F3 (16p11+/-) display decreased 647 
self-grooming behavior along with hyperactivity and increased stereotypic circling behavior. 648 
Neuroanatomically, these mice have increased numbers of dopamine D2 receptor expressing neurons 649 
in the striatum, reduced number of cortical neurons manifesting dopamine D1 receptors, and synaptic 650 
function defects (Portmann et al., 2014) (Figure 2). Mice deficient in the dopamine transporter (DAT) 651 
have elevated levels of dopamine and increased stereotypic sequential grooming behavior. Dopamine 652 
D1A receptor deficient mice manifest disrupted and shorter duration grooming bouts (Cromwell et 653 
al., 1998). Neuroligin NL3 mutations result in selective decrease of synaptic inhibition onto 654 
dopamine D1-expressing medium spiny neurons (MSNs) in the nucleus accumbens (NAc) and result 655 
in behavioral changes in mutant mice via reduced selective striatal synaptic function in the nucleus 656 
accumbens/ventral striatum (Rothwell et al., 2014). Apart from this, neuroligin-1 and 3 mutant mice 657 
show abnormal function of dopamine D1 MSNs leading to autistic-like repetitive behaviors 658 
(Rothwell et al., 2014; Espinosa et al., 2015). In the Shank3 gene deletion mouse model, 659 
striatopallidal D2 MSNs show postsynaptic defects and decreased AMPA receptor responses (Mei et 660 
al., 2016; Zhou et al., 2016). Repetitive grooming in Shank3B mutant mice is rescued by enhancing 661 
indirect striatopallidal pathway activity (Wang et al., 2017). Additionally, synaptic plasticity is 662 
impaired in dorsolateral striatal medium spiny neurons (MSN) in mutant mice carrying full Shank3 663 

deletion in exons 4-22 (Δe4–22
−/−

), which also exhibit decreased striatal spine density and altered 664 
striatal synapse postsynaptic density (Peça et al., 2011; Sala et al., 2015; Peixoto et al., 2016; Wang 665 
et al., 2016a).  Finally, BTBR T+ Itpr3tf/J mice show impairments in mesolimbic and striatal 666 
synaptic dopamine D2 receptor signaling resulting in reduced dopamine neurotransmission. 667 
Reductions in pre- and post-synaptic adenosine A2A receptor function also indicate associations with 668 
altered dopamine neurotransmission (Squillace et al., 2014). 669 

Overall, dopaminergic circuitry in the basal ganglia mediates rigid and sequential behavioral 670 
phenotypes associated with ASD. As dopamine containing neurons and pathways are crucial in 671 
movement and sequencing behaviors, the regulation of the dopaminergic system may provide a 672 
valuable tool for modulating repetitive behaviors. Hence, basal ganglia circuits play an instrumental 673 
role in regulation of compulsive and repetitive behavioral phenotype associated with ASD. 674 

6 Glutamatergic Signaling at Cortico-Striatal Synapses 675 

Striatal glutamatergic synapses express synapse-associated protein 90/postsynaptic density protein 95 676 
(SAP90/PSD95) associated proteins (SAPAP), which form scaffolding protein complexes involved 677 
in regulation of neurotransmitters trafficking and targeting to the post-synaptic membrane (Wu et al., 678 
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2012). Mutations in synapse-associated protein 90/postsynaptic density protein 95-associated protein 679 
3 (SAPAP3) that also binds to SHANK3 postsynaptic scaffolding protein is associated with 680 
stereotypic behaviors in mice (Sapap3-/-), such as compulsive self-grooming to the point of inducing 681 
lesions, which is rescued by Sapap3 re-expression in the striatum and optogenetic stimulation of 682 
lateral orbitofrontal cortex (Welch et al., 2007; Bienvenu et al., 2009; Burguière et al., 2013).  683 

Sapap3 mutant mice exhibit glutamatergic transmission defects at cortico-striatal synapses and 684 
elevated mGluR5 signaling, leading to abnormal striatal output and stereotyped behavior, which is 685 
alleviated by mGluR5 inhibition (Ade et al., 2016). This suppression of mGluR5 possibly inhibits the 686 
direct basal ganglia pathway resulting in reduced repetitive behaviors (Conn et al., 2005).  NMDA 687 
and AMPA receptor dependent cortico-striatal synaptic transmission is also altered. Intriguingly, 688 
systemic administration of fluoxetine, a serotonin uptake inhibitor attenuates obsessive grooming in 689 
mutant mice (Welch et al., 2007).  690 

7 Endocannabinoid Signaling in Striatal Synapses 691 

Endocannabinoid signaling plays a crucial part in modulating striatal synaptic transmission and in 692 
regulating stereotypic behaviors (Chen et al., 2011; Gremel et al., 2016). The abundant 693 
endocannabinoid, 2-arachidonoyl glycerol (2-AG), activates cannabinoid-1 receptor (CB1R), 694 
mediating suppression of glutamatergic release via feedback inhibition at direct and indirect medium 695 
spiny neuron (MSN) synapses (Kano et al., 2009). Synthesis of 2-AG in the postsynaptic neuron is 696 
mediated by diacylglycerol lipase alpha (DGLα) (Gao et al., 2010; Tanimura et al., 2010a; Shonesy 697 
et al., 2014). Mice with DGLα knockout in direct-pathway MSN exhibit reduced levels of 2-AG in 698 
the striatum and absence of feedback inhibition mediated by 2-AG at glutamatergic direct-pathway 699 
MSN synapses, resulting in excessive glutamatergic drive in direct-pathway MSNs (Figure 3). In 700 
addition, DGLα deletion in direct-pathway MSNs does not change GABAergic synaptic 701 
transmission, suggesting that alterations to excitation/inhibition balance may contribute to increased 702 
direct-pathway MSN output, resulting in excessive grooming behavior (Figure 4). Furthermore, mice 703 
with regional DGLα deletions in the ventral striatum (nucleus accumbens) exhibit repetitive 704 
grooming behavior (Shonesy et al., 2018). Thus, 2-AG signaling impairment in direct pathway MSNs 705 
leads to circuit alterations and ASD behavioral phenotypes, such as repetitive self-grooming behavior 706 
(Figure 2).  707 

Group1 mGluRs play a role in mobilizing endocannabinoids in the hippocampus, contributing to 708 
increased excitability. In FMR1 null mice, mGluR5 dependent LTD is absent at excitatory synapses 709 
of PFC and ventral striatum, which is moderated by endocannabinoid 2-arachidonoylglycerol (2-710 
AG). The Homer scaffolding complex linking mGluR5 to diacylglycerol lipase alpha is disrupted 711 
resulting in impairment of endocannabinoid mediated LTD at excitatory synapses. Application of 712 
CB1R antagonist rimonabant improves cognitive deficits in Fmr1 KO mice (Busquets-Garcia et al., 713 
2013). Hence, endocannabinoid signaling contributes to increased excitability in FXS (Jung et al., 714 
2012; Tang and Alger, 2015). Intriguingly, CB1 and CB2 receptor expression is upregulated in the 715 
brain of MeCP2 mutant mice. Treatment with cannabinoid cannabidivarin (CBDV) ameliorates 716 
memory deficits in MeCP2 mutant mice. CBDV also regulates BDNF, CB1, CB2 receptor levels and 717 
PI3K/AKT/mTOR pathway which is dysregulated in MeCP2 deficient mice (Zamberletti et al., 718 
2019). Hence, altered endocannabinoid signaling is associated with behavioral abnormalities in 719 
neurodevelopmental disorders.  720 

8 Astrocytic calcium signaling regulating striatal circuitry 721 
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Astrocytes perform numerous functions, including maintenance of the blood-brain barrier, 722 
extracellular ion homeostasis, synapse formation and regulation of synaptic transmission (Khakh and 723 
Sofroniew, 2015). Astrocytes also propagate intercellular Ca2+ waves upon stimulation and modulate 724 
neuronal function through Ca2+ dependent signaling (Bazargani and Attwell, 2016). Astrocytic Ca2+ 725 
signaling stimulates release of gliotransmitters such as glutamate, GABA, ATP and D-serine that 726 
regulate neuronal activity (Bazargani and Attwell, 2016). Astrocytes regulate extracellular levels of 727 
glutamate via transporters like GLT1, hence influencing excitatory and inhibitory neuronal balance 728 
(Wu et al., 2012). High levels of glutamate in the extracellular space leads to over activation of 729 
glutamate receptors, i.e. neuronal excitotoxicity. Astrocytes protect against neurotoxicity by 730 
mediating glutamate clearance from synaptic space via glutamate uptake transporters, thereby 731 
modulating neuronal activity. Astrocytes also supply ATP that is crucial for the process of glutamate 732 
uptake. In astrocytes, glutamate is converted to glutamine that acts as a precursor for resynthesis of 733 
neurotransmitters like glutamate/GABA in neurons. Further, glutamate in the synapse induces 734 
astrocytic Ca2+ increase that results in release of glutamate from astrocytes to adjoining neurons, 735 
stimulating NMDA receptors and iGluRs (ionotropic glutamate receptors), modulating their activity. 736 
Therefore, astrocytes have dual roles in maintaining glutamate release and uptake (Bazargani and 737 
Attwell, 2016; Mahmoud et al., 2019). Astrocytes also modulate synaptic GABA levels via GABA 738 
transporters (GAT) that mediates GABA uptake. Expression of synaptic GAT1 regulates GABA 739 
levels in the synapses, thereby modulating neuronal excitability. Rise in astroglial Ca2+ signaling 740 
leads to inhibition of neuronal activity. This is associated with elevated GABA levels in the synapse 741 
caused by decreases in astroglial membrane GAT levels via endocytosis into astrocytes. The 742 
membrane trafficking of GAT is regulated by Rab11, Rab family small GTPases. Rab11 suppression 743 
counteracts the decrease in neuronal activity by elevated astroglial Ca2+ levels via repressing GAT 744 
endocytosis. Therefore, astrocytes regulate activity of neuronal circuits (Zhang et al., 2017). 745 
Alterations in astroglial uptake processes or gliotransmitters release is implicated in the pathogenesis 746 
of neurological disorders including epilepsy and may contribute to the development of behavioral 747 
impairments in these disorders (Mahmoud et al., 2019). 748 

In addition, astrocytic dysfunction is implicated in stereotypic behaviors associated with 749 
neuropsychiatric disorders (Molofsky et al., 2012; Aida et al., 2015; Yu et al., 2018). Mutant mice 750 
with GLT-1 inducible deletion in astrocytes (GLASTCreERT2/+/GLT1flox/flox, iKO) display excessive 751 
self-grooming repetitive behavior resulting in self-induced injury. The knockout of astroglial GLT1 752 
leads to alteration in cortico-striatal synapse, suggesting glial dysfunction involvement in 753 
pathophysiology of repetitive behaviors (Aida et al., 2015). In wild-type C57BL/6NTac mice, 754 
decreased astrocyte Ca2+ signaling in the striatum leads to increased stereotypic grooming behavior 755 
(Figure 2). In these experiments, wild-type C57BL/6NTac mice were injected with hPMCA2w/b 756 
construct to impair striatal astrocytic Ca2+ signals. The hPMCA2w/b construct consists of w/b splice 757 
variant in human plasma membrane Ca2+-ATPases pump (hPMCA2) deficient in the cytosolic 758 
interaction domains (Yu et al., 2018). Membrane targeting of PMCA2 is determined by alternative 759 
splicing of protein cytosolic loop, in which “w” form (w splice variant) containing 45 amino acid 760 
residue insertion, display membrane localization of PMCA2. The b splice variant is generated at 761 
COOH terminal site of protein, an important regulatory region of the pump and its terminal sequence 762 
interacts with PDZ proteins (Chicka and Strehler, 2003). Astrocytes express the plasma membrane 763 
Ca2+ pump (PMCA2) that function to expel cytosolic Ca2+. The generated hPMCA2w/b mice exhibit 764 
excessive repetitive self-grooming behavior. Reduced astrocyte Ca2+ signaling decreases ambient 765 
GABA levels via enhanced GABA transporter 3 (GAT-3) activity (Figure 5). In addition, Rab11a 766 
gene downregulation leads to increased GAT-3 functional activity, thereby reducing inhibition of 767 
MSNs in striatum. The elevated self-grooming behavior is also observed in a mouse model of 768 
Huntington’s disease, R6/2 that is associated with decreases in astrocytic Ca2+ signals and alleviated 769 
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by blocking astrocytic GAT-3. Hence, attenuated astrocytic Ca2+ signaling decreases striatal MSN 770 
inhibition, via altered GABA levels resulting in repetitive behavior (Yu et al., 2018) (Figure 5). 771 
Moreover, astrocytic GLT1 deficient mice show increased grooming, rearing and jumping behavior, 772 
suggesting reduced synaptic glutamate clearance resulting in glutamatergic dysfunction underlying 773 
these behaviors (Jia et al., 2020). Hence, astrocytes regulate striatal activity and associated 774 
stereotypic behavior. 775 

Further, mice with inactivation of Tsc1 gene in astrocytes (Tsc1GFAPCKO) displays epilepsy, learning 776 
deficits, reduced GLT-1 protein expression, elevated levels of glutamate in hippocampus and 777 
impairment of hippocampus-LTP suggesting altered glutamate homeostasis and synaptic plasticity in 778 
mouse model of Tuberous Sclerosis (Wong et al., 2003; Zeng et al., 2007). 779 

Glial ephrin-A3 also plays an important role in modulating hippocampal activity. In adult 780 
hippocampus, dendritic spines of pyramidal neurons expresses EphA4 tyrosine kinase receptor, the 781 
activation of which is dependent on ligand ephrin-A3, present in the perisynaptic processes of 782 
astrocytes, is involved in regulation of dendritic spine morphology and synapse formation (Murai et 783 
al., 2003; Klein, 2009). Mice with knockout of ephrin-A3 or EphA4 exhibits spine irregularities and 784 
results in increased expression of astroglial glutamate transporters GLT-1 and GLAST in the 785 
hippocampus. Hence, bidirectional signals between neuronal EphA4 and astroglial ephrin-A3 786 
regulate spine morphology, glutamate transport and excitatory synaptic function (Carmona et al., 787 
2009; Filosa et al., 2009).  788 

Neural circuit refinement is associated with experience-dependent synaptic pruning. In the cortex of 789 
ephrin-A2 knockout mice, experience-dependent removal of postsynaptic dendritic spines was 790 
mediated by activation of NMDA glutamate receptors, thereby leading to changes in adult neural 791 
circuits. Ephrin-A2 null mice also showed reduced glutamate transporters, contributing to increase 792 
synaptic glutamate and promoting spine elimination (Yu et al., 2013). 793 

Hence, astroglial expressed ephrin-A3 and ephrin-A2 in the hippocampus and cortex, respectively, 794 
have opposite effects on modulation of glutamate transporters and spine morphology. Treatment 795 
interventions targeting astroglial ephrin-A3/A2 signaling may alter expression of glutamate 796 
transporters and protect against glutamate excitotoxicity, maintaining the synapse structure and 797 
dynamics.  798 

9 Amygdala and limbic circuitry in repetitive behaviors 799 

The amygdala is involved in the regulation of emotions, anxiety and fear, as well as regulating 800 
repetitive behaviors. High levels of anxiety in rodents are accompanied by increased self-grooming 801 
behaviors, rescued by anxiolytic treatments (Kalueff and Tuohimaa, 2004a; Ahmari and Dougherty, 802 
2015). Anxiety-related behavior in rats is correlated with reduced dopamine release in the amygdala 803 
and increased grooming episodes. In the medial nucleus of the amygdala (MeA), activation of 804 
vesicular glutamate transporter 2 (vGLUT2) expressing glutamatergic neurons increases repetitive 805 
self-grooming behavior (Figure 2), whereas activation of vesicular GABA transporter (VGAT)-806 
positive GABAergic neurons represses self-grooming behavior in mice (Figure 3) (Hong et al., 807 
2014). In addition, injections of Orexin-B, a neuropeptide that regulates food intake, mood and 808 
wakefulness in the central nucleus of amygdala (CeA), leads to enhanced grooming frequency in 809 
hamsters. Orexin-B induced grooming behavior is potentiated by infusion of NMDA receptor 810 
agonists (Alò et al., 2015). In lateral amygdala, Fmr1 KO mouse model shows synaptic defects 811 
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including impaired mGluR-dependent LTP and reduced AMPA receptor subunit, GluR1 surface 812 
expression (Suvrathan et al., 2010).  813 

The basolateral nucleus of the amygdala (BLA) sends projections to the hippocampus and the 814 
prefrontal cortex (PFC) (Obeso and Lanciego, 2011). Activation of glutamatergic projections from 815 
the basolateral amygdala (BLA) to the ventral hippocampus heightens self-grooming in mice (Felix-816 
Ortiz and Tye, 2014) (Figure 2), while its inhibition leads to reduced locomotor activity, suggesting a 817 
crucial role for the ventral hippocampus in repetitive behaviors (Figure 3) (Bast et al., 2001; Zhang et 818 
al., 2002). Shank3 deficient rats show attention deficit and decreased synaptic plasticity in the 819 
hippocampal-medial prefrontal cortex pathway. Mouse models of Shank3 deletion also exhibit 820 
impaired synaptic plasticity in the hippocampus, associated with deficits in actin cytoskeleton 821 
remodeling, along with changes in NMDA glutamatergic receptors and mGluR-Homer scaffolding 822 
complex, resulting in abnormalities in cortico-striatal circuits underlying repetitive behaviors 823 
(Bozdagi et al., 2010; Duffney et al., 2013; Kouser et al., 2013; Wang et al., 2016a). In addition, the 824 
Shank postsynaptic protein scaffold helps regulate synaptic transmission at hippocampal Schaffer 825 
Collateral-CA1 synapses (Shi et al., 2017). Further, altered synaptic transmission at thalamo-826 
amygdala circuits is associated with obsessive self-grooming behavior in rodents (Ullrich et al., 827 
2018).   828 

The hypothalamus is another limbic brain region involved in regulating numerous behaviors, 829 
including self-grooming in rodents (Qualls-Creekmore and Münzberg, 2018). The hypothalamic 830 
paraventricular nucleus and the dorsal hypothalamus are associated with grooming behavior observed 831 
by local electrical stimulation in the hypothalamus that induces self-grooming in rats. The 832 
paraventricular nucleus projects to the posterior dorsal part of medial amygdala (MeApd) which is 833 
involved in self-grooming behavior (Roeling et al., 1993). Lateral hypothalamic glutamatergic 834 
neurons adjacent to the MeApd play roles in repetitive self-grooming behaviors in mice (Figure 3). 835 
Moreover, MeApd also projects to the medial hypothalamus (Hong et al., 2014). Finally, the central 836 
nucleus of amygdala (CeA) and MeA projects to the bed nucleus of the stria terminalis (BNST) that 837 
connects the amygdala and hypothalamus (Heimer et al., 2007). Hence, the limbic system, 838 
incorporating the amygdala, hippocampus, hypothalamus and basal ganglia regions, play important 839 
roles in regulating repetitive behaviors.  840 

10 Neuroanatomy of ASD  841 

Magnetic resonance imaging (MRI) studies in humans have contributed to the understanding of the 842 
neuroanatomical basis of ASD, such as a period of early brain overgrowth in autism, particularly in 843 
frontal, temporal and cingulate cortices, hippocampus, cerebellum and amygdala (Palmen and van 844 
Engeland, 2004; Bauman and Kemper, 2005; Courchesne et al., 2007; Amaral et al., 2008). Further, 845 
atypical functional connectivity between caudate and cortical areas has been observed in autistic 846 
subjects (Turner et al., 2006). These findings match neuroanatomical alterations observed in several 847 
of the mice models discussed above, which also show alterations to the hippocampal commissure, 848 
decreased frontal-cortical, occipital and thalamic grey matter volume along with reduced cortical 849 
thickness (Wahlsten et al., 2003).  850 

Neuroimaging studies also suggest an association of repetitive behaviors, with the volume of basal 851 
ganglia areas, such as the caudate-putamen (Sears et al., 1999; Calderoni et al., 2014). Autistic 852 
individuals show significantly larger right caudate and putamen volumes compared to matched 853 
controls. Moreover, total putamen and right caudate volumes reveal positive association with ADI-C 854 
domain repetitive behavior scores (Hollander et al., 2005). Neuroimaging of individuals with fragile 855 
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X syndrome (FXS) also exhibit altered gray matter volume in the caudate and white matter of the 856 
ventral fronto-striatal pathway (Haas et al., 2009; Hallahan et al., 2011). Moreover, imaging studies 857 
of RTT individuals show reduced caudate nucleus and midbrain volumes (Casanova et al., 1991; 858 
Reiss et al., 1993; Subramaniam et al., 1997). 859 

The medial frontal gyri, right fusiform gyrus and left hippocampal volumes are also enlarged in 860 
autistic groups (Rojas et al., 2006; Verhoeven et al., 2010). The increased regional brain volumes 861 
show positive correlation with stereotypic behaviors; however, decreased volume of the cerebellum 862 
in autistic subjects show negative correlation with repetitive behavioral measures (Rojas et al., 2006). 863 
One study on autistic children demonstrated positive association of repetitive behavior and frontal 864 
lobe volume and negative association with cerebellar vermis volume (Pierce and Courchesne, 2001). 865 
In addition, developmental studies in rodents and non-human primates show that damage to 866 
amygdala, hippocampus and temporal cortex induce ASD-like behaviors such as stereotypies 867 
(Bachevalier and Loveland, 2006). Early in life, amygdala and hippocampal lesions result in self-868 
directed and stereotypic head twisting behaviors in juvenile monkeys (Bauman et al., 2008). 869 

The anterior cingulate cortex (ACC) is also implicated in repetitive behaviors in ASD (Thakkar et al., 870 
2008). An fMRI study in high-functioning autistic individuals revealed a negative correlation of 871 
repetitive/restricted behaviors with ACC and posterior parietal activation implicating frontal-striatal 872 
circuitry in stereotyped behaviors (Shafritz et al., 2008). Additional consistent neuroimaging findings 873 
are required to understand neural circuitry of stereotypic behaviors in neurodevelopmental disorders. 874 

Imaging studies in preclinical animal models are limited and research in this area is still ongoing 875 
(Wilkes and Lewis, 2018). There are a few MRI studies that have utilized diffusion tensor imaging 876 
(DTI) and functional magnetic resonance imaging (fMRI) in animal models of repetitive behaviors 877 
(Ellegood et al., 2010; Dodero et al., 2013; Ellegood et al., 2013; Squillace et al., 2014; Haberl et al., 878 
2015; Allemang-Grand et al., 2017). Mice with hemizygous (-/Y), heterozygous (-/+) and 879 
homozygous (-/-) Mecp2 mutation show enlarged cerebellar volume, including the vermis, cerebellar 880 
cortex region and smaller cortical volumes including somatosensory, frontal, motor and cingulate 881 
regions. In addition, Mecp2 hemizygous male mice (-/Y) exhibit increased brainstem volume and 882 
reduced volumes in striatum, thalamus, frontal cortex and corpus callosum. These studies correlate 883 
with imaging findings in individuals with Rett syndrome (Dunn et al., 2002; Carter et al., 2008; 884 
Ellegood et al., 2015; Allemang-Grand et al., 2017). 885 

MRI imaging in Fmr1 KO mice reveal decreased cerebellar nuclei and striatal volumes (Ellegood et 886 
al., 2010). In addition, diffusion tensor MRI and functional MRI (fMRI) studies show changes in 887 
structural connectivity of the corpus callosum and functional connectivity between cortical regions 888 
such as visual, somatosensory, auditory and motor regions (Haberl et al., 2015). MRI analysis of 889 
16p11.2 CNV mice demonstrate volumetric alterations in brain regions including basal forebrain, 890 
hypothalamus, midbrain and superior colliculus (Horev et al., 2011). Additionally, 16p11+/- pups 891 
show reduced brain volume at postnatal day 7, while the elative volume i.e., normalized to total brain 892 
volume of nucleus accumbens (NAc) and globus pallidus (GP) regions are increased. Structural 893 
abnormalities in cortical areas are also observed in 16p11+/- pups (Portmann et al., 2014). Adult 894 
heterozygous 16p11.2 mice after controlling for total brain volume show neuroanatomical alterations 895 
in different brain regions including increased midbrain, hypothalamus, superior colliculus volumes 896 
and reduced striatal volume (Ellegood et al., 2015). Mice with chromosome 15 mutations, 897 
particularly with duplication of 15q11-13 region show reduced relative volumes for different brain 898 
areas like basal forebrain, midbrain, hypothalamus and thalamus (Ellegood et al., 2015).  899 
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Decreases in parvalbumin containing interneurons in the medial prefrontal cortex are observed in 900 
ASD individuals (Hashemi et al., 2017). Parvalbumin knockout mice show ASD behavioral 901 
phenotypes, such as deficits in social interaction behaviors, ultrasonic vocalizations and higher-order 902 
reversal learning in the T-maze assay (Wöhr et al., 2015). An MRI study of juvenile Parvalbumin 903 
knockout mice revealed reduced cortical volume and increased cerebellar volume. However, these 904 
anatomical alterations are not consistent in adult Parvalbumin knockout mice (Wöhr et al., 2015). 905 
Additional studies are required for elucidating other repetitive behaviors and brain regions structural 906 
alterations in this mouse model. In utero VPA exposed rats exhibit decreased total brain volume, 907 
relative cortical and brainstem volumes and hippocampus volume (Frisch et al., 2009; Petrenko et al., 908 
2013). 909 

BTBR mice exhibit reduced cerebral white and grey matter, ventricular volumes and larger olfactory, 910 
brainstem and cerebellum volumes compared to C67BL/6 mice (Ellegood et al., 2013). An fMRI 911 
study of BTBR mice showed decreased bilateral functional connectivity for cingulate, striatum, 912 
insular, motor cortex and reduced striatal-thalamic connectivity. However, hippocampus, temporal 913 
and occipital areas show increased interhemispheric connectivity in BTBR mice (Sforazzini et al., 914 
2016).  915 

Molecularly, scaffolding proteins, glutamate receptor interacting proteins 1/2 (Grip1/2), plays a role 916 
in AMPA receptor (AMPAR) trafficking and its absence contributes to cerebellar LTD deficit in 917 
cultured Purkinje cells and social preference changes in cell-specific Grip1/2 mutant mice (Takamiya 918 
et al., 2008; Mejias et al., 2011). Grip1/2 KO mice exhibit repetitive grooming with no changes in 919 
social interaction and anxiety, normal mEPSCs but weakened mGluR-LTD at the parallel fiber-PC 920 
synapses and altered expression of arc, mGluR5, phosphorylated P38 and AKT in the Purkinje cells. 921 
So, defects in Grip1/2 mediating AMPAR trafficking at cerebellar purkinje cells along with impaired 922 
mGluR5 signaling in cerebellum results in pathogenesis of repetitive behaviors (Mejias et al., 2019). 923 
Mice with conditional Pten inactivation in Purkinje cells show stereotyped jumping and decreased 924 
motor learning with structural aberration in PC dendrites, axons, reduced excitability, altered parallel 925 
fiber and climbing fiber synapses (Cupolillo et al., 2016). Further, mouse model of Tuberous 926 
Sclerosis with Tsc2 loss in Purkinje cells (Tsc2f/-;Cre mice) displays increased marble burying 927 
repetitive behavior and Purkinje cell dysfunction, suggesting Purkinje cell loss contribution to ASD 928 
phenotype (Reith et al., 2013). Therefore, the cerebellum, particularly purkinje cells and associated 929 
signaling pathways play important role in regulation of repetitive behaviors. 930 

Post-mortem studies of autistic cases have also implicated many of these same brain regions. 931 
Purkinje cells (PC) in the cerebellum are consistently altered in neuropathological analyses of ASD 932 
brain samples (Fatemi et al., 2002; Palmen and van Engeland, 2004; Whitney et al., 2008). However, 933 
the limitation of imaging studies include poor tissue quality and small sample sizes, as well as an 934 
analysis of samples from adult brains which does not provide information regarding development 935 
(Amaral et al., 2008).  936 

Overall, neuroanatomical alterations are largely found in frontal, temporal cortical regions, basal 937 
ganglia areas and cerebellum in human studies and mouse models showing repetitive behaviors 938 
(Ellegood et al., 2010; Ellegood et al., 2013; Portmann et al., 2014; Ellegood et al., 2015; Haberl et 939 
al., 2015; Wöhr et al., 2015). Basal ganglia areas such as striatum and globus pallidus show 940 
volumetric alterations related to stereotyped behaviors (Ellegood et al., 2010; Ellegood et al., 2013; 941 
Portmann et al., 2014; Ellegood et al., 2015). Associations between repetitive behavioral phenotypes 942 
and changes in specific brain region structural and functional aspects requires additional studies in 943 
animal models of ASD and other neurodevelopmental disorders.  944 
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11 Anxiety and Repetitive behaviors 945 

ASD is associated with anxiety disorders and the prevalence estimates of anxiety in ASD individuals 946 
vary widely from 22% to 84%  (van Steensel et al., 2011; Lai et al., 2014; Vasa and Mazurek, 2015; 947 
Lever and Geurts, 2016; Russell et al., 2016; Nimmo-Smith et al., 2020).  There is also a significant 948 
relationship between anxiety and restricted/repetitive behaviors in the ASD population (Gotham et 949 
al., 2013; Stratis and Lecavalier, 2013; Postorino et al., 2017; Russell et al., 2019; Baribeau et al., 950 
2020). Association of anxiety with ritualistic behaviors are related to abnormal sensory gating 951 
suggesting altered sensory processing (Green et al., 2012; Mazurek et al., 2013; Lidstone et al., 952 
2014).  953 
 954 
Grooming behavior reflects repetitive, stress coping behavior and complex interplay with anxiety and 955 
motor activity in rodents (Kalueff and Tuohimaa, 2005a; Lewis et al., 2007; O’Leary et al., 2013). 956 
Some ASD mouse models demonstrate both anxiety and repetitive behaviors. In a mouse model of 957 
Rett syndrome, deletion of MeCP2 in basolateral amygdala causes increases anxiety and learning 958 
deficits (Adachi et al., 2009). The increased grooming behavior in EphrinA2/A3 double KO mice 959 
may correlate with sensorimotor gating deficits and abnormal sensory processing as a result of 960 
exposure to novel environments (Wurzman et al., 2015). The Shank1 mice model of ASD manifests 961 
mild anxiety and repetitive behavior (Hung et al., 2008). ASD mice models with FMR1, PTEN, 962 
UBE3A and GABRB3 mutations exhibit learning deficits, stereotypic behaviors and anxiety 963 
phenotypes (Jiang et al., 2010; Tanaka et al., 2012; Gandhi et al., 2014; Clipperton-Allen and Page, 964 
2015; Zieba et al., 2019). Additionally, the BTBR mouse model of autism displays anxiety traits and 965 
repetitive behaviors (McFarlane et al., 2008; Pobbe et al., 2011). In contrast, some mouse models 966 
exhibiting repetitive behaviors do not show anxiety-like behaviors or are not reported in some cases. 967 
Mouse models including mutations in CNTNAP2, neuroligin1, oxytocin receptor and 16p11.2 968 
chromosomal deletions do not display anxiety behaviors or are not reported in some studies 969 
(Penagarikano et al., 2011; Crawley, 2012; Kazdoba et al., 2016). Thus, future studies are required to 970 
elucidate the anxiety phenotype along with the repetitive behavior in different rodent models of ASD.  971 
 972 
Acute and chronic stress plays a role in alterations of grooming activity (Katz and Roth, 1979; 973 
Fentress, 1988; Kalueff and Tuohimaa, 2004b; Komorowska and Pellis, 2004). For instance, 974 
C57BL/6J male mice following chronic social defeat stressor, display disorganized cephalo-caudal 975 
grooming patterning and induces anxiety (Veenema et al., 2003; Kinsey et al., 2007; Denmark et al., 976 
2010). Additionally, Wistar rats exposed to light box show increased grooming frequency and 977 
duration as compared to rats exposed to dark box. The light-dark paradigm helps in assessing stress 978 
levels in rats via counting the number of defecation boli and urination spots, indicating more anxiety 979 
in rats exposed to the light box. This may suggest that stress and anxiety may affect grooming 980 
activity and its microstructure in rodents (Kalueff and Tuohimaa, 2004b; 2005b).  Surprisingly, some 981 
inbred mouse strains demonstrate high or low grooming in response to anxiety. The BALB/c mice 982 
show increased grooming compared to 129S1 mice. The high grooming in BALB/c mice may 983 
correlate with increased anxiety as assessed by high defecation boli scores, one of the stress markers 984 
in rodents. In contrast, 129S1 mice show low-grooming and high anxiety levels, indicating that 985 
different rodent strains exhibit variation in anxiety-induced behaviors (Kalueff and Tuohimaa, 2004a; 986 
2005a). Anxiolytics like bupropion (noradrenaline and dopamine reuptake inhibitor), fluvoxamine 987 
(SSRI), diazepam (benzodiazepine) and imipramine (tricyclic antidepressant) decreased marble 988 
burying and digging behavior in mice (Hayashi et al., 2010). Further, minocycline ameliorates 989 
marble burying behavior and correlates with proper dendritic spines maturation in Fmr1 KO mice 990 
(Dansie et al., 2013). Studies on marble burying are controversial as some indicate that marble 991 
burying correlates with anxiety whereas others indicate that it reflects repetitive digging (Njung'e and 992 
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Handley, 1991; Thomas et al., 2009; Taylor et al., 2017; de Brouwer et al., 2019). Minocycline also 993 
alleviates aberrant grooming behavior and modulates hippocampal GABA levels in rats (Zhang et al., 994 
2019).  995 
 996 
Neuropsychiatric and neurodevelopmental disorders including autism, OCD, schizophrenia and 997 
anxiety share some symptoms and overlap in common pathological genes, circuits and mechanisms 998 
(Shavitt et al., 2006; Kalueff and Nutt, 2007; Kalueff et al., 2008; Szechtman et al., 2017). For 999 
instance, GABAergic activity alterations are associated with anxiety, depression and autistic 1000 
phenotypes, indicating common underlying neural pathology (Persico and Bourgeron, 2006; Kalueff 1001 
and Nutt, 2007). Altered GABA receptor activity by anxiolytic (GABA enhancing) and anxiogenic 1002 
(GABA inhibiting) drugs correlates with decrease and increase in stress induced grooming behavior. 1003 
This may indicate that these drugs regulate the strength of the anxiogenic stimuli perception and 1004 
grooming behavior (Kalueff and Tuohimaa, 2005c; Nin et al., 2012; Xu et al., 2012; Kalueff et al., 1005 
2016). Similarly, BDNF and serotonin transporter (SERT) gene has been linked to cognitive deficits, 1006 
anxiety, depression, schizophrenia, OCD and autism (Devlin et al., 2005; Hu et al., 2006; Kaufman et 1007 
al., 2006; Kalueff et al., 2007; Kas et al., 2007; Moy and Nadler, 2008). Rodents manifest heightened 1008 
grooming behavior in response to changes in the environment by stressful and/or anxiogenic stimuli 1009 
(Gispen and Isaacson, 1981; Florijn et al., 1993; Gargiulo and Donoso, 1996).  Dopaminergic activity 1010 
in the basal ganglia pathways likely mediates the stress-coping grooming behavior (Spruijt et al., 1011 
1986; Cools et al., 1988; Kametani, 1988; Spruijt et al., 1992; Reis-Silva et al., 2019). Anxiety-like 1012 
behaviors correlate with decreased dopamine release in PFC, substantia nigra and amygdala of rats 1013 
spending more time self-grooming induced by stress on exposure to elevated plus maze (EPM). This 1014 
suggests that self-grooming is associated with reward systems and may be reflective of de-arousal 1015 
activity instead of a direct response to anxiety (Homberg et al., 2002). Additionally, serotonin plays a 1016 
role in regulating stress-coping behavior such as self-grooming (Houwing et al., 2019). Hence, rodent 1017 
grooming may represent one method for stress reduction or de-arousal, instead of directly involved in 1018 
the stress response (Estanislau et al., 2013; Estanislau et al., 2019).  1019 
 1020 
In addition, several common brain regions have been associated with anxiety and repetitive 1021 
behavioral disorders, particularly the amygdala and PFC. For instance, muscimol (GABA agonist) 1022 
infusion into basolateral nucleus of amygdala and PFC decreases anxiety in rats (Shah et al., 2004; 1023 
Bueno et al., 2005). Intriguingly, muscimol injection into BNST (extended amygdala), a region that 1024 
regulates innate fear responses leads to decreased self-grooming behavior in rats (Xu et al., 2012). 1025 
Additionally, GABAergic neurons in MeApD region reduces self-grooming behavior (Hong et al., 1026 
2014). Further, injections of GABA-A receptor antagonist bicuculline into the basolateral amygdala 1027 
increases anxiety in rats (Sajdyk and Shekhar, 2000). In the MeApD region, glutamatergic neurons 1028 
promote stereotypic self-grooming (Hong et al., 2014). Alterations in GABA, serotonin, kainate and 1029 
glutamate receptor densities in various amygdala nuclei correlates with anxiety-like behavior in some 1030 
inbred mouse strains (Yilmazer-Hanke et al., 2003; Caldji et al., 2004). Amygdala stimulation leads 1031 
to increases in anxiety and facilitates compulsive behaviors (McGrath et al., 1999). In the case of 1032 
OCD, basolateral amygdala projections to medial PFC modulate repetitive checking behavior in 1033 
rodents (Sun et al., 2019). One of the brain regions involved in stress coping responses, the 1034 
periaqueductal grey (PAG) and its pathways, influence self-grooming behavior (Bandler et al., 2000). 1035 
Alteration in striatal neurons, CeA and mPFC projections to PAG region may affect self-grooming 1036 
behavior (Spruijt et al., 1992; Floyd et al., 2000). Increased expression of c-fos is observed in 1037 
hippocampus, hypothalamus, PFC after administration of anxiogenic drugs and hypothalamic 1038 
injection of GABAergic anxiolytic drugs reduces anxiety in rats (Jardim and Guimarães, 2001; 1039 
Singewald et al., 2003). Hence, regulated GABAergic activity and consequent excitatory 1040 
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neurotransmission in these brain regions is critical for the modulation of anxiety and repetitive 1041 
behaviors, indicating overlapping circuits in anxiety and repetitive behaviors.  1042 
 1043 
However, further studies are required to ascertain regional and circuit differences between anxiety-1044 
induced and repetitive self-grooming behavior. Investigations of animal models displaying both 1045 
anxiety and repetitive behavior simultaneously or induction of one disorder by another will help in 1046 
providing innovative insight into the common and specific neural alterations underlying these 1047 
disorders.  1048 
 1049 

12 Summary 1050 

Animal models of neuropsychiatric and neurodevelopmental disorders such as autism have provided 1051 
relevant knowledge on the neuronal circuitry and receptor targets implicated in the etiology and 1052 
pathophysiology of repetitive behaviors. Several brain regions and neural circuits including cortico-1053 
basal ganglia-thalamic circuits, limbic circuits, prefrontal cortex, cerebellum, hypothalamus and 1054 
striatum are involved in the regulation of core autistic behaviors. Genetic mutations and 1055 
environmental risk factors resulting in presentation of repetitive behaviors in rodent models involve 1056 
multiple cellular, molecular and network factors.  The majority of ASD alterations involve excitatory 1057 
glutamatergic, inhibitory GABAergic, serotonergic and dopaminergic neurons, receptors, 1058 
neurotransmitters, neuronal migration and spine densities resulting in changes in signaling pathways 1059 
and synaptic activity which may converge on common neural circuits (Golden et al., 2018).  1060 

Genome-wide association studies (GWAS) have indicated various ASD risk genes including 1061 
neuronal cell adhesion molecules (neurexins, neuroligins, CNTNAP), postsynaptic scaffolding 1062 
proteins (Shanks, SAPAP), neurotransmitter signaling and trafficking (Glutamate, GABA, EphA3) 1063 
and molecules involved in protein synthesis in the brain (Fmr1, TSC, MeCP2) (Stearns et al., 2007; 1064 
Tabuchi et al., 2007; Hung et al., 2008; Samaco et al., 2008; Etherton et al., 2009; Radyushkin et al., 1065 
2009; Peça et al., 2011; Penagarikano et al., 2011; Silverman et al., 2011; Casey et al., 2012; Eadie et 1066 
al., 2012; Schmeisser et al., 2012; Grayton et al., 2013; Monteiro and Feng, 2017; Wang et al., 2017; 1067 
Zerbi et al., 2018). Many of the autism risk genes encode for proteins involved in excitatory 1068 
glutamatergic signaling, converging at excitatory synapses (Peça et al., 2011; Qiu et al., 2012). For 1069 
instance, Shank3 forms a scaffolding complex comprised of SAPAP that also interconnects with 1070 
ephrins/Ephs and neurexin/neuroligin complexes (Qiu et al., 2012). This suggests that alterations in 1071 
these molecules may converge on common synaptic and circuit mechanism underlying autistic 1072 
behavioral phenotypes. Understanding the mechanisms by which these factors affect neuronal 1073 
circuits will provide insight into relevant targets of sensorimotor repetitive behaviors. 1074 

Although ASD etiological heterogeneity leads to complex and sometimes divergent behavioral 1075 
outcomes in affected populations, a large literature exists, including neuroimaging studies, that have 1076 
determined the crucial role of cortico-basal ganglia and limbic circuit alterations in mediating 1077 
stereotypic behaviors. Altogether, common neural modifications in specific pathways and neural 1078 
circuits lead to the emergence of repetitive behaviors in ASD. Inconsistencies in some studies and 1079 
factors influencing generality of the repetitive behavioral findings may be related to sample, 1080 
environment and experimental heterogeneity. Future research integrating disparate findings hold 1081 
immense potential to ascertain the involvement of common neural changes converging at the level of 1082 
circuit alterations in neurodevelopmental disorders. More detailed work with additional animal 1083 
models is required to dissect the molecular and neuroanatomical alterations in other pathways and 1084 
brain regions implicated in repetitive behavioral phenotypes, in order to identify potential targets and 1085 
treatment strategies for attenuating repetitive behaviors in affected individuals. Finally, early 1086 
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interventions for repetitive behaviors hold great promise for improving quality of life for affected 1087 
individuals.  1088 

13 Future directions and limitations 1089 

The scope of this review is narrowed to neural mechanisms underlying lower-order repetitive 1090 
behaviors in rodent models of ASD.  Most of the literature in rodent models of ASD discuss lower 1091 
order stereotyped sensory motor behaviors. However, some studies address higher-order insistence 1092 
on sameness behaviors, such as circumscribed interests and resistance to change in few rodent 1093 
models. Future studies are required to evaluate common underlying molecular and circuit alterations 1094 
in repetitive and restricted behaviors in autism. Further, characterization of both repetitive motor 1095 
behaviors and insistence on sameness behaviors should be performed in different rodent models of 1096 
ASD and other neurodevelopmental disorders in order to increase their translational value and to 1097 
identify overlapping neurobiological alterations underlying these behaviors.  1098 

Although the studies reviewed here contribute to our understanding of the underlying neural 1099 
alterations in rodent models displaying robust repetitive behaviors, the relation of such alterations 1100 
with repetitive behavioral expression is unresolved.  A focus of most investigations has been on the 1101 
pathophysiology of mutations resulting in the expression of general ASD phenotype and rescuing the 1102 
core ASD behavioral deficits rather than focusing exclusively on repetitive behaviors. Future 1103 
findings targeting specific brain regions and focusing on neural alterations elemental to repetitive 1104 
behaviors solely, while controlling for other behaviors, will provide a better understanding of how 1105 
individual genetic and environmental changes converge at molecular and circuit levels to mediate 1106 
repetitive behaviors. Alternatively, generation of mutant rodent models with targeted knockout of 1107 
susceptibility genes in circumscribed brain regions may help in clarifying particular behavioral 1108 
phenotypes.  For instance, in NL3 mice, inhibition is elevated in somatosensory cortex, whereas 1109 
AMPAR mediated excitation is heightened in the CA1 hippocampal region (Etherton et al., 2011). 1110 
Consequently, the specific neural circuitry associated with particular cognitive and behavioral 1111 
components in ASD remain to be fully dissected. Regardless of these challenges, common circuits 1112 
and molecular alterations provide a basis for understanding ASD etiological factors and behavioral 1113 
abnormalities. 1114 

In addition, very few studies have incorporated different methodological approaches to elucidate 1115 
changes fundamental in mediating repetitive behaviors in rodents (Sforazzini et al., 2016; Wohr 1116 
2015, Squillace 2014). Combination of different methodological approaches such as neuroimaging, 1117 
histological and molecular analysis may provide a more comprehensive understanding of alterations 1118 
in specific brain regions and their neural projections primarily mediating repetitive behaviors in 1119 
rodent models of ASD. In addition, future studies incorporating both male and female rodent models 1120 
may help in elucidating any gender differences in brain structure and function associated with 1121 
repetitive behaviors. Another important requirement is to evaluate molecular and circuit 1122 
modifications fundamental to repetitive behaviors in other neurodevelopmental and neuropsychiatric 1123 
disorders. Corroboration of findings across varied rodent models displaying repetitive behaviors may 1124 
illuminate similar and dissimilar changes in brain pathways underlying these disorders.  1125 

A somewhat underexplored therapeutic avenue in rodent models is environmental enrichment (EE), 1126 
which attenuates the repetitive behaviors in models of ASD. The EE reduces repetitive behaviors in 1127 
deer mice by elevating indirect basal ganglia pathway function via increasing neuronal activation and 1128 
dendritic spine densities in the subthalamic nucleus (STN) and globus pallidus (GP) (Bechard et al., 1129 
2016). However, mechanisms by which environmental enrichment alters repetitive behavior and 1130 
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correlations with structural, functional and molecular modifications in brain regions demands 1131 
detailed investigation. Also, investigations of effectiveness of environmental enrichment in 1132 
attenuating repetitive behaviors should be extended to different rodent models of repetitive 1133 
behavioral and neurodevelopmental disorders. This may help in probing the efficacy of 1134 
environmental enrichment in relation to repetitive behaviors.   1135 
 1136 
Pharmacologically, systemic and local applications of glutamatergic inhibitors, GABAergic, 1137 
serotonergic and dopaminergic agents have varied effects in different brain regions and circuits 1138 
mediating repetitive behaviors. However, it remains to be determined whether these agents are 1139 
applicable for alleviating behaviors beyond lower order motor stereotypies in rodent models. Further 1140 
research is required to ascertain if these various receptor agents also play a role in higher-order 1141 
stereotypies in rodent models. In addition, investigating the cross-over effects of these agents in 1142 
different neural pathways may help to understand the underlying cellular and molecular pathologies 1143 
in relation to repetitive behaviors.  1144 
 1145 
In addition, future research studying overlapping or common pathways underlying stress, anxiety and 1146 
repetitive behaviors may provide some critical insight into targets directed towards these behavioral 1147 
domains.  1148 

This review summarizes findings on molecular, signaling pathways, circuit and neuroanatomical 1149 
alterations in rodent models of ASD displaying robust repetitive behaviors. These findings emphasize 1150 
important molecular, structural and functional connectivity changes in brain regions like the 1151 
prefrontal cortex, basal ganglia structures, limbic areas and cerebellum, suggesting a major role of 1152 
cortical-basal ganglia circuits. In addition, signaling pathways involving different neurotransmitters 1153 
and their receptors such as glutamate, GABA, serotonin and dopamine are also involved in the 1154 
pathophysiology of stereotypic motor behaviors. Understanding the hierarchy of changes in different 1155 
brain regions molecular, structure, function and connectivity aspects mediating repetitive behaviors 1156 
in rodent models will provide an important platform for translational study. 1157 

Lastly, comparative research involving human clinical population and animal models of ASD and 1158 
other neurodevelopmental disorders hold enormous potential for unraveling the underlying neural 1159 
alterations mediating repetitive behaviors and identifying directed pharmacological and circuit-based 1160 
targets for treatment interventions.  1161 
 1162 
 1163 
 1164 
 1165 
 1166 
 1167 
 1168 
 1169 
 1170 
 1171 
 1172 
 1173 
 1174 
 1175 
 1176 
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Table 1. Neural alterations underlying repetitive behaviors and rescue of repetitive behaviors in 1177 
rodent models of ASDs. Treatment strategies discussed are from preclinical studies in rodent models 1178 
targeting behavioral abnormalities including stereotypic behaviors.  1179 

MODEL REPETITIVE 
AND 

RELATED 
BEHAVIORS 

NEURAL 
ALTERATIONS 

RESCUE OF 
REPETITIVE 
BEHAVIORS 

REFERENCES 

BTBR T+tf/J • Repetitive 
self-
grooming 

• Increased 
marble 
burying 
behavior 

• Reversal 
learning 
deficit in 
Morris water 
maze 
(MWM) 

• Reduced GABAergic 
inhibitory 
transmission 

• Upregulation of 
serotonin 5HT2A 
receptor density and 
activity 

• Increased in 
glutamatergic 
transmission in 
cortico-striatal 
circuitry 

• Impaired dopamine 
D2 receptor function 

• Reduced expression 
of BDNF in 
hippocampus and 
cortex 

• Absence of corpus 
callosum, lack of 
hippocampal 
commissure 

• Reduced cortical 
thickness 

• Reduced cerebral 
white and gray matter 

• Impaired cortico-
thalamic function 

• Altered volumes of 
cerebellum, 
brainstem, striatum 
and hippocampus 

• mGluR5 receptor 
antagonist (MPEP) 

• Selective GABAb 
receptor agonist (R-
baclofen) 

• Dorsomedial striatal 
injection of 
selective 5HT2A 
receptor antagonist 
(M100907) 

• Risperidone 
• Muscarinic 

receptor(mAChR) 
agonist 
(Oxotremorine) 

• Nicotinic receptor 
(nAChR) agonist 
(nicotine) 

• Acetylocholinestera
se inhibitor 
(AChEI) 
(Donepezil) reduced 
behavioral rigidity 
in water T-maze 
task 

• Retinoic acid 
receptor-related 
orphan receptor 
alpha (ROR a) 
agonist (SR1078) 

(Wahlsten et al., 
2003; Moy et al., 
2007; McFarlane 
et al., 2008; 
Silverman et al., 
2010; Gould et al., 
2011; Wöhr et al., 
2011; Amodeo et 
al., 2012; 
Silverman et al., 
2012; Burket et al., 
2013; Dodero et 
al., 2013; Ellegood 
et al., 2013; 
Reynolds et al., 
2013; Han et al., 
2014; Karvat and 
Kimchi, 2014; 
Wang et al., 2015; 
Wang et al., 
2016b; Meyza and 
Blanchard, 2017) 

Cntnap2-/- • Repetitive 
self-
grooming and 
digging 

• Reversal 
learning 
deficit 

• Decrease in 
parvalbumin-positive 
interneurons in 
striatum resulting in 
altered activity of 
cortico-striatal-
thalamic pathway 

• Dopamine D2 
receptor antagonist, 
Risperidone  

(Penagarikano et 
al., 2011; Lauber 
et al., 2018) 
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(MWM) 
• Hyperactivity 
• Seizures 

• Cortical migration 
abnormalities 

C58/J • Repetitive 
self-
grooming 

• Hind limb 
jumping 

• Backflips 
• Decreased 

exploratory 
behavior 

• Reversal 
learning 
deficit 

• Increased mGluR5 
signaling 

• NMDA receptor 
hyperfunction 

• Reduced GABAergic 
signaling 

• Reduced dendritic 
spines 

• Increased 
dopaminergic 
function and cortical 
activation 

• Aberrant hippocampal 
and cortical activity 

• mGluR5 negative 
allosteric modulator 
(GRN-529) 

• Selective GABAb 
receptor agonist (R-
baclofen) 

• Environmental 
enrichment 

(Moy et al., 2008b; 
Ryan et al., 2010; 
Muehlmann et al., 
2012; Silverman et 
al., 2012; 
Whitehouse et al., 
2017) 

Deer • Repetitive 
hindlimb 
jumping and 
backflips 

• Perseverative 
behavior in a 
reversal 
learning task 
(T-maze) 

• Enhanced Cortico-
striatal glutamatergic 
projections 

• Decrease density of 
serotonin transporters 
in striatum 

• Reduced indirect 
basal ganglia pathway 
activity 

• Dorsomedial striatum 
alterations 

• Striatal injections of 
NMDA receptor 
antagonist (MK-
801) 

• Dopamine D1 
receptor antagonist 
(SCH23390) 

• Co-administration 
of adenosine A2A 
receptor agonist 
(CGS21680) and A1 
receptor agonist 
(CPA) 

• Selective SSRI 
(Escitalopram) 

• Triple drug cocktail 
(D2R antagonist L-
741,626 + 
Adenosine A2AR 
agonist CGS21680 
+ mGluR5 positive 
allosteric modulator 
CDPPB) 

• Environmental 
enrichment (EE) 

(Presti et al., 2003; 
Tanimura et al., 
2008; Tanimura et 
al., 2010b; 
Tanimura et al., 
2011; Wolmarans 
et al., 2013; 
Bechard et al., 
2017; Lewis et al., 
2019) 

DGLaflx/flx  • Repetitive 
self-
grooming 

• Reduced levels of 2-
acyl glycerol in 
striatum 

• Excessive 
glutamatergic drive in 

 (Shonesy et al., 
2014; Shonesy et 
al., 2018) 
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direct-pathway MSNs 

 

EphA2/A3 
double KO 

• Stereotypic 
facial 
grooming 

• Reduced 
locomotor 
activity 

• Increased 
pre-pulse 
inhibition of 
acoustic 
startle 

• Sensorimotor gating 
abnormalities 

• Altered excitability of 
forebrain pathways 

 

 

 (Qiu et al., 2012; 
Wurzman et al., 
2015) 

FMR1-/- • Repetitive 
self-grooming 

• Increased/decr
eased marble 
burying 

• Deficit in 
novelty 
preference (T-
maze 
spontaneous 
alternation) 

• Learning task 
deficits 

• Hyperactivity 
• Anxiety 
• Reduced 

motor learning 
• Olfactory 

learning 
deficits  

• Increased mGluR-
LTD in hippocampal 
CA1 and cerebellum 

• Increased 
endocannabinoid 
mediated transmission 
at GABAergic 
synapses of 
hippocampus and 
dorsal striatum 

• Dysfunctional 
cortico-striatal 
circuitry 

• Decrease activity of 
fast spiking 
interneurons in 
cortical areas 
(hyperexcitability) 

• Abnormal 
sensorimotor gating 

• Altered dendritic 
spine density and 
morphology 

• Impaired long-term 
potentiation 

• PSD-95 protein 
deficits 

• PI3K/AKT pathway 
abnormal activity 

• AMPAR and 
NMDAR dysfunction 

• Purinergic signaling 
alteration 

• Selective GABA-B 
receptor agonist (R-
baclofen) 

• mGluR5 receptor 
antagonist (MPEP) 

• Minocycline 
(antibiotic inhibiting 
MMP9) 

• Antipurinergic 
therapy (suramin) 

• CB1R antagonist 
(rimonabant) 

• Small-molecule 
PAK [p21-activated 
kinase regulates 
actin cytoskeleton 
dynamics] inhibitor 
(FRAX486) 

• BDNF application 
• Gene therapy with 

human FMR1 
• Delta-subunit 

containing 
extrasynaptic 
GABA-A receptors 
agonist (Gaboxadol) 

• Intracranial 
injection of 
CRISPR-Gold 
targeting mGluR5 

• Chronic application 
of Bryostatin-1 
(Protein Kinase C 

(Peier et al., 2000; 
Spencer et al., 
2005; Lauterborn 
et al., 2007; Dölen 
and Bear, 2008; 
Errijgers et al., 
2008; 
McNaughton et al., 
2008; Paylor et al., 
2008; Spencer et 
al., 2008; 
Bilousova et al., 
2009; Zhang and 
Alger, 2010; 
Pietropaolo et al., 
2011; Henderson 
et al., 2012; Jung 
et al., 2012; 
Thomas et al., 
2012; Busquets-
Garcia et al., 2013; 
Dolan et al., 2013; 
Berry-Kravis, 
2014; Gandhi et 
al., 2014; Naviaux 
et al., 2015; Tang 
and Alger, 2015; 
Bhattacharya et al., 
2016; Gurney et 
al., 2017; Sinclair 
et al., 2017; Lee et 
al., 2018; Nolan 
and Lugo, 2018; 
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• Altered cerebellar and 
striatal volumes 

potent activator)  
• eFT508, MNK 

(mitogen-activated 
protein kinase 
interacting protein 
kinase) inhibitor 

• BPN14770, 
phosphodiesterase-
4D negative 
allosteric modulator 
(PDE4DNAM) 

• GSK6A (PI3K 
antagonist) 

• FS-115, S6KI 
(mTORC1-p70 
ribosomal S6 kinase 
1) inhibitor 

Yau et al., 2018; 
Zerbi et al., 2018; 
Cogram et al., 
2019; Gross et al., 
2019; Cogram et 
al., 2020; Shukla 
et al., 2020) 

Gabrb3-/- • Repetitive 
circling 

• Hyperactivity 

• Cerebellar vermis 
hypoplasia 

• Abnormal GABA-A 
receptor function in 
hippocampus 

• Altered GABA-A 
receptor mediated 
neurotransmission 

 (DeLorey et al., 
1998; DeLorey et 
al., 2008; Mercer 
et al., 2016; 
Orefice et al., 
2016) 

Hoxb8 KO in 
microglia 

• Increased 
grooming 

• Anxiety-like 
behavior 

• Increased cortical 
dendritic spine 
density 

• Increased dendritic 
spines in striatum 

• Defects in LTP, 
miniature 
postsynaptic currents 

Fluoxetine (SSRI) (Greer and 
Capecchi, 2002; 
Chen et al., 2010; 
Nagarajan et al., 
2018) 

Itgb3-/- • Increased 
grooming in 
novel 
environment 

• Alterations in 
axon/dendrite 
outgrowth, cell 
adhesion and synapse 
formation 

• Reduced corpus 
callosum, 
hippocampus, 
striatum and 
cerebellum 

• Increased amygdala 
volume 

 (De Arcangelis and 
Georges-
Labouesse, 2000; 
Clegg et al., 2003; 
Carter et al., 2011; 
Ellegood et al., 
2012) 
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KCNQ2+/- • Repetitive 
grooming  

• Hyperactivity 
• Increased 

locomotor 
activity 

• Increased neuronal 
excitability 

 (Yue and Yaari, 
2006; Shah et al., 
2008; Brown and 
Passmore, 2009; 
Kim et al., 2020) 

Kirrel3-/- • Repetitive 
rearing 
behavior 

• Increased 
locomotor 
activity 

• Hypersensitiv
ity to acoustic 
startle 
(acoustic 
startle test) 

• Hyperactivity 

• Abnormal 
hippocampal mossy 
fiber synapse 
formation   

• Increased CA3 neuron 
activity during 
development  

• Abnormal neuronal 
migration 

 (Gerke et al., 2006; 
Serizawa et al., 
2006; Nishida et 
al., 2011; Prince et 
al., 2013; Basu et 
al., 2015; Choi et 
al., 2015; Hisaoka 
et al., 2018) 

Lrrc4-/- • Repetitive 
self-
grooming 

• Impaired 
spatial 
learning 
(MWM) 

• Reduced NMDA 
receptor mediated 
synaptic plasticity 

• Abnormal synaptic 
transmission 

• NMDA receptor 
agonist (D-
cycloserine) 

(DeNardo et al., 
2012; Soto et al., 
2013; Soto et al., 
2018; Um et al., 
2018) 

MeCP2 • Repeated 
forelimb 
movements 

• Deficits in 
motor 
coordination 
and motor 
learning 

• Memory 
deficits 

• Decreased levels of 
dopamine transporter 
(DAT) and tyrosine 
hydroxylase (TH) in 
striatum 

• Altered cortical and 
cerebellar volumes 

• Cortical LTP deficit 
• Decreased cortical 

BDNF levels 
• Impaired 

PI3K/AKT/mTOR 
pathway 

• Upregulated CB1 and 
CB2 receptor levels 

• Hippocampal circuit 
dysfunction 

 (Shahbazian et al., 
2002; Moretti et 
al., 2005; Lonetti 
et al., 2010; Lu et 
al., 2016; 
Allemang-Grand 
et al., 2017; 
Zamberletti et al., 
2019) 

Ninj1 • Excessive 
grooming 
inducing hair 
loss and 

• Altered synaptic 
function in 
thalamocortical 
neurons  

• Fluoxetine (SSRI) (Le et al., 2017) 
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lesions 
• Increased 

anxiety-like 
behavior 

• Increased expression 
of ionotropic 
glutamate receptor 

• Increased amplitude 
of miniature EPSCs 

NL1-/- • Repetitive 
self-
grooming 

• Spatial 
learning 
deficits 

• Reduced 
NMDA/AMPA 
receptor ratio in 
hippocampus and 
dorsal striatum 

• Reduced hippocampal 
LTP 

• Abnormal function of 
dopamine D1 MSNs 

• Reduced GluN2A 
containing NMDARs 
expression in direct-
pathway MSNs 

• Reduced frequency of 
miniature excitatory 
neurotransmission in 
indirect-pathway 
MSNs 

• NMDA receptor 
partial co-agonist, 
D-cycloserine  

(Blundell et al., 
2010; Espinosa et 
al., 2015) 

NL2 
overexpressi
on 

• Repetitive 
Jumping 

• Reduced E/I balance 
in PFC 

 (Hines et al., 2008) 

NL3-/- • Repetitive 
motor routine 

• Hyperactivity 

• Reduced striatal 
synaptic function in 
nucleus 
accumbens/ventral 
striatum 

• Abnormal function of 
dopamine D1 MSNs 

• Altered GABAergic 
signaling and E/I 
balance in CA2 
hippocampal area 

 (Radyushkin et al., 
2009; Rothwell et 
al., 2014; Modi et 

al., 2019) 

NL3R451C • Repetitive 
behavior 
(object 
exploration 
task) 

• Aggression 

• Smaller striatal 
volume 

• Increased striatal 
postsynaptic density 
95 (PSD-95) protein 
levels 

• Altered synaptic 
activity in 
hippocampus, 

• Risperidone, CB1 
receptor agonist 
(WIN55,212-2) 
targeting aggression 

(Tabuchi et al., 
2007; Etherton et 

al., 2011; Kumar et 
al., 2014; 

Bornstein et al., 
2016; Hosie et al., 
2018; Matta et al., 

2020) 
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somatosensory cortex 
and basolateral 
amygdala 

• Increased AMPA 
mediated 
neurotransmission 
and LTP in 
hippocampus  

NRXN1a-/- • Repetitive 
self-
grooming 

• Altered nest 
building 

• Impaired pre-
pulse 
inhibition 

• Aggressive 
behaviors 

• Mild anxiety-
like behavior 

• Decrease in miniature 
excitatory 
postsynaptic current 
frequency in 
hippocampus 

• Impaired excitatory 
synaptic transmission 
in hippocampus 

• Sensorimotor gating 
impairments 

• Increased cortical 
volume and decreased 
cerebellar volume 

 (Etherton et al., 
2009; Grayton et 
al., 2013) 

Oxtr-/- • Cognitive 
inflexibility 
in reversal 
phase in T – 
maze 

• Increased 
aggression 

• Alterations in 
excitatory synaptic 
markers (PSD-95, 
gephyrin scaffolding 
proteins)  

• Altered glutamatergic 
and GABAergic 
receptors 

• Changes in striatal 
dendritic spines 

 

 (Sala et al., 2011; 
Pobbe et al., 2012; 
Leonzino et al., 
2019) 

Pak2+/- • Repetitive 
self-
grooming 
behavior 

• Increased 
marble 
burying 
behavior 

• Reduced spine density 
in cortex and 
hippocampus 

• Impaired LTP in CA1 
hippocampal region 

• Reduced actin 
polymerization and 
perturbation of actin 
network 

 (Wang et al., 
2018b) 

Pcdh19 
XLacZ/Y 

• Repetitive 
grooming 
behavior 

• Increased 

• Impaired migration 
and dendritic 
arborization of 
hippocampal CA1 

 (Bassani et al., 
2018; Lim et al., 
2019) 
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rearing 
behavior 

neurons 
• Decreased GABA-A 

receptor surface 
expression and 
transmission 

Pten+/- • Repetitive 
digging and 
increased 
marble 
burying 
behavior 

• Reduced 
sensorimotor 
gating 

• Increased 
depression-
like behavior 

• Increased mTOR 
signaling 

• Alterations in 
serotonin system 

• Altered synaptic 
scaffolding proteins 
(PSD-95, sapap1, sap-
102) 

• Decreased mGluR in 
hippocampus 

• Structural aberrations 
in Purkinje cells 
dendrites and axons 

 (Page et al., 2009; 
Clipperton-Allen 
and Page, 2014; 
Lugo et al., 2014; 
Clipperton-Allen 
and Page, 2015; 
Rademacher and 
Eickholt, 2019) 

PV-/- • Higher order 
reversal 
learning in T-
maze 

• Decreased 
parvalbumin levels 

• Altered excitatory and 
inhibitory synaptic 
transmission 

• Decreased inhibition 
of pyramidal neuron 
output 

• Loss of inhibitory 
synapses resulting in 
hyperexcitation of 
cortical circuits 

• Reduced cortical 
volume, increased 
cerebellar volume 

• 17-beta estradiol (Filice et al., 2018) 

Sapap3-/- • Compulsive 
self-
grooming 

• Glutamatergic 
transmission defects 
at cortico-striatal 
synapses 

• Elevated mGluR5 
signaling 

• Sapap3 re-
expression in 
striatum 

• Optogenetic 
stimulation of 
lateral orbitofrontal 
cortex 

• mGluR5 inhibition 
• Serotonin uptake 

inhibitor 
(fluoxetine)  

(Welch et al., 
2007; Bienvenu et 
al., 2009; 
Burguière et al., 
2013) 

Scn1a+/- • Repetitive • Increased PFC 
excitation 

 (Han et al., 2012) 
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self-
grooming and 
circling 

• Hyperactivity 

• Altered GABAergic 
activity in PFC 

Shank1+/-, 

Shank1-/- 

• Repetitive 
self-
grooming 

• increased 
acquisition of 
spatial 
memory 

• motor deficits 
• mild anxiety-

like 
phenotype 

• Reduced 
exploratory 
locomotion 
 

• Decrease in mEPSC, 
altered glutamatergic 
synapse 

• Altered maturation of 
postsynaptic dendritic 
spines 

• Reduced density of 
CA1 pyramidal 
neurons dendritic 
spines 

 (Hung et al., 2008; 
Silverman et al., 
2011; Sungur et 
al., 2014; Sala et 
al., 2015) 

Shank2-/- 
(exon 7 
deletion) 

• Repetitive 
grooming 

• Hyperactivity 
• Anxiety-like 

behavior 
• Increased 

locomotor 
activity 

• Increased NMDAR-
dependent LTP and 
altered NMDAR-
mediated synaptic 
transmission 

• Reduced spine density 
• Increased levels of 

GluN2A, GluN1, 
GluN2B, GluA2 
glutamate receptor 
subunits in 
hippocampus and 
striatum 

 (Schmeisser et al., 
2012) 

Shank2 
(exons 6, 7 
deletions and 
frameshift 
affecting 
both splice 
variants 
Shank2a and 
Shank2b) 

• Stereotypic 
jumping 

• Impaired 
spatial 
learning and 
memory 
(Morris water 
maze) 

• Impaired 
nesting 
behavior 

• Hyperactivity 
• Anxiety-like 

behavior 
• Increased 

• Reduced activity of 
glutamatergic NMDA 
receptors 

• Impaired LTP and 
LTD at Schaffer-
collateral-CA1-
pyramidal (SC-CA1) 
synapses 

• Reduced 
NMDA/AMPA ratio 
at SC-CA1 synapses 

• Decreased NMDAR-
mediated synaptic 
transmission 

 (Won et al., 2012) 
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grooming in 
novel object 
recognition 
area 

Shank3 (exon 
21 deletion 
including 
Homer 
binding 
domain) 

• Repetitive 
grooming in 
older mice 

• Deficit in 
spatial 
learning and 
memory 

• Impaired 
motor 
coordination  

• Aberrant 
locomotor 
response to 
novelty 

• Increased 
novel object 
avoidance (in 
marble 
burying test) 

• Decreased 
excitatory 
postsynaptic 
NMDA/AMPA 
current ratio in 
hippocampal CA1 
region 

• Reduced LTP in 
CA1 hippocampus 

• Increased mGluR5 
levels in synaptic 
fractions 

 (Kouser et al., 
2013) 

Shank3e4-22 

(exons 4-22 
deletion)  

• Excessive 
Repetitive 
self-
grooming 

• Reduced 
locomotion 

• Deficient 
motor 
performance 

• Anxiety-like 
behavior 

• Impaired 
striatal 
learning 

• Impaired postsynaptic 
SAPAP, mGluR5-
Homer scaffolding 
proteins and mGluR5 
signaling in striatal 
neurons 

• Impaired striatal LTD 
and synaptic plasticity 

• Decreased 
neurotransmission in 
corticostriatal circuits 

• Reduced striatal spine 
density 

• mGluR5 antagonist 
(MPEP) 

(Wang et al., 
2016a) 

Shank3Ae4-9 

heterozygou
s and 
knockout 
(exons 4-9 
deletion 
encoding 
ANK 
domain) 

• Repetitive 
self-grooming 

• Enhanced 
head pokes 
(hole board 
test)  

• Mild motor 
abnormalities 
including 
difficulty in 

• Reduced Homer1b/c, 
GKAP and AMPAR 
subunit GluA1, 
GluA2, GluA3 levels 
at PSD in KO mice 
indicating altered 
synaptic scaffolding 
proteins and receptor 
subunits 

• Impaired activity-
dependent 

 (Bozdagi et al., 
2010; Wang et al., 
2011; Yang et al., 
2012; Drapeau et 
al., 2014; Jaramillo 
et al., 2016) 
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motor 
coordination 
in KO mice 

• Motor 
learning 
deficits in KO 
mice 

• Impaired 
novel and 
spatial object 
recognition 
learning and 
memory  

redistribution of 
GluA1 subunits of 
AMPAR 

• Reduced spine density 
and increased spine 
length in CA1 
hippocampus  

• Impaired 
hippocampal LTP (in 
both KO and HTZ), 
glutamatergic 
synaptic transmission 
and synaptic plasticity 
in knockout mice 

• Reduced 
NMDA/AMPA ratio 
at excitatory synapses 
onto striatal MSNs (in 
both KO and HTZ) 

Shank3b-/- • Repetitive 
self-
grooming 

• Attention 
deficit 

• Functionally impaired 
AMPA and NMDA 
receptors 

• Decreased D2 MSNs 
AMPA receptor 
responses 

• Deficits of 
hippocampal synaptic 
plasticity and its 
association with 
impaired remodeling 
of actin cytoskeleton 

• Enhancing activity 
of indirect 
striatopallidal 
pathway 

• Subthalamic 
nucleus stimulation 

• Partial 5-HT1A 
receptor agonist 
(tandospirone) in 
Shank3B+/- 

(Bozdagi et al., 
2010; Peça et al., 
2011; Wang et al., 
2011; Schmeisser 
et al., 2012; 
Duffney et al., 
2013; Sala et al., 
2015; Chang et al., 
2016; Peixoto et 
al., 2016; Harony-
Nicolas et al., 
2017; Dunn et al., 
2020) 

Shank3B-/- 

(PDZ domain 
deletion) 

• Excessive 
and self-
injurious self-
grooming 

• Anxiety-like 
behavior 

• Reduced levels of 
synaptic scaffolding 
proteins SAPAP3, 
Homer-1b/c, PSD93 
and glutamate 
receptor subunits 
GluR2, NR2A and 
NR2B at PSD 

• Neuronal hypertrophy 
• Reduced dendritic 

spine density 
• Increased caudate 

volume 
• Decreased C-S 

 (Peça et al., 2011) 
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circuits 
neurotransmission 

Sh3rf2+/- • Increased 
jumping and 
rearing 
behavior 

• Increased 
marble 
burying and 
digging 

• Hyperactivity 

• Abnormal dendritic 
spine development in 
hippocampus 

• Changes in 
composition of 
glutamate receptor 
subunits NR2A and 
GluR2 

• Altered AMPA 
receptor mediated 
synaptic transmission 
in CA1 hippocampus 

 (Wang et al., 
2018a) 

Tsc2f/−;Cre  

(Tsc2 
deletion in 
cerebellar 
Purkinje 
cells) 

• Increase 
marble 
burying 

• Cerebellar 
GABAergic Purkinje 
cell loss 

• Abnormalities in 
axonal pathfinding 

 (Reith et al., 2013) 

Ube3Am-/p+ • Decrease 
marble 
burying and 
rearing 

• Reversal 
learning 
deficit 
(MWM) 

• Impaired 
motor 
coordination 

• Reduced mGluR-LTD 
• Altered mGluR 

signaling 
• Changes in calcium 

dependent CAMKII 
activity in 
hippocampus 

 (Weeber et al., 
2003; Huang et al., 
2013; Pignatelli et 
al., 2014) 

VPA • Repetitive 
self-
grooming 

• Marble 
burying 

• Decrease pre-
pulse 
inhibition 

• Reduced 
social 
behaviors 

• Increased 
glutamatergic 
excitatory signaling 

• Hyperexcitable local 
connectivity 

• Decrease in 
parvalbumin-positive 
inhibitory 
interneurons 

• Elevated brain 
serotonin levels 

• Apical dendritic 
arborization 

• mGluR5 receptor 
antagonist, MPEP 

• Environmental 
enrichment 

• NMDA receptor 
antagonist 
(agmatine) 

• Betaine (methyl 
group donor in 
homocysteine 
metabolism, 
prevents 
homocysteine 

(Schneider and 
Przewłocki, 2005; 
Schneider et al., 
2006; Rinaldi et 
al., 2007; Tsujino 
et al., 2007; Snow 
et al., 2008; Mehta 
et al., 2011; Choi 
et al., 2016; Kim et 
al., 2017; 
Mahmood et al., 
2018; Huang et al., 
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complexity 
• Decreased PTEN 

expression and 
increased p-AKT 
protein levels in 
hippocampus and 
cortex 

accumulation) 2019) 

16p11+/- • Repetitive 
circling and 
climbing 

• Hyperactivity 
• Increased 

locomotion 

• Increased dopamine 
D2 receptor 
expressing striatal 
neurons 

• Decreased dopamine 
D2 receptor 
expressing cortical 
neurons  

• Synaptic function 
defects 

• Volumetric alterations 
in striatum, 
hypothalamus and 
midbrain area 

 (Horev et al., 
2011; Portmann et 
al., 2014) 

5Ko (deletion 
of 5 kainate 
receptor 
subunits) 

• Elevated self-
grooming 

• Increased 
marble 
burying and 
digging 

• Increased 
perseverative 
behavior (Y-
maze) 

• Motor 
problems 

• Impaired 
corticostriatal 
synaptic transmission 
in dorsal striatum 

• Altered 
NMDA/AMPA ratio 

• Reduced mEPSC 
frequencies 

• Reduced spine density 
of spiny projections 
neurons in dorsal 
striatum 

 

 (Xu et al., 2017) 

 1180 

Figure Legends 1181 

Figure 1. Implicated brain regions in mouse models of autism. Different mouse models of autism 1182 
exhibit alterations in various brain areas such as the striatum, cortex, thalamus, hippocampus, 1183 
cerebellum, hypothalamus and amygdala. These brain regions are involved in cortico-striatal and 1184 
limbic circuitry. Molecular and/or neuroanatomical changes in these structures are correlated with 1185 
pathophysiology of repetitive behaviors.  Some mice models implicates multiple brain regions in 1186 
pathology of restricted/repetitive behaviors. PFC, prefrontal cortex; VTA, ventral tegmental area; 1187 
SNc, substantia nigra pars compacta; SNr, substantia nigra pars reticulata; PVH, paraventricular 1188 
nucleus of hypothalamus; Cntnap2, Contactin Associated Protein-like 2 gene; FMR1, Fragile X 1189 
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mental retardation 1; Gabrb3; Gamma-aminobutyric acid receptor subunit beta-3; Hoxb8, Homeobox 1190 
protein; Itgb3, Integrin beta-3; KCNQ, Potassium voltage-gated channel subfamily; Kirrel3, Kin of 1191 
Irregular Chiasm-like 3; Lrrc4, Leucine-rich repeat-containing 4; MeCP2, Methyl CpG binding 1192 
protein 2; Ninj1, Nerve injury-induced protein-1; NL, Neuroligin; NRXN1a, Neurexin 1a; Oxtr; 1193 
Oxytocin receptor; Pcdh19, Protocadherin-19; PV; Parvalbumin; Pak2, p21 activated kinase 2; Pten, 1194 
Phosphatase and tensin homolog; Sapap3, Synapse-associated protein 90/postsynaptic density protein 1195 
95 associated protein 3; Shank, SH3 and multiple ankyrin repeat domains 3; Sh3rf2, SH3 Domain 1196 
Containing Ring Finger 2; Scn1, Sodium Voltage-Gated Channel Alpha Subunit 1; Tsc2, Tuberous 1197 
Sclerosis Complex 2; Ube3A, Ubiquitin Protein Ligase E3A; VPA, Valproic acid; 5Ko, 5 kainate 1198 
receptor subunit. 1199 

Figure 2. Neural mechanisms underlying repetitive behaviors. Increased mGluR5 signaling activates 1200 
the striatal direct pathway leading to heightened motor cortex activity inducing repetitive behaviors. 1201 
Impaired NMDA and AMPA receptors in the striatum and hippocampus also mediates stereotypic 1202 
behaviors. Cortico-striatal and PFC-VTA glutamatergic projections induces repetitive behavior. PFC 1203 
projections to the SNc causes striatal dopaminergic release promoting movement. Decrease in 1204 
interneuron activity in the cortex and increase in dopamine D2, D1 receptor expression in the 1205 
striatum leads to reduced GABAergic signaling in the cortex, enhancing motor cortical activity and 1206 
repetitive behaviors. Elevation of serotonin 5HT2A receptor signaling in the dorsomedial striatum 1207 
gives rise to stereotypic behaviors. Activation of VGLUT-positive glutamatergic neurons in 1208 
amygdala nucleus, MeA also results in stereotypic behaviors. Activation of glutamatergic projection 1209 
from BLA to ventral hippocampus leads to increase in locomotor activity. Further, activation of 1210 
lateral hypothalamic GABAergic neurons mediates increase in locomotor activity and repetitive 1211 
behaviors. Reduction in endocannabinoid 2-AG signaling in striatum leads to increase in 1212 
glutamatergic output, enhancing motor cortex activity resulting in repetitive behaviors. Low 1213 
astrocytic Ca2+ signals in the striatum elevates membrane GAT-3 expression that modulates striatal 1214 
MSN activity via reduced ambient GABA levels inducing repetitive behavior. mGluR5, metabotropic 1215 
glutamate receptor 5.  mGluR5, metabotropic glutamate receptor 5; NMDA, N-Methyl-d-aspartate; 1216 
AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; PFC, prefrontal cortex; VTA, 1217 
ventral tegmental area; SNc, substantia nigra pars compacta; SNr, substantia nigra pars reticulata; 1218 
PVH, paraventricular nucleus of hypothalamus; GABA, gamma-Aminobutyric acid; D2R, dopamine 1219 
receptor D2; D1R, dopamine receptor D1; 5HT2A, 5-hydroxy-tryptamine receptor 2A subtype; 1220 
VGAT, vesicular GABA transporter; MeA, medial nucleus of amygdala; BLA, basolateral amygdala; 1221 
2-AG, 2-arachidonoyl glycerol; GAT-3, GABA transporter 3; MSN, medium spiny neuron. 1222 

Figure 3. Possible mechanisms alleviating repetitive behaviors. Inhibition of mGluR5 signaling 1223 
inhibits striatal direct pathway via suppressing dopamine D1 receptor signaling. The reduced D1R 1224 
signaling results in decreased motor cortex activity. Inhibition of cortico-striatal and PFC-VTA 1225 
glutamatergic projections alleviates repetitive behaviors. Application of GABA agonists in the cortex 1226 
and dopamine D2R, D1R antagonist in the striatum leads to increase in GABAergic signaling in the 1227 
cortex, reducing motor cortical activity and repetitive behaviors. Application of serotonin 5HT2A 1228 
antagonist in the dorsomedial striatum also results in rescue of repetitive behavior. Activation of 1229 
VGAT-positive GABAergic neurons in amygdala nucleus, MeA reduces repetitive behaviors. 1230 
Inhibition of glutamatergic projection from BLA to ventral hippocampus results in decreased 1231 
locomotor activity. Inhibition of lateral hypothalamic GABAergic neurons leads to decrease in 1232 
locomotor activity and repetitive behaviors. Endocannabinoid 2-AG signaling in striatum leads to 1233 
reduced glutamatergic output, decreasing repetitive behaviors. Regulated astrocytes Ca2+ signals in 1234 
the striatum modulates GAT-3 activity which maintains synaptic GABA levels, regulating striatal 1235 
MSN activity and associated repetitive behavior. mGluR5, metabotropic glutamate receptor 5; 1236 
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NMDA, N-Methyl-d-aspartate; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; 1237 
PFC, prefrontal cortex; VTA, ventral tegmental area; SNc, substantia nigra pars compacta; SNr, 1238 
substantia nigra pars reticulata; PVH, paraventricular nucleus of hypothalamus; GABA, gamma-1239 
Aminobutyric acid; D2R, dopamine receptor D2; D1R, dopamine receptor D1; 5HT2A, 5-hydroxy-1240 
tryptamine receptor 2A subtype; VGAT, vesicular GABA transporter; MeA, medial nucleus of 1241 
amygdala; BLA, basolateral amygdala; 2-AG, 2-arachidonoyl glycerol; GAT-3, GABA transporter 3; 1242 
MSN, medium spiny neuron. 1243 

Figure 4. Endocannabinoid signaling in striatal neurons. DGLα synthesize 2-AG in the postsynaptic 1244 
neuron. Postsynaptic 2-AG activates presynaptic cannabinoid-1 receptor (CB1R). The activated CB1 1245 
receptor via feedback inhibition leads to suppression of glutamate release at MSN synapses, thereby 1246 
relieving repetitive behavior. However, mice with knockout of DGLα exhibit decreased striatal 2-AG 1247 
levels, resulting in unrestricted synaptic glutamate release via absence of feedback inhibition, thereby 1248 
leading to elevated grooming behavior in mice. Impaired endocannabinoid signaling is involved in 1249 
alteration of striatal activity, contributing to development of repetitive behavior. CB1R, cannabinoid 1250 
type 1 receptor; DGLα, diacylglycerol lipase alpha; 2-AG, 2-arachidonoyl glycerol; dMSN, direct 1251 
pathway medium spiny neurons. 1252 

Figure 5. Astrocytic regulation of synaptic glutamate and GABA levels. Normal astrocytic Ca2+ 1253 
signals modulate GAT-3 levels in the presence of Rab11a GTPase mediating GAT-3 endocytosis. As 1254 
a result, controlled ambient GABA levels in the synapses regulate striatal MSNs activity, resulting in 1255 
normal behavior. Reduced striatal astrocyte Ca2+ signaling contributes to elevated self-grooming 1256 
behavior via altered striatal MSN activity. Astrocytes also regulate synaptic glutamate levels via 1257 
transporters like GLT-1. Elevated glutamate levels in the extracellular space induces over activation 1258 
of glutamate receptors resulting in excitotoxicity. Astrocytes provides protection against this 1259 
excitotoxicity by clearance of synaptic glutamate via glutamate uptake transporters. In astrocytes, 1260 
glutamate is converted to glutamine that acts as a precursor for re-synthesis of glutamate in neurons, 1261 
mediating both uptake and release of glutamate. Astrocytes regulate glutamate and GABA in the 1262 
synapse, thereby modulating neuronal activity and behavior. GABA, gamma-Aminobutyric acid; 1263 
GAT-3, GABA transporter 3; GLT-1, glutamate transporter 1; Rab, small Rab GTPase.  1264 
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