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Abstract
We study the stable marriage problem in two-sided markets with randomly generated preferences.
Agents on each side of the market are divided into a constant number of “soft” tiers, which capture
agents’ qualities. Specifically, every agent within a tier has the same public score, and agents on each
side have preferences independently generated proportionally to the public scores of the other side.

We compute the expected average rank which agents in each tier have for their partners in the
man-optimal stable matching, and prove concentration results for the average rank in asymptotically
large markets. Furthermore, despite having a significant effect on ranks, public scores do not strongly
influence the probability of an agent matching to a given tier of the other side. This generalizes the
results by Pittel [20], which analyzed markets with uniform preferences. The results quantitatively
demonstrate the effect of competition due to the heterogeneous attractiveness of agents in the
market.
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1 Introduction

The theory of stable matching, initiated by Gale and Shapley [9], has led to a deep under-
standing of two-sided matching markets and inspired successful real-world market designs.
Examples of such markets include marriage markets, online dating, assigning students to
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46:2 Tiered Random Matching Markets

schools, labor markets, and college admissions. In a market matching “men” to “women” (a
commonly used analogy), a matching is stable if no man-woman pair prefer each other over
their assigned partners.

A fundamental issue is characterizing stable outcomes of matching markets, i.e. the
outcome agents should expect based on market characteristics. Such characterizations are not
only useful for describing outcomes but also likely to be fruitful in market designs. Numerous
papers so far have studied stable matchings in random markets, in which agents’ preferences
are generated uniformly at random [20, 16, 3, 22]. This paper contributes to the literature
by expanding these results to a situation where preferences are drawn according to different
tiers of “public scores”, generalizing the uniform case. We ask how public scores, which
correspond to the attractiveness of agents, impact the outcome in the market.

Formally, we study the following class of tiered random markets. There are n men and n
women. Each side of the market is divided into a constant number of “soft tiers”. There is a
fraction of εi women in tier i, each of which has a public score αi. And there is a fraction of
δj men in tier j, each of which has a public score βj . For each agent we draw a complete
preference list by sampling without replacement proportionally to the public scores of agents
on the other side of the market.1 So a man’s preference list is generated by sampling women
one at a time without replacement according to a distribution that is proportional to their
public scores. Using α, ε to denote the vector of scores and proportions of tiers on the
women’s side, we see that the marginal probability of drawing a woman in tier i is αi/(nε ·α).
An analogous statement holds for the tier configuration β, δ of the men. These preferences
are a natural next-step beyond the uniform distribution over preference lists, and provide
a priori heterogeneous quality of agents while still being tractable to theoretical analysis.

Our primary goal is to study the average rank of agents in each tier under the man-optimal
stable matching, with a focus on the asymptotic behavior in large markets. The rank of an
agent is defined to be the index of their partner on their full preference list, where lower is
better. Additionally, we prove results on the match type distribution, i.e. the fraction of tier
i women matched to tier j men (for each i, j).

We show that, for large enough markets, the following hold to within an arbitrarily small
approximation factor:
(i) (Theorem 4.8.) With high probability, the average rank of men in tier j is

ε ·α
αmin

· 1
δ · β−1 ·

lnn
βj

.

(ii) (Theorem 5.1.) With high probability, the average rank of women in tier i is

(δ · β)(δ · β−1)αmin

αi

n

lnn.

(iii) (Theorem 5.2.) The probability that a woman in tier i matches to a man in tier j is δj .

In the above, β−1 = {1/βj} denotes the vector of the reciprocals of men’s public scores,
αmin denotes the smallest public score on the women’s side, and x ·y denotes the dot product
of the vectors x and y.

1 These are also termed popularity-based preferences [10, 13] and also equivalent to generating preferences
according to a Multinomial-Logit (MNL) induced by the public scores.
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Intuition and Observations. As in the case of uniform preferences [20], in the man-optimal
stable outcome, men get a much lower rank than women. Indeed, both men and women get
the same order of rank as in the uniform case (lnn and n/ lnn, respectively). This in itself
is an interesting consequence of this work – a constant tier structure affects the market only
up to constants. This fact also highlights that determining these constants is an interesting
area for investigation, as the constants capture how the outcome of the market changes with
respect to the public scores. The first observation we make is that agents on each side get a
rank inversely proportional to their public score.

Perhaps more interesting is the following observation: The rank of both sides depends
on the tier structure of the other side, but each tier is affected the same amount by the
tier parameters of the other side. This is closely related to the fact that the probability of
a woman matching to a man in tier j is proportional to only the number of men in tier j
(regardless of the tier the woman lies in). Moreover, both ε ·α/αmin and (δ · β)(δ · β−1) are
always greater than or equal to one2. Thus, in these markets, any heterogeneity in the public
scores of one side harms the average ranks of the other side (but does not significantly affect
the likelihood that an agent matches to a certain tier on the other side).

Another interesting feature is the following: While the average ranks for men’s tiers
depend on public score distributions on both sides of the market, the average rank of women
in tier i depends only on the ratio between αi and the public score αmin of the bottom tier
of women (and the distribution of public scores on the men’s side). Intuitively, the rank of
the men depends on the distribution of scores of the women because men are competing to
avoid being matched to the lowest tier of women.

To elaborate on that last point, let us first consider the total number of proposals made
during the man-proposing deferred acceptance process (DA). The algorithm will terminate
when the last woman receives a proposal. Naturally one would expect that this woman will
belong to the bottom tier. Therefore, using standard coupon collector arguments, the total
number of proposals made to women in the bottom tier until they all receive a proposal is
expected to be (εminn) ln(εminn), where εmin is the fraction of women in the bottom tier.
These proposals are a εminαmin/ε · α fraction of the total proposals, so one expects the
number of total proposals to be

(εminn) ln(εminn)
εminαmin/ε ·α

= ε ·α
αmin

· n lnn−O(n).

This introduces the factor of ε ·α/αmin in result (i) on the men’s ranks (i.e. the number of
proposals per man).

On the other hand, the probability that one of these proposals goes to a woman in tier i
is αi/(nε ·α), implying that such a woman should receive roughly (αi/αmin) lnn proposals.
Thus, for a given woman, the increase in the total number of proposals caused by the tier
proportions ε is exactly canceled out by the likelihood that a proposal goes to that woman,
and the only thing that matters is the woman’s score (relative to the bottom tier). If men
are uniform, women should then expect rank roughly (αmin/αi)(n/ lnn), which helps explain
the corresponding factors in result (ii).

Consider now the public scores of the men, and for simplicity assume that the bottom tier
of men has score 1. Suppose for the sake of demonstration that every time a man with public
score βj proposes to a woman who is already matched, this man is βj times more likely to

2 To prove (δ · β)(δ · β−1) ≥ 1, use Jensen’s inequality to conclude that
∑

j
δjβj ≥

(∑
j
δjβ

−1
j

)−1.
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46:4 Tiered Random Matching Markets

be accepted than a man with than a man with public score 1.3 We would expect that such
a man makes a 1/βj fraction fewer proposals before his next acceptance, and indeed 1/βj

fewer proposals overall. Let S be the total number of proposals, let rj denote the rank of
a man in tier j, and rmin the rank of the bottom tier of men. If every tier of size δjn each
accounts for a share of proposals proportional to 1/βj , then we should have

S =
∑

j

(nδj)β−1
j rmin =⇒ rmin = S

nδ · β−1 , rj = S

(nδ · β−1)βj
,

which introduces the factor of 1/((δ · β−1)βj) in result (i) on the men’s rank.
The final remaining factor in our results is (δ · β)(δ · β−1) in result (ii). Deriving this

term requires reasoning about the number of proposals from each tier of men received by
a fixed woman w. Building from the previous paragraph, we reason that each of the δjn

men in tier j makes a number of proposals proportional to 1/βj . Each such proposal has
the same probability of going to w, regardless of the tier j. So the number of proposals w
receives from tier j men is proportional to δj/βj . The factor (δ · β)(δ · β−1) then arises for
somewhat technical reasons (described in Section 5) which have to do with the way women
generate their preference lists.

We now describe how result (iii), which may seem somewhat more mysterious than the
other results, emerges as a corollary of computing the ranks women receive. We argued
above that a woman w in tier i receives approximately (δj/βj)Ui proposals from men in tier
j, for some value of Ui independent of j. Recall that w applies weight βj to each proposal
she sees from a man in tier j. Moreover, the identity of w’s favorite proposal is independent
of the order in which w saw proposals. Thus, the probability that w’s favorite proposal (i.e.
the proposal of the man she matches to) came from tier j is approximately (δjUi)/Ui = δj ,
which is independent of βj , as well as independent of the tier w is in. Thus, up to lower order
terms, the distribution of match types is the same as it would be in a uniformly random
matching market, and the match is not assortative.

Intuitively, result (iii) arises when men make enough proposals to offset any disadvantage
(in the type of their match) they have due to public score. Due to the highly connected and
relatively competitive nature of our markets, men in the lowest tier make more proposals,
but they are not more likely to end up matched with lower tier agents. Put another way,
men in lower tiers are less likely to attain matches they idiosyncratically like, but often settle
for a high-quality agent which is low on their personal preference list. This indicates that
public scores that differ by constant weight do not provide any significant a priori predictive
power over the matches agents receive. In particular, agents with lower public scores can
still hope to achieve high-tier matches if they consider enough options.

Techniques. Our proofs require developing some technical tools that may be of independent
interest, especially when we reason about the ranks achieved by the men. We build on the
analysis of DA from [23, 20, 13, 3] to handle public scores rather than just uniform random
preferences. As in these previous works, a key step in our proof is letting all men but one
(call him m) first propose and match though DA, and then tracking the proposals of m (this
works because DA is independent of the order of proposals). For demonstration purposes,

3 As we discuss below, this approximation is only valid if the woman is already matched with a man
she ranks highly. A major technical step in our proof is showing that, in certain situations, “enough”
women are “matched well enough” for this approximation to be used.
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let’s call the proposals before man m the “setup”. A key fact in previous works is that
the distribution of proposals made by m is identical for every man, and moreover that the
distribution of setups is identical as well. This fails to hold in tiered random markets, and
thus we must develop new techniques.

We prove that, for “most” setups, the rank a man can achieve is approximately given
by a certain geometric distribution, whose parameter p is essentially the probability that a
proposal by that man will be accepted. We then prove that, up to lower order terms, this
success parameter scales up with the public score of the men. This gives the fact that the
rank of men is inversely proportional to public score.

Characterizing the setups where our proof goes through requires a technical analysis,
and we term the setups which work “smooth matching states”. The most crucial thing
we need for these setups is that many women are matched to partners they rank highly,
which helps us prove that 1) men are likely to remain matched to their first acceptance (so
our approximation with a geometric distribution is valid), and 2) a man with fitness β is
approximately β times more likely to be accepted every time. For details, see Section 4.

Finally, to prove that the average rank of men within a tier concentrates, we need to
show the correlation between the ranks of different men is not too large. Thus, we track the
proposals of the last two men to propose, and find that the joint distribution of the ranks of
these men can be approximated by a pair of independent geometric distributions. Intuitively,
this is because men do not propose to very many women overall, and thus the last two men
are unlikely to interfere with each other as they make proposals.

The crucial aspects of our model are that preferences of each agent are independent and
identically distributed, that preference weights are constant, and that the market is roughly
in balance. While our techniques are useful to reason about markets which do not have these
properties, the results are not nearly as clean; indeed the tier structure simplifies our analysis,
but most of it goes through if each agent has an individual, constant, bounded public score.

1.1 Related literature
Several papers have studied matching markets with complete preference lists that are
generated uniformly at random. Coupon collector techniques are used in [23] to upper bound
the men’s average rank by lnn. The papers [20, 16, 21] analyze further balanced markets
with n men and n women. They find that in the man-optimal stable matching in balanced
markets, men and women match on average to their lnn and n

ln n ranks, respectively. Our
results generalize these findings to markets with preferences induced by public scores, thus
incorporating much more heterogeneity in the market.

Several papers study markets with uniformly drawn preferences and an imbalance between
men and women ([3, 22, 6]). These papers find that in any stable matching the average
ranks of men and women are similar to the average ranks under the short-side-proposing
DA. Additionally, [14] investigates the relation between the imbalance and the length of
preference lists (though the model is still uniform for each agent). This paper does not
consider imbalanced markets but we believe that similar techniques to those we develop will
be useful to reason about unbalanced tiered random markets.

Several papers look at random matching markets in which preferences are generated
based on public scores [13, 17, 1]. These papers restrict attention to the size of the core
(a measure of the difference between the man-optimal and woman-optimal outcome) and
strategic manipulation of agents under a stable matching mechanism. Key assumptions in
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46:6 Tiered Random Matching Markets

these papers generate outcomes which leave many agents unmatched. In particular, their
models either assume that preference lists of men are of constant length, or, alternatively,
one side has many more agents than the other.4

Closely related to this paper is [10], which primarily studies a special case of highly
correlated popularity preferences which is termed “geometric preferences”. While our work
focuses on the rank agents achieve in the man-optimal outcome (a canonical stable matching),
[10] focuses on the size of the core (more specifically, they study the number of stable partners
that agents have in typical stable matchings) using techniques specialized to geometric
preferences.

Other papers have addressed tiered matching markets, especially in market design settings.
However, these papers mostly study “hard tiers”, i.e. such that agents in higher tiers are
deterministically ranked above lower tiers by every agent on the other side. Examples
include [4, 2]. [18] also considers a certain restricted tiered model of cardinal utilities (which
is incomparable with our model), focusing on which tier of agents match to which tier.

Our contribution to the literature is a detailed study of “soft tiers”, a natural special
case of the popularity preferences of [13, 17, 10]. In cases where each agent’s utility for each
match on the other side is independent and identically distributed, popularity preferences
are the natural next step beyond uniform markets, as they model situations where agents
on each side have significant but non-definitive variation in a priori quality. Our techniques
build on the large body of work analyzing the “proposal dynamics” of deferred acceptance for
random preferences, such as [23, 13, 3, 10]. Our results give insight into how constant-factor
preference biases affect stable matching markets, including the first explicit calculations of
expected rank beyond uniform markets.

The rest of the paper is organized as follows: Section 2 offers basic definitions and
preliminaries for our discussion. Section 3 studies the tiered coupon collector process, which
serves as an important coupling process for the deferred acceptance algorithm. Section 4
and 5 present the core results of this paper, namely the average rank among tiers of men
and women. For missing proofs, see the full version of this paper.

2 Definitions and Preliminaries

A matching market consists of a finite set of men M and a finite set of women W . Each
man (woman) has a complete and strict preference list over women (men). A matching
is a mapping µ : M ∪W → M ∪W such that: for every m ∈ M , µ(m) ∈ W (or µ(m) is
undefined), for every woman w ∈W , µ(w) ∈M (or µ(w) is undefined), and for every m ∈M
and w ∈ W , µ(m) = w if and only if µ(m) = w. A matching µ is stable if no man-woman
pair who are not matched in µ prefer each other to their matched partners.

It is well-known that there is a unique man-optimal stable matching, which can be found
using the man-proposing deferred acceptance algorithm (DA). While this algorithm does not
fully specify an execution order, it is a classically known result that the order does not affect
the final outcome.

I Lemma 2.1 ([9, 19]). The same proposals are made in every run of DA, regardless of
which man is chosen to propose at each step.

4 Some papers additionally consider manipulations in more restricted randomized settings [7] or in
deterministic (worst case) settings [11].
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Algorithm 1 (Man-Proposing) Deferred Acceptance Algorithm (DA).

1 Initialize matching µ to be empty (i.e. every agent’s partner is undefined);
2 Initialize U = M to be the set of all unmatched men;
3 while |U| > 0 do
4 Choose any m ∈ U ;
5 Let m propose to his most preferred woman w to whom he has not made a

proposal yet;
6 if w prefers m to µ(w) (or if µ(w) is undefined) then
7 if µ(w) is defined then Add µ(w) to U ;
8 Remove m from U ;
9 Assign µ(w) = m;

10 end
11 end

We study the man-optimal stable matching in a class of tiered random markets, which will
be defined below. We will assume that |M | = |W | and that no agent finds any other agent
on the other side unacceptable. We will also assume that each side draws their preferences
from an identical and independent underlying distribution, and moreover these preferences
are generated by repeatedly sampling without replacement from a fixed distribution on the
agents of each side. In [13, 10], this assumption is termed “popularity-based preferences”,
with the weight of an agent in the distribution intuitively indicating their popularity for
agents on the other side.

Our main goal is to study randomized matching markets with a constant number of
constant weight tiers of agents on each side. For this entire paper, we consider the tier
structure to be defined by fixed proportions ε, δ of agents in each tier and constant weights
α,β for each tier, and we investigate the outcome of the man-proposing DA as n→∞.

I Definition 2.2. Consider constant vectors α, ε ∈ Rk1
>0 and β, δ ∈ Rk2

>0, where ‖ε‖1, ‖δ‖1 =
1. A tiered matching market of size n with respect to α, ε,β, δ is defined by generating
agents’ preference lists as follows:

The set of n women W is divided into tiers T1, . . . , Tk1 , of size |Ti| = εin each5. Define
a distribution W on women such that a woman in tier i is selected with probability
proportional to αi. That is, the weight of w ∈ Ti in W is αi/(nε · α) (which we often
denote by πi).
The set of n men M is divided into tiers T1, . . . , Tk2 , of size |Tj | = δjn each. Define a
distributionM on men such that a man in tier j is selected with probability proportional
to βj. That is, the weight of m ∈ Tj in M is βj/(nδ · β).

For each man m independently, women are repeatedly sampled from W without replacement,
and the order in which women are selected is m’s preference list. Preferences for the women
are analogously drawn over the distributionM. The rank that a man has for a woman w is
the index of w on his preference list (where lower is better).

5 Note that, for most vectors ε, δ, many values of n will produce tier sizes which are not integers. However,
as all our results are continuous in ε, δ this is not a problem – for any particular fixed n, each tier size
can be rounded in a way that effectively just changes ε, δ by a tiny amount, and our results will still
hold as written as n→∞.

ITCS 2021



46:8 Tiered Random Matching Markets

We refer to each αi as the weight or public score of the women in tier i, and similarly for
the men. For simplicity of certain arguments, we assume that each αi ≥ 1 and each βj ≥ 1
(although for clarity of our results, we do not assume that the smallest weight is exactly 1).
We write αmin for the weight of the bottom tier of women, and εmin for the corresponding
tier proportion.

Using a simple generalization of the “principle of deferred decisions” used in [15], we can
arrive at a characterization of the random process of running DA with a tiered matching
market.

I Lemma 2.3. The distribution of runs of DA for a tiered matching market can be generated
as follows: For the men, every time a man is chosen to propose, he samples a woman at
random from W, and repeats this until he samples a woman who he has not yet proposed to.

For the women, suppose w has seen proposals from a set of men p(w), and let Γw =∑
m∈p(w) β(m), where β(m) denotes the public score of a man m ∈ p(m). Then if a proposal

from a man m∗ with public score β∗ arrives, w accepts the proposal from m∗ with probability

β∗
β∗ + Γw

.

Proof. The above formula gives the probability that m∗ is chosen as w’s favorite out of
the set of men p(w) ∪ {m∗}. The only additional observation we need to make is that the
probability that m∗ is the new favorite is independent of the identity of the old favorite. J

We often call Γw the total “weight of proposals” woman w has seen at some point during DA.

2.1 Deferred acceptance with re-proposals
With respect to any popularity-based model of preferences, we can define a procedure
analogous to DA. In our case, we will show that the difference between DA and this
procedure is indeed small.

I Definition 2.4. Consider any random matching market with men’s preferences determined
by sampling from a distribution W over women. The deferred acceptance with re-proposals
algorithm is defined as being identical to Algorithm 1, except

Every time a man is chosen to propose to a woman, he draws a woman from W with
replacement, and may propose more than once to a single woman.
Women’s preferences are consistent throughout proposals from the same man (so if a
woman rejected a man before, she will reject him again).

Since re-proposals are ignored, this process will always yield the same outcome as
algorithm 1.

Notation. We write x = (1 ± ε)y to mean (1 − ε)y ≤ x ≤ (1 + ε)y. We let ε denote an
arbitrarily small constant greater than 0, while ε and εi denote the tier parameters of the
women. We let αmin denote the smallest public score for the women’s side, and εmin denotes
the corresponding tier proportion. We let v ·w denote the inner product of vectors v,w.
We denote the exponential and geometric distributions by Exp(λ) and Geo(p), respectively.
We denote the fact that a random variable X is a draw from a distribution D by X ∼ D.
We use X � Y to denote the fact that X is statistically dominated by Y (i.e. for all t ∈ R,
we have P [X ≥ t] ≤ P [Y ≥ t]). We let Cov(X,Y ) denote the covariance of X and Y . We
write f(n) = Õ(g(n)) if there exists a constant k such that f(n) = O(g(n) logk(g(n))).
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3 The Coupon Collector and the Total Number of Proposals

Fix a tier structure α, ε corresponding to men’s preferences over the women. Consider
running deferred acceptance with re-proposals. Recall that each man samples a woman in tier
i with probability πi = αi/(nε ·α) each draw. Define πmin = αmin/(nε ·α) as the probability
of drawing a woman in the lowest tier (and keep in mind that πmin scales like O(1/n)).

The core tool we use to reason about the total number of proposals in DA is the classically
studied coupon collector process. In particular, we study this process when coupons from
different tiers are drawn with a constant-factor difference in probability.

I Definition 3.1. Given a probability distribution (pi)i∈[n], we define the coupon collector
with unequal probabilities as follows: once every time step, an integer from [n] is drawn
independently and with replacement according to distribution (pi)i∈[n]. The coupon collector
random variable with respect to (pi)i∈[n] is defined as the number of total draws required
before every integer in [n] has appeared at least once.

The coupon collector T which we are interested in is defined by taking the distribution W
of men’s preferences.

We will show in Section 3.1 that, in our case, this random process is also very close
to that of DA (without re-proposals). For now, we simply bound the expectation of the
coupon collector (with the proof deferred to the full version). Note that similar probabilistic
problems have been considered before (see e.g. [5, 8]) but we include our own full proofs in
the full version for completeness.

I Theorem 3.2. Let T denote the number of draws in a coupon collector process with weights
proportional to W. We have

E [T ] =
(
1±O(1/ lnn)

)ε ·α
αmin

n lnn.

I Remark 3.3. While we are mostly interested in the asymptotic performance of these
matching markets, we make one comment here that the above big-O notation hides a
constant factor of order ln(1/εmin). For small values of εmin, this can be much larger than
lnn for most realistic market sizes. Note that this error term already showed up in the
intuition given in Section 1, where our estimate for the total number of proposals had an
additive term of O(ln(εmin)n). For more information, see the discussion of coupon collector
lower bound in the full version of this paper.

3.1 The Total Number of Proposals in Deferred Acceptance
Let S = Sn denote the total number of proposals made a run of DA with random preferences
given by our tiered market. As before, let T = Tn denote the distribution of a coupon
collector with distribution W. As in many prior studies of randomized deferred acceptance,
our starting point is the fact that S is statistically dominated by T :

The connection to stable matchings is the following very simple observation, which has
been used in many previous works [16, 20]:

I Proposition 3.4. The coupon collector random variable T is distributed identically to the
total number of proposals made in deferred acceptance with re-proposals (regardless of the
preferences that women have for men).

Moreover, if S is the number of proposals in DA, then S � T (i.e. S is statistically
dominated by T ).

ITCS 2021



46:10 Tiered Random Matching Markets

Proof. First, recall that DA terminates as soon as every man is matched. Observe that
women never return to being unmatched once they receive a single proposal. Because
the market is balanced (i.e. |W | = |M |), this means DA will terminate as soon as every
woman has been proposed to. Moreover, because re-proposals are allowed, every proposal
is distributed exactly according to W. Thus, ignoring the identity of the man doing the
proposing, T is distributed exactly according to the coupon collector random process.

Furthermore, we can recover the exact distribution S of proposal in DA simply by
ignoring each repeated proposal in T . Thus, S ≤ T for each run of deferred acceptance with
re-proposals, so S � T . J

We proceed to show that the upper bound provided by T is essentially tight, i.e. there
is not a big difference between T and S. The key step will be to upper bound maximum
number of distinct women any man proposes to in S, and thus upper bound the probability
that any proposal in T is a repeat for the man making the proposal. Crucially, this lemma
will have to account for the preferences of the women (which up until this point have been
ignored, but which play a significant role in the distribution of proposals in DA). Recall that
we denote the sizes of the tiers of the men by the vector δ, and the public scores of the men
in each tier by β.

I Lemma 3.5. Consider running DA with all men except m∗, and suppose that at most
O(n lnn) proposals are made during this process. Afterwards, consider m∗ joining and run
DA until the end. Then for any C ≥ 0, with probability 1− 1/nC , the number of proposals
made by m∗ is at most O(C ln2 n).

Proof. This proof follows a similar logic as the proof of Lemma B.4 (ii) in [3]. Suppose m∗
has public score β∗, and that he proposes at the end (and O(n lnn) prior proposals have
been made). We proceed as follows:
1. When m∗ makes a proposal, he will choose a woman who he has not yet proposed to. For

some fixed proposal index i of m∗, let’s denote the set of all women m∗ has not proposed
to by W∗, and denote byW∗ the distribution of m∗’s next proposal, i.e. a sample over W∗
weighted by the public scores αi. For a women w denote her sample weight by α(w) and
the set of proposals she has received by p(w). Further denote by Γw =

∑
m∈p(w) β(m)

the sum of the public scores of men who have proposed to w.
Suppose that |W∗| ≥ n/2, i.e. that m∗ has not yet proposed to over half the women.
Using the assumption that the total number of proposals made is at most O(n lnn), we
can bound the expected total weight of proposals women have seen by

E
w∼W∗

[Γw] =
∑

w∈W∗
α(w)Γw∑

w∈W∗
α(w) ≤

αmax
∑

w∈W Γw

|W∗|αmin
≤ αmaxβmax ·O(n lnn)

|W∗|αmin
≤ O(lnn).

Thus, by lemma 2.3, the probability that the proposal by m∗ will be accepted is

p1 := E
w∼W∗

[
β∗

β∗ + Γw

]
≥ β∗
β∗ + Ew∼W∗ [Γw] ≥ Ω(1/ lnn).

where the first inequality is due to Jensen’s inequality.
2. If m∗ proposes to w and is accepted, then the subsequent rejection chain can either end

at the last woman without proposals, wlast, or cycles back to w who this time rejects m∗.
Notice that for each subsequent proposal, the ratio between the probability that it goes
to wlast (in which case the process will be terminated) and the probability that it returns
to w is at most αmax : αmin (and possibly less if the proposing man has already proposed
to w). Hence, the probability that the chain ends at the last women wlast is bounded
below by
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p2 := αmin

αmax + αmin
≥ Ω(1).

Note that this is ignoring the chance that a new proposal by w is rejected, but it still
suffices for a lower bound.

3. The probability that m∗ makes more than K ln2 n proposals is thus bounded above by

(1− p1p2)K ln2 n ≤ exp(−p1p2K ln2 n) = exp(−Ω(K lnn)) ≤ n−C

as long as we choose K = Ω(C) large enough. J

I Corollary 3.6. For any constant C ≥ 1, with probability 1− 1/nC , the maximum number
of proposals made by any man in DA is O(C ln2 n).

Proof. By 3.4 and the upper bound for coupon collector (see the full version of this paper),
the total number of proposals made in DA is O(Cn lnn) with probability 1 − 1/nC . In
particular, if we consider any m∗ and let all other agents propose, this will be true. Recall
that by lemma 2.1, DA is independent of the order in which men are chosen to propose.
Thus, for each man m∗ we can apply lemma 3.5 to get that, with probability 1− 1/nC+1,
m∗ makes fewer than O((C + 1) ln2 n) = O(C ln2 n) proposals. Taking a union bound over
the n men gets the desired result. J

I Remark 3.7. Both of the above results hold for deferred acceptance with re-proposals as
well as deferred acceptance. Indeed, even with re-proposals, deferred acceptance will be
independent of the order of proposals (as re-proposals are ignored by the women). Moreover,
the logic required to prove points 1. and 2. of the proof of lemma 3.5 is only easier to prove
when men sample over all of W as opposed to just the set W∗.

The above result is enough to show that proposition 3.2 holds for DA as well for the
coupon collector, because repeated proposals are at most a O(ln2 n/n) = o(1) fraction of
total proposals in deferred acceptance with re-proposals. We defer the proof to the full
version.

I Theorem 3.8. Let S be the total number of proposals made in DA with tiers of women
ε,α, and arbitrary constant tiers on the men. We have

E [S] =
(
1−O(ln2 n/n)

)
E [T ] =

(
1±O(1/ lnn)

)ε ·α
αmin

n lnn.

4 Rank Achieved by the Men

Up until this point, our arguments have only crudely considered the preferences women have
for men. Due to the asymmetry across the different tiers, this means we cannot yet calculate
the expected rank men get.

Consider a man m in tier j. Our main goal is to prove that the rank of m is inversely
proportional to βj . As in 3.5, the core tool of our proof will be the fact that deferred
acceptance is independent of execution order (by 2.1), and thus we can wait until all other
men have finished proposing and found a match before letting m propose. Once this is done,
the major ideas are

ITCS 2021
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1. Suppose m has public score 1, and define

p = E
w∼W

[P [w accepts a proposal from m]] .

Note that, ifm were able to propose to a woman independently multiple times, the number
of proposals until m gets his first acceptance would be distributed exactly according to
Geo(p), and the expected value would be 1/p. We show that (because men make much
less than n proposals) the difference due to re-proposals is not large.

2. Because m is the last man to propose, most women have already seen many proposals
and arrived at a decent match. When m gets his first acceptance, he should thus be likely
to stay where he is. We show that, while the probability of m proposing to more women
is non-negligible, it still contributes only O(1) in expectation. So m’s expected rank is
1/p up to lower-order terms.

3. Another consequence of a woman w receiving a large number of proposals is the following:

P [w accepts a proposal from m′ with weight β]
≈ β · P [w accepts a proposal from m with weight 1] .

simply by 2.3 and the fact that β/(β + Γw) ≈ β · 1/(1 + Γw) for Γw (the sum of public
scores of men who proposed to w) large. Thus, if m had public score β, the effective value
of p would be approximately βp, and the expected rank of m would become approximately
1/(βp). In other words, while we are not able to calculate p directly, we show that p
scales properly with m’s score.

4. Finally, we prove that the above holds for most sequences of proposals of men before m,
and thus holds in expectation over the entire execution of DA. Note that the distribution
of proposals before m changes slightly depending on which tier m is chosen from, but in
a large market, we do not expect this to make a big difference.

The biggest difference between the above proof sketch and its implementation is that we
focus on two men proposing at the end of DA. This serves to address point 4 above – we
are able to show that, for the vast majority of sequences of proposals before the last two
men, their expected ranks are proportional to the ratio of their scores. Thus, this ratio holds
in expectation over all of DA. Focusing on two men also allows us to bound the correlation
between the two men’s ranks, which is crucial for our concentration results.

In our proof, we also formalize what it means for all men other than two to propose,
with the notion of a “partial matching state”. Moreover, we give the term smooth to those
states in which the proof sketch above goes through. Most crucially, in smooth matching
states, “most women have received a lot of proposals”, so that the reasoning in points 2
and 3 are valid. Additionally, to address certain technicalities (such as being able to bound
the magnitude of the expected number of proposals) we define smooth matching states to
not have too many proposals in total.

4.1 Smooth matching states
I Definition 4.1. Given a set of men L, we define the partial matching state excluding L,
denoted µ−L, as follows: Run DA with men in M \ L proposing to W , and keep track of
which proposals were made. More specifically, if µ is the (partial) matching resulting from
running DA with a set of men M \ L and set of women W , and P = {(mi`

, wj`
)}` is the set

of all tuples (mi, wj) where mi proposed to wj during this process, then µ−L = (µ, P ).
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In a random matching market, we consider this state as a random variable. In a tiered
random matching market, to specify this random variable, it suffices to give a multiset of
tiers which the men in L belong to. For a fixed µ−L, denote by Γw the total sum of weights
which woman w received in P .

Note that the state µ−L keeps track of which proposals have been made (in addition to
which current matches are formed) before the men in L propose.

I Definition 4.2. We call a partial matching state µ−L smooth if the following hold for
some constants C1, C2, C3 > 0:
1. At most C1n lnn proposals were made to women overall.
2. At most n1−C2 women have received fewer than C3 lnn proposals.

The constants C1, C2, C3 in the above depend on the tier structure, and can simply
be chosen such that the following proposition holds. Our arguments will go through if
smoothness holds with respect to any C1, C2, C3 which are held constant as n→∞.

I Proposition 4.3. Let L = {m1,m2} be any pair of men. After running deferred acceptance,
µ−L is smooth with probability 1− n−Ω(1).

Once we know that µ−L is smooth, our two main tasks are to show that men’s ranks scale
inverse-proportionally to their score, and that the ranks of different men do not correlate too
highly. These are the main technical novelties of the paper. The exact details are given in
the full version.

I Proposition 4.4. Suppose µ−L is smooth, and let r1 and r2 be the ranks of m1 and m2
after running DA with m1 and m2 starting from µ−L. We have

EL[r1] =
(
1±O(1/ lnn)

)β2

β1
EL[r2].

where we use EL [] to denote taking an expectation over the random process of m1,m2
proposing in DA after starting from state µ−L.

I Proposition 4.5. Suppose µ−L is smooth, and let r1 and r2 be the ranks of m1 and m2 after
running DA with m1 and m2 starting from µ−L. Then we have Cov(ri, rj) = O(ln3/2 n).

4.2 Expected rank of the men
In this subsection, we show that overall, expected rank scales proportionally to fitness (in
addition to under smooth matching states). This allows us to compute the expected rank of
the men. The proofs (deferred to the full version) follow by carefully keeping track of the
(limited) effect of non-smooth matching states on the expectation.

I Proposition 4.6. Let ri and rj denote the rank of a man in tiers i and j. Then we have

E [ri] =
(
1±O(1/ lnn)

)βj

βi
E [rj ] .

I Theorem 4.7. Let β−1 denote the vector (1/βi)i. For each tier j, the rank rj of men in
tier j has expectation

E [rj ] =
(
1±O(1/ lnn)

) E [S]
(nδ · β)βj

=
(
1±O(1/ lnn)

)ε ·α
αmin

· 1
(δ · β−1) ·

lnn
βj

.
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Finally, we also use our results on the covariance of men’s ranks to prove concentration.
We defer the proof to the full version. At a high level, the proof follows simply because
the weak correlation implied by 4.5 means that the variance of the average of the ranks is
lower-order (compared to its expectation), so Chebyshev’s inequality can be used.

I Theorem 4.8. For any tier j, let RM

j = (δjn)−1∑
m rm denote the average rank of men

in tier j. Then, for any ε > 0,

R
M

j = (1± ε)ε ·α
αmin

· 1
(δ · β−1) ·

lnn
βj

with probability approaching 1 as n→∞.

5 Expected rank of the women and the distribution of match types

5.1 Expected rank of women
We saw in Section 4.2 that men achieve ranks proportional to the inverse of their public
scores. In this section, we turn to the women.

To study the rank the women achieve, we need to reason about the number of proposals
women receive on average. By theorem 4.8, we expect that for each tier j of men, the δjn

men make a total number of proposals approximately

δjβ
−1
j

δ · β−1 ·
α · ε
αmin

n lnn.

Each of these proposals goes to a woman in tier i with probability πi = αi/(nε ·α), so we
expect such a woman to receive approximately (δjβ

−1
j )/(δ · β−1) · (αi/αmin) lnn proposals

from men in tier j. Each of these men has public score βj , so we expect Γw, the total sum of
public scores of men proposing to w, to be roughly

Γw ≈
∑

j

βj

δjβ
−1
j

δ · β−1 ·
αi

αmin
lnn = αi lnn

αmin(δ · β−1) .

It is not immediately clear how the above value of Γw should translate to the rank that
w gets. Unlike in the case where men are uniform, we cannot simply divide n by the number
of proposals which w receives.

Indeed, suppose a woman w receives exactly the total sum of weight Γw predicted above.
What should her rank be? This is essentially the following: across all tiers of δjn men each,
how many do we expect to beat her best proposal so far? The probability that w ranks a
man m higher than her match, when viewed according to 2.3, is a function only of the weight
β(m) of m and the weight of proposals Γw which w received. Specifically, this probability is
β(m)/(β(m) + Γw) ≈ βj/Γw. Summing this across all the men, we get

E [rw] ≈
∑
m

β(m)
β(m) + Γw

≈ nδ · β
Γw

≈ (δ · β)(δ · β−1)αmin

αi
· n

lnn.

Note that this ignores the fact that a woman will never rank m higher than her match if
that m already proposed to her during DA. But since w only likely receives lnn� n/ lnn
proposals, the difference is not noticeable.

It turns out that, with a detailed probabilistic analysis, the above proof sketch goes
through. The details are given in the full version of this paper online.



I. Ashlagi, M. Braverman, A. Saberi, C. Thomas, and G. Zhao 46:15

I Theorem 5.1. Let RW

i = (εin)−1∑
w∈Ti

rw denote the average rank of women in tier i.
For all ε > 0, we have

R
W

i = (1± ε)(δ · β)(δ · β−1)αmin

αi

n

lnn

with probability approaching 1 as n→∞.

5.2 The distribution of match types
Fix a woman w in tier i. We now study the probability that w is matched to a man from some
tier j. In the previous section, we argued that with high probability w receives approximately
a total of

δjβ
−1
j

δ · β−1 ·
α · ε
αmin

n lnn

proposals from men in tier j. Thus, the contribution to Γw (the total weight of proposals w
received) from men in tier j is

Γj→w ≈
δj

δ · β−1 ·
α · ε
αmin

n lnn ≈ δjΓw.

Moreover, it turns out that, with high probability, the above holds up to (1 ± ε) for all
tiers j simultaneously. Regardless of the order in which w saw proposals, the probability
that w’s favorite proposal came from a man in tier j is Γj→w/Γw. Thus, this probability is
approximately δj . See the full version for a formal implement of the proof.

I Theorem 5.2. Consider an arbitrary tier i of women and j of men. For all ε > 0, there is
an n large enough such that the probability that a woman in tier i matches to a man in tier j
is (1± ε)δj.

6 Summary

The model and findings in this paper contribute to the understanding of random stable
matching markets. Indeed, the results quantify the effect of competition that arises from
heterogeneous quality in agents, specifically, when the agents fall into different constant-factor
tiers of quality. Novel technical tools are developed in order to reason about the proposal
dynamics of deferred acceptance.

Relaxing some of the modeling assumptions raises interesting questions that cannot be
trivially answered. This includes having non-constant (size, or public score) tiers, personalized
private scores which give agents different distributions of preferences, and imbalance in the
number of agents on each side of the market. Moreover, it is natural to ask when one should
expect the matching to be sorted, i.e., higher tiers will be more likely to match with higher
tiers (e.g., [12] demonstrates the presence of sorting in dating markets).
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