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particular we show that the so-called “column-row property” fails for the free 
semigroup algebras, in stark contrast to the analogous commutative case. Additional 
applications of the elementary Pick matrix include a local dilation theorem for 
matrix row contractions and interpolating sequences in the noncommutative setting. 
Finally we present some numerical results related to the failure of the column-row 
property.
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1. Introduction

1.1. The purpose of this paper is to give an effective solution of the so-called “noncommutative 
Nevanlinna-Pick interpolation problem” in the row ball, which is an analog, in the modern setting of non-
commutative function theory, of the classical Nevanlinna-Pick interpolation problem. The main result is 
the construction of a single matrix, in closed form, such that the problem has a solution if and only if this 
matrix is positive semidefinite. In this introductory section we pose the problem and describe some of the 
applications of our solution.

1.2. Noncommutative Pick interpolation in the row ball

We work in the general setting of noncommutative function theory, as laid out e.g. in [10]. Fix an integer 
d ≥ 1. For each n = 1, 2, 3, . . . , let Md

n denote the set of d-tuples of n × n matrices with complex entries:
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Md
n = {X = (X1, . . . , Xd) : Xi ∈ Mn}

and let Md be the disjoint union of the Md
n over all n (When d = 1 we drop the superscripts and just write 

Mn, M). Let Ms×t denote the set of s × t matrices with complex entries. By the row ball Bd we mean the 
graded subset of Md, defined at each “level” n by

Bd
n = {X = (X1, . . . , Xd) ∈ Md

n : ‖X1X
∗
1 + · · · + XdX

∗
d‖ < 1} ⊂ Md

n.

The row ball Bd is a prototypical example of an nc domain; this means that (1) at each level, the set Bd
n ⊂ Md

n

is open, (2) Bd respects direct sums, i.e. if X ∈ Bd
n and Y ∈ Bd

m then X ⊕ Y ∈ Bd
m+n (here the direct sum 

means coordinatewise direct sum: X⊕Y = (X1⊕Y1, . . . , Xd⊕Yd); and (3) Bd respects unitary equivalence, 
i.e. if U ∈ M is a unitary matrix and X = (X1, . . . , Xd) ∈ Bd

n then U∗XU = (U∗X1U, . . . , U∗XdU) ∈ Bd
n.

The nc-domain Bd then supports nc-functions, which are graded functions f : Bd → M (that is, a family 
of functions fn : Bd

n → Mn, n = 1, 2, 3, . . . which (1) respect direct sums: for X ∈ Bd
n, Y ∈ Bd

m, we have 
fm+n(X⊕Y ) = fn(X) ⊕fm(Y ); and (2) respect similarities, in the sense that if X ∈ Bd and S is a similarity 
such that S−1XS is also in Bd, then f(S−1XS) = S−1f(X)S. Let

H∞(Bd) = {f : Bd → M : f is an nc function and sup
X∈Bd

‖f(X)‖ < ∞}.

We refer to the supremum in this definition as the H∞ norm of the nc function f , denoted ‖f‖∞.
The noncommutative Nevanlinna-Pick interpolation problem in the row ball is the following (see [4] and 

the references therein): given a finite set of points (“nodes”) X1, . . . , Xm in Bd, with Xj ∈ Bd
nj

, and matrices 
Y 1, . . . Y m, with Y j ∈ Mnj

, find an interpolating function f ∈ H∞(Bd) (if it exists)

f(Xj) = Y j j = 1, . . .m (1.1)

of minimal H∞ norm. The fact that the domain Bd and the nc functions f respect direct sums means that 
every such problem can be immediately reduced to a “one-point problem”: putting X = ⊕Xj and Y = ⊕Y j , 
the problem (1.1) has a solution if and only if the one-point problem

f(X) = Y, (1.2)

has a solution, and the minimal norms are the same. Instead of asking for the minimal norm, one could 
pose the essentially equivalent problem of asking whether or not there exists a solution of norm ‖f‖∞ ≤ 1. 
It is also possible to consider a generalized problem in which the single n × n matrix Y is replaced by an 
s × t block matrix (Yij), i = 1, . . . , s; j = 1, . . . , t, where each Yij is an n × n matrix. We then seek an s × t

matrix of nc functions F = (fij) so that

fij(X) = Yij i = 1, . . . , s; j = 1, . . . , t

and the H∞ norm of the s × t matrix nc function F is the evident supremum norm.
When d = 1 and all the Xj , Y j are 1 × 1 matrices this reduces to the classical Nevanlinna-Pick inter-

polation problem in the unit disk. In that case, interpolating functions always exists (e.g. one can take a 
Lagrange interpolating polynomial), so the problem is just one of finding the minimal H∞ norm. However 
in the noncommutative setting solutions need not always exist; a necessary and sufficient condition for a 
solution of the one-point problem (1.2) is that the matrix Y belong to the subalgebra of Mn generated by 
the coordinates X1, . . . , Xd of the point X.
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Consider for a moment the classical Nevanlinna-Pick interpolation problem: given points x1, . . . , xm in 
the open unit disk, and complex numbers y1, . . . , ym, does there exist an analytic function f , bounded by 
1 in the disk, with

f(xj) = yj , j = 1, . . . ,m? (1.3)

The problem has a solution if and only if the Pick matrix

P =
(

1 − yiyj

1 − xixj

)m

i,j=1

is positive semidefinite. It turns out that it is also possible to give a necessary and sufficient condition for the 
existence of a norm-one solution of the noncommutative problem (1.2) in terms of a single matrix involving 
the data X, Y , this was given by Ball, Marx, and Vinnikov in [4]; however the single matrix in question is 
expressed as an infinite sum and does not have a readily apparent closed form. The main result of the present 
paper is to present a closed-from expression for this “noncommutative Pick matrix,” which is amenable at 
least in some cases to machine computation, thus providing an effective solution to the problem which is 
numerically stable for suitably conditioned data. We construct this closed form expression in Section 3, the 
key idea is a matrix involution introduced previously in [12] in connection with the problem of determining 
the algebra generated by a family of matrices X1, . . . , Xd (which is connected to the interpolation problem, 
as remarked above). Finally, we note that the interpolation problem considered here can also be understood 
as a special case of an interpolation problem in Hardy algebras over C∗-correspondences as considered in 
the work of Muhly and Solel (in particular the interpolation theorem [11, Theorem 5.3]), though we have 
not attempted to interpret the objects of the present paper in this formalism.

1.3. Failure of the column-row property in Ld

Let H be a Hilbert space, B(H) the algebra of bounded operators on H, and fix a subset A ⊆ B(H). For 
each fixed n ≥ 1, we define Cn to be the least number Cn such that the inequality

∥∥∥ n∑
i=1

AiA
∗
i

∥∥∥1/2
≤ Cn

∥∥∥ n∑
i=1

A∗
iAi

∥∥∥1/2

holds for all n-tuples A1, . . . , An of elements from A. The column-row constant of A is the least number C
such that

∥∥∥ ∞∑
i=1

AiA
∗
i

∥∥∥1/2
≤ C

∥∥∥ ∞∑
i=1

A∗
iAi

∥∥∥1/2

for all sequences (Ai)∞i=1 from A for which the sums are SOT-convergent. Evidently the Cn form an increasing 
sequence with limCn = C; it is possible that C = ∞. If C is finite, we say that A has the column-row 
property. (One could analogously define a row-column property but this will not concern us here.) For 
example, A = Mn(C) has column-row constant at least equal to 

√
n. (To see this, let Eij denote the 

standard n × n matrix units; putting Ai = E1i for i = 1, . . . , n one checks easily that ‖ 
∑n

i=1 A
∗
iAi‖ = 1

while ‖ 
∑n

i=1 AiA
∗
i ‖ = n.) It is also easy to verify that for any set of operators A, we have Cn ≤ √

n for 
every n.

Of particular interest is the case when A is the algebra of bounded multiplication operators on a repro-
ducing kernel Hilbert space. In this setting a number of important spaces are known to have this property. 
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Trivially, the algebra A = H∞(D) (the algebra of bounded analytic functions in the unit disk D, equipped 
with the supremum norm) has the column-row property. Beyond this, the multiplier algebra of the Dirichlet 
space D over the unit disk has the column-row property with constant C ≤

√
18 [18], and the multiplier 

algebras of the Drury-Arveson spaces H2
d over the unit ball Bd ⊂ Cd (denoted Mult(H2

d)) have the column-
row property with constants C = C(d); [3], in the proof given in [3] the obtained estimates on the constants 
C(d) grow to infinity with the dimension d. The Dirichlet space and the H2

d spaces are particular examples 
of spaces with a complete Nevanlinna-Pick (CNP) kernel, the column-row property (when it holds) turns 
out to have important consequences in such spaces, e.g. in applications to interpolating sequences [2] and 
in factorization of weak products [9], [3]. Very recently, M. Hartz has shown that the column-row property 
holds in all CNP spaces, with constant 1 [8].

The connection with the present paper is as follows: it turns out that the multiplier algebras of H2
d can 

be viewed as the “commutative collapse” of the so-called free semigroup algebras Ld, d ≥ 2. (We refer to 
the survey [6] for the basic facts about the free semigroup algebras.) One may then ask if an analog of 
the column-row property holds for these algebras. In detail, if we let F+

d denote the free semigroup of all 
noncommuting words in d letters {1, 2, . . . , d}, (including the “empty word” ∅), then we can form a Hilbert 
space F2

d with orthonormal basis {ξw}w∈F+
d

. For each letter i we define an operator

Liξw = ξiw, w ∈ F+
d .

The operators Li are isometries with orthogonal ranges, i.e. we have L∗
iLj = δijI for i, j = 1, . . . , d. The 

free semigroup algebra is the WOT-closed algebra generated by the Li, i = 1, . . . , d.
By a result of Salomon, Shalit, and Shamovich [16, Theorem 3.1] the free semigroup algebra Ld may 

be completely isometrically identified with the algebra H∞(Bd) of bounded nc functions in the row ball. 
Moreover the map f → f(z) obtained by restricting an nc function to level 1 (the scalar unit ball Bd ⊂ Cd) 
is a completely contractive homomorphism from H∞(Bd) onto the multiplier algebra Mult(H2

d), (see [17, 
Theorem 4.4.1, Subsection 4.9] or [5, Section 2]; this latter reference makes clear the connection with 
Nevanlinna-Pick interpolation).

In particular, we observe that for each d, and n, the column-row constants Cn for H∞(Bd) dominate the 
corresponding constants for Mult(H2

d). The question naturally arises of whether or not the free semigroup 
algebras H∞(Bd) have the column-row property. It turns out they do not; in fact we will prove the constant 
is infinity for H∞(Bd), and the constant Cn =

√
n.

Theorem 1.1. For the algebra of bounded nc functions in the row ball, H∞(Bd), d ≥ 2, we have Cn =
√
n

for all n = 1, 2, . . . .

Thus, in contrast to Mult(H2
d), the column-row property fails in H∞(Bd) in the strongest possible way, 

establishing a stark contrast between the commutative multiplier algebras Mult(H2
d) and their noncommu-

tative “parents.” Theorem 1.1 is proved in Section 6.

1.4. Readers’ guide

Section 2 gives a definition of the ψ-involution first introduced in [12]. We use the ψ-involution liberally 
throughout Section 3 to first construct for a (contractive) matrix tuple X = (X1, . . . , Xd) ⊂ Md

n its elemen-
tary Pick matrix: a matrix PX whose range encodes the unital subalgebra of Mn generated by X1, . . . , Xd. 
This in turn is used to establish two of the main results of the paper: Theorem 3.5 and Theorem 3.9.

Section 4 consists of several technical results leading up to the construction of an isometry in Section 5
and its immediate use in Theorem 5.2, a so-called “mini-dilation.”

In Section 6 we apply Theorem 3.9 to prove Theorem 1.1: the column-row property fails for the Fock 
space on two or more generators.
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Section 7 gives a more concrete approach to the results in Section 6. Section 8 introduces a condition 
number for a matrix tuple X = (X1, . . . , Xd) and explores its properties and interpolating sequences. Finally, 
Section 9 discusses computational consequences of effective NP-interpolation.

2. Preliminaries. The ψ involution and its properties

If A ∈ Mn×m and B ∈ Mr×s then their Kronecker product A ⊗B ∈ Mnr×ms is the block matrix given 
by

A⊗B =

⎛
⎝a11B . . . a1mB

...
. . .

...
an1B . . . anmB

⎞
⎠ . (2.1)

Or, in other words, (A ⊗B)n(i−1)+k,n(j−1)+� = ai,jbk,�.
Let τ : M → M be the transpose operator and let vec : Mn → Mn2×1 be the linear map taking the 

columns of a matrix and stacking them to get a column vector:

vec

⎛
⎝a11 . . . a1n

...
. . .

...
an1 . . . ann

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a11
...

an1
a12
...

ann

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We have the classical identity

vec(AXB) = (BT ⊗A)vec(X). (2.2)

Typically we treat vec as a graded function on M. That is, vec = (vec[n])∞n=1, where each vec[n] : Mn →
Mn2×1, and if A ∈ Mn, then vec(A) = vec[n](A). This greatly simplifies notation.

Definition 2.1. Define ψ : Mn2 → Mn2 to be ψ = (τ ◦vec) ⊗vec. If A ∈ Mn2 then we write the evaluation 
of ψ on A as

Aψ =
[
(τ ◦ vec) ⊗ vec

]
(A).

Or, more explicitly, if C, D ∈ Mn then

[C ⊗D]ψ = vec(C)T ⊗ vec(D) = vec(D)vec(C)T . (2.3)

Indeed, observe

[A⊗B]ψ = [(τ ◦ vec)⊗vec](A⊗B) = vec(A)T⊗vec(B) = vec(B)vec(A)T .

Our motivation for writing ψ as a superscript is that ψ is an involution on Mn2 :

Lemma 2.2. For any Eij and Ek� we have

[Eij ⊗ Ek�]ψ = E�j ⊗ Eki. (2.4)

Consequently, ψ is an involution.
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Proof. We have the following equalities:

[Eij ⊗ Ek�]ψ = vec(Ek�)vec(Eij)T

= En(�−1)+k,n(j−1)+i

= E�j ⊗ Eki.

Evidently applying ψ again gives us back Eij ⊗Ek�. Therefore ψ is an involution. �
Proposition 2.3 (ψ modularity). If U ∈ Mn2 and A, B, C, D ∈ Mn then

[
(A⊗B)U(C ⊗D)

]ψ
= (DT ⊗B)Uψ(C ⊗AT ).

Proof. First we recall that if u, v are column vectors, then uT ⊗ v = vuT . We first prove the result for 
U = Eij ⊗Ek�. Using (2.2) and (2.3), we have

[
(A⊗B)(Eij ⊗Ek�)(C ⊗D)

]ψ =
[
(AEijC) ⊗ (BEk�D)

]ψ
= vec(BEk�D)(vec(AEijC))T

=
[
(DT ⊗B)vec(Ek�)

] [
(CT ⊗A)vec(Eij)

]T
= (DT ⊗B)vec(Ek�)vec(Eij)T (C ⊗AT )

= [DT ⊗B][Eij ⊗ Ek�]ψ[C ⊗AT ].

Since ψ is linear and the Eij ⊗ Ek� form a basis for Mn2 , we are done. �
Remark 2.4. We could just as easily use Equation (2.4) as the definition of the ψ-involution. The ψ-involution 
was introduced by the third named author in [12], where its key properties (including the modularity 
property) were described; we have included proofs here for the sake of convenience. What we will call the 
elementary kernel matrix, defined in the next section, also appears in [12].

3. Noncommutative Pick interpolation and the matrix PX

Recall X = (X1, . . . , Xd) ∈ Md
n is a row contraction if [X1 . . . Xd ] has norm strictly less than 1:

∥∥∥ d∑
i=1

XiX
∗
i

∥∥∥ < 1.

Definition 3.1. For X = (X1, . . . , Xd) ∈ Md
n, we put

PX :=
[
(In ⊗ In −

d∑
i=1

Xi ⊗Xi)−1
]ψ

(when it is defined). If X is a row contraction, then it follows from [13, Proposition 3.1] that the spectral 
radius of 

∑d
i=1 Xi ⊗Xi is strictly less than 1, so PX exists. In this case we call PX the elementary kernel 

matrix. (It may be thought of as an analog, in our setting, of the ordinary Szegő kernel function k(x, x) =
(1 − xx)−1 at a single point x in the unit disk.)
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Definition 3.2. For x = {x1, . . . , xd}, a set of freely noncommuting indeterminates, let 〈x〉 = 〈x1, . . . , xd〉
denote the unital free semigroup generated by x1, . . . , xd with empty product ∅ acting as the identity. If 
w = i1i2 . . . in is a word in the letters {1, 2, . . . , d} we write

xw := xi1xi2 · · ·xin .

In particular, for a system of matrices X = (X1, . . . , Xd) and a word w we write

Xw := Xi1Xi2 · · ·Xin .

Thus, when X is a row contraction we can express PX as a norm-convergent power series

PX =
∞∑

n=0

(
d∑

i=1
Xi ⊗Xi

)n

=
∑

w∈〈x〉
X

w ⊗Xw.

Suppose now X is a row contraction. We recall the one-point nc Pick interpolation problem from the 
introduction: given Y = (Yi,j) ∈ Ms×t ⊗Mn, does there exist an nc function f ∈ Ms×t ⊗H∞(Bd) such 
that ‖f‖∞ ≤ 1 and f(X) = Y ?

From [4, Theorem 6.5], this problem has a solution if and only if the map Φ : Mn → Mns

Φ(H) =
∑

w∈〈x〉
(XwHXw∗) ⊗ Is − Y

⎛
⎝ ∑

w∈〈x〉
(XwHXw∗) ⊗ It

⎞
⎠Y ∗

is completely positive. Our goal is to recast this condition in terms of the elementary kernel matrix PX

introduced above. To do this we first apply Choi’s criterion to reduce the problem of checking the complete 
positivity of Φ to checking the positivity of a single matrix. We then use the ψ involution to express this 
single matrix in closed form.

Definition 3.3. For each n, the Choi Matrix is the matrix

Cn =
n∑

i,j=1
Eij ⊗ Eij ∈ Mn2 (3.1)

By Choi’s Theorem (see e.g. [15, Theorem 3.14]), a map Φ : Mn → Mm is completely positive if and only 
if the single nm × nm matrix

(In ⊗ Φ)(Cn) =
∑
i,j

Eij ⊗ Φ(Eij)

is positive semidefinite.
The Choi Matrix also has the following important relation with ψ:

[In2 ]ψ = Cn, (3.2)

as is trivially verified using (2.4) and (3.1).

Lemma 3.4. If X = (X1, . . . , Xd) ∈ Md
n is a row contraction then

∑
(I ⊗X)wCn(I ⊗X)w∗ = PX .
w∈〈x〉
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Proof. Since X is a row contraction, the series is norm convergent. Using the fact that ψ is an involution, 
the modularity property (Proposition 2.3), and the action of ψ on the Choi matrix (3.2), we have

∑
w∈〈x〉

(I ⊗X)wCn(I ⊗X)w∗ =
[∑

w∈〈x〉 [(I ⊗Xw)Cn(I ⊗Xw∗)]ψ
]ψ

=
[∑

w∈〈x〉(X
w ⊗Xw)In2(I ⊗ I)

]ψ
=

[∑
w∈〈x〉(X ⊗X)w

]ψ
=

[(
I ⊗ I −

∑
iXi ⊗Xi

)−1]ψ
= PX �

Theorem 3.5. Suppose X = (X1, . . . , Xd) ∈ Md
n is a row contraction and Y = (Yi,j)s,ti,j=1 ∈ Ms×t ⊗Mn is 

an s × t block matrix with n ×n blocks. There exists an nc function f ∈ Ms×t⊗H∞(Bd) such that ‖f‖ ≤ 1
and f(X) = Y if and only if

PX ⊗ Is − (In ⊗ Y )(PX ⊗ It)(In ⊗ Y ∗) � 0.

Proof. Let Φ : Mn → Mns be the operator defined by

Φ(H) =
∑

w∈〈x〉
(XwHXw∗) ⊗ Is − Y

⎛
⎝ ∑

w∈〈x〉
(XwHXw∗) ⊗ It

⎞
⎠Y ∗.

Next observe
∑
i,j

Eij⊗
∑
w

XwEijX
w∗⊗Is =

∑
w

∑
i,j

(Eij⊗I)(I⊗XwEijX
w∗)⊗Is

=
∑
w

∑
i,j

(I⊗Xw)(Eij⊗Eij)(I⊗Xw∗)⊗Is

=
∑
w

(I⊗X)wCn(I⊗X)w∗⊗Is

= PX ⊗ Is,

where the last equality uses Lemma 3.4. Hence,

(In⊗Φ)(Cn) = PX ⊗ Is − (In ⊗ Y )(PX ⊗ It)(In ⊗ Y ∗).

Thus, Choi’s Theorem tells us Φ is completely positive if and only if PX⊗Is − (In⊗Y )(PX⊗It)(In⊗Y ∗) � 0. 
Finally, as already noted, [4, Theorem 6.5] says that Φ is completely positive if and only if there is a solution 
to the interpolation problem. This completes the proof. �

We now turn an essentially equivalent version of the interpolation problem: if X is a row contraction 
and Y is given, find the minimal norm of a solution f to the interpolation problem f(X) = Y . First of all, 
we must note that there may not be any f with f(X) = Y ; this will happen if and only if the blocks of 
Y belong to the subalgebra generated by X1, . . . , Xd. (The sufficiency of this condition is trivial; necessity 
follows e.g. from a result of Agler and McCarthy [1, Lemma 3.2] which says that if there is some bounded f
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with f(X) = Y , then there is a polynomial with p(X) = Y . In this respect see also [16, Lemma 4.4], which 
connects the condition Y ∈ algX to the “full envelope” condition in [4].) By the main Theorem of [12], we 
know that a matrix Z is in the algebra generated by X if and only if vec(Z) ∈ ran(PX). When each block 
of Y belongs to this algebra, then there will exist an nc polynomial matrix f with f(X) = Y .

We will define the NP-norm of Y to be the minimal norm of a solution to f(X) = Y , and show how to 
compute this minimal norm using PX .

Definition 3.6. Suppose X = (X1, . . . , Xd) ∈ Bd ⊂ Md
n and Y ∈ Ms×t ⊗Mn. We define the NP(X) norm 

of Y to be

‖Y ‖NP(X) := inf
f∈Ms×t⊗H∞(Bd)

f(X)=Y

‖f‖H∞ (3.3)

and note that implicitly we consider only nc functions f . Moreover, if ‖ 
∑d

i=1 XiX
∗
i ‖ = 1, so that X lies 

in the boundary of Bd at level n, we define the ANP(X) norm of Y (the asymptotic NP(X) norm at the 
boundary point X) as

‖Y ‖ANP(X) := lim
t↗1

‖Y ‖NP(tX). (3.4)

We note that the NP(X) norm could be equivalently defined by taking the infimum just over nc polyno-
mial matrices f in the expression (3.3).

We will compute ‖Y ‖NP(X) for all Y whose blocks are in the algebra generated by X, and ‖Y ‖ANP(X)
for a special subclass of boundary points X, which will be useful in applications. We first introduce some 
notation and make some elementary observations.

Definition 3.7. If X = (X1, . . . , Xd) ∈ Md
n then let algX denote the unital subalgebra of Mn generated by 

X1, . . . , Xd.

Note:

• If X = (X1, . . . , Xd) ∈ Md
n is a row contraction, then PX is self-adjoint and positive semi-definite, so 

P
1/2
X exists, and we let PX

†/2 denote the Moore-Penrose pseudoinverse of P 1/2
X .

• Note PX
†/2P

1/2
X = P

1/2
X PX

†/2 = QX , where QX is the projection onto ran(PX) = vec(algX).
• The matrices PX and P 1/2

X are invertible if and only if algX = Mn. In this case, PX
†/2 = P

−1/2
X .

Corollary 3.8. Suppose Y ∈ Ms×t ⊗ algX . If

PY P = (PX
†/2 ⊗ Is)(In ⊗ Y )(P 1/2

X ⊗ It)

then

‖Y ‖NP(X) =
∥∥PY P

∥∥.
Proof. We begin by multiplying the main equation in Theorem 3.5 on the left and right by (PX

†/2 ⊗ Is):

QX⊗Is � (PX
†/2⊗Is)(In⊗Y )(PX⊗It)(In⊗Y ∗)(PX

†/2⊗Is)

= PY P (PY P )∗
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Suppose c > 0. By considering the interpolation problem for c−1Y instead of Y , it follows from above that 
there exists f ∈ Ms×t⊗H

∞(Bd) such that ‖f‖ = c and f(X) = Y if and only if PY P (PY P )∗ � c2QX⊗Is
if and only if 

∥∥PY P
∥∥ ≤ c. If there exists f ∈ Ms×t⊗H

∞(Bd) such that ‖f‖ = c and f(X) = Y , then 
‖Y ‖NP(X) ≤ c. Hence, ‖PY P ‖ ≤ c implies ‖Y ‖NP(X) ≤ c.

On the other hand, if ‖Y ‖NP(X) ≤ c then for each ε > 0 there exists fε ∈ Ms×t⊗H
∞(Bd) such that 

‖fε‖ = c + ε and fε(X) = Y . However, this implies ‖PY P ‖ ≤ c + ε for all ε > 0, hence ‖PY P ‖ ≤ c. Thus, 
‖PY P ‖ ≤ c if and only if ‖Y ‖NP(X) ≤ c. Therefore, ‖Y ‖NP(X) = ‖PY P ‖. �
Theorem 3.9. Let X = (X1, . . . , Xd) ∈ Mn(C)d be a row co-isometry (that is, 

∑d
i=1 XiX

∗
i = I). If the 

algebra generated by X1, . . . , Xd is all of Mn(C) then

lim
t→1

(P−1/2
tX

⊗Is)(In⊗Y )(P 1/2
tX

⊗It) = In⊗Y

and consequently

‖Y ‖ANP(X) = lim
t→1

‖Y ‖NP(tX) = ‖Y ‖.

Proof. We claim 1−t2

t2 PtX → W ⊗ In as t → 1, for some positive definite matrix W ∈ Mn(C). If the claim 
is true, then

lim
t→1

(P−1/2
tX

⊗Is)(In⊗Y )(P 1/2
tX

⊗It) = (W−1/2
⊗In⊗Is)(In⊗Y )(W 1/2

⊗In⊗It)

= In⊗Y

from which we conclude, by Corollary 3.8, that ‖Y ‖ANP(X) = ‖Y ‖. Thus, it is sufficient to prove the claim.
Consider T =

∑d
i=1 Xi ⊗Xi. Using the identity (2.2) we see

T vec(I) = vec
(

d∑
i=1

XiX
∗
i

)
= vec(I),

that is, vec(I) is an eigenvector for T with eigenvalue 1. Since X is a row contraction and the algebra 
generated by X1, . . . , Xd is all of Mn(C), it follows from the quantum Perron-Frobenius theorem of Evans and 
Høegh-Krohn [7] that the spectral radius of T is equal to 1, and the (generalized) eigenspace corresponding 
to 1 is one dimensional. (For a treatment of this result more tailored to the present application, see [13, 
Theorem 5.4].) Let vec(W ) be the corresponding left eigenvector to 1 (that is, vec(W )∗T = vec(W )∗), 
normalized so that vec(W )∗ vec(I) = 1. From [13, Theorem 5.4] and the remarks following it, the matrix 
W must be positive definite. (This conclusion again relies on the fact that X1, . . . , Xd generate all of Mn.) 
Thus, we may decompose T as

T = G + B

where G = vec(I) vec(W )∗, and B is the remainder T −G. It follows that B has spectral radius less than 
or equal to 1, and that 1 is not an eigenvalue of B. Next, we see that

G2 = vec(I)vec(W )∗ vec(I)vec(W )∗ = vec(I)vec(W )∗ = G.

Moreover, since vec(I) is a right eigenvector to 1 and vec(W ) is a left eigenvector to 1, we also have

TG = G = GT
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and consequently GB = BG = 0. In particular, Tn = (G + B)n = Gn + Bn = G + Bn and

(I − t2T )−1 =
∞∑

n=0
(t2T )n = I +

∞∑
n=1

(t2nG + t2nBn)

= I + t2

1 − t2
G + t2B(I − t2B)−1.

Thus,

PtX = [(1 − t2T )−1]ψ =
[
1 + t2

1 − t2
G + t2B(1 − t2B)−1

]ψ
.

Since, as noted above, r(B) ≤ 1 and 1 is not an eigenvalue of B, we have

lim
t→1

(1 − t2)B(1 − t2B)−1 = 0.

Taking the limit of 1−t2

t2 PtX as t → 1, we obtain

lim
t→1

1 − t2

t2
PtX = Gψ = [vec I(vecW )∗]ψ = W ⊗ In,

which finishes the proof of the claim, and hence the theorem. �
We restate the above theorem in terms of the condition of the interpolation problem in Section 8.

4. The Boomerang matrix

In this section we collect some calculations which will be useful in the next section.

Definition 4.1. Define B̆ ∈ Mn3×n to be

B̆ =
n∑

i,j=1
vec(Eij) ⊗ Eij =

n∑
i,j=1

ei ⊗ ej ⊗Eij

The matrix B̆ is known as the Boomerang matrix.

Lemma 4.2. If C ∈ Mn, then

(C ⊗ In ⊗ In)B̆ = (In ⊗ In ⊗ CT )B̆. (4.1)

Moreover, if A ∈ Mn2 and D ∈ Mn then

B̆T (A⊗ CD)B̆ = B̆T ([(CT ⊗ I)A(DT ⊗ I)] ⊗ I)B̆. (4.2)

Proof. We prove the first item for C = Ek� and then extend linearly to all of Mn. Note

(Ek� ⊗ I ⊗ I)B̆ =
n∑

(Ek� ⊗ I ⊗ I)(ei ⊗ ej ⊗ Eij) =
n∑

ek ⊗ ej ⊗E�j
i,j j
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=
n∑
i,j

ei ⊗ ej ⊗ E�kEij =
n∑
i,j

(I ⊗ I ⊗E�k)(ei ⊗ ej ⊗Eij)

= (I ⊗ I ⊗E�k)B̆.

Extending linearly we have Equation (4.1).
Now suppose A ∈ Mn2 and D ∈ Mn. Observe

(A⊗D)B̆ = (A⊗ I)(I ⊗ I ⊗D)B̆ = (A⊗ I)(DT ⊗ I ⊗ I)B̆

= ([A(DT ⊗ I)] ⊗ I)B̆,

and by taking transposes we have

B̆T (A⊗ C) = B̆T ([(CT ⊗ I)A] ⊗ I).

Using (4.1) finally yields

B̆T (A⊗ CD)B̆ = B̆T (A⊗ C)(I ⊗ I ⊗D)B̆

= B̆T ([(CT ⊗ I)A(DT ⊗ I)] ⊗ I)B̆. �
Lemma 4.3. For any row contraction X ∈ Md

n,

PX −
d∑

i=1
(XT

i ⊗ In)PX(X̄i ⊗ In) = [In2 ]ψ = Cn,

where Cn =
∑n

i,j=1 Eij ⊗ Eij is the Choi matrix.

Proof. Observe by Proposition 2.3,

PX −
∑d

i=1(X
T
i ⊗In)PX(X̄i⊗In) = PX −

[∑d
i=1(I⊗I)P

ψ
X(X̄i⊗Xi)

]ψ
=

[
(PX)ψ

]ψ
−
[
Pψ
X

∑d
i=1(X̄i⊗Xi)

]ψ
=

[
[PX ]ψ(I −

∑d
i=1X̄i⊗Xi)

]ψ
=

[
(I −

∑d
i=1X̄i⊗Xi)−1(I −

∑d
i=1X̄i⊗Xi)

]ψ
= [In2 ]ψ = Cn. �

Lemma 4.4. Suppose X ∈ Md
n is a row contraction. If H ∈ Mn then

B̆T
(
PX ⊗

(
H −

∑d
i=1XiHX∗

i

))
B̆ = H.

Proof. We begin by computing the left hand side for a fixed i:

B̆T (PX⊗(H −XiHX∗
i ))B̆ = B̆T (PX⊗H)B̆ − B̆T (PX⊗XiHX∗

i )B̆

= B̆T (PX⊗H)B̆ − B̆T ([(XT
i ⊗I)PX(X̄i⊗I)]⊗H)B̆

= B̆T ([PX − (XT
i ⊗I)PX(X̄i⊗I)]⊗H)B̆.
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Summing over i and applying Lemma 4.3 implies

B̆T
(
PX ⊗

(
H −

∑d
i=1XiHX∗

i

))
B̆ = B̆T (Cn ⊗H)B̆.

Using the definition of the Choi matrix we finish the computation:

B̆T (Cn ⊗H)B̆ =
∑

(eTi1 ⊗ eTj1 ⊗ Ej1i1)(Cn ⊗H)(ei2T ⊗ ej2 ⊗ Ei2j2)

=
∑

(eTi1 ⊗ eTj1)Cn(ei2 ⊗ ej2) ⊗ Ej1i1HEi2j2

=
∑

eTi1Ek�ei2 ⊗ eTj1Ek�ej2 ⊗ Ej1i1HEi2j2

=
∑
k,�

1 ⊗ 1 ⊗ EkkHE��

= H. �
Definition 4.5. Let s, t ∈ Z+ and let Qn,s ∈ Mns denote the permutation matrix such that

Qn,s(U ⊗ V )QT
n,s = V ⊗ U

for all U ∈ Mn and V ∈ Ms. In particular, if W ∈ Mn×m and Z ∈ Mt×s then

Qn,t(W ⊗ Z)QT
m,s = Z ⊗W.

For each r ≥ 1, we define the n3r × nr matrix

B̆r =

⎛
⎝∑

i,j

ei ⊗ ej ⊗ Ir ⊗Eij

⎞
⎠Qn,r

to be the ampliated boomerang matrix.

Proposition 4.6. Suppose A ∈ Mn2 , C ∈ Mn, Z ∈ Mnt×ns and W ∈ Mns×nt. We have the following 
identities;

[
(A⊗ It)(In ⊗ Z) ⊗ C

]
B̆s =

[
A⊗ It ⊗ C

]
B̆tZ (4.3)

and

B̆T
s

[
(In ⊗W )(A⊗ It) ⊗ C

]
= WB̆T

t

[
A⊗ It ⊗ C

]
. (4.4)

If, in addition, J, K ∈ Mns, then

B̆T
s

[
(In⊗J)(A⊗Is)(In⊗K)⊗C

]
B̆s = JB̆T

s

[
A⊗ Is ⊗ C

]
B̆sK. (4.5)

Furthermore, the ampliated boomerang matrix satisfies the ampliated versions of Equations (4.1) and 
(4.2).

Proof. Suppose A ∈ Mn2 and C ∈ Mn. Let Ek� be the t × s matrix with a 1 in the k, �-entry and zeros 
elsewhere. We prove Equation (4.3) with Epq ⊗ Ek� first:
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[(A⊗It)(In⊗Epq⊗Ek�)⊗C]B̆s =
∑

ij

[
A(In⊗Epq)⊗Ek�⊗C

][
ei⊗ej⊗Is⊗Eij

]
Qn,s

=
∑

ij [A(ei⊗Epqej)⊗Ek�⊗CEij ]Qn,s

=
∑

i[A(ei⊗ep)⊗Ek�⊗CEiq]Qn,s

=
∑

ij [A(ei⊗ej)⊗Ek�⊗CEijEpq]Qn,s

=
∑

ij(A⊗It⊗C) (ei⊗ej⊗It⊗Eij) (Ek�⊗Epq)Qn,s

= (A⊗It⊗C)(B̆tQT
n,t)(Ek�⊗Epq)Qn,s

= (A⊗It⊗C)(B̆t)(Epq⊗Ek�).

Thus, with linearity and by taking adjoints we have Equations (4.3) and (4.4).
For Equation (4.5), set t = s and combine Equations (4.3) and (4.4):

B̆T
s

[
A⊗ JK ⊗ C

]
B̆s = JB̆T

s [A⊗ Is ⊗ C]B̆sK.

Finally, the ampliated versions of Equations (4.1) and (4.2) follow readily from adapting their proofs. �
Proposition 4.7. Suppose X ∈ Md

n is a row contraction and H ∈ Mn. An ampliated version of Lemma 4.4
is satisfied:

B̆T
s

[
PX ⊗ Is ⊗

(
H −

∑d
i=1XiHX∗

i

)]
B̆s = H ⊗ Is.

Proof. This follows from adapting the proof of Lemma 4.4. �
5. Popescu mini-dilations

Once more, we suppose X = (X1, . . . , Xd) ∈ Md
n is a row-contraction. Set ΔX = In −

∑d
i=1 XiX

∗
i and 

observe that both PX and ΔX are self-adjoint and positive semi-definite.
Define VX = (P 1/2

X
⊗In⊗Δ1/2

X )B̆n ∈ Mn4×n2 and remark that Proposition 4.7 with H = In implies VX is 
an isometry: V∗

XVX = In2 .
Recall PX

†/2 is the pseudoinverse of P 1/2
X and QX is the projection onto vec(algX), where algX is the 

unital algebra generated by X1, . . . , Xd.

Lemma 5.1. If W ∈ algX then

QX(In⊗W )PX = (In⊗W )PX and PX(In⊗W ∗)QX = PX(In⊗W ∗).

Proof. We begin by taking v ∈ Mn2 and recalling that ran(PX) = vec(algX), hence PXv = vec(V ), 
for some V ∈ algX . Moreover, since W is also in algX , it follows that WV ∈ algX and QX vec(WV ) =
vec(WV ). Thus,

QX(In⊗W )PXv = QX(In⊗W )vec(V ) = QX vec(WV )

= vec(WV ) = (In⊗W )vec(V )

= (In⊗W )PXv,

allowing us to conclude that QX(In⊗W )PX = (In⊗W )PX . Taking adjoint shows

PX(In⊗W ∗)QX = PX(In⊗W ∗). �
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Theorem 5.2. Suppose α, β ∈ C〈x〉. If X̃ = PX
†/2(In ⊗X)P 1/2

X then

V∗
X

(
α(X̃)β(X̃)∗ ⊗ In2

)
VX = α(X)β(X)∗ ⊗ In.

Proof. Observe that Lemma 5.1 implies that α(X̃) = PX
†/2(In ⊗ α(X))P 1/2

X . Take W, Z ∈ algX and set

W̃ = PX
†/2(In ⊗W )P 1/2

X and Z̃ = PX
†/2(In ⊗ Z)P 1/2

X .

Note Z̃∗ = P
1/2
X (In⊗Z∗)PX

†/2 and applying Lemma 5.1 once more implies

P
1/2
X W̃ Z̃∗P

1/2
X = P

1/2
X PX

†/2(In⊗W )P 1/2
X P

1/2
X (In⊗Z∗)PX

†/2P
1/2
X

= QX(In⊗W )PX(In⊗Z∗)QX

= (In⊗W )PX(In⊗Z∗).

Using Proposition 4.6 we have the following chain of equalities:

V∗
X(W̃ Z̃∗⊗In2)VX =

((
P

1/2
X

⊗In⊗Δ1/2
X

)
B̆n

)∗
(W̃ Z̃∗⊗In2)

((
P

1/2
X

⊗In⊗Δ1/2
X

)
B̆n

)
= B̆T

n

(
P

1/2
X W̃ Z̃∗P

1/2
X

⊗In⊗ΔX

)
B̆n

= B̆T
n

(
(In⊗W )PX(In⊗Z∗)⊗In⊗ΔX

)
B̆n

= B̆T
n

(
(In⊗W⊗In)(PX⊗In)(In⊗Z∗⊗In)⊗ΔX

)
B̆n

= (W⊗In)B̆T
n (PX⊗In⊗ΔX) B̆n(Z∗⊗In)

= WZ∗⊗In.

Since α(X), β(X) ∈ algX , setting W = α(X) and Z = β(X) finishes the proof. �
6. Proof of Theorem 1.1

Proof. It suffices to prove the theorem in the case d = 2. Fix n and choose a pair of n × n matrices X =
(X1, X2) such that X1X

∗
1 +X2X

∗
2 = In and X1, X2 generate all of Mn as a unital algebra. (A construction 

of such a pair is given in the next section, see Example 7.1(a).) Consider the n × n matrices

Y1 = E11, Y2 = E12, . . . , Yn = E1n.

Put

Ycol =

⎡
⎢⎢⎣
Y1
Y2
...
Yn

⎤
⎥⎥⎦ , Yrow = [Y1 Y2 · · · Yn ] ,

then ‖Ycol‖ = ‖ 
∑n

i=1 Y
∗
i Yi‖1/2 = 1 and ‖Yrow‖ = ‖ 

∑n
i=1 YiY

∗
i ‖1/2 =

√
n.

Let 0 < ε < 1. By Theorem 3.9, for all t sufficiently close to 1 we have both

‖Ycol‖NP(tX) < (1 + ε) and ‖Yrow‖NP(tX) > (1 − ε)
√
n.

Fix such a t. By the definition of the NP (tX) norm, there exists an n × 1 column of elements of L2
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Fcol =

⎡
⎢⎢⎣
f1
f2
...
fn

⎤
⎥⎥⎦

such that ‖Fcol‖∞ < 1 + ε and Fcol(tX) = Ycol, that is, fi(tX) = Yi for each i = 1, . . . , n, and

‖
n∑

i=1
f∗
i fi‖1/2 < 1 + ε. (6.1)

If we take these f1, . . . , fn and form the row

Frow = [f1 f2 · · · fn ]

then Frow solves the interpolation problem Frow(tX) = Yrow, and hence, again by the definition of the 
NP (tX) norm, we must have

‖
n∑

i=1
fif

∗
i ‖1/2 = ‖Frow‖∞ ≥ ‖Yrow‖NP(tX) > (1 − ε)

√
n. (6.2)

Comparing (6.1) and (6.2), and keeping in mind that ε was arbitrary, we conclude that Cn ≥ √
n. As noted 

earlier, the reverse inequality always holds, so the theorem is proved. �
7. Examples

As we have seen, a central role is played by d-tuples of n ×n matrices X = (X1, . . . , Xd) with the following 
two properties:

• the row X is a co-isometry, i.e. 
∑d

i=1 XiX
∗
i = In, and

• X is irreducible in the sense that algX = Mn.

We now give several examples of such systems X; the first is important for the proof of Theorem 3.9 in 
the sense that it shows that such systems exist for d = 2 and all n (hence for all d and n).

7.1. Irreducible representations of groups

a) Let d = 2 and let X = ( 1√
2S, 

1√
2M) where S is the cyclic permutation matrix and M is the discrete 

Fourier transform of S. That is,

Sei = ei+1 (mod n),Mei = ωiei

where ω is an n-th root of unity. Since S and M are unitary, it is trivial that X is a row co-isometry. 
Again since S and M are unitary, it follows that the algebra they generate is a ∗-algebra, and it is 
straightforward to check that the only matrices commuting with both S and M are scalar multiples of 
the identity. Thus, algX = Mn.

b) More generally, given any group G with generators g1, . . . gd, we can consider any irreducible unitary 
representation π : G → Mn and let Xi = wiπ(gi), i = 1, . . . , d where the wi are nonzero and 

∑
|wi|2 = 1. 

(Note that, in the previous example, M and S generate a group of cardinality n3.) As before the algebra 
generated by the Xi is a ∗-algebra, and hence the irreducibility of the representation implies that 
algX = Mn.
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7.2. Many variable example: the Choi point

When d = n2, we can construct a special d-tuple of n ×n matrices X1, . . . , Xd, for which it is easy to verify 
the conclusion of Theorem 3.9 directly, without appeal to the machinery of the quantum Perron-Frobenius 
theorem. (In fact this is the context in which the failure of the column-row property for Ld was originally 
discovered. In particular, using the following lemma and imitating the proof of Theorem 3.9, one can show 
that for Ln2 the column-row constant Cn is 

√
n. Since all the Ld embed completely isometrically in L2, one 

concludes Cn =
√
n in L2, for all n.)

Lemma 7.1. Fix n > 1 and let d = n2. We consider the n2 matrices Xi,j, each of size n × n,

Xi,j = 1√
n
Eij , 1 ≤ i, j ≤ n

arranged into a row (say, by listing the subscripts (ij) in lexicographic order). Then X is a row co-isometry 
and

lim
t↗1

1 − t2

t2
PtX = 1

n
In2 .

Hence for any Y ∈ Ms×t ⊗Mn2 ,

‖Y ‖ANP(X) = ‖Y ‖.

Proof. It is straightforward to verify that X is a row co-isometry. Now, let

T =
n∑

i,j=1
Xi,j ⊗Xi,j = 1

n

n∑
i,j=1

Eij ⊗Eij = 1
n
Cn.

Note T 2 = T . Moreover, Tψ = 1
nIn2 . So, computing PtX , we see that

PtX = [(I − t2T )−1]ψ

= [I + t2

1 − t2
T ]ψ

= nT + t2

1 − t2
1
n
I.

This proves the first claim of the lemma, and the second claim follows exactly as in the proof of Theo-
rem 3.9. �
8. Further remarks on the NP(X) norm and interpolating sequences

The Nevanlinna-Pick norm of a block matrix Y at X, denoted ‖Y ‖NP(X), is the minimum block H∞

norm of a function f satisfying the equation f(X) = Y . We define the condition number of X, denoted 
κ(X), by the formula

κ(X) = inf
Y �=0,Y ∈Ms×t⊗algX

‖Y ‖NP(X)

‖Y ‖ .

Note that, by definition, for any Y ∈ algX ,



18 M. Augat et al. / J. Math. Anal. Appl. 492 (2020) 124457
‖Y ‖ ≤ ‖Y ‖NP(X) ≤ κ(X)‖Y ‖.

The two following fairly harmless assertions, which will be established momentarily, have somewhat explosive 
consequences:

(1) If X is an irreducible row co-isometry, then limt→1 κ(tX) = 1.
(2) If X1 is a row contraction and X2 is an irreducible row co-isometry, then

lim
t→1

κ(X1 ⊕ tX2) = κ(X1).

Together, they will be used to establish the following fact, which is somewhat surprising in light of the 
failure of the column-row property for the free semigroup algebras: For any sequence of contractive target 
data, there is an interpolating sequence for that data such that the interpolating function can be chosen with 
norm less than or equal to 1.

In fact, in this case, one can actually choose the interpolating sequence based only on the sequence of 
norms of the target data, and their sizes.

Recall the elementary kernel matrix:

PX = [(I −
∑

Xi⊗Xi)−1]ψ.

Given a set S ⊂ Mn, we denote its commutant by S′, and we denote the set of invertible elements in S by 
S×.

Corollary 8.1. Suppose Y ∈ Ms×t ⊗ algX . Suppose D ∈ {I ⊗X}′ ×. Let QX,D = (DPXD)1/2 Then,

‖Y ‖NP(X) =
∥∥∥(Q†

X,D ⊗ Is)(In ⊗ Y )(QX,D ⊗ It)
∥∥∥.

(Here, † denotes the Moore-Penrose pseudoinverse.)

The corollary follows essentially trivially from Corollary 3.8 (by which it is sufficient to take D = I). 
However, especially in the case of multi-point Pick problems, D can act as a pre-conditioner. Note the 
necessity that Y ∈ Ms×t ⊗ algX , rather than merely Y ∈ Ms×t ⊗Mn.

We define the effective condition number of X, denoted γ(X), to be defined via the following formula,

γ(X) = inf
D∈({I⊗X}′)×

√
‖DPXD‖‖(DPXD)−1‖.

The effective condition number gives a bound on the condition number.

Corollary 8.2. For all X ∈ Bd,

κ(X) ≤ γ(X).

In particular, for all Y ∈ algX we have

‖Y ‖NP(X) ≤ γ(X)‖Y ‖.

We can also restate Theorem 3.9 in terms of condition numbers, which will be useful in the construction 
of interpolating sequences.

Theorem 8.3. Let X = (X1, . . . , Xd) ∈ Mn(C)d be a row co-isometry. If the algebra generated by X1, . . . , Xd

is all of Mn(C) then lim κ(tX) = 1. That is, for Y ∈ Ms×t ⊗Mn lim ‖Y ‖NP(tX) = ‖Y ‖.
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8.1. Interpolating sequences

We now do some basic constructions of interpolating sequences.

Lemma 8.4. If X1 is a row contraction and X2 is an irreducible row co-isometry, then the spectral radius of 
T =

∑
(X1)i ⊗ (X2)i is less than 1.

Proof. Note Tn =
∑

|w|=n X1
w ⊗Xw

2 . Therefore, (Tn)ψ =
∑

|w|=n vecXw
1 ⊗ (vecXw

2 )∗. So,

‖(Tn)ψ‖ ≤ ‖ sup∑
|w|=n |aw|2=1

awX
w
1 ‖‖ sup∑

|w|=n |aw|2=1
awX

w
2 ‖.

So, by the Gelfand formula for outer spectral radius, we see that the spectral radius of T [13] is less than 
the geometric mean of the outer spectral radii of X1 and X2. �

We now show that the condition number of a direct sum of some tuple with a scaled co-isometric tuple 
has the same condition number as the original in the limit.

Lemma 8.5. If X1 is a row contraction and X2 is an irreducible row co-isometry, then

lim
t→1

κ(X1 ⊕ tX2) = κ(X1).

Proof. The reader may verify that PX1⊕tX2 has a block 4 by 4 structure with four non-zero block entries, 
let P̂X1⊕tX2 be the matrix with the zero columns and rows removed. Note,

P̂X1⊕tX2 =
[

[(I−
∑

(X1)i⊗(X1)i)−1]ψ [(I−t
∑

(X1)i⊗(X2)i)−1]ψ

[(I−t
∑

(X2)i⊗(X1)i)−1]ψ [(I−t2
∑

(X2)i⊗(X2)i)−1]ψ

]

Preconditioning by a block diagonal D with 1 and 
√
n(1 − t2) on the diagonal, we get that

P̃X1⊕tX2 =
[

[(I−
∑

(X1)i⊗(X1)i)−1]ψ
√

n(1−t2)[(I−t
∑

(X1)i⊗(X2)i)−1]ψ√
n(1−t2)[(I−t

∑
(X2)i⊗(X1)i)−1]ψ n(1−t2)[(I−t2

∑
(X2)i⊗(X2)i)−1]ψ

]

Therefore, taking t → 1

lim
t→1

P̃X1⊕tX2 =
[
PX1 0

0 I

]

Therefore, applying Corollary 8.1,

lim
t→1

κ(X1 ⊕ tX2) = κ(X1). �
We now immediately see the following theorem.

Theorem 8.6. Given (ρi)∞i=1, a sequence of numbers in [0, 1), and (ni)∞i=1, a sequence of natural numbers, 
there is an sequence (X(i))∞i=1 such that each X(i) has size ni and for any sequence (Y (i))∞i=1 such that 
‖Y (i)‖ ≤ ρi, there is a function in H∞ of norm 1 such that f(X(i)) = Y (i).

9. Numerics and random examples

In this section we present a pseudocode version of what was used to initially find counter-examples to 
the column-row property for the Fock space.
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9.1. Code

The following pseudocode gives an algorithm that attempts to randomly generate tuples of matrices 
X = (X1, X2) and Y = (Y1, . . . , Ym) that satisfy the argument in Theorem 1.1. Much like the argument in 
Theorem 1.1, the algorithm presented relies on Corollary 3.8 and Theorem 3.9.

Recall that given a row contraction X = (X1, . . . , Xd) ∈ Bd ⊂ Md
n we can solve the interpolation to a 

block matrix Y ∈ Ms×t ⊗Mn if and only if Y ∈ Ms×t ⊗ algX . Thus our numeric approach to Theorem 1.1
certainly requires at least that X = (X1, X2) is a row contraction and Y ∈ M1×m ⊗ algX . Recall that in 
this case Corollary 3.8 implies

∥∥PY P
∥∥ = ‖Y ‖NP(X).

Thus, we choose Y1, . . . , Ym ∈ algX and set

Yrow = [Y1 . . . Ym ] and Ycol =

⎡
⎣ Y1

...
Ym

⎤
⎦ .

The goal is to find choices of Y1, . . . , Ym such that

√
m ≈

∥∥P (Yrow)P
∥∥

‖P (Ycol)P ‖
=

‖Yrow‖NP(X)

‖Ycol‖NP(X)
.

As was seen in Theorem 1.1, since the NP(X) norm is an infimum, there must be an interpolating 
function Fcol ∈ Mm×1(H∞(Bd)) such that Fcol(X) = Ycol and ‖Fcol‖∞ ≈ ‖Ycol‖NP(X). Choosing Frow
to be the row vector version of Fcol, we have that Frow(X) = Yrow. Since ‖Yrow‖NP(X) ≤ ‖Frow‖∞ and 
‖Ycol‖NP(X) ≈ ‖Fcol‖∞ we have the following

‖Yrow‖NP(X)

‖Ycol‖NP(X)
≈

‖Yrow‖NP(X)

‖Fcol‖∞
≤ ‖Frow‖∞

‖Fcol‖∞
≤ Cm ≤

√
m.

Thus, with a correct choice of Y , we have that 
√
m � Cn ≤ √

m.
Now, fix n and m and choose a cut-off value γ <

√
m. The following pseudo-code describes a loop to find 

X = (X1, X2) ∈ M2
n and Y1, . . . , Ym ∈ Mn that witness the ratio ‖Yrow‖NP(X) > γ‖Ycol‖NP(X).

1: Set a cut off value γ <
√
m;

2: Set the maximum ratio Mr = 0;
3: Choose a sufficiently small ε > 0;
4: LOOP while Mr < γ;
5: Randomly generate Z = (Z1, Z2) ∈ M2

n such that Z1Z
∗
1 + Z2Z

∗
2 is invertible;

6: Set X = (1 − ε)(Z1Z
∗
1 + Z2Z

∗
2 )−1/2Z;

7: Compute PX =
[
(In2 −X1 ⊗X1 −X2 ⊗X2)−1]ψ;

8: Compute P 1/2
X and P †/2

X ;
9: Select v1, . . . , vm to be distinct eigenvectors of PX with the smallest positive associated eigenvalues;

10: Set each Yi = vec−1(vi);
11: Form Y = (Y1, . . . , Ym);
12: Compute ‖P (Yrow)P ‖ and ‖P (Ycol)P ‖;
13: IF γ‖P (Ycol)P ‖ > ‖P (Yrow)P ‖;
14: THEN set Mr = ‖P (Yrow)P ‖/‖P (Ycol)P ‖ and PRINT(X, Y , Mr);
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15: ELSE set Mr = max{Mr, ‖P (Yrow)P ‖/‖P (Ycol)P ‖};
16: END LOOP.

The nature of the above algorithm implies that if ε is not sufficiently close to 0, then typically the 
column-row ratio will not be close to 

√
m and the loop will never terminate. It is perhaps advisable to 

randomly generate ε′ ∈ (0, ε) at each iteration of the loop to give a better chance that the loop terminates. 
A functioning version of the above pseudo-code (including a method of computing PX) can be found at the 
following url: https://github .com /mericaugat /EffectiveNP.

9.2. Committee spaces

We note that if we had not done the normalization to make X asymptotically unitary in the above code 
and instead chose random tuples with independent entries, in the limit we would not find examples with 
large column-row ratio, as was proven in [14]. That is, sequences of random multipliers usually satisfy the 
true column-row property. Originally, our group did not normalize this way, and only found examples with 
a ratio of about 1.0043 after millions of trials.
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