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1. Introduction

1.1.  The purpose of this paper is to give an effective solution of the so-called “noncommutative
Nevanlinna-Pick interpolation problem” in the row ball, which is an analog, in the modern setting of non-
commutative function theory, of the classical Nevanlinna-Pick interpolation problem. The main result is
the construction of a single matrix, in closed form, such that the problem has a solution if and only if this
matrix is positive semidefinite. In this introductory section we pose the problem and describe some of the
applications of our solution.

1.2. Noncommutative Pick interpolation in the row ball

We work in the general setting of noncommutative function theory, as laid out e.g. in [10]. Fix an integer
d>1. Foreachn=1,2,3,..., let /\/12 denote the set of d-tuples of n X n matrices with complex entries:
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ME={X = (X1,...,Xq): X; € M,}}

and let M be the disjoint union of the M¢ over all n (When d = 1 we drop the superscripts and just write
My, M). Let M+ denote the set of s x t matrices with complex entries. By the row ball B we mean the
graded subset of M, defined at each “level” n by

B ={X =(X1,...,Xq) e ML | X1 X7+ + Xy X <1} € M2
The row ball B? is a prototypical example of an nc domain; this means that (1) at each level, the set B¢ ¢ M4
is open, (2) B¢ respects direct sums, i.e. if X € B and Y € BY then X @Y € BY, ., (here the direct sum
means coordinatewise direct sum: X @Y = (X, ®Y1,..., Xq®Yy); and (3) B? respects unitary equivalence,
i.e. if U € M is a unitary matrix and X = (X1,...,Xy) € B then U*XU = (U* X U,..., U*X,U) € B2.
The nc-domain B¢ then supports ne-functions, which are graded functions f : B¢ — M (that is, a family
of functions f, : BE — M, n = 1,2,3,... which (1) respect direct sums: for X € B, Y € BY,, we have

Fran(XOY) = f,(X)® fn(Y); and (2) respect similarities, in the sense that if X € B¢ and S is a similarity
such that S~1X S is also in B%, then f(S71XS) = S1f(X)S. Let

H>®(B%) = {f :B* - M f is an nc function and sup ||f(X)| < oo}.
XeBd

We refer to the supremum in this definition as the H* norm of the nc function f, denoted || f| ..

The noncommutative Nevanlinna-Pick interpolation problem in the row ball is the following (see [4] and
the references therein): given a finite set of points (“nodes”) X!,..., X™ in B¢, with X7 € ng, and matrices
Yi ...Y™ with Y7 € M, , find an interpolating function f € H*>(B?) (if it exists)

f(XH=Y) j=1,...m (1.1)

of minimal H* norm. The fact that the domain B% and the nc functions f respect direct sums means that
every such problem can be immediately reduced to a “one-point problem”: putting X = $X7 and Y = @Y7,
the problem (1.1) has a solution if and only if the one-point problem

[(X)=Y, (1.2)

has a solution, and the minimal norms are the same. Instead of asking for the minimal norm, one could
pose the essentially equivalent problem of asking whether or not there exists a solution of norm || f||o, < 1.
It is also possible to consider a generalized problem in which the single n x n matrix Y is replaced by an
s x t block matrix (Y;;),i =1,...,s;j =1,...,t, where each Yj; is an n x n matrix. We then seek an s x t
matrix of nc functions F' = (f;;) so that

f”(X):Y; izl,...,S;j:L...,t

and the H* norm of the s x ¢t matrix nc function F is the evident supremum norm.

When d = 1 and all the X7,Y7 are 1 x 1 matrices this reduces to the classical Nevanlinna-Pick inter-
polation problem in the unit disk. In that case, interpolating functions always exists (e.g. one can take a
Lagrange interpolating polynomial), so the problem is just one of finding the minimal H* norm. However
in the noncommutative setting solutions need not always exist; a necessary and sufficient condition for a
solution of the one-point problem (1.2) is that the matrix ¥ belong to the subalgebra of M,, generated by
the coordinates X1, ..., Xy of the point X.
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m

Consider for a moment the classical Nevanlinna-Pick interpolation problem: given points z',...,2™ in
the open unit disk, and complex numbers y',...,3™, does there exist an analytic function f, bounded by
1 in the disk, with

f@) =y, j=1,....m? (1.3)

The problem has a solution if and only if the Pick matrix

1—yigd \
_ J
p= (2L

1—a2'27 ) |

4,j=1

is positive semidefinite. It turns out that it is also possible to give a necessary and sufficient condition for the
existence of a norm-one solution of the noncommutative problem (1.2) in terms of a single matrix involving
the data X,Y, this was given by Ball, Marx, and Vinnikov in [4]; however the single matrix in question is
expressed as an infinite sum and does not have a readily apparent closed form. The main result of the present
paper is to present a closed-from expression for this “noncommutative Pick matrix,” which is amenable at
least in some cases to machine computation, thus providing an effective solution to the problem which is
numerically stable for suitably conditioned data. We construct this closed form expression in Section 3, the
key idea is a matrix involution introduced previously in [12] in connection with the problem of determining
the algebra generated by a family of matrices X7, ..., Xy (which is connected to the interpolation problem,
as remarked above). Finally, we note that the interpolation problem considered here can also be understood
as a special case of an interpolation problem in Hardy algebras over C*-correspondences as considered in
the work of Muhly and Solel (in particular the interpolation theorem [11, Theorem 5.3]), though we have
not attempted to interpret the objects of the present paper in this formalism.

1.8. Failure of the column-row property in L%

Let H be a Hilbert space, B(H) the algebra of bounded operators on #, and fix a subset .A C B(#). For
each fixed n > 1, we define C, to be the least number C,, such that the inequality

n 1/2 n 1/2
IS A < el > ara;
i=1 i=1
holds for all n-tuples Ay,..., A, of elements from 4. The column-row constant of A is the least number C
such that
1/ 1/2

|5

"< CH iA;*AZ-
i=1

for all sequences (A4;)$2, from A for which the sums are SOT-convergent. Evidently the C,, form an increasing
sequence with lim C,, = C; it is possible that C' = oo. If C is finite, we say that A has the column-row
property. (One could analogously define a row-column property but this will not concern us here.) For
example, A = M, (C) has column-row constant at least equal to y/n. (To see this, let E;; denote the
standard n x n matrix units; putting A; = Ey; for i = 1,...,n one checks easily that || >, A¥A;|| =1
while || > | A;Af|| = n.) It is also easy to verify that for any set of operators A, we have C,, < \/n for
every n.

Of particular interest is the case when A is the algebra of bounded multiplication operators on a repro-
ducing kernel Hilbert space. In this setting a number of important spaces are known to have this property.
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Trivially, the algebra A = H>(D) (the algebra of bounded analytic functions in the unit disk D, equipped
with the supremum norm) has the column-row property. Beyond this, the multiplier algebra of the Dirichlet
space D over the unit disk has the column-row property with constant C' < /18 [18], and the multiplier
algebras of the Drury-Arveson spaces H2 over the unit ball BY C C? (denoted Mult(H3)) have the column-
row property with constants C' = C(d); [3], in the proof given in [3] the obtained estimates on the constants
C(d) grow to infinity with the dimension d. The Dirichlet space and the H3 spaces are particular examples
of spaces with a complete Nevanlinna-Pick (CNP) kernel, the column-row property (when it holds) turns
out to have important consequences in such spaces, e.g. in applications to interpolating sequences [2] and
in factorization of weak products [9], [3]. Very recently, M. Hartz has shown that the column-row property
holds in all CNP spaces, with constant 1 [8].

The connection with the present paper is as follows: it turns out that the multiplier algebras of H 3 can
be viewed as the “commutative collapse” of the so-called free semigroup algebras L4, d > 2. (We refer to
the survey [6] for the basic facts about the free semigroup algebras.) One may then ask if an analog of
the column-row property holds for these algebras. In detail, if we let ;‘ denote the free semigroup of all
noncommuting words in d letters {1,2,...,d}, (including the “empty word” &), then we can form a Hilbert
space }'3 with orthonormal basis {gw}wew. For each letter ¢ we define an operator

Linggiwa ’LUE]F;_.

The operators L; are isometries with orthogonal ranges, i.e. we have LjL; = d;;1 for i,j = 1,...,d. The
free semigroup algebra is the WOT-closed algebra generated by the L;, 1 =1,...,d.

By a result of Salomon, Shalit, and Shamovich [16, Theorem 3.1] the free semigroup algebra L£; may
be completely isometrically identified with the algebra H>(B) of bounded nc functions in the row ball.
Moreover the map f — f(z) obtained by restricting an nc function to level 1 (the scalar unit ball B¢ ¢ C%)
is a completely contractive homomorphism from H>°(B¢) onto the multiplier algebra Mult(H?2), (see [17,
Theorem 4.4.1, Subsection 4.9] or [5, Section 2]; this latter reference makes clear the connection with
Nevanlinna-Pick interpolation).

In particular, we observe that for each d, and n, the column-row constants C,, for H>°(B%) dominate the
corresponding constants for Mult(H3). The question naturally arises of whether or not the free semigroup
algebras H>°(B?) have the column-row property. It turns out they do not; in fact we will prove the constant
is infinity for H°°(B?), and the constant C,, = /n.

Theorem 1.1. For the algebra of bounded nc functions in the row ball, H>*(B%), d > 2, we have C,, = \/n
foralln=1,2,....

Thus, in contrast to Mult(H3), the column-row property fails in H>°(B) in the strongest possible way,
establishing a stark contrast between the commutative multiplier algebras Mult(H3) and their noncommu-
tative “parents.” Theorem 1.1 is proved in Section 6.

1.4. Readers’ guide

Section 2 gives a definition of the t-involution first introduced in [12]. We use the v-involution liberally
throughout Section 3 to first construct for a (contractive) matrix tuple X = (Xi,...,X4) C M its elemen-
tary Pick matrix: a matrix Py whose range encodes the unital subalgebra of M,, generated by Xi,..., X .
This in turn is used to establish two of the main results of the paper: Theorem 3.5 and Theorem 3.9.

Section 4 consists of several technical results leading up to the construction of an isometry in Section 5
and its immediate use in Theorem 5.2, a so-called “mini-dilation.”

In Section 6 we apply Theorem 3.9 to prove Theorem 1.1: the column-row property fails for the Fock
space on two or more generators.



M. Augat et al. / J. Math. Anal. Appl. 492 (2020) 124457 5

Section 7 gives a more concrete approach to the results in Section 6. Section 8 introduces a condition
number for a matrix tuple X = (X7,..., X4) and explores its properties and interpolating sequences. Finally,
Section 9 discusses computational consequences of effective NP-interpolation.

2. Preliminaries. The 1) involution and its properties

If Ae M, xm and B € M.« then their Kronecker product A ® B € M, «ms is the block matrix given
by

allB N almB
A®B = : . : . (2.1)
amB ... anmB

Or, in other words, (A ® B)n(i—1)+k,n(j—1)+€ = a;,;br.0.
Let 7 : M — M be the transpose operator and let vec : M,, — M,,21 be the linear map taking the
columns of a matrix and stacking them to get a column vector:

aii

ail e A1n :
. . anl

vec . o . =

: : : a2

ap1 .- Apn .
Ann

We have the classical identity
vec(AXB) = (BT @ A) vec(X). (2.2)

Typically we treat vec as a graded function on M. That is, vec = (vec[n])2,, where each vec[n] : M,, —
M2y, and if A € M,,, then vec(A) = vec[n|(A). This greatly simplifies notation.

Definition 2.1. Define ¢ : M2 — M2 to be ¢ = (T ovec) ® vec. If A € M,,2 then we write the evaluation
of ¢ on A as

AV = [(T o vec) ® vec | (A).

Or, more explicitly, if C, D € M,, then

[C @ DY = vec(C)T @ vec(D) = vec(D) vec(C)T. (2.3)
Indeed, observe

[A©B]Y = [(T o vec)® vec|(AeB) = vec(A) @ vec(B) = vec(B) vec(A)7.
Our motivation for writing 1) as a superscript is that v is an involution on M,,z2:
Lemma 2.2. For any E;; and Eye we have
[Eij ® Exe]Y = Etj © By (2.4)

Consequently, ¥ is an involution.
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Proof. We have the following equalities:

[Eij ® Ekdw = vec(Fxy) vec(EZ-j)T

= Ln—-1)+kn(G—1)+i
= FEy; @ Ey.

Evidently applying % again gives us back E;; ® Ej¢. Therefore 9 is an involution. 0O
Proposition 2.3 (v modularity). If U € M2 and A, B,C,D € M,, then
¥ T ¥ T
[(A®B)U(C® D) = (DT @ B)U¥(C & AT).

Proof. First we recall that if u,v are column vectors, then u? @ v = vu”. We first prove the result for
U = E;; ® Ey. Using (2.2) and (2.3), we have

P
[(A ® B)(Ei; @ Ex)(C® D)]" = [ AE;C) @ BEMD)]

= (BEng)(VeC(AEUO))

[(DT ® B) vec(Ex)] [(CT @ A)vec(E;)]"
= (D* ® B) vec(Ey) vec(E;;)T (C @ AT)
= [D" @ B][E;; ® Ex]?[C ® A"].
Since 9 is linear and the E;; ® Ej, form a basis for M,,2, we are done. O
Remark 2.4. We could just as easily use Equation (2.4) as the definition of the ¢-involution. The t)-involution
was introduced by the third named author in [12], where its key properties (including the modularity

property) were described; we have included proofs here for the sake of convenience. What we will call the
elementary kernel matriz, defined in the next section, also appears in [12].

3. Noncommutative Pick interpolation and the matrix Px

Recall X = (X1,...,Xy) € M? is a row contraction if [X; ... X4] has norm strictly less than 1:

d
I$5 e
i=1

Definition 3.1. For X = (Xi,...,X4) € M%, we put

d o
Px := [(In &I, — ZE@ Xi)fl}

i=1

(when it is defined). If X is a row contraction, then it follows from [13, Proposition 3.1] that the spectral
radius of Z?:l X; ® X; is strictly less than 1, so Px exists. In this case we call Px the elementary kernel
matrix. (It may be thought of as an analog, in our setting, of the ordinary Szegé kernel function k(x,z) =
(1 —zx)~! at a single point z in the unit disk.)
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Definition 3.2. For x = {z1,...,x4}, a set of freely noncommuting indeterminates, let (x) = (z1,...,zq4)
denote the unital free semigroup generated by x1,...,xqs with empty product @ acting as the identity. If
W =iq4z ..., is a word in the letters {1,2,...,d} we write

¥ =X Ty T,
In particular, for a system of matrices X = (Xi,...,X ) and a word w we write

Xw = Xile'Q e Xi,,
Thus, when X is a row contraction we can express Px as a norm-convergent power series
o0 d n
~ ~w
PX:Z< Xi®Xi> = > X' @xv
n=0 \i=1 weE (x)

Suppose now X is a row contraction. We recall the one-point nc Pick interpolation problem from the
introduction: given Y = (Y; ;) € Myx; ® M, does there exist an nc function f € Mgy ® H>(B%) such
that || f||, <1and f(X)=Y7

From [4, Theorem 6.5], this problem has a solution if and only if the map ® : M,, — M,

OH)= > (X"HX")@L-Y | Y (X"HX" )&l |Y*

wE (x) weE (x)

is completely positive. Our goal is to recast this condition in terms of the elementary kernel matrix Px
introduced above. To do this we first apply Choi’s criterion to reduce the problem of checking the complete
positivity of ® to checking the positivity of a single matrix. We then use the v involution to express this
single matrix in closed form.

Definition 3.3. For each n, the Choi Matrix is the matrix

¢, = Z Eij ® Eij € M, (31)
ig=1

By Choi’s Theorem (see e.g. [15, Theorem 3.14]), a map ® : M,, — M,, is completely positive if and only
if the single nm X nm matrix

(I, ® ®)(€,) = > Eij ® B(Ej))

is positive semidefinite.
The Choi Matrix also has the following important relation with :

[Inz]w =¢,, (3.2)
as is trivially verified using (2.4) and (3.1).
Lemma 3.4. If X = (X1,...,X,4) € M% is a row contraction then

> (ITeX)e,(I®X)" = Px.

wE (x)
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Proof. Since X is a row contraction, the series is norm convergent. Using the fact that 1 is an involution,
the modularity property (Proposition 2.3), and the action of 1 on the Choi matrix (3.2), we have

Y TeX)e.(IoX)" = :zww [(1®XW)¢H(I®XW)]¢]¢

wE (x)

— [SCuew & @ X)L @ D) Y

r - ¥
= _Zwe<x> (X ® X)“J}

r — 1Y
= [tor-SXex)|
=Px O

Theorem 3.5. Suppose X = (X1,...,X4) € M2 is a row contraction and Y = (Yi,j)fjﬂ € Myxi @ My, is
an s x t block matriz with n x n blocks. There exists an nc function f € Mgy @ H®(B%) such that || f|| < 1
and f(X) =Y if and only if

Px ®I, — (In X Y)(PX ® It)(In (%9 Y*) > 0.

Proof. Let & : M,, — M, be the operator defined by

O(H)= Y (X"HX" @I, -Y | Y (X"HX")&I |Y*
we (x) we(x)

Next observe

Y Eye) XYE ;X"el, =Y (Ejel)(IeX"E;X"*)sl,

i,j w w1,
= Z Z(mxw)(Eij®Eij)(I®Xw*)®Is
wo,j

= (IeX) e, (IeX)" I,
= Px ® I,
where the last equality uses Lemma 3.4. Hence,
(1,29)(¢,) =Px @I, — ([, Y)(Px ® ,)(I, ® V™).

Thus, Choi’s Theorem tells us ® is completely positive if and only if Px®Is — (I,®Y)(Pxel;)(1,oY™*) > 0.
Finally, as already noted, [4, Theorem 6.5] says that ® is completely positive if and only if there is a solution
to the interpolation problem. This completes the proof. O

We now turn an essentially equivalent version of the interpolation problem: if X is a row contraction
and Y is given, find the minimal norm of a solution f to the interpolation problem f(X) =Y. First of all,
we must note that there may not be any f with f(X) = Y7; this will happen if and only if the blocks of
Y belong to the subalgebra generated by X, ..., X4. (The sufficiency of this condition is trivial; necessity
follows e.g. from a result of Agler and McCarthy [1, Lemma 3.2] which says that if there is some bounded f
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with f(X) =Y, then there is a polynomial with p(X) =Y. In this respect see also [16, Lemma 4.4], which
connects the condition Y € algy to the “full envelope” condition in [4].) By the main Theorem of [12], we
know that a matrix Z is in the algebra generated by X if and only if vec(Z) € ran(Px). When each block
of Y belongs to this algebra, then there will exist an nc polynomial matrix f with f(X) =Y.

We will define the NP-norm of Y to be the minimal norm of a solution to f(X) =Y, and show how to
compute this minimal norm using Px.

Definition 3.6. Suppose X = (X1,...,Xy) € B4 C M and Y € My ® M,,. We define the NP(X) norm
of Y to be

”Y”NP(X) = inf . 11 ree (3.3)
fEMo 1@ H> (BY)
F(X)=Y
and note that implicitly we consider only nc functions f. Moreover, if || Zle X; X =1, so that X lies

in the boundary of B? at level n, we define the ANP(X) norm of Y (the asymptotic NP(X) norm at the
boundary point X) as

1Y lanp(x) = }% 1Y llxpex)- (3.4)

We note that the NP(X) norm could be equivalently defined by taking the infimum just over nc polyno-
mial matrices f in the expression (3.3).

We will compute [[Y[[ypy) for all Y whose blocks are in the algebra generated by X, and ||Vl yxp(x,)

for a special subclass of boundary points X, which will be useful in applications. We first introduce some

notation and make some elementary observations.

Definition 3.7. If X = (X1,...,X4) € M then let algy denote the unital subalgebra of M,, generated by
X1, Xy

Note:
o If X = (Xy,...,Xq) € M? is a row contraction, then Px is self-adjoint and positive semi-definite, so
P)l</ 2 exists, and we let PXT/ 2 denote the Moore-Penrose pseudoinverse of P)l(/ 2,

e Note PXT/QP;(/2 = P)l(/zPXT/2 = Qx, where Qx is the projection onto ran(Px) = vec(algy).

e The matrices Px and P;(/Q are invertible if and only if algy = M,,. In this case, PXT/2 = P§1/2.
Corollary 3.8. Suppose Y € My ® algx. If

PYP — (Px1? @ L)(I, © V)(PY? ® I,)
then
Py P
||YHNP(X) = H Y H

Proof. We begin by multiplying the main equation in Theorem 3.5 on the left and right by (PXT/2 ® Iy):

Qxel, = (Px%al,)(I,oY)(Pxel)(I,oY*)(Px/?1,)
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Suppose ¢ > 0. By considering the interpolation problem for ¢='Y instead of Y, it follows from above that
there exists f € Mgy ;@H(B%) such that || f|| = ¢ and f(X) = Y if and only if PYZ(PYF)* < 2Qxel,
if and only if |PYP|| < c. If there exists f € My ;@H>(B?) such that ||f|| = ¢ and f(X) =Y, then
1Y [[xp(x) < ¢ Hence, 1Y P < ¢ implies 1Y [xpx) S e

On the other hand, if |[Y|[yp(x) < c then for each € > 0 there exists f. € M@ H>®(B%) such that
|l f-]l = ¢+ ¢ and f.(X) = Y. However, this implies |[FY | < ¢+ ¢ for all € > 0, hence ||FYF|| < ¢. Thus,
|PY || < cif and only if 1Y [[xp(x) < ¢ Therefore, ||Y|lypx) = IPYF|l. o

Theorem 3.9. Let X = (X1,...,X4) € M,(C)¢ be a row co-isometry (that is, Z?:l X X: = 1I). If the
algebra generated by X1,..., Xg is all of M, (C) then

lim (P; el (IeY) (P el) = I,eY
—
and consequently

HYHANP(X) = }Eﬂ HYHNP(tX) =Y.

Proof. We claim 1;2 Px — W ®1, as t — 1, for some positive definite matrix W € M,,(C). If the claim

is true, then
li —-1/2 1/2 L2 —=1/2
tgq(PtX oly) (1Y) (P el;) = (W "elel)(l,eY)(W "el,ol)
= 1,®Y

from which we conclude, by Corollary 3.8, that ||Y|[anp(x) = [|Y]|. Thus, it is sufficient to prove the claim.
Consider T' = Zle X; ® X;. Using the identity (2.2) we see

i=1

d
T vec(I) = vec <Z XiX;k> = vec([]),

that is, vec(I) is an eigenvector for T with eigenvalue 1. Since X is a row contraction and the algebra
generated by X7,..., Xgisall of M, (C), it follows from the quantum Perron-Frobenius theorem of Evans and
Hgegh-Krohn [7] that the spectral radius of T is equal to 1, and the (generalized) eigenspace corresponding
to 1 is one dimensional. (For a treatment of this result more tailored to the present application, see [13,
Theorem 5.4].) Let vec(W) be the corresponding left eigenvector to 1 (that is, vec(W)*T = vec(W)*),
normalized so that vec(W)* vec(I) = 1. From [13, Theorem 5.4] and the remarks following it, the matrix
W must be positive definite. (This conclusion again relies on the fact that Xi,..., X4 generate all of M,,.)
Thus, we may decompose T as

T=G+B

where G = vec(I) vec(W)*, and B is the remainder T'— G. It follows that B has spectral radius less than
or equal to 1, and that 1 is not an eigenvalue of B. Next, we see that

G? = vec(I) vec(W)* vec(I) vec(W)* = vec(I) vec(W)* = G.
Moreover, since vec([) is a right eigenvector to 1 and vec(W) is a left eigenvector to 1, we also have

TG =G=GT
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and consequently GB = BG = 0. In particular, 7" = (G + B)* = G" + B" = G + B" and

oo oo
(I-T)" = (PT)" =1+ ("G +t"B")
n=0 n=1
§ 2 2 1
=1 G+t"B(I—-t°B) .
+ GBI )

Thus,

t2 2 2 11/)
t?B(1 —t*B)~
1_t2G+ ( )

Pix =[(1—-£T)7 ¥ = |1+
Since, as noted above, 7(B) < 1 and 1 is not an eigenvalue of B, we have

lim(1 —¢*)B(1 —t*B)~* = 0.

t—1

Taking the limit of 1;2t2 P,x ast — 1, we obtain

1=
lim ——
t—1 {2

Pix = GY = [vecI(vecW)*]¥ =W @ I,,,
which finishes the proof of the claim, and hence the theorem. O

We restate the above theorem in terms of the condition of the interpolation problem in Section 8.
4. The Boomerang matrix

In this section we collect some calculations which will be useful in the next section.

Definition 4.1. Define B € M,,5+,, to be

B= z”: vec(E;;) ® E;j = 2": e ®e; ® L
i,j=1 i,j=1
The matrix B is known as the Boomerang matrix.
Lemma 4.2. If C € M,,, then
(C®l,®I,)B=,®I,®C")B. (4.1)
Moreover, if A € M2 and D € M,, then
BT(A® CD)B =BT ((CT @ NA(DT @ )] @ I)B. (4.2)

Proof. We prove the first item for C = Ej, and then extend linearly to all of M,,. Note

n

(B ®@I®B=> (En®IRI)(e;®e; @ Ey) =Y er@e; ® Ey

,J J
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n n
= Zei ®e; @ By By = Z(I ®1® Eu)(e; ®ej @ Eyj)
,J ]

v

= (I@I@E@k)B.

Extending linearly we have Equation (4.1).
Now suppose A € M,z and D € M,,. Observe

(A@D)B=(A@N(I®I®D)B=(Ac)(DT@IxI)B
= ([A(D" @ )] ©1)B,

and by taking transposes we have
BT(A®C) =BT ([(CT 9 Al @ I).
Using (4.1) finally yields

BT(A® CD)B=B" A2 C)I®1®D)B
BT([(CT 9o DAMDT @ )@ )B. O

Lemma 4.3. For any row contraction X € M2,
d —
Px - Z(XZT ® I,)Px(X; ® 1) = [Inz]w =q,,
i=1
where €, =" ._, Eij ® E;; is the Choi matriz.

ij=1

Proof. Observe by Proposition 2.3,

Py - S0, (X7 oL Px (Xiel,) = Px - [SL, (TeD) P (X0X)]”

Lemma 4.4. Suppose X € M is a row contraction. If H € M,, then

%

BT (Px @ (H - oL XHX])) B = H.

Proof. We begin by computing the left hand side for a fixed i:

BT (Pxe(H — X;HX}))B = BT (PxoH)B — BT (PxoX;HX})B
T(PxoH)B — BT ([(XFoI)Px(X;I)|eH)B

BT ([Px — (XF'eI)Px(X;oI)|sH)B.

I
T3
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Summing over i and applying Lemma 4.3 implies
BT (PX ® (H - ZleXiHXi*)) B =BT, H)B.
Using the definition of the Choi matrix we finish the computation:
BT(¢,® H)B = Z(@g ®el ® Ej i) (€ @ H) (e, T ® ej, ® Eiyj,)
= Z(eg ® ejTl)Q:n(eiz ®ej,) @ Ej i HE,,;,
= el Bei, ® €] Epeej, @ Ejyi, HE; ),

= Zl ®1® By HEy,
k.t

=H 0O
Definition 4.5. Let s, € Z and let Q,, ; € M,,; denote the permutation matrix such that
Qs (U V)Ql ,=VeU
for al U € M,, and V € M. In particular, if W € M, «,, and Z € M;y, then
(W Z)QL . =ZaW.
For each r > 1, we define the n®r x nr matrix
B, = Z ei®e; 1. @ E;jj | Qn,
0,J
to be the ampliated boomerang matrix.

Proposition 4.6. Suppose A € M,2, C € M,,, Z € Muixns and W € My sxni. We have the following
identities;

(A9 L)1, ®Z)®C|B,=[A® 1, ® C|B,Z (4.3)
and
Bl [(I,eW)A®L,)®C]l=WB]'[Ae L, C]. (4.4)
If, in addition, J, K € M., then
BT [(I,eJ)(Ael,)(I,9K)eC] Bs = JBT [A® I, ® O] ByK. (4.5)

Furthermore, the ampliated boomerang matriz satisfies the ampliated versions of Equations (4.1) and
(4.2).

Proof. Suppose A € M2 and C € M,,. Let &y be the t X s matrix with a 1 in the k, f-entry and zeros
elsewhere. We prove Equation (4.3) with E,; ® &, first:
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[(A®T,)(I,®Epy©Er)©C] B

[A(In®Epq)2Er02C] [e;0€;01,0F;;] Q. s
[A(e;®Epqe;)@Ek@CE;;]1Qy s
Ale;®e,)0Ee9C Eig] Q. s

i [A(e;0e;)0Ek@CE;; Epg] Qn s

= Zij(A®It®C) (e;2€;011®F;;) (Ere®Epq) Qn,s
= (AeL;0C) (B QL ) (Ee®Epqg) Qn,s

= (A0 [;0C) (By)(Epg®Eie).

[

2
>
2
S

Thus, with linearity and by taking adjoints we have Equations (4.3) and (4.4).
For Equation (4.5), set t = s and combine Equations (4.3) and (4.4):

BI'[A® JK ® C]|B, = JBI'[A® I, ® C|B,K.
Finally, the ampliated versions of Equations (4.1) and (4.2) follow readily from adapting their proofs. O

Proposition 4.7. Suppose X € M% is a row contraction and H € M,,. An ampliated version of Lemma ./
is satisfied:

B [Py @1, (H- S XHX; )| Bo= He I,
Proof. This follows from adapting the proof of Lemma 4.4. 0O
5. Popescu mini-dilations

Once more, we suppose X = (X1,...,Xy) € ./\/l,‘i is a row-contraction. Set Ax = I,, — Zgzl X; X} and
observe that both Px and Ax are self-adjoint and positive semi-definite.

Define Vx = (P;(/2®IH®A§(/2)Bn € M1,z and remark that Proposition 4.7 with H = I,, implies Vy is
an isometry: Vi Vx = L.

Recall Px /2 is the pseudoinverse of P)l</ > and Qy is the projection onto vec(algy), where algy is the
unital algebra generated by Xi,..., X .

Lemma 5.1. If W € algy then

Qx(ln@)W)PX = (In®W)PX and Px(ln@)W*)QX = Px(ln@)W*).
Proof. We begin by taking v € M,2 and recalling that ran(Px) = vec(algy), hence Pxv = vec(V),
for some V € algy. Moreover, since W is also in algy, it follows that WV € algy and Qx vec(WV) =

vec(WV). Thus,

Qx (I,eW)Pxv = Qx(I,oW)vec(V) = Qx vec(WV)
=vec(WV) = (I,eW) vec(V)
= (I,eW)Pxv,

allowing us to conclude that Qx (I,®W)Px = (I,,®W)Px. Taking adjoint shows

Px(In®W*)QX = Px(In®W*). O
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Theorem 5.2. Suppose a, 8 € C(x). If X = PXT/Q(In ® X)P)lf/2 then
Vi (d(X)B(X)* © Lz)Vx = a(X)B(X)* @ .
Proof. Observe that Lemma 5.1 implies that o(X) = Px/%(I, ® a(X))P)l(/Z. Take W, Z € algy and set
W =PxT2(I, e W)PY? and Z = Px'%(1, ® 2)PY/>.
Note Z* = P)l(/2 (LL®Z”‘)PXT/2 and applying Lemma 5.1 once more implies

PYPW 2 PY? = PP Px V2 (1,eW)PY 2 PY? (1,0 2%) Px /2 PY/?
= QX (In®W)PX (In®Z*)QX
= (I,eW)Px(I,®Z").

Using Proposition 4.6 we have the following chain of equalities:

Vi(WZ*el,2)Vx = ((P;(/2®I,L®A§(/2) Bn)* (WZ*el,2) ((P)l(ﬂ@]n@A;/Q) Bn)

BT (P)l(/ Wz PY eI, 00 X) B,

BT ((1,eW)Px(I,©Z*)el,0Ax) B,

B ((I,eWel,)(Pxel,)(I,0Z*e1,)oAx)B,
= (Wel,)BT (Pxel,eAx) B, (Z*el,)
=WZzZ*sIl,.

Since a(X), 5(X) € algy, setting W = a(X) and Z = 5(X) finishes the proof. O
6. Proof of Theorem 1.1
Proof. It suffices to prove the theorem in the case d = 2. Fix n and choose a pair of n x n matrices X =

(X1, X>2) such that X7 X7 4+ X5 X5 = I, and X1, X5 generate all of M,, as a unital algebra. (A construction
of such a pair is given in the next section, see Example 7.1(a).) Consider the n X n matrices

Yi=F11, Yo=FE, ..., Y,=F,,.
Put
Y
Yo
Ycol = . y K“ow: [Yi sz Yn],
Y,
then Voot = || S0y YV 1/2 = 1 and [V = || S0, V712 = V.

Let 0 < € < 1. By Theorem 3.9, for all ¢ sufficiently close to 1 we have both

[Yeotlnpiex) < (14¢€) and  [[Yiow|npex) > (1 —€)v/n.

Fix such a t¢. By the definition of the NP(tX) norm, there exists an n x 1 column of elements of L,
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fi
P

Fcol = .

In

such that ||Feorlloo < 14 € and Fop;(tX) = Yoo, that is, f;(¢X) =Y; for each i = 1,...,n, and

1D F R <1+ (6.1)

=1

If we take these fi,..., f, and form the row

Frow:[fl f2 fn]

then Fj.,, solves the interpolation problem F...,(tX) = Y,.,u, and hence, again by the definition of the
NP(tX) norm, we must have

I~ Fif2 12 = 1 Froullos 2 [Yroullneex) > (1= €)v/n. (6.2)
i=1

Comparing (6.1) and (6.2), and keeping in mind that € was arbitrary, we conclude that C,, > y/n. As noted
earlier, the reverse inequality always holds, so the theorem is proved. O

7. Examples

As we have seen, a central role is played by d-tuples of n xn matrices X = (X1, ..., Xy) with the following
two properties:

e the row X is a co-isometry, i.e. Zle X; X} =1I,, and
e X is irreducible in the sense that algy = M,,.

We now give several examples of such systems X; the first is important for the proof of Theorem 3.9 in
the sense that it shows that such systems exist for d = 2 and all n (hence for all d and n).

7.1. Irreducible representations of groups

a) Let d =2 and let X = (%S, %M) where S is the cyclic permutation matrix and M is the discrete
Fourier transform of S. That is,
Se; = €i+1 (mod n)» Me; = wiei

where w is an n-th root of unity. Since S and M are unitary, it is trivial that X is a row co-isometry.
Again since S and M are unitary, it follows that the algebra they generate is a *x-algebra, and it is
straightforward to check that the only matrices commuting with both S and M are scalar multiples of
the identity. Thus, algy = M.,.

b) More generally, given any group G with generators gy, ... g4, we can consider any irreducible unitary
representation 7 : G — M,, and let X; = w;w(g;), i = 1,...,d where the w; are nonzero and >_ |w;|? = 1.
(Note that, in the previous example, M and S generate a group of cardinality n3.) As before the algebra
generated by the X; is a x-algebra, and hence the irreducibility of the representation implies that
algy = M,,.
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7.2. Many variable example: the Choi point

When d = n?, we can construct a special d-tuple of n xn matrices X1, ..., X4, for which it is easy to verify
the conclusion of Theorem 3.9 directly, without appeal to the machinery of the quantum Perron-Frobenius
theorem. (In fact this is the context in which the failure of the column-row property for £; was originally
discovered. In particular, using the following lemma and imitating the proof of Theorem 3.9, one can show
that for £,2 the column-row constant C,, is y/n. Since all the £; embed completely isometrically in L, one
concludes C,, = \/n in Ly, for all n.)

Lemma 7.1. Fizn > 1 and let d = n?. We consider the n?> matrices Xi,j, each of size n x n,

1
Xi’j:—E“ 1§Z,]§n

\/ﬁ 17

arranged into a row (say, by listing the subscripts (ij) in lexicographic order). Then X is a row co-isometry
and

Hence for any Y € Mgyy @ M2,

1Y anpx) = [IY]-

Proof. It is straightforward to verify that X is a row co-isometry. Now, let

3,j=1 3,5=1
Note T? = T. Moreover, T% = % n2. S0, computing P;x, we see that

Pix = [(I —t*T)71)¥
t2
1—¢2
? 1

—1.
1—t2n

=[I+ Y

=nT +

This proves the first claim of the lemma, and the second claim follows exactly as in the proof of Theo-
rem 3.9. O

8. Further remarks on the NP(X) norm and interpolating sequences

The Nevanlinna-Pick norm of a block matrix Y at X, denoted ||Y||xp(x), is the minimum block H*
norm of a function f satisfying the equation f(X) = Y. We define the condition number of X, denoted
k(X), by the formula

1Y lIxpx)
X)= i v
H( ) Y#O,YE.}\I/llsxtQ@algx ”Y”

Note that, by definition, for any Y € algy,
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VI < 1Y llvpo) < s(XO]Y]-

The two following fairly harmless assertions, which will be established momentarily, have somewhat explosive
consequences:

(1) If X is an irreducible row co-isometry, then lim; ,; x(tX) = 1.
(2) If X; is a row contraction and X5 is an irreducible row co-isometry, then

th_r}r% k(X1 @ tX2) = k(X1).

Together, they will be used to establish the following fact, which is somewhat surprising in light of the
failure of the column-row property for the free semigroup algebras: For any sequence of contractive target
data, there is an interpolating sequence for that data such that the interpolating function can be chosen with
norm less than or equal to 1.

In fact, in this case, one can actually choose the interpolating sequence based only on the sequence of
norms of the target data, and their sizes.

Recall the elementary kernel matrix:

Px =[(I-) XoX;) "

Given a set S C M,,, we denote its commutant by S’, and we denote the set of invertible elements in S by
S*.

Corollary 8.1. Suppose Y € My ® algy. Suppose D € {I ® X}'*. Let Qx.p = (DPxD)? Then,

I e = (@0 ® L)(In @ V) (Qxp © 1)

(Here, T denotes the Moore-Penrose pseudoinverse.)

The corollary follows essentially trivially from Corollary 3.8 (by which it is sufficient to take D = I).
However, especially in the case of multi-point Pick problems, D can act as a pre-conditioner. Note the
necessity that Y € Mgy, ® algx, rather than merely ¥ € Mgt ® M,,.

We define the effective condition number of X, denoted y(X), to be defined via the following formula,

X) = inf DPxD|||(DPxD)~1|.
1(X)= it VIDPxDI[(DPD) |

The effective condition number gives a bound on the condition number.
Corollary 8.2. For all X € B¢,

Kk(X) < y(X).

In particular, for all Y € algy we have

1Y e, < ANV

We can also restate Theorem 3.9 in terms of condition numbers, which will be useful in the construction
of interpolating sequences.

Theorem 8.3. Let X = (X1,...,X4) € M, (C)? be a row co-isometry. If the algebra generated by X1, ..., Xq
is all of My, (C) then lim x(tX) = 1. That is, for Y € Myx; @ M,, im [|Y|[xpeexy = Y-
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8.1. Interpolating sequences

We now do some basic constructions of interpolating sequences.

Lemma 8.4. If X1 is a row contraction and Xo is an irreducible row co-isometry, then the spectral radius of

T =>(X1); ® (X2); is less than 1.
Proof. Note T" =", _, X," ® X¥. Therefore, (T™)¥ = > jw|=n vec X1’ ® (vec X3')*. So,

T <l swp  aXPlll_ sup - aw X3l

Z wl=n ‘aw|2:1 Z wl=n ‘aw|2:1
|w] [w]

So, by the Gelfand formula for outer spectral radius, we see that the spectral radius of T [13] is less than
the geometric mean of the outer spectral radii of X; and Xs. O

We now show that the condition number of a direct sum of some tuple with a scaled co-isometric tuple
has the same condition number as the original in the limit.

Lemma 8.5. If X is a row contraction and Xo is an irreducible row co-isometry, then
lim K',(Xl D th) = K)(Xl).
t—1

Proof. The reader may verify that Px, g:x, has a block 4 by 4 structure with four non-zero block entries,
let Px,@tx, be the matrix with the zero columns and rows removed. Note,

[(T-Y (X1):i®(X1)i) " 1Y [(T-t Y (X1):i®(X2):) "1 ]

Pxiotxs = [[(142(&»@(&)»‘1}‘” (I ¥ (X2):®(X2):) 1]

Preconditioning by a block diagonal D with 1 and y/n(1 — #?) on the diagonal, we get that

(1= (X1):@(X1)a) 1Y Vn(I=2)[(1—t 3 (X1):®(X2)s) ] }

Prioexs = [\/n(lfﬁ)[uftz<X2)i®<xl>i>—11¢ n(1=t2)[(1—12 ¥ (X2):®(Xa):)~}]¥

Therefore, taking ¢t — 1

R _[Px, 0

fim P, = 751
Therefore, applying Corollary 8.1,

}LH%E(XI EBtXQ) :K,(Xl). O
We now immediately see the following theorem.

Theorem 8.6. Given (p;)2,, a sequence of numbers in [0,1), and (n;)32,, a sequence of natural numbers,
there is an sequence (X V)22, such that each X has size n; and for any sequence (Y 0)22, such that
Y@ < ps, there is a function in H>® of norm 1 such that f(X®) =Y ®,

9. Numerics and random examples

In this section we present a pseudocode version of what was used to initially find counter-examples to
the column-row property for the Fock space.
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9.1. Code

The following pseudocode gives an algorithm that attempts to randomly generate tuples of matrices
X =(X1,X5)and Y = (Y1,...,Y,,) that satisfy the argument in Theorem 1.1. Much like the argument in
Theorem 1.1, the algorithm presented relies on Corollary 3.8 and Theorem 3.9.

Recall that given a row contraction X = (Xy,..., X4) € BY C M2 we can solve the interpolation to a
block matrix Y € M,y ® M, if and only if Y € M« ® algy. Thus our numeric approach to Theorem 1.1
certainly requires at least that X = (X1, X3) is a row contraction and Y € My, ® algy. Recall that in
this case Corollary 3.8 implies

1PY ] = 1Y llwpx)-
Thus, we choose Y7,...,Y,, € algy and set

Yi
Yiow = [Yl ce Ym] and Yo = :
Yo
The goal is to find choices of Y7,...,Y,, such that

~ HP(KOW)PH . HY;OWHNP(X)

Jm & — .
7Yoo Pl N Yeorllnp(x)

As was seen in Theorem 1.1, since the NP(X) norm is an infimum, there must be an interpolating
function Feop € M1 (H™®(B?)) such that Feo(X) = Yoo and ||Feoll, = [Yeorllnpxy- Choosing Frow
to be the row vector version of F,, we have that Fiow(X) = Yiow. Since HY;OWHNP(X) < |[Frowl| o and
[Yeorllnp x) & || Feot | o we have the following

”YrOW”NP(X) - HY;'OW”NP(X) ||Fr0w||

~ < ®© < Cp < V.
HYcolHNP(X) HFcolnoo ”FcolHoo "
Thus, with a correct choice of Y, we have that /m < Cy, < /m.
Now, fix n and m and choose a cut-off value v < v/m. The following pseudo-code describes a loop to find
X = (X1,X5) € M2 and Y1,...,Y,, € M, that witness the ratio [Yiowllnp(xy > Y1 ¥eotllnp x)-

1: Set a cut off value v < /m;
2: Set the maximum ratio M, = 0;
3: Choose a sufficiently small € > 0;
4: LOOP while M, < ~;
5: Randomly generate Z = (21, Zs) € M2 such that Z1Z] + Z»Zj} is invertible;
6: Set X = (1 —e)(Z1Z + Z223)" /%7,
7: Compute Py = [(I,2 — X1 © X1 — X2 ® Xg)_1]¢;
8: Compute P;(/Z and P)T(/2;
9: Select v1,...,v, to be distinct eigenvectors of Px with the smallest positive associated eigenvalues;
10: Set each Y; = vec™!(v;);
11: Form Y = (Y3,...,Yy);
12: Compute HP(Y;OW)P” and ”P(YCOI)P”§
13: IF 4[|7 (Yeo) 7l > |17 (Yiow) "5
14: THEN set M, = || (Yiow)PIl/[|7 (Yeo1)”'|| and PRINT(X, Y, M,.);
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15: ELSE set M, = max{M,, ||F (Yiow) T I/|I¥ (Yeo) Tl };
16: END LOOP.

The nature of the above algorithm implies that if € is not sufficiently close to 0, then typically the
column-row ratio will not be close to v/m and the loop will never terminate. It is perhaps advisable to
randomly generate ¢’ € (0,¢) at each iteration of the loop to give a better chance that the loop terminates.
A functioning version of the above pseudo-code (including a method of computing Px) can be found at the
following url: https://github.com /mericaugat/EffectiveNP.

9.2. Committee spaces

We note that if we had not done the normalization to make X asymptotically unitary in the above code
and instead chose random tuples with independent entries, in the limit we would not find examples with
large column-row ratio, as was proven in [14]. That is, sequences of random multipliers usually satisfy the
true column-row property. Originally, our group did not normalize this way, and only found examples with
a ratio of about 1.0043 after millions of trials.
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