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Abstract

Motivated by the need to introduce design improvements to the Internet network to

make it robust to high traffic volume anomalies, we analyze statistical properties of the

time separation between arrivals of consecutive anomalies in the Internet2 network.

Using several statistical techniques, we demonstrate that for all unidirectional links in

Internet2, these interarrival times have distributions whose tail probabilities decay like

a power law. These heavy-tailed distributions have varying tail indexes, which in some

cases imply infinite variance. We establish that the interarrival times can be modeled

as independent and identically distributed random variables, and propose a model for

their distribution. These findings allow us to use the tools of of renewal theory, which

in turn allows us to estimate the distribution of the waiting time for the arrival of the

next anomaly. We show that the waiting time is stochastically substantially longer

than the time between the arrivals, and may in some cases have infinite expected value.

All our findings are tabulated and displayed in the form of suitable graphs, including

the relevant density estimates.

Keywords Heavy-tailed distributions · Interarrival times · Internet anomalies ·
Renewal theory

1 Introduction

This paper is motivated by the need to better understand the temporal and spatial

structure of anomalous traffic in a nationwide internet network. Characterizing the

stochastic structure of the arrivals of Internet traffic anomalies, such as Distributed

Denial of Service attacks or link failures, have various practical applications. One is

to facilitate the design of network simulators, which are used to validate computer
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networks before deployment. Another application is to predict the arrival of future

traffic anomalies and to plan the provisioning of resources. There has been exten-

sive research on anomaly detection. A Google search produces hundreds of papers

on anomaly detection in internet or local networks. Chandola et al. (2009) provide

a comprehensive survey of anomaly detection methods in various applications. Tsai

et al. (2009) review 55 studies on intrusion detection in internet networks. Bhuya

et al. (2014) comprehensively survey general network anomaly detection methods,

systems, and tools, in terms of the underlying computational techniques, while Liao

et al. (2013) summarize the network intrusion detection with respect to different net-

work scenarios, from the perspective of system deployments, timeliness requirements,

data sources, and detection strategies. The anomaly detection techniques and systems

in specific network scenarios, e.g., wireless sensor networks, Xie et al. (2011), and

internet of things, Zarpelao et al. (2017), have been thoroughly reviewed with respect

to the distinct characteristics of their network anomalies and detection requirements.

Relevant to our research is the work of Paschalidis and Smaragdakis (2009) who con-

sider a spatio-temporal framework for anomaly detection and of Kallitsis et al. (2016)

who describe a hardware–software framework for attack detection that operates on

live internet traffic.

In contrast to a great deal of attention devoted to anomaly detection, there is prac-

tically no work focusing on quantitative description of the propagation of anomalies

through the network. In fact, the fundamental quantitative understanding of network

anomaly via statistical and probabilistic analysis could significantly enhance the net-

work intrusion performance and shed light on network intrusion detection system

design. This low level of understanding of the stochastic structure of anomalous traf-

fic must also be contrasted with a profound understanding of the structure of regular

traffic over the internet and its subnetworks. The groundbreaking work of Leland

et al. (1994) pointed out to the self-similar nature of such traffic, many elaborations

are presented in Park and Willinger (2000). Most models for regular traffic over rel-

atively short time interval postulate a fractal or multi–fractal structure with normal

marginal distributions. More recent references and a comprehensive network-wide

predictive model are given in e.g. Vaughan et al. (2013). We show that in contrast

to the self-similar, hence strongly dependent, Gaussian time series models used to

describe regular traffic, important aspects of anomalous traffic can be well described

by practically independent, but highly non-Gaussian models. We use the framework

of heavy-tailed random variables which have been used in many fields of science and

economics, see e.g. Adler et al. (1998), Resnick (2007), and Peng and Qi (2017).

Our broad objective in this paper is to contribute to a better understanding of the

stochastic structure of anomalous traffic by focusing on a perhaps its most important

aspect: the distribution of the arrival times of anomalies. We deploy a set of statistical

tools to understand the stochastic structure of the arrival time of Internet2 anomalies

over a period of 50 weeks. These tool can be used to study similar problems in other

networks. Another question we explore is the distribution of the waiting time for the

arrival of the next anomaly. This waiting time is stochastically longer than the time

between the arrivals. This is known as the “inspection” or “length-biased sampling”

paradox. Intuitively, if t is an arbitrary time instant, it is more likely to fall into a long

period between two arrivals than a short period between two arrivals. So the waiting
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time, starting from time t , until the next arrival can be expected to be longer than the

expected time between any two arrivals. We provide a quantitative description of this

phenomenon in the context of internet anomaly arrivals.

For the purpose of designing efficient networks, the knowledge of stochastic charac-

teristics of the waiting time may be more important than statistical summaries related

to interarrival times. To efficiently design devices or protocols that operate at link

exit points, it is useful to know probabilities of an anomaly arriving at any specified

future time interval. As explained above, such information is not directly available

from physical measurements, as the interarrival times are stochastically shorter than

the waiting times for the arrival of the next anomaly. To gain insight about the latter,

probabilistic modeling is required.

The statistical methods presented in this paper are different from the usual

approaches based on exponentially distributed, memoryless interarrival times, which

correspond to Poisson process arrivals. We will demonstrate that the interarrival times

are heavy-tailed, i.e. their tail probabilities decay like a power function rather than

like an exponential function. This means that the tools based on classic renewal theory

must be employed with care, as we attempt to do. We will estimate and examine the

characteristics of waiting time distribution and perform hypothesis tests to check if the

waiting time distributions are equal among network links and whether waiting time

distributions are indeed different from the interarrival time distributions. We will see

that they are different, and will explain that this means that the Poisson model cannot

be used to describe the anomaly arrival times.

The remainder of the paper is organized as follows. In Sect. 2, we introduce the

database of Internet2 anomalies we study. Section 3 is dedicated to exploration of sta-

tistical properties of the anomaly interarrival times. Building on the insights obtained

in Sect. 3, we estimate in Sect. 4 the distribution of the waiting time for the arrival of

the next anomaly. We do it using the tools of renewal theory, whose relevant results

are also explained in Sect. 4. The main contributions and finding of the paper are

summarized in Sect. 5. The paper contains two appendices which elaborate on the

statistical analyses presented in Sects. 3 and 4.

2 Database of anomalies

We use the database of anomalies constructed by Bandara et al. (2014) who applied

a simple Fourier transform filter to extract time periods of unusually high traffic. Ban-

dara et al. (2014) used traffic measured at the links of the Internet2 network shown in

Fig. 1 over the period of 50 weeks starting October 16, 2005. Their approach treats peri-

odic and noise components of the measured traffic as normal. To extract the anomalies,

the 20 largest Fourier components that capture about 80% of the energy and represent

the periodic component, are removed from the time-series. Then a threshold, between

2 and 3 times the standard deviation of the detrended time-series, is applied. The devi-

ations of the detrended data beyond this threshold are considered anomalous. A group

of consecutive anomalous impulses is treated as a single anomaly. The application of

their algorithm produces, among other characteristics, a database of anomalies in each

link, each described by its start and end times (in 5 min. resolution). In this paper, we
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Fig. 1 A map showing 14 two-directional links of the Internet2 network. Source: www.Internet2.edu

will work with interarrival times defined as the time difference between the starts of

two consecutive anomalies. We will use 5 min. as the unit lag in the analysis of all time

series we consider. In other words, the time separation between generic data points xt

and xt+1 is 5 min. An interarrival time is computed as the time difference between the

starts of two consecutive anomalies. A typical interarrival time is about 100 lags, i.e.

500 min, but as we shall see in Sect. 3, their lengths vary considerably.

Following Bandara et al. (2014), we use the following four letter abbreviations:

Atlanta (atla), Chicago (chin), Denver (dnvr), Houston (hstn), Indianapolis (ipls),

Kansas City (kscy), Los Angeles (losa), New York (nycm), Sunnyvale (snva), Seattle

(sttl) and Washington D.C. (wash).

3 Statistical properties of anomaly interarrival times

Denote by S1, S2, S3, . . . the anomaly arrival times in any of the 28 unidirectional

links of the Internet2 network shown in Fig. 1. The interarrival times are defined as

X i = Si − Si−1, i ≥ 2. Table 2 shows quantiles of the distribution of these interarrival

times, the numbers in parentheses. Figure 2 shows the histograms for selected four

links. The visual inspection of the histograms shows that the probability tails decay

slower than might be suggested by an exponential distribution; after a peak around

zero, the histograms remain fairly flat up to x = 300. Simple, rough calculations also

show that an exponential decay is not a reasonable assumption, as we now explain.

Consider the atla-hstn link in Table 2. The median interarrival time is m = 53 and the

95-th percentile is q = 1056. Under the exponential model, e−λm = 0.5, which gives
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Fig. 2 Histograms of the interarrival times for two ranges with the density of the mixture model considered

in Appendix A superimposed: left chin-ipls; right dnvr-snva

λ = 0.0131. Then q must satisfy e−λq = 0.05, which gives q = 229, a value about

five time smaller than the observed value of 1056. Similar findings hold for other links.

The considerations presented above suggest that the interarrival times might have

power-law, or heavy, tails defined by the condition

P(X i > x) ∼ cx−α, as x → ∞, (3.1)

rather than the exponential tails defined by P(X i > x) ∼ e−λx . The most common

approach to detect heavy tails is to examine a Hill plot, see e.g. Chapter 4 of Resnick

(2007). Examples of Hill plots for the interarrival times are shown in Fig. 3. The

interpretation of these plots is as follows. If for small values of the “Order Statistics”

index the plot levels off, this indicates that relation (3.1) holds. This is what we have

observed in the plots for all links. The Hill plot can also be used to estimate the tail

index α in (3.1). The value of α is found as the ordinate (alpha) corresponding to

the level–off range. Examination of the Hill plots of the interarrival times reveals

that it is reasonable to assume that relation (3.1) holds with α generally in the range

1.5 < α < 2. It is easy to check, using the relation EY =
∫ ∞

0 P(Y > y)dy, that if

relation (3.1) holds, then for arbitrarily small δ > 0, E Xα+δ
i = ∞ and E Xα−δ

i < ∞.

Thus, the Hill plots suggest that the expected interarrival times are generally finite,

because α > 1, but their variance may be infinity because α < 2. The latter observation

may impact the application of the standard statistical techniques when working with

the anomaly interarrival times.

There are several ways of selecting the optimal (in various senses) value of the

“Order Statistic” or “Threshold”, which should be used to estimate α. A method that

is often used was introduced by Hall (1990). It employs a bootstrap procedure to

choose a threshold that minimizes the asymptotic mean square error. This procedure

is implemented by the function hall in the R package tea. An example of a Hill
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Fig. 3 Hill plots for the interarrival times: left chin-ipls, right dnvr-snva

Fig. 4 Hill plot (left) and QQ plot (right) for link 5, chin-nycm

plot with the “Order Statistic” k selected by this method is shown in the left panel of

Fig. 4. Table 1 shows the estimated αs. In addition to the Hill estimator, we included

three other estimators recommended by Resnick (1997). The values of Hill estimator

and the QQ estimator are similar and indicate that the values of alpha are broadly

close to α = 1.5. The smooth Hill estimator produces smaller values and the moment

estimator larger values. All these estimates however support the conjecture that the

expected value exists, but the variance may not exist.

We have also explored the validity of model (3.1) by another set of plots, which

complement the Hill plots. An example of such a plot is shown in the right panel

of Fig. 4, for the link from Chicago to New York (link 5). This is the QQ plot of

the log transformed X i matched against exponential quantiles beyond the exceedance

threshold corresponding to the optimal k. We should get approximately a line whose

slope is 1/α if the data had a Pareto tail with index α, see Section 4.6.4 of Resnick

(2007). The QQ plot looks linear with the fit of a straight line whose slope is 1/1.53,

which tells us that it is reasonable to assume a Pareto tail (relation (3.1)) with index

1.53. The QQ plots for other links, with the estimates taken from Table 1, also look

linear.

Having established that model (3.1) with 1 < α < 2.5 is reasonable, we turn to the

examination of dependence between the X i . We will demonstrate the it is reasonable
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Table 1 Estimated tail indexes α

of the anomaly interarrival times

estimated using the data-driven

threshold of Hall (1990)

Link Hill Moment QQ SmooHill

1 atla-hstn 1.69 1.85 1.50 1.28

2 atla-ipls 1.50 4.19 1.57 1.56

3 atla-wash 1.62 2.00 1.46 1.01

4 chin-ipls 1.62 1.94 1.45 0.98

5 chin-nycm 1.53 1.91 1.50 1.31

6 dnvr-kscy 1.59 1.94 1.51 1.27

7 dnvr-snva 1.68 2.07 1.50 1.23

8 dnvr-sttl 1.56 2.30 1.52 1.48

9 hstn-atla 1.47 2.08 1.51 1.34

10 hstn-kscy 1.44 2.16 1.51 1.35

11 hstn-losa 1.79 1.85 1.51 1.40

12 ipls-atla 2.22 2.19 1.52 1.54

13 ipls-chin 2.11 2.03 1.49 1.21

14 ipls-kscy 1.93 2.30 1.52 1.48

15 kscy-dnvr 2.07 1.85 1.51 1.40

16 kscy-hstn 1.48 2.08 1.51 1.34

17 kscy-ipls 1.91 1.86 1.48 1.11

18 losa-hstn 1.35 2.08 1.51 1.34

19 losa-snva 1.27 1.81 1.34 0.66

20 nycm-chin 1.97 1.85 1.50 1.28

21 nycm-wash 1.97 1.91 1.51 1.42

22 snva-dnvr 1.46 1.90 1.44 0.97

23 snva-losa 1.65 1.86 1.48 1.11

24 snva-sttl 1.43 2.12 1.52 1.36

25 sttl-dnvr 1.83 2.29 1.52 1.55

26 sttl-snva 1.43 2.30 1.52 1.48

27 wash-atla 1.95 2.22 1.52 1.47

28 wash-nycm 1.69 2.16 1.51 1.35

to assume that, for every link, the X i are independent and identically distributed (iid)

random variables. Such assertions are often checked by the examination of the sample

autocorrelation function, the ACF. We will follow this approach, but first we emphasize

two important points, see e.g. Chapter 1 of Shumway and Stoffer (2017):

1. If the autocorrelations are not significant, this indicates that the observations are

uncorrelated rather than independent.

2. The significance bands in the ACF plots assume that the fourth moments exists,

E X4
i < ∞.

As explained above, for the anomaly interarrival times, it is even questionable that the

second moment exists. To overcome these two difficulties, we will examine ACF plots

for transformed X i , i.e. for g(X i ). The rationale is as follows. If the X i are independent,

then for any g, the g(X i ) are independent as well, and hence uncorrelated. So if we do
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Fig. 5 ACF plots (zero lag excluded) for selected transformations of the interarrival times in the chin-ipls

link: left ln(Xi ), right X−3
i

not see significant autocorrelations for several functions g, it is reasonable to assume

that the X i are independent; otherwise significant autocorrelations would show up

for some function g. Second, we can chose functions g such that Eg4(X i ) < ∞,

so the existence of the fourth moment is not a problem. We recall that if the X i are

independent, we expect 95% of the ACF values for the g(X i ) to be within the ±2n−1/2

bands.

We consider the following transformations:

g(x) = ln(x), g(x) = x−p, p = 1, 2, 3.

Since X i ≥ 1, the above transformations are well defined. Direct verifications

show that (3.1) implies that P(ln X i > t) ∼ ce−αt , so all moments of ln X i are finite.

For p > 0, the random variables X
−p
i values in the interval (0, 1], so to ensure the

existence of the fourth moment, we must examine their behavior in neighborhoods of

0. By (3.1),

P(X
−p
i < x) = P(X i > x−1/p) ∼ cxα/p, as x → 0.

Therefore, as x → 0, the density is proportional to xα/p−1. Hence all moments of

X
−p
i are finite.

We found that for all 28 links, the ACF plots of log(X i ), X−1
i , X−2

i and X−3
i show

at least 95% correlations within the ±2n−1/2 bands. Figure 5 shows the ACF plots for

the transformed interarrival times at the chin-ipls link. The plots for all links are very

similar. The ACF at lag zero is always 1, so it is not plotted.

We have performed a similar analysis using the cross–correlation function (CCF),

i.e. we examined the CCF values of g(X i (�)) and g(X i (�
′)), where � and �′ are any two

links. We have found that at least 95% of these CCF’s were within the corresponding

confidence bands.

The findings of this section can be summarized as follows:
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1. The anomalies interarrival times have approximately Pareto tails; it is reasonable

to assume that relation (3.1) holds with 1 < α < 2.5.

2. It is reasonable to assume the these interarrival times form a sequence of iid random

variables.

3. The arrival times in different links form independent sequences.

We emphasize that these findings pertain to the database created by Bandara et al.

(2014), but the statistical methodology we presented can be applied to other databases.

In the next section, we use these findings to describe the distribution of the waiting

time for the arrival of the next anomaly.

4 Distribution of the waiting time for the arrival of the next anomaly

As explained in the introduction, a typical waiting time for the arrival of the next

anomaly can be expected to be longer than a typical time between the arrivals of

the anomalies. This assertion can be quantified by comparing quantiles of the two

distributions. As seen in Table 2, for our database, the difference is quite large. For all

links, the quantiles of the waiting time distribution are several times larger than the

corresponding quantiles of the distribution of the interarrival times. Intuitively, this

is due to the heavy-tailed distribution of the interarrival times established in Sect. 3.

Since there are many very long interarrival times, an arbitrary time instant t is likely

to be in a long interarrival time, so the the time until the arrival of the next anomaly

is more likely to be long than short. We emphasize that unlike the interarrival times,

the waiting times are not observed directly. Their distribution must be computed using

suitable tools of probability theory. Such tools are provided by the renewal theory,

which is explained in many textbooks on stochastic processes, e.g. in Kulkarni (2017).

Before presenting the computations leading to the estimates in Table 2, we introduce

some results of the renewal theory, which are relevant to our task.

Consider a fixed link and recall that S1, S2, . . . are the times of the anomaly arrivals.

We have demonstrated in Sect. 3 that the interarrival times X i = Si − Si−1 are iid

random variables with finite expectation (their distribution may very from link to link).

These assumptions are enough to apply the results of the renewal theory stated below.

Denote by {N (t), t ≥ 0} the renewal process with interarrival times X i , i.e. N (t) is

the count of arrivals up to and including time t , i.e. N (t) = max{n : Sn ≤ t}. Notice

that the random time SN (t)+1 is the time of the arrival of the next anomaly after time

t . Therefore, the waiting time is

B(t) = SN (t)+1 − t .

We will work with the complementary cdf of B(t) defined by

Ht (x) = P(B(t) > x), x ≥ 0, t ≥ 0.

Using the key renewal theorem, one can show that as t increases, which corresponds,

to an asymptotic equilibrium, the probabilities Ht (x) converge to a limit given by
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Table 2 Estimated 25th, 50th, 75th, 90th and 95th percentiles of the waiting time distribution (first columns)

and the interarrival time distribution (in parentheses)

Link 25th 50th 75th 90th 95th

atla-hstn 117 (7) 334 (53) 739 (255) 1525 (660) 2209 (1056)

atla-ipls 177 (14) 524 (119) 1398 (420) 2736 (1051) 3615 (1627)

atla-wash 112 (12) 292 (106) 700 (344) 1486 (639) 2052 (1076)

chin-ipls 86 (9) 238 (76) 622 (242) 1896 (479) 2970 (693)

chin-nycm 101 (24) 268 (122) 681 (318) 1623 (623) 2423 (968)

dnvr-kscy 135 (9) 353 (63) 832 (376) 1838 (769) 2443 (1063)

dnvr-snva 76 (6) 213 (37) 563 (185) 1457 (432) 1974 (626)

dnvr-sttl 152 (11) 422 (78) 1027 (354) 1896 (836) 2443 (1652)

hstn-atla 112 (9) 317 (77) 788 (279) 1691 (655) 2306 (1124)

hstn-kscy 130 (7) 375 (84) 949 (295) 1935 (763) 2580 (1234)

hstn-losa 130 (6) 361 (50) 822 (279) 1720 (737) 2384 (1107)

ipls-atla 137 (13) 371 (118) 812 (425) 1437 (964) 1955 (1329)

ipls-chin 81 (12) 217 (83) 495 (250) 1154 (548) 1886 (706)

ipls-kscy 77 (11) 212 (75) 524 (224) 1232 (457) 1789 (722)

kscy-dnvr 82 (12) 223 (84) 524 (246) 1379 (526) 2033 (691)

kscy-hstn 131 (10) 395 (103) 1037 (320) 2130 (749) 2873 (1387)

kscy-ipls 98 (15) 261 (85) 588 (320) 1564 (606) 2228 (767)

losa-hstn 130 (6) 380 (40) 998 (264) 2209 (649) 3009 (1104)

losa-snva 109 (7) 297 (53) 851 (250) 1994 (495) 2658 (940)

nycm-chin 76 (12) 209 (72) 485 (247) 1330 (494) 2013 (632)

nycm-wash 101 (27) 266 (139) 627 (338) 1554 (693) 2306 (893)

snva-dnvr 117 (7) 322 (47) 832 (265) 1955 (568) 2502 (975)

snva-losa 80 (6) 227 (34) 598 (186) 1613 (427) 2170 (603)

snva-sttl 124 (20) 368 (130) 959 (355) 1974 (818) 2599 (1290)

sttl-dnvr 184 (9) 490 (78) 1115 (470) 1955 (1140) 2404 (1852)

sttl-snva 120 (12) 349 (102) 939 (310) 1877 (726) 2384 (1387)

wash-atla 123 (10) 341 (92) 793 (326) 1838 (756) 2755 (1086)

wash-nycm 146 (23) 395 (142) 1008 (438) 2228 (878) 2951 (1443)

H∗(x) := lim
t→∞

Ht (x) = 1

τ

∫ ∞

x

(1 − G(u))du, (4.1)

where

τ = E X i , G(u) = P(X i ≤ u).

We note that the parameters τ and G(·) do not depend on i because the X i are

assumed to have the same distribution. The equilibrium cdf of B(t), 1 − H∗(x), is

therefore given by

FB(x) = 1 − H∗(x) = 1 − 1

τ

∫ ∞

x

(1 − G(u))du.
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This leads to the following formula for the density of the waiting time

fB(x) =
d(1 − τ−1

∫ ∞
x

(1 − G(u)du)

dx
= 1

τ
(1 − G(x)). (4.2)

Denoting suitable estimators by τ̂ and Ĝ(·), we can estimate the cdf and the density

of the waiting time, respectively, by

F̂B(x) = 1 − 1

τ̂

∫ ∞

x

(1 − Ĝ(u))du (4.3)

and

f̂B(x) = 1

τ̂
(1 − Ĝ(x)). (4.4)

A central issue is therefore to determine which estimators to use. Essentially the

only consistent estimator of the cdf G(·) is the empirical cdf Ĝ(·) defined by

Ĝ(x) = 1

N

N∑

i=1

1 {X i ≤ x} ,

where N is the count of interarrival times in a given link, and 1 {·} is the set indicator

function. The Glivenko–Cantelli theorem asserts that, as N → ∞, supx |Ĝ(x)−G(x)|
tends to zero with probability 1. The problem of the estimation of the mean, τ in

our context, has been given a lot of attention. A textbook estimator is the sample

average, but as we demonstrate in Appendix A, this is not a good choice for the X i

we study. Numerical comparisons of various commonly used estimators presented in

Appendix A reveals that a very good choice for our data is the estimator which can be

derived directly from the empirical cdf Ĝ(·) via

τ̂ =
∫ ∞

0

(1 − Ĝ(x))dx .

This estimator is based on the relation E X =
∫ ∞

0 P(X > x)dx , valid for any

nonnegative random variable X . It very desirable property is that it lead to an estimator

of fB(·), which is a valid density:

∫ ∞

0

f̂B(x)dx = 1∫ ∞
0 (1 − Ĝ(x))dx

∫ ∞

0

(1 − Ĝ(x))dx = 1.

Using estimator (4.3) we computed the quantiles shown in Table 2. Using (4.4),

we computed estimates of the densities of the waiting time. All these densities have

qualitatively very similar shapes, so we show just two of them in Fig. 6.

Probabilities of very long waiting times can be computed in an alternative way.

Using L’hopital’s rule together with the assumptions that 1 − G(X) ≈ cx−α , we
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Fig. 6 Estimated densities of the waiting time for the arrival of the next anomaly: left chin-ipls, right

dnvr-snva

obtain

lim
x→∞

1 − FB(x)

cx−(α−1)/(τ(α − 1))
= lim

x→∞
fB(x)

cx−α/τ
= lim

x→∞
(1 − G(x))/τ

cx−α/τ
= 1,

which yields

1 − FB(x) ≈ (τ (α − 1))−1cx−(α−1). (4.5)

For large x , the constant c can be estimated by xα(1 − Ĝ(x)), so (4.5) leads to

P(B(t) > x) ≈ 1

(α̂ − 1)τ̂ x
(1 − Ĝ(x)).

We conclude this section by presenting a simple argument showing that the waiting

time distribution is equal to the interarrival distribution if and only if one of them is

exponential. Under (3.1) the distribution of the waiting time thus cannot be equal to

the distribution of the interarrival time. The postulated equality is equivalent to the

equality of the densities, i.e., by (4.2), to

dG(x)

dx
= 1

τ
(1 − G(x)).

The above linear differential equation has only one solution G(·) which is a cdf; it

is

G(x) = 1 − τ−1e−x/τ , x > 0.

The following conclusions can be drawn from the research presented in this section,

including some details presented in Appendices A and B.

1. For every link, the quantiles of the distribution of the waiting time are generally

several times larger then the corresponding quantiles of the distribution of the

interarrival times. Very roughly, the interquartile range for the interarrivals is (10,

300), but for the waiting times it is (100, 700) (in units of 5 min). Looking at the

medians, a typical time separation between two anomalies is about 8 h, but the
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typical waiting time for the arrival of the next anomaly is about 25 h. This paradox

is a consequence of the heavy-tailed interarrival times.

2. The waiting time density functions are decreasing. They have large probability

masses at both ends, close to zero and close to infinity. Unlike the exponential

distribution, they do not touch the vertical line x = 0. They decay very slowly as

x → ∞, much slower than the exponential distribution.

3. There is a noticeable variation in the distributions of waiting time among the links.

Some distributions, e.g. links atla-ipls, sttl-dnvr, wash-nycm, show heavier tails

than others, e.g. links dnvr-snva, ipls-kscy, snva-losa. Appendix B presents formal

significance testing procedures that confirm that these distributions are not the

same for links.

4. Mathematically, the distribution of the waiting time has a heavier tail than the

distribution of the interarrival time. Under model (3.1), relation (4.1), implies that

in equilibrium, i.e. for large t , P(B(t) > x) ∼ c′x−(α−1), as x → ∞. (By (4.5),

c′ = (τ (α − 1))−1c.) The bounds 1 < α < 2.5, imply 0 < α − 1 < 1.5. This

means that the random variable describing the waiting time is stochastically so

large that it has infinite variance, and may even have infinite expected value (if

α < 2). In the latter case, for a device placed at a link, the expected waiting time

until the arrival of the next anomaly is infinite, but an anomaly will arrive with

probability 1.

5 Summary andmain conclusions

We studied the arrival times of anomalies in 28 unidirectional links of the Internet2

network. Our objective was to provide information about the distribution of two ran-

dom variables defined for each of these links: the interarrival time and the waiting time

for the arrival of the next anomaly. The statistical characteristics of the interarrival time

are accessible directly from physical measurements. The distribution of the waiting

time is not directly accessible. It must be estimated using renewal theory.

We have shown that it is reasonable to assume that the interarrival times have heavy-

tailed distributions, and they are independently and identically distributed random

variables. We derived a parametric model for the distribution of the time between

arrivals of two anomalies, see Appendix A, which can be used in various simulations.

We have found that the density functions of the waiting time are decreasing with large

probability masses for short and very long waiting times. Mathematically, the expected

waiting time for the arrival of the next anomaly can be infinite. Practically, we expect

the next anomaly to arrive within 6 to 13 days. We have also found that waiting time has

heavier tail than interarrival and has infinite variance. There is a significant variation

in the waiting time distributions among the 28 links. With formal hypothesis testing,

we have confirmed that the interarrival and waiting time distributions among the 28

links are not identical.

We have performed a similar analysis for the gaps between the anomalies, which

are defined as time separation between the end of the latest anomaly and the beginning

of the next anomaly. The gaps are always shorter the the interarrival times, but the

differences are very small as the duration of an anomaly is small compared to the large
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separation times. The modifications thus occur only in the left tail of the distributions,

close to zero, and relation (3.1) is unaffected. We conclude that the distribution of

these gaps is also heavy–tailed, in particular it is not exponential.

While the conclusions of our statistical and probabilistic analyses pertain to a spe-

cific network over a specific time period, it is hoped that the approaches presented in

this paper will prove useful in other similar analyses.
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Appendices

A Estimation of themean time between the arrivals of the anomalies

As explained in Sect. 4, to reliably estimate the distribution of the waiting time, we

need a good estimator of the mean interarrival time. In the context of our data, this is a

delicate task because the interarrival times have heavy tails, which will bias the usual

sample mean. We compared the performance (root mean squared error-RMSE) of the

following 12 mean estimators:

Median,

Huber location estimator with varying truncation constants: k = 5, 10, 20, 30,

Sample mean,

Trimmed mean with varying trimming fractions: trim = 0.025, 0.05, 0.10, 0.15, 0.20,

The estimator τ̂ =
∫ ∞

0 (1 − Ĝ(t))dt , based on the formula τ = E(X) =∫ ∞
0 P(X > t)dt .

A crucial question is to generate observation from a distribution which resembles

the distribution of the real interarrival times, and whose mean (expected value) can be

computed analytically. We can then consider differences between an estimated mean

and the true mean within a simulation study. Since interarrival times have many small

values and dominating large values with lower frequencies, we use a mixture model:

interarrival times come from a Weibull distribution with probability p and from a half-

t distribution with probability 1 − p. The Weibull component is designed to model

the occurrence of small values, while the half-t component is designed to model the

tail behavior and allow for either finite or infinite variance. (The t distribution satisfies

(3.1) with α equal to the degrees of freedom parameter ν.) The density function from

which we simulated observations is thus given by

f (x) = p fw(x; k, λ) + (1 − p) ft (x; ν, σ ), x > 0,

where

fw(x; k, λ) = k

λ

( x

λ

)k−1

e−(x/λ)k

,
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ft (x; ν, σ ) = 2
	((ν + 1)/2)

	(ν/2)
√

νπσ 2

[
1 + 1

ν

x2

σ 2

]−(ν+1)/2

.

and where k, λ, ν, σ > 0 and 0 ≤ p ≤ 1. For this model the value of τ can be

computed, it is equal to

τ = c [λ	(1 + 1/k)] + (1 − c)

[
2σ

√
ν

π

	((ν + 1)/2)

	(ν/2)(ν − 1)

]
, ν > 1.

We estimated the mixture model using Maximum Goodness-of-fit Estimator, which

minimizes Kolmogorov–Smirnov distance, using the R package fitdistrplus. We then

used the estimated model to generate n = 1000 samples of synthetic interarrival times

to compute Monte Carlo RMSE of mean estimators as

RM SE =

√√√√1

n

n∑

r=1

(τ̂r − τ)2,

where τ̂r is a mean estimator computed from the r th Monte Carlo sample, and τ is the

mean of the estimated mixture model.

We found that the mixture model has good fit to the observed interarrival times.

The fits in all links are similar to those shown in Fig. 2. The Kolmogorov–Smirnov

goodness-of-fit test also fails to reject, for all links, the null hypothesis of equal dis-

tribution between real and simulated data. In all 28 links, estimates for ν are between

1.2 and 2.2, so the half-t distribution successfully captures the tail behavior inferred

from the Hill plots. Since the ν estimates are all greater than 1, the means of estimated

mixture distributions exist.

The RMSEs for the sample mean, the most commonly used estimator, and the three

best estimators are shown in Table 3. We see that sample mean performs poorly. The

estimator τ̂ , which we used in Sect. 4, is most often the best estimator, and when it

is not, its RMSE is very close to the lowest RMSE. This justifies its choice as the

preferred mean estimator for the interarrival time.

B Significance tests

We present here formal statistical significance tests that confirm the conclusions stated

in Sect. 4. We first consider the testing problem:

H0 : The distributions of interarrival times are identical for the 28 links,

HA : The distributions of interarrival times are not identical for the 28 links.

Since, as shown in Sect. 4, fB(x) = τ−1(1 − G(x)), this test also applies to the

distributions of waiting times. If these distributions are equal, then their expected

values are also equal. We therefore use a permutation test based on the usual F-
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Table 3 RMSEs of the sample mean and three best mean estimators for interarrival time; bold indicates the

lowest RMSE among the 12 estimators we considered

Sample mean Huber k = 20 Huber k = 30 τ̂

atla-hstn 208.41 191.77 174.83 139.43

atla-ipls 740.02 248.86 223.40 179.47

atla-wash 128.35 48.18 43.21 39.90

chin-ipls 20.25 15.80 16.09 17.53

chin-nycm 36.02 26.00 26.12 27.63

dnvr-kscy 103.53 71.93 61.74 50.02

dnvr-snva 14.51 13.01 11.92 12.55

dnvr-sttl 144.57 82.83 72.76 61.73

hstn-atla 48.52 35.97 32.26 31.13

hstn-kscy 125.96 62.98 54.48 46.01

hstn-losa 205.54 124.27 108.75 70.71

ipls-atla 90.86 68.18 61.75 57.26

ipls-chin 112.56 64.67 56.98 46.15

ipls-kscy 23.32 19.07 17.95 18.68

kscy-dnvr 318.20 51.64 45.14 37.70

kscy-hstn 47.05 33.33 31.86 32.90

kscy-ipls 86.54 32.17 29.80 29.87

losa-hstn 101.31 111.72 95.64 59.51

losa-snva 36.73 29.83 26.43 26.03

nycm-chin 362.90 238.45 223.98 190.55

nycm-wash 45.83 30.99 31.08 32.38

snva-dnvr 55.94 32.80 28.81 27.31

snva-losa 22.43 15.38 13.55 13.87

snva-sttl 77.55 50.74 47.28 46.21

sttl-dnvr 338.27 172.03 152.64 119.24

sttl-snva 35.93 23.81 24.13 26.14

wash-atla 122.29 68.02 58.87 50.96

wash-nycm 340.50 143.80 129.78 119.12

statistic:

F = U

V
, U :=

∑28
i=1(X i . − X ..)

2ni

28 − 1
, V :=

∑28
i=1

∑ni

j=1(X i j − X ..)
2

N − 28
, (B.1)

where X i . is the sample mean of interarrival times in link i , X .. is the sample mean of

interarrival times across all links, ni is the number of observed interarrival times for

link i , N is the number of observed interarrival times in all 28 links.

The observed value of the test statistic is F = 5.52. However, we cannot compare

it to a tabulated critical value because the distribution of the interarrival times is not

normal. We therefore estimate the null distribution using permutations, see e.g. Good
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Fig. 7 Sampling null distribution

of the F statistic (B.1) based on

ten thousand permutations
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(2013). Under H0, the interarrival times among the 28 links are iid random variables;

hence, by randomly reassigning the N interarrival times to the 28 groups, such that

the number of observations in each group is not changed, we produce a new pseudo

dataset for which H0 is true. We resample this way for 10,000 times, and obtain the null

distribution of the test statistics shown in Fig. 7. It is seen that the observed value of

F = 5.52 is far to the right of the range of the test statistics under the null hypothesis.

Formally, we approximate the p-value with the proportion of samples with F > 5.52,

and see that p − value < 0.0001. As the result, we reject H0.

We also performed the Anderson–Darling test with the R package kSamples. The

standardized Anderson–Darling test statistics is 28.36 with p − value < 0.0001.

Hence, we also reject H0.

We conclude that the interarrival time distributions among the 28 links are not

identical; hence the waiting time distributions among the 28 links are not identical

either.

We also used three standard goodness-of-fit tests implemented with R package

EnvStats: Kolmogorov–Smirnov test, Cramer-von Mises test and Anderson–Darling

test to check if the distribution of the interarrival times is exponential. For all 28 links,

and for each test, the null hypothesis of an exponential distribution is rejected at the

significance level of 5 percent. We conclude that the anomaly interarrival time does

not have an exponential distribution.
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