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Abstract—In this paper, we consider the problem of scheduling
real-time traffic in wireless networks under a conflict-graph
interference model and single-hop traffic. The objective is to
guarantee that at least a certain fraction of packets of each
link are delivered within their deadlines, which is referred
to as delivery ratio. This problem has been studied before
under restrictive frame-based traffic models, or greedy maximal
scheduling schemes like LDF (Largest-Deficit First) that can
lead to poor delivery ratio for general traffic patterns. In this
paper, we pursue a different approach through randomization
over the choice of maximal links that can transmit at each time.
We design randomized policies in collocated networks, multi-
partite networks, and general networks, that can achieve delivery
ratios much higher than what is achievable by LDF. Further,
our results apply to traffic (arrival and deadline) processes that
evolve as positive recurrent Markov chains. Hence, this work
is an improvement with respect to both efficiency and traffic
assumptions compared to the past work. We further present
extensive simulation results over various traffic patterns and
interference graphs to illustrate the gains of our randomized
policies over LDF variants.

Index Terms—Scheduling, Real-Time Traffic, Markov Pro-
cesses, Stability, Wireless Networks

I. INTRODUCTION

Much of the prior work on scheduling algorithms for wire-
less networks focus on maximizing throughput. However, for
many real-time applications, e.g., in Internet of Things (IoT),
vehicular networks, and other cyber-physical systems, delays
and deadline guarantees on packet delivery are more important
than long-term throughput [1]-[3]. Recently, there has been
an interest in developing scheduling algorithms specifically
targeted towards handling deadline-constrained traffic [4]-[9],
when each packet has to be delivered within a strict deadline,
otherwise it is of no use. The key objective in these works
is to guarantee that at least a fraction of the packets will be
delivered to their destinations within their deadlines, which is
referred to as delivery ratio (QoS). Providing such guarantees
is very challenging as it crucially depends on the temporal
pattern of packet arrivals and their deadlines, as opposed to
long-term averages in traditional throughput maximization.
One can construct adversarial traffic patterns that all have the
same long-term average but their achievable delivery ratio is
vastly different [8], [10].

Recently, there have been two approaches for providing
QoS guarantees for real-time traffic in wireless networks.
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One is the frame-based approach [4]-[7], and the other is a
greedy scheduling approach like the largest-deficit-first policy
(LDF) [8], [9]. In the frame-based approach, it is assumed that
each frame is a number of consecutive time slots, and packets
arriving in each frame have to be scheduled before the end
of the frame. They crucially rely on the assumption that all
packets of all users arrive at the beginning of frames [4]—
[6], or the complete knowledge of future packet arrivals and
their deadlines in each frame is available at the beginning of
the frame [7]. This restricts the application of such policies to
specific traffic patterns with periodic arrivals and synchronized
users. The results for general traffic patterns without such
frame assumptions are very limited, as in such settings, the
real-time rate region is difficult to characterize and the optimal
policy is unknown. A popular algorithm for providing QoS
guarantees for real-time traffic is the largest-deficit-first (LDF)
policy [4], [8], [9], [11], which is the real-time variation of
the longest-queue-first (LQF) policy (see, e.g., [12], [13]). It
is known that LDF is optimal in collocated networks under
the frame-based model [4], [11]. The performance of LDF in
the non-frame-based setting has been studied in [8] in terms
of the efficiency ratio, which is the fraction of the real-time
throughput region guaranteed by LDF. It is shown that LDF
achieves an efficiency ratio of at least ﬁ for a network
with interference degree! 3, under i.i.d. (independent and
identically distributed) packet arrivals and deadlines. Further,
when traffic is not i.i.d., the efficiency ratio of LDF is as low as
ﬁ [8]. In particular, for collocated networks, the efficiency
ratio of LDF under non-i.i.d. traffic is 1/2, and in a simple
star topology with one center link and K neighboring links,
it scales down as low as O(LK) This shows that LDF might
not be suitable for high throughput real-time applications,
especially with non-i.i.d. traffic, which is the case if packet
drops due to deadline expiry trigger re-transmissions.
Besides the works above on providing QoS guarantees
for wireless networks, there is literature on approximation
algorithms for single-link buffer management problem [14],
[15]. In this problem, packets arrive to a single link, each
with a non-negative constant weight and a deadline. The goal
is to maximize the total weight of transmitted packets for the
worst input sequence. The approximation algorithms include
the maximum-weight greedy algorithm [14], [15], EDF,, [16]

IThe interference degree is the maximum number of links that can be
scheduled simultaneously out of a link and its neighboring links.
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which schedules the earliest-deadline packet with weight at
least < 1 of the maximum-weight packet, or randomized
algorithms such as [17]-[19] where the scheduling decision is
randomized over pending packets in the link’s buffer. Inspired
by such randomization techniques, we design randomized
algorithms for wireless networks under a general interference
model and given the delivery ratio requirements for the links
in the network.

A. Contributions

Non-i.i.d. (Markovian) Traffic Models. Our traffic model
allows traffic (arrival and deadline) processes that evolve as
an irreducible Markov chain over a finite state space. This
model is a significant extension from i.i.d. or frame-based
traffic models in [4]-[8]. A key technique in analyzing the
achievable efficiency ratio in our model is to look at the return
times of the traffic Markov chain and analyze the performance
of scheduling algorithms over long enough cycles consisting
of multiple return times.

Randomized Algorithms with Improved Efficiency. We
propose randomized scheduling algorithms that can signifi-
cantly outperform deterministic greedy algorithms like LDF.
The key idea is to identify a structure for the optimal policy
and randomize over the possible scheduling choices of the
optimal policy, rather than solely relying on the deficit queues.
For collocated networks and complete bipartite graphs our
randomized algorithms achieve an efficiency ratio of at least
0.63 and 2/3, respectively, and in general graphs, achieve an
efficiency ratio of at least 1/2, all independent of the network
size and without the knowledge of the traffic model.

II. MODEL AND DEFINITIONS

Wireless Network Model. We consider a set of K links (or
users) denoted by the set IC, where K = |K|. Time is slotted,
and at each time slot ¢t € Ny, each link can transmit one packet
successfully, if there are no interfering links transmitting at the
same time. As in [8], it is standard to represent the interference
relationships between links by an interference graph G; =
(K, Er). Each vertex of Gy is a link, and an edge (I1,l2) €
FE; indicates links [; and [, interfere with each other. Let
I;(t) = 1 if link [ is transmitting a packet at time ¢, and
I;(t) = 0 otherwise. Hence, at any time any feasible schedule
I(t) = (I;(t),l € K) has to form an independent set of G
over links that have packets, i.e., no two transmitting links can
share an edge in G;. We say a feasible schedule I is maximal
if no more links can be scheduled without interfering with
some active links in I. Let B(¢) be the set of links that have
packets available to transmit at time ¢. Let M denote the set
of all maximal independent sets of G;. Then, at any time ¢,

{leK:L(t)=1} C(B(t)Nn M), for some M € M,

where ‘C’ holds with ‘=" if I is a maximal schedule.
Traffic Model. We consider a single-hop traffic with dead-
lines for each link. Let a;(t) denote the number of packets
arriving on link [ at time ¢, with a;(¢t) < amax, for some
amax < 00. Each packet upon arrival has a deadline which is

Pattern A Pattern B Pattern C
2
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—» >
Fig. 1: An example with three traffic patterns A — B — C' —
A---. Each rectangle indicates a packet for a link indicated

by its number. The left side of the rectangle corresponds to
its arrival time, and the right side corresponds to its deadline.

the maximum delay that the packet can tolerate. We define a
vector 7(t) = (1,4(t);d =1, -+ , dmax), Where 7 4(¢) is the
number of packets with deadline d arriving to link [ at time ¢. A
packet arriving with deadline d at time ¢ has to be transmitted
before the end of time slot ¢ + d — 1, otherwise it will be
dropped. The maximum deadline is bounded by a constant
dmax- Hence, the network traffic (arrival and deadline) process
is described by 7(t) = (7;(¢);l € K), t > 0. We assume that
the traffic process 7(¢) evolves as an (unknown) irreducible
Markov chain over the space X = {0, -+ , Guay } Fmex*E 2,

Note that the arrival and deadline processes do not need
to be i.i.d. across times or users. Since the state space X is
finite, 7(¢) is a positive recurrent Markov chain [21] and the
time-average of any bounded function of 7(t) is well-defined,
in particular, the packet arrival rate @;, [ € IC,

limy oo 1320 ai(s) = @ (1)

See Figure 1 for an example of a Markovian traffic process.

Buffer Dynamics. The buffer of link [ at time ¢ contains the
existing packets at link / which have not expired yet and also
the newly arrived packets 7;(¢). Formally, we define the buffer
of link [ by a vector ¥;(t) = (V1 q(t);d = 1,--- , dmax)s
where W; 4(t) is the number of packets in the buffer with
remaining deadline d at time ¢. The remaining deadline of each
packet in the buffer decreases by one at every time slot, until
the packet is successfully transmitted or reaches the deadline
0, which in either case the packet is removed from the buffer,
i.e., the buffer at the beginning of slot £ 4 1 is

U a(t+1) =9 q01(t) + ma(t +1) — I aya(2), )

where [;(t) = Y29 I, 4(t) < 1, and I; 4(t) = 1 if the sched-
uler selects a packet with deadline d to transmit at time ¢ on
link /. By convention, we set ¥; 4 14(t) =0, ¥;o(t) = 0.
We define the network buffer state as W(t) = (U,(t);1 € K).

Delivery Requirement and Deficit. As in [4]-[8], we assume
that there is a minimum delivery ratio p; (QoS requirement)
for each link /, I € K. This means the scheduling algorithm
must successfully deliver at least p; fraction of the incoming
packets on each link / in long term. Formally,

liminf, . St > py. 3)

2The state can be extended to (7(u),u(t)) where u(t) is the unobservable
part which can encode more complicated finite state Markov chains for the
traffic process (see our technical report [20]).
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We define a deficit w;(t) which measures the amount of
service owed to link [ up to time ¢ to fulfill its minimum
delivery rate. As in [7], [8], the deficit evolves as

.
wi(t+1) = [wi(t) +a(t) = L) )

where [|T = max{-,0}, and @;(¢) indicates the amount of
deficit increase due to packet arrivals. For each packet arrival,
we should increase the deficit by p; on average. For example,
we can increase the deficit by exactly p; for each packet arrival
to link /, or use a coin tossing process as in [7], [8], i.e., each
packet arrival at link [ increases the deficit by one with the
probability p;, and zero otherwise. We refer to a;(¢) as the
deficit arrival process for link [. Note that it holds that

oo 2370 a(s) =ap =N, LEK. (5

We refer to )\; as the deficit arrival rate for link [. We
emphasize that the arriving packet is always added to the link’s
buffer, regardless of whether and how much deficit is added
for that packet. Also note that in (4), each time a packet is
scheduled from the link, I;(t) = 1, the deficit is reduced by
one. The dynamics in (4) define a deficit queueing system,
with bounded increments/decrements, whose stability, e.g.,

limsup,_, o $ Y4y Elwi(s)] < oo, 6)

implies that (3) holds®. Define the vector of deficits as w(t) =
(wi(t),l € K). The system state at time ¢ is then defined as
S(t) = (W(t), w(t), 7(t)).

Objective. Define P¢ to be the set of all causal policies, i.e.
policies that do not know the information of future arrivals
and deadlines in order to make scheduling decisions. For a
given traffic process 7(t), with fixed @;, defined in (1), we
are interested in causal policies that can stabilize the deficit
queues for the largest set of delivery rate vectors p = (p;,l €
KC), or equivalently largest set of A = (A, := ap;,l € K)
possible. For a given traffic process, we say the rate vector
A = (A, 1 € K) is supportable under some policy u € Pe if
all the deficit queues remain stable. Then one can define the
supportable (real-time) rate region of the policy u as

A, ={X>0: X is supportable by p}. @)

Note that for a given traffic distribution, a vector A corresponds
to a single vector of delivery rate requirements p exactly. The
supportable rate region under all the causal policies is defined
aa A= uepe M- The overall performance of a policy p is
evaluated by the efficiency ratio v}, which is defined as

’y; =sup{y:yA C A,}. )

For a casual policy u, we aim to provide a universal lower
bound on the efficiency ratio that holds for “all” Markovian
traffic processes.

3 Actually only the rate stability is enough to establish (3) [22], however
we consider this stronger notion of stability.

deficit Link Domination Diagram
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deadline
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Fig. 2: An example for non-dominated links. Each numbered
rectangle denotes the earliest-deadline packet of a link. A solid
rectangle indicates that the link is non-dominated. Dashed
rectangles (links) that fall in regions R; will be dominated.

III. RANDOMIZED SCHEDULING ALGORITHMS

In this section, we present our randomized scheduling
algorithms. We start with the collocated networks, and then
proceed to general networks.

A. Collocated Networks

In a collocated network, only one of the links can transmit
a packet at any time. Hence the interference graph Gy is a
complete graph.

Define ¢;(t) = min{d : ¥;4(¢t) > 0} to be the deadline
of the earliest-deadline packet available at link [ at time t.
By convention, the minimum of an empty set is considered
infinity. We use a tuple (w;(t),e;(t)); to denote the earliest-
deadline packet of link  with deadline e;(¢) and link deficit
wi(t). We make the following dominance definition.

Definition 1. We say that a link |1 dominates a link lo at
time t if wy, (t) > wy,(t) and ey, (t) < ey, (t). If one of the
two inequalities is strict, we call it a strict dominance. A non-
dominated link is a nonempty link that is not dominated strictly
by any other link at that time.

Recall that B(¢) is the set of links with nonempty buffers.
At every time slot, we first find the set of non-dominated links
Bxp(t). One way to do that is as follows:

Algorithm 1 Finding the Set Of Non-dominated Links

1. H+ B(t), Bap(t) <+ 2,7+ 0
2: while H # & do
3: 1+—1+1

4: Find the largest-deficit non-dominated link h; € H.

5: Add h; to BND(t)

6: Remove h; and all the links dominated by it, i.e.
H + H\{l € H: el(t) > ehi(t)}.

7: end while

Algorithm 1 returns a set Bnp(t) = {h1,.., hi}, where h;
is the link selected in the i-th iteration, and the links are
ordered in the order of their deficits, i.e., wp, (t) > wp, (t) >
-+« > wp, (t). See Figure 2 for an illustrative example of the
non-dominated links. Our scheduling algorithm transmits the
earliest-deadline packet of one of the links h; € Byp(t) ran-
domly, where the probabilities py,, (t) are computed recursively
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Algorithm 2 AMIX-ND: Randomized Scheduling in Collo-
cated Networks

1: Use Algorithm 1 to find Bnp(t) = {h1, .., hi}.

2 r+1

3:fori=1to k—1do ®

& pn(t) = min (1- 2p0 )

5: r 1 —pp,(t)

6: end for

7 pp,(t) =7

8: Send the earliest-deadline packet from link h; with prob-

ability pp, (t).

as in Algorithm 2. We refer to Algorithm 2 as AMIX-ND
which stands for Adaptive Mixing over Non-Dominated links.

Theorem 1. In a collocated wireless network with K links,
AMIX-ND achieves an efficiency ratio of at least

e—1

I\E
'YZMIXND21<1K> z

€))

Remark 1. Note that AMIX-ND has an efficiency ratio which
is bounded from below by 0.63, regardless of the number of
links. In contrast, we can construct Markovian traffic processes
where the efficiency ratio of LDF is less than 1/2 + € [8].
For example, for the traffic patterns of Figure 1 in the model
section, we will see in simulations in Section VI that, while
AMIX-ND can achieve delivery ratios close to 0.99, LDF can
not do better than 0.5 + e. Note that our traffic model does
allow traffic patterns as in Figure 1, since we do not need the
traffic Markov chain to be aperiodic.

B. Multipartite Networks and General Networks

Consider the set of all maximal independent sets M of the
interference graph Gj. Our randomized algorithm selects a
maximal independent set (MIS) M € M probabilistically and
schedules the earliest-deadline packets of the induced maximal
schedule M N B(t). Recall that B(¢) is the set of links with
nonempty buffers. We refer to this algorithm as AMIX-MS
which stands for Adaptive Mixing over Maximal Schedules.
Before presenting the algorithm, we make a few definitions.

Definition 2. The weight of a MIS M € M at time t is

Z wy(t).

le MNB(t)

W (t) = (10)

Let R = |M|. We index and order M € M such that M, has
the i-th largest weight at time t, i.e.,

W, (1) = Wag, (t) -+ = Wy (2).

Definition 3. Define the subharmonic average of weights of
the first n MIS, n < R, at time t to be

n—1

Cnlt) = S W )1

(1)

The probabilities used by AMIX-MS to select a MIS M,
at time ¢, are as follows
_ Ca()
WMi (t)
0 n<i<R
where 7 is the largest n such that {p}'(¢),1 < i < n} defines
a valid probability distribution over 1 < ¢ < n. Noting that
pi(t) > pi i (t) fori <mn,and ), pi(t) = 1, nis therefore
given by -

) =ity =1

—_

<i

INA
3

12)

7= n(t) = max{n : p;(t) > 0}.

13)

We drop the dependence on ¢ for 7i(t) when there is no
ambiguity. Algorithm 3 gives a description of AMIX-MS
where 7 is found using binary search. Then AMIX-MS selects
a MIS M; with probability pf'(¢) as in (12).

Algorithm 3 AMIX-MS: Randomized Scheduling in General
Interference Graphs

ny < 1,n9 |M|
while 1, # ny do
o [25a)
if pI'(t) > 0 then
ny < n
else
ng+—n-—1
end if
end while
n 4 nq
: Select MIS M; with probability p’i, () as in (12) and
transmit the earliest-deadline packet of each link in M.

R A A S ol S

—_—
—_ O

The following theorem states the main result regarding the
efficiency ratio of AMIX-MS.

Theorem 2. In a wireless network with interference graph
Gt and maximal independent sets M, the efficiency ratio of
AMIX-MS is at least

" M 1
YAMIX-MS = AM[ =1 > 5

A special case of this theorem is for networks with a
complete n-partite interference graph, n > 2. In a complete
n-partite graph, with n components, V1, --- | V,,, links in each
component do not share any edge but there is an edge between
any two links in different components. Hence, each component
Vi, 1 <4 < nis a MIS. We state the result as the following
corollary which immediately follows from Theorem 2.

Corollary 2.1. For a wireless network with a complete n-
partite interference graph, under AMIX-MS,

n
2n—1°
Remark 2. We emphasize on the importance of Theorem 2
using a simple interference graph with ‘star’ topology. This is
a special case of a bipartite graph with only two components,

*
YAMIX-MS =
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V7 is the center node, and V5 are the leaf nodes. Notice that the

guarantee of AMIX-MS in this case is at least %, regardless of

the number of nodes K. This is a significant improvement over

LDF, whose efficiency ratio is at least % under 1.i.d. traffic
1 .

but not better than TR under Markovian traffics [8].

Remark 3. We note that the computational complexity of
AMIX-MS could be high for general graphs as it requires
finding an ordering of maximal schedules. However, it is easily
applicable for n-partite graphs or small graphs. Moreover,
we can further approximate the algorithm by only ordering a
subset of maximal schedules as opposed to finding all of them.
The randomization in AMIX-MS can be also potentially
implemented in a distributed manner by using distributed
CSMA-like schemes such as [23]-[25].

IV. ANALYSIS TECHNIQUE

We provide an overview of the techniques in our proofs.
We first mention a lemma below which should be intuitive.

Lemma 1. Without loss of generality, we consider natural
policies that use a maximal schedule to transmit at each time.
Further, if a link is included in the schedule, its earliest-
deadline packet will be selected for transmission.

Proof. The proof is through an exchange argument. The details
can be found in the technical report [20] O

Frame Construction. A key step in the analysis of our
scheduling algorithms is a careful frame construction. We
emphasize that the frame construction is only for the purpose
of analysis and is not part of our algorithms. The F-framed
construction in [8] only works for i.i.d. arrivals and deadlines.
Here, we need a construction that can handle our Markovian
traffic model. We present this construction below where frames
have random length as opposed to fixed length in [8].

Definition 4 (Frames and Cycles). Starting from an initial
traffic state T(0) = x € X, let t; denote the i-th return time
of traffic Markov chain 7(t) to x, i = 1,---. By convention,
define tg = 0. The i-th cycle C; is defined from the beginning of
time slot t;_1+1 until the end of time slot t;, with cycle length
C; =t; —t;—1. Given a fixed k € N, we define the i-th frame
]-'Z-(k) as k consecutive cycles C(;_1)p41, " ,Cik, i.e., from the
beginning of slot t(;_1)x + 1 until the end of slot t;x. The
length of the i-th frame is denoted by Fi(k) = z;‘i(iil)kﬂ Cj.
Define J(F (k)) to be the space of all possible traffic patterns
(7(t),t € F®) during a frame F*). Note that these patterns
start after x and end with x.

By the strong Markov property and the positive recurrence
of traffic Markov chain, frame lengths Fi(k) are i.i.d with mean
E[F ()] = kE[C], where E[C] is the mean cycle length which
is a bounded constant [21]. In fact, since state space X is
finite, all the moments of C' (and F' (k)) are finite. We choose
a fixed k, and, when the context is clear, drop the dependence
on k in the notation.

Define the class of non-causal F-framed policies Pnc (F)
to be the policies that, at the beginning of each frame F;, have

complete information about the traffic pattern in that frame,
but have a restriction that they drop the packets that are still in
the buffer at the end of the frame. Note that the number of such
packets is at most dp,axGmax K, Which is negligible compared
to the average number of packets in the frame, @;E[F] =
a,kE[C], as k — oo. Define the rate region

ANC(‘F) = U;LE'PNC(]:) A#'

Given a policy 4 € Pyc(F), the time-average service rate
I; of link [ is well defined. In fact, by the renewal reward
theorem (e.g. [26], Theorem 5.10), and boundedness of E[F],

lim S fi(s) _E[X e h()]

(14)

= =1. 15
00 t E[F] ! (15
Similarly for the deficit arrival rate \;, defined in (5),
E a;(t
M:)\h lek. (16)

E[F]

In Definition 4, each frame consists of k cycles. Using similar
arguments as in [8], it is easy to see (and it is intuitive) that

lim inf Ay (F®) D int(A).
k—o00

Hence, if we prove that for a causal policy ALG, there exists
a constant p, and a large kg, such that for all k£ > kg,

pint(ANc(]‘—(k))) - AALG» a7)

then it follows that A 41, 2 pint(A). For our algorithms, we
find a p such that (17) holds for any traffic process under our
model. Then it follows that 7%, ~ > p.

We define the gain of a policy p at time ¢ as

Gu(t) = ZleIC w;L(t)IlIL(t)v

and the gain over a frame is ), G, (t). To prove (17), we
rely on comparing the gain (total deficit of packets transmitted)
by ALG and an optimal max-gain non-causal policy over
a frame. The following proposition states the result for any
general interference graph.

Proposition 1. Consider a frame F = F*), for some fixed
k based on returns of traffic process 7(t) to a state x. Let
lw(to)l| = > jcxwi(to) be the norm of the initial deficit
vector at the start of the frame. Suppose for a causal policy
ALG, given any ¢ > 0, there is a W' such that when
[[w(to)[| > W',

E [Y1erGara(t)|S(to)] .
E[, 00 0ISE)] ~ " © (19)

where S(tg) = (U (tg), w(to), 7(to)), and p* is the optimal
non-causal policy that maximizes the gain over the frame.
Then for any \ € pint(Anc(F)), the network state process
{S(t)} is positive recurrent, and further, the deficit queues are
bounded in the sense of (6).

(18)

Gain Analysis. With Proposition 1 in hand, we analyze the
achievable gain of our algorithm over a frame, compared with
that of the optimal non-causal policy p*. Since characterizing
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*

w* is hard, we extend a coupling technique from [16]-[18],
[27] (developed for constant-weight single buffer analysis) to
stochastic process (U (t),w(t),7(t)) in a general network.

Consider a state (¥ (t),w(t),7(¢)) under our randomized
algorithms at time ¢ € F, and the state (U*" (), w"" (t), 7(t))
under the optimal policy p*. We change the state of u* (by
modifying its buffers and deficits) to make it identical to
(W (t),w(t),7(t)), but also give p* a larger gain G, .(t) >
G~ (t) that can ensure the change is advantageous for p*
considering the rest of the frame. Then, taking the expectation
E[G’(t)] with respect to the random decisions of our algorithm,
AMIX-ND or AMIX-MS, and traffic patterns in a frame, we
can bound the optimal gain of x*. Then we can prove the main
results in view of Proposition 1.

V. PROOFS OF MAIN RESULTS
We first provide the proof of Proposition 1 and then provide
the gain analysis of our algorithms. In what follows, we define

Winaz (t) = maxw; (£)1(¥; # 0),

lex (20)

to be the maximum deficit of a nonempty link at time ft.
Also define [N] := {1,2,..., N}. We use Ex[] to denote
conditional expectation E[-|X]. EY[] is used to explicitly
indicate that expectation is taken with respect to some random
variable Y. |A] is used to denote the cardinality of set A.

A. Proof of Proposition 1

We look at the state process {S(¢)} at times ¢; when frames
start. We show that this sampled chain is positive recurrent and
further its mean deficit size is stable in the sense of (6). From
this it follows that the original process {S(¢)} is also stable
as the mean frame size E[F] is bounded and the mean deficits
within a frame can change at most by @, KE[F].

Since A € pint(An¢), we have for some € > 0, and some
policy p1 € Pno(F),

AE[F](1 + 2¢) < pE[Y _I*(t)]
teF

21

where < is the component-wise inequality between vectors.
This is simply due to the fact that in each frame, the number of
deficit arrivals ), »a(t) and the number of departures under
the policy p are i.i.d across the frames, with means E[F|A and
E[> e #1#(t)], respectively, by the renewal reward theorem.
Hence, to ensure stability, (21) must hold. Next consider the
Lyapunov function V (t) := V(S(t)) = 33, wi(t). Let
{I(t),t € F} denote the scheduling decisions by ALG within
the frame. Using (4), we get

Vit +F) = Vito) = 5 3 (whlto + F) — wf ()
ek

= IS (R4 1)~ w0)

teFlek

< Kal F/24+ > > wit) @lt)

teFlek

—1i(t)). (22)

Let E;,[-] = E[-|S(to)]. Then, over a frame,
Ei [V(to + F) — V( 0)] <
Ei, > Y wit)a(t)] = By, [ Y wi®)L(t)] + Cy, (23)
teFlek teFlek
where C; = Ka?2,,,E[F]/2. Noting that w;(tg) — F <
wi(t) < wi(to) + amasF, at any ¢t € F, we can bound
Ero[Y Y wi(t)a(t)] <> (wi(to) ME[F]) + Ca,  (24)

teFlek lex

where we have used (16) in the last inequality, and Cy =

aZ, . E[F?]K < oo. Let I*(t) be the scheduling decisions
by the policy p*, and I*(t) be the scheduling decisions by
the policy p € Py (F) in (21). Note that p* is the optimal
non-causal policy that maximizes the gain over the frame and
can transmit packets from a previous frame (included in the
initial buffer W(¢y)). This only improves the performance of
w*, compared to starting with empty buffers, hence,

By [SoSwi0IF ()] > By [N w01

teFlek lekteF

0] @

Using (25) and the proposition assumption, given € > 0, there
is a W’ such that, if ||w(to)|| > W',

Biy [ YD wiI()] > (0 — e[S wi ()17 ()]

teFlek teFlek

> (p— B, [ wl' O (1)
leKteF

> (p— OB [ DD (wilto) — F)I(1)]
lekKteF

> (p— OB | DD wilto)If (1)) - s, (26)
leKteF

where C3 = KE[F?] is a constant. Using (26), (24), (23),

By, [(to + F) - V<to>}

<Cy+ ZE wy t() A —

— ) wilto)E, {ZI }

lex lek teF
<Cy+ > wi(to) (AZE[F} —(p— )Ey, [Zw)D
lex teFr
<Cy — GE[F]Z)\lwl(to), (27)
lex
where Cy, = C; + Cy + C3, and in the last in-
equality we have used (21). Hence, given any § > 0,

Ey, [V(to + F) = V(tg)] < =4 if

[[w(to)|| = max ((Cy + 0)/(€E[F|Amin), W),

where \,,;, = min; \;. This proves that the network Markov
chain is positive recurrent by the Foster-Lyapunov Theorem
and further the stability in the mean sense (6) follows [28]
(note that the component W(¢) lives in a finite state space).
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B. Gain Analysis of AMIX-ND in Collocated Networks

Consider a subclass Py p of all the policies that schedule
Non-Dominated (ND) links at each slot (recall Definition 1).
We refer to policies in Pyp as ND-policies. We show that
the optimal ND-policy is close to the optimal non-restricted
policy as stated below.

Lemma 2. Consider any policy i for scheduling packets in
a frame F. Then there is an ND-policy i € Pnp such that,
under the same pattern J € J(F) and initial state S(to),

2 G0 2 ) Gu(t)
teF teF
where F' is the length of the frame.

amu.x

Proof. Suppose the first time p does not schedule a non-
dominated link is to. Suppose u sends earliest-deadline packet
(wy(to),dy) from link y and (w,(to),d;) be the earliest-
deadline packet at a link = (x # y) that strictly dominates
y, 1.e. wy(to) > wy(ty), dy < dy. Consider some alternative
policy ' which has the same transmissions as g up to time
to but transmits the packet of z at time ¢y instead. Let
wy(t), I € K denote the link deficits under y'. Note that
wy(t) = wi(t), Vt < ty. We differentiate between 2 cases:

1) p does not transmit packet x in the remaining time slots.
In this case, let y/ transmit the same packets as p in the
remaining slots (after ¢y). We can show that the difference
of the collected gain, as a result of the different deficits of
the users can be bounded below

D G (t) = Gult) = -

teF teF

2) p transmits packet x at some time slot ¢, where ¢y < t, <
to+d,. In this case we let 1/ transmit the same packets as
w for all ¢ > t( except for time slot ¢, in which it transmits
packet y instead, which has not expired by the domination
inequality d, > d. In this case, we can show that

Zte]—'gH' (t) - Ztefgll«(t) 2

The detailed proof can be found in the technical report [20].
By repeating this process (at most F' times), we can transform
1 to fi. From this, the final result follows. O

_amawF- (28)

Lemma 3. For each slot t € F, the gain obtained by AMIX-
ND, and the amortized gain by any ND-policy [i, starting from
some state S(t) satisfy:

ER[G,()IS()] <
ER[Gamix-nn (8)[S(8)] >
Where p= (1 - (1 o %)K) and 50 = amamdmax + 2F, and

Ef[] is expectation with respect to the random decisions of
AMIX-ND.

Wmaz (t) + gO
Wmaz (t)P

(29)
(30)

Proof. At time t, after the new arrivals have happened, we
have state S(t). AMIX-ND decides probabilistically to trans-
mit a packet (wy, ey) from a non-dominated link f € Byp(?),
and the ND-policy /i transmits a packet (w,,e,) from some
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other link z . We distinguish two cases following the same
method as in [18] but for time-varying weights.

1) ey <e.,wy < w,: To maintain the same buffers for both
algorithms, we remove the packet ey from the buffer of
link f under /i and inject the packet with deadline e, to
link z so that ji gets a packet with higher deadline and
higher weight at the time ¢. Since both packets will expire
in at most dp,x slots, the deficit of f can only increase
by at most dmyax@max before packet ey expires. Therefore
giving /i this additional compensation will guarantee that
the modification is advantageous. Further, we decrease the
deficit from link f by one (wy—1 in /1) and we increase the
deficit of link z by one (w, +1 in fi). Then i and AMIX-
ND have the same exact state. Making this change in the
deficit will reduce the gain for each packet transmitted
from link f in the future by one. To compensate for this,
we give [i extra gain which is the number of packets
transmitted from link f for the rest of the frame, which
is less than F'. Hence, the total compensation is bounded
by F + amaa:dmax~

2) e, < ey,w, < wy: In this case, we allow fi to additionally
transmit the packet e at time ¢, and inject a copy of packet
e, to the buffer of link z. This makes the buffers identical,
but results in the decrease of deficit of link f by one,
which might not be advantageous for /i for future times. To
guarantee that the change is advantageous for fi, we give it
one extra reward for each possible transmission from link
f in the rest of the frame, which is less than F'.

Let géb(hi)(t) denote the reward (including the compensa-
tion) gained by fi when it transmits a non-dominated packet
h; (recall h; from Algorithm 1). Then

BRG01T= 3 b

hj:j<i
+ wh7( ) + F + amamdmax

th

hj:j<i

DS = ;) + F)

<wp, ( )+ & @B

where & = Gardmax + 2F. Using the assigned probabilities
(line 4 in Algorithm 2), it is easy to verify that (31) attains
its maximum for ¢ = 1, which is equal to wp, (t) + & =
Winaz(t) + Eo. Hence, (29) indeed holds.

Now regarding AMIX-ND, similar derivation applies as in
[19] to get the final bound. To see that, first let the number of
links with positive probability be B < K. Then

Z Wh, (t)phq‘, (t) =

i1€[B]

> wn@pn @+ (1= > o)) wns () @

i€[B—1] i€[B—1]

B-1 B-1 ()
wn (8)(1= [T =P @) Y pr(®) =

i=1 i=1
=),

]ER[QAMIX-ND (t)|S =

w, (1) (1 —
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where (a) follows from the form of probabilities, and (b)
follows by applying the inequality between arithmetic and
geometric means of B terms: (1 — pp,(t)), ¢ € [B — 1], and

it p(t): O

Lemma 4. Over any frame F, with initial state S(ty) =

(U (to),w(to), 7(to)), and any ND-policy fi.

ER7[Y, e 7Gamixnn (1)|S (to)]
BT e 79 (1)S (to)]

Proof. Given the initial state S(t¢) and frame size F', consider
all the traffic patterns of length F'. Taking expectations of the
result of Lemma 3, with respect to random traffic patterns J
of length F' and the decisions of ALG, we get

E™ [ERIGL(0)S1)]|S(to), F] < E™ [wmaz (1)|S(to), F] + &
ENTERGaLaISHIS(t), F] > B [winax (1)|S(to), Flp
where ALG = AMIX-ND. Now notice that

BT RAG(6)[S()][S(to), F =

BT ERG(6)[S (1), S(10)]IS (to), F] = E™7[G7 (1) S (to), F]

where the first equality is due to the fact that, given S(¢) and
F, the gain of /i at time ¢ depends on current S(¢) and future
traffic pattern in the frame, but not on the past. The second
equality is by the tower property of conditional expectation.
Therefore, we get

E™IGL()[S(to), Fl+& (33)
Using similar arguments for the expected gain of AMIX-ND,
ER G ara ()|S(to), F] > B [waq (1)|S(to), Flp  (34)

The result then follows by summing the gains over
time slots in the frame, taking the expectation with re-
spect to frame size F, using the inequality between
amortized gain and actual gain, and also showing that
Hml\w(to)H%oo ERY {Ztg]—‘wmaw(t)‘s(toﬂ = 00. The details
can be found in the technical report [20]. O

(32)

llw(to)||—o0

ERJ[

F] < ERJ[wmaw (t)‘S(tO)v

Theorem 3. For any policy u, and AMIX-ND, given any
€ > 0, there is W' such that when ||w(to)| > W’':

Es(t0) [ZgAMIX-ND(t)} > (p = €)Es1) [Zgu(t)]

teF teF

Proof. The proof follows from Lemma 2 and Lemma 4 and
noting that B¢ [}, »G,.(t)] — oo, as [[w(to)| — oo. The
details can be found in the technical report [20]. O

C. Gain Analysis of AMIX-MS in General Networks
First we show that binary search in Algorithm 3 suffices for

computing 7 defined in (13).

Proposition 2. The binary search in Algorithm 3 computes 1
as defined in (13).

gain analysis. The proofs follow directly from the probabilities
used by AMIX-MS (see the technical report [20]).

Lemma 5. C,,(t) (defined in (11)) is strictly decreasing as a
function of n, for n < n < |M].

Lemma 6. If i ¢ [n] and j € [A], for the choice of
probabilities pj(t) in (12) selected by AMIX-MS, we have
W, (8) + ke PR (O W, (8) <
Wi, () + ket g5y Pr (O War (1)

Lemma 7. For each time t € F, the gain obtained by AMIX-

MS, and the amortized gain obtained by the Max-Gain policy
, starting from some state S(t), satisfy:

E®[g), <> Wi (t) = (R=1)Ca(t) + Em  (39)
i€[n]
ER [Gamixms (D[S ®)] = Y Wy, (t) — nCi(t) (36)
i€[n]

where &,, = KF and BT is with respect to decisions of
AMIX-MS.

Proof. Using the probabilities computed by AMIX-MS, the
expected gain of AMIX-MS at time ¢ is

O] = prOWar,(t) = > Wi, (£)—nCxl(t)

i€l ig[n]

E[Gamix-ms (

Next, for the amortized gain of the Max-Gain Policy i, we
will apply the same technique as in the collocated networks
case, where we modify the buffers and give p additional
reward. Suppose p transmits M;, and AMIX-MS transmits
some M;. We make the buffers the same by allowing p to
additionally transmit all the packets that are transmitted by
AMIX-MS but not by x (i.e., in links M; \ M;). Since this
will result in a decrease of the deficit by one for each link in
M; \ M; for 41 in the remaining slots, we give y an additional
reward &,, = K F which is an upper bound on the number of
packets transmitted by p from links M, \ M; in the remaining
slots. To compute the expected gain, we consider two cases:

Case 1. 7 € [71]. In this case, we can write

E(G, " (1)) =W, (t) + Z P2 () (W ar, () + Em)

w\{ }
<W, (t) + Z Em) (37)
j m\{}
SWAL‘() 1_pt ij +5m
J€[n]
=Ca(t) + Y W, (t) = nC5(t) + Em. (38)
i€[n)

Case 2. i ¢ [71]. In this case, we have

1 M; 7
Proof. The proof can be found in the technical report [20]. [ E[gﬂ O] < War(t) + Z:kG[ﬁ] P (O)(War, () + Em)
a _
We next state Lemmas 5 and 6 regarding the properties of < W (t) + Zke['ﬁ]\{j} Pr(OWar, (t) + Em
the probabilities used by AMIX-MS, which are used in the = Ca(t) + Xieim W, (t) — nCr (1) + Em,
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where in (a) we applied Lemma 6 for 4, j. Note that in both
cases, the upper bound is the same and does not depend on
the particular choice of M;. O

Lemma 8. For Cj(t) in (11), We have

Z?‘,E[ﬁ,] W, (t)—nCx(t) > M|
i War, (- 1)Cn (D) = 2AM[1°

Proof. The result follows by inequality between arithmetic and
harmonic means,
1 7
=N Wan(t) > _
niez[n] Zie[ﬁ] W, (t) !

and noting that |[M| > 7. The details can be found in the
technical report [20]. ]

Theorem 4. Under AMIX-MS, given any € > 0 there is W’
such that for all ||wol| = 3, ccwr(to) > W',

ELY [ Gamxs ()] = (0= OB, [0,(0)]

teF teF
where i is any non-causal policy, and p = 2|/|\//\1/\1L1'

Proof. By using Lemma 7, and summing and taking expecta-
tion similar to the proof of Lemma 4, it follows that

E[ Y e sGamixovs ()IS(t0)| = B[S, ra(t)|S to)]
E [Ztg%(t)lS(to)] <Em+ E[ztefy(t)w(to)]
where &, = KE[F?], and x(t) = y(t) — Ci(t), where

y(t) =2 iene W, (t) — (0(t) — 1)Cr(t).

It is easy to verify that y(t) > Wiy, (t) > wWimas(t). Letting
||lwo|| = oo, and using Lemma 8 yields the result. The details
can be found in the technical report [20]. O

VI. SIMULATION RESULTS

In our simulations, we consider two cases for the deficit
admission (see the model section): one is based on coin
tossing where each arrival on a link [ is counted as deficit
with probability p;, and the other is deterministic, where each
arrival increases the deficit by exactly p;.

We compare the performance of our randomized algorithms,
AMIX-ND and AMIX-MS with LDF. Recall that LDF
chooses the longest-deficit link, then removes the interfering
links with this link, and repeats the procedure. We further
consider two versions of LDF: One is LDF that does a random
tie breaking when presented with a deficit tie (LDF-RD), and
the other version tries to schedule the non-dominated link and
its earliest-deadline packet (LDF-ED) in such tie situations. In
the plots, we compare the average deficit (over all links) as
we vary the value of the delivery ratio.

Collocated Networks. We first consider two interfering links
with deterministic deficit admission. The traffic is periodic and
consists of alternating Pattern A and Pattern B of Figure 1,
with the delivery ratios satisfying po = p1 + 0.001. Figure 3a
shows the result. As we can see, AMIX-ND is able to achieve
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Fig. 3: Comparison between AMIX-ND and LDF policies in
a two-link network.
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Fig. 4: Comparison between AMIX-MS and LDF policies in
a lightly connected interference graph with 5 links.

roughly p; = 0.996, whereas both versions of LDF become
unstable for p; = 0.5+¢. In Figure 3b, again for two users, we
used a traffic that consists of Pattern C followed by Pattern B,
repeatedly. This time we keep p; = p2. AMIX-ND achieved
near p; = 1.0, whereas the better version of LDF achieved
roughly 0.75, resulting in a gap of around 0.25.

General Networks. We consider an interference
graph involving 5 links, with interference edges
El = {(ll, lg), (ZQ, lg), (lg, 14), (l47 15)} For links l2 and
l5, we have a periodic traffic with period ¢ = 5, where in slot
1 there are 2 packets arriving with deadline 2 and 3 and in
slot 4 a packet arrives with deadline 1, and for links {1, 3, [5,
we have 1 packet arriving with deadline 1 at slot 1, and 1
packet arriving with deadline 2 at slot 4. See Figure 4.

As we see, simulation results indicate that there are many
scenarios that result in significant gap between our algorithms
and LDF variants. This gap is especially pronounced when
deterministic deficit admission is used, which is preferable as
it provides a short-term guarantee on the deficit of a user.

VII. CONCLUSION

In this paper, we studied real-time traffic scheduling in
wireless networks under an interference-graph model. Our
results indicated the power of randomization over the prior de-
terministic greedy algorithms for scheduling real-time packets.
In particular, our proposed randomized algorithms significantly
outperform the well-known LDF policy in terms of efficiency
ratio. As a future work, we will investigate efficient and
distributed implementation of AMIX-MS for general graphs.
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