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High-Throughput Bin Packing: Scheduling Jobs
With Random Resource Demands in Clusters

Konstantinos Psychas

Abstract— We consider a natural scheduling problem which
arises in many distributed computing frameworks. Jobs with
diverse resource demands (e.g. memory requirements) arrive over
time and must be served by a cluster of servers. To improve
throughput and delay, the scheduler can pack as many jobs as
possible in each server, however the sum of the jobs’ resource
demands cannot exceed the server’s capacity. Motivated by the
increasing complexity of workloads in shared clusters, we con-
sider a setting where jobs’ resource demands belong to a very
large set of diverse types, or in the extreme case even infinitely
many types, i.e. resource demands are drawn from a general
unknown distribution over a possibly continuous support. The
application of classical scheduling approaches that crucially rely
on a predefined finite set of types is discouraging in this high (or
infinite) type setting. We first characterize a fundamental limit
on the maximum throughput in such setting. We then develop
oblivious scheduling algorithms, based on Best-Fit and Universal
Partitioning, that have low complexity and can achieve at least
1/2 and 2/3 of the maximum throughput respectively, without
the knowledge of the resource demand distribution. Extensive
simulation results, using both synthetic and real traffic traces,
are presented to verify the performance of our algorithms.

Index Terms—Scheduling algorithms, stability, queues, bin
packing, data centers.

I. INTRODUCTION

ISTRIBUTED computing frameworks (e.g. Hadoop [2],
Spark [3], Hive [4]) have enabled processing of large
data sets in data centers. The processing is typically done
by executing a set of jobs or tasks in a cluster of servers.
A key component of such systems is the resource manager
(scheduler) that assigns incoming jobs to servers and reserves
the requested resources (e.g. CPU, memory) on the servers
to run these jobs. For example, in Hadoop [2], the resource
manager reserves the jobs’ requested resources, by launching
resource containers in servers. Incoming jobs come from
various applications and often have very diverse resource
requirements. To improve throughput and delay, a scheduler
should pack as many jobs (containers) as possible in the
servers, while retaining their resource requirements and not

exceeding the servers’ capacities.
A salient feature of resource demand is that it is hard
to predict and cannot be easily classified into a small or
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Fig. 1. There are more than 700 distinct memory requirements and
400 distinct CPU requirements in the tasks submitted to a Google cluster
during a day.

moderate number of resource profiles or “fypes”. This has
been particularly amplified by the increasing complexity of
workloads, i.e., from traditional batch jobs, to queries, graph
processing, streaming, machine learning jobs, etc., that all
need to share the same cluster. For example, Figure 1 shows
the statistics of memory and CPU requirement requested by
jobs in a Google cluster, based on the first day of the trace
in [5]. If jobs were to be divided into types according to
their memory requirement alone, there would be more than
700 types. Moreover, the statistics change over time and these
types are not sufficient to model the resource requirements in
a month, which are more than 1500. We can make a similar
observation for CPU requirements, which take more than 400
types. Analyzing the joint CPU and memory requirements,
there would be more than 10,000 distinct types. Building a
low-complexity scheduler that can provide high performance
in such a high-dimensional regime is extremely challenging,
as learning the demand distribution for all types is infeasible,
and finding the optimal packing of jobs in servers, even
when the demand distribution is known, is a hard combi-
natorial problem (related to Bin Packing [6] and Knapsack
problems [7]).

Despite the vast literature on scheduling algorithms, their
theoretical study in such high-dimensional setting is very
limited. The majority of the past work relies on a crucial
assumption that there is a predefined finite set of discrete
types, e.g. [8]-[13]. Although we can consider every possible
resource profile as a type, the number of such types will be
formidably large. The application of scheduling algorithms,
even with polynomial complexity in the number of types,
is discouraging in such setting. A natural solution could be to
divide the resource requests into a smaller number of types,
but a naive division may result in a scheduler that performs
poorly. This is especially true in the absence of any prior
knowledge about the resource demand statistics, as it is not
clear how the partitioning of the resource axis into a small
number of types should be actually done.

Our work fulfills one of the key deficiencies of the past
work in the modeling and analysis of scheduling algorithms
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for distributed server systems. Our model allows a very large
or, in the extreme case, even infinite number of job types,
i.e., when the jobs’ resource requirements follow a general
unknown probability distribution over a possibly continuous
support. To the best of our knowledge, there is no past work
on characterizing the optimal throughput and what can be
achieved when there are no discrete job types. Our goal is
to characterize this throughput and design algorithms that
have low complexity, and can provide provable throughput
guarantees without the knowledge of the traffic or the resource
requirement distribution.

A. Related Work

Existing algorithms for scheduling jobs in distributed com-
puting platforms can be organized in two categories. In the
first category, we have algorithms that do not provide any
throughput guarantees, but perform well empirically or focus
on other performance metrics such as fairness and makespan.
These algorithms include slot-based schedulers that divide
servers into a predefined number of slots for placing tasks [14],
[15], resource packing approaches such as [16], [17], fair
resource sharing approaches such as [18], [19], and Hadoop’s
default schedulers such as FIFO, Fair scheduler, and Capacity
scheduler [2].

In the second category, we have schedulers with through-
put guarantees, e.g., [8], [10]-[13]. They work under the
assumption that there is a finite number of discrete job types.
This assumption naturally lends itself to MaxWeight algo-
rithms [20], where each server schedules jobs according to a
maximum weight configuration chosen from the set of feasible
configurations (see Section III-A for an overview). The number
of feasible configurations however grows exponentially large
with the number of types, making the application of these algo-
rithms discouraging in practice due to their high complexity.
Further, their technique cannot be applied to our setting in this
paper which can include an infinite number of job types.

There is also literature on classical bin packing problem [6],
where given a list of objects of various sizes, and an infinite
number of unit-capacity bins, the goal is to use the minimum
number of bins to pack the objects. Many algorithms have
been proposed for this problem with approximation ratios
for the optimal number of bins or waste, e.g. [21]-[23].
There is also work in a setting of bin packing with queues,
e.g. [24]-[26], under the model that an empty bin arrives at
each time, then some jobs from the queue are packed in the
bin at that time, and the bin cannot be reused in future. Our
model is fundamentally different from these lines of work,
as the number of servers (bins) in our setting is fixed and we
need to reuse the servers to schedule further jobs from the
queue when some jobs depart from the servers.

B. Main Contributions
Our main contributions can be summarized as follows:

1 Characterization of Maximum Achievable Throughput:
We characterize the maximum throughput (maximum
supportable workload) that can be theoretically achieved
by any scheduling algorithm in the setting that the
jobs’ resource requirements follow a general probability
distribution F'r over possibly infinitely many job types.

The construction of optimal schedulers to approach this
maximum throughput relies on a careful partition of
jobs into sufficiently large number of types, using the
complete knowledge of the resource probability distrib-
ution F'z.

2 Oblivious Scheduling Algorithms: We introduce schedul-
ing algorithms based on “Best-Fit” packing and “Uni-
versal Partitioning” of resource requirements into types,
without the knowledge of the resource probability distri-
bution F'r. The algorithms have low complexity and can
provably achieve at least 1/2 and 2/3 of the maximum
throughput, respectively. Further, we show that 2/3 is
tight in the sense that no oblivious scheduling algorithm,
that maps the resource requirements into a finite number
of types, can achieve better than 2/3 of the maximum
throughput for all general resource distributions F'g.

3 Empirical Evaluation: We evaluate the throughput and
queueing delay performance of all algorithms empiri-
cally using both synthetic and real traffic traces.

II. SYSTEM MODEL AND DEFINITIONS

Cluster Model: We consider a collection of L servers
denoted by the set L. For simplicity, we consider a single
resource (e.g. memory) and assume that the servers have the
same resource capacity. While job resource requirements are
in general multi-dimensional (e.g. CPU, memory), it has been
observed that memory is typically the bottleneck resource [2],
[27]. Without loss of generality, we assume that each server’s
capacity is normalized to one.

Job Model: Jobs arrive over time, and the j-th job, j =
1,2,..., requires an amount R; of the (normalized) resource
for the duration of its service. The resource requirements
Ri, Rs,--- are ii.d. random variables with a general cdf
(cumulative distribution function) Fgr(-) : (0,1] — [0, 1], with
average R = IE[R]. Note that each job should be served by
one server and its resource requirement cannot be fragmented
among multiple servers. In the rest of the paper, we use the
term resource size to refer to a job’s resource requirement.

Queueing Model: We assume time is divided into time slots
t=0,1,---. At the beginning of each time slot ¢, a set A(t) of
jobs arrive to the system. We use A(¢) to denote the cardinality
of A(t). The process A(t),t =0,1,---, is assumed to be i.i.d.
with a finite mean IE[A(¢)] = A and a finite variance.

There is a queue Q(t) that contains the jobs that have
arrived up to time slot ¢ and have not been served by any
servers yet. At each time slot, the scheduler can select a set
of jobs D(t) from Q(t) and place each job in a server that
has enough available resource to accommodate it. Specifically,
define H(t) = (He(t), £ € L), where Hy(t) is the set of
existing jobs in server ¢ at time t. At any time, the total
resource size of the jobs packed in server ¢ cannot exceed
its capacity, i.e.,

ZjeHZ(t)Rjgl, YeeLl, t=0,1,--- 1)
Note that jobs may be scheduled out of the order that they
arrived, depending on the resource availability of servers.
Let D(t) and Q(t) denote the cardinality of D(t) and Q(t)
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respectively.! Then the queue and its cardinality evolve as

Q(t+1) = Q(t) UA(t) — D(t), 2)
Qt+1) = Q(t) + A(t) — D(1). 3)

Once a job is placed in a server, it completes its service after
a geometrically distributed amount of time with mean 1/pu,
after which it releases its reserved resource. This assumption is
made to simplify the analysis, and the results can be extended
to more general service time distributions (see Section IX).

Stability and Maximum Supportable Workload: The system
state is given by (Q(t),H(t)) which evolves as a Markov
process over an uncountably infinite state space .> We inves-
tigate the stability in terms of the average queue length, i.e.,
the system is called stable if lim sup, E[Q(?)] < co. Given a
resource size distribution Fr, a workload p := \/p is called
supportable if there exists a scheduling policy that can stabilize
the system for the job arrival rate A\ and the mean service
duration 1/p.

Maximum supportable workload is a workload p* such that
any p < p* can be stabilized by some scheduling policy, which
possibly uses the knowledge of the resource size distribution
Fr, but no p > p* can be stabilized by any scheduling policy.

III. CHARACTERIZATION OF MAXIMUM
SUPPORTABLE WORKLOAD

We first characterize the maximum supportable workload p*
given a job resource distribution F'r. We start with an overview
of the results for a system with a finite set of discrete job types.

A. Finite-Type System

It is easy to characterize the maximum supportable work-
load when jobs belong to a finite set of discrete types. In this
case, it is well known that the supportable workload region is
the sum of convex hull of feasible configurations of servers,
e.g. [8], [10]-[13], which are defined as follows.

Definition 1 (Feasible Configuration): Suppose there is a
finite set of J job types, with resource sizes Ti,--- ,T;.
An integer-valued vector k (k1,---,ky) is a feasible
configuration for a server if it is possible to simultaneously
pack ky jobs of of type 1, ko jobs of type 2, ..., and kj
jobs of type J in the server, without exceeding its capacity.
Assuming normalized server’s capacity, any feasible config-
uration k must therefore satisfy Z}]:1 kjr; <1, kj € Zy,
j=1,---,J. Weuse K to denote the (finite) set of all feasible
configurations.

We define P; P(R = r;) to be the probability that
resource size of an arriving job is rj, P = (P1,---,Py)
to be the vector of such arrival probabilities, and p = A/
to be the workload. We also refer to pP as the workload
vector. As shown in [8], [10]-[12], the maximum supportable
workload p* is

p* = sup {p eERy:pP < er,xz € Conv(K),l € E}
el

'We follow the convention of using calligraphic symbols for sets and the
corresponding capital letters for their cardinality.

>The state space can be equivalently represented in a complete separable
metric space, see Section IV-B.
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where Conv(-) is the convex hull operator, and the vector
inequality is component-wise. Also sup (or inf) denotes supre-
mum (or infimum). Hence any p < p* is supportable by some
scheduling algorithm, while no p > p* can be supported by
any scheduling algorithm.

Let Q;(t) be the number of type-j jobs, j = 1,---,J,
waiting in queue at time ¢. In this case, the optimal
or near-optimal scheduling policies basically follow the
well-known MaxWeight algorithm [20]: At any time ¢ for each
server £, the algorithm maintains a feasible configuration k(t)
that has “maximum weight” [10], [11] (or a fraction of the
maximum weight [13]), among all the feasible configurations
K. The weight of a configuration is formally defined below.

Definition 2 (Weight of a Configuration): Given a queue
size vector Q = (Q1,---,Qy), the weight of a feasible
configurationk = (ky,--- , k) is defined as the inner product

(k,Q) =7, k;Q;. )

B. Infinite-Type System

In general, the support of the resource size distribution
Fr can span an infinite number of types (e.g., Fr can be
a continuous function over (0, 1]). We introduce the notion
of virtual queue which is used to characterize the supportable
workload for any general distribution Fgr.

Definition 3 (Partition and Virtual Queues (VQs)): Define
a partition X of interval (0, 1] as a finite collection of disjoint
subsets X; C (0,1), j =1,---,J, such that szlXj = (0,1].
If the resource size of an arriving job belongs to X;, we say
it is a type-j job. For each type j, we consider a virtual
queue VQ; which contains the type-j jobs in the queue for
service.

Given a partition X, we can define the probability that a
type-j job arrives, and the corresponding vector, as

PR 2p(REX;), P = (P, P ()
We also define the workload vector as pP(X ). Note that under
Definition 3 and (6), it is not clear what configurations are
feasible, since jobs in the same virtual queue can have different
resource sizes, even though they are called of the same type.
Hence we make the following definition.

Definition 4 (Rounded VQs): We call VQs “upper-rounded
VQs”, if the resource sizes of type-j jobs are assumed to be
r; =sup Xy, j = 1,---,J. Similarly, we call them “lower-
rounded VQs”, if the resource sizes of type-j jobs are assumed
tober;=inf X;, j=1,---,J.

Given a partition X, let p*(X) and p*(X) be respec-
tively the maximum workload A\/p under which the system
with upper-rounded virtual queues and the system with the
lower-rounded virtual queues can be stabilized. Since these
systems have finite types, these quantities can be described
by (4) applied to the corresponding finite-type system with
workload vector pP(X ).

Let also p* = supy p*(X) and p* = infx p*(X) where
the supremum and infimum are over all possible partitions of
interval (0, 1]. Next theorem states the result of existence of
maximum supportable workload.
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Theorem 1: Consider any general (continuous or discontin-
uous) probability distribution of resource sizes with cdf Fg(-).
Then there exists a unique p* such that p* = p* = p*.
Further, given any p < p*, there is a partition X such that the
associated upper-rounded virtual queueing system (and hence
the original system) can be stabilized.

Proof: The proof of Theorem 1 has two steps. First,
we show that p*(X) < p* < p*(X) for any partition X.
Second, we construct a sequence of partitions, that depend
on the resource size distribution F'r, and become increasingly
finer, such that the difference between the two bounds vanishes
in the limit.

Full proof can be found in Section VIII-A. U

Theorem 1 implies that there is a way of mapping the
resource sizes to a finite number of types using partitions, such
that by using finite-type scheduling algorithms, the achiev-
able workload approaches the optimal workload as partitions
become finer. However, the construction of the partition cru-
cially relies on the knowledge of the resource size distribution
Fr, which may not be readily available in practice. Further,
the number of feasible configurations (Definition 1) grows
exponentially large as the number of subsets (types) in the
partition increases, which prevents efficient implementation of
classical scheduling algorithms like MaxWeight in practice.

Next, we focus on low-complexity scheduling algorithms
that do not assume the knowledge of Fr a priori, and can
provide a fraction of the maximum supportable workload p*.

IV. BEST-FIT BASED SCHEDULING

The Best-Fit algorithm was first introduced as a heuristic
for Bin Packing problem [6]: given a list of objects of various
sizes, we are asked to pack them into bins of unit capacity
so as to minimize the number of bins used. Under Best-Fit,
the objects are processed one by one and each object is placed
in the “tightest” bin (with the least residual capacity) that can
accommodate the object, otherwise a new bin is used. Theoret-
ical guarantees of Best-Fit have been extensively studied under
discrete and continuous object size distributions [21]-[23].
However, there are several fundamental differences between
the classical bin packing problem and our problem. In the bin
packing problem, there is an infinite number of bins with no
queue, and once an object is placed in a bin, it remains in
the bin forever, while in our setting, the number of bins (the
equivalent of servers) is fixed, and bins have to be reused to
serve new objects from the queue as objects depart from the
bins. Next, we describe how Best-Fit (BF) can be adapted for
job scheduling in our setting.

A. BF-J/S Scheduling Algorithm

Consider the following two adaptations of Best-Fit (BF) for
job scheduling:

o BF-J (Best-Fit From Job’s Perspective):
List the jobs in the queue in an arbitrary order (e.g.
according to their arrival times). Starting from the first
job, each job is placed in the server with the “least resid-
ual capacity” among the servers that can accommodate
it, if possible, otherwise the job remains in the queue.

o BF-S (Best-Fit From Server’s Perspective):

List servers in an arbitrary order (e.g. according to their
index). Starting from the first server, each server is filled
iteratively by choosing the “largest-resource job” in the
queue that can fit in the server, until no more jobs can fit.

BF-J and BF-S need to be performed in every time slot.
Under both algorithms, observe that no further job from the
queue can be added in any of the servers. However, these
algorithms might make many redundant searches over the
jobs in the queue or over the servers, when there are no
new job arrivals to the queue or there are no job departures
from some servers. Combining both adaptations, we describe
the algorithm below which is computationally more efficient.
leftmargin=4mm

o BF-J/S (Best-Fit From Job’s and Server’s Perspectives):
It consists of two steps:

1) Perform BF-S only over the list of servers that
had job departures during the previous time slot.
Hence, some jobs that have not been scheduled in
the previous time slot or some of newly arrived jobs
are scheduled in servers.

2) Perform BF-J only over the list of newly arrived jobs
that have not been scheduled in the first step.

B. Throughput Guarantee

The following theorem characterizes the maximum support-
able workload under BF-J/S.

Theorem 2: Suppose any job has a minimum resource size
u. Algorithm BF-J/S can achieve at least % of the maximum
supportable workload p*, for any u > 0.

Proof: The state of the system at time slot ¢ is given by

S(t) = (Q(t), H(t))- @

Recall that Q(t) is the set of jobs in queue, with cardinality
[Q(t)] = Q(t), and H(t) = (He(t),¢ € L) is the set of
scheduled jobs in servers £. We denote the space of all feasible
states by S.

An equivalent description of the state, assuming resource
demands in (0, 1], is through a cumulative function. For a set
of jobs (resource sizes) A, define a function f4 : [0,1] —
N as fa(s) = |z € A: Ry < s|. If we know f4(s) for any
s € (0,1] then we also know .A. Hence, to describe state
S(t), we can use its equivalent representation using functions
Jow(s) and fy, 1) (s), £ € L. The space of such functions
is a Skorokhod space [28], for which, under the appropriate
topology, it can be shown that it is a Polish space [29]. Our
state space is the product of L + 1 of such Polish spaces and
under the product topology, is also a Polish space. Therefore,
the evolution of S(t) over time defines a time-homogeneous
Markov chain, for which we can prove its stability, by applying
Theorem 1 of [30], which we repeat below for convenience.

Subtheorem 1 from [30]: Let X be a Polish space and
V : X — R4 be a measurable Lyapunov function with
sup,cy V(x) = oo. Suppose there are two more measurable
functions g : X — N, h : X — R such that

inf h(z) > —oco, liminf h(xz) >0,

zeX V(z)—oo
sup g(x) <oco VN >0, limsup g(z)/h(z) < oo,
V(z)<N V(z)—o0
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and the drift of V satisfies the following property in which
E.[-] is the conditional expectation given X (t) = x,

Eg [V(X (¢ +9(2))) = V(X(®))] < =h(z). ®
Define the return time to set Xy = {x € X : V(z) < N} as
7 =inf{n>0:V(X(t+n)) <N}

Then it follows that there is an Ny > 0, such that for any
N > Ny and x € X, E,[Tn] < oc.

The Subtheorem 1 states that under certain conditions, the
Markov chain X () with state space X is positive recurrent
to a certain subset of states with bounded Lyapunov function.
From this, it follows that limsup,_,  E[V (X (¢))] < oo [30].

In our setting, we pick the Lyapunov function to be the sum
of resource sizes of jobs in the system divided by pu, i.e.,

LS

H 1€Q(t) UH(t)

= R;. ©)

V(S@®)=V(t)

Given that jobs have a minimum resource size, proving that
the expected value of V(S(¢)) is bounded implies that the
expected number of jobs in the system is also bounded.

Consider a time interval [to,to + g(S(to))], where the
state S(tg) at time to is known. We will specify a function
g(S(to)) = Na (for a constant N5), and a function h(S(tg)),
that ensure conditions in Subtheorem 1 hold. Intuitively,
we want the drift of V' to be negative over this time interval,
for V(¢y) large enough.

The key argument in the proof is that by using the algorithm
BF-J/S, all servers operate in more than “half full”, most of
the time, when the total resource size of jobs in the queue
becomes large. Formally, we define the following event.

Definition 5: Given the initial state S(ty), and integers
N1, Ny € N, Eg(1),n,,N, is the event that during the time
interval [to, to + Nal, every server is less than half full for at
most Ny time slots.

The lemma below states that we can pick N7, N» such that
the event Eg(4,), N, N, 18 almost certain when the total resource
size of jobs in queue becomes large.

Lemma 1: Given € > 0, under BF-J/S,
P (Esto).nv.) > 1= €1 if
log(e1/L)
ZjGQ(to) Rj >2LN,, N> log(lgfmv (10)

where Kyax = |1/u] is the maximum number of jobs that
can fit in a server.

Proof: Define Z.Sl/g(t.) = ZjEQ(t)\ijl/Q R;, which is
the total resource size of jobs in the queue whose resource
size is not larger than 1/2. Similarly Z-,/(t) is defined as
the total resource size of the rest of the jobs in the queue.
Since ZjEQ(to) R; > 2L N3, we have two possible cases:

1) Z<y/2(to) > LNo: In this case, the server will be more
than half full in next No time slots and Eg ) N, N,
holds with probability one. This is because if a server
is less than half full, there will always be jobs with
resource size less that 1/2 that can fit in the server and
those jobs are enough to keep the server more than half
full in the next N time slots.

Z<1/2(to) > LNa: Let £, be the first time slot after
to that the server ¢ is less than half full and t., be
the time after ¢, that the server empties. Once a server

2)

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 1, FEBRUARY 2021

gets empty, it will start scheduling jobs starting from
the largest-demand one in the queue, and the server will
remain more than half full, as long as there is a job of
resource size more than 1/2 to replace it. This is indeed
true in [to, to + N2| since at time slot ¢ + ¢ servers will
have access to at least L(Ny — t) jobs of resource size
greater than 1/2.

Hence, in this case, we only need to bound
P (te,y — ta¢ < N1) which is the probability that the
server will become empty in N; time slots after being
half empty. If at time slot ¢, a job in server is not
completed, it will complete its service within the next
time slot with probability u, independently of the other
jobs in the server. Hence, given that the maximum
number of jobs in a server is bounded by K4,

P (tes —tae < Np) > 1— (1= pmes)™ 0 (11)
To ensure P (Es(),ni,n,) > 1 — €1, it suffices to

L

choose N7 such that (1 — (1 — uK’"‘”)Nl) >1—e€.
Using the inequality (1 — )" > 1 — na for n > 0 and
x < 1, we therefore need N; > %. .

Note that the proof of Lemma 1 (arguments in the second
case) crucially relied on the way that Best-Fit works and does
not hold for other bin packing algorithms like First-Fit.

The next lemma states a trivial upper bound on the maxi-
mum supportable workload.

Lemma 2: The maximum value of p* is at most L/ R.

Proof: The proof is straightforward and is provided in

Supplementary Materials for completeness. |

Next we show that for any € > 0, the workload p will be
supportable by the BF-J/S algorithm if p < (1— 6)2—%. In view
of Lemma 2, this will prove that the maximum supportable
workload is at least half of the optimal.

We can compute the drift of V() over [to, 1o + N2] as

E[V (to + N2) — V(to)|S(to)]
to+N2—1
= NopR — E[ DD Rj|S(t0)] (12)
t=to LEL jEH,(t)
In the above, we have used the fact that the expected total
resource size of arrivals in one time slot is AR, where \ is

the average arrival rate and R is the average job resource size,
and the expected total resource size of departures at time ¢,

given initial state S(to), is E[ZM > jerno Rj|5(t0)} .
To satisfy Subtheorem 1, we need to find h(S(¢)) such
that [V (to + N2) — V(t0)|S(to)] < —h(S(to)). Obviously
infS(tU) E[V (to) — V(to + N2)|S(tg)] > —NapR > —oco. If
V(to) > %, and consequpntly Zjeg(tO)Rj > 2LN>,
then using Lemma 1 and Equation (12), we have
E[V (to + N2) — V(to)|S(to)]

< NypR — IP<ES(tU),N1,Nz |5(t0))

to+No—1
X E[ >N Rj|ES(to>,N1,N275(t0)}
t=to (el jEH, (1)
(a) _ 1
< NopR—(1—e)(N2 —LN) Y 5 = ~h(S(t)),
el
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Fig. 2. Partition I of interval (1/27,1] based on (18).

13)

where (a) is due to the fact that for a duration of at least (No—
LN;) time slots, “all” servers will be at least half full, which
is a consequence of Lemma 1. Hence, to ensure h(S(tg)) > 6
for some § > 0, when V(to) > %, it suffices that

(]. — 61)(N2 — LNl)L/2 )
NoR '

p< (14)

If we choose €1, Na, and ¢ such that (1 — €) <
(1 —e1) (1—LN1/N3) — 2=, then (14) holds for any p <
(1- e)%. A sufficient choice of these parameters is

€1 =¢€/3, No=[3LNy/e], § = LN2¢e/3. (15)
Hence, Subtheorem 1 holds with g(-) and h(-) as
2LN; + L
LNse/3, V(S(ty)) > ———
H(s(tg)) = § T2/ VIS 16)
—NapR, otherwise
log(e/(3L))
= Ny =|[3 LN N- ———. (1
g(S(tO)) 2 ’—3 1/€-|’ 1> 1og(1 _ MK,,,L“.) (7
U

V. PARTITION-BASED SCHEDULING

BF-J/S demonstrated an algorithm that can achieve at
least half of the maximum workload p*, without relying on
any partitioning of jobs into types. In this section, we pro-
pose partition-based scheduling algorithms that can provably
achieve a larger fraction (at least 2/3) of the maximum work-
load p*, using a universal partitioning into a small number of
types, without the knowledge of resource size distribution F'r.

A. Universal Partition and Associated Virtual Queues

We consider a partition of the interval (1/2”,1] into the
following 2.J subintervals:

21 1
fon = (Smogu)s M= T =1
11 21
12m+1:(§2—m,§2—m}, sz,---,J—l. (18)

We refer to this partition as universal partition I, where J > 1
is a fixed parameter to be determined shortly. Observe that the
odd and even subintervals in I are geometrically shrinking.
Figure 2 gives a visualization of this partition.

Jobs in queue are divided among virtual queues (Defini-
tion 3) according to partition /. Specifically, when the resource
size of a job falls in the subinterval I, 7 = 0,---,2J — 1,
we say this job is of type j and is placed in a virtual queue
VQ s without rounding its resource size. Moreover, jobs whose
resource sizes fall in (0,1/27] are placed in the last virtual
queue VQ,;_;, and their resource sizes are rounded up to
1/27. We use Q;(t) to denote the size (cardinality) of VQ;
at time ¢ and use Q(¢) to denote the vector of all VQ sizes.

B. VQS (Virtual Queue Scheduling) Algorithm

To describe the VQS algorithm, we define the following
reduced set of configurations which are feasible for the system
of upper-rounded VQs (Definition 4) for partition I.

Definition 6 (Reduced Feasible Configuration Set): The
reduced feasible configuration set, denoted by IC%% s CONSISLS
of 4J — 4 configurations below:

2Megm, m=0,---,J—1

3-2" ey 1, m=1,---,J—1

e+ [2"/3leam, m=2,---,J—1

e1+2" Yegp, m=1,---,J—1 (19)

where e € 727 denotes the basis vector with a single job of
type 3, j =0,---,2J — 1, and zero jobs of any other types.

Note that each configuration k = (ko, - - , kaj—1) € IC%%D
either contains jobs from only one VQ,;, j =0,---,2J — 1,
or contains jobs from VQ; and one other VQ;.

With a minor abuse of notation, we define the inner product
k,Q) = Z?igl k;Q;. The “VQS algorithm” consists of two
steps: (1) setting active configuration, and (2) job scheduling
using the active configuration:

1. Setting active configuration:

Under VQS, every server £ € L has an active config-
uration k'(t) € ICE%%D which is renewed only when
the server becomes empty. Let time slot ¢, (;) be the i-
th time that server ¢ is empty (i.e., it has been empty
or all its jobs depart during this time slot). At this
time, the configuration of server ¢ is set to the max
weight configuration among the configurations of IC%% D
(Definition 6), i.e.,

k* (teg(t)) = a’rg max <k7 Q(tee (7,))> °
kekly

(20)

The active configuration remains fixed until the next time
te,(i+1) that the server becomes empty again, i.e.,

KE(t) = K (te,(i))s teg(iy <t <te,ivr). (21

The reason for only renewing the active configuration at
times t.,(;) is to avoid possible preemption of existing
jobs in the server (similar to [8], [11]).

2. Job scheduling:
Suppose the active configuration of server ¢ at time ¢ is
k e IC%% p- Then the server schedules jobs as follows:
leftmargin=3mm

(i) If k1 = 1, the server reserves 2/3 of its capacity for
serving jobs from VQ,, so it can serve at most one
job of type 1 at any time. If there is no such job in
the server already, it schedules one from VQ;.

(i) Any configuration k € ICE%% p has at most one k; >
0 other than k. The server will schedule jobs from
the corresponding VQ;, starting from the head-of-
the-line job in VQ,, until no more jobs can fit in the
server. Note that since jobs are not actually rounded
in VQs, the number of jobs scheduled from V@, in
the server could be more than %; depending on their
actual resource sizes.
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C. Throughput Guarantee

The VQS algorithm can provide a stronger throughput
guarantee than BF-J/S. A key step to establish this result is
the property of the set ICE%]]; p stated below.

Proposition 1: Consider any partition X which is a refine-
ment of partition I, i.e., any subset of X is contained in an
interval I; in (18). Given any set of jobs with resource sizes in
(1/27,1] in the queue, let Q and QX) be the corresponding
vector of VQ resource sizes under partition I and partition
X. Then there is a configuration k € ICE%% p such that

(k,Q) = 3k, QW)), vkX) e £,

where KX) is the set of “all” feasible configurations based
on upper-rounded VQs for partition X.

Proof: For simplicity of description, consider X to be
a partition of (1/27,1] into N subintervals (&_1,&;], i =
1,---,N. The proof arguments are applicable to any other
types of subsets of (1/27, 1] as long as each subset is contained
in an interval I; in (18). Given the proposition’s assumption,
we can define sets Z;, j = 0,---,2J — 1, such that ¢ € Z;
iff & € I,. Any job in VQ'™), i € Z,, under partition X,
belongs to VQ,; under partition /, therefore

X ‘
ZiEZJQ'E Y =Q;, =0,

Let U := (k(X), QM)). Note that in any feasible config-
uration k(X) e K&), Ziezl kz(X) can be 0 or 1. To prove
(22), we consider these two cases separately:

Case 1) iy ng) =0

We claim at least one of the 2.J inequalities below is true

Qam > 2U/3 x 1/2™,

Q2m+1 Z U/2 X 1/2m7

If the claim is not true, we reach a contradiction because

T SIS TLTTEES Sl SR

m=01i9€Z2m m=111EZam11
27” ) U

(5 Y iy ¥
YT T Y ¥ ee)v

m=01i9€Zam m=111 € Zom+1
m=01i9EZam m=141E€Zam41

x U,

(22)

2.7 — 1. (23)

m=0,-,J—1

m=1,--,J—1. (24

)

0

k(X)

11

NE

where (a) is due to the assumption that none of inequalities
in (24) hold and using the fact that Q\X) < Q; if i € Z,, (b)
is due to the fact § > inf I; if ¢ € Z;, and (c) is due to the
server’s capacity constraint for feasible configuration k().

Hence, one of the inequalities in (24) must be true. If
Q2m > 2U/3 x 1/2™ for some m =0,---,J — 1, then (22)
is true for configuration k = 2™esy,,, while if Qo1 >
U/2x1/2™ for some m = 1,---,.J—1, then (22) is true for
configuration k = 3 - 2™ leg,, 1.

Case 2 ), k;gX) =1

In this case » ;- k) = 0, otherwise the server’s capacity

constraint is not satisfied. We further dlstlngmsh three cases for
. 2U 2U U
Q1 compared to U: Q1 > >Q1 > Y, and Q < 5
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Case 2.1 Q1 > 2U/3:
Consider any k € IC;%D with k; = 1. For this k,

(k,Q) > k1Q1 > 2U/3 = 2/3(k™), Q).

Hence, (22) holds for such a choice of k.

Case 2.22U/3 > @, > U/2:

In this case, we further consider two subcases depending on
Y icz, k0 being 0orl.

Case 2.2.1: 2 > @, > U, . k) =o.
Let U := U @1, then one of the 2J inequalities below
has to be true

Qam > U'/(3
Qami1 > U'/(3

otherwise, we reach a contradiction, similar to Case 1, i.e.,

D30 SRTLCAES SHD DA

m=21i9€Zam m=111E€Zam+1

< 2U’(Z N 52—m+z_: >k

m=21i9EZ2m m=14i1€Zam 11

(25)

. 2m—2)
. 2m—1)

J—1
J—1,

m:2,

m=1,-- (26)

(X ]. ].)
a 3om

(b)
< U

where (a) is due to the assumption that none of inequalities
in (26) hold, and (b) is due to the constraint that the jobs in
the configuration k() other than the job types in Z;, should
fit in a space of at most 1/2 (the rest is occupied by a job
of resource size at least 1/2). It is then easy to verify that if
Qam > U'/(3-2m72) for some m € [2,---J — 1], inequality
(22) is true for configuration k = e; + [2™/3|eq,, as
<ka Q> = Ql + |_2m/3J QQm > Ql + 27”_2@2m,
>Q1+U'/3>20Q.,/34+U/3>2U/3.
Similarly, if Q2,41 > U’/(3-2™~1) for some m € [1,- - -
1], (22) is true for configuration k = e; + 2™~
(k, Q) = Q1 +2™ ' Qami1
> Q1 + U’/3 >20,/3+U/3 > 2U/3.
Case 22.2: W > Q> U, 3, kM) =1.
fQ:>U / 3 then conﬁguration 2e, has weight more than
2U /3 and hence it satisfies (22). If not, let U’ = U — Q1 — Q.
Then at least one of the following inequalities has to be true
QQm > U,/2m72; aJ - ]-a
Q2m+1 > U,/Qmila aJ - ]-a

otherwise we reach a contradiction as follows

U = (k%,QM) — Q1 — Qs

SDODITLES SED o
10 1

m=2i0EZam m=1141EZom+41

J—1
(a) Z Z k’gj()Ul/zm,—Q_'_Z Z k;;X)U'/Zm_l

27)

J_
1
€2m41 as

m:27...

m=1,-- (28)

m= 206Z27n m=14i1€Zam 11
<6 p02 L5 KO Dy
Z Dok 3wt D R 5o
m=21i9€Zam m=11i1E€Zam11
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J—1 J—1
<o(X 3 K G X ke
m=24i0EZam m=141EZopm41

(b) 1
< 6 % EUI:U/.

In the above, (a) is due to the assumption that none of
inequalities in (28) is true, and (b) is due to the server’s
capacity constraint that the jobs in configuration other than the
type-1 and type-2 should fit in a space of at most 1/6, as the
rest is covered by the aforementioned jobs that we know they
appear once in configuration.

The configuration that satisfies (22) depends on which of
the inequalities in (28) is true. If Qg,, > U’/2™~2 for some
m € [2,---, J—1] then inequality (22) is true for configuration
2ey if Q2 > U/3, or for configuration k = e; + [2™/3]eap,
if Q2 < U/3 as in this case

<k7 Q> = Ql + |_2m/3J QQm > Ql + 27’1/_2Q2m
> Q1+U/:U—Q2>2U/3.
Similarly if Q2,41 > U'/(3 - 2m71) for some m €
[1,---J — 1], then inequality (22) is true either for config-

uration 2ey if Qy > U/3, or otherwise for configuration
k=e + 2"”_1e2m+1, as

k,Q) = Q1 +2" 'Qamt1 > Q1 + U’

> U—Qy>2U/3. (29)

Case 2.3: Q1 < U/2.
We claim at least one of the following inequalities is true:
Qom > 2U/3 x 1/2™]
Q2m+1 Z U/2 X 1/2m7
The conditions are the same as those of (24) except that Qg

is not included now. We can again prove the claim by using
proof by contradiction as in (25), since

U= (k",QM)
J—1

B DS Tl S SRt

m:]_v...’J_]_

m=1,---,J—1  (30)

m=1i0EZ2m m=011E€Zam11
J—1 J-1
x)2 1 )1 1
<(ZI§kag§;+§I szngyﬁ
m=1i9EZam m=011E€Zom+1
xU < U.
Again the last inequality is due to the capacity constraint of
the server under the assumption that ;. kEX) = 0 and

Ziezl kz(X) =1
Now if Qo > 2U/3 x 1/2™ for some m =1,---,J — 1
then configuration 2™ es,,, will satisfy (22) while if Q2,41 >
U/2 x 1/2™ for some m = 1,---,.J — 1 then configuration
3-2m ley,, will satisfy (22). U
The following theorem states the result regarding throughput
guarantee of VQS.
Theorem 3: VQS achieves at least % of the optimal work-
load p*, if arriving jobs have resource sizes greater than 1/27.
Proof: The proof uses Proposition 1 and the multi-step
Lyapunov technique based on Subtheorem 1. The full proof is
provided in Section VIII-B. (]
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Hence, given a minimum job’s resource requirement
u > 0, J has to be chosen larger than log,(1/u) in the
VQS algorithm. Theorem 3 is not trivial as it implies that by
scheduling under the configurations in IC%% p (19), on average
at most 1/3 of each server’s capacity will be underutilized
because of capacity fragmentations, irrespective of the job
resource size distribution Fr. Moreover, using IC%% p reduces
the search space from O(Exp(J)) configurations to only
4J — 4 configurations, while still guaranteeing 2/3 of the
optimal workload p*.

A natural and less dense partition could be to only consider
the cuts at points 1/27 for j = 0,---,J. This creates a
partition consisting of J subintervals I; = Io; U Ipj4q.
The convex hull of only the first .J configurations of IC%% D
contains all feasible configurations of this partition. Using
arguments similar to proof of Theorem 3, we can show that
this partition can only achieve 1/2 of the optimal workload
p*. One might conjecture that by refining partition I (18)
or using different partitions, we can achieve a fraction larger
than 2/3 of the optimal workload p*; however, if the partition
is agnostic to the resource size distribution F'r, refining the
partition or using other partitions does not help. We state the
result in the following Proposition.

Proposition 2: Consider any partition X consisting of a
finite number of disjoint sets X, U;VZIX]» = (0,1]. Any
scheduling algorithm that maps the resource sizes of jobs in
X to r; = sup X, (i.e., schedules based on upper-rounded
VQs) cannot achieve more than 2/3 of the optimal workload
p* for all Fg.

Proof:  Proof is based on a counter example. See
Section VIII-C for details. U

Theorem 3 assumed that there is a minimum resource
requirement of at least 1/27. This assumption can be relaxed
as stated in the following corollary.

Corollary 1: Consider any general distribution of resource
sizes Fr. Given any € > 0, choose J to be the smallest integer
such that Fr(1/27) < €, then the VQS algorithm achieves at
least (1 — €)3 of the optimal workload p*.

Proof: Proof is provided in Section VIII-D. 0

Since the complexity of VQS algorithm is linear in J, it is
worth increasing it if that improves the maximum throughput.
An implication of Corollary 1 is that this can be done
adaptively as an estimate of F'r becomes available or based
on the smallest observed job in the system over time.

VI. VQS-BF: INCORPORATING BEST-FIT IN VQS

While the VQS algorithm in theory achieves a larger frac-
tion of the optimal workload than BF-J/S, it is quite inflexible
compared to BF-J/S, as it can only schedule according to
certain job configurations and the time until configuration
changes may be long, hence might cause excessive queueing
delay. We introduce a hybrid VQS-BF algorithm that achieves
the same fraction of the optimal workload as VQS, but in
practice has the flexibility of BF. The algorithm has two steps
similar to VQS: Setting the active configuration is exactly
the same as the first step in VQS, but it differs in the way
that jobs are scheduled in the second step. Suppose the active
configuration of server ¢ at time ¢ is k € ICE%]]; p» then:
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(i) If k1 = 1, the server will try to schedule the largest-
resource job from VQ, that can fit in it. This may
not be possible because of jobs already in the server
from previous time slots. Unlike VQS, when jobs from
VQ; are scheduled, they reserve exactly the amount of
resource that they require, and no amount of resource is
reserved if no job from VQ; is scheduled.

Any configuration k € IC%% p has at most one k; >
0 other than k;. Server attempts to schedule jobs from
the corresponding VQ, starting from the largest-resource
job that can fit in it. Depending on prior jobs in server,
this procedure will stop when either the number of jobs
from VQ; in the server is at least k;, or VQ; becomes
empty, or no more jobs from VQ; can fit in the server.

Server uses BF-S to possibly schedule more jobs in its
remaining capacity from the remaining jobs in the queue.

(ii)

(iii)

The performance guarantee of VQS-BF is the same as that
of VQS, as stated by the following theorem.

Theorem 4: If jobs have a minimum resource size of at
least 1/27, VQS-BF achieves at least %p*. Further, for a
general resource size distribution Fr, if J is chosen such that
Fr(1/27) < ¢, then VQS-BF achieves at least (1 — €)2p*.

Proof: [Proof] The proof uses techniques from that of
Theorem 3 and the properties of Best Fit similar to the
proof of Theorem 2. The proof is provided in Supplementary
Materials. (]

VII. EVALUATION RESULTS

A. Synthetic Simulations

1) Instability of VQS and Tightness of 2/3 Bound: We first
present an example that shows the tightness of the 2/3 bound
on the achievable throughput of VQS. Consider a single server
where jobs have two discrete resource sizes 0.4 and 0.6. The
jobs arrive according to a Poisson process with average rate
0.014 jobs per time slot and with each resource size being
equally likely. Each job completes its service after a geometric
number of time slots with mean 100. Observe that by using
configuration (1, 1) any arrival rate below 0.02 is supportable.
This is not the case though for VQS that schedules based on
configurations ICE%IE) p» SO it can either schedule two jobs of
resource size 0.4 or one job of resource size 0.6. This results
in VQS to be unstable for any arrival rate greater than 2/3 x
0.02 = 0.013. Both of the other proposed algorithms, BF-J/S
and VQS-BF, circumvent this problem. The evolution of the
total queue resource size is depicted in Figure 3a.

2) Instability of BF-J/S: We present an example that shows
BF-J/S is not stable while VQS can stabilize the queues.
Consider a single server of capacity 10 and that resource sizes
are sampled from two discrete values 2 and 5. The jobs arrive
according to a Poisson process with average rate 0.0306 jobs
per time slot, and job of resource size 2 are twice as likely
to appear than jobs of resource size 5. Each job completes its
service after a fixed number of 100 time slots. The evolution of
the queue size is depicted in Figure 3b. This shows an example
where VQS is stable, while both BF-J/S and VQS-BF are not.

To justify the behavior of the latter two algorithms,
we notice that under both the server is likely to schedule
according to the configuration (2,1) that uses two jobs of
resource size 2 and one of resource size 5. Because of fixed
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Fig. 3. (a) A setting where VQS is unstable, but BF variants are stable.

(b) A setting where VQS is stable but BF variants are unstable.

service times, jobs that are scheduled at different time slots,
will also depart at different time slots. Hence, it is possible that
the scheduling algorithm will not allow the configuration (2, 1)
to change, unless one of the queues empties. However, there
is a positive probability that the queues will never get empty
since the expected arrival rate is more than the departure rate
for both types. The arrival rate vector is A = (0.0204,0.0102)
while the departure rate vector p = (0.02,0.01).

VQS on the other hand will always schedule either five
jobs of resource size 2 or two of resource size 5. The average
departure rate in the first configuration is p; = (0.05,0), and
in the second configuration p, = (0,0.02). The arrival vector
is in convex hull of these two vectors as XA < 4/9p; + 5/9
and therefore is supportable.

3) Comparison Using Uniform Distributions: To better
understand how the algorithms operate under a non-discrete
resource distribution, we test them using a uniform distri-
bution. We choose L 5 servers, each with capacity 1.
We perform two experiments: the resource sizes are distrib-
uted uniformly over [0.01,0.19] in the first experiment and
uniformly over [0.1,0.9] in the second one. Hence R is 0.1 in
the first experiment and 0.5 in the second one.

The service time of each job is geometrically distributed
with mean 1/p = 100 time slots so departure rate is g = 0.01.
The job arrivals follow a Poisson process with rate pL/Rx
jobs per time slot (and thus p = oL/ R), where « is a constant
which we refer to as “traffic intensity” and L = 5 is the
number of servers in these experiments. A value of « = 1 is a
bound on what is theoretically supportable by any algorithm.
In each experiment, we change the value of « in the interval
[0.85,0.99]. The results are depicted in Figure 4.

Overall we can see that VQS is worse than other two
algorithms in terms of average queue size. Algorithms BF-
J/S and VQS-BF look comparable in the first experiment for
traffic intensities up to 0.95, otherwise BF-J/S has a clear
advantage. An interpretation of results is that VQS and VQS-
BF have particularly worse delays when the average resource
size is large, since large jobs cannot be scheduled most of
the time, unless they are part of the active configuration of a
server. That makes these algorithm less flexible compared to
BF-J/S for scheduling such jobs.

B. Google Trace Simulations

We test the algorithms using a traffic trace from a Google
cluster dataset [5]. We performed the following preprocessing
on the dataset: leftmargin=3mm

o We filtered the tasks and kept those that were completed
without interruptions/errors.
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Fig. 4. Comparison of the average queue size of different algorithms, for
(a) [0.01,0.19] and (b) [0.1,0.9], in a system of 5 servers of capacity 1.
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Fig. 5.  Comparison of algorithms using Google trace for approximately
1,000,000 tasks. Traffic scaling varies from 1 to 1.6 and number of servers
is fixed at 1000.

o All tasks had two resources, CPU and memory. To convert
them to a single resource, we used the maximum of the
two requirements which were already normalized in [0, 1]
scale.

o The servers had two resources, CPU and memory, and
change over time as they are updated or replaced. For
simplicity, we consider a fixed number of servers, each
with a single resource capacity normalized to 1.

o Trace events are in microsec accuracy. In our algorithms,
we make scheduling decisions every 100 msec.

o We used a part of the trace corresponding to about
one million task arrivals spanning over approximately
1.5 days.

We compare the algorithms proposed in this work and
a baseline based on Hadoop’s default FIFO scheduler [2].
While the original FIFO scheduler is slot-based [31], the FIFO
scheduler considered here schedules jobs in a FIFO manner,
by attempting to pack the first job in the queue to the first
server that has sufficient capacity to accommodate the job.
We refer to this scheme as FIFO-FF which should perform
better than the slot-based FIFO, since it packs jobs in servers
(using First-Fit) instead of using predetermined slots.

We scale the job arrival rate by multiplying the arrival times
of tasks by a factor 3. We refer to 1/ as “traffic scaling”
because larger 1/ implies that more jobs arrive in a time unit.
The number of servers was fixed to 1000, while traffic scaling
varied from 1 to 1.6. The average queue sizes are depicted
in Figure 5. As traffic scaling increases, BF-J/S and VQS-BF
have a clear advantage over the other schemes, with VQS-BF
also yielding a small improvement in the queue size compared
to BF-J/S. It is interesting that VQS-BF has a consistent
advantage over BF-J/S at higher traffic, albeit small, although
both algorithms are greedy in the way that they pack jobs in
servers.

Traffic Intensity
(b) Resource size~Unif [0.1,0.9]

various traffic intensities, when resource sizes are uniformly distributed in

VIII. PROOFS
A. Proof of Theorem 1

We first prove the theorem for continuous probability dis-
tributions, then show how to handle discontinuities in general
distributions.

Continuous Probability Distribution: Define partition X (")
to be the collection of m, = 2" intervals Xi(") :
(fff)l, f")], such that f(()") =0, fgn)ﬂ =1, and FR(@(")) =
2+'+1, for i = 1,---,2""1 — 1. This construction is possible
since F'r is an increasing continuous function, hence Fr(z) =
¢ always has a unique solution =z € [0,1] if ¢ € [0,1].
Subsequently,

t1=1,---,my.

=P (RexM) = 2:“,
In the rest of the proof, we use the following notations. 1y
is a vector of all ones of length N. e; is a basis vector with
value 1 in its ith entry and O elsewhere. p* is the maximum
workload that can be supported by any algorithm with the
given distribution of resource sizes Fr. Also, 5*(X (™) is the
maximum supportable workload when upper-rounded queues
are used under partition X (™ and p*(X (™) the respective
maximum workload, when lower-rounded queues are used.

Under upper-rounded or lower-rounded virtual queues,
resource sizes have 2"t1 discrete values, which makes the
problem equivalent with scheduling 27! job types. For
notational purpose, we define the workload vector p = pm
where w = (m;,i =1,---,m,) is the vector of proba-
bilities of the types and p is the workload of the system.
Hence, under upper-rounded queues, the workload vector is
p1 = QTp-Hlmn-

Using lower-rounded virtual queues is equivalent to using
upper-rounded virtual queues, but the workload vector is
instead p; = 57 (1, — €m,). This is because we can
essentially ignore the jobs whose reviewresource sizes are
rounded to 0 and no resource size is rounded to 1.

With discrete job types whose resource sizes are &, for i =
1,...m,, we can extend the notion of feasible configuration
in Definition 1 to jobs of a continuous distribution. In this
case, configuration k is an m,,-dimensional vector and the set
of feasible configurations is denoted by K. The workload is
supportable if it is in the convex hull of set of feasible con-
figurations, as in (4). Hence, with the upper-rounded queues,
and given all L servers are the same and have the same set
of feasible configurations, there should exist px > 0, k € K,
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such that

szefpkk = P Zkeﬁpk =1

Similarly, with 101ver-r0unded virtual queues, there should
exist gx > 0, k € K, such that

LD eitviom) BE > P2 Dy

Jobs of resource size 1 can be served only by configuration
em,,, 1.e., server is filled with a single job of resource size 1.
Hence we can split the first equation of (31) into

(€19

=1. (32)

N
L ZkEE\{em”}pkk > 271-{-1 (1m” emn) ) (33)
Lpem,, €em, > 2n—p+1em7, (34)

Also given that with lower-rounded virtual queues there are
no jobs of resource size 1, the first equation of (32) becomes

L z:k'éf\{emn } I (1mn

Now if we replace p in (33) with 7*(X (™), and in (35) with
pr(X (), they must hold with equality by definition, i.e.,

> % — emn). (35)

M)

szek\{em}p ek = o (Im, = €m,) - G6)
* (X ()

l/pemn €m, — % Mo, (37)
pH(X™)

szez\{em} ack = = (b = em, ). G8)

Notice from the above that the direction of vectors
D kel fen, y Pk and 3oy o oy ik is the same. Given a
solution py, k € IC, to (36), it is sufficient to choose qx to be
proportional to px. Assuming px and ¢ are proportional, and
noting that by definition,

Zkeﬁ\{emn} Pe=1=pe,,, ZkEE\{em"} =1, (39)

(1

it holds that Pk —pem") qx and hence ﬁ*(X(")) =

(1= pe,,)p(X™). From (37), we have p*(X(™) =
2"+1Lpem,,- Using these two equations,
iy _ _P(X™)
P (X)) = PEESDR (40)
27T
which implies
N . ., . p*(X(n))Q
PHX) = (X ™) = (41

By construction, p*(X (™) is a decreasing sequence in n,
so it is bounded from above by p* (X (©)) and from below by 0.
Similarly, 7*(X (™)) is an increasing sequence with the same
bounds. By the monotone convergence theorem, the limits of
both exist and by construction p*(X ™) — p*(X ™) > 0.
Then, B

0< lim p"(X™) —p"(x™)
pH(X )2

< lim =0
= e Ton+ + p*(X (@)
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:p*:

and lim, oo *(X™) = p* = lim, o0 p*(X ™)
pr.

General Probability Distribution: The proof follows similar
arguments but the sequence of partitions has to change to
include points of discontinuity. The details are provided in

Supplementary Materials.

B. Proof of Theorem 3

We first prove the following Lemma.

Lemma 3: If p < 2/3p*, then there is x € COHV(IC%]%D)
and € > 0, such that p < (1 — €)Lx, where the smallest
resource size is at least 1/2", p= pP(I), I is the universal
partition (18), and and PY s the corresponding arrival
probability vector based on (6).

Proof: This is a direct consequence of Proposition 1. The

full proof is provided in Supplementary Materials. 0
The state of the system at time slot ¢ is given by
S(t) = (L(t), H(t))- 42)

Here, Q(t) := (Q,(t),j = 0,---,2J — 1), where Q,(t) is
the sets of jobs in VQ;(t). Also, H(t) := (H(t), ¢ € L),
where H,(t) is the set of scheduled jobs in server ¢ at time ?.
We use @,(t) to denote the cardinality of Q;(¢). We also use
kO (t) = (/;§€)(t),j =1,---,2J — 1), where l%g-é)(t) is the
number of jobs from VQ; scheduled in server ¢ at time ¢.
Recall that k(©)(¢) denotes the active configuration of server
¢ at time slot ¢, defined in (21).

Define Q;(t) == Q;(t)+>", l~c](-€) (t) to denote the number of
type-j jobs in the system at time ¢. The proof of Theorem 3 is
based on the Lyapunov technique using Subtheorem 1. We use
the Lyapunov function

27-1 Q(t)

vism =V =3 5

Let A;(t) be the number of type-j arrivals to VQ; in time
slot t, and D;(t) be the number of departures of type-j jobs
from the system in time slot £. We can write

(43)

Vi) - Vi) = 3 37 Q040 - D)
LN A1) - D)7 @)
2% J J ‘

By definition, in any slot ¢, E[A;(t)[S(to)] = A; = )\p(I)

and E[D;()|S(to)] = pE[Y e, &\ (1)|S(to)]. Also recall
that A\;/pu = pj. It then follows from (44) that over a time
interval [to, o + No],

E[V (Na + to) — V(to)|S(to)]
< B3 Na
to+Na—1  2J-1
¢
+ Y [ZQ] ;=SB @)Is(to)],
t=to el
(45)
where Bz = - E{ZQ‘] ! A%(t) + Df(t)} is bounded as
Bo< Y 4ol 17 K2 (20, (6)

and O'j < oo is the variance of A;(t).
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Given S(tg) at a time to, we describe functions g(S(¢o)) and
h(S(to)) that satisfy the conditions of Subtheorem 1. Function
g(S(to)) will be fixed and equal to Ny. The value of Ny as
well as the function h(S(%y)) will be specified later.

Let k*(¢) denote the configuration Wthh has the maximum

weight among all the configurations in Kt E p at time ¢, i.e.,

2J-1

k*(t) = argmax (k, Q(t)) = arg max Z k;Q;(t)

(J) )
kEKRED ke’CRED Jj=0

(47)

Given the state of the system S(to), and constants Ny, Ny €
IN'and v € (0, 1), we define Eg(1,),n,,n,, to be the event that,
every server £, in at least Ny — N7 time slots ¢ € [to, to + Na),
has an active configuration k(*)(¢) such that

KO (1), Q1) = (k" (1), Q(t))-

The next lemma states the conditions under which the event
Es(t0),N1,N.,~ 18 almost certain.

(48)

Lemma 4: Given any ¢ > 0, we can ensure
. 1 /(2L
IP(ES(to%leNz, ) > 11—, if N1 > % and

Q)| > By N?, where B. is a constant,
Euclidean norm, and Kpar := 27 is an upper bound on the
maximum number of jobs that can fit in a server.

Proof (Proof Sketch): We provide a sketch of the proof.
The full proof can be found in Supplementary Materials. Let
te,(i) be the i-th time that the server £ gets empty in [to, %o +
Ns]. We can bound event Eg(,) n,,n,,,. Dy the event that
for every server /, te,(1) — to < Ni, and for the next Ny —
te,(1) time slots, (48) holds. Formally, P (Es(o),ny,Nay) =
[ (Term; x Termy), where Termy = PP (.,(1) — to < Nl),
and

Termy = IP((48) holds for all ¢ € (t.,(1),to0 + Ng]).

Clearly, Term; > 1 — (1 — ume)Nl . Due to the way that
the active configuration is set in (20) and (21), at times £, (;,

<k(£) (teg(i))v Q(tee(’i) )> Z

and (48) will be violated if for a k € ICE%IE) p» and at some
t € (teg(is ter(ivn))s

& (te, ), Q) < v{k, Q(1)).

The key idea is that when ||Q(to)], and consequently
|QUte,(o)) . becomes large, the change | Qte,) — Q1)
due to arrivals and departures, is negligible compared to
|Q(te,(i))ll- From this, it follows that the probability of event
(50) is negligible when ||Q(to)|| becomes large. Specifically,
we can show

(&, Q(te,))), Yk € Kpp, (49)

(50)

2()\ + MKmaxL)NQ
Termy > 1 — , (51
By [1Q(to)|
where B, is the positive constant
B, = min sin (Z(k' —k, k' —~k)). (52)

K kek')  k#k

Using the bounds for Term; and Termo, the lemma’s statement
follows by choosing B, = M |
We will use the following lemma later in the proof.

Lemma 5: If at a time slot t condition (48) holds for every
server £ € L, and workload p satisfies p < 2/3p*, then

2J-1
> Qi) (pj DI

j=0 leL

for some constants By = LK 04 ||p|| and By > 0.
Proof: If p < 2/3p* then there is a v < 1 such that
p < 2/3yp*. Then by Lemma 3, there is an x € Conv(ngéD)
such that p < (1 — €)yLx, for some € > 0.
Due to the way that the VQS algorithm schedules jobs,
KO () > k() when Q;(t) > 0. Hence,

(p.Q(t)) < (1 —e)7L(x,Q(t)) < (1 — )y L{k*(t), Q(t))
< (1—0)) &9, Q),

LeLl

t)) < =B Q)] + B2 (53)

where k*(t) was defined in (47). Using this result,

2J—1
¢
> ai0(ns - SR 0)
Jj=0 el
< Z kO (1) > + By
teL
<~ S KO®).Q0) + B, = ~B QM) + B
teL
(54)
kO (1),
can be further bounded as
(k*(1),Q(1)) yL
Bi > eyl >e——. (55)
Q) V2J

The first inequality is due to condition (48), and the sec-
ond inequality is due to the property that (k" (1), Q(1)) >

@l
“ﬁb%()f“» ==y, for j =0,...,2J — 1. Since E?igl u? =1,
t:ere must exist a j € {0,...,2J — 1} for which u; > \/%7

Note that for any time slot ¢ in [tg, to + Na],

B (|QWIIS(t0) < 1Q00)] + LKmar + NalAlL (56)

E(1QWIIS) 2 Q) - No LKmar:  (57)

This is because jobs arrive to VQ; at rate A; and there are
at most LK, jobs in the servers that may depart from
the system in every time slot. Further note that by ignoring
departures and using (56), at any time slot ¢ in [to,to + Na),
we can bound

2J—1
E{Z Q;(1)( ;k

< E[(Q(1), p)IS(to)]
< Qtto)lllell + Bz + Nallp|*u.

define P1 = IP(ES(tU),Nl,NQ,'y)~
we consider two cases depending

|St0}

(58)

For compactness,
In computing (45),
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on whether event Eg(4,),N;,N,,4 holds or not. Then we
have

E [V (to + N2) — V(t0)|S(to)]
C PEV(to+ Na) = V(t0)[S(to), Esre) s 30

+ (= P)(IQU) ol + B + Nallpl?u) + No By

(b)

< (1 - 6/)(N2_LN1)(_Bl(HQ(tO)H — Ny LKm,a;c) + BQ)
+ (1= € )LNL (|Q(to) |l o]l + B2 + N2 [lpl|* 1)
+ ¢ |lpll |Q(to)|| + € B2 + € Na||p||*1e + N2 Bs

< (=Na(1 = €)By+ LNi(1 = €)(By + o) +¢ llo]])
x [[Qto) | + C(N1., Na),

where C(Nl, NQ) (NQ—LNl)(BlNQ LKmax) +
LNy Noy||p||® + Na(Bs + Bs). In the above, inequality (a)
is by using (58) for the case that Fg(;,),n,,n,,y does not hold.
In (b), we used P; > 1 — ¢/ by Lemma 4. In this case, event
Es(t0),N1,N.,~ Occurs, thus (53) in Lemma 5 is true for at least
Ny — LNy slots in interval [tg, tg + Na], and further we used
(57). For the remaining LN, slots in this case we have used
the trivial bound (58).

To ensure E[V (tg + N2) — V(to)|S(to)] < —0 < 0, it
suffices that

o LN = (B + lpl) + ¢ loll

Ny T , (59)
o+ C(Nl,NQ)

1QW)I> A= —Ima )@ Teh =Tl

(60)

Putting everything together, the conditions of Subtheorem 1
hold, for g(S(to)) = Na, and h(S(tg)) = 0 for |Q(t0)]| > Q,
and h(S(ty)) = —C(N1, N3), otherwise. The constant B; was
defined in (55), B3 in (46) and Q is the maximum of (60) and

Bv% in Lemma 4.

C. Proof of Proposition 2

Given a partition X, we construct an adversarial distribution
with two job types of resource sizes 1/2+ ¢ and 1/2 —e. We
choose an e € (0,1/3) such that each resource size, 1/2 — €
and 1/2 + ¢, is in the interior of some subinterval of X. This
implies that the configuration that schedules both these jobs
simultaneously will not be feasible under upper-rounded VQs
of X. Hence, this prevents the oblivious scheduling algorithm
to schedule jobs of resource size 1/2 — € and 1/2 + € in the
same server at the same time, even though they can fit together
perfectly in one server.

Now consider a single server of capacity one and assume
that each arriving job has one of the two resource require-
ments, 1/2 — ¢ or 1/2 + ¢, with equal probability. Next,
we analyze the case in which the the two values are in the
interior of different subintervals of X, as the case that they
fall in the same subinterval is even worse for the oblivious
algorithm.

For notational compactness, we define all the vectors to be
2-dimensional with each dimension corresponding to one of
the two job types, although the number of subintervals can be
much larger. In other words, we omit the entities of the vector
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that correspond to subintervals with zero arrivals. Thus, the
arrival rate vector is given by A(1/2,1/2). Under an oblivious
algorithm, the possible “maximal” feasible configurations are
(2,0) and (0,1). In particular, configuration (2, 0) is feasible
in a best case scenario where jobs of resource size 1/2 — ¢
are mapped to a subinterval that its right endpoint is in
(1/2 — €,1/2]. Tt is on the other hand obvious that the
configuration (1, 1) is also feasible for the job types considered
in this example. Hence, a workload p = \/u should be feasible
if p(1,1) > X(1/2,1/2) or p = A/p < 2. So p* = 2.
However, under the partition assumption, and using (4), any
feasible p must satisfy the conditions below:

p1(2, O) +p2(07 1) > p(1/27 1/2)a

p1+p2= ]-7 P1,p2 > 0. (61)

The maximum p in this case is achieved by choosing p; = 1/3
and p2 = 1/3. That gives p < 4/3 = 2/3p*.

D. Proof of Corollary 1

We consider the following 4 systems which differ in the
way that they process jobs of resource size less than 1/27:

1y

2)
3)

These jobs are completely discarded from queue and are
not processed further.

Jobs join the queue without any changes.

Jobs join the queue and have their resource requirement
rounded to 1/27.

Jobs join the queue and have their resource requirement
re-sampled from the distribution F'r until their resource
value becomes more than 1/27.

4)

We denote the maximum workload achieved in each of the
4 systems by p7, p3, p3, pi. The relation between the resource
sizes in the systems is increasing. Also the distribution of
resource sizes in the first and last system is the same, but
in the latter the arrival rate of the jobs is increased by a factor
of 1/(1 — ¢). Hence, the following relationship must hold:

p1=ps=p"=p5>p5 = pi(l—e). (62)

Theorem 3 is valid for the third system and let pj,,¢ be the
maximum supportable workload by VQS. It then follows from
Theorem 3 and inequality (62) that

2 2

P52 gpi=3(1-€pi>

* 2 *
- (1—ps=2(1- ",

[SURI)
[SSR )

PVos >

IX. DISCUSSION AND OPEN PROBLEMS

In this work, we designed three scheduling algorithms for
jobs whose resource sizes come from a general unknown
distribution. Our algorithms achieved two goals: keeping the
complexity low, and providing throughput guarantees for
any resource size distribution, without actually knowing the
distribution. Our results, however, are lower bounds on the
performance of the algorithms and simulation results show that
BF-J/S and VQS-BF may support workloads that go beyond
their theoretical lower bounds. It remains as a future research
to tighten the lower bounds or construct upper bounds that
approach the lower bounds.

We made some simplifying assumptions in our model. One
of the assumptions was that the servers are homogeneous.
BF-J/S and our analysis can indeed be easily applied without
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this assumption. For VQS and VQS-BF, the scheduling can
be also applied without changes when servers have resources
that differ by a power of 2 which is a common case. As a
different approach, we can maintain different sets of virtual
queues, one set for each type of servers. Another assumption
was that service durations follow geometric distribution. This
assumption was made to simplify the proofs, as it justifies that
a server will empty in a finite expected time by chance. This
can be generalized as long as the service time distribution has
a positive hazard rate lower bounded by some constant > 0,
i.e., each job can depart in any time slot with probability of at
least §, independently of other jobs in service. Since this may
not happen under more general service time distributions (e.g.
one may construct adversarial service durations that prevent
server from emptying), in our algorithms we can incorporate
a stalling technique from [13] that actively forces a server to
become empty by preventing it from scheduling new jobs.
Finally, we based our scheduling decisions on a single
resource. Depending on workload, this may cause different
levels of fragmentation, but resource requirements won’t be
violated if resources of jobs are mapped to the maximum
resource (e.g. like our preprocessing on Google trace data). A
more efficient approach is to extend BF-J/S, by considering
a Best-Fit score as a linear combination of per-resource
occupancies. We leave the theoretical study of scheduling with
multi-resource distribution as a future research.
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