Similar but Foreign: Link Recommendation Across
Communities

Yao Ge!, Chunyao Song', Tingjian Ge?

L Tianjin Key Laboratory of Network and Data Science Technology
College of Computer Science, Nankai University
2 University of Massachusetts Lowell

Abstract

Complex networks have been used widely to model complex systems com-
posed of interacting entities. It is possible to recommend new relationships
between entities according to network topology and the entities’ properties.
The likelihood of forming a missing or potential relationship is often indi-
cated by similarity. As community clusters are also based on entities’ simi-
larities, traditional link recommendation /prediction methods naturally tend
to recommend links within a community. However, potential links valuable
across communities are often overlooked. We focus on link recommendation
across communities based on homogeneous and heterogeneous information
networks, which aims to improve the diveristy of recommender systems. We
propose a solution to this problem through novel similarity calculation and
heterogeneous network embedding methods. Our comprehensive experiments
over real-world datasets and synthetic datasets show that our methods strike
a good balance between accuracy and efficiency, while generating valuable
unconventional recommendations in practical application scenarios.

Keywords: Link Recommendation; Inter-Community; Random Walk;
Limited-Hop; Network Embedding

1. Introduction

A typical network consists of nodes and edges, where nodes represent
entities in real systems and edges express the relationships between entities.
Many complex systems can be modeled in the form of networks. Recom-
mending or predicting unseen relationships between entities can reveal use-
ful information in network analysis. Link prediction is applicable in many

Preprint submitted to Information Sciences May 1, 2020

areas, such as the prediction of unknown interactions between proteins [1],
friend recommendation [2], and product recommendation [3]. One of the
main uses of link prediction is for link/relationship recommendation. Over
the years, multiple approaches have been proposed to solve this problem.
Traditional solutions include neighbor-based, path-based, probability-based,
matrix-factorization based, and classifier-based methods [4]. Recently, with
the development of network representation learning, network embedding [5]
is widely used for link prediction, especially on the heterogeneous information
networks.

Similar entity recommendation is one of the main application scenarios
of link recommendation. Current link recommendation methods dominantly
recommend links between pairs of nodes that are within a certain range in
graph topology, which is typically within the same community. For exam-
ple, friend recommendations typically always recommend people in the same
organization due to the community structure present in the data, and prod-
uct recommendations typically always show the ones in the same cluster (as
the one already bought) that tend to be co-purchased together. An obvious
drawback is that current recommendation systems usually recommend enti-
ties within the same community, which limits the potential of recommending
a wider range of entities. However, inter-community links, when they exist,
can be very valuable for recommendation, because they often provide val-
ues in terms of diveristy and information propagation [6]. In the study of
sociologist Granovetter back in 1973, such long range links involving weak
ties are indispensable to individuals’ opportunities and to their intergration
into communities [6]. By contrast, they find that structurally close edges
are heavily redundant in terms of information access. Therefore, the inter-
community links can provide possible expansions for link recommendation.
Moreover, link recommendation across communities will greatly increase the
diversity of recommendations.

Heterogeneous information networks (HeINs) contain multiple types of
nodes and interactions. For clarity, we call the general networks whose n-
odes belong to the same type as homogeneous information networks (HoINs).
Due to the complexity of HelNs, let us first clarify the concept of community
there. Most community detection studies on HeINs focus on the generation
of communities based on a certain type of nodes. For example, if we con-
sider the co-purchase network, it is not reasonable that users and products
belong to the same community. Analogously, for HelNs, although we take
full advantage of the heterogeneous information network, when we perfor-

Figure 1: Link recommendation across communities.

m recommendation, we specify a target type in advance (e.g., we perform
inter-community recommendations on products only on co-purchase network
which includes two types of nodes). Next, let us take Figure 1 as an exam-
ple to illustrate link recommendation across communities. Figure 1(a) is the
original graph, where nodes are organized into six communities (each black
oval represents a community). For HeINs; it only shows the nodes that be-
long to the target type, and other types of nodes are omitted. Figure 1(b)
represents the network following the traditional link recommendation, where
the connections of nodes within the original community become tighter, but
recommendations hardly reach nodes in other communities. Figure 1(c) illus-
trates the network following our recommendation, where potentially probable
connections are found between entities far enough in different communities,
improving the diversity of recommendations. The newly discovered missing
links may alter the true community structure as well, as illustrated in the
dashed oval in Figure 1(c). Let us look at some more concrete examples.

Example 1. A recommender system may recommend to a researcher, as po-
tential collaborators, only researchers in the same field with higher topology
similarities. However, significant research results today increasingly require
interdisciplinary collaboration. For example, a data scientist majoring in
computer science may contribute to gene database and protein-protein in-

3

teraction prediction in biology. The collaborations across fields will promote
the mutual development of multiple disciplines, and the overall scientific ad-
vancement.

Example 2. A similar situation arises in product recommendations. There
are multiple E-commerce platforms, such as Amazon, Ebay, and Walmart.
Suppose a customer has just purchased several shirts. A typical recommender
system may recommend to him/her some other shirts based on a co-purchase
graph. However, such recommendations will only be useful in a very short
period of time before the customer has bought enough shirts. In contrast, an
across-community recommendation, e.g., recommending shoes, which are not
immediately linked but have intrinsic connections, may suit the need of the
customer better.

As suggested in the examples, we propose solutions for both HoINs and
HelNs, shifting towards the inter-community part of link recommendation,
while keeping the efficiency and accuracy at the same time. In order to solve
the problem, a naive solution is to perform community detection first, then
filter the results of link prediction based on the communities. However, com-
munity detection methods themselves involve various quality and accuracy
metrics [7]. It is hard to guarantee that community detection algorithms will
provide sufficient results to satisfy our needs of inter-community link recom-
mendation, and the two-phase procedure will lead to a high time complexity.

First, we propose a novel algorithm of link recommendation across com-
munities in HoINs. Although we want to calculate the similarities between
pairs of nodes that are relatively far apart, there is no need to compute the
similarities of all pairs of nodes. Due to the small-world phenomenon 8],
it is unnecessary and is a waste of computation to probe nodes beyond a
certain path length (as they are likely the ones already visited anyway). In-
spired by the ideas of local-path based methods, we use the hop distance
h to restrict the search range, i.e., we expect to obtain the links which are
sufficiently far so that recommendations across communities are provided,
while calculations related to less relevant links are avoided. This design de-
cision is also in line with the six degrees of separation principle. However,
the time complexity of starting from each node to calculate the similarities
of all nodes within h hops is still prohibitive. The key issue is how to find
the appropriate nodes as starting points. Thus, we propose the concept of
core nodes. Nodes with high centralities serve as core nodes, where the cen-
tralities of nodes are obtained by sampling edges with a biased random walk

4

procedure. The predictive similarity of each pair of nodes is given by a com-
bination of common neighbors and path lengths. We assume that a shorter
path identifies a higher similarity to further improve the computational ef-
ficiency. We differentiate between the links across communities and those
within the same community more explicitly based on the computed similar-
ities. In order to achieve this, we utilize a linear function to transform the
computed similarities to final recommendation scores, thereby strengthening
the inter-community recommendation scores.

To solve the problem in HelNs, our approach is a novel heterogeneous
network embedding method based on random walks and a skip-gram model.
We perform random walks following the strategy of JUST [9] and integrate
the community properties of nodes into multiple walk sequences. Then, a
skip-gram model is trained by treating the sequences of nodes as input. Af-
ter obtaining the representation vectors of nodes, we calculate the cosine
similarities of vectors as the similarities between nodes. Similar to the so-
lution of HoINs, the similarities are transformed to final scores by applying
the same linear function.

Our contributions are summarized as follows.

e We demonstrate the significance of link recommendation across com-
munities and formally state the problem. (Section 3)

e We devise a novel algorithm based on biased random walks and limited-
hop traversal, to efficiently solve the problem of link recommendation
across communities. (Section 4.1)

e We propose an effective network embedding method based on JUST,
which learns the low dimensional representation of nodes, while pre-
serving the community properties in the embeddings. (Section 4.2)

e For HolNs, we conduct comprehensive experiments on real-world dataset-
s in various domains, as well as synthetic datasets, and compare our
algorithm with neighbor-based, path-based, network-embedding based,
and a state-of-the-art link prediction methods, respectively. The ex-
perimental results demonstrate that our algorithm outperforms current
link prediction methods in both efficiency and accuracy. (Section 5.1)

e For HelNs, we evaluate the accuracy and practical recommendation
results of our proposed method JSBD. Compared with other recom-

mendation techniques, our method not only shows higher accuracy,
but also provides more reasonable recommendations. (Section 5.2)

2. Related Work

Link prediction has been extensively studied. Lii et al. [10] and V.
Marti et al. [4] presented excellent surveys with experimental comparisons.
Current link prediction methods compute similarities for a pair of nodes, and
the similarities serve as scores for link prediction. Recommendation systems
will recommend links with higher scores. Current link prediction methods
compute the similarities in different ways.

Topology information serves as a basis for neighbor-based and path-based
methods. For neighbor-based methods, the intuition is that if two nodes have
many common neighbors, the likelihood of emerging a link between them is
high. The algorithm of common neighbors is the most straightforward way
that supports link prediction. A series of extensions from it include Jaccard
[11], AA [12], RA [13], and PA [14]. These neighbor-based methods are com-
monly used to deal with link prediction problems on large scale networks or
graph streams. They show acceptable accuracy while maintaining computa-
tional efficiency since only two-hop neighbors are considered when calculating
similarities. Due to their excellent interpretability and scalability, they have
gained wide practical uses. However, the limitation of classic neighbor-based
methods is that they are not able to compute the similarities of nodes of a
far distance. Particularly, it is hard to explore potential links between nodes
across communities.

In contrast to neighbor-based methods, path-based methods reach out to
more remote nodes. The line of path-based methods formulate the definition
of similarities according to the path information between nodes, and can
be categorized into local approaches (such as Katz [15], LPI [16], and LRW
[17]) and global approaches (such as SimRank [18], RWR [19], and ACT [17]),
where the former usually use a parameter to limit the length of investigated
paths so that a low time complexity is achieved, and the latter are unfeasible
for large networks owing to their computational complexity. Since path-
based methods utilize more information during calculations, they exhibit
higher accuracy than neighbor-based techniques at the cost of time. For
the problem of link recommendation across communities, we can increase
the search range of path-based methods to obtain the similarities of inter-
community nodes. However, this results in high time cost and large space

consumption.

Probability-based and matrix-factorization based techniques can calcu-
late the similarities between all pairs of nodes. Particularly, probabilistic and
statistical methods build models to fit the known structures of the networks,
and compute the probability of potential links, which usually works well in
some specific scenarios [20, 21, 22, 23]. For example, [22] is suitable for net-
works of a hierarchical organization, and [23] assumes the degree of clusters
of networks is stationary. Therefore, they show ordinary performance when
compared with other methods on general datasets. Another shortcoming of
such methods is that the training processes are expensive in terms of time
cost. Matrix factorization can be applied to learn latent features of nodes,
and the predictive similarities can be computed [24] thereafter. Frequent-
ly used factorization methods include non-negative matrix factorization and
singular value decomposition [25]. They are competitive in terms of accuracy.
However, even though networks can be in a compressed sparse matrix form,
such methods still suffer from a high computational complexity, and their
parallelizations are complex as well. Due to the time complexity of these
methods themselves, it is unrealistic to apply them on large datasets.

Recent improvements in machine learning provide new ways for link pre-
diction, treating the problem as a supervised or semi-supervised task. The
key of these methods is how to choose appropriate features as the input of
classifiers, where topological features and proximity features are commonly
used for unlabeled graphs [26, 27, 28]. Original classifiers are directly appli-
cable, such as SVM, KNN, and Decision Tree. There are also a plethora of
extensions based on original classification algorithms [29, 30, 31, 32]. These
methods may not show a satisfactory performance due to the imbalance of
datasets. R. N. Lichtenwalter et al. [27] overcome this problem by the tech-
niques of oversampling and undersampling. These methods inflict a high
time-cost because of the training process of classifiers, and their accuracy de-
pends on samples and parameters, which may cause unstable performance.

Moreover, graph embedding and network embedding provide additional
feasible ideas for link prediction. They preserve structure information in a
low-dimensional space, and each node is represented as a vector [33, 5, 34, 35].
The similarities between nodes can be easily estimated by the inner prod-
uct or the cosine similarity. Particularly, [5] can learn representations that
organize nodes based on their network roles and communities they belong
to, providing a clear distinction of links within or across communities, thus
could best fit our purpose. Evaluation results also show it has surprisingly

7

good performance, but not as good as our method. Moreover, [35] proposes a
state-of-the-art link prediction framework based on graph neural networks. It
preserves information related to links by local subgraphs and learns heuristics
using a graph neural network. Detailed experimental comparisons show that
[35] performs better than some heuristic methods and latent feature meth-
ods. In addition, all the above methods lack attention to inter-community
links.

Since HelNs will degenerate into HoINs when not considering the types
of nodes and edges, all the methods mentioned above can be directly applied
to solve the problem of link recommendation in HeINs. However, ignoring
the node types of HelNs causes significant information loss. It is necessary
to model different nodes and relationships in a unified form. [36] prede-
fines meta-paths to guide heterogeneous random walks and capture different
semantic information. Huang et al. [37] utilize dynamic programming to cal-
culate the similarities of truncated meta-paths and adopt a similar strategy
as [38] to preserve the similarities in a low-dimensional space. Fu et al. [39]
propose a heterogeneous network embedding method Hin2vec, which learns
the potential vectors of nodes and meta-paths by specifying the relationship
set and performing several link prediction tasks together. A main drawback
of methods based on meta-paths is that the choice of meta-paths has a large
impact on the embedding results, which requires more prior knowledge in the
application field to choose the appropriate meta-paths. Hussenin et al. [9]
balance the proportion of homogeneous edges and heterogeneous edges using
the jump and stay strategies, thereby overcoming the weakness of meta-path
techniques. Tang et al. [40] propose a heterogeneous representation learning
method PTE based on LINE [38]. It divides a heterogeneous network into
several bipartite graphs, then performs the embedding method of LINE on
each graph. The final embeddings of nodes are obtained by jointly optimizing
the linear combination of objective functions. Xu et al. [41] design a PME
method to capture the first-order and second-order proximities in a unified
form based on metric learning.

In addition to the aforementioned studies, some remotely related studies
exist in the literature. For example, multiple methods related to community
recommendation are proposed [42, 43, 44]. However, there are fundamental
differences between them and our work. We provide entity-to-entity recom-
mendations across communities; thus, our recommendations are more specif-
ic. [45] considers the evolution of structure within online social networks and
presents a series of measurements, thereby dividing the networks into three

8

regions. However, this kind of segmentation is too broad for our study.

3. Problem Statement

Consider Examples 1 and 2 in Section 1. We formulate the problem of
link recommendation across communities as follows.

e€EE = ——e-- e€EE;, T EEEac

Figure 2: Illustration of the problem of link recommendation across communities in HoINs.
The dashed ovals represent two communities.

Problem 3.1. (Link Recommendation Across Communities in HoIN-
s) Given an undirected network as input represented as G = (V, E), where
V' is the set of nodes, and E is the set of links. A community C' refers to
a subset of vertices, i.e., C' C V. For two communities C; and Cy, it holds
that |Ec,| > |Ec,.c,| and |Ec,| > |Ec, c,|, where |Ec,| (resp. |Ec,|) is
the number of edges between two nodes in Cy (resp. Cy), and |Ec, ¢, is the
number of edges between a node in Cy and a node in Cy. We use Figure 2 to
tllustrate the problem that we study. The dashed ovals enclose two commu-
nities. The edges in the same community are much denser than those across
communities. Let the set of potential links across communities and that with-
in the same community be E,. and E;., respectively. Link recommendation
tells the likelihood/scores of potential edges in the set V- x V — E. Existing
link prediction approaches typically give higher scores for the edges in Ej.
To extend the range of recommendations, Link recommendation across
communities in HoINs focus on how to methodologically shift emphasis
on E,. rather than E;..

Definition 3.1. (Heterogeneous Information Networks) A hetero-
geneous information network can be represented as G = (V, E,R,T) in
which V is the set of nodes, and E is the set of relationships. R and T are

9

the type sets of V and E, respectively, where |R|+ |T| > 2. Forv €V, it is
mapped to R by a function ¢(-), i.e., p(v): V — R. E and T are associated
with a mapping function ¢(+), i.e., fore € E, p(e): E —T.

Target type Z

- Epe —Ez Ezt Ezq

Figure 3: Ilustration of the problem of link recommendation across communties in HeINs.

Problem 3.2. (Link Recommendation Across Communities in HelN-
s) Given a heterogeneous information network G = (V,E,R,T), let Z be
the target entity type for recommendation. Vz is the set of Z-type nodes. As
shown in Figure 3, Ez is the set of edges incident to two Z-type nodes. Ez4
represents the set of potential inter-community links which are generated by
nodes in Vz, while Ezz is the set of potential intra-community links. Similar

to Problem 3.1, link recommendation across communities in HelNs
studies how to methodologically shift emphasis on Ez4 rather than Ezz.

4. Main Algorithm

We now propose the solutions of link recommendation across communities
in HoINs and HelNs. In the following, we present our approaches for the two
network models, respectively.

4.1. The Proposed Approach on HolNs

Recall Example 1 in Section 1. Consider a collaboration network where
different research fields represent different communities. There are some

10

active researchers who are well known in the field s/he belongs to and who
are therefore also known by the outsiders. Hence, the chance of potential links
across fields around them is higher. We aim to find these people, denoted
as core nodes in the network, to perform the exploration of links across
communities starting from them.

An intuition is to measure the centrality and the role of a node by cal-
culating an index. However, current centrality measurements fall short, in
that the degree centrality [46] cannot capture the community structures,
while the betweenness centrality [47] incurs a high time cost. The notion
of core-periphery structure has been studied for long. For a core-periphery
network, cores are surrounded by peripheral nodes, which are not connect-
ed to each other [48]. There are two main models behind the definition of
core-periphery networks; one assumes that a network contains only one core,
while the other allows the existence of multiple cores [49]. Particularly, [50]
assigns a coreness value to each node by random walkers, thus profiling core-
periphery network structures. However, for this kind of network model, the
definition of a core node is different from ours. The former only emphasizes
the connectivity of a node within a module, whereas the latter additionally
takes the “bridge” function of a node into consideration. It is not reasonable
to apply the techniques of core-periphery networks directly. Therefore, we
simulate a biased random walk procedure to automatically and efficiently
obtain the core nodes.

In addition, to recommend potential collaborators (in Example 1), we do
not need to calculate the similarities between one researcher and all other
researchers in the network since the fields of some researchers exhibit sig-
nificant differences, and it is hard to generate a collaboration. Thus, we
utilize a limited-hop traversal to narrow down the calculation range and
thereby reduce the time consumption. Given the competitive performance of
neighbor-based methods, the similarity of a pair of nodes is computed from
the combination of the common-neighbor method and the path length.

Since connections within the same community are denser, the similarity
scores of these links are often higher than those across communities. There-
fore, we use a linear function to strengthen the inter-community link rec-
ommendation scores. The resulting approach achieves competitive accuracy
and remarkable efficiency, in contrast to prior work.

The whole algorithm includes the following four steps:

e Use biased random walks to sample edges, adjusting the parameter to

11

balance the proportion of BFS and DF'S.

e Compute the centralities of edges and further obtain the centralities of
nodes. Select core nodes based on the centralities of all nodes.

e Start from each core node, and perform a limited-hop traversal to com-
pute the similarities of each pair of nodes in the range.

e Prioritize the inter-community link recommendation scores by a linear
function.

4.1.1. Biased Random Walk

We use a random walk procedure for sampling edges. BF'S [51] and DFS
[52] are two biased strategies for the walk. As two common traversal meth-
ods of a graph, they are capable of capturing different features of nodes.
BF'S tends to capture the degree feature of nodes, while DFS reflects how
important a node is in contributing to the connectivity of a graph. Only
considering one of them will miss certain features of nodes. Therefore, we
propose a biased random walk procedure to incorporate the two sampling
methods together. The detailed random walk procedure shown in Algorithm
1 is described as follows.

Given a random walk procedure r, suppose the k-th intermediate node
is rg, we use I'(v) to denote the neighbors of v. During each procedure, we
ensure that each node is wvisited at most once, where the step of returning to
ri_1 (from ;) to probabilistically reach other neighbors of r;_; is not counted
as a revisit of r;,_;. Given the set of visited nodes VN and the current node
r;, the next step r;11 is determined by the following transition function:

P(Ti+1 = 7”1‘71|7”i) =1-a, (1>

P(rign €(r)) \VN) =« (2)

assuming I'(r;) \V N # @, where « is a parameter to control the bias between
BFS and DFS, guiding the random walk. A larger a represents a higher DFS
propensity. If I'(r;) \ VN = &, then P(r;11 = r;_1|r;) = 1. For the starting
node ro = u, we have P(r; € I'(u) \ VN|rg = u) = 1.

As we aim to solve the problem of mining potential links across communi-
ties, we set a to be greater than 0.5 to enhance the effect of DFS. Algorithm
1 uses [to limit the number of steps of a random walk procedure. The func-
tion RandomNeighbors used in lines 3 and 8 chooses an unvisited neighbor

12

Algorithm 1: RANDOMWALK (G, u, [, «)

Input: G = (V, E): homogeneous information network,
u: starting node of a random walk,

I: upper bound of number of steps

«: bias parameter

144 0, r; < u, visited < {u}

2 while ¢ <[do

3 if RandomNeighbors(r;, visited) = NULL then

4 T < Ti—1

5 continue

6 p < Random(0, 1) //obtain a random number in (0, 1)
7 if pjaori=0then

8 r; < RandomNeighbors(r;, visited)

9 14— 1+1

10 else

11 L T < Ti—1

12| visited < wvisited U r; //mark r; as visited

uniformly at random. Lines 7-9 are leading towards DFS while lines 10-11
towards BFS.

Figure 4 is a simple simulation to illustrate the next one or two steps of
a random walk procedure r. The walker currently resides at r;. So it has
probability 1 — a to return to r;_; and probability a to move to its other
neighbors. The chance that it reaches one of those neighbors depends on its
degree and the number of already-visited neighbors. Suppose it chooses r;_;
as the next step. Then the subsequent probability to again go back to u is
also 1 — a.. Therefore, the probability that the walk reaches u in two steps
from now is (1 —)2

4.1.2. Core Nodes Filtering

We say that an edge is sampled when a random walk traverses through it
(an edge is sampled at most once in each random walk procedure). Through
repeating a large number of random walk procedures with different starting
nodes, we accomplish an edge sampling process. Let iter denote the number
of iterations of the random walk procedures, and the starting node is ran-
domly chosen in each iteration. The weights of all edges are initialized to 1.

13

Figure 4: Hlustration of the biased random walk, which is currently at r;. The numbers
at each edge are the probabilities of those edges being visited in one or two steps. The
two edges in red are the ones visited in the past.

The weight of an edge is increased by 1 every time the edge is sampled. The
final weight is considered as the edge’s centrality. In this way, we are capable
of assigning higher weights for edges that play key roles in supporting the
connectivity of the network. To overcome the problem that the gap between
the maximum centrality and the minimum centrality may be large, we nor-
malize the centrality of each edge by a log function. The final centrality of
an edge e is defined as
Cene(e) = M’

18(Winaz)
where w, is the weight of edge e, and w,,, is the maximum weight of all
edges. Cen,(e) lies in [0, 1].

We then use the centralities of edges incident at a node to compute the
centrality of that node. Intuitively, the nodes connected to edges with greater
weights are more important, and the degree reflects the roles of nodes as well.
Hence, we define node centrality as the sum of centralities of edges connected
to the node. Likewise, the node centralities are normalized by the same log
function. The centrality of a node v is computed as

18(3_ ce {(u0)uer(o)) Cene(€))

Ilflea‘fﬁ lg(Zee{(u,vﬂueF(v)} Cene(e))

Cen,(v) =

where the denominator takes the maximum over all nodes. Cen,(v) is also
in [0, 1].

We use Cen, (v) as a metric for the importance of nodes. Given a thresh-
old interval [e1, €], the core node set consists of nodes whose centralities lie

14

in the interval. As a result, for an undirected graph, the size of its core node
set can be controlled by tuning €; and e;. Extremely high centralities are typ-
ically associated with the highest degree nodes in dense regions of core nodes
with overlapping h-hop traversal ranges (Sec. 4.3), making them redundant
as core nodes. Hence, we choose an interval rather than a single threshold
to filter the core nodes, aiming to increase the diversity of core nodes and
reduce the computational cost of the subsequent limited-hop traversal.

4.1.3. Limited-hop Traversal

Considering the high effectiveness of neighbor-based methods and the
short distance limitation, we propose a novel method of computing the simi-
larity of a pair of nodes, which is based on the Salton index [53] as well as the
paths between two nodes. There are many neighbor-based techniques of link
prediction, such as Jaccard [11], AA [12], RA [13], and PA [14]. We choose
Salton index as a foundation to define the final similarity of a pair of nodes
because it shows the best average performance for general link prediction
tasks that we perform on multiple complex networks. For a pair of nodes
(x,y), the Salton index is defined as

_ @) Nyl

Saltong, = .
e = @)

Another intuition is that the similarity decreases as the distance between
the two nodes increases. Therefore, for a path from x to y, we calculate the
product of the Salton index of pairs of nodes in the order in the path, and the
maximum value among all paths is the final similarity between nodes (z,y).
This can be formulated as

i=|path|—1
Sgy = mMax | | Salton,,,,., |v € path,
path:x—y 0
7=

where path is a sequence of edges from x to y, and v; is the i-th node on the
path. In particular, we have vy = x and vjpen = y. The maz is taken over
all paths from x to y.

Next, starting from each core node, we explore nodes within h hops by
BFS and assign an increasing level for them. In a bottom-up fashion, we
obtain similarities for all pairs of each i-level node and its (h—i)-hop reachable
nodes. We visit nodes in decreasing order of levels. The similarity calculation
process of each node within the exploration range has two phases. For a

15

node v, the first phase collects the computed similarities from v’s higher
level neighbors, and the second phase computes the similarities between v
and nodes which are reachable through those located in the same level as v.

There is no need to compute the similarities between v and v’s lower level
neighbors. Suppose v is an ith-level node, and u is a jth-level node that
is (h — i)-hop reachable from v, where j < i. Since the exploring range of
u is (h — j)-hop, we will access v and obtain the similarity of (u,v) when
calculating the similarities of u’s related pairs of nodes. The limited-hop
process terminates when we reach the current core node.

It is possible that other core nodes appear in the exploration range of the
current core node. For a core node v located at the ith level of another core
node u, during the exploration of u, the nodes within (h —i)-hops of v will be
explored as well. Hence, we choose the lowest-level core node as the starting
node for the next limited-hop traversal. If there are no other core nodes in
the current exploration range, we randomly pick the next core node.

In addition, we use two pruning strategies to reduce the computation cost.
We use Figure 5 as a simple example to illustrate them. One of the pruning
strategies is based on an assumption that a shorter path between two nodes
generally denotes a higher similarity. As shown in Figure 5 (a), the similarity
of [v1, vs] calculated by the path < vy, vy,v3 > is assumed to be higher
than that calculated by the path < wvy,vs,v4,v3 >. The second strategy
is that if one node has been accessed and the similarity is higher than the
current path, the subsequent calculation starting from that node are pruned.
Figure 5(b) illustrates this situation. Suppose v4 has been visited by the path
< wvy,v9,v3,v4 >. When it is later visited by the path < vy, vg, vs,v4 >, if
the new similarity of [v1, v4] is smaller than the current one, then subsequent
visits will always skip the path < vy, vg, v5,v4 >.

Figure 5: Hlustration of two pruning strategies.

16

Algorithm 2: LIMITED-HOP (G, ¢, h)

w N

Input: G = (V, FE): homogeneous information network,
c: starting core node of the limited-hop traversal,
h: upper bound of the limited-hop traversal

Output: similarities: the similarities of node pairs within h hops from ¢

Start from c and fill £; from 0 to h by BFS
foreach v in £ do
L reachAll[u], direct High[u] < empty list

4 foreach u in £j do
L reachAll[u].add(u)

for j<~ h-1 to0do

(<))

17
18
19
20
21
22
23
24
25

26

27

28
29

Initialize direct Reach[m] to empty list for m € L;
foreach v in £; do

foreach v in I'(u) do

if {[v]>![u] then
Add v to reachAll, directHigh and direct Reach
foreach z in reachAll[v] do
updateSimilarity (z, u, Salton,, - similarities|x, v])
reachAll[u].add(z)
if z in directReach|[v] then
L direct Reach|u].add(z)

foreach v in £; do

nbrl, nbr2, sameLevel <+ empty list
nbrl.add(u)
for dis + 1 to h —j do

foreach z in nbr! do
foreach y in I'(z) do
nbr2.add(y)
if I[y|==l[u] && y not in sameLevel then
L Add y to currentHop, sameLevel and reachAll

updateSimilarity (u, y, similarities[u, x|- Saltong,)

nbrl < nbr2, nbr2 < empty list
foreach z in currentHop do
L CALSIMTHROUGHSAMELEVEL(u, x, h — j — dis)

17

The details of the proposed method are described in the Algorithm LIMITED-
Hop. A core node ¢ serves as the starting node of the limited-hop process,
and the exploration range is limited by h. Particularly, for a level j, £; holds
the set of nodes located at the jth level. And for a node v, [[v] represents
the level of v. Line 1 fills the £ lists within A hops using BFS starting from
c. Then, we maintain two lists for each node in £ to record their (h — j)-
hop reachable nodes and their higher-level neighbors, which are denoted as
reachAll and directHigh, respectively. These lists are created and initial-
ized to be empty in lines 2 and 3. Then, lines 4 and 5 add the highest level
nodes to the reachAll lists of themselves. The loop from line 6 iteratively
computes the similarities between the nodes and their limited-hop reachable
nodes from the (h — 1)-level nodes to ¢ in descending level order. During the
iteration of each level, in order to prune unnecessary calculations, we record
the nodes whose shortest paths from the current computing node are known
in direct Reach, utilizing our pruning strategy 1. The corresponding lists are
created and initialized in line 7.

The remaining algorithm is divided into two phases. Let uw be current
node, and the level of u is j. In lines 8-16, for each neighbor node v in
I'[u] with a level greater than u, we collect computed similarities between v’s
(h— j — 1)-hop reachable nodes (stored in reachAll[v]) and v itself, and then
multiply each similarity with the similarity of the pair of nodes [u,v] (i.e.
the Salton value) to get the similarities between u and u’s reachable nodes
through its higher-level neighbors. In line 11 and lines 15-16, reachAll[ul,
directHighlu|, and directReach|u] are updated along with the calculation.
The function updateSimilarity called in lines 13 and 26 is used to update the
similarity of its first two parameters, i.e., if the current value is smaller than
the third parameter, update the similarity with the third parameter. In lines
17-29, the second phase calculates the similarities between nodes which are
reachable through nodes in £; and u. Starting from u, we explore nodes in
L; hop by hop, where the upper bound is (h — j) hops. The lists nbrl and
nbr2 maintain the (dis — 1)-hop and dis-hop reachable nodes, respectively.
We use sameLevel to record the same-level nodes that have been visited and
current Hop stores the newly explored same-level nodes in line 25. For a node
that takes dis hops to arrive, the remaining hop count is h — j — dis. We use
the algorithm CALSIMSTHROUGHSAMELEVEL to obtain the similarities in
the subsequent visits starting from those same-level nodes. The process of
exploring nodes in £; will not cause a high time cost. We terminate it when
all nodes in £; (except u itself) have already been added into sameLevel. The

18

Algorithm 3: CALSIMTHROUGHSAMELEVEL (u, x, hop)

Input: u: current node,
z: a node in the same level as u,
hop: remaining hops from x

1 Initialize steps[] to oo for each node

2 ¢ a priority queue

3 foreach z in directHigh[z] do

4 q.add(z)

5 steps[z] < 1

6 while ! ¢isEmpty() do

7 y < gq.poll()

8 if steps[y] > hop then

9 L break

10 foreach z in I'[y| do

11 if steps[z] > steps|y| then

12 if z not in directReach|[u] then
13 updateSimilarity (u, z, similarities|u, y| - similarities|y, z|)
14 if z not in ¢ then

15 q.add(z)

16 reachAll[u].add(z)

17 steps(z] = steps[y] + 1

search range is small for higher level nodes, and ¢ provides a short reachable
path for lower level nodes. Algorithm 2 keeps running until the iteration
reaches c. Finally, all the calculated similarities are stored in similarities.
Algorithm 3 presents how the similarities between nodes and those reach-
able through nodes located at the same level are computed. To control the
range of remaining hops, we maintain a list steps and initialize it to infinity
(maximum value) for each node in line 1. During the subsequent calculation,
we explore nodes according to steps and record the access order, which can
be done by using a priority queue ¢. In the first step of exploration, we only
visit z’s higher level neighbors, which is shown in lines 3-5. Next, for each
node in ¢, as shown in lines 10-17, we visit all of its neighbors 2z, and update
the similarity of (u,z) when z is not accessed by a shorter path, utilizing
our pruning strategies 1 and 2. If ¢ does not contain z, we add z into ¢ and

19

Figure 6: Illustrating the limited-hop process. The levels of nodes are shown on the
left. ¢ is the starting core node of the limited-hop process. Solid arrows represent the
similarities that can be calculated from higher-level neighbors of vy. Dotted arrows denote
the propagation of calculations starting from the same-level nodes within h — 1 hops.

modify reachAll[u] and steps|z].

We use Figure 6 to illustrate how LIMITED-HOP and CALSIMTHROUGH-
SAMELEVEL work. Suppose ¢ is a core node and the nodes below it are
reachable from ¢ within h = 3 hops, located at the corresponding levels of
BFS. We start the entire calculation from the level = 2 nodes. Suppose we
have finished the calculation of nodes in L5 and are calculating the similar-
ities related to vy. Firstly, we visit its higher-level neighbors vg and v7. vg
and v; should have already performed 1-hop accesses, i.e., the similarities
of [vg, v12], [ve, V5], [v7,v13], [v7,v14], and [v7,vs] are known. Hence, we just
multiply them with similarities[vy, vg] and similarities[ve, v7], respectively.
The direct Reachlu] is {vg, v7, V12, v13, v14}. Next, we handle the same-level
neighbors vy and v3. Due to the two-phase algorithm, the similarities relat-
ed to their high-level neighbors have been obtained before. similarities|vs,
v1] and similarities[vy, v3] are calculated during the process of exploring the
same-level neighbors of v,. The remaining hop of v; and w3 is equal to 1.
{v4, vs, v6} is the explored set starting from vy, while vg is in direct Reach|u],
so vg and reachAll[vg] will not be accessed again. In the situation of Figure
6, vg has already been the upper bound of limited hops passing through v;.
For vs, the related nodes are {vs, vy, v19}. Hence, we multiply similarities|vs,
v3] with similarities of [vs, vg], [v3, Vo], and [vs, v10]. The similarities of all
2-hop reachable pairs of nodes starting from v, have been calculated now.
Similar processes are performed on v; and v3. The core node ¢ just needs
to collect similarities from its higher-level neighbors, and then, we finish the
limited-hop process starting from ¢ with A = 3.

20

4.1.4. Inter-Community Links Strengthening

The connections within the same community are denser than those across
communities. As a result, it is natural that the similarities of links within the
same community are often higher. Therefore, after obtaining the similarities
of pairs of nodes, we assume there is a threshold 9, such that pairs of nodes
with similarity greater than ¢ tend to be in the same community, while the
other pairs tend to be across communities. While a perfect choice of § may
not exist, we resort to an approximate partition. We propose a linear function
to boost the inter-community scores. Combined with Area Under Curve, it is
a measure of evaluating how well a method distinguishes between links across
communities and those within a community. The final recommendation score
is defined as:

. it Similari <
Scoreg, = { Similarityy,, it Similarityy, <90

20 — Similarity,,, if Similarity,, >0

where § is estimated from the average similarity of all pairs of nodes, making
it adaptive to different datasets.

4.1.5. Complete Algorithm

Algorithm 4 shows the complete algorithm. In lines 1-3, we sample edges
through repeating the biased random walk procedure iter times, where the
function RandomNode selects a node randomly as the starting node of the
current random walk. According to the sampling results, line 4 calculates
the node centralities using the formulas proposed in Section 4.1.2 and com-
poses the core node set C. Next, multiple threads start to compute the link
recommendation scores. In our experiments, the number of threads is set to
4.

The variable cNext is used to store the next core node to be explored.
It is initialized to -1 in line 6, implying that the next core node is unknown.
The loop from line 7 calculates the similarities following the exploration order
of the core nodes. When the next core node is unknown (i.e., the condition
holds in line 10), line 11 selects a core node in C randomly. In lines 13-14, the
limited-hop process starts from ¢, and then the next core node is determined,
where the function NextCore assigns the core node with the lowest level in the
current exploration range to cNext. Once cNext stores a value other than
-1, lines 16-18 are performed. Since the similarities related to cNext are
available, we modify the loop in line 8 of LIMITED-HOP slightly and denote
it as LIMITED-HOP*. We terminate the loop when the iteration of j = 1

21

Algorithm 4: CNLH (G, [, iter, a, €1, €9, h,0)

W N =

© W N o ok

10
11
12
13
14

15
16
17
18

19
20

Input: G = (V, E): homogeneous information network,
I: walk length of the random walk,
iter: number of random walk iterations,
«: bias parameter of the random walk,
€l: lower bound of determining core nodes,
€2: upper bound of determining core nodes,
h: upper bound of the limited-hop traversal,
d: threshold to enhance inter-community links
Output: scores: scores of all calculated node pairs
for i < 0 to iter do
u < RandomNode()
RANDOMWALK(G, u, [, @)

Q

+ FilterCore(ey, €2)

foreach thread do

cNext < -1

while true do

if C.isEmpty() then
L break;

if cNext == -1 then

¢ = RandomCore()
C.remove(c)
LivmiTED-HOP(G, ¢, h)
cNext = NextCore()

else

LimiTED-HOP*(G, c¢Next, h)

supplement the new explored similarities for cNext
cNext = NextCore()

scores = EnhancelCLinks(similarities, §)
return scores

22

finishes, i.e., we do not collect those explored similarities of cNext. Suppose
the level of cNext is ¢ in the last limited-hop exploration, the similarities
between cNext’s (h — i)-hop reachable nodes and cNext itself have been
computed; so we just need to supplement the remaining i-hop similarities,
which are stored in the reachAll structure of cNext’s (h—i)-level nodes. We
do not reuse the calculated similarities of other nodes explored in the last
limited-hop because the relative levels of the neighbors of a node may have
changed in the new limited-hop traversal and only the remaining uncalculated
similarities of cNext are directly available. EnhancelCLinks called in line 19
transforms each similarity into final recommendation scores using the linear
function described in Section 4.1.4. The loop from line 7 keeps running
until the condition in line 8 is met, which indicates all core nodes have been
explored. Our algorithm stops when all threads finish running.

4.2. The Proposed Approach on HelNs

In this section, we propose a heterogeneous network embedding method
based on the random walk strategy JUST and the skip-gram model. We
integrate community features into the processes of random walks, and then
generate the final node sequences and learn the representation vectors of
nodes by training a skip-gram model.

4.2.1. Node Sequence Generation

In order to generate the node sequences, we perform a random walk pro-
cess as follows. We first adopt the walk strategy in JUST [9] to determine
the node type of the next hop. There are two options to select the type of
next node: stay in the same type with the current node or jump to one of
different types. Suppose the type of the current node v; is Z. Let R be the
set of all node types, and Vz(v;) be the set of neighbors of the same type as
v;. Given a type P, we use Vp(v;) to denote the P-type neighbors of v;. For
vi11, the probability of staying in Z can be defined as:

0, if Vz(’Ui) =y
P(p(vig1) =Z) =4 1, if{Vp()[PER,P#I} =0 (3)

)
o', otherwise

where « is the parameter of controlling the inital stay probability, and [is
the length of the consecutive node sequence ending at v; and having the same
type as v;.

23

If the current random walk process chooses to jump to a new type, the
specific type of the next node needs to be selected in advance. The process
randomly samples a type from those differing from the last m visited types.
Let Ry, denote the last m visited types (including the current node type
7). Let us consider a candidate set of node types where each type is not
in Ry, and there are v;’s neighbors that belong to the type. If this set is
not empty, the type of the next node will be sampled from it uniformly at
random; otherwise the process will ignore the limitation of R;,,. Therefore,
the candidate set of available types for the next hop can be expressed as:

Rye(v) = {P|PEeRAP ¢ R, Vp(v;) # @}, if not empty (4)
PV T AU APIP € R, P AT, Vp(vy) # O}, otherwise

After determining a specific type Q, we selected nodes with a bias to
capture community features during the random walk, i.e., for the next hop,
we may preferentially sample the common neighbors of the current node
and the previously visited nodes. We will extend the search range of the
common neighbors since there might be no edges between some node types
in HelNs. Considering that the probability of community associated with
the current node decreases as the exploration range increases, we introduce
an exponential function to weaken the bias probability. Suppose a visited
node v, is d-hop away from the current node v;. V.o, refers to the set of
the common neighbors of v; and v;, and the type of all nodes in V.., is Q.
If V.omm is not empty, the probability that the next hop randomly selects a
node in Vepmm 1s:

P(”i—i—l S ‘/;omm) = Bd_l (5)

where (3 is the bias parameter. We start the exploration from v; along with
the reverse order of the generated node sequence. A parameter k is used to
limit the exploration range. The process is terminated when we find a visited
node making V..., non-empty. If there is no node that meets the condition,
the random walk will sample a node in Vg(v;) randomly.

The detailed walk strategy is described in Algorithm 5. The loop from
line 2 iteratively samples a new node until the length of the current walk
sequence is lq.. Let nextType hold the type of the next node, and it is
initialized to the type of the current node. During the iteration, we update
nextType according to Equations 3 and 4. We use y as the index of the
explored node, and the loop from line 9 starts the exploration from y = k

24

Algorithm 5: JSBDRANDOMWALK(G, v, lyaz, o, m, 5, k)

N 0 oA W N

@

10
11
12
13

14
15
16

17
18

19
20

21

22

Input: G = (V, E,R,T): heterogeneous information network,

v: staring node of the random walk,

Imaz: maximum length of the random walk,

«: initial stay parameter,

m: number of memoried types,

(3: initial bias parameter,

k: upper bound of exploration range

Output: rw: a sequence of nodes

TWw {’U}, Ry < {¢(U)}

while |rw| < 4, do

nextType < ¢(v)

Decide to walk along with Ep. or Ep, according to Equation 3

if with Ep, then

Sample a type P from Rj.(v) according to Equation 4
nextType = P

Update Ry, with nextType

for y < k to 1 do

if y < |rw| and {ulu € T'(rwly]) NT'(v), ¢(u) = nextType} # & then
candidates = {ulu € T'(rw(y]) NT'(v), p(u) = nextType}
biasedNode = RandomPick(candidates)
break

calculate the probability p according to Equation 5
if Random(0, 1) > p and biasedNode # NULL then
L nextNode = biasedN ode

else
L nextNode = RandomPickNeighbors(v, nextType)

if nextNode == NULL then
L break

rw.add(nextNode);

return rw

25

to 1. The common neighbors will be recorded in candidates once we find a
qualified node (i.e., the condition holds in line 10). The function RandomPick
randomly selects a node in candidates as the candidate biased node. Next,
we calculate the bias probability according to Equation 5. Lines 15-16 imply
that the random walk selects biasedNode as the next hop, while lines 17-
18 indicate that we will sample a nextType-domain neighbor of v by the
function RandomPickNeighbors. If there is no suitable next Node, the current
random walk will be terminated. Finally, the sequence of nodes generated
by a complete random walk is maintained in rw.

SO

Figure 7: The generation process of node sequences

We use Figure 7 as an example to illustrate how the random walk strategy
is performed. Suppose the type of v; is A, and m = 2. The solid lines
represent the generated node sequence, and the dotted lines are other edges
in the heterogeneous graph. The current random walk rw has probability
a? to jump to a A-type node and probability 1_2a2 to move to a B-type or
C-type node. Due to Ry, = {A, C}, it is impossible that rw selects a C-type
node as the next hop. If rw chooses to stay in the same type as v;, it has
probability 5 to move to A; and probability 1 — 5 to move to As. The next
hop will be Bj if rw decides to jump to a heterogeneous node.

We repeat multiple random walks over each node in the heterogeneous
graph, thereby obtaining a large number of node sequences. A skip-gram
model will be trained by treating the generated node sequences as input.

4.2.2. Heterogeneous Network Embedding
A skip-gram model trains parameters by maximizing the co-occurance
probability that two nodes appear in a window of length k in a random walk

26

[9]. During the process of model training, each input sample will cause the
entire weight matrix to be updated. Therefore, the traning process leads to
high time cost when the number of nodes or the dimension of embedding
vecotrs is very large. In order to solve this problem, the skip-gram model
introduces the negative sampling technique. It allows each training sample
to update a small part of the weight matrix, which significantly reduces the
computation cost of gradient descent. Let f(-) denote the mapping function
from nodes to embedding vectors. The objective function of the skip-gram
model is:

M
loga (f(u) - f(v)) + 3 Burenpa)logo(—f(a™) - f(u))] (6)

m=1
where o(-) is the sigmoid function, i.e. o(-) = H% P(x) is a predefined

distribution from which a negative node 2™ is drawn M times [36].

4.2.3. Inter-community Link Recommendation

Based on the embedding vectors of nodes, we need to calculate the sim-
ilarities of pairs of nodes and prioritize the inter-community links as rec-
ommendation results. There are various ways of calculating scores, such as
using different distance metrics and performing subsequent computation by
learning edge features from node embeddings. In this paper, we utilize the
cosine similarity between two nodes. The cosine similarity is computed as:

@)) x i)
[FIF] /T () x /3, (fi(v)?
where cossim(u,v) is in [—1, 1]. Considering that intra-community links are

denser than inter-community links in HelNs, we still need to introduce the
linear function in Chapter 4.1.4 to emphasize nodes across communities.

(7)

cossim(u,v)

4.2.4. Complete Algorithm

Algorithm 6 presents the complete algorithm of link recommendation
across communities in HeINs. RW records all node sequences sampled from
multiple random walk procedures. We use similarities to store the cosine
similarities of pairs of nodes, and it is initialized to be empty. Firstly, we
perform the random walk n times over each node v. In line 5, according to
the sampled node sequences, NetworkEmbedding trains a skip-gram model
and outputs the mapping function f(-) by stochastic gradient descent. The

27

low dimensional representations of nodes preserve the structure properties
and the community features. Next, we calculate the cosine similarities of n-
odes which are not connected to each other in lines 6-9. Finally, the function
EnhancelC Links is used to strengthen the scores of inter-community pairs
of nodes and save the recommendation results into scores.

Algorithm 6: JSBD(G,n, lya., o, m, 5, k, d, w)

Input: G = (V, E,R,T): heterogeneous information network,
n: number of random walk iterations,
Imaz: maximum length of a random walk,
«: initial stay parameter,
m: number of memoried types,
(: original bias parameter,
k: upper bound of exploration range,
d: dimension of vectors,
w: window size
Output: scores: results of inter-community link recommendation
RW , similarities < empty lists
for i < 1 to n do
foreach v € V do
L L RW .add(JSBDRandomWalk(G, v, lnae, o, m, 3, k))

N I

f = NetworkEmbedding(RW, w, d)
foreach v € V do

foreach u € V do

L if (u,v) ¢ F and (v,u) ¢ E then

© 0 N O «;

L similarities.add(cossim(f(u), f(v)))

10 scores = EnhancelCLinks(similarities)
11 return scores

5. Evaluation

5.1. Ezxperiments on HolNs

In order to evaluate the accuracy and efficiency of the proposed method
CNLH, we conduct experiments on homogeneous real-world and synthetic
datasets. Moreover, we present a case study to examine the recommendation
quality of our method in practical scenarios.

28

5.1.1. Dataset Description

Due to the diversity of community detection metrics, we empirically eval-
uate our method on three real-world datasets that have ground-truth com-
munities.

Eu-core data [54]: It consists of email communications between mem-
bers of a large European research institution. An edge (u,v) exists in
the network if person u sent person v at least one email. Each com-
munity represents a department at the institution, and each individual
belongs to exactly one community.

DBLP data [55]: It is a co-authorship network in computer science. In
DBLP, nodes stand for authors, and edges represent the co-authorships
between them. The publication venues, such as journals or conferences,
are considered as forming communities of nodes.

Amazon data [55]: In this dataset, nodes represent products, and
edges denote a co-purchase of two products. Nodes are organized into
communities according to the product categories provided by Amazon.

The statistics of the three real datasets are given in Table 1.

Table 1: Statistics of homogeneous real-world datasets

Dataset |V] |E| |Communities|
Eu-core 1005 25571 42
DBLP 317080 1049866 13477

Amazon 334863 925872 75149

We also generate synthetic datasets by the LFR benchmark graphs [56].
It extends the GN benchmark [57] by introducing features of real netowrks
and assumes that the degree and community size distributions follow power

laws.

It can generate benchmarks of variable sizes and average degrees, and

has been used to generate synthetic datasets in many community-detection
studies [58, 59]. Given the number of nodes, the average degree and the mix-
ing parameter, [56] generates an undirected network that meets the criteria,
where the mixing parameter can adjust the proportion of links across and
within communities. The mixing parameter is a key factor that affects accu-

racy.

Therefore, fixing other parameters, we tune the mixing parameter and

29

generate three synthetic datasets. We fix the number of nodes to 10000, the
average degree to 5 and the maximum degree to 20. The mixing parameter
is tested with 0.2, 0.4 and 0.6.

5.1.2. Experimental Setting

In this section, we introduce the comparison methods, the detailed ex-
perimental setups, and the metrics used to evaluate the performance of the
methods.

1) Comparison Methods: Due to the high time cost of probability-based,
matrix-factorization based, and classifier-based methods, we compare our
methods with path-based and network-embedding based methods. More
information about the methods being compared is described as follows:

e Local Random Walk (LRW) [17]: It is a local path-based method
based on random walk. It computes the similarities according to the
probability that one node reaches another after a t-step random walk
procedure. It reduces the computational complexity by limiting .

e SimRank [18]: It assumes two nodes are similar when they are related
to similar nodes. A distance r is used to prune the branches out of the
computation range in practice.

e Node2vec [5]: It is a network-embedding based approach that can
learn continuous feature representations of nodes, which organize nodes
based on their network roles and communities they belong to.

e SEAL [35] By extracting a subgraph around each target link, it devel-
ops a y-decaying heuristic theory and proves that all heuristics unified
in a single framework can be well approximated by local subgraphs.
Thereby, a graph neural network is used to learn the heuristics from
subgraphs.

2) Parameter Setup: The parameters are set as follows, according to the
settings in previous work. The t of LRW is 4 on real datasets, and is 6
on synthetic datasets. The r of SimRank is set to 5. The parameters of
Node2vec are set to d = 128, r = 10, [= 80, and £ = 10. To improve the
proportion of DFS, ¢ is 0.5, and p is 1. The hop of SEAL is set to 1. It
is not necessary to train SEAL on all links in the training data especially
when the observed links are numerous. Therefore, the maz-train-num is
100,000. Other parameters of SEAL are set to default. All the results of

30

Table 2: Parameters on different datasets, where avg.s represents the average similarity.

Datasets | 1 iter a [€1, €2] h | avgs)
Eu-core 20 1000 0.8 | [0.3,0.5] | 3 0.15 0.04
DBLP 20 | 50000 | 0.8 | [0.3,0.5] | 4 | 0.32 0.08
Amazon | 20 | 50000 | 0.8 | [0.3,0.5] | 5 0.21 0.05
bm_0.2 20 1000 0.8 | [0.3,0.5] | 6 0.04 0.01
bm 0.4 20 1000 0.8 | [0.3,0.5] | 6 0.02 0.005
bm_0.6 20 1000 0.8 | [0.3,0.5] | 6 | 0.008 | 0.001

competing methods are transformed with the same function described in
Section 4.1.4 for a fair comparison. The parameters of our method include
the random walk step [, the number of random walk iterations iter, the bias
parameter of random walk «, the interval of determining core nodes [e1, €],
the upper bound of limited-hop traversal h, and the threshold to enhance
inter-community links 0. Specific parameter values used in our experiments
are presented in Table 2. The first four parameters determine the core node
set. Fixing « and [e;, €3], the core node set is steady when [- iter is near
or greater than |F|. h is related to the average degree and the average
number of nodes in each community. Therefore, we adjust iter and set h to
3, 4, 5, and 6 according to the number of edges and the scales of datasets,
respectively. For instance, due to the small |E|, iter is set to 1,000 in Eu-core
and synthetic datasets. h is set to 6 in three synthetic datasets because when
the mixing parameter is small, a larger h provides a better exploration effect.
To obtain an optimal 9, we test some values lower than the average similarity
of each dataset and select a roughly unified value 0.25 % avg.s as a reference.
We also study the effects of tuning different parameters in later experiments
and provide some strategies related to parameter selections along with the
analysis.

In contrast to the traditional link prediction problem, we compose the
labeled testing set of edges as follows: to obtain positive samples, we remove
10% of E,. chosen from the network, and to obtain negative samples, we
remove an equal number of edges from F,.. We remove edges randomly
while ensuring the residual network is connected. We use the remaining 90%
of F,. as well as the remaining F;. to construct the training data. It is worth
noting that some nodes belong to more than one community in real datasets.
Due to the difficulty in deciding the labels of related links, we do not sample

31

these edges in our experiments.

All algorithms in the paper are implemented in Java, including LRW
and SimRank. For Node2vec and SEAL, we use the original Python im-
plementation provided by the authors [60, 61], where an optimized library
word2vec and a PyTorch implementation of DGCNN (Deep Graph Convo-
lution Neural Network) [62] are applied, respectively. All experiments are
performed on a machine with an Intel Core i7 3.40-GHz processor and a 16-
GB memory. Since our CNLH algorithm is highly parallelizable, we utilize
the multi-threading technique to improve efficiency. Each thread is respon-
sible for processing a part of core nodes. The code is publicly available at
https://github.com/ShawlUz/LPAC.

3) Evaluation Metrics: Methods can output the similarity scores of poten-
tial inter-community and intra-community links among nodes in the target
network. In this comparison, we mainly study two aspects: (1) accuracy:
Area Under Curve (AUC) [63] is used to test accuracy. A higher AUC score

represents higher accuracy. (2) efficiency (time consumption).

5.1.8. Experimental Results

In addition to the three competing methods, we also compare our method
(CNLH) with neighbor-based methods AA [12], HDI [64], HPI [64], JI [11],
PA [14], and RA [13] on the Eu-core dataset. The results are shown in Table
3. However, since the neighbor-based methods only consider distance-two
pairs of nodes, limiting the ability to reach nodes far away, we omit these
methods in the following experiments.

Table 3: Performance comparisons with neighbor-based methods on Eu-core dataset.
Method | CNLH | AA | HDI | HPI JI PA RA
AUC 0.723 | 0.592 | 0.698 | 0.687 | 0.692 | 0.415 | 0.667

Next, we compare our method with three competing methods over real
datasets. Figures 8(a) and 8(b) show the results. It takes more than 24
hours for LRW and SimRank to run on DBLP and Amazon datasets, so
we terminate them before they finish. Although path-based methods show
competitive accuracy results, the time consumption makes them impractical
for massive datasets. In contrast, our method performs better on larger
datasets. The run time of our method is about half of that of Node2vec on
Eu-core and DBLP datasets, and CNLH is 17 times faster than Node2vec
on the Amazon dataset. Moreover, it is one to two orders of magnitude

32

6
10 [JCNLH 1.0 [JcNLH
105_ LRW V7 LRw
SimRank 0.84 _ SimRank
104 :Eﬁ.erfvec §§ B2 Node2vec
@ 0.6
kot @) K
EL0 2 i
I <04
10 0.2
107 ——% - - 0.0
Eu-core DBLP Amazon Eu-core DBLP Amazon
(b)
[JCNLH | []JCNLH
LRW 101 - LRW
Node2vec Node2vec
0.8 B sEAL
©0.61
= 0.6
<
0.4
0.2

bm 0.2 bm 0.6

Figure 8: Performance comparisons on real-world and synthetic datasets.

faster than SEAL. In terms of accuracy, CNLH is comparable to competing
methods on Eu-core and Amazon, and shows a better accuracy on DBLP.

Although the real-world datasets include the so-called ground-truth com-
munities, they may not reflect the absolutely accurate community situations
in reality. For instance, the Amazon dataset has removed the ground-truth
communities whose number of nodes is less than 3, but the average size of
communities is still only 4.4, and there are multiple overlaps between com-
munities. The boundaries between communities are unclear. Therefore, we
generate a few synthetic datasets to evaluate our method. The results are
shown in Figures 8(c) and 8(d). Our method is significantly faster than other
methods. The results of SimRank are omitted since it runs too long. The
accuracy decreases as the mixing parameter increases due to the increasing
difficulty of distinguishing communities. Our proposed method shows higher
accuracy and less time cost on all tested synthetic datasets.

Next, we test the effects of varying different parameters — we provide
strategies for choosing suitable parameter values, making our method easy

33

60

1.00 —
- —e— —=— Eu-core
0.951 50+ \ —=—bm 0.2
090 o4 . _40. |t bm 04
O] kst - Sa— -
3 0.85 —=— Eu-core é 30
0.80- —<—bm 0.2 &=
0701 —— 10{ =+ "+
10 20 30 40 50 10 20 30 40 50
1 1
(a) (b)
70
1.00 e * \ —=— Eu-core
0.95 60, \ e bm 0.2
090{ .t _50] \ —+—bm_0.4
8 0.85 Eu-core £
< 0.80 ~* bm_ 0.2 = 30]
0.75 bm 04 20] .
070 == " wo] oo oL
065 T T T T T T T T T T T T T T
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
iter iter
(c) (d)

Figure 9: The effects of parameters [and iter.

to use in practice. We keep other parameters consistent with those in Table
2. Figures 9 and 10 show the results. Parameters [, iter, and [e;, €3] mainly
affect the construction of the core node set. Accuracy is relatively stable
on tested datasets when tuning [. As iter increases, accuracy increases at
the beginning and remains steady. For time costs, they present a downward
trend and eventually reach stability. This indicates that insufficient sampling
leads to an increase in the number of core nodes and fluctuant quality of the
core node set. The core node set gradually approaches a steady state as [
and iter increase, and iter presents a larger effect on accuracy. When iter is
sufficiently large, there is little fluctuation on the AUC curve and the time
cost curve. We recommend that [lies in [10, 50], and [- iter > | E| should be
satisfied, where [can be adjusted according to the scale of the network.

34

80

1.00 —
. R 70+ —=— Eu-core
095{ o 0. e bm 02
0.90 pa . —~50 e bm_04
@) il = Fyu- T 40
S 0.85 Eu-core g 40
<0.801 *—bm 02 = 30/
~+ bm 04 50 .
0.751] —
101 .
0.70{ . -
[0.1,03] [03,0.5] [0.5,0.7] [0.1,0.3] [0.3,0.5] [0.5,0.7]
(g1, &] [e), &]
(a) (b)
1.00 e . 0951 . —=— Eu-core
095{ N e bm 02
090{ s bmoas
0.90{ *— —] N
) - 5 0.85 N
> 0.851 —+ Eu-core > 0.80+ AN
< < .
0.80+ e ';m,g-i 0.751
—*—bm 0. — -
0.75. 0.70 _—
R 0.65+
0.70+— , : : : , , , :
0.5 0.6 0.7 0.8 09 0.25avg.s 0.5avg.s 0.75avg.s avg.s
o)
(c) (d)

Figure 10: The effects of parameters [e1, €2], , and §.

Setting high filtering intervals results in significantly lower time cost, since
high filtering intervals imply fewer core nodes. The interval can be adjusted
on the basis of specific requirements. For example, if we expect to obtain
more core nodes, the interval should be extended to the lower bound and
the upper bound. The interval should be higher when we only need to focus
on more important core nodes. It is worth noting that a very small lower
bound will cause numerous overlaps of similarity calculation. Therefore,
setting the lower bound too small is not recommended. The interval can also
be determined according to the distribution of the centralities of nodes in
specific networks. The results of varying o show that a larger « results in a
higher accuracy, indicating that a bias toward DFS is beneficial during the
sampling process. This is because DFS prefers to capture the importance

35

of a node in connectivity, helping nodes to explore further and generating
inter-community links. Generally, o should be larger than 0.5, and in order
to increase the proportion of DFS; an « in [0.7, 0.9] is recommended. Figure
10(d) shows the effect of 6 on accuracy. The accuracy decreases as 0 increases
since the number of links across communities is less than the number of
links within communities. Therefore, § should be smaller than avg.s, and
a relatively small 6 provides better accuracy. We recommend a ¢ close to
0.25 % avg.s. Consequently, parameters guiding our computation procedure
can be adjusted according to the scale and the characteristics of the datasets,
giving us control over the recommendation range.

5.1.4. Case Study

We have shown in evaluations that Node2vec has comparable accuracy
with ours in terms of the AUC metric. In addition to this strict numerical
evaluation criteria, we would like to compare how they would perform in
practical scenarios. We assume that each method recommends links with
top scores.

Consider the Amazon dataset, which is a co-purchasing network. In this
dataset, each node represents a product, and the product categories are used
as community labels, such as <Subjects | Computers & Internet | Program-
ming | Java | Genral>. Through observing the top-5% recommendations, we
find that our link recommendation method is able to recommend products
far enough in topology, while maintaining the relevance between the recom-
mended products. It is exactly what we expect to achieve by the limited-hop
traversal. Since Node2vec is capable of calculating the similarities between
all pairs of nodes, some pairs that are particularly far away may be recom-
mended as well, resulting in unreasonable or useless recommendations. For
instance, there is a book that belongs to <Subjects | Health, Mind & Body |
Diets & Weight Loss | Diets | General>, and our recommendation is a book
in <Subjects | Health, Mind & Body | Personal Health | Women’s Health
| Genaral>. By contrast, node2vec treats a book in <Subjects | Cooking,
Food & Wine | General> and another in <Subjects | Literature & Fiction
| General | Contemporary> as a recommendation. Therefore, the recom-
mendations of our method are more reasonable than Node2vec’s in this real
application scenario while ensuring a sufficiently far distance in topology at
the same time.

36

5.2. Experiments on HelNs

In this section, we demonstrate the effectiveness of JSBD by conducting
experimental evaluations compared to the state-of-art network embedding
methods. We first introduce four heterogeneous datasets, the comparative
methods, and the setup of parameters. Then, we show the experimental
results of JSBD and other baselines. Finally, we study the performance of
our method in practical scenarios.

5.2.1. Datasets

We adopt four real-world heterogeneous datasets to evaluate the perfor-
mance of our method and the baseline methods. The statistics of the datasets
are summarized in Table 4.

Table 4: Statistics of heterogeneous real-world datasets

Datasets Relations(A-B) —A— —B— —(A-B)—
User-Magazine 348 157 2,375
Magazine Magazine-Brand 157 61 154
Magazine-Magazine 157 157 1,012
Actor-Movie 10,789 7,332 24,043
Movies Actor-Actor 10,789 10,789 48,088
Movie-Director 7,332 1,741 6,156
Movie-Compose 7,332 1,483 4,155
Movie-Movie 7,332 7,332 6,596
User-Grocery 127,496 41,320 1,143,860
Grocery Grocery-Brand 41,320 8,869 40,895
Grocery-Grocery 41,320 41,320 810,379
User-Movie 13,367 12,677 1,068,278
User-User 2,440 2,294 4,085
Douban Movie-Director 10,179 2,449 11,276
Movie-Actor 11,718 6,311 33,587
Movie-Type 12,678 38 27,688

e Magazine data [65]: This dataset includes reviews and metadata of
magazine products from Amazon, and it has been reduced to extract

37

the dense subsets, such that all users and magazines have at least 5
reviews. As there is no co-purchase interaction in the original dataset,
we enrich this graph by adding the magazine-magazine edges according
to the also_bought field of metadata. The ground truth communities
are divided according to magazine categories.

Movies data [37]: This is a dataset that contains information about
movies, actors, directors, and composers. Each movie has one or more
genre labels, including action, horror, adventure, scifi, and crime, which
are used as ground truth community labels. Nodes are considered to
belong to the same community if they have more than one common
genre.

Grocery data [65]: Grocery is from the reviews of groceries and
gourmet foods sold by Amazon. Similar to Magazine, it is the 5-core
version of the complete dataset, and we add homogeneous edges be-
tween products if they were co-purchased together.

Douban data [66]: It is a dataset of movie domain from the rating
platform Douban. It contains social relations of users and properties
of movies. For this dataset, multiple groups naturally divide users into
different clusters. Therefore, the target type of link recommendation
across communities in Douban is user.

There are some nodes that belong to more than one community in four

datasets. We treat them as nodes that belong to different communities when
the intersections of their labels are empty. Note that the number of inter-
community links between the target-type nodes is small, we remove 50%
chosen edges from them randomly as positive samples of testing set, and we
sample an equal number of edges from intra-community links to generate
negative samples. The remaining edges are used as the training data.

5.2.2. Comparison Methods and Parameter Settings

We compare the proposed algorithm JSBD with the following network
embedding methods, among which DeepWalk, LINE, and Node2vec are suit-
able for general network embedding.

e DeepWalk [34]: Tt constructs node sequences by random walks and
applies a skip-gram model to learn the network embedding. We set

38

the number of iterations starting from each node v = 10, the length
of random walk ¢t = 100, and the window size of the skip-gram model
w = 10 according to the original settings.

LINE [38]: It preserves the first-order and second-order proximities by
defining a novel objective function. It adopts an efficient edge sampling
method to reduce the time cost and can be extended to large-scale
networks easily. Except the dimension of vectors, parameters are set
to default.

Node2vec [5]: This method designs a biased random walk procedure
to explore diverse neighbors and capture the community features of
nodes. We set the return parameter p = 1 and in-out parameter ¢ = 0.5
according to the original settings.

Hin2vec [39]: Hin2vec exploits different types of interactions and per-
forms multipe prediction tasks to jointly learn vectors of nodes and
meta-paths. We set the maximum length of meta-paths to 3, and oth-
er parameters are the same as in DeepWalk.

JUST [9]: It adopts random walks with stay and jump strategies to
balance the distribution of different types in HeINs. The initial stay
parameter is set to 0.5. We expect to confirm the effect of the biased
strategy in JSBD by comparing with this method.

Metapath2vec [36]: It applies predefined meta-paths to guide ran-
dom walks and then leverages the skip-gram model to learn node rep-
resentations. In our experiments, we define different meta-paths for
each dataset and show the best one. We construct meta-paths as fol-
lows: Magazine (magazine-user-magazine, magazine-brand-magazine),
Movies (actor-movie-director-movie-actor, actor-movie-composer-movie-
actor), Grocery (grocery-user-grocery, grocery-brand-grocery), and Douban
(user-movie-user, user-movie-director-movie-user). The parameter set-
tings are the same as in DeepWalk.

PTE [40]: It learns text embedding by labeled data and unlabeled data.
We restrain it as an unsupervised model and construct bipartite graphs
for each dataset: Magazine (magazine-user, magazine-brand), Movies
(movie-actor, movie-director, movie-composer), Grocery (grocery-user,

39

grocery-brand), and Douban (user-movie, user-user). We set the same
parameters as in DeepWalk.

For our algorithm, we set the upper bound of exploration range k = 6,
the original bias parameter § = 9, the maximum length of a random walk
lmaz = 100, the number of random walk iterations n = 10, the original stay
parameter a = 0.5, and the window size of the skip-gram model w = 10.
The number of memorized types m is set to 2 for Movies and Douban, and it
is set to 1 for Magazine and Grocery. For a fair comparsion, the embedding
dimension d of all models is set to 128.

5.2.3. Experimental Results

We transform the similarities of all methods into final scores by the same
linear function for a fair comparison, where the threshold ¢ is tuned in [0.3 %
avg.s, 0.7 x avgs|, and we report the best result. Figure 11 shows the results
of the four heterogeneous datasets.

08 N 065] DeepWalk
q 1 ! LINE
1 B Noceevec
Hin2vec
4 JusT
Metpatziec
4 PTE
JSGB
) 0.6
o o]
) o)
< <
0.55
Magazine Movie
(a) (b)
0.75 0.8

B DeepWalk 4 DeepWalk
] LINE
] e 1 Node2vec
] in2vec 1 Hin2vec
S] JUST
] vec Metapath2vec
R 0.7 PTE
] b JsGB

0.7
0.65

AUC

0.6

0.55]

0.5-
Grocery Douban

(c) (d)

Figure 11: Performance comparisons on heterogeneous datasets.

40

Figures 11 (a), (b), (c), and (d) are the comparison results in terms of
the AUC metric of our method JSDB and other embedding methods on
Magazine, Movies, Grocery, and Douban datasets, respectively. It is clear
that our proposed method outperforms all competing methods on Magazine,
Movies, and Douban. JSBD only lags behind the best performing method
1.12% on Grocery. These results indicate that our method is capable of
accurately preserving the topology structure and the community feature of
nodes in the embedding vectors.

5.2.4. Case Study

Apart from the accuracy metric, it is also important that a model can
provide suitable and userful recommendations in real applications. Compared
with other baselines, which do not intentionally consider the community
characteristic, Node2vec shows a better performance. Therefore, we focus on
the performance of JSBD and Node2vec on specific recommendations.

Table 5: Part of recommendation results of Grocery
Purchased items Recommended items
JSBD: Meat & Seafood | Bacon
Node2vec: Beverages | Coffee | Tea & Cocoa | Tea
JSBD: Beverages | Coffee | Tea & Cocoa | Tea | Iced Tea
Node2vec: Cooking & Baking | Nuts & Seeds | Pistachios
JSBD: Cooking & Baking | Flours & Meals | Wheat Flours & Meals
Node2vec: Snack Foods | Salasa | Dips & Spreads
JSBD: Herbs | Spices & Seasonings | Single Herbs & Spices | Allspicse
Node2vec: Candy & Chocolate | Candy & Chocolate Bars

JSBD: Sauces | Gravies & Marinades | Sauces | Asian | Sweet & Sour Sauce

Snack Foods, Jerky | Dried Meats

Candy & Chocolate | Brittle | Caramel & Toffee, Brittle

Pasta & Noodles | Noodles | Rice

Olives | Pickles & Relishes | Relishes | Vegetable Relishes

Condiments & Salad Dressings | Salad Dressings | Ranch ~
Node2vec: Snack Foods | Crackers | Assortments & Samplers

JSBD: Beverages | Coffee | Tea & Cocoa | Tea
Node2vec: Breakfast Foods | Breakfast & Cereal Bars | Cereal

Candy & Chocolate | Candy & Chocolate Bars

We use the product recommendation on Grocery as a case study. Each
product of Grocery is assigned a community label, such as jDairy | Cheese &
Eggs | Milk Substitutes | Coconut Milk;. We pick top-5% recommendations
from the results and report some examples in Table 5. The recommendations
of JSBD not only present higher correlation with purchased products than
those of Node2vec, but also ensure a distance in the topological structure.
This is consistent with the purpose that we propose the problem of link
recommendation across communities. Consequently, the superiority of our
method becomes more significant in practical scenarios.

41

6. Conclusions

Link recommendation is useful in many scenarios, and is often solved by
link prediction methods. Current link prediction methods dominantly assign
a high score for a pair of nodes within a short-distance range, leading to the
lack of diversified recommendations. We propose to study a novel problem
called link recommendation across communities in this paper. It expects to
find links potentially valuable across communities (not necessarily very far
in terms of path length—due to the small world phenomenon) that are often
overlooked by conventional link recommendation methods. The prioritiza-
tion of inter-community link prediction naturally extends link prediction and
increases the diversity of recommendation systems. To solve this problem, we
present a solution based on biased random walks and limited-hop traversals to
compute similarities in HoINs. For HelNs, we propose a network embedding
model to capture the network structure and community feature. We com-
pare our method with neighbor-based, path-based, and network-embedding
based methods. The comprehensive experiments on real-world and synthetic
datasets demonstrate that our algorithms provide a trade-off in balancing
computational efficiency and predictive accuracy, while showing better per-
formance in practical scenarios.

References

[1] C. Lei, J. Ruan, A novel link prediction algorithm for reconstructing
protein-protein interaction networks by topological similarity, Bioinfor-
matics 29 (3) (2012) 355-364.

[2] D. Liben-Nowell, J. Kleinberg, The link-prediction problem for social
networks, Journal of the American Society for Information Science and
Technology 58 (7) (2007) 1019-1031.

[3] H. Chen, X. Li, Z. Huang, Link prediction approach to collaborative
filtering, in: Proceedings of the 5th ACM/IEEE-CS Joint Conference
on Digital Libraries, 2005, pp. 141-142.

[4] J. C. Cubero, A Survey of Link Prediction in Complex Networks, ACM,
2016.

42

[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks,
in: Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, 2016, pp. 855-864.

M. S. Granovetter, The strength of weak ties, American Journal of So-
ciology 78 (6) (1973) 1360-1380.

A. Biswas, B. Biswas, Defining quality metrics for graph clustering e-
valuation, Expert Systems with Applications 71 (C) (2016) 1-17.

J. Kleinberg, The small-world phenomenon: An algorithmic perspective,
in: ACM Symposium on Theory of Computing, 2000.

R. Hussein, D. Yang, P. Cudré-Mauroux, Are meta-paths necessary?:
Revisiting heterogeneous graph embeddings, in: Proceedings of the 27th
ACM International Conference on Information and Knowledge Manage-
ment, ACM, 2018, pp. 437-446.

L. L, T. Zhou, Link prediction in complex networks: A survey, Physica
A: Statistical Mechanics and its Applications 390 (6) (2011) 1150-1170.

P. Jaccard, Etude comparative de la distribution florale dans une por-
tion des alpes et des jura, Bulletin de la Societe Vaudoise des Science
Naturelles 37 (142) (1901) 547-579.

L. A. Adamic, E. Adar, Friends and neighbors on the web, Social Net-
works 25 (3) (2003) 211-230.

T. Zhou, L. Li, Y.-C. Zhang, Predicting missing links via local infor-
mation, The European Physical Journal B 71 (4) 623-630.

M. Mitzenmacher, A brief history of generative models for power law and
lognormal distributions, Internet Mathematics 1 (2) (2004) 226-251.

L. Katz, A new status index derived from sociometric analysis, Psy-
chometrika 18 (1) (1953) 39-43.

L. Li, C.-H. Jin, T. Zhou, Similarity index based on local paths for
link prediction of complex networks, Physical Reivew E 80 (4) (2009)
046122.

43

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

W. Liu, L. Li, Link prediction based on local random walk, Europhysics
Letters 89 (5) (2010) 58007-58012(6).

G. Jeh, J. Widom, Simrank: a measure of structural-context similarity,

in: Proceedings of the eighth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2002, pp. 538-543.

S. Brin, L. Page, The anatomy of a large-scale hypertextual web search
engine, in: Proceedings of the International Conference on World Wide
Web, Vol. 30, 1998, pp. 107-117.

J. Neville, D. Jensen, Relational dependency networks, Journal of Ma-
chine Learning Research 8 (2) (2001) 653-692.

E. M. Airoldi, D. M. Blei, S. E. Fienberg, E. P. Xing, Mixed membership
stochastic block models, in: Proceedings of the International Conference
on Neural Information Processing Systems, 2008, pp. 33—40.

A. Clauset, C. Moore, M. E. Newman, Hierarchical sturcture and the
prediction of missing links in networks, Nature 453 (7191) (2008) 98.

Z. Huang, Link prediction based on graph topology : the predictive value
of generalized clustering coefficient, Social Science Electronic Publishing
(2006).

A. K. Menon, C. Elkan, Link prediction via matrix factorization, Pro-
ceedings of the Joint European Conference on Machine Learning and
Knowledge Discovery in Databases (1) (2011) 437-452.

L. Duan, S. Ma, C. Aggarwal, T. Ma, J. Huai, An ensemble approach to
link prediction, IEEE Transactions on Knowledge and Data Engineering
29 (11) (2017) 2402-2416.

M. Al Hasan, V. Chaoji, S. Salem, M. Zaki, Link prediction using super-
vised learning, Proceedings of SDM Workshop on Link Analysis Coutert-
errorism & Security 30 (9) (2006) 798-805.

R. N. Lichtenwalter, J. T. Lussier, N. V. Chawla, New perspectives and
methods in link prediction, in: Proceedings of the 16th ACM SIGKD-
D International Conference on Knowledge Discovery and Data Mining,
2010, pp. 243-252.

44

28]

[29]

[30]

[31]

[34]

[35]

H. R. De S4, R. B. Prudéncio, Supervised link prediction in weight-
ed networks, in: Proceedings of the International Joint Conference on
Neural Networks, 2011, pp. 2281-2288.

H. Kashima, T. Kato, Y. Yamanishi, M. Sugiyama, K. Tsuda, Link
propagation: a fast semi-supervised learning algorithm for link predic-
tion, in: Proceedings of the 2009 SIAM Internation Conference on Data
Mining, 2009, pp. 1100-1111.

R. Raymond, H. Kashima, Fast and scalable algorithms for semi-
supervised link prediction on static and dynamic graphs, in: Proceedings
of the Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, 2010, pp. 131-147.

Z. Zeng, K.-J. Chen, S. Zhang, H. Zhang, A link prediction approach
using semi-supervised learning in dynamic networks, in: Proceedings of

the Internation Conferennce on Advanced Computational Intelligence,
2013, pp. 276-280.

Y.-L. Chen, M.-S. Chen, S. Y. Philip, Ensemble of diverse sparsifications
for link prediction in large-scale networks, in: Proceedings of the IEEE
International Conference on Data Mining, 2015, pp. 51-60.

M. Ou, P. Cui, J. Pei, Z. Zhang, W. Zhu, Asymmetric transitivity pre-
serving graph embedding, in: Proceedings of the 22nd ACM SIGKDD
international conference on Knowledge discovery and data mining, 2016,
pp. 1105-1114.

B. Perozzi, R. Alrfou, S. Skiena, Deepwalk: Online learning of social
representations, in: Acm Sigkdd International Conference on Knowledge
Discovery and Data Mining, 2014.

M. Zhang, Y. Chen, Link prediction based on graph neural networks,
in: Advances in Neural Information Processing Systems, 2018, pp. 5165—
5175.

Y. Dong, N. V. Chawla, A. Swami, metapath2vec: Scalable represen-
tation learning for heterogeneous networks, in: Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2017.

45

[37]

[38]

[41]

[42]

Z. Huang, N. Mamoulis, Heterogeneous information network embedding
for meta path based proximity, CoRR abs/1701.05291 (2017).

J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, Q. Mei, Line: Large-scale
information network embedding, in: Proceedings of the 24th interna-
tional conference on world wide web, International World Wide Web
Conferences Steering Committee, 2015, pp. 1067-1077.

Y. Fu, W.-C. Lee, Z. Lei, Hin2vec: Explore meta-paths in heterogeneous
information networks for representation learning, in: Proceedings of the
2017 ACM on Conference on Information and Knowledge Management,
ACM, 2017, pp. 1797-1806.

J. Tang, M. Qu, Q. Mei, Pte: Predictive text embedding through large-
scale heterogeneous text networks, in: Proceedings of the 21th ACM

SIGKDD International Conference on Knowledge Discovery and Data
Mining, ACM, 2015, pp. 1165-1174.

H. Chen, H. Yin, W. Wang, H. Wang, Q. V. H. Nguyen, X. Li,
Pme:projected metric embedding on heterogeneous networks for link
prediction, in: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, ACM, 2018, pp.
1177-1186.

W.-Y. Chen, D. Zhang, E. Y. Chang, Combinational collaborative filter-
ing for personalized community recommendation, in: Proceedings of the
14th ACM SIGKDD international conference on Knowledge discovery
and data mining, ACM, 2008, pp. 115-123.

A. Sharma, B. Yan, Pairwise learning in recommendation: experiments
with community recommendation on linkedin, in: Proceedings of the 7th
ACM Conference on Recommender Systems, ACM, 2013, pp. 193-200.

X. Han, L. Wang, R. Farahbakhsh, A. Cuevas, R. Cuevas, N. Crespi,
L. He, Csd: A multi-user similarity metric for community recommen-

dation in online social networks, Expert Systems with Applications 53
(2016) 14-26.

R. Kumar, J. Novak, A. Tomkins, Structure and evolution of online
social networks, in: Link mining: models, algorithms, and applications,
Springer, 2010, pp. 337-357.

46

[46]

[47]

[48]

[49]
[50]

[52]

[53]

[54]

[55]

[56]

R. Diestel, Graph theory, Springer Publishing Company, Incorporated,
2018.

L. C. Freeman, A set of measures of centrality based on betweenness,
Sociometry (1977) 35-41.

P. Csermely, A. London, L. Y. Wu, B. Uzzi, Structure and dynamics
of core/periphery networks, Journal of Complex Networks 1 (2) (2013)
93-123.

https://en.wikipedia.org/wiki/Core-periphery _structure.

F. Della Rossa, F. Dercole, C. Piccardi, Profiling core-periphery network
structure by random walkers, Scientific reports 3 (2013) 1467.

F. L. Bauer, The Plankalkl of Konrad Zuse: a forerunner of today’s
programming languages, 1972.

T. T. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to algorithms,
Resonance 1 (9) (2003) 14-24.

G. Salton, M. J. McGill, Introduction to Modern Information Retrieval,
MuGraw-Hill, Auckland (1986).

J. Leskovec, J. Kleinberg, C. Faloutsos, Graph evolution:densification
and shrinking diameters, Acm Transactions on Knowledge Discovery
from Data 1 (1) (2007) 2.

J. Yang, J. Leskovec, Defining and evaluating network communities
based on ground-truth, Knowledge and Information Systems 42 (1)
(2015) 181-213.

A. Lancichinetti, S. Fortunato, F. Radicchi, Benchmark graphs for test-
ing community detection algorithms, Physical Review E 78 (4 Pt 2)
(2008) 046110.

M. Girvan, M. E. J. Newman, Community structure in social and bio-
logical networks 99 (12) (2002) 7821-7826. doi:10.1073/pnas.122653799.

F. Folino, C. Pizzuti, An evolutionary multiobjective approach for com-
munity discovery in dynamic networks, IEEE Transactions on Knowl-
edge & Data Engineering 26 (8) (2014) 1838-1852.

47

[59] J. Huang, H. Sun, J. Han, H. Deng, Y. Sun, Y. Liu, Shrink: A structural
clustering algorithm for detecting hierarchical communities in networks,
in: Acm International Conference on Information & Knowledge Man-
agement, 2010.

[60] https://github.com/aditya-grover/node2vec.
[61] https://github.com/muhanzhang/SEAL.
[62] https://github.com/muhanzhang/DGCNN.

[63] T. Fawcett, An introduction to roc analysis, Pattern recognition letters
27 (8) (2006) 861-874.

[64] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, A.-L. Barabési,
Hierarchical organization of modularity in metabolic networks, Science
297 (5586) (2002) 1551-1555.

[65] http://jmcauley.ucsd.edu/data/amazon/.

[66] http://movie.douban.co.

48

