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Abstract—One important problem that is insufficiently studied is finding densest /asting-subgraphs in large dynamic graphs, which
considers the time duration of the subgraph pattern. We propose a framework called Expectation-Maximization with Utility functions
(EMU), a novel stochastic approach that nontrivially extends the conventional EM approach. EMU has the flexibility of optimizing any
user-defined utility functions. We validate our EMU approach by showing that it converges to the optimum—by proving that it is a
specification of the general Minorization-Maximization (MM) framework with convergence guarantees. We devise EMU algorithms for
the densest lasting subgraph problem, as well as several variants by varying the utility function. Using real-world data, we evaluate the
effectiveness and efficiency of our techniques, and compare them with two prior approaches on dense subgraph detection.

Index Terms—Data mining, Graph algorithms, Stochastic methods

1 INTRODUCTION

IG Data is often represented by large dynamic graphs.

Discovering dense subgraphs is especially of interest
and has been studied for static graphs, but little has been
done on detecting dense subgraphs that last for a long
time interval. The need for detecting such dense lasting
subgraphs is especially evident in telecommunication, traffic
networks, and social network analysis.

Communication hotspots. In a mobile phone network, each
user is a vertex, and a phone call corresponds to one or
more edges with a time duration. Upon a significant event
or breaking news (e.g., a natural disaster or a social spotlight
event), dense, long-lasting phone calls among users pose a
challenge to the quality of mobile services, and should be
detected in a timely fashion for fast response [1]. The service
provider may want to identify the densest subgraph region
having edges that last for a long time, and allocate more
resources there. A similar need arises in Internet service
providers and data centers, where long-lasting and dense
computer network request regions (e.g., large file transfers)
should be provided with more resources.

Spam network filtering. Dense subgraph detection has
been used for community detection [2]. Dense long-lasting
subgraph patterns in communication/phone-call networks
often indicate true communities, while conventional com-
munity detection will also include spam call subgraphs that
are dense but typically quite short.

Traffic control. In road traffic networks, each road intersec-
tion (or critical points such as highway entries/exits) is a
vertex, and a real-time report of traffic condition between
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two vertices suggests an edge with a time duration and
a label (e.g., high-congestion, slowness, or smoothness).
Dense lasting subgraphs indicate traffic congestion that lasts
long and hence is the most significant [3]. Detecting such
congestion in time benefits interventions and overall traffic
effectiveness optimization.

While detecting dense subgraphs has been studied over
static graphs, not much has been done to detect dense
lasting subgraphs over dynamic networks. (1) Aggarwal et
al. [4] propose a two-phase solution for finding frequently
occurring dense subgraphs in dynamic graphs. In the first
phase, they identify vertices that tend to appear together. In
the second phase, they further find which vertices also form
a dense subgraph in the snapshots where they appear to-
gether. Nevertheless, the method is based on set similarity—
it may return vertices which are correlated in co-occurrence,
but which still appear rarely over time. Detecting dense
subgraphs that can last for a long period is not addressed.
(2) Ma et al. [5] study fast computation of dense temporal
subgraphs that pertain to the same set of nodes and edges
with time-varying edge weights. The density is aggregated
as the total edge weights of a subgraph. The approach first
detects “promising” time intervals; instances of subgraphs
in each time interval is then computed. In a nutshell, none
of these previous approaches performs a direct, principled
optimization of an objective function for the densest lasting
subgraph problem as we do.

Problem and framework overview. We develop a general,
stochastic approach to detecting densest lasting subgraphs.
We consider a dynamic graph as a sequence of graph
snapshots, each of which pertains to the same set of vertices
but may contain a different set of edges (Figure 1a). Part of
our goal is to compute a probabilistic subgraph model (Figure
1b top). The model has three critical parameters: number of
vertices, probabilities (p;) of each edge, and time duration
(number of consecutive snapshots it appears in). In addition
to this model, we need to find the value of a latent variable,
which indicates the “location” index of the occurrence of this
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Fig. 1. Overview: Dynamic graph (a) and target subgraph model (b).

subgraph model within the graph snapshots: from which
snapshot it starts, and which vertices it maps to in that
snapshot (Figure 1b bottom).

At the core of our work is a novel framework, namely,
Expectation Maximization with a utility function (EMU),
which nontrivially extends the Expectation Maximization
(EM) [6] method by incorporating a “utility” component
that characterizes the need of detecting dense lasting sub-
graphs. We theoretically justify the extension by prov-
ing that the new two-step iterative algorithm converges
to the optimum since EMU falls into the Minorization-
Maximization (MM) framework [7] in statistics. We propose
novel utility functions for EMU, show their connections
with previous work, and devise an algorithm under the
utility functions. The algorithm iterative refines both the
model and the latent variable value of the occurrence lo-
cation (Figure 1b). In summary:

o We formalize the problem of finding densest lasting-
subgraph in a dynamic graph (Section 2).

e We propose a novel EMU framework, and create
utility functions for our problem (Section 3).

e We devise an algorithm under EMU, and prove its
correctness as it is in the MM framework (Section 4).

o Weextend EMU to study other timing characteristics,
including the densest subgraph spikes (Section 5).

o Using four real-world dynamic datasets, we perform
a comprehensive empirical study (Section 6).

Related Work. We categorize the related work as follows.
Dense subgraphs in static graphs. Discovering dense sub-
graphs has been studied for static graphs [8], [9], [10], [11],
[12]. Dense subgraphs in static graphs are usually character-
ized by induced subgraphs with high edge-node count ratio,
such as edge density [9], k-cores [10], a-quasi-cliques [11],
among other variants. Decomposition algorithms are de-
veloped to find approximately dense subgraphs with op-
timaility guarantees [8], [9]. As observed in [12], dense
subgraphs defined by edge-node counts tend to produce
large subgraphs—for example, a graph can itself be a k-
core, while quasi-cliques are often too small. The semantics
in [12] incorporates an objective function on a notion of
edge surplus over the expected number of edges under
the random-graph model. This characterization subsumes
several conventional semantics, such as edge/vertex count
ratio and a-quasi-cliques, and leads to densest subgraphs
with a more balanced size.

2

Dense subgraph detection in dynamic graphs. Previous work
in this direction is significantly less than its static graph
counterpart. A streaming algorithm is proposed to improve
the algorithm in [8] for large graphs. The methods are
nevertheless still developed for static graphs rather than
temporal graphs. As remarked earlier, the approaches de-
veloped in [4], [5] either do not address time intervals, or do
not focus on finding dense subgraphs that also last long (the
details of comparisons are in Sections 1 and 6). The work
by Bogdanov et al. [13] shares the same problem model
as [5], but [5] improves the performance of [13] (thus we
only compare with [5]). Angel et al. [14] consider weighted
graphs with a constant number of vertices, and there are
a number of weight updates at each time interval. Even
though one can use weight increase and decrease to simulate
the presence and absence of edges, the major difference
of [14] from our work is the semantics: [14] finds dense
subgraphs in each graph snapshot without considering the
density across snapshots or time duration.

A preliminary version of this paper was published in
IEEE ICDE’19 [15]. Here, we have significantly extended the
ideas in [15]. Specifically, we add a new Section 5 where we
propose a universal and composable utility function frame-
work that addresses different timing characteristics such as
densest subgraph spikes. We also add the corresponding
experiments in Section 6.

2 PRELIMINARIES

We define a dynamic graph G over a period of time as a
sequence of graph snapshots {G, ..., Gr}. Each snapshot
Gy = (V,E;) at timestamp t (¢t € [1,T]) is an undirected
graph with a vertex set V' and an edge set F;. We next
introduce our subgraph model (shown in Figure 1).

Definition 1. (Subgraph Model) Given a dynamic graph Gr, a
subgraph model M(n, p, d) consists of three (sets) of parameters:
(1) n vertices , (2) the existence probabilities p; of each edge e;
from a total of (%)) possible edges, and (3) a time depth d that the
model spans in Gr (i.e., d adjacent snapshots).

The probabilistic subgraph model allows approximate
characterization of edge appearance in a temporal graph, in
terms of its probability. Moreover, it provides the flexibility
for us to specify a class of utility functions (to be discussed)
that characterize the properties of desired subgraphs. Sub-
graphs with predefined properties (e.g., k-cores) lack such
flexibility. Note that the edges in the data graph Gr are
deterministic in each snapshot; the probabilities p; are only
used in the subgraph model M to characterize the frequency
in which edge ¢ appears within the d snapshots of the match
instance in the data, as in the definition below.

Definition 2. (Lasting Subgraph) A lasting subgraph G4 in Gp
specified by a subgraph model M(n, p, d) is a dynamic graph that
consists of n vertices, and spans d contiguous snapshots in Gr;
moreover, there is a one-to-one mapping f from the vertices of M
to the vertices of Gq. We say that Gg is an occurrence of M, with
a probability Pr[Gq|M].

Intuitively, the existence of a lasting subgraph in Gr is
induced by an occurrence G4 of a corresponding subgraph
model M (n, p,d) in Gr, specified by the node mapping
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from M to G4 and the lasting duration d; the likelihood of
its existence is quantified by the model probability Pr[G4|M].
Note that the edges of each snapshot of G, is induced by the
node mapping. We discuss model probability in Section 4.

We are now ready to introduce the densest lasting sub-
graph problem. To this end, we introduce a utility function,
denoted as u(M), to measure the “quality” of subgraph
models. The utility function allows us to integrate various
density measures to lasting subgraph models. As such,
intuitively, finding densest lasting subgraphs is to discover
and compare subgraph models with higher u(M) values,
and moreover, more likely to have the corresponding occur-
rences in Gr.

Densest Lasting Subgraph Problem. Given a dynamic
graph G and a specified utility function u(M), the densest
lasting subgraph problem is to discover a subgraph model
M*(n, p,d) and the associated lasting subgraph G;*, such
that

(M*,Gq") = arg max(u(M) - Pr[Ga|M, Gr]).

We shall introduce and focus on a specific utility function
to present our algorithms (Section 3). These techniques on
the other hand readily extend to other classes of utility
functions, as verified in Section 5. For example, in Figure
1(a), the green dashed oval encloses a lasting subgraph that
has 6 vertices and spans 3 contiguous snapshots in the data,
which is an occurrence of the subgraph model M in Figure
1(b). Intuitively, the densest lasting subgraph problem is to
find the optimal subgraph model M* and associated lasting
subgraph instance in data with the highest utility. Readers
unfamiliar with EM or the Metropolis-Hastings method may
refer to [15] for some background.

3 EMU: EM WITH A UTILITY FUNCTION

In this section, we introduce our general algorithm frame-
work called EMU (EM with utility function). The idea is
to integrate a utility function into the EM process, such
that the process is guided by the utility function towards
maximizing the likelihood of subgraph models with the
desired density property.

3.1 Utility Function for Densest Lasting Subgraph

Intuitively, the subgraph models and their occurrences with
more edges and larger time depth should be favored, given
a specified number of vertices. We justify this intuition by
providing a utility function to characterize “good” models.

A probabilistic perspective. Given a subgraph model M,
consider M as an “agent” that generates the observed data.
If M generates Gg, then a “reward” u(M) is granted. Oth-
erwise, M gets no reward. Define a random variable U that
refers to the utility the model is rewarded in this process.
The goal is to find a model agent that achieves the highest
expected value of U. In other words, we want to maximize

E[U] = u(M) - Pr[Ga|M] (1)
which justifies our objective function in Section 2.

Utility function. In particular, our utility function for a
densest subgraph model M(n, p, d) is defined as

http://dx.doi.org/10.1109/TKDE.2020.3025463

U(M(na Py d)) = H ed(pj —) (2
where p; is the existence probability of edge j in the complete
edge set E.(M) of the model (edges induced by every vertex
pair), d is the time duration of M, and « is a constant that
(implicitly) balances contrasting terms of edge abundance
and node size of occurrences generated by the probabilistic
model agent. Intuitively, the utility function favors sub-
graph models with higher aggregated edge probability (thus
denser occurrences) and larger time duration d.

We next provide a justification by bridging the utility
function to a widely adopted semantics for static dense
graphs [12]. The density of a subgraph with edges Eg
induced by a set Vg of n vertices in [12] is quantified by edge
surplus of Vg, which is defined as |Eg| — a(}), where o is
a counterbalancing factor that penalizes subgraphs with too
many vertices. Thus the semantics strikes a balance between
contrasting measures of edge size and node size, by favoring
subgraphs that are neither “too small” nor “too large”. We
show the following. For proofs of theorems/lemmas not
shown in this paper, please refer to [15].

JEE(M)

Theorem 1. The problem of computing densest subgraph that
maximizes edge surplus [12] is equivalent to finding a densest
lasting subgraph that maximizes u(M(n, p,d)) where d = 1 and
p is either 0 or 1 for each edge e; € E.(M).

Theorem 1 suggests that our subgraph model subsumes
edge surplus of vertex set Vg over expected edge size under
the random-graph model. Given Theorem 1, one can also
verify that our problem is in general NP-hard. Indeed, com-
puting optimal static densest subgraph with edge surplus,
as a special case of our problem, is already intractable [12].

3.2 The General EMU Framework

While a standard EM method with the Maximum Likeli-
hood estimation [6] can be used to compute subgraph mod-
els that are likely to occur in Gr, it may yield occurrences
that are neither dense nor lasting. We now introduce our
general EMU framework incorporating a utility function.

Overview. Similar to EM, EMU methods also interleave the
E step and the M step. The difference is that in the M step,
instead of using the maximum likelihood estimate to get the
model parameters for the next iteration, EMU estimates the
model parameters by maximizing Equation (1). It is easy to
see that, if the utility function u(M) is a positive constant
value, then EMU is equivalent to EM. Thus, EMU can be
deemed a generalization of EM, expressing preference over
some property of the model to be searched for.

Specifically, a model M; at iteration i of EMU consists of
three (sets of) parameters: (1) the number of vertices 7;, (2)
the probability p;; of the j-th edge in a complete graph of
n; vertices (1 < j < (7;)), and (3) the time depth d;.

4 THE EMU ALGORITHMS

We next show that the general EMU framework gives birth
to efficient algorithms to compute the densest lasting sub-
graphs in large Gr. In the E step of EMU, given J\A/[i, we
estimate a probability distribution L of the location of J/\\/[i’s
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occurrence in Gp. In the M step, based on the (expected)
informaiion collected from L; in Gr, we estimate a new
model M;;, that maximizes E[U], and continue with the
next iteration of E step. For the M step, we use the utility
function in Section 3.1 by default, with generalized edge
probability p; € [0,1] (beyond the binary case in [12]),
and for the case d > 1, to characterize the densest lasting
subgraphs desired in many real-world applications.

Recall that a subgraph model M consists of a set of n
vertices V3 (out of the IV vertices V' of the dynamic graph),
edge probability p; for each edge j, and the time depth
d. During EMU, we need to match M with subgraphs in
Gr, starting from some snapshot. To perform this subgraph
match, one would need to enumerate all permutations of
the n vertices for isomorphism and examine p;. We first
introduce a technique to reduce the cost of subgraph match-
ing between a subgraph model and Gr, used by our EMU
algorithms.

Linearized Vertex Order. To simplify the model evaluation,
we assign an arbitrary, but fixed order to the IV vertices (V)
of the dynamic graph (let the list be vq,...,vy), as well as
to the n vertices Vi of M (let the list be uq, ..., u,). When
we evaluate any subset of n vertices v;,,...,v;, from the
dynamic graph against M (to get the matching probability
in our EMU algorithms that follow), v;,, ..., v;, are sorted
in their linear ID order in V, and are mapped one-to-one
with uy, ..., u, in M. The vertex linearization ensures that
a subset of n vertices is matched against M as one subgraph
rather than n! subgraphs (all vertex permutations). As such,
we avoid enumerating all permutations of v;,, ..., v;, in the
dynamic graph Gr.

Lemma 1. Assigning a fixed order to V and a fixed order to
Vi, and matching any subset of n vertices from V with Vi
following this order do not miss any occurrence of the densest
lasting subgraph models using the EMU framework.

The intuition of Lemma 1 is that, even though we give
an order to the vertices in V' and those in V), the EMU
algorithm has the full freedom to set the probabilities of all
the edges in the model M, so that its vertices one-to-one
match those in the optimal instance (G4). We next introduce
our EMU algorithm. As remarked earlier, EMU follows EM
by interleaving E steps and M steps. We present the E step
first and show the M step in Section 4.2. The algorithm,
in the end, returns the subgraph model M, and the latent
variable value—the model’s best location L in Gr.

4.1 Generalized E Step

Consider iteration ¢ of EMU. In the generalized E step,
we assume that the model M; is given (M is initialized
arbitrarily in the first iteration). The goal of E step is to
estimate the location distribution L of this model in Gr.
However, there are (iv)(T — d;) “locations” to examine,
where 7; and cf, are the number of vertices and time depth of
M;, respectively, for any subset of n; vertices starting from
the first T' — d; snapshots. While the vertex linearization
avoids vertex enumeration cost, it is still quite expensive to
examine every locations and compute the probabilities of
matching.

http://dx.doi.org/10.1109/TKDE.2020.3025463
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We tackle this challenge by adapting a statistical tech-
nique called the Metropolis-Hastings (MH) method to the
lasting subgraph model discovery. The idea is to selectively
get samples from the whole space of ( )(T d; ;) locations,
in such a way that they form a Markov chain that has a
stationary distribution, in which the probability of “hitting”
a location sample is proportional to the probability that M;
occurs in that location. Thus, this guided search tends to
find the true occurrence locations of M; quickly.

We present the E step as Algorithm GENERALIZEDE.

Algorithm 1: GENERALIZEDE (M;, Gr)

Input: model M, (i, pji, ds), dynamic graph Gz
Output: a location distribution L;

1 0+ getEdgeWalkComponent (i, di, Gr)

2 Pe HJEE(c) psi - I1; gE(c)(l 20

s Li — {(C,po)}

4 while |L;| < n. do

5 Cprev < C

6 r < random(0, 1)
7 if r Z DPteleport then
8 to < C.tor C.t+1or C.t — 1 with equal
probability
9 if C.V is a connected component in G, ., then
10 L C.t + tg
11 with probability 1/2 do
12 e < pick an edge randomly from N.(C')
13 C.V <+ C.VU {e’s endpoint not in C.V }
14 remove a random v € C.V s.t. C'is still a
component
15 else

16 L C + getEdgeWalkComponent (7;, czi, gr)

17 De < HJGE PJz : ngE(c)(l — pji)
18 « + min (1, )

Cprev

19 with probability 1 — a, set C' <= Cprev
20 L; + L;U{(C,pc)}

21 return ;
1 Function getEdgeWalkComponent (f;, d;, Gr)

2 e + pick an edge uniformly at random from
1..T—d; R

3 Ct<et; Cd<«d;

4 C.V <+ {two end points of e}

5 while |C.V]| < 7; do

6

Ne(C)
C.V + C.VU {e’s endpoint not in C.V'}

8 return C'

L e < pick an edge uniformly at random from

EMU Algorithm: E step. We introduce the details of E step.

Function getEdgeWalkComponent. We start with a
procedure invoked by GENERALIZEDE, denoted as
getEdgeWalkComponent, to randomly “grow” an 7; vertex
component starting from a selected edge (thus denser areas
in Gr have a higher chance to be reached). As shown in line
2 of getEdgeWalkComponent, it chooses an edge uniformly
from G, Ly which denotes snapshots G to G, in
Gr.In lme 3 of the function, we initialize a component ob]ect
C' (which in the end will grow to the same size as M; and be
returned). We set its starting time field C'.t to be the random

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

edge’s time, and its time depth field C.d to the current
model’s time depth. Line 4 of getEdgeWalkComponent
initializes component C’s vertex set C.V as the endpoints
of the first edge. The loop (lines 5-7) grows C' by randomly
selecting edges from N, (C), where N.(C) refers to the set
of neighboring edges of C' (i.e., those edges with exactly
one endpoint included in C).

Main algorithm. The algorithm GENERALIZEDE invokes
function getEdgeWalkComponent to obtain a component C'
(line 1). It then calculates the probability of generating the
specific component C, based on the edge probabilities p;;"s
for each edge j in M;, and the set of edges E(C) that are
in component C' (between C.V in the C.d snapshots from
C'.t). In line 3, the component and probability pair is added
to the location distribution set ;. The loop in lines 4-20 will
select more components to add to f/i, until the number is n.,
a performance/accuracy tradeoff parameter we shall study
in Section 6. ﬁi is finally returned in line 21.

“Teleport” or “Stay”?. In each iteration, the algorithm GEN-
ERALIZEDE decides whether to “teleport” to reinitialize a
component C' or to continue to perform local incremental
update to the current component C. This is decided by a
probability threshold piejeport (Iine 6). (1) With probability
1 — Pteteport, we do not “teleport”, i.e., to arbitrarily jump
to anywhere in the dynamic graph by calling getEdgeWalk-
Component (line 16). (2) Otherwise, we randomly change
the component’s starting time C'.t in its 1 interval (lines
8-10). Then in lines 11-14 we do minor adjustment to the
vertex set C.V. The intuition of introducing feleport is to
strike a balance between exploitation (sticking with local
good candidates) and exploration (exploring remote good
locations). This is especially necessary when the graph is not
connected. We will further examine the parameter piecport
in Section 6.

“Accept” or “Reject”? Line 17 computes the probability of the

current component C' given the model M;. The parameter «
at line 18 denotes the “acceptance” probability of the current
component C', which is the ratio between p¢ (the probability
of C given the model) and the probability of the previous
(accepted) component, but it should not exceed 1. At line 19,
with probability 1 — «, C is rejected and set to the previous
one. Note that GENERALIZEDE returns a distribution of the
locations (latent variable); the “expectation” (as in “E” of
EM) will be readily performed in the M step in Section 4.2.
Moreover, upon the return of the last run of E step, the
location (i.e., match instance C') in L; with the maximum
probability pc is considered as the best match instance of
the final model.
We illustrate GENERALIZEDE in Example 1.

Example 1. Figure 2(a) shows the current model M; where the
time depth is d; = 3,0; = 4, and the edge probabilities are as
shown—for clarity, all solid edges in Figure 2(a) have probability
0.7 and all dashed edges have probability 0.1. Figure 2(b) shows
a component C' involving the same four vertices across three con-
secutive snapshots G'g, Gy, and G1g, i.e., C.t = 8 and C.d = 3.
Then the probability of this component as calculated in line 2 or 17
isp. = (0.73-0.3-0.1-0.9)-(0.7-0.9%)-(0.73-0.3-0.1-0.9), where
the three sets of parentheses correspond to the edges from G, G,
and G, respectively. For example, for Gs, the contribution to

Vl A4V

(b)

Fig. 2. lllustrating details of GENERALIZEDE. (a) The model M; where
n; = 4,d; = 3, and each solid edge has probability 0.7 and each
dashed one 0.1 (simplified for clarity). (b) A component across three
snhapshots G to G1¢ with the same four vertices.

pc is 0.73 - 0.3 - 0.1 - 0.9, because among the four solid edges
in M; of Figure 2(a), G'g has three of them (each with probability
0.7) and the missing one is with probability 0.3, while for the two
dashed edges, one is there (with probability 0.1), and one is absent
(with probability 0.9).

We now prove some property of the GENERALIZEDE
algorithm, as will be part of the correctness proof/validation
of the whole EMU algorithms in Section 4.3.

Theorem 2. GENERALIZEDE performs a Markov chain Monte
Carlo sampling, specifically, the Metropolis-Hastings method with
a symmetric proposal function, returning a location sample drawn
from the probabilistic match instances of M; in G for iteration i.

4.2 Generalized M Step

We now proceed to describing the generalized M step of
EMU. Given a location distribution L; returned by GENER-
ALIZEDE, the goal of M step is to estimate (the parameters
of) an updated model JVEiH, which in turn will be used
by the next iteration (¢ + 1)’s E step. Our general idea is
to estimate the parameters of J/\\/[Hl that maximizes E[U],
which is to get three parts: number of vertices 7,1, edge
probabilities p; 41, and time depth cfH_l. The key idea is
to apply the result of solving the optimization problem
associated with the utility function in Equation (2) to set
the edge probabilities (Theorem 3), and to use Coordinate
Ascent [16] and Gradient Ascent [17] to optimize 7,11 and
dm. The algorithm is presented as GENERALIZEDM.

EMU Algorithm: M step. Lines 2-17 perform iterative Co-
ordinate Ascent optimization [16] over three sets of param-
eters of M,_H, namely pjiy1,Mi+1, and d1+1 Like the E-
step, the algorithm does Metropolis-Hastings sampling to
figure out the best model. In line 4, with equal probability,
the algorithm tries the adjacent values of the previous
iteration’s number of vertices. Lines 5-10 revise each com-
ponent accordingly. Line 11 invokes the function gradien-
tAscentTimeDepth (below the main function) to optimize the
time depth diy1. Line 3 of gradientAscentTimeDepth uses the
current setting of L; and 7, and first try time depth diy1+h,
a value slightly greater than the current dit1 (e g., h = 2).
Then it tries the time depth CZZ‘+1 — h. In either case, it calls
the function getModel to set the edge probabilities.

Line 2 of the function getModel iterates over each edge
of the subgraph components identified by L; and d, and
retrieves the “expectation” result as in EM. Recall that Li
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Algorithm 2: GENERALIZEDM (M;, Gr)

Input: distribution L;, model M, (i, Pja,
graph Gr
Output model M2+1 R
1 J\/[H_l “ null; Lp,nev — Ll, Nprev < M} dwev «—d;
2 while J\/[H_l not converged do
3 L+ Lp,w, d < dprev

d;), dynamic

4 74— Tprev OF Aprev — 1 OF fiprer + 1 with equal
probability
5 for each component C' in L do
if 1 > Nprey then

7 e < an edge uniformly at random from
Ne(C)

8 C.V + C.VU {e’s endpoint not in C.V'}

9 else if 7 < fiprev then

10 L remove random v € C.V s.t. C is still
connected

11 d« gradientAscentTimeDepth (L, 7, d)
12 M+ getModel(ﬁ7 A, d)
13 if M1 = null or u(M) > u(JV[iH) then
14 L j\/\[i+1 —~M

w0 )

u(Mit1)
16 with probability o do R

17 L Lp'rE’U <~ L np're'u — n/ dpre'u — d

15 a < min (1,

18 return J/\/\ti+1

1 Function gradient AscentTimeDepth (L, 71, d;+1)
2 while true do

3 Myn + getModel (Ll, n, d1+1 + h)

4 M_p + getModel (Ls, d1+1 h)

5 Au — u(M4r) — u(M_y)

6 if Au < € then

7

| break
8 tji+1 — Czi+1 + ’Y%
9 return di+1

1 Function getModel ( Li,h,d)
2 foreach edge j in the subgraphs identified by L; and d

do
3 nj' + E[number of snapshots that has edge j]
from L;
nt
4 ﬁj < TZ

5 | return M(n, p;,d)

consists of pairs (C, pc). Suppose edge j in line 2 is between
vertices u and v in the subgraph model, which are mapped
to vertices u; and v; in each component ¢, respectively. The
idea is to perform a weighted “average” (expectation) over
the |C| components, to draw a conclusion whether edge 7,
i.e., (u,v), exists in each of the d snapshots. The expectation
will be a value in [0, 1]. Summing this expectation over the
d snapshots (and based on the linearity of expectation), the
result is the expected number of snapshots that contain
a match for edge j, which is nT in line 3 of getModel.
Then in line 4, the edge probability p; is set based on the
optimization result using the utility function (Theorem 3).

Example 2. Revisiting the example in Figure 2, suppose Figure

http://dx.doi.org/10.1109/TKDE.2020.3025463

6

2(a) is the current model and Figure 2(b) is only one of the
|C| components in L;. For clarity, suppose there are only two
components |C| = 2, and the component shown in Figure 2(b)
has probability 0.8, while the other component (not shown) has
probability 0.2. Line 2 of getModel iterates through each edge of
the model in Figure 2(a); let us take one edge as an example, the left
vertical solid edge. In the component shown in Figure 2(b), this
edge appears in 2 snapshots (Gg and G) out of d = 3 snapshots.
In the other component not shown, suppose this edge appears in
all 3 snapshots. Then the expected value n;“ calculated in line 3

of getModel is 2 x 0.8 + 3 x 0.2 = 2.2. The edge probability in

line4is p; = ,/2—32 = 0.856. This is repeated for all other edges

of the model in Figure 2(a).

Back to the gradientAscentTimeDepth function, in lines 5
and 8, it estimates the gradient of the model utility function
and adjusts d;; with a value proportional to it (where 1 is
a small constant), based on Gradient Ascent [17]. Lines 6-7
are to exit the loop at convergence. This function estimates
the optimal d; 1 under the current 7 and pj’s

After gradientAscentTimeDepth is invoked in line 11 and
the best d is obtained, the algorithm retrieves the currently
cAhosen model in M at line 12, and at lines 13-14 sets it to

M;4q if it is the best so far. At lines 15-17 it completes
the MH sampling by setting the acceptance probablhty o.
Once the current candidate is accepted, its L, #, and d are
bookkept as the next iteration’s starting point (line 17).

EMU iteratively interleaves GENERALIZEDE and GEN-
ERALIZEDM, until the model converges, and the maximum
probability component is returned as the densest lasting
subgraph. We analyze the correctness of GENERALIZEDM.

Theorem 3. With the utility function in Equation (2), given the
parameters 0 and d of the model and a location distribution L of
the model in the dynamic graph, the edge probability parameters

¥
J
is the expected number of occurrences of edge j in L (as in line 3
of the getModel function).

p; that maximizes E[U] in Equation (1) is p; =

Theorem 3 justifies the choice of the getModel function
(line 4). We now justify the correctness of GENERALIZEDM.

Theorem 4. Given the location distribution L; from GENERAL-
1ZEDE, the GENERALIZEDM algorithm does Coordinate Ascent
to optimize three groups of parameters of model M: n, p;’s, and d.

Both GENERALIZEDE and GENERALIZEDM employ
Metropolis-Hastings sampling—although there are no the-
oretical guarantees when it will converge to the stationary
distribution, in practice [18], several thousand iterations are
typically used as the “burn-in” period. After that, the cost
of GENERALIZEDE is linear to the model size, given that the
distribution size n. is a constant (we study n. in Section
6, of which we use 50 as the default). Similarly, the cost of
GENERALIZEDM has the cost of gradient ascent as a linear
factor, which takes O(1/¢) iterations [17] where € is the
allowed error in line 6 of gradient AscentTimeDepth.

4.3 Validation of EMU Algorithms

In Sections 4.1 and 4.2, we have individually shown the
correctness of the generalized E step and M step, respec-

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.
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tively, in terms of their own roles. It remains to show that
our extension from EM to EMU is valid, i.e., the EMU
algorithms still converge to the optimum as EM does. We do
so by proving that EMU falls into a more general statistical
optimization framework called MM [7], which has been
proven to converge to the optimal objective values.

Preliminary on MM. The MM algorithm framework is an it-
erative optimization method which exploits the convexity of
a function in order to find their maxima or minima. The MM
stands for “Majorization-Minimization” or “Minorization-
Maximization”, depending on whether it is a minimization
or a maximization problem, respectively. EM can be treated
as a special case of MM, although EM has been more widely
known for its applications.

Let f(6) be the objective function for which we want
to find the location of the maximum value, as illustrated
in Figure 3 (the minimization problem is similar). The MM
algorithm works by finding a surrogate function ¢(6|6;) that
minorizes f(f), meaning that f(6) > ¢(0]0;) for all 6, and
f(6;) = g(0;]0;), as shown in Figure 3. Note that 6; denotes
the parameter value at the i'th iteration of MM. Thus, 6,
(with a subscript) is a constant, while 6 is a variable. g(0|6;)
is a function over §. The above minorization condition says
that the function curve/surface g(0|6;) lies below that of
f(0), and is tangent to it at the current iteration 6 = 0,
(Figure 3).

1

9(016i49)-~~ \

9(016:)

01 0;

Fig. 3. lllustrating MM. f(0) is the objective function, and ¢(6/6;) is
the surrogate function we maximize at each iteration ¢ instead. This
continues for iteration ¢ + 1, and so on.

MM is also iterative, where each iteration has two “M”
steps. The construction of the minorizing function g(616;)
constitutes the first M step, and the second M step max-
imizes the surrogate g(6|6;) rather than f(6) directly. The
marching of #; and the surrogate functions relative to the
objective function is shown in Figure 3. We refer the reader
to [7] for more details of MM.

Theorem 5. The EMU algorithm (given in Sections 4.1 and 4.2)
is also an MM (Minorization-Maximization) algorithm.

We also provide some insight on our random search
approach in [15].

5 DISCOVERING SUBGRAPHS WITH DIFFERENT
TIMING CHARACTERISTICS
In this section, we generalize our method to the discovery
of subgraphs with different timing characteristics:
e Sudden short spikes and bursts with dense sub-
graphs.
e Sudden densification of an area of the network.

e Sudden dissolution of a dense area of the network.

e Discovery from snapshots weighted by time of
occurrence—e.g., more recent ones have higher
weights.

It turns out that, interestingly, we can use our EMU
framework to achieve any of these goals too, by defining
different utility functions, or by customizing the weights of
match instances.

5.1 Discovering Densest Subgraph Spikes, Densifica-
tion, and Dissolution

5.1.1 Motivations
Let us first look at a few motivating applications.

Example 3. In brain science and neuroscience, complex network
topologies represent the necessary substrate to support complex
brain functions [19]. In this network, nodes are neurons, and
edges model the connections (morphological or functional) among
the neurons. Neurons communicate with other neurons in the
form of all-or-none action potentials, i.e., short-time spikes. These
spikes are the brain’s language for encoding information, both
extracted from external stimuli and sent by internal sources. For
instance, in acute slices, network bursts may be regarded as a
sign of epilepsy [20]. Therefore, it is very important to effectively
find the densest subgraphs that last for very short time periods,
surrounded by periods of relative quiescence.

Example 4. Some security attacks in computer networks, such
as port scan or denial of service, are marked by a large dense
subgraph that lasts for a short time [21]. They often evade the
conventional network security tools due to its extremely short
time duration. In addition, the fact that there is virtually no edge
connection activities before and after the attack is also among the
salient characteristics of such attacks. Thus, from the network logs,
it will be very helpful to discover such short but dense subgraphs
with significantly reduced or no activities before and after dense
period.

In both examples above, our previously selected utility
function and algorithm cannot be directly applied, for the
following two reasons:

1) It will select dense subgraphs that also last for a
long time, and will almost certainly miss the ones
that are dense but lasts for a very short time.

2) It will not take into consideration the characteristic
quiescence periods before and after the dense pe-
riod.

Thus, we will need a different method. To the best of
our knowledge, finding densest subgraph spikes in general
graphs has not been well-studied thus far. For instance,
Eswaran et al.’s work [21] only addresses bipartite graphs
and does not optimize the appearance and disappearance
of a dense subgraph simultaneously.

5.1.2 A Universal Framework to Design Utility Functions

We present a simple and elegant universal framework to
design utility functions for a broad range of optimization
problems that fall into a general model.

We illustrate our general model of the utility function in
Figure 4. The key idea is to generalize the utility function
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wing core wing

Fig. 4. lllustrating our general model of the utility function. There are
core layers (snapshots) in the middle, with optional left and/or right
wings before and after in time. The core may consist of either all
positive layers/edges (e.g., in the case of densest lasting subgraphs)
or a positive layer followed by negative ones (e.g., in finding spike dense
subgraphs). The wings, if they exist, typically are only negative layers.

model proposed in Equation (2) as follows. It is comprised
of core layers (i.e., graph snapshots) at the center (in time),
along with optional left and/or right wings before and after
them. The utility function in Equation (2) is a special case
in which we only have the core part. Intuitively, the wings
are to enforce the requirements of “suddenness”—the time
instants before and/or after the core densest subgraphs
devoid of the edges in the model.

In our stochastic model M for finding densest subgraphs,
and in the utility function of Equation (2), we call the term
efi~* for edge j in M a positive edge-factor, as it rewards
the presence of an edge in M. Model M has depth d, which
we call d layers, and edge j has d positive edge-factors over
them, i.e., (e =) = ¢¥Pi=) in Equation (2). This is true
for every edge in M; we say that the model M has d positive
layers in its core.

More generally, we may let the core of M have any
number of positive and negative layers, where a negative
layer, analogously, rewards the absence of an edge in it.
In particular, in the problem of finding spike densest sub-
graphs, we have one positive layer and d—1 negative layers,
i.e., a thinner core has a higher utility.

Accordingly, we propose that a negative edge-factor for
edge j is of the form e!=Pi=% Thus, a negative edge in a
negative layer is a logical complement of a positive edge—a
positive edge has probability p; in M, while a negative edge
has probability 1 — p;. This applies to all edges in a negative
layer.

The same simple and uniform treatment applies to the
(optional) wings too. Edge j in a layer of a wing has a
negative edge factor e!~%~%, where ¢; is the existence
probability of edge j in a wing. As can be seen by now,
this is essentially a composable and universal utility function
framework. Several interesting instantiations of this general
framework are as follows:

e Only positive layers in the core and no wings. This is
the densest lasting subgraph problem studied above.

e One positive layer and d — 1 negative layers in the
core, along with two wings of negative layers. This is
the densest subgraph spike problem.

o All positive core plus two negative wings. This iden-
tifies the sudden appearance and disappearance of a

dense region.

e All positive core plus a negative left wing. This
identifies the sudden densification of an area of the
network.

e All positive core plus a negative right wing. This
corresponds to a sudden dissolution of a densely
active region.

In particular, for the densest subgraph spike problem,
the utility function is:

_ j—a+(d—1)(1—p;—a 2w(l—qj—a
u(M) = H]EE(M) eP (d=1)(1-p )HjEE(M) e2w( o )
where the first product is for the core and the second for
the two wings, each of which has w layers, and g; is the
probability of edge j in the wings. In the first product,
ePi=® is for the positive layer, while e(?~1)1=ri=a) js for
the d — 1 negative layers. Thus far, it appears that all our
utility functions are of the form of a product of natural
exponential functions. This is partly for the convenience
of algebraic manipulation in maximizing Equation (1), and
partly for magnifying the effect of p; for fast convergence to
the desired density. However, in principle, as long as the M
step can maximize Equation (1), other functions could work
too, which we leave for future study.

5.1.3 Setting the Parameters

We first discuss how to set the parameter « in Equation (3)
for the densest subgraph spike problem. Since we are look-
ing for spikes, it does not make sense for the core duration d
to be too large, as otherwise it would not be a “spike”—thus,
let the upper bound allowed by the application be d < D.
We first state the following desideratum of a reasonable
utility function.

Desideratum 1 (Monotonicity). For the same depth d in a
densest subgraph spike model M, extending M with more edges
(thus making it denser) should increase its utility.

We are now ready to state the following result for select-
ing the parameter «.

Theorem 6. To achieve Desideratum 1, we must set the parame-
Zar o < 35, where D > 2 is the upper bound of the model depth

Proof. Consider two densest subgraph spike models M;
and My where M; has m edges and M, has km edges
(k > 1), with all other parameters being the same. Then
Desideratum 1 requires that u(M;) < u(Mz). From Equa-
tion (3), for the simple case where all edges have the same
probability p > «a, we have elP~®)m2-d)+m{1-2a)(d=1) <
e(pfa)km(2fd)+km(l72a)(d71).

Simplifying the above inequality, we have (p — a)(2 —
d) + (1 —2a)(d — 1) > 0. For d = 1, this inequality holds
as long as p > o (which is required for it to be a dense
subgraph). For d = 2, it holds as long as a < 1 < =, as
D > 2. Finally, for d > 2, we must have p < a+ (2020 20‘)(2

which will hold if o + w > 1. With some algebra1c
manipulation, this leads to ol < < 3. O

Theorem 6 gives us insight on how to set the model pa-
rameter o. It also shows the validity of our universal utility
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function framework. For example, it is easy to verify that
an alternative design of setting the negative edge factor to
e~ (%= (instead of ' ~% ~*) does not satisfy Desideratum 1
for any . We next discuss how to iteratively set the model
parameters p; and g; for each edge j in M in the revised
GENERALIZEDM algorithm.

Theorem 7. For the densest subgraph spike problem using
Equation (3) as the utility function, to maximize E[U] in Equation
(1), pj and q; are set as follows. Let nj and n; be the expected

numbers of occurrences of edge j in the core and wings in L
¥
J

(getModel function), respectively. Then, if d = 1, p; =

fd=2p; =

Moreover, G; =1 —\/1— %

Proof. Given a model M, the probability of the weighted
average component of L is

PriGa) = [T e 1,0 =p) 1L, oy, 411, (1(—4;1.1
where E and E,, are the set of edges in the core and wings
in this component in data, respectively.

Based on Equations (3) and (4), taking the derivative of
the log of Equation (1) to get maximum E[U] gives us

B

nt . R _ _ nt
Sifd > 20 = 5 —\(E) - i

SH

QU

nt  d-nf
8111715[U]:2_d+7]_7]:0 (5)
Ip; pi  1—=pj

From Equation (5), we further get (d — 2)p3 + 2(1 — d)p; +
nj = 0, which gives us the results on p; for the cases of
d=1,d =2,and d > 2 as stated in the theorem. Likewise,
we have

O E[U] n;  2w-—n;

— w42 T ©)
Jq; q; 1—g;

which finally gives us §; = 1 — @ . 0

To see a concrete numeric example, suppose the model
core depth is d = 6, and a particular edge j in expectation
appears 4 times (ie., n;r = 4) in the match component
distribution (L), and in expectation appears 0.36 fraction in

the two wings (i.e., ;L—Jw = 0.36). Then from Theorem 7, we
set p; = 0.5 and ¢; = 0.2 in the GENERALIZEDM algorithm.

A final remark is that we can set the parameters in an
analogous manner as Theorem 7 for other instantiations
of our universal utility function and other versions of the
problem as listed in Section 5.1.2.

5.2 Other Generalizations and Extensions

Adding node/edge labels. Our powerful utility function
framework also allows us to handle graphs of different
variants. For example, we may include the distinctions of
edge and vertex labels in the selection of densest temporal
subgraphs by extending the utility function, for which we
have the following result:

Theorem 8. In our algorithms for the densest lasting subgraph
problem, given the location distribution L, and the current param-
eters i and d of the model, to maximize E[U] (Section 3.1), the

http://dx.doi.org/10.1109/TKDE.2020.3025463
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edge label probability of the model py; for edge j and label | € X
n;
should be set to pyj = ——4—

A2 ~ + 7
d —dnL].

expected number of snapshots in which edge j has label I (resp.,
does not exist) among the d snapshots in L.

+ +y
where n;; (resp., n7 ;) is the

The details, as well as the proof of Theorem 8, are in [15].

Adding node/edge weights and adding time weights. In
the same vein, we may take advantage of the flexibility of
the EMU framework by setting the utility function for other
scenarios, such as giving weights to edge/vertex labels
for appearing in the densest lasting subgraph, as well as
handling parallel edges (i.e., multiple edges at the same time
between two vertices).

Finally, we may also give priorities and weights to data
at different times in the past. For instance, in practice it
often makes sense to prefer finding more recent dense
subgraphs than older ones. Interestingly, for this extension,
it is different from generalizing the utility function. Instead,
one can multiply a time factor t7 (where v > 0 is a constant)
to the probabilities of each component in the component lo-
cation distribution L. In this way, a more recent component
(i.e., match instance) in data will have higher weights (i.e.,
greater t7).

6 EXPERIMENTS

6.1 Datasets and Setup

Datasets. We use four real-world datasets: (1) Twitter. Twit-
ter Stream API [22] is used to retrieve data from Jan. 22
to May 21, 2017. For Twitter and Stack Overflow below,
we treat users as vertices and edges as communications,
and the edge duration is the time period in which the
user who initiates the communication keeps active and
communicating with one or more users (without pausing
for more than 30 seconds). (2) Taxi. The trip data is about
30GB, containing the information of all taxi trips in NYC in
2013 [23]. It has 14 attributes. Each trip from the pick-up to
the drop-off locations is an edge, with the trip time as edge
duration and the number of passengers as edge label. (3)
Stack Overflow [24]. This is a network of interactions on
the web site Stack Overflow [25]. There are three types of
interactions represented by a directed edge (u,v,t), where
user u answered or commented on user v’s question or
comment at time ¢. (4) NY events [26]. It contains traffic and
transit events in NY. We partition the NY state into 0.0011-
degree latitude by 0.0012-degree longitude grid areas. Each
grid area is a vertex and the event type is a vertex label.
When a transportation event happens at a vertex (e.g., an
accident), we create eight edges indicating its impact to its
eight surrounding grid areas, and the event duration is the
edge duration. The statistics of the datasets are in Table 1.

Methods. We compare our methods with two related ap-
proaches in [4] and [5] briefly reviewed below.

Dense pattern. The “Dense pattern” approach in [4] returns a
set of vertices that are similar with respect to the snapshots
they appear in, and that have dense edges between them.
There are a few issues. First, the “similarity” above is based
on set similarity, for the set of snapshots each vertex appears

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.
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TABLE 1
Statistics of the datasets
Average
Dataset #vertices #edges inter-ar- Data
rival time Size
Twitter 17,274,424 119,604,457 0.1 sec 49GB
Taxi 5,654 169,100,000 0.186 sec 5.62GB
OStaCk 2,601,977 | 63497,050 | 3.775sec | 1.64GB
verflow
NY events| 429,456 10,148,112 161.62 sec 138.7MB

in. This is too restrictive. Second, it returns “small” sub-
graphs. In step 1, [4] uses a MinHash method for finding a
set of vertices. If the probability that two vertices are similar
is p, the probability that three vertices are similar is p?, and
so on. Thus, the probability that such similar pair of vertices
joining a returned vertex set decreases exponentially. Finally,
it does not consider “continuity” strength over time.

Dense temporal subgraph. This approach in [5] uses two
phases: (1) locating top-k promising snapshot intervals
without considering any subgraphs, and (2) finding the
heaviest-weight subgraph in each of those intervals. Al-
though it is efficient, there are a few major issues for our
problem. First, it uses a model where all edges are present
in all snapshots, while only the weights vary. The “evolving
convergence phenomenon” relied upon in [5] is to assume
that edge weights of the whole graph increase or decrease
in the same direction at any time. This does not hold for the
applications we look at. For example, for communication
graphs, over a long period of time, the number of times
of starting a communication should match the number of
times of ending a communication, and the weight increase
and decrease may happen simultaneously in any graph
snapshot. Second, it would tend to return huge subgraphs.
This is because the connection between two positive weight
components is a single edge (with a minimum weight of
—1 in each snapshot of the selected time interval). Thus,
there is a good chance that the algorithm will merge the two
positive components to have a higher total weight, resulting
in a component too large to be a meaningful result.

We implement all the algorithms in Java. The experi-
ments are performed on a MacBook Pro machine with OS X
version 10.11.4, a 2.5 GHz Intel Core i7 processor, a 16 GB
1600 MHz DDR3 memory, and a Macintosh hard disk.

6.2 Experimental Results

We first study the effectiveness of our EMU approach, i.e.,
the quality/density of the subgraphs discovered. We com-

Distribution size Teleport probability

pare our method with the two related methods, denoted as
“Dense pattern” [4] and “Dense temporal” [5], respectively.
For a fair comparison, we define a metric called density
score s = [m — a(})]d’. Here, n is the number of vertices
in the found subgraph pattern, d is the time duration—the
number of consecutive snapshots where each snapshot has
a duration of 3 hours, and m is the number of edges in this
subgraph that appears in at least half of the snapshots (d/2).
Following [12], we set & = 1/3 and 8 = 1/2 by default.
Intuitively, this metric indicates the “surplus” number of
edges compared to a (discounted) complete graph over all
vertices in the selected subgraph and across d snapshots.

Effectiveness on Real Datasets

Twitter. Recall that two parameters are location distribution
size and teleport probability in GENERALIZEDE. Figure 5
shows the density scores of the densest lasting-subgraphs
returned by EMU over Twitter data, as we vary the location
distribution size. It also shows the density scores of the
results returned by previous work dense pattern [4] and
dense temporal [5] (which remain constants as they do not
have such a parameter). As the distribution size increases,
the density scores improve, eventually converging. This
is because exploring a larger location distribution gives a
higher chance to get to a denser lasting-subgraph, indicating
a trade-off between result quality and performance. We use
50 as the default size. As explained earlier, the dense pattern
approach [4] tends to return small subgraphs, which get
smaller density scores. The dense temporal approach [5],
on the other hand, tends to return very large subgraphs,
resulting in negative scores (i.e., the number of edges are
few compared to the complete graph over those vertices).

Taxi. In Figure 6, we vary the teleport probability between
0.1 and 0.9, and measure the density scores over Taxi. (1)
The maximum score occurs when the teleport probability
is around 0.3 (which we use as default). Indeed, teleports
help when the search is stuck at a local maximum. Too
frequent teleports, however, may prematurely abort or delay
a good location. (2) The density scores achieved over Taxi
are much higher than Twitter in Figure 5, due to the nature
of the datasets—traffic tends to be much denser with longer-
lasting edges than communication networks. The dense
pattern [4], however, still ranks small subgraphs as they are
much more likely to be discovered, resulting in small scores.
The dense temporal subgraph [5], on the other hand, returns
subgraphs that are too large with negative scores.

Stack Overflow and NY Events. Similarly, we report the den-

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.
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sity scores vs. distribution sizes over the Stack Overflow
data in Figure 7. The trend is consistent with that in Figure
5, except that the scores are higher. Varying the teleport
probability, we report the result using NY events in Figure
8. The density scores are relatively low for this dataset, as
the events such as accidents and delays are usually not very
dense. Moreover, compared to Figure 6, the density scores
are less sensitive to the teleport probability.

Efficiency on Real Datasets. We next evaluate the efficiency,
reported as the number of processed edge changes per
second, as shown in Figure 9 for Twitter. The performance
of EMU algorithms degrades as we increase the location
distribution size, because the increase significantly slows
down both the E and M steps. We also see that the dense
temporal approach [5] is significantly faster than EMU,
while the dense pattern approach is slower. Dense temporal
approach is faster because its phase (1) discards a large
amount of data, as it only heuristically selects a small
number of intervals, which also eases its subgraph search in
phase (2). The dense pattern approach [4], however, needs
to process a large “transaction table” for the dataset.

In the same vein, we also measure the performance over
Taxi for various teleport probabilities in Figure 10, over
Stack Overflow for various distribution sizes in Figure 11,
and over NY events for various teleport probabilities in
Figure 12. The performance decreases as the teleport proba-
bility increases, as performing a teleport is more expensive
for obtaining a whole random subgraph component, while
making local changes only slightly revises a component.

Adding Vertex/Edge Labels. We now look into adding
edge or vertex labels, which the two approaches in [4] and
[5] cannot handle. For Taxi, we consider the number of
passengers in a trip as an edge label. Thus, the densest
lasting-subgraph found contains matching edge labels. The

Density score
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Fig. 13. Density w/ edge labels(Taxi) Fig. 14. Speed w/ edge labels(Taxi) Fig. 15. Density w/ vertex labels(Events) Fig. 16. Speed w/ vertex labels(Events)

density score comparison for with vs. without edge labels
under various distribution sizes is shown in Figure 13. The
scores are in general lower when we consider edge labels.
This is because the chance of matching an edge with a
specific label is smaller, compared to simply matching an
edge. In Figure 14, we show the performance comparison. It
becomes slower with edge labels because the entropy of the
problem instance is higher with edge labels, i.e., there are
more variables in the dynamic graph. Thus, it takes longer
for EMU to converge.

We next examine the effect of vertex labels using NY
events, where a vertex label indicates the type of events at
the vertex (grid area). We show the density scores in Figure
15 and performance in Figure 16 vs. teleport probability. The
densest lasting subgraph model discovered contains vertex
labels “delays” and “accident”, indicating that they are the
most common event types. The comparison result with and
without vertex labels is similar to its counterpart with and
without edge labels—the density scores and performance
are lower with vertex labels, for the same reason as for
edge labels. We find that the optimal teleport probability
is around 0.1.

Discovering Densest Subgraph Spikes. We now evaluate
our approach on discovering densest subgraph spikes, as
presented in Section 5.1. We use the Twitter and the Taxi
datasets, where looking for sudden short subgraph spikes
is more practically significant. For Twitter data it means
sudden appearance and disappearance of a hot topic, while
for Taxi data it means sudden densification followed by
quickly dissolution of traffic possibly due to a short-term
event.

We naturally adapt our previously used density score
definition to this new use as s = [m — a(})]d? + [(5) —m —
a(5)](2w)”?, where 8 = —1/2, the first term corresponds to
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the core part of the utility, and the second term corresponds
to the negative layers at the wings. We show the density
scores using the two datasets in Figure 17 for various
distribution sizes and the throughput in Figure 18.

We can see that for both datasets, the density scores
increase as we increase the distribution sizes, while the
throughput decreases. This is due to the tradeoff between
processing overhead and accuracy. Density scores level off
as we keep increasing the distribution size. Moreover, we
obtain higher density scores with the Taxi data than the
Twitter data, demonstrating that the Taxi data has more
dramatic spikes than the Twitter data.

Summary. Our experimental study using four real-world
data sets demonstrates that our EMU framework is effective
in solving the problem of finding densest lasting-subgraph
as observed in many dynamic graph applications. Our al-
gorithms outperform two state-of-the-art densest subgraph
discovery methods in [4] and [5] in effectiveness measured
by density score, and strikes a balance between too small
and too large dense subgraphs. The location distribution
size of our EMU algorithms provides a tradeoff between
result quality and performance, and the optimal teleport
probability is often between 0.1 and 0.3 in our empirical
study. Finally, EMU algorithms readily extend to coping
with edge or vertex labels and other timing characteristics,
which cannot be supported by the baseline methods.

7 CONCLUSIONS

We propose a novel probabilistic subgraph model to charac-
terize densest temporal subgraphs in a dynamic graph, and
a stochastic approach, EMU, which nontrivially extends EM
with a utility function for the desired objective. Based on the
semantics that we propose for densest lasting subgraphs, we
devise EMU algorithms using MH sampling and coordinate
and gradient ascent, and prove the correctness of EMU by
showing its membership in MM algorithms. Our experi-
ments over four real-world datasets verify the effectiveness
and efficiency of our algorithms.
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