
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

A Stochastic Approach to Finding Densest
Temporal Subgraphs in Dynamic Graphs

Xuanming Liu, Student Member, IEEE, Tingjian Ge, Member, IEEE, and Yinghui Wu, Member, IEEE

Abstract—One important problem that is insufficiently studied is finding densest lasting-subgraphs in large dynamic graphs, which
considers the time duration of the subgraph pattern. We propose a framework called Expectation-Maximization with Utility functions
(EMU), a novel stochastic approach that nontrivially extends the conventional EM approach. EMU has the flexibility of optimizing any
user-defined utility functions. We validate our EMU approach by showing that it converges to the optimum—by proving that it is a
specification of the general Minorization-Maximization (MM) framework with convergence guarantees. We devise EMU algorithms for
the densest lasting subgraph problem, as well as several variants by varying the utility function. Using real-world data, we evaluate the
effectiveness and efficiency of our techniques, and compare them with two prior approaches on dense subgraph detection.

Index Terms—Data mining, Graph algorithms, Stochastic methods

F

1 INTRODUCTION

B IG Data is often represented by large dynamic graphs.
Discovering dense subgraphs is especially of interest

and has been studied for static graphs, but little has been
done on detecting dense subgraphs that last for a long
time interval. The need for detecting such dense lasting
subgraphs is especially evident in telecommunication, traffic
networks, and social network analysis.

Communication hotspots. In a mobile phone network, each
user is a vertex, and a phone call corresponds to one or
more edges with a time duration. Upon a significant event
or breaking news (e.g., a natural disaster or a social spotlight
event), dense, long-lasting phone calls among users pose a
challenge to the quality of mobile services, and should be
detected in a timely fashion for fast response [1]. The service
provider may want to identify the densest subgraph region
having edges that last for a long time, and allocate more
resources there. A similar need arises in Internet service
providers and data centers, where long-lasting and dense
computer network request regions (e.g., large file transfers)
should be provided with more resources.

Spam network filtering. Dense subgraph detection has
been used for community detection [2]. Dense long-lasting
subgraph patterns in communication/phone-call networks
often indicate true communities, while conventional com-
munity detection will also include spam call subgraphs that
are dense but typically quite short.

Traffic control. In road traffic networks, each road intersec-
tion (or critical points such as highway entries/exits) is a
vertex, and a real-time report of traffic condition between

The work is supported by NSF grant IIS-1633271. Wu is supported by NSF
under CNS-1932574, OIA-1937143, ECCS-1933279, CNS-2028748, DoE
under DE-IA0000025, and PNNL Data-Model Convergence initiative.

• X. Liu and T. Ge are with the Department of Computer Science, Univer-
sity of Massachusetts, Lowell, MA 01854.
E-mail: {xliu, ge}@cs.uml.edu

• Y. Wu is with the Department of Computer & Data Sciences, Case
Western Reserve University, Cleveland, OH 44106.
E-mail: yxw1650@case.edu

two vertices suggests an edge with a time duration and
a label (e.g., high-congestion, slowness, or smoothness).
Dense lasting subgraphs indicate traffic congestion that lasts
long and hence is the most significant [3]. Detecting such
congestion in time benefits interventions and overall traffic
effectiveness optimization.

While detecting dense subgraphs has been studied over
static graphs, not much has been done to detect dense
lasting subgraphs over dynamic networks. (1) Aggarwal et
al. [4] propose a two-phase solution for finding frequently
occurring dense subgraphs in dynamic graphs. In the first
phase, they identify vertices that tend to appear together. In
the second phase, they further find which vertices also form
a dense subgraph in the snapshots where they appear to-
gether. Nevertheless, the method is based on set similarity—
it may return vertices which are correlated in co-occurrence,
but which still appear rarely over time. Detecting dense
subgraphs that can last for a long period is not addressed.
(2) Ma et al. [5] study fast computation of dense temporal
subgraphs that pertain to the same set of nodes and edges
with time-varying edge weights. The density is aggregated
as the total edge weights of a subgraph. The approach first
detects “promising” time intervals; instances of subgraphs
in each time interval is then computed. In a nutshell, none
of these previous approaches performs a direct, principled
optimization of an objective function for the densest lasting
subgraph problem as we do.

Problem and framework overview. We develop a general,
stochastic approach to detecting densest lasting subgraphs.
We consider a dynamic graph as a sequence of graph
snapshots, each of which pertains to the same set of vertices
but may contain a different set of edges (Figure 1a). Part of
our goal is to compute a probabilistic subgraph model (Figure
1b top). The model has three critical parameters: number of
vertices, probabilities (ρi) of each edge, and time duration
(number of consecutive snapshots it appears in). In addition
to this model, we need to find the value of a latent variable,
which indicates the “location” index of the occurrence of this

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2020.3025463

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

from M to Gd and the lasting duration d; the likelihood of
its existence is quantified by the model probability Pr[Gd|M].
Note that the edges of each snapshot of Gd is induced by the
node mapping. We discuss model probability in Section 4.

We are now ready to introduce the densest lasting sub-
graph problem. To this end, we introduce a utility function,
denoted as u(M), to measure the “quality” of subgraph
models. The utility function allows us to integrate various
density measures to lasting subgraph models. As such,
intuitively, finding densest lasting subgraphs is to discover
and compare subgraph models with higher u(M) values,
and moreover, more likely to have the corresponding occur-
rences in GT .

Densest Lasting Subgraph Problem. Given a dynamic
graph GT and a specified utility function u(M), the densest
lasting subgraph problem is to discover a subgraph model
M∗(n, ρ, d) and the associated lasting subgraph Gd∗, such
that

(M∗,Gd∗) = arg max
M,Gd

(u(M) · Pr[Gd|M,GT]).

We shall introduce and focus on a specific utility function
to present our algorithms (Section 3). These techniques on
the other hand readily extend to other classes of utility
functions, as verified in Section 5. For example, in Figure
1(a), the green dashed oval encloses a lasting subgraph that
has 6 vertices and spans 3 contiguous snapshots in the data,
which is an occurrence of the subgraph model M in Figure
1(b). Intuitively, the densest lasting subgraph problem is to
find the optimal subgraph model M∗ and associated lasting
subgraph instance in data with the highest utility. Readers
unfamiliar with EM or the Metropolis-Hastings method may
refer to [15] for some background.

3 EMU: EM WITH A UTILITY FUNCTION

In this section, we introduce our general algorithm frame-
work called EMU (EM with utility function). The idea is
to integrate a utility function into the EM process, such
that the process is guided by the utility function towards
maximizing the likelihood of subgraph models with the
desired density property.

3.1 Utility Function for Densest Lasting Subgraph
Intuitively, the subgraph models and their occurrences with
more edges and larger time depth should be favored, given
a specified number of vertices. We justify this intuition by
providing a utility function to characterize “good” models.

A probabilistic perspective. Given a subgraph model M,
consider M as an “agent” that generates the observed data.
If M generates Gd, then a “reward” u(M) is granted. Oth-
erwise, M gets no reward. Define a random variable U that
refers to the utility the model is rewarded in this process.
The goal is to find a model agent that achieves the highest
expected value of U . In other words, we want to maximize

E[U] = u(M) · Pr[Gd|M] (1)

which justifies our objective function in Section 2.

Utility function. In particular, our utility function for a
densest subgraph model M(n, ρ, d) is defined as

u(M(n, ρ, d)) =
∏

j∈Ec(M)
ed(ρj−α) (2)

where ρj is the existence probability of edge j in the complete
edge set Ec(M) of the model (edges induced by every vertex
pair), d is the time duration of M, and α is a constant that
(implicitly) balances contrasting terms of edge abundance
and node size of occurrences generated by the probabilistic
model agent. Intuitively, the utility function favors sub-
graph models with higher aggregated edge probability (thus
denser occurrences) and larger time duration d.

We next provide a justification by bridging the utility
function to a widely adopted semantics for static dense
graphs [12]. The density of a subgraph with edges ES
induced by a set VS of n vertices in [12] is quantified by edge
surplus of VS , which is defined as |ES | − α

(n
2

)
, where α is

a counterbalancing factor that penalizes subgraphs with too
many vertices. Thus the semantics strikes a balance between
contrasting measures of edge size and node size, by favoring
subgraphs that are neither “too small” nor “too large”. We
show the following. For proofs of theorems/lemmas not
shown in this paper, please refer to [15].

Theorem 1. The problem of computing densest subgraph that
maximizes edge surplus [12] is equivalent to finding a densest
lasting subgraph that maximizes u(M(n, ρ, d)) where d = 1 and
ρ is either 0 or 1 for each edge ej ∈ Ec(M).

Theorem 1 suggests that our subgraph model subsumes
edge surplus of vertex set VS over expected edge size under
the random-graph model. Given Theorem 1, one can also
verify that our problem is in general NP-hard. Indeed, com-
puting optimal static densest subgraph with edge surplus,
as a special case of our problem, is already intractable [12].

3.2 The General EMU Framework
While a standard EM method with the Maximum Likeli-
hood estimation [6] can be used to compute subgraph mod-
els that are likely to occur in GT , it may yield occurrences
that are neither dense nor lasting. We now introduce our
general EMU framework incorporating a utility function.

Overview. Similar to EM, EMU methods also interleave the
E step and the M step. The difference is that in the M step,
instead of using the maximum likelihood estimate to get the
model parameters for the next iteration, EMU estimates the
model parameters by maximizing Equation (1). It is easy to
see that, if the utility function u(M) is a positive constant
value, then EMU is equivalent to EM. Thus, EMU can be
deemed a generalization of EM, expressing preference over
some property of the model to be searched for.

Specifically, a model M̂i at iteration i of EMU consists of
three (sets of) parameters: (1) the number of vertices n̂i, (2)
the probability ρ̂ji of the j-th edge in a complete graph of
n̂i vertices (1 ≤ j ≤

(n̂i

2

)
), and (3) the time depth d̂i.

4 THE EMU ALGORITHMS

We next show that the general EMU framework gives birth
to efficient algorithms to compute the densest lasting sub-
graphs in large GT . In the E step of EMU, given M̂i, we
estimate a probability distribution L̂i of the location of M̂i’s

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2020.3025463

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

occurrence in GT . In the M step, based on the (expected)
information collected from L̂i in GT , we estimate a new
model M̂i+1 that maximizes E[U], and continue with the
next iteration of E step. For the M step, we use the utility
function in Section 3.1 by default, with generalized edge
probability ρj ∈ [0, 1] (beyond the binary case in [12]),
and for the case d > 1, to characterize the densest lasting
subgraphs desired in many real-world applications.

Recall that a subgraph model M consists of a set of n
vertices VM (out of the N vertices V of the dynamic graph),
edge probability ρj for each edge j, and the time depth
d. During EMU, we need to match M with subgraphs in
GT , starting from some snapshot. To perform this subgraph
match, one would need to enumerate all permutations of
the n vertices for isomorphism and examine ρj . We first
introduce a technique to reduce the cost of subgraph match-
ing between a subgraph model and GT , used by our EMU
algorithms.

Linearized Vertex Order. To simplify the model evaluation,
we assign an arbitrary, but fixed order to the N vertices (V)
of the dynamic graph (let the list be v1, . . . , vN), as well as
to the n vertices VM of M (let the list be u1, . . . , un). When
we evaluate any subset of n vertices vi1 , . . . , vin from the
dynamic graph against M (to get the matching probability
in our EMU algorithms that follow), vi1 , . . . , vin are sorted
in their linear ID order in V , and are mapped one-to-one
with u1, . . . , un in M. The vertex linearization ensures that
a subset of n vertices is matched against M̂ as one subgraph
rather than n! subgraphs (all vertex permutations). As such,
we avoid enumerating all permutations of vi1 , . . . , vin in the
dynamic graph GT .

Lemma 1. Assigning a fixed order to V and a fixed order to
VM, and matching any subset of n vertices from V with VM

following this order do not miss any occurrence of the densest
lasting subgraph models using the EMU framework.

The intuition of Lemma 1 is that, even though we give
an order to the vertices in V and those in VM, the EMU
algorithm has the full freedom to set the probabilities of all
the edges in the model M, so that its vertices one-to-one
match those in the optimal instance (Gd). We next introduce
our EMU algorithm. As remarked earlier, EMU follows EM
by interleaving E steps and M steps. We present the E step
first and show the M step in Section 4.2. The algorithm,
in the end, returns the subgraph model M, and the latent
variable value—the model’s best location L in GT .

4.1 Generalized E Step

Consider iteration i of EMU. In the generalized E step,
we assume that the model M̂i is given (M̂0 is initialized
arbitrarily in the first iteration). The goal of E step is to
estimate the location distribution L̂i of this model in GT .
However, there are

(N
n̂i

)
(T − d̂i) “locations” to examine,

where n̂i and d̂i are the number of vertices and time depth of
M̂i, respectively, for any subset of n̂i vertices starting from
the first T − d̂i snapshots. While the vertex linearization
avoids vertex enumeration cost, it is still quite expensive to
examine every locations and compute the probabilities of
matching.

We tackle this challenge by adapting a statistical tech-
nique called the Metropolis-Hastings (MH) method to the
lasting subgraph model discovery. The idea is to selectively
get samples from the whole space of

(N
n̂i

)
(T − d̂i) locations,

in such a way that they form a Markov chain that has a
stationary distribution, in which the probability of “hitting”
a location sample is proportional to the probability that M̂i

occurs in that location. Thus, this guided search tends to
find the true occurrence locations of M̂i quickly.

We present the E step as Algorithm GENERALIZEDE.

Algorithm 1: GENERALIZEDE (M̂i,GT)

Input: model M̂i(n̂i, ρ̂ji, d̂i), dynamic graph GT
Output: a location distribution L̂i

1 C ← getEdgeWalkComponent (n̂i, d̂i,GT)
2 pc ←

∏
j∈E(C) ρ̂ji ·

∏
j /∈E(C)(1− ρ̂ji)

3 L̂i ← {(C, pc)}
4 while |L̂i| < nc do
5 Cprev ← C
6 r ← random(0, 1)
7 if r ≥ pteleport then
8 t0 ← C.t or C.t+ 1 or C.t− 1 with equal

probability
9 if C.V is a connected component in Gt0...t0+d̂i

then
10 C.t← t0

11 with probability 1/2 do
12 e← pick an edge randomly from Ne(C)
13 C.V ← C.V ∪ {e’s endpoint not in C.V }
14 remove a random v ∈ C.V s.t. C is still a

component

15 else
16 C ← getEdgeWalkComponent (n̂i, d̂i,GT)

17 pc ←
∏

j∈E(c) ρ̂ji ·
∏

j /∈E(C)(1− ρ̂ji)
18 α← min (1, pc

pcprev
)

19 with probability 1− α, set C ← Cprev

20 L̂i ← L̂i∪ {(C, pc)}

21 return L̂i

1 Function getEdgeWalkComponent (n̂i, d̂i,GT)
2 e← pick an edge uniformly at random from

G1...T−d̂i

3 C.t← e.t; C.d← d̂i
4 C.V ← {two end points of e}
5 while |C.V | < n̂i do
6 e← pick an edge uniformly at random from

Ne(C)
7 C.V ← C.V ∪ {e’s endpoint not in C.V }
8 return C

EMU Algorithm: E step. We introduce the details of E step.

Function getEdgeWalkComponent. We start with a
procedure invoked by GENERALIZEDE, denoted as
getEdgeWalkComponent, to randomly “grow” an n̂i vertex
component starting from a selected edge (thus denser areas
in GT have a higher chance to be reached). As shown in line
2 of getEdgeWalkComponent, it chooses an edge uniformly
from G1...T−d̂i , which denotes snapshots G1 to GT−d̂i in
GT . In line 3 of the function, we initialize a component object
C (which in the end will grow to the same size as M̂i and be
returned). We set its starting time field C.t to be the random

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2020.3025463

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

Algorithm 2: GENERALIZEDM (M̂i,GT)

Input: distribution L̂i, model M̂i(n̂i, ρ̂ji, d̂i), dynamic
graph GT

Output: model M̂i+1

1 M̂i+1 ← null; L̂prev ← L̂i; n̂prev ← n̂i; d̂prev ← d̂i
2 while M̂i+1 not converged do
3 L̂← L̂prev ; d̂← d̂prev
4 n̂← n̂prev or n̂prev − 1 or n̂prev + 1 with equal

probability
5 for each component C in L̂ do
6 if n̂ > n̂prev then
7 e← an edge uniformly at random from

Ne(C)
8 C.V ← C.V ∪ {e’s endpoint not in C.V }
9 else if n̂ < n̂prev then

10 remove random v ∈ C.V s.t. C is still
connected

11 d̂← gradientAscentTimeDepth (L̂, n̂, d̂)
12 M← getModel(L̂, n̂, d̂)
13 if M̂i+1 = null or u(M) > u(M̂i+1) then
14 M̂i+1 ←M

15 α← min (1, u(M)

u(M̂i+1)
)

16 with probability α do
17 L̂prev ← L̂; n̂prev ← n̂; d̂prev ← d̂

18 return M̂i+1

1 Function gradientAscentTimeDepth (L̂, n̂, d̂i+1)
2 while true do
3 M+h ← getModel (L̂i, n̂, d̂i+1 + h)
4 M−h ← getModel (L̂i, n̂, d̂i+1 − h)
5 ∆u← u(M+h)− u(M−h)
6 if ∆u < ε then
7 break

8 d̂i+1 ← d̂i+1 + γ∆u
2h

9 return d̂i+1

1 Function getModel (L̂i, n̂, d̂)
2 foreach edge j in the subgraphs identified by L̂i and d̂

do
3 n+

j ← E[number of snapshots that has edge j]
from L̂i

4 ρ̂j ←
√

n+
j

d̂

5 return M(n̂, ρ̂j , d̂)

consists of pairs (C, pC). Suppose edge j in line 2 is between
vertices u and v in the subgraph model, which are mapped
to vertices ui and vi in each component i, respectively. The
idea is to perform a weighted “average” (expectation) over
the |C| components, to draw a conclusion whether edge j,
i.e., (u, v), exists in each of the d̂ snapshots. The expectation
will be a value in [0, 1]. Summing this expectation over the
d̂ snapshots (and based on the linearity of expectation), the
result is the expected number of snapshots that contain
a match for edge j, which is n+j in line 3 of getModel.
Then in line 4, the edge probability ρ̂j is set based on the
optimization result using the utility function (Theorem 3).

Example 2. Revisiting the example in Figure 2, suppose Figure

2(a) is the current model and Figure 2(b) is only one of the
|C| components in L̂i. For clarity, suppose there are only two
components |C| = 2, and the component shown in Figure 2(b)
has probability 0.8, while the other component (not shown) has
probability 0.2. Line 2 of getModel iterates through each edge of
the model in Figure 2(a); let us take one edge as an example, the left
vertical solid edge. In the component shown in Figure 2(b), this
edge appears in 2 snapshots (G8 and G9) out of d̂ = 3 snapshots.
In the other component not shown, suppose this edge appears in
all 3 snapshots. Then the expected value n+j calculated in line 3
of getModel is 2 × 0.8 + 3 × 0.2 = 2.2. The edge probability in
line 4 is ρ̂j =

√
2.2
3 = 0.856. This is repeated for all other edges

of the model in Figure 2(a).

Back to the gradientAscentTimeDepth function, in lines 5
and 8, it estimates the gradient of the model utility function
and adjusts d̂i+1 with a value proportional to it (where γ is
a small constant), based on Gradient Ascent [17]. Lines 6-7
are to exit the loop at convergence. This function estimates
the optimal d̂i+1 under the current n̂ and ρj ’s.

After gradientAscentTimeDepth is invoked in line 11 and
the best d̂ is obtained, the algorithm retrieves the currently
chosen model in M at line 12, and at lines 13-14 sets it to
M̂i+1 if it is the best so far. At lines 15-17 it completes
the MH sampling by setting the acceptance probability α.
Once the current candidate is accepted, its L̂, n̂, and d̂ are
bookkept as the next iteration’s starting point (line 17).

EMU iteratively interleaves GENERALIZEDE and GEN-
ERALIZEDM, until the model converges, and the maximum
probability component is returned as the densest lasting
subgraph. We analyze the correctness of GENERALIZEDM.

Theorem 3. With the utility function in Equation (2), given the
parameters n̂ and d̂ of the model and a location distribution L̂ of
the model in the dynamic graph, the edge probability parameters

ρ̂j that maximizes E[U] in Equation (1) is ρ̂j =

√
n+
j

d̂
, where n+j

is the expected number of occurrences of edge j in L̂ (as in line 3
of the getModel function).

Theorem 3 justifies the choice of the getModel function
(line 4). We now justify the correctness of GENERALIZEDM.

Theorem 4. Given the location distribution L̂i from GENERAL-
IZEDE, the GENERALIZEDM algorithm does Coordinate Ascent
to optimize three groups of parameters of model M̂: n̂, ρ̂j ’s, and d̂.

Both GENERALIZEDE and GENERALIZEDM employ
Metropolis-Hastings sampling—although there are no the-
oretical guarantees when it will converge to the stationary
distribution, in practice [18], several thousand iterations are
typically used as the “burn-in” period. After that, the cost
of GENERALIZEDE is linear to the model size, given that the
distribution size nc is a constant (we study nc in Section
6, of which we use 50 as the default). Similarly, the cost of
GENERALIZEDM has the cost of gradient ascent as a linear
factor, which takes O(1/ε) iterations [17] where ε is the
allowed error in line 6 of gradientAscentT imeDepth.

4.3 Validation of EMU Algorithms
In Sections 4.1 and 4.2, we have individually shown the
correctness of the generalized E step and M step, respec-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2020.3025463

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

function framework. For example, it is easy to verify that
an alternative design of setting the negative edge factor to
e−(qj−α) (instead of e1−qj−α) does not satisfy Desideratum 1
for any α. We next discuss how to iteratively set the model
parameters ρj and qj for each edge j in M in the revised
GENERALIZEDM algorithm.

Theorem 7. For the densest subgraph spike problem using
Equation (3) as the utility function, to maximize E[U] in Equation
(1), ρj and qj are set as follows. Let n+j and n−j be the expected
numbers of occurrences of edge j in the core and wings in L̂

(getModel function), respectively. Then, if d = 1, ρ̂j =
√
n+j ;

if d = 2, ρ̂j =
n+
j

2 ; if d > 2, ρ̂j = d−1
d−2 −

√
(d−1d−2)2 − n+

j

d−2 .

Moreover, q̂j = 1−
√

1− n−j
2w .

Proof. Given a model M, the probability of the weighted
average component of L̂ is

Pr[Gd|M] =
∏

j∈E
ρj ·
∏

j /∈E
(1−ρj)

∏
j∈Ew

qj ·
∏

j /∈Ew

(1−qj)
(4)

where E and Ew are the set of edges in the core and wings
in this component in data, respectively.

Based on Equations (3) and (4), taking the derivative of
the log of Equation (1) to get maximum E[U] gives us

∂ ln E[U]

∂ρj
= 2− d+

n+j
ρj
−
d− n+j
1− ρj

= 0 (5)

From Equation (5), we further get (d− 2)ρ2j + 2(1− d)ρj +

n+j = 0, which gives us the results on ρ̂j for the cases of
d = 1, d = 2, and d > 2 as stated in the theorem. Likewise,
we have

∂ ln E[U]

∂qj
= −2w +

n−j
qj
−

2w − n−j
1− qj

= 0 (6)

which finally gives us q̂j = 1−
√

1− n−j
2w .

To see a concrete numeric example, suppose the model
core depth is d = 6, and a particular edge j in expectation
appears 4 times (i.e., n+j = 4) in the match component
distribution (L̂), and in expectation appears 0.36 fraction in

the two wings (i.e.,
n−j
2w = 0.36). Then from Theorem 7, we

set ρ̂j = 0.5 and q̂j = 0.2 in the GENERALIZEDM algorithm.
A final remark is that we can set the parameters in an

analogous manner as Theorem 7 for other instantiations
of our universal utility function and other versions of the
problem as listed in Section 5.1.2.

5.2 Other Generalizations and Extensions

Adding node/edge labels. Our powerful utility function
framework also allows us to handle graphs of different
variants. For example, we may include the distinctions of
edge and vertex labels in the selection of densest temporal
subgraphs by extending the utility function, for which we
have the following result:

Theorem 8. In our algorithms for the densest lasting subgraph
problem, given the location distribution L̂, and the current param-
eters n̂ and d̂ of the model, to maximize E[U] (Section 3.1), the

edge label probability of the model ρ̂lj for edge j and label l ∈ Σ

should be set to ρ̂lj =
n+
lj√

d̂2−d̂n+
⊥j

, where n+lj (resp., n+⊥j) is the

expected number of snapshots in which edge j has label l (resp.,
does not exist) among the d̂ snapshots in L̂.

The details, as well as the proof of Theorem 8, are in [15].

Adding node/edge weights and adding time weights. In
the same vein, we may take advantage of the flexibility of
the EMU framework by setting the utility function for other
scenarios, such as giving weights to edge/vertex labels
for appearing in the densest lasting subgraph, as well as
handling parallel edges (i.e., multiple edges at the same time
between two vertices).

Finally, we may also give priorities and weights to data
at different times in the past. For instance, in practice it
often makes sense to prefer finding more recent dense
subgraphs than older ones. Interestingly, for this extension,
it is different from generalizing the utility function. Instead,
one can multiply a time factor tγ (where γ > 0 is a constant)
to the probabilities of each component in the component lo-
cation distribution L̂. In this way, a more recent component
(i.e., match instance) in data will have higher weights (i.e.,
greater tγ).

6 EXPERIMENTS

6.1 Datasets and Setup

Datasets. We use four real-world datasets: (1) Twitter. Twit-
ter Stream API [22] is used to retrieve data from Jan. 22
to May 21, 2017. For Twitter and Stack Overflow below,
we treat users as vertices and edges as communications,
and the edge duration is the time period in which the
user who initiates the communication keeps active and
communicating with one or more users (without pausing
for more than 30 seconds). (2) Taxi. The trip data is about
30GB, containing the information of all taxi trips in NYC in
2013 [23]. It has 14 attributes. Each trip from the pick-up to
the drop-off locations is an edge, with the trip time as edge
duration and the number of passengers as edge label. (3)
Stack Overflow [24]. This is a network of interactions on
the web site Stack Overflow [25]. There are three types of
interactions represented by a directed edge (u, v, t), where
user u answered or commented on user v’s question or
comment at time t. (4) NY events [26]. It contains traffic and
transit events in NY. We partition the NY state into 0.0011-
degree latitude by 0.0012-degree longitude grid areas. Each
grid area is a vertex and the event type is a vertex label.
When a transportation event happens at a vertex (e.g., an
accident), we create eight edges indicating its impact to its
eight surrounding grid areas, and the event duration is the
edge duration. The statistics of the datasets are in Table 1.

Methods. We compare our methods with two related ap-
proaches in [4] and [5] briefly reviewed below.

Dense pattern. The “Dense pattern” approach in [4] returns a
set of vertices that are similar with respect to the snapshots
they appear in, and that have dense edges between them.
There are a few issues. First, the “similarity” above is based
on set similarity, for the set of snapshots each vertex appears

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2020.3025463

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

0 100 200 300 400 500

Distribution size

-25

-20

-15

-10

-5

0

5

10

15
D

e
n
s
it
y
 s

c
o
re

EMU

Dense pattern

Dense temporal

0 0.2 0.4 0.6 0.8 1

Teleport probability

-400

-200

0

200

400

600

800

D
e
n
s
it
y
 s

c
o
re

EMU

Dense pattern

Dense temporal

0 100 200 300 400 500

Distribution size

-40

-20

0

20

40

60

D
e
n
s
it
y
 s

c
o
re

EMU

Dense pattern

Dense temporal

0 0.2 0.4 0.6 0.8 1

Teleport probability

-20

-15

-10

-5

0

5

10

15

D
e
n
s
it
y
 s

c
o
re

EMU

Dense pattern

Dense temporal

Fig. 5. Density vs distrib. size(Twitter) Fig. 6. Density vs teleport prob.(Taxi) Fig. 7. Density vs distrib. size(Stack) Fig. 8. Density vs teleport prob.(Events)

TABLE 1
Statistics of the datasets

Dataset #vertices #edges
Average
inter-ar-

rival time
Data
Size

Twitter 17,274,424 119,604,457 0.1 sec 4.9GB
Taxi 5,654 169,100,000 0.186 sec 5.62GB
Stack

Overflow 2,601,977 63,497,050 3.775 sec 1.64GB

NY events 429,456 10,148,112 161.62 sec 138.7MB

in. This is too restrictive. Second, it returns “small” sub-
graphs. In step 1, [4] uses a MinHash method for finding a
set of vertices. If the probability that two vertices are similar
is p, the probability that three vertices are similar is p2, and
so on. Thus, the probability that such similar pair of vertices
joining a returned vertex set decreases exponentially. Finally,
it does not consider “continuity” strength over time.

Dense temporal subgraph. This approach in [5] uses two
phases: (1) locating top-k promising snapshot intervals
without considering any subgraphs, and (2) finding the
heaviest-weight subgraph in each of those intervals. Al-
though it is efficient, there are a few major issues for our
problem. First, it uses a model where all edges are present
in all snapshots, while only the weights vary. The “evolving
convergence phenomenon” relied upon in [5] is to assume
that edge weights of the whole graph increase or decrease
in the same direction at any time. This does not hold for the
applications we look at. For example, for communication
graphs, over a long period of time, the number of times
of starting a communication should match the number of
times of ending a communication, and the weight increase
and decrease may happen simultaneously in any graph
snapshot. Second, it would tend to return huge subgraphs.
This is because the connection between two positive weight
components is a single edge (with a minimum weight of
−1 in each snapshot of the selected time interval). Thus,
there is a good chance that the algorithm will merge the two
positive components to have a higher total weight, resulting
in a component too large to be a meaningful result.

We implement all the algorithms in Java. The experi-
ments are performed on a MacBook Pro machine with OS X
version 10.11.4, a 2.5 GHz Intel Core i7 processor, a 16 GB
1600 MHz DDR3 memory, and a Macintosh hard disk.

6.2 Experimental Results
We first study the effectiveness of our EMU approach, i.e.,
the quality/density of the subgraphs discovered. We com-

pare our method with the two related methods, denoted as
“Dense pattern” [4] and “Dense temporal” [5], respectively.
For a fair comparison, we define a metric called density
score s = [m − α

(n
2

)
]dβ . Here, n is the number of vertices

in the found subgraph pattern, d is the time duration—the
number of consecutive snapshots where each snapshot has
a duration of 3 hours, and m is the number of edges in this
subgraph that appears in at least half of the snapshots (d/2).
Following [12], we set α = 1/3 and β = 1/2 by default.
Intuitively, this metric indicates the “surplus” number of
edges compared to a (discounted) complete graph over all
vertices in the selected subgraph and across d snapshots.

Effectiveness on Real Datasets

Twitter. Recall that two parameters are location distribution
size and teleport probability in GENERALIZEDE. Figure 5
shows the density scores of the densest lasting-subgraphs
returned by EMU over Twitter data, as we vary the location
distribution size. It also shows the density scores of the
results returned by previous work dense pattern [4] and
dense temporal [5] (which remain constants as they do not
have such a parameter). As the distribution size increases,
the density scores improve, eventually converging. This
is because exploring a larger location distribution gives a
higher chance to get to a denser lasting-subgraph, indicating
a trade-off between result quality and performance. We use
50 as the default size. As explained earlier, the dense pattern
approach [4] tends to return small subgraphs, which get
smaller density scores. The dense temporal approach [5],
on the other hand, tends to return very large subgraphs,
resulting in negative scores (i.e., the number of edges are
few compared to the complete graph over those vertices).

Taxi. In Figure 6, we vary the teleport probability between
0.1 and 0.9, and measure the density scores over Taxi. (1)
The maximum score occurs when the teleport probability
is around 0.3 (which we use as default). Indeed, teleports
help when the search is stuck at a local maximum. Too
frequent teleports, however, may prematurely abort or delay
a good location. (2) The density scores achieved over Taxi
are much higher than Twitter in Figure 5, due to the nature
of the datasets—traffic tends to be much denser with longer-
lasting edges than communication networks. The dense
pattern [4], however, still ranks small subgraphs as they are
much more likely to be discovered, resulting in small scores.
The dense temporal subgraph [5], on the other hand, returns
subgraphs that are too large with negative scores.

Stack Overflow and NY Events. Similarly, we report the den-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2020.3025463

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

0 100 200 300 400 500

Distribution size

10
5

10
6

10
7

T
h
ro

u
g
h
p
u
t
(e

d
g
e
s
/s

e
c
)

EMU

Dense pattern

Dense temporal

0 0.2 0.4 0.6 0.8 1

Teleport probability

0

0.5

1

1.5

2

2.5

3

3.5

T
h
ro

u
g
h
p
u
t
(e

d
g
e
s
/s

e
c
)

10
5

EMU

Dense pattern

Dense temporal

0 100 200 300 400 500

Distribution size

10
5

10
6

10
7

10
8

T
h
ro

u
g
h
p
u
t
(e

d
g
e
s
/s

e
c
)

EMU

Dense pattern

Dense temporal

0 0.2 0.4 0.6 0.8 1

Teleport probability

0

1

2

3

4

5

T
h
ro

u
g
h
p
u
t
(e

d
g
e
s
/s

e
c
)

10
6

EMU

Dense pattern

Dense temporal

Fig. 9. Speed vs distrib. size(Twitter) Fig. 10. Speed vs teleport prob.(Taxi) Fig. 11. Speed vs distrib. size(Stack) Fig. 12. Speed vs teleport prob.(Events)

0 100 200 300 400 500

Distribution size

100

200

300

400

500

600

700

800

900

D
e
n
s
it
y
 s

c
o
re No label

With labels

0 100 200 300 400 500

Distribution size

10
4

10
5

10
6

10
7

T
h
ro

u
g
h
p
u
t
(e

d
g
e
s
/s

e
c
)

No label

With labels

0 0.2 0.4 0.6 0.8 1

Teleport probability

8.5

9

9.5

10

10.5

D
e
n
s
it
y
 s

c
o
re

No label

With labels

0 0.2 0.4 0.6 0.8 1

Teleport probability

2

2.5

3

3.5

4

T
h
ro

u
g
h
p
u
t
(e

d
g
e
s
/s

e
c
)

10
6

No label

With labels

Fig. 13. Density w/ edge labels(Taxi) Fig. 14. Speed w/ edge labels(Taxi) Fig. 15. Density w/ vertex labels(Events) Fig. 16. Speed w/ vertex labels(Events)

sity scores vs. distribution sizes over the Stack Overflow
data in Figure 7. The trend is consistent with that in Figure
5, except that the scores are higher. Varying the teleport
probability, we report the result using NY events in Figure
8. The density scores are relatively low for this dataset, as
the events such as accidents and delays are usually not very
dense. Moreover, compared to Figure 6, the density scores
are less sensitive to the teleport probability.

Efficiency on Real Datasets. We next evaluate the efficiency,
reported as the number of processed edge changes per
second, as shown in Figure 9 for Twitter. The performance
of EMU algorithms degrades as we increase the location
distribution size, because the increase significantly slows
down both the E and M steps. We also see that the dense
temporal approach [5] is significantly faster than EMU,
while the dense pattern approach is slower. Dense temporal
approach is faster because its phase (1) discards a large
amount of data, as it only heuristically selects a small
number of intervals, which also eases its subgraph search in
phase (2). The dense pattern approach [4], however, needs
to process a large “transaction table” for the dataset.

In the same vein, we also measure the performance over
Taxi for various teleport probabilities in Figure 10, over
Stack Overflow for various distribution sizes in Figure 11,
and over NY events for various teleport probabilities in
Figure 12. The performance decreases as the teleport proba-
bility increases, as performing a teleport is more expensive
for obtaining a whole random subgraph component, while
making local changes only slightly revises a component.

Adding Vertex/Edge Labels. We now look into adding
edge or vertex labels, which the two approaches in [4] and
[5] cannot handle. For Taxi, we consider the number of
passengers in a trip as an edge label. Thus, the densest
lasting-subgraph found contains matching edge labels. The

density score comparison for with vs. without edge labels
under various distribution sizes is shown in Figure 13. The
scores are in general lower when we consider edge labels.
This is because the chance of matching an edge with a
specific label is smaller, compared to simply matching an
edge. In Figure 14, we show the performance comparison. It
becomes slower with edge labels because the entropy of the
problem instance is higher with edge labels, i.e., there are
more variables in the dynamic graph. Thus, it takes longer
for EMU to converge.

We next examine the effect of vertex labels using NY
events, where a vertex label indicates the type of events at
the vertex (grid area). We show the density scores in Figure
15 and performance in Figure 16 vs. teleport probability. The
densest lasting subgraph model discovered contains vertex
labels “delays” and “accident”, indicating that they are the
most common event types. The comparison result with and
without vertex labels is similar to its counterpart with and
without edge labels—the density scores and performance
are lower with vertex labels, for the same reason as for
edge labels. We find that the optimal teleport probability
is around 0.1.

Discovering Densest Subgraph Spikes. We now evaluate
our approach on discovering densest subgraph spikes, as
presented in Section 5.1. We use the Twitter and the Taxi
datasets, where looking for sudden short subgraph spikes
is more practically significant. For Twitter data it means
sudden appearance and disappearance of a hot topic, while
for Taxi data it means sudden densification followed by
quickly dissolution of traffic possibly due to a short-term
event.

We naturally adapt our previously used density score
definition to this new use as s = [m−α

(n
2

)
]dβ + [

(n
2

)
−m−

α
(n
2

)
](2w)β , where β = −1/2, the first term corresponds to

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2020.3025463

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

0 200 400 600

Distribution size

0

50

100

150

200

250

300

350
D

e
n
s
it
y
 s

c
o
re Twitter

Taxi

0 100 200 300 400 500

Distribution size

10
5

10
6

10
7

T
h
ro

u
g
h
p
u
t
(e

d
g
e
s
/s

e
c
) Twitter

Taxi

Fig. 17. Density scores Fig. 18. Throughput

the core part of the utility, and the second term corresponds
to the negative layers at the wings. We show the density
scores using the two datasets in Figure 17 for various
distribution sizes and the throughput in Figure 18.

We can see that for both datasets, the density scores
increase as we increase the distribution sizes, while the
throughput decreases. This is due to the tradeoff between
processing overhead and accuracy. Density scores level off
as we keep increasing the distribution size. Moreover, we
obtain higher density scores with the Taxi data than the
Twitter data, demonstrating that the Taxi data has more
dramatic spikes than the Twitter data.

Summary. Our experimental study using four real-world
data sets demonstrates that our EMU framework is effective
in solving the problem of finding densest lasting-subgraph
as observed in many dynamic graph applications. Our al-
gorithms outperform two state-of-the-art densest subgraph
discovery methods in [4] and [5] in effectiveness measured
by density score, and strikes a balance between too small
and too large dense subgraphs. The location distribution
size of our EMU algorithms provides a tradeoff between
result quality and performance, and the optimal teleport
probability is often between 0.1 and 0.3 in our empirical
study. Finally, EMU algorithms readily extend to coping
with edge or vertex labels and other timing characteristics,
which cannot be supported by the baseline methods.

7 CONCLUSIONS

We propose a novel probabilistic subgraph model to charac-
terize densest temporal subgraphs in a dynamic graph, and
a stochastic approach, EMU, which nontrivially extends EM
with a utility function for the desired objective. Based on the
semantics that we propose for densest lasting subgraphs, we
devise EMU algorithms using MH sampling and coordinate
and gradient ascent, and prove the correctness of EMU by
showing its membership in MM algorithms. Our experi-
ments over four real-world datasets verify the effectiveness
and efficiency of our algorithms.

REFERENCES

[1] T. R. Weiss, “In emergencies, can cell phone network overload be
prevented?” Computer World, 2007.

[2] J. Chen and Y. Saad, “Dense subgraph extraction with application
to community detection,” TKDE, 2012.

[3] A. Stathopoulos and M. G. Karlaftis, “Modeling duration of urban
traffic congestion,” Journal of Transportation Engineering, 2002.

[4] C. C. Aggarwal, Y. Li, P. S. Yu, and R. Jin, “On dense pattern
mining in graph streams,” VLDB, 2010. [Online]. Available:
http://dx.doi.org/10.14778/1920841.1920964

[5] S. Ma, R. Hu, L. Wang, X. Lin, and J. Huai, “Fast computation of
dense temporal subgraphs,” in ICDE, 2017.

[6] M. R. Gupta and Y. Chen, “Theory and use of the EM algorithm,”
Found. Trends Signal Process., 2011.

[7] D. R. Hunter and K. Lange, “A tutorial on MM algorithms,” Amer.
Statist, 2004.

[8] M. Charikar, “Greedy approximation algorithms for finding dense
components in a graph,” in APPROX, 2000.

[9] A. V. Goldberg, “Finding a maximum density subgraph,” Berkeley,
CA, USA, Tech. Rep., 1984.

[10] N. Tatti and A. Gionis, “Density-friendly graph decomposition,”
in WWW, 2015.

[11] J. Abello, M. G. C. Resende, and S. Sudarsky, “Massive quasi-
clique detection,” in LATIN, London, UK, UK, 2002.

[12] C. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and M. Tsiarli,
“Denser than the densest subgraph: Extracting optimal quasi-
cliques with quality guarantees,” in KDD, 2013.

[13] P. Bogdanov, M. Mongiovı̀, and A. K. Singh, “Mining heavy
subgraphs in time-evolving networks,” in ICDM, Dec 2011, pp.
81–90.

[14] A. Angel, N. Sarkas, N. Koudas, and D. Srivastava, “Dense sub-
graph maintenance under streaming edge weight updates for real-
time story identification,” VLDB, 2012.

[15] X. Liu, T. Ge, and Y. Wu, “Finding densest lasting subgraphs in
dynamic graphs: A stochastic approach,” in ICDE, 2019.

[16] S. J. Wright, “Coordinate descent algorithms,” Math.
Program., 2015. [Online]. Available: http://dx.doi.org/10.1007/
s10107-015-0892-3

[17] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[18] D. MacKay, “Introduction to Monte Carlo methods,” Learning in
Graphical Models, 1999.

[19] D. Poli, V. P. Pastore, and P. Massobrio, “Functional connectivity
in in-vitro neuronal assemblies,” Frontiers in Neural Circuits, 2015.

[20] F. Zeldenrust1, W. J. Wadman, and B. Englitz, “Neural coding
with bursts–current state and future perspectives,” Frontiers in
Computational Neuroscience, 2018.

[21] D. Eswaran, C. Faloutsos, S. Guha, and N. Mishra, “SpotLight:
Detecting anomalies in streaming graphs,” in KDD, 2018.

[22] https://dev.twitter.com/streaming/overview, 2018.
[23] https://www.reddit.com/r/bigquery/comments/28ialf/173 million 2013

nyc taxi rides shared on bigquery/, 2018.
[24] http://snap.stanford.edu/data/sx-stackoverflow.html, 2018.
[25] https://stackoverflow.com/, 2018.
[26] https://catalog.data.gov/dataset/511-ny-events-beginning-2010,

2018.
Xuanming Liu is currently a PhD candidate in
the Computer Science department at the Uni-
versity of Massachusetts, Lowell. He received
his BS degree in Software Engineering from
Beijing Jiaotong University in 2011 and his MS
degree in Computer Science from University of
Massachusetts, Lowell in 2015. His research in-
terests include data streams, graph mining, and
distributed systems.

Tingjian Ge received his BS degree from Ts-
inghua University in 1994, his MS degree from
University of California at Davis in 1998, and his
PhD degree from Brown University in 2009, all in
Computer Science. He is currently a Professor
in the Computer Science department at the Uni-
versity of Massachusetts, Lowell. His research
interests include databases, data mining, and
data science in general, as well as data streams
and graph analysis in particular.

Yinghui Wu is currently an Assistant Professor
in the Department of Computer and Data Sci-
ences at the Case Western Reserve University.
Yinghui received his PhD from the University
of Edinburgh, UK in 2011, and BS from Peking
University, China in 2007, both in Computer Sci-
ence. His research interests include databases,
data management and analytics, cost-effective
data systems for information and knowledge ex-
traction, and graph analytics.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2020.3025463

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

