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Abstract

Tremendous chemical diversity is the hallmark of plants and is supported by
highly complex biochemical machinery. Plant metabolic enzymes originated
and were transferred from eukaryotic and prokaryotic ancestors and further
diversified by the unprecedented rates of gene duplication and functional-
ization experienced in land plants. Unlike microbes, which have frequent
horizontal gene transfer events and multiple inputs of energy and organic
carbon, land plants predominantly rely on organic carbon generated from
CO2 and have experienced very few, if any, gene transfers during their re-
cent evolutionary history. As such, plant metabolic networks have evolved in
a stepwise manner and on existing networks under various evolutionary con-
straints.This review aims to take a broader view of plant metabolic evolution
and lay a framework to further explore underlying evolutionary mechanisms
of the complex metabolic network.Understanding the underlying metabolic
and genetic constraints is also an empirical prerequisite for rational engi-
neering and redesigning of plant metabolic pathways.
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1. INTRODUCTION

A fundamental long-term goal of biological research has been to understand how the complex
biomolecular networks underpinning life took on the form(s) that we observe today (16, 50). Cel-
lular metabolism is arguably one of the earliest such networks (166) and therefore represents a
wonderful model system for studying network evolution. In contrast to the evolution of devel-
opment (evo-devo), which has received considerable research attention (135), the evolution of
metabolism has been subjected to far less scrutiny.However, metabolism underlies developmental
processes (e.g., synthesis of proteins, membranes, and cell walls), and hence metabolic evolution is
indeed a part of evo-devo.Within the metabolic network, many thousands of diverse biochemical
processes are linked in highly tailored systems that have been acted upon by billions of years of
evolution.Understanding the stepwise development of the metabolic network also highlights how
historical constraints impact the current network functions and provides strategies about how to
improve them. This is particularly prominent in land plants that rely on a single carbon source,
photosynthetic CO2 fixation, and have had limited gene transfers in their recent history after
terrestrialization.

Although recent diversification of plant specialized metabolic pathways has been extensively
reviewed (115, 178), to our knowledge, the overall evolution of plant metabolism has not been
reviewed to date. To capture a broader evolutionary history of the plant metabolic network from
the beginning to today, this article starts from (●1 ) the origin of metabolism, followed by (●2 ) the
evolution of plant primary metabolism, (●3 ) the emergence of plant-specific metabolism, (●4 ) the
diversification of plant primary metabolism and (●5 ) specialized metabolism, and ends with (●6 )
metabolic alterations introduced during crop domestication. In each section, we highlight various
modes of metabolic evolution that primarily contributed at different stages of plant metabolic
evolution (Figure 1). Overall, we provide a framework to further explore the evolutionary history
of plant metabolism, which in turn enables the effective redesign of plant metabolic networks.
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Primordial soup:
mixtures of organic
compounds in the
early Earth
environment, which
were generated
through abiotic
reactions or provided
via meteorites that
bombarded the early
Earth

Nonenzymatic
metabolism: similar
to the metabolism that
takes place in
organisms but
mediated by chemical
reactions without
enzymes
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Figure 1

Schematic diagram of overall evolutionary history of plant metabolism along with the estimated time lines of major Earth history and
events indicated in Ga, Ma, or Ka. Various stages of plant metabolic evolution described in different sections of this article are colored
and numbered from (●1 ) to (●6 ). Various modes of metabolic evolution that primarily contributed in each stage, as well as key
metabolites or pathways that emerged or developed, are indicated in boxes. Timeline is not drawn to scale. Abbreviations: CB cycle,
Calvin-Benson cycle; Ga, billion years ago; Ka, thousand years ago; Ma, million years ago; OPPP, oxidative pentose phosphate pathway.

2. ORIGIN OF CORE METABOLISM

When life began on Earth around four billion years ago (151),metabolism is believed to have been
centered around very few chemistries, which probably formed in emergent replicating or organ-
ismal units and later developed as primitive cells (16, 152). Ancestral life forms likely inhabited
an environment, known as the primordial soup, rich in spontaneously formed organic compounds
(e.g., amino acids) of the primordial world (50). Additionally, meteoric evidence suggests that the
presence of ribose and other simple sugars were not confined to the Earth (30). As more organ-
isms occupied the primordial environment, less-abundant compounds became depleted,which im-
posed increased selective pressure for synthesizing them (50) through various modes of metabolic
pathway evolution (see the sidebar titled Hypotheses of Early Metabolic Pathway Evolution) (58,
65, 74). Recent studies also revealed that nonenzymatic metabolism (e.g., of glycolysis) can oper-
ate under conditions similar to primordial Archean environments (82, 83, 137). These chemical
reaction sequences, which were constrained by cofactors and conditions available at that time,
could have been incorporated into cellular metabolism. Such a network was later facilitated by
the rise of enzymes, perhaps initially by RNA (or ribozymes) and then proteins—RNA world and
RNA-protein world—that likely led to replication cycles (128). A simple H2-driven CO2 fixation
pathway (177), known as the acetyl-CoA pathway (or theWood-Ljungdahl pathway) (96), leading
to the formation of pyruvate and fatty acids (11, 124), was also proposed to be one of the earliest
metabolic pathways based on the discovery of alkaline hydrothermal vents in the deep ocean (84,
158). Such microenvironments harbor chemistries reminiscent of the primitive Earth character-
ized by steep gradients of heat, pH, and reduction potential across thin inorganic barriers. Today,
these vents host a rich microbial community that represents some of the deepest branches of the
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RNA world:
a hypothetical
evolutionary stage in
which self-replicating
RNA molecules
evolved before
proteins or DNA and
likely catalyzed some
chemical reactions

LUCA: the most
recent ancestral
organismal form that
likely existed between
3.5 to 4 billion years
ago, from which all
organisms evolved

Starter enzyme:
a primordial enzyme
that emerged
independently and
served as a precursor
for the later evolution
of a variety of enzymes

Promiscuous
enzyme: an enzyme
that has activities
beyond its primary
catalytic function and
hence exhibits
additional but often
weak side reactions
that were not selected
during evolution

HYPOTHESES OF EARLY METABOLIC PATHWAY EVOLUTION

Several hypotheses have been proposed for the evolution of metabolic pathways. The backward (or retrograde)
hypothesis describes a stepwise attainment of individual reactions in a backward manner in regard to the reac-
tion sequence—the acquisition of the final step, followed by the upstream steps in reverse order (65). However,
intermediates and precursors, which themselves have no use, must be available in the primordial environment for
this process to take place, meaning that new metabolites do not emerge. The forward hypothesis proceeds from
functional intermediates and precursors, which are further converted into new products, leading to a stepwise de-
velopment of a metabolic pathway in a forward direction (58). Once enzymes’ repertoires have expanded through
gene duplications, enzymes that have ambiguous substrate specificity can be recruited to form new pathways in a
patchwork manner, known as the patchwork hypothesis (74, 93). It is important to note that these hypotheses are
not mutually exclusive and likely support the evolution of different parts of metabolic pathways and networks.

tree of life (i.e., acetogenic bacteria and methanogenic archaea) and likely dates back to the last
universal common ancestor (LUCA).

Initially, a limited number of starter enzymes with broad substrate specificity likely catalyzed
multiple reactions (74); therefore, primordial metabolic pathways were highly interconnected (50)
(Figure 2a). These starter enzymes then underwent duplication and functional divergence to ex-
pand the number of enzymes, often with more specialized functions, leading to more distinct
metabolic pathways where individual reactions were increasingly carried out by designated en-
zymes (74) (Figure 2b). The emergence of new enzymes also expanded the overall metabolic net-
work by further converting existing metabolites and producing new metabolites, which created
new metabolic connections through metabolite–enzyme coevolution (122). Additionally, certain
reactionmodules are repeatedly found inmetabolic networks (74, 122) (Figure 2c), suggesting that
the repurposing of not only enzymes but also reactionmodules often took place through divergent
and also possibly convergent evolution. Notably, promiscuous enzymes and multifunctional en-
zymes are still widespread in extant organisms (e.g., detoxification enzymes and aminotransferases)
(75, 85), which support metabolic plasticity through so-called underground metabolism (31, 123)
and also provide starting points for the evolution of new enzymes. Here, we describe the proper-
ties and origins of core metabolic pathways, highlighting various modes of pathway evolution and
discussing how some of the evolutionary origins may still impact modern-day metabolism.

2.1. Amino Acid Biosynthesis

While simple and stable amino acids, such as aspartate and alanine, were relatively abundant in
the primordial soup, some amino acids (e.g., methionine, histidine, and tyrosine) became depleted
early and needed to be synthesized (93). It has been proposed that threonine and methionine
biosynthetic pathways potentially formed in a backward manner in respect to their reaction se-
quences (see the sidebar titled Hypotheses of Early Metabolic Pathway Evolution) (65); threonine
and methionine were initially depleted and synthesized from homoserine and then from aspartate
(Figure 2c), as both were likely available in primordial environments.

A more complicated evolutionary path has been proposed for branched chain amino acid
(BCAA) biosynthesis because the present acetolactate pathway derived from pyruvate and
α-ketobutyrate (157) cannot develop in a backward manner, due to unstable intermediates
(e.g., β-keto acid acetolactate) that would not have accumulated in the primordial soup. In-
stead, branched short chain fatty acids, which were abundant in meteorites, likely underwent
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Multifunctional
enzyme: an enzyme
that has more than one
functional catalytic
activity
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Figure 2

Metabolic enzymes and modules with potentially shared common ancestry. Compounds (square nodes) are converted via chemical or
enzymatic reactions (gray lines) in (a) primordial and (b) current metabolic networks. Primordial networks were likely highly
interconnected via ambiguous enzymes or chemical reactions (blue circles), whereas current networks are often catalyzed by designated
enzymes and are further expanded to produce new metabolites. (c) Some enzymes and reaction modules from different pathways
potentially have shared ancestry, as indicated by boxes with the same colors, though some of them might have evolved convergently.
Black boxes over multiple arrows are multifunctional enzymes that are still involved in multiple pathways. Earlier evolutionary
processes of some pathways from abundant prebiotic compounds (blue letters) are shown in dotted arrows. Re-CS and Si-CS are
stereospecific citrate synthases found in some anaerobes (thus shown in parenthesis) and other organisms including plants, respectively.
Abbreviations: 3MOB, 3-methyl-2-oxobutanoate; AHAS, acetohydroxyacid synthase; AS, anthranilate synthase; ATP, adenosine
triphosphate; BCAT, branched chain amino acid aminotransferase; DHAD, dihydroxyacid dehydratase; Fdx, ferredoxin; HisG, ATP
phosphoribosyltransferase; HisH, the glutamine amidotransferase domain of imidazole glycerol-phosphate synthase; ICDH, isocitrate
dehydrogenase; IGPS, indole-3-glycerol phosphate synthase; IPMDH, isopropylmalate dehydrogenase; IPMI, isopropylmalate
isomerase; KARI, ketol-acid reductoisomerase; MAMS, methylthioalkylmalate synthase; MTOB, 4-methylthio-2-oxobutyrate; PAI,
phosphoribosylanthranilate isomerase; PAT, phosphoribosylanthranilate transferase; PPi, pyrophosphate; PRPP, 5-phosphoribosyl
pyrophosphate; TSβ, tryptophan synthase β subunit.

reductive carboxylation, potentially mediated by ferredoxin, to produce keto acids, which were
then transaminated to BCAAs (81) (Figure 2c). Analogous reductive carboxylation pathways
might have also contributed initially to aromatic amino acid synthesis and are still used in
some rumen microbes (145). Later, the acetolactate pathway evolved and replaced the reductive
carboxylation pathway for BCAA biosynthesis by the time LUCA emerged, as the acetolactate
pathway is conserved among prokaryotes and eukaryotes. The early BCAA pathways were most
certainly catalyzed by ambiguous enzymes, and the three consecutive steps of the isoleucine
and valine/leucine pathways are still catalyzed by shared enzymes—acetohydroxyacid synthase
(AHAS), ketol-acid reductoisomerase (KARI), and dihydroxyacid dehydratase (DHAD) (157)
(Figure 2c). Additionally, in several prokaryotes, isopropylmalate isomerase (IPMI) in leucine
biosynthesis can also use homocitrate, an intermediate of lysine biosynthesis (189). Thus, even
in the current metabolic network, multifunctional enzymes are still present and likely coordinate
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Underground
metabolism:
a metabolic network
formed via the
promiscuity of
enzymes and
nonenzymatic
reactions, which are
beyond but connected
to well-defined
metabolic network.

different amino acid pathways, while feedback regulation of key enzymes, which likely evolved
later, provides the regulation of individual pathways (74, 184).

The tryptophan and histidine biosynthetic pathways are directly interconnected to nucleotide
biosynthesis and nitrogen assimilation, as both pathways require glutamine and 5-phosphoribosyl
1-pyrophosphate (PRPP) as substrates (72, 134). The anthranilate synthase (AS) enzyme and the
glutamine amidotransferase (HisH) subunit of imidazoleglycerol-phosphate synthase incorporate
the amino group of glutamine, while phosphoribosyl-anthranilate transferase (PAT) and ATP
phosphoribosyltransferase (HisG) transfer the 5-phosphoribosyl group of PRPP into the tryp-
tophan and histidine biosynthetic pathways, respectively (43) (Figure 2c). These two correspond-
ing enzymes likely share common starter enzymes between tryptophan and histidine biosynthesis.
Both pathways are highly conserved across bacteria, archaea, and eukaryotes and thus were proba-
bly already present in LUCA (2, 183). Interestingly, the last three tryptophan pathway enzymes—
phosphoribosylanthranilate isomerase (PAI), indole-3-glycerol phosphate synthase (IGPS), and
tryptophan synthase α subunit (TSα)—catalyze different reactions but all have a (βα)8-barrel fold
and a common binding site for the 5-phosphoribosyl moiety of their corresponding substrates
(181). Indeed, PAI activity could be obtained through directed evolution of TSα (40). Thus, these
three steps likely evolved in a backward manner through a series of ancient gene duplications and
neofunctionalization (Figure 2c).

In contrast to the highly-conserved tryptophan and histidine pathways, lysine biosynthesis ap-
pears to have evolved multiple times, as there are α-aminoadipic acid and some variations of the
diaminopimelic acid (DAP) pathways (172). Many enzymes of the DAP lysine pathway are ho-
mologous to those of arginine biosynthesis, suggesting that they were originally involved in both
pathways catalyzed by ambiguous enzymes. Similarities of some codons for lysine (AAA,AAG) and
arginine (AGA, AGG) also support that these two basic amino acids were initially used ambigu-
ously in protein synthesis (182). Plants and cyanobacteria use a unique DAP pathway for lysine
biosynthesis, which is mediated by DAP aminotransferase that bypasses three enzymatic steps and
acyl intermediates of eubacterial DAP pathways (70).

2.2. Glycolysis and Pentose Phosphate Pathways

The Ralser group (83) showed that nonenzymatic pentose phosphate–like reactions can take place
under conditions that are similar to the Archean ocean and contain reduced Fe(II). These reac-
tions include the formation and interconversion of glucose, pyruvate, ribose 5-phosphate, and
erythrose 4-phosphate, thus antedating the reaction sequences similar to those of extant enzyme-
based metabolic pathways. Intriguingly, pH gradients alter the metabolic network, leading to a
shift in the relative activities of glycolysis and the oxidative pentose phosphate pathway (83).While
a number of questions remain regarding the evolution of glycolysis (e.g., the primordial source of
glucose 6-phosphate) (82), the presence of nonenzymatic reactions and thereby the availability of
metabolic precursors render the innovation of enzymatic metabolism a stepwise problem (136).
Indeed, it has been shown that the simple amino acid glycine was able to improve the nonenzy-
matic catalysis for the formation of fructose 1,6-bisphosphate (110). Whatever the origins of the
pathway, the evolution of glycolysis is impressive—with in silico evaluations suggesting that the
lower part of glycolysis carries a higher flux than any biochemically possible alternative (28)—and
even the less-efficient Entner-Doudoroff pathway was shown to represent a trade-off between
energy yield and protein cost (49).

The reductive pentose phosphate pathway, also known as the Calvin-Benson cycle, is the
most widely distributed CO2 fixation pathway today but likely emerged relatively late. Among
at least five alternative modes of CO2 fixation pathways found in different organisms (51), the
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reductive acetyl-CoA pathway driven by H2 is likely the earliest mode of CO2 fixation pathway
(51, 177), though its prebiotic pathway likely used native transition metals (e.g., F0, Ni0) to reduce
CO2 into acetate and pyruvate (171).Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco),
the first committed enzyme of the Calvin-Benson cycle, was likely involved initially in nucleotide
metabolism, such as adenosine 5′-monophosphate metabolism as seen in type III Rubisco of some
archaea (144, 168). Therefore, Rubisco likely evolved before oxygenic photosynthesis and hence
still cannot discriminate O2 from CO2, which comes as a trade-off for reduced catalytic rate (39).

2.3. TCA Cycle

The evolutionary origins of the TCA cycle are still largely unclear (137), but the early TCA cycle
was likely reductive—and still is in several species (14). Experimentally, several TCA cycle–like re-
actions were demonstrated in the presence of ultraviolet (UV) light and semiconductor particles
(196),while a suite of reactions was shown to be promoted by Zn2+,Cr3+, and Fe0 ions (118).More
recently, a nonenzymatic acetate-driven TCA cycle, corresponding to the Wood pathway, was
identified in bacteria (171). Not content with the demonstration that glycolysis could be nonen-
zymatically assembled, the Rasler group (82) also showed the same for the oxidative segment of
the TCA cycle, this time in the presence of sulfate radicals, which were abundant in meteorites
(27). Similar to this finding, the results of Springsteen et al. (163) indicate that oxidizing agents
play an important role in the evolution of the TCA cycle. Interestingly, phylogenetic data indicate
that the TCA cycle was, at least partially, present in LUCA (177), though the directionality of the
cycle remains inconclusive. Indeed, this is compounded by the recent discovery of a reversible cit-
rate synthase in a facultative chemolithoautotrophic thermophile (125). A more recent structural
study further suggests that citrate synthase (the Si-citrate synthase type found in most organisms,
including in plants) is derived from an ancestral citryl-CoA ligase that operates in the reverse TCA
cycle (173), suggesting that the oxidative TCA cycle most likely did evolve from the reductive one.

SomeTCA cycle enzymes might be derived from biosynthetic enzymes of leucine, which likely
was exhausted from the primordial soup and needed to be synthesized very early (81).Examples in-
clude the potential recruitment of citrate synthase (i.e., the ancient Re-citrate synthase type found
in anaerobic bacteria) from isopropylmalate synthase (IPMS), aconitase from IPMI, and isocitrate
dehydrogenase from isopropylmalate dehydrogenase (IPMDH) (Figure 2c).These three enzymes
constitute a common reaction module of C1 elongation, which is also found in other pathways,
such as α-aminoadipic acid lysine and methionine-derived glucosinolate biosynthesis (60, 122,
189).

2.4. Photosynthesis

Evolution of photosynthesis enabled the conversion of sunlight energy into chemical energy,
which supports the life of photosynthetic organisms as well as many heterotrophs that consume
them. Initially, H2-dependent chemoautotrophy likely emerged and was followed by nonoxygenic
phototrophy that used weak far-red light of hydrothermal vents and H2S as an electron donor,
as seen in purple bacteria (185). Later, oxygenic photosynthesis emerged in cyanobacteria, which
utilize sunlight energy and water as the electron donor, generating O2 (104). This was also accom-
panied by the evolution of photosynthetic pigments: Cobalamin (vitamin B12, a cobalt-containing
cofactor of DNA synthesis and amino acid metabolism) likely evolved to a zinc protoporphyrin IX
for weak far-red light harvesting, followed by further conversions into magnesium-based chloro-
phylls for capturing sunlight (104). This represents an example of stepwise forward development
ofmetabolic pathway evolution (58) (see the sidebar titledHypotheses of EarlyMetabolic Pathway
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Horizontal (or
lateral) gene transfer
(HGT or LGT):
a transfer of a genetic
material between
organisms via a process
other than vertical
gene transfer (VGT)

Great Oxidation
Event: the major
atmospheric rise of
molecular oxygen to
appreciable levels
around 2.4 Ga, mainly
due to cyanobacterial
oxygenic
photosynthesis

Endosymbiotic gene
transfer (EGT):
a specific type of
horizontal gene
transfer by which a
genetic material is
transferred between
organisms through an
endosymbiotic event

Evolution).The core proteins of photosynthetic reaction centers are highly conserved structurally
and likely share a common ancestor form, which underwent multiple duplication events to even-
tually form the heterodimeric structures [e.g., D1/D2 proteins of photosystem II (PSII)] (48). A
nonphotosynthetic cyanobacteria ancestor then acquired both PSI and PSII, likely through hori-
zontal (or lateral) gene transfer (HGT or LGT) events. PSI and PSII together enabled oxygenic
photosynthesis (161), which drastically increased oxygen concentration and led to the Great Ox-
idation Event around 2.4 Ga (48). Due to the shifted redox state of Earth’s atmosphere, many
reactions of anoxic metabolism were replaced by aerobic reactions, including glucose oxidation
through glycolysis and highly exergonic aerobic respiration (with O2 as a terminal electron ac-
ceptor). Therefore, modern-day metabolic networks are most likely very different from those of
LUCA, which was presumably anaerobic (177). This major shift in metabolic networks coincides
with the emergence of complex eukaryotic life (138) (Figure 1).

3. MOSAIC ORIGIN OF PLANT PRIMARY METABOLISM

Planta (Archaeplastida) genomes are derived from at least three origins. A eukaryotic host (an ar-
chaebacterium) acquired mitochondria through endosymbiosis of an α-proteobacteria progenitor
(related to Rickettsia), followed by another endosymbiosis of a cyanobacterial ancestor (related to
Gloeomargarita) giving rise to the plastids (106, 191) (Figure 3a). Since all three lineages had the
majority of primary metabolic pathways and enzymes (with some exceptions, such as oxygenic
photosynthesis, which was only present in the cyanobacterial ancestor), primary metabolic path-
ways of plants are the results of the mixing and matching of genes and enzymes derived from dif-
ferent origins. These two endosymbiosis events also provided multiple subcompartments, which
enabled remarkable expansion of complex plant metabolic networks that includes multiple redun-
dant pathways of core metabolism with alleviated cross-pathway metabolite enzyme inhibition
(1, 167). Furthermore, many plant genes and enzymes show the closest homology to those of
unexpected lineages, beyond the three major origins. Thus, much of plant primary metabolism
represents highly mosaic origins through gene transfers (Figure 3).

3.1. Central Carbon Metabolism of Plants

Plastidic and cytosolic pathways of glycolysis are examples of redundant primary metabolic path-
ways of plants. Both pathways are of mosaic origin and are now nuclear encoded (103). Isoforms
of the plastidic pathway are largely of cyanobacterial origin, but triose phosphate isomerase (TPI)
is derived from α-proteobacterial endosymbiotic gene transfer (EGT) (Figure 3b). Cytosolic iso-
forms, by contrast, are predominantly of α-proteobacterial origin, with the exception of phospho-
glycerate kinase (PGK) derived from cyanobacterial EGT (103). The best-studied enzyme from
an evolutionary perspective is plastidic and cytosolic glyceraldehyde 3-phosphate dehydrogenases
(GAPDHs), which are derived from cyanobacteria and α-proteobacterial EGT and dependent on
nicotinamide adenine dinucleotide phosphate (NADPH) and nicotinamide adenine dinucleotide
(NADH), respectively (105, 132) (Figure 3b). The plastidic PGK and GAPDH are also used in
the Calvin-Benson cycle (Figure 3b), whose committed enzyme Rubisco is also of cyanobacte-
rial origin and belongs to the form I with hexadecameric structure of large and small subunits
(L8S8) (169). Notably, however, plants have class I fructose bisphosphate aldolase (FBA, or simply
aldolase), which is distantly related to class II FBA (found in cyanobacteria) and was later du-
plicated into plastidic and cytosolic isoforms (59, 130) (Figure 3b). Although the cyanobacteria
likely brought in a full set of the glycolytic and Calvin-Benson cycle enzymes to the plastids, some
of them have been replaced by homologous enzymes from other origins, potentially acquired
through HGT and α-proteobacterial EGT.
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Figure 3

The mix and match evolution of plant primary metabolism. Enzymes and pathways from eukaryotic and various prokaryotic sources
were acquired and used to form plant primary metabolic pathways. (a) A simplified tree of life, which starts from LUCA, highlights
various gene transfer events—endosymbiotic gene transfer (EGT) and horizontal gene transfer (HGT)—to Plantae (Archaeplastida),
which diverged around 1.5 Ga. (b) Representative primary metabolic enzymes were derived from different evolutionary origins. Green
indicates likely acquisitions through cyanobacterial EGT, while dark red indicates likely acquisitions via α-proteobacterial EGT. Blue
denotes potential acquisitions via HGT from other prokaryotes, though these genes might have been first transferred to the
cyanobacteria progenitor prior to EGT (green asterisks). Purple indicates likely eukaryotic origin. Abbreviations: AAA, aromatic amino
acid; ADT, arogenate dehydratase; CM, chorismate mutase; CMK, 4-(cytidine 5′-diphospho)-2-C-methyl-D-erythritol kinase; CS,
chorismate synthase; DGD, DGDG synthase; DGDG, digalactosyldiacylglycerol; DHAP, dihydroxyacetone phosphate; DHQ-SDH,
bifunctional dehydroquinate dehydratase-shikimate dehydrogenase enzyme; DHS, 3-deoxy-d-arabino-heptulosonate 7-phosphate
synthase; DQS, dehydroquinate synthase; DXR, 1-deoxy-d-xylulose 5-phosphate (DXP) reductoisomerase; DXS, DXP synthase; E4P,
erythrose-4-phosphate; EPSPS, 5-enolpyruvylshikimate-3-phosphate synthase; F1,6P, fructose-1,6-bisphosphate; F6P, fructose-6-
phosphate; G3P, glycerol-3-phosphate; Ga, billion years ago; GAP, glyceraldehyde 3-phosphate; GAPDH, GAP dehydrogenase; GPAT,
glycerol 3-phosphate acyltransferase (known as ATS1 in Arabidopsis); HDR, 4-hydroxy-3-methyl-butenyl 1-diphosphate (HMBPP)
reductase; HDS, HMBPP synthase; IPP, isopentenyl diphosphate; LPAT, lysophosphatidic acid acyltransferase; LUCA, last universal
common ancestor; MDS, 2-C-methyl-d-erythritol 2,4-cyclodiphosphate synthase; MEP, 2-C-methyl-d-erythritol 4-phosphate; MGD,
monogalactosyldiacylglycerol synthase; MVA, mevalonate; PA, phosphatidic acid; PAP, PA phosphatase; PEP, phosphoenolpyruvate;
2PGA, 2-phosphoglycerate; 3PGA, 3-phosphoglycerate; PGK, phosphoglycerate kinase; Phe, phenylalanine; PPA-AT, prephenate
aminotransferase; Rubisco, ribulose-1,5-bisphosphate carboxylase/oxygenase; S1,7BP, sedoheptulose 1,7-bisphosphate; SK, shikimate
kinase; TAG, triacylglycerol; TPI, triose phosphate isomerase; Trp, tryptophan; Tyr, tyrosine; TyrA, arogenate dehydrogenase.

The oxidative pentose phosphate pathway is also broadly regarded as operating in the cytosol
and plastid; the oxidative steps are duplicated in both locations,whereas some of the reductive steps
are confined to the plastid (90). However, the reactions catalyzed by glucose-6-phosphate dehy-
drogenase, 6-phosphogluconolactonase, and 6-phosphogluconate dehydrogenase can also occur
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in the peroxisome, most likely operating to provide NADPH for use in peroxisomal metabolism
(112). The conditional targeting of these enzymes to the peroxisome is triggered by a cytosolic
redox switch (112) and emphasizes the importance of cellular circumstance in the evolution of
plant metabolism.

The TCA cycle and associated electron transport pathways, by contrast, are principally con-
fined to mitochondria; however, several enzymes are additionally localized outside of mitochon-
dria and encoded by a mosaic of organelle and nuclear genomes, with both aspects potentially
mitigating against adverse redox conditions (167). Prior to the α-proteobacterial endosymbiotic
event, theTCA cycle seemed to operate only as isolated steps in both the host and α-proteobacteria
cells (18). The large number of TCA cycle–associated genes in plants is likely due to both poly-
ploidization and HGT from eubacteria, with alternate localizations resulting from unfaithful tar-
geting of the proteins (18, 150). Such genes were subsequently retained in the plant lineage since
their redundancy likely provides robustness in the face of environmental adversity.

Glycolysis and the TCA cycle are remarkably similar between plants and other organisms but
with a few exceptions (44). Glycolysis in plants has lost regulatory control by adenosine triphos-
phate (ATP) and acquired a number of bypass reactions relying on pyrophosphate as an alternative
energy donor (133). Conversely, succinyl CoA ligase of the plant TCA cycle has lost the ability to
utilize GTP and specifically uses ATP as a cosubstrate, while other organisms can use both GTP
and ATP for this step (164), suggesting that a unique functional specialization occurred for this
TCA cycle reaction in the plant lineage. Some cyanobacteria were thought to have incomplete
TCA cycles but had instead acquired different enzymes for the conversion of 2-oxoglutarate to
succinate (195). The greatest innovation with regard to respiratory pathways is that of the alter-
native respiratory pathways via NADH dehydrogenases and the alternative oxidase (AOX), which
conveys robustness toward the prevailing environmental conditions (33, 44). It is important to
note that, contrary to what was previously thought, AOX is by no means confined to plants, is
found across the kingdoms of life, and is likely derived from α-proteobacterial EGT (109).

3.2. Galactolipid Biosynthesis

Galactolipids are present in the photosynthetic membranes of cyanobacteria, algae, and land
plants and are synthesized in plants via both the endoplasmic reticulum and plastidic pathways
(Figure 3b), though their relative contribution is species dependent (159). The plastidic pathway
is commonly referred to as the prokaryotic pathway, mainly because it produces galactolipids hav-
ing C18 and C16 acyl chains at sn-1 and -2 positions, respectively, like in cyanobacteria, whereas
the endoplasmic reticulum–derived galactolipids have C18 in both positions. Despite such con-
ventional naming, however, comparative genomics and detailed phylogenetic analyses from a wide
range of photosynthetic and nonphotosynthetic organisms revealed that none of the genes and en-
zymes involved in the plastidic galactolipid biosynthetic pathways originated from the cyanobac-
terial EGT (143). For example, phosphatidic acid (PA) phosphatase (PAP) is likely of eukaryotic
origin, while the initial acyltransferase reaction is mediated by nonhomologous enzymes in plants
and cyanobacteria—glycerol 3-phosphate acyltransferase (GPAT) versus PlsX-PlsY enzymes, re-
spectively (Figure 3b). The final step, digalactosyldiacylglycerol (DGDG) synthesis, is catalyzed
by different enzymes: DgdA in cyanobacteria and DGD1 in plants and most algae; however, the
cyanobacterial-type DgdA is found in some red algae (64, 142), suggesting that the primary en-
dosymbiont of Archaeplastida likely had both types of DGDG synthases. Therefore, even though
photosynthetic membranes of both plastids and cyanobacteria have very similar galactolipid com-
positions, the underlying biosynthetic pathway likely underwent evolutionary replacement after
the endosymbiosis (Figure 3b). Interestingly, many of these galactolipid biosynthetic enzymes

31.10 Maeda • Fernie

, .•
·�-

Review in Advance first posted on 
April 13, 2021. (Changes may still 
occur before final publication.)

A
nn

u.
 R

ev
. P

la
nt

 B
io

l. 
20

21
.7

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
W

is
co

ns
in

 -
 M

ad
is

on
 o

n 
06

/0
7/

21
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



PP72CH31_Maeda ARjats.cls April 5, 2021 16:23

in cyanobacteria can be functionally replaced by plant-type enzymes (107, 192), suggesting that
galactolipid biosynthetic pathways are flexible and may be relatively easy to engineer. Further-
more, the acquisitions of dual lipid biosynthetic pathways likely provided a robust foundation to
support both the biogenesis of photosyntheticmembranes and extraplastidic triacylglycerol (TAG)
synthesis in algae and land plants.

3.3. Plastidic and Nonplastidic Isoprenoid Biosynthesis

Isoprenoid (terpenoid) biosynthesis supports tremendous chemical diversity of plant natural prod-
ucts and operates in two alternative pathways, plastidic 2-C-methyl-d-erythritol 4-phosphate
(MEP) and extraplastidic mevalonate (MVA) pathways (174). Isopentenyl diphosphate (IPP) is
the precursor of diverse isoprenoid compounds, such as quinones, sterols, hormones, photosyn-
thetic pigments, and other diverse terpenoid compounds. The MVA pathway is commonly found
in animals, fungi, archaea, and gram-positive bacteria, while other bacteria, including cyanobacte-
ria, typically have theMEP pathway; however, land plants and many algae have both pathways (92,
97, 108) and so do a few bacteria (7, 153). TheMEP andMVA pathways evolved independently, as
they use different enzymes—except for the final isomerization step—and start from different pre-
cursors: pyruvate and glyceraldehyde-3-phosphate for the MEP pathway and acetyl-CoA for the
MVA pathway (174). TheMVA pathway is likely an ancient pathway that potentially dates back to
LUCA (66, 97). The MEP pathway is absent in all nonplastid-bearing eukaryotes and hence was
likely introduced to the plant lineage through cyanobacterial EGT. Indeed, two reductases cat-
alyzing the second and last steps are closely related to cyanobacterial enzymes (108) (Figure 3b).
Notably, however, other MEP pathway enzymes of plants and algae are more closely related to
other eubacteria, such as α-proteobacteria and Chlamidia (108). Therefore, both EGT and HGT
contributed to the mosaic evolutionary origin of the plastidic MEP pathway.

3.4. Plant Amino Acid Biosynthetic Pathways

Most amino acid biosynthetic pathways are also localized in the plastids, but many of these en-
zymes are derived from noncyanobacterial origins (139). While potential phylogenetic artifacts
must be carefully evaluated (71), plants likely acquired some of them throughHGT, either directly
to the common ancestor of the Archaeplastida or to the cyanobacterial progenitor before EGT to
the plant lineage (but they were lost or have not been found in extant cyanobacteria) (Figure 3a).
One striking example is seen in the aromatic amino acid (AAA) biosynthetic pathways, which pro-
duces L-phenylalanine (Phe), L-tyrosine, and L-tryptophan through a highly branched pathway
of over twenty enzyme-catalyzed steps (102).These enzymesmight be derived from at least six dif-
ferent sources (Figure 3b). Plant shikimate kinases (SKs) aremost closely related to cyanobacterial
counterparts, while chorismate mutases (CMs) appear to be of eukaryotic origin (36, 140). Plant
dehydroquinate dehydratases (DHQs) belong to type I, which are distinct from cyanobacterial
type II DHQs, and are fused with the subsequent enzyme, shikimate dehydrogenase (SDH), into
a single polypeptide (140) (Figure 3b). The last two steps of plant Phe biosynthesis catalyzed by
prephenate aminotransferase (PPA-AT) and arogenate dehydratase (ADT) are both most closely
related to the Chlorobi/Bacteroidetes counterparts (36). Cyanobacterial PPA-ATs belong to
class IV BCAA aminotransferases (57), rather than plant-type class II PPA-ATs (36). Therefore,
plants use enzymes from diverse sources to operate AAA biosynthesis, which now supports the
production of diverse and often abundant AAA-derived compounds (e.g., phenylpropanoids).

A prior phylogenomic study also revealed that one third of nuclear-encoded proteins specifi-
cally found in the genomes of plants and green algae, but not of nonphotosynthetic eukaryotes,
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have no cyanobacterial homologs (80). Some biosynthetic enzymes of photosynthetic quinones
(e.g., phylloquinone and tocopherols) were also replaced by some with noncyanobacterial origins
(22, 180).Thus, plastidicmetabolic pathways uniquely found in the plant kingdomwere not simply
acquired from cyanobacterial counterparts (Figure 3b).

4. STEPWISE EMERGENCE OF PLANT-SPECIFIC METABOLISM

Besides the acquisition of primary metabolic pathways and enzymes from other kingdoms, addi-
tional metabolic pathways evolved uniquely within the plant kingdom (Plantae), which we refer
to as plant-specific metabolism, as compared to more recently emerged specialized metabolism
(see Section 6). The colonization of land by plants approximately 600 Ma was a pivotal event of
the biological and ecological history of the Earth (Figure 4a), which led to tremendous diversi-
fication of land plants (embryophytes) as well as other life such as animals (117). The adaptation
to the terrestrial environment, however, came with enormous challenges (e.g., stresses imposed
by UV radiation, dehydration, gravity, new pathogens, and herbivores) (Figure 4a), which were
overcome by a number of metabolic innovations. Recent genome sequencing and comparative
genomic analyses of early land plants and algae, especially charophyte green algae within which
land plants emerged (10, 63, 76, 121), are now allowing us to examine the evolutionary history of
the emergence of these plant-specific metabolic pathways.

Plant hormones orchestrate complex plant developmental processes by integrating environ-
mental stimuli. For example, abscisic acid (ABA) is a critical phytohormone in desiccation re-
sponses. Some of ABA biosynthetic and signaling pathway genes, homologous to land plant coun-
terparts [e.g., abscisic aldehyde oxidase 3 (AAO3)], are present in charophyte algae, and so is the
ABA compound itself (63) (Figure 4b). Interestingly, soluble ABA receptors were likely acquired
about 600 Ma through HGT from soil bacteria to an ancestor of Zygnematophyceae, the sub-
aerial charophytes that are sisters to land plants (21). However, the committed enzyme of ABA
biosynthesis, 9-cis-epoxycarotenoid dioxygenase (NCED), is absent in charophytes but appears
in land plants (63, 121). Two enzymes involved in the major auxin biosynthetic pathway derived
from tryptophan (via TAA1 and YUCCA enzymes) are present in all land plants, but their clear
orthologs are absent in most green algae (63, 76, 121) (Figure 4b). However, some auxin signaling
and transport components (e.g., PIN and ARF) are found in charophytes (63, 76, 121), which also
accumulate the primary auxin, indole-3-acetic acid (IAA) (63). Therefore, ABA and auxin might
have been already produced by promiscuous enzymes or alternative noncanonical pathway(s) (e.g.,
tyramine-derived IAA pathway) prior to land plant evolution (Figure 4b).

Charophyte algae appear to have some early enzymatic steps for the synthesis of a defense hor-
mone, jasmonic acid ( JA), such as allene oxide synthase (AOS), and hence can synthesize the key
intermediate 12-oxophytodienoic acid (OPDA) (63) (Figure 4b). Downstream enzymes such as
OPDA reductase 3 (OPR3), however, are missing in green algae (63, 76) and even in the liverwort
Marchantia polymorpha (10). JA response components [e.g., CORONATINE-INSENSITIVE
PROTEIN 1 (COI1) and JASMONATE-ZIM DOMAIN ( JAZ)] are present in the liverwort
and other land plant genomes (10) but absent in charophyte algae (63, 76). Given that JA along
with other oxylipins can be produced via nonenzymatic oxidation of polyunsaturated fatty acids
(176), stepwise recruitments of JA biosynthetic enzymes likely resulted in the production of JA in
a stereo-specific manner (Figure 4b).

A recent comparative analysis of metabolic pathway genes across 72 genomes from green al-
gae to angiosperms (17) revealed metabolic gains and losses during land plant evolution. A com-
plete set of genes encoding enzymes of brassinosteroid biosynthesis and inactivation is present
in seed plants (spermatophytes), while ferns and lycophytes have only partial sets and bryophytes
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Figure 4

Stepwise evolution of plant-specific metabolism critical for land plant evolution. (a) Land plants (green box) evolved from charophyte
algae around 600 Ma. A number of plant-specific metabolic pathways evolved during the gradual transition from aquatic to terrestrial
environments and likely played critical roles in overcoming various challenges on land (red). Timeline is not drawn to scale. (b) Various
metabolic innovations within Plantae are depicted with particular emphasis on time lags observed between chemical (blue) and
biochemical (black) evidence. Such contradictions suggest that the earlier pathways were possibly catalyzed by analogous but
nonhomologous enzymes or mediated by different pathways (orange). Major chemical functions are indicated in white letters on gray
arrows. Abbreviations: 4CL, 4-coumarate CoA-ligase; AAO3, abscisic aldehyde oxidase 3; ABA, abscisic acid; AOS, allene oxide
synthase; ARF, auxin response factor; BDG, BODYGUARD; CHI, chalcone isomerase; COI1, CORONATINE-INSENSITIVE
PROTEIN 1; CUS, cutin synthase; DET2, DEETIOLATED2 steroid 5-α-reductase; HCT, hydroxycinnamoyl-CoA shikimate/
quinate hydroxycinnamoyltransferase; IAA, indole-3-acetic acid; JA, jasmonic acid; JAZ, JASMONATE-ZIM DOMAIN; LACS, long
chain acyl-CoA synthase; Ma, million years ago; NCED, 9-cis-epoxycarotenoid dioxygenase; OPDA, 12-oxophytodienoic acid; OPR3,
OPDA reductase 3; PAL, phenylalanine ammonia lyase; Phe, phenylalanine; PIN, PIN-FORMED auxin efflux carriers; sn-2-GPAT:
sn-2-specific glycerol 3-phosphate acyltransferase; TAA1, Tryptophan aminotransferase of Arabidopsis 1; Trp, tryptophan; UV,
ultraviolet; YUC, YUCCA flavin monooxygenase.
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and green algae have only the initial pathway gene [i.e., DEETIOLATED2 steroid 5-α-reductase
(DET2)] (Figure 4b). Since brassinosteroids also occur in early land plants, albeit at low concen-
trations (190), their biosynthetic pathway appears to be different between early and later diverging
plant lineages and has developed in a stepwise manner. Similarly, cytochrome P450 oxidases (e.g.,
CYP86As) involved in cutin and suberin production are absent in genomes of nonseed plants that
nevertheless contain these biopolymers. Many green algae contain genes encoding long chain
acyl-CoA synthetase (LACS) involved in fatty acid activation (17). Also, some charophytes have
cutin synthase (CUS) and BODYGUARD (BDG) required for cuticle assembly (76), though their
functions remain to be investigated. Algae, however, mostly lack other genes (17, 76), consistent
with their lack of true cutin and suberin polyesters. Therefore, stepwise acquisition of additional
enzymes, such as sn-2-specific GPAT and CYP86A enzymes, likely contributed to the sequen-
tial emergence of cutin in land plants and then suberin in vascular plants, which created robust
hydrophobic barriers to withstand increasingly drier terrestrial habitats (187) (Figure 4b).

Complex polysaccharide cell walls confer both biomechanical support and protection against
environmental stress, and their evolution has often been cited as vital to the plant colonization of
terrestrial habitats (76, 113). Land plant primary walls are composed of cellulose that is embedded
within a matrix of pectin and hemicellulose together with glycoproteins. However, many of the
polysaccharides extant in embryophyte cell walls evolved during the divergence of the charophyte
algae (10, 162). The recent release of the Penium margaritaceum genome revealed considerable
expansion of carbohydrate active enzyme gene families, including glucosyl hydrolases, carbohy-
drate esterases, and polysaccharide lyase class enzymes (76). Also, detailed phylogenetic analyses
based on charophyte algae transcriptomes revealed that most of the core cell wall polysaccharide
enzymes of land plants evolved before the emergence of land plants (113), consistent with the
detection of cell walls similar to those of land plants in recently diverged charophyte algae (162).

Phenylpropanoid compounds also played critical roles during land plant evolution: Soluble
phenolic compounds (e.g., hydroxycinnamate esters and flavonoids) can absorb harmful UV radi-
ation and have antimicrobial activities. Phenolic polymers, such as sporopollenin and lignin, pro-
vide physical barriers and support to withstand desiccation and other physical stresses imposed on
land plants (Figure 4a). Phenylalanine ammonia-lyase (PAL) catalyzes the committed enzyme of
phenylpropanoid biosynthesis. Plant PAL orthologs are found in all land plants but absent in algae
and aremost similar to fungal PALs (32, 38).One of the core flavonoid biosynthetic enzymes, chal-
cone isomerase (CHI), also arose in land plants (20), intriguingly from a noncatalytic ancestor, a
fatty acid binding protein (79).These rare recruitment events represent key metabolic innovations
of land plants (Figure 4b). Interestingly, however, some algae appear to have several genes encod-
ing downstream phenylpropanoid [e.g., 4-coumarate CoA-ligase (4CL)], flavonoid, and mono-
lignol [e.g., hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyltransferase (HCT)]
pathway enzymes (32, 91). Also, many algae accumulate phloroglucinol, phenylpropanoid inter-
mediates (e.g., p-coumarate), and trace levels of flavonoids (54).Wall-bound lignin-like phenolics
are detectable in some red and green algae (34, 162).Therefore, algae likely have phenylpropanoid
biosynthetic capacity via rudimentary and uncharacterized pathway(s), which was further modi-
fied, such as by the addition of the plant/fungi-type PALs, during the land plant evolution to
efficiently produce diverse phenylpropanoid compounds (Figure 4b).

A number of plant-specific metabolic pathways evolved during early land plant evolution,
which played critical roles in terrestrialization (Figure 4a) and also provided stepping-stones for
the diversification of specialized metabolism (as discussed in Section 6). Accumulating evidence
suggests that early diverging lineages of Plantae (e.g., charophyte algae) had already developed
fundamental machineries of thought-to-be land plant–specific metabolic pathways (e.g., phyto-
hormone and phenylpropanoid biosynthesis) and hence preadapted to life on land (Figure 4b).
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The lack of obvious orthologs of corresponding plant enzymes suggests that these lineages use
different enzymes and/or pathways from those of land plants (Figure 4b). These earlier rudimen-
tary pathways were later modified or replaced by the recruitment of additional genes and enzymes,
resulting in the formation of more efficient metabolic pathways. Experimental characterizations
of candidate enzymes from charophytes and early land plants are still largely pending and can fur-
ther reveal earlier functions of these prototype enzymes, pathways, and compounds, which were
later coopted to overcome challenges in various terrestrial environments.

5. DIVERSIFICATION OF PRIMARY METABOLISM

Primary metabolism is generally assumed to be conserved, especially within the plant kingdom,
which mainly relies on photosynthetic carbon fixation as the primary source of organic carbon
and energy. This notion is true in relative comparison to highly diversified secondary or special-
ized metabolism. However, there are some relatively rare alterations in lineage-specific primary
metabolism, which likely have significant impacts on the overall metabolic networks and physiol-
ogy in specific plants (100).

5.1. C3, C4, and Crassulacean Acid Metabolism Photosynthesis

Arguably the best-studied pathway variations seen in plant primary metabolism are those of car-
bon assimilation. In fact, three different main modes of photosynthesis currently exist, namely C3,
C4, and crassulacean acid metabolism (CAM) (149). While anatomical evolution of CAM and C4

from C3 metabolism has been extensively covered elsewhere (62, 149), we largely focus on more
metabolic aspects.Unlike 3-phosphoglycerate, the three-carbonmolecule produced by Rubisco in
C3 photosynthesis, C4 photosynthesis initially generates a four-carbon molecule, oxaloacetate, via
the action of phosphoenolpyruvate carboxylase (PEPC). Oxaloacetate is subsequently converted
to malate or aspartate and shuttled to the chloroplasts of the bundle sheath cells where the CO2

is released for refixation by Rubisco. While at first glance this appears to be an inferior strategy
compared to that of ancestral C3 photosynthesis due to the high metabolic costs associated with
its function, it provides an adaptive advantage under arid, warm, and high light conditions via
the attenuation of the oxygenation side reaction of Rubisco, thereby substantially reducing pho-
torespiration. The C4 photosynthetic pathway has evolved more than 60 times independently yet
unevenly across the phylogeny, being particularly prevalent in the Poaceae and Caryophyllales
(141, 175). A battery of recent comparative genomics studies on C3, C4, and C3–C4 intermediates
suggests that this repeated evolution was likely facilitated by preconditions or enabling traits that
were either present or emerged within given plant lineages (5, 61, 149). One such precondition
was the shuttling of photorespiratory glycine from the mesophyll to bundle sheath cells—the so-
called C2 cycle, which is present in many sister species to C4 lineages and is accompanied by the
shuttling of other metabolites such as alanine/pyruvate and aspartate/malate (56).Once these were
established, alongside alterations in gene expression and anatomy (99), C4 could evolve relatively
easily and be maintained in habitats in which it proved advantageous.

CAM photosynthesis, which temporally separates CO2 uptake and fixation as a means to con-
serve water, has also arisen independently at least 35 times (62) and may have allowed species to
diversify in deserts. Also, like C4, CAM appears to have arisen in a stepping-stone fashion, while
genome sequencing suggests signatures of convergence in the protein sequence and diel transcript
expression of genes involved in nocturnal CO2 fixation and stomatal movement (188). Unlike the
evolutionary trajectory of C4, it appears that the final step (i.e., the transition from weak CAM to
strong CAM) did not evolve easily (37). Researchers have argued, however, that the C3-to-CAM
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transition represents a true continuum (12),which, alongside recentmodeling analysis (154), bodes
well for attempts to improve plant productivity by converting C3 species into CAM species.

Despite having quite distinctive trajectories, the evolution of C4 and of CAM appear to have
many commonalities. Both a focused study on the key enzyme PEPC (23) and a more extensive
survey of 19 gene families (55) within the Caryophyllales indicate shared amino acid substitution
patterns between the two modes, in addition to mode-specific substitutions. While most of the
attention on evolution in photosynthesis has recently been paid to C4 and CAMmodes, relatively
little work has focused on C3 metabolism, which represents more than 90% of extant terrestrial
plant species. However, a recent metabolomics analysis of Calvin-Benson cycle intermediates in
panels of C4 and C3 species (4) revealed considerable differences between the metabolite contents
of the species sets. The study additionally demonstrated striking differences among different C3

species, likely reflecting their different evolutionary trajectories from one another. Thus, a deeper
study of the evolution of primary metabolism within C3 species is also warranted.

5.2. Lineage-Specific Amino Acid Biosynthetic Pathways

Some amino acid biosynthetic pathways have also diversified in specific plant lineages. Amino
acids are essential for protein synthesis in all organisms but are also used as precursors for the
biosynthesis of numerous plant specialized metabolites, such as alkaloids, cyanogenic glycosides,
glucosinolates, and phenylpropanoids. Thus, lineage-specific alterations of amino acid biosynthe-
sis are likely linked to different demands of certain amino acid precursor(s) for the synthesis of
downstream specialized metabolism (100).

An interesting alteration in BCAA biosynthesis was found in the trichomes of wild and cul-
tivated tomatoes, which produce various acylsugar defense compounds (41). IPMS catalyzes the
committed step of leucine biosynthesis (Figure 2) and is typically feedback-inhibited by leucine at
its C-terminal regulatory domain, which controls relative flux toward leucine and valine biosyn-
thesis. The IPMS3 isoform specifically expressed in trichome cells was found to be truncated
at its C-terminal and hence insensitive to the leucine feedback inhibition in cultivated tomatoes
(Solanum lycopersicum) (120). In contrast, wild tomato (Solanum pennellii) had inactive IPMS3. As
a result, S. lycopersicum and S. pennellii produce acylsugars derived from leucine and valine (with
2-methylpropanoic and 3-methylbutanoic acid acyl chains), respectively (120). Therefore, altered
supply of the primary metabolic precursors contributed to the chemical diversity of specialized
metabolism.

The final step of tyrosine biosynthesis, catalyzed by arogenate TyrA dehydrogenase, is also
strictly feedback-inhibited by the product, tyrosine. The TyrA genes were tandemly duplicated
in core Caryophyllales species, such as beets, which uniquely produce tyrosine-derived betalain
pigments rather than the ubiquitous phenylalanine-derived anthocyanin pigments (13). One of
the duplicated TyrA isoforms, whose expression correlates with betalain pigmentation, exhibits
relaxed sensitivity to the tyrosine feedback inhibition (98). Interestingly, the deregulated TyrA
enzymes emerged around 100 Ma and before the evolution of betalain pigmentation. Thus, the
increased availability of the tyrosine precursor might have facilitated later evolution of the novel
pigment pathway—betalain biosynthesis—in this specific plant lineage (98). Another example of
deregulated TyrA enzymes was also found in legumes (146, 147), which are also associated with el-
evated production of specialized metabolites, such as tyrosine and gallate conjugates accumulated
in some Inga species at up to 20% of dry weight (26).

These examples of primary metabolic diversification are mediated by (a) altering gene expres-
sion, (b) repurposing preexisting enzymes to form a different pathway (e.g., C4 and CAM carbon
fixation), or (c) altering the regulation of key metabolic enzymes. Although rare, these changes
have major impacts on plant physiology (e.g., stress tolerance) and metabolism (e.g., evolution of
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specialized metabolism). The rapidly increasing capacity of genome sequencing, gene synthesis,
and high-throughput enzyme assays will likely facilitate discovery of novel variants in primary
metabolic enzymes in the coming years, which could potentially provide useful tools to redesign
often difficult-to-manipulate primary metabolic pathways (101).

6. EVOLUTION OF SPECIALIZED METABOLISM

Having established a core metabolism, several factors have been identified that produce the vast
metabolic diversity in various plant lineages, i.e., specialized (or secondary) metabolism. These
include (a) differences in promoter strength resulting from differences in methylation or copy
number variation in the promoter region; (b) single-nucleotide polymorphisms in the coding re-
gion corresponding to enzymatic activity, substrate preference, or both; (c) polymorphisms result-
ing in a premature stop codon; (d) gene fusions; (e) large gene deletions or insertions caused by
transposons; and ( f ) tandem gene duplications (46) (Figure 5). Importantly, comparisons across
the domains of life have revealed that gene duplication is particularly prevalent in plants (193),
which then acts as the initial step for the co-opting or hijacking of core-metabolic enzymes into
specialized metabolism, leading to tremendous expansion of the plant chemical repertoire (89,
116, 160). To place this in context, primary metabolism is widely assumed to comprise around
1,000 metabolites, whereas the secondary metabolites of the plant kingdom have been estimated
to number 200,000 to 1 million (42).

An early example of the importance of tandem duplication was the glucosinolate polymorphism
in Arabidopsis thaliana being encoded by the AOP2/3 and MAM1/3 tandem gene duplication re-
gion (88). The key enzyme behind Arabidopsis accession-specific phenylacylated flavonoids was
similarly found to be encoded within a serine carboxypeptidase-like (SCPL) tandem duplication
(170). Such genes are thought to be the result of recent neofunctionalization following tandem
gene duplication because they exhibit genetic polymorphism among natural accessions and are not
conserved in any but the most closely related species (46). Plant secondary metabolism is more
tolerant of mutations than its more evolutionary constrained counterparts in primary metabolism
(179), which partially explains the massive chemodiversity of plant specialized metabolites (114).
Substrate specificity is functionally relevant only when alternative substrates are available at ap-
propriate concentrations,meaning that evolutionary changes in what Schenk &Last (148) refer to
as the “cellular context” are greatly important in shaping the metabolic diversity of a species. Such
changes can include (a) alterations in cell-type specificity of expression, (b) subcellular relocaliza-
tion, (c) pathway sequestration, and (d) the mixing of cellular contents following tissue damage.
Indeed, enzymes and metabolic diversity coevolved step-by-step (122); therefore, tremendous ex-
pansion and diversification of some enzyme families (e.g., P450 oxygenase, acyltransferases, and
O-methyltransferases) were facilitated by the availability of new metabolites, which promiscuous
enzymes acted on and further specialized to use these new substrates.

Tandem gene duplication and neofunctionalization is a leitmotif recurring across the diversity
of the phenylpropanoids (46), in both the establishment of major subclasses of flavonoids, such as
isoflavones diversification in legumes (24), and decorative reactions, such as the flavone wogonin
production in the medicinal plant Scutellaria baicalensis (198). More recently, phylogenetic and
structure-function analyses revealed that the evolution of the phenolic rosmarinic acid occurred
independently in Lamiaceae and Boraginaceae, highlighting that chemotypic convergence arose
via disparate evolutionary trajectories (94). In alkaloid biosynthesis, an atypical polyketide syn-
thesis and P450-mediated cyclization led to the innovation of the tropane alkaloids (6), while
the molecular basis of the chlorination of alkaloids in Menispermaceae revealed an example of
cross-kingdom parallel evolution (86). Moreover, new sources of the evolution of specialized
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metabolic enzymes were reported recently. Plant triterpenoid metabolism co-opted a compo-
nent of the cell wall biosynthetic machinery via recruitment of cellulose synthase-like enzymes
alongside other enzymes of saponin biosynthesis to the endoplasmic reticulum (78). Also, the
aromatization of secondary metabolites evolved via specialization of the detoxification enzymes
glyoxalases (67).
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Figure 5 (Figure appears on preceding page)

Some of the major genetic mechanisms underlying the diversity of secondary metabolism and plant chemodiversity. (a) Enhanced gene
expression is shown as a consequence of promoter duplication. A mutational event in regulatory sequences may underlie tissue-specific
expression of metabolism-related genes and thus lead to the diversity of metabolic profiles between different tissues or organs. (b) A
missense mutation (here, a nonsynonymous SNP) causes a change of gene function. (c) The introduction of a premature stop codon (a
nonsense mutation) results in truncated gene product(s). (d) Deletion of the space between two different genes (making them
contiguous) results in gene fusion. (e) Transposable elements mediate (i) insertion or (ii) deletion events. ( f ) Tandem (local) gene
duplication and emergence of a new function in one of the paralogs occurs after divergence (neofunctionalization). TAT, TGT, and
TAA represent nucleotide codons. Abbreviations: Cys, cysteine; mRNA, messenger RNA; pre-mRNA, precursor mRNA; SNP,
single-nucleotide polymorphism; Tyr, tyrosine.

A review by Jacobowitz &Weng (73) highlights recent technologies that have been used in the
study of the evolution of secondary metabolism, and several reviews cover the organization, and
to a lesser extent evolution, of gene clusters in plant secondary metabolism (46, 126). Therefore,
with three exceptions—ancestral protein resurrection, the 1,000 Plant Transcriptomes Project,
and phylogenomics of genes derived from transposable elements—we will not retread this ground.
Two articles from the Barkman lab (68, 69) highlight the power of the first exception. The first
study investigates the role of ancestral functional variation in determining modern-day protein
specificity by looking at protein functional changes in the salicylic acid/benzoic acid/theobromine
(SABATH) lineage of plant secondary metabolite–producing enzymes. In each case, they demon-
strated that ancestrally nonpreferred activities were improved upon in a daughter enzyme follow-
ing gene duplication, suggesting that these functional shifts were likely coincident with positive
selection (68). In the second study, they revealed that the convergent evolution of caffeine biosyn-
thesis was the result of the co-option of exapted ancestral enzymes (69). Also of note here is an
excellent recent review on the effect of epistasis and dominance on the evolution of the terpene
gene synthase family (19). The 1,000 Plant Transcriptomes Project, is, as its name suggests, an
impressive resource housing exome data on a thousand species, which provide good coverage of
the green lineage (127). As the examples for primary metabolism described above attest, there will
likely be a massive boon in understanding the evolution of the diversity of plant metabolism, es-
pecially in combination with advanced metabolomics. The final area that deserves mention is the
role that transposable elements play in metabolic innovation. While several studies have already
highlighted this fact (77, 119), the increasing interest and tractability of studying structural vari-
ations at the genome-wide level (see, for example, 3) is likely to allow a far deeper assessment of
such events in the near future.

7. IMPACT OF DOMESTICATION ON PLANT METABOLISM

A specific variant of evolution that is of high relevance to humans is artificial selection—more
specifically, the processes of domestication and crop improvement. Both processes are well docu-
mented to cause genetic bottlenecks and massively reduce allelic diversity (45). The consequence
of this reduced diversity has been studied for decades for certain metabolic traits linked to agro-
nomic traits; however, such studies have until recently been carried out on single metabolic traits
that have profound effects on our foodstuffs. Examples include the century-long breeding for
attractive color; reduced bitterness; and altered acidity, sweetness, and starchiness, as well as fra-
grances (15, 25, 53, 129, 197, 199).While these studies proved important in identifying the genetic
loci or even the genes underlyingmetabolic changes occurring during domestication, it is arguably
the combination of next-generation sequencing and metabolomics that has advanced our under-
standing of these metabolic changes the most.
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Earlier studies that focused on the levels of phenolic compounds across a panel, which was set
up to establish the domestication of the eggplant, revealed that agronomic features (e.g., fruit size
and texture) aside from nutrition were prominently targeted via selection (111). Beleggia et al.
(8) performed a relatively simple, yet revolutionary, evaluation of metabolic changes occurring
during wheat domestication by investigating the composition of 51 central kernel metabolites in
three Triticum turgidum L. subspecies (wild emmer, emmer, and durum wheat). The study found
that the primary domestication (that of emmer) was marked by a reduction in unsaturated fatty
acids, while a decrease in amino acid levels characterized the secondary domestication (that of
durum wheat) (Figure 6a). Importantly, these metabolic effects were partially independent of the
associations that any of these metabolites have with other domestication-related traits (e.g., kernel
weight). Moreover, the changes in metabolite contents were coupled to alterations in metabolite
correlation networks, suggesting that a deep metabolic restructuring took place on domestication.

While the details differ, the patterns of change with domestication in tomato were similar in
a large-scale multiomics study of 610 accessions (199). Selection of alleles of genes associated
with larger fruits altered metabolite profiles as a consequence of linkage drag, while selection at
five major loci reduced the accumulation of antinutritional steroidal glycoalkaloids in ripe fruits
(Figure 6b). In addition, breeding for pink fruits, an Asian preference, also modified the content
of over 100 metabolites, and the introgression of resistance genes from wild relatives also caused
unexpected disturbance to the metabolome.

In another study, the metabolic divergence between maize and its wild ancestor, teosinte,
was assessed (186) (Figure 6c). This study revealed that, as for other species, certain metabolite
classes varied in specific evolutionary transitions. In this case, alkaloids, terpenoids, and lipids
were targeted at the divergence between teosinte and tropical maize, whereas benzoxazinoids
were targeted on the divergence between tropical and temperate maize. Some of the genetic loci
responsible were determined by studies of either independent maize and teosinte populations or
populations resulting from a maize-teosinte cross (95, 186).

The changes with domestication in rice as compared to maize were recently addressed in
a comparative metabolomic study (35), which revealed that these species displayed differing
metabolomic shifts during their evolution (Figure 6d). Moreover, both shifts were different from
those revealed in the early study in wheat.Domestication has additionally been extensively studied
at the transcriptomic level and has been found to cause a decrease in nucleotide and expression
diversity as well as to modify coexpression patterns in common bean (9) and, less prominently, in
maize (165). Conversely, differences in the levels of metabolites in common bean (131), like those
discussed in maize above, and the types of metabolites present in the cultivated crop are more
divergent than in the wild progenitors. RNA sequencing was also used to provide insight into the
evolution of lettuce and the regulation of flavonoid biosynthesis (194), though metabolic profiling
has not yet been carried out at scale in these species.

While by no means comprehensive in terms of species yet studied, the massive changes that
have been documented to occur during domestication at both qualitative and quantitative levels
renders the use of de novo domestication of wild species relatives of our major crops attractive as
both a research tool and a means of engineering metabolically valuable crops (47). Intriguingly,
analysis of the Gephebase database (http://www.gephebase.org), which compiles published data
about the genes responsible for evolutionary and domesticated changes across eukaryotes, suggests
that breeders have selected large-effect mutations underlying adaptive traits in specific settings
but that these mutations and associated phenotypes would not survive the vagaries of changing
environments (29). This observation aside, the database also highlights several other domesti-
cation genes of interest, including some associated with metabolism such as the betaine aldehyde
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Figure 6

Metabolic changes concurrent with domestication and improvement of crops. Images on the left show
morphological changes in the harvested organs of four crops: (a) wheat, (b) tomato, (c) maize, and (d) rice.
Images on the right show the metabolic changes associated with (a) primary and secondary domestication in
wheat, (b) increase in size, selection for color in tomato, and introgression of resistance genes in tomato,
(c) the domestication of maize, and (d) the domestication of rice. Red and blue arrows indicate increase or
decrease, respectively, in the metabolites shown. Data from References 8, 35, 95, and 199.

dehydrogenase 2 (BADH2) gene in rice—inactivation of which has been demonstrated to enrich
aromatic properties (155).

Domestication (or, strictly speaking, the combination of domestication and crop improvement)
is a special case of evolution, and often the changes that occurred during this process are quite
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different from those during natural selection, which in plants was characterized by a massive
expansion of metabolic diversity. Domestication is instead mainly characterized by quantitative
changes in content, although the elimination of some bitter and toxic compounds has occurred in
some instances. It is important to note that the domestication process has largely been driven by
selection for yield, and, as such, quality is often compromised, as seen, for example, in the deteri-
oration of tomato fruit taste (87). That said, widespread studies of the effects of domestication on
the metabolome are in their infancy, and our understanding of these will dramatically increase in
the near future.

8. CONCLUSIONS AND PERSPECTIVES

’The evolutionary history of plant metabolism broadly reviewed here highlights a number of
key metabolic innovations that led to the tremendous chemodiversity of plants (Figure 1).
Metabolites and underlying biochemical pathways initially evolved under environments having
certain primordial substrates and cofactors, which appear to still impose constraints on current
metabolic networks. Although various CO2 fixation, anabolic, and catabolic pathways exist in
different organisms, the core metabolism is largely conserved across kingdoms, likely stemming
from nonenzymatic reactions and common reaction modules that contributed to the formation of
these core pathways (Figure 2). Mixing and matching of various enzymes and pathways derived
from different evolutionary origins, along with multiple subcellular compartments in the plant
cells, further led to the formation of the unique and robust framework of the plant primary
metabolic network (Figure 3). Besides oxygenic photosynthesis acquired through cyanobacterial
endosymbiosis, the duplication of some key pathways, such as glycolysis and isoprenoid biosyn-
thesis, likely reinforced robust connections between photosynthetic carbon fixation, energy
metabolism, and various biosynthetic pathways. Such metabolic foundation of plants further
enabled evolution and subsequent diversification of numerous defense compounds (e.g., phenyl-
propanoids), biopolymers (e.g., cell walls and cutin), and phytohormones, which allowed plants
to overcome the enormous challenges that these sessile organisms faced during colonization of
land (Figure 4). These plant-specific pathways were further used as stepping-stones for evolu-
tionary expansions of downstream specialized metabolism (e.g., production of diverse terpenoids
and phenolics). The rapid expansion of the metabolic repertoire was driven by the relatively
high rates of gene (and even whole-genome) duplication that characterizes the plant kingdom
(Figure 5). Such tremendous chemodiversity plays critical roles in plants to resist, defend,
and flexibly adjust their growth and development in response to changing environments. Most
recently, domestication has introduced quantitative changes in various nutritional compounds,
though with limited effect on the metabolic repertoire by itself (Figure 6).

A deeper and holistic understanding of plant metabolic evolution will surely help inform
metabolic engineering strategies to harness the immense potential of plant metabolic and chem-
ical diversity. A rapidly growing number of plant genomes and transcriptome sequences (127)
is accelerating the identification of genes and enzymes involved in specialized metabolism and
expanding the repertoire of plant metabolic tool kits for synthetic biology in both microbial and
plant hosts.However, some of these plant enzymes do not work efficiently in heterologous systems
(52), suggesting that we still have to understand the biochemical and cellular contexts in which
these specialized metabolic enzymes function and evolve in coordination (e.g., unknown inter-
actors and certain microenvironments). As compared to recently evolved specialized metabolic
enzymes and pathways, core metabolism that evolved much earlier may be more difficult to engi-
neer. However, synthetic biology on plant hosts will require the modification of core pathways to
improve the supply of primary metabolite precursors for the efficient production of downstream
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plant natural products (156). Suchmajor efforts will likely require repeated cycles of trial and error
but should be facilitated through deeper understanding of their evolutionary path. This will be
particularly critical in plants that have a much longer generation time and a more limited capacity
of high-throughput screening than microbes. Some rare examples of evolutionary alterations of
primary metabolism, for instance, can provide powerful tools and strategies to redesign primary
metabolism (101). We may also have to restart from ancestral states and introduce modifications
to negate the buildup of negative genetic epistasis, though we have to understand both intragenic
and intergenic epistasis, and the latter is currently not easily tractable. To date, such studies have
been carried out at the level of individual enzymes or short metabolic pathways; however, ulti-
mately, we should be able to integrate the knowledge of evolutionary history with the metabolic
pathways modeling to redesign plant metabolism at the level of the complex network.

SUMMARY POINTS

1. Metabolism evolved under certain (ancient) environments, initially mediated via nonen-
zymatic reactions and limited numbers of ambiguous enzymes.

2. Plant primary metabolic pathways were formed through mixing and matching of en-
zymes from diverse origins, leading to the remarkable expansion of complex metabolic
networks localized in different subcellular compartments.

3. A number of plant-specific metabolisms emerged in a stepwise manner, which played
critical roles in plants’ colonization of land and also served as stepping-stones for the
diversification of specialized metabolism.

4. Although rare, some primary metabolic pathways have been recently altered in specific
plant lineages, which has had significant impacts on both physiology and metabolism of
plants.

5. The expansion of the specialized metabolic network occurred mostly in a stepwise man-
ner, by massive gene duplication and neofunctionalization of the existing enzyme repos-
itory and the evolving cellular context.

6. Domestication has resulted in complex and unpredictable changes in metabolite con-
tents, but has had largely quantitative changes and relatively little effect on the metabolic
repertoire of our crops.

FUTURE ISSUES

1. To what extent is the promiscuity of core metabolic enzymes still maintained, and how
much does it contribute to the functionality of the present metabolic network (e.g., un-
derground metabolism)?

2. How much diversity exists in primary metabolic enzymes across the tree of life, and how
flexibly can these enzymes from different origins be mixed and matched to modify the
current metabolic networks?

3. What other cellular processes changed concomitantly or subsequently when a new path-
way evolved?
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4. What were the underlying selection pressures that acted on the evolution of certain
metabolic pathways, if any (or are they the result of a simple genetic drift)?

5. What were the ancestral states under which a given metabolic pathway emerged? Were
there any enabling events or preconditions that later facilitated the evolution of a new
metabolic pathway?

6. Ancestral protein resurrection is an underused tool in plants but is useful to contextualize
the evolutionary framework and to overcome the possibility of negative epistasis.

7. Can we uncouple agronomic and metabolic traits selected together during domestica-
tion, and improve metabolic traits (e.g., enhanced nutrition and defense compounds)
without compromising agronomic traits (e.g., fruit sizes)?
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