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Abstract—In this paper, we consider the problem of scheduling
real-time traffic in wireless networks under a conflict-graph
interference model and single-hop traffic. The objective is to
guarantee that at least a certain fraction of packets of each
link are delivered within their deadlines, which is referred
to as delivery ratio. This problem has been studied before
under restrictive frame-based traffic models, or greedy maximal
scheduling schemes like LDF (Largest-Deficit First) that can
lead to poor delivery ratio for general traffic patterns. In this
paper, we pursue a different approach through randomization
over the choice of maximal links that can transmit at each time.
We design randomized policies in collocated networks, multi-
partite networks, and general networks, that can achieve delivery
ratios much higher than what is achievable by LDF. Further, our
results apply to any traffic (arrival and deadline) process that
evolves as an unknown positive recurrent Markov chain. Hence,
this work is an improvement with respect to both efficiency
and traffic assumptions compared to the past work. We further
present extensive simulation results over various traffic patterns
and interference graphs to illustrate the gains of our randomized
policies over LDF variants.

Index Terms— Scheduling, real-time traffic, Markov processes,
stability, wireless networks.

I. INTRODUCTION

UCH of the prior work on scheduling algorithms for

wireless networks focus on maximizing throughput.
However, for many real-time applications, e.g., in Internet
of Things (IoT), vehicular networks, and other cyber-physical
systems, delays and deadline guarantees on packet delivery are
more important than long-term throughput [2]-[4]. Recently,
there has been an interest in developing scheduling algorithms
specifically targeted towards handling deadline-constrained
traffic [5]-[10], when each packet has to be delivered within a
strict deadline, otherwise it is of no use. The key objective
in these works is to guarantee that at least a fraction of
the packets will be delivered to their destinations within
their deadlines, which is referred to as delivery ratio (QoS).
Providing such guarantees is very challenging as it crucially
depends on the temporal pattern of packet arrivals and their
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deadlines, as opposed to long-term averages in traditional
throughput maximization. One can construct adversarial traffic
patterns that all have the same long-term average but their
achievable delivery ratio is vastly different [9], [11].
Recently, there have been two approaches for providing
QoS guarantees for real-time traffic in wireless networks.
One is the frame-based approach [5]-[8], and the other is a
greedy scheduling approach like the largest-deficit-first policy
(LDF) [9], [10]. In the frame-based approach, it is assumed
that each frame is a number of consecutive time slots, and
packets arriving in each frame have to be scheduled before the
end of the frame. They crucially rely on the assumption that all
packets of all users arrive at the beginning of frames [5]-[7],
or the complete knowledge of future packet arrivals and their
deadlines in each frame is available at the beginning of the
frame [8]. This restricts the application of such policies to
specific traffic patterns with periodic arrivals and synchro-
nized users. Partial generalizations of the frame-based traffic
are considered in [12], [13] without performance guarantees.
The results for general traffic patterns without such frame
assumptions are very limited, as in such settings, the real-
time rate region is difficult to characterize and the optimal
policy is unknown. A popular algorithm for providing QoS
guarantees for real-time traffic is the largest-deficit-first (LDF)
policy [5], [9], [10], [14], which is the real-time variation
of the longest-queue-first (LQF) policy (see, e.g., [15], [16]).
It is known that LDF is optimal in collocated networks under
the frame-based model [5], [14]. The performance of LDF in
the non-frame-based setting has been studied in [9] in terms
of the efficiency ratio, which is the fraction of the real-time
throughput region guaranteed by LDF. It is shown that LDF
achieves an efficiency ratio of at least ﬁ for a network
with interference degree! 3, under i.i.d. (independent and
identically distributed) packet arrivals and deadlines. Further,
when traffic is not i.i.d., the efficiency ratio of LDF is as low as
ﬁ [9]. In particular, for collocated networks, the efficiency
ratio of LDF under Markovian traffic is 1/2, and in a simple
star topology with one center link and K neighboring links,
it scales down as low as O(LK) This shows that LDF might
not be suitable for high throughput real-time applications,
especially with non-i.i.d. traffic, which is the case if packet
drops due to deadline expiry trigger re-transmissions.
Besides the works above on providing QoS guarantees
for wireless networks, there is literature on approximation

IThe interference degree is the maximum number of links that can be
scheduled simultaneously out of a link and its neighboring links.
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algorithms for single-link buffer management problem [17],
[18]. In this problem, packets arrive to a single link, each
with a non-negative constant weight and a deadline. The goal
is to maximize the total weight of transmitted packets for the
worst input sequence. The approximation algorithms include
the maximum-weight greedy algorithm [17], [18], EDF,, [19]
which schedules the earliest-deadline packet with weight at
least a < 1 of the maximum-weight packet, or randomized
algorithms such as [19]-[22] where the scheduling decision is
randomized over pending packets in the link’s buffer. Some
of these randomized algorithms have used a novel amortized
analysis technique initially introduced in [23]. Inspired by such
randomization techniques, we design randomized algorithms
for wireless networks under a general interference model and
given the delivery ratio requirements for the links in the
network.

A. Contributions

Contributions of this paper can be summarized as follows.

Markovian Traffic Model: Our traffic model allows traffic
(arrival and deadline) processes that evolve as an unknown
irreducible Markov chain over a finite state space. This model
is a significant extension from i.i.d. or frame-based traffic
models in [5]-[9]. A key technique in analyzing the achievable
efficiency ratio in our model is to look at the return times
of the traffic Markov chain and analyze the performance of
scheduling algorithms over long enough cycles consisting of
multiple return times.

Randomized Algorithms with Improved Efficiency: We pro-
pose randomized scheduling algorithms that can significantly
outperform deterministic greedy algorithms like LDF. The
key idea is to identify a structure for the optimal policy
and randomize over the possible scheduling choices of the
optimal policy, rather than solely relying on the deficit queues.
For collocated networks and complete bipartite graphs our
randomized algorithms achieve an efficiency ratio of at least
0.63 and 2/3, respectively, and in general graphs, achieve an
efficiency ratio greater than 1/2, all independent of the network
size and without the knowledge of the traffic model.

II. MODEL AND DEFINITIONS

Wireless Network Model. We consider a set of K links (or
users) denoted by the set K, where K = ||. Time is slotted,
and at each time slot t € Ny, each link can transmit one packet
successfully, if there are no interfering links transmitting at the
same time. As in [9], it is standard to represent the interference
relationships between links by an interference graph Gy =
(K, Er). Each vertex of G is a link, and an edge (I1,12) € Ej
indicates links /; and l5 interfere with each other. Let I;(t) = 1
if link [ is transmitting a packet at time ¢, and I;(¢) = 0
otherwise. Hence, any feasible schedule M(t) := {l € K :
I;(t) = 1} at time ¢ has to form an independent set of G
over links that have packets, i.e., no two transmitting links
can share an edge in G;. We say a feasible schedule M (t) is
maximal if no more links can be added to the schedule without
interfering with some other active link in M (). Let B(t) be
the set of links that have packets available to transmit at time
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Fig. 1. An example of a Markovian traffic process with three traffic patterns
repeating as A — B — C' — A---. Each rectangle indicates a packet for

a link indicated by its number. The left side of the rectangle corresponds to
its arrival time, and its length corresponds to its deadline. For example on
pattern A, we have 2 packets, 1 from link 2, with deadline 2 slots after the
arrival, and 1 from link 1, with deadline in the same slot.

t. Let Z denote the set of all maximal independent sets of G7.
Then, at any time ¢,

M(t) € (B(t) N D),

where ‘C’ holds with ‘=" if M(¢) is a maximal schedule.

Traffic Model. We consider a single-hop traffic with dead-
lines for each link. Let a;(¢) denote the number of packets
arriving on link [ at time ¢, with a;(t) < @max, for some
amax < 00. Each packet upon arrival has a deadline which is
the maximum delay that the packet can tolerate. We define a
vector 7(t) = (11.4(t);d =1, , dmax), Where 7 q(t) is the
number of packets with deadline d arriving to link [ at time
t. A packet arriving with deadline d at time ¢ has to be trans-
mitted before the end of time slot ¢ + d — 1, otherwise it will
be dropped. The maximum deadline is bounded by a constant
dmax. Hence, the network traffic (arrival, deadline) process is
described by 7(t) = (7i(t);1 € K), t > 0. We also use u(t)
to denote any unobservable (hidden) information of the traffic
process, so that the complete traffic process x(t) = (7(t), u(t))
evolves as an irreducible Markov chain over a finite state
space X = T' x U, where T' = {0, , Gmax } =<K and
U= {1, -+ Upnax} for a finite Up,ax.

Note that the arrival and deadline processes do not need
to be i.i.d. across times or users. Since the state space X is
finite, x(¢) is a positive recurrent Markov chain [24] and the
time-average of any bounded function of x(t) is well-defined,
in particular, the packet arrival rate @;, [ € IC,

for some D € 7,

t
i wo-n o
See Figure 1 for an example of a Markovian traffic process.

Buffer Dynamics. The buffer of link [ at time ¢ contains the
existing packets at link [ which have not expired yet and also
the newly arrived packets 7;(¢). Formally, we define the buffer
of link [ by a vector ¥;(t) = (U1q(t);d = 1, -+, dmax)s
where U; 4(t) is the number of packets in the buffer with
remaining deadline d at time ¢. The remaining deadline of each
packet in the buffer decreases by one at every time slot, until
the packet is successfully transmitted or reaches the deadline
0, which in either case the packet is removed from the buffer,
i.e., the buffer at the beginning of slot £ 4 1 is

Vgt +1) =9 q01(t) + ma(t+1) — Lara(t), (2

where I;(t) = Y9 [ 4(t) < 1, and I 4(t) = 1 if the

scheduler selects a packet with deadline d to transmit at time ¢

Essentially, u(t) assigns labels to 7(t) to allow more complicated depen-
dencies in 7(t). If U = {1}, then 7(¢) itself evolves as a Markov chain.
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on link /. By convention, we set U; 4. +1(t) =0, ¥;(t) =
0. We define the network buffer state as U(t) = (¥,(t);1 € K).

Delivery Requirement and Deficit. As in [5]-[9], we assume
that there is a minimum delivery ratio p; (QoS requirement)
for each link [/, [ € K. This means the scheduling algorithm
must successfully deliver at least p; fraction of the incoming
packets on each link [ in long term. Formally,

ZZ=1 Ii(s)
ZZ=1 ar(s)
We define a deficit w;(t) which measures the amount of

service owed to link [ up to time ¢ to fulfill its minimum
delivery rate. As in [8], [9], the deficit evolves as

lim inf
t—o0

2 P 3)

wit+1) = [w(t) + @ - 1), 4

where [|T = max{-,0}, and @,(¢) indicates the amount of
deficit increase due to packet arrivals. To determine a;(t), for
the n-th arriving packet on link [, we increase the deficit of
link I by X;(n) > 0, where X;(-) is i.i.d. with E[X;(-)] = pi,
i.e., we increase the deficit on average by p;. For example,
we can increase the deficit by exactly p; for each packet arrival
to link /, or use a coin tossing process as in [8], [9], i.e., each
packet arrival at link [ increases the deficit by one with the
probability p;, and zero otherwise. We refer to a;(t) as the
deficit arrival process for link [. Note that it holds that

ot _
lim — 28:1 al(s) =ap =N, l€K. 5)

t—oo

We refer to \; as the deficit arrival rate for link . We would
like to emphasize that the arriving packet is always added to
the link’s buffer, regardless of whether and how much deficit
is added for that packet. Also note that in (4), each time a
packet is scheduled from the link, I;(t) = 1, the deficit is
reduced by one. The dynamics in (4) define a deficit queueing
system, with bounded increments/decrements, whose stability,

e.g.,

: 1
lim sup - >, Elw(s)] < oo, (6)
implies that (3) holds.® Define the vector of deficits as w(t) =
(wi(t),1 € K). The system state at time ¢ is then defined as

S(t) = (W(t), w(t),x(t)). ©)

Objective. Define P¢ to be the set of all causal policies, i.e.
policies that do not know the information of future arrivals and
deadlines in order to make scheduling decisions. We assume
that policies in Pc can potentially utilize the information of
the hidden state w(t) of the traffic process x(t), however,
we emphasize that the policies designed in this paper do not
need to know this information when making decisions. For a
given traffic process x(¢), t > 0, with fixed @;, defined in (1),
we are interested in causal policies that can stabilize the deficit
queues for the largest set of delivery rate vectors p = (p;,l €
KC), or equivalently largest set of A = (A := @p;,l € K)
possible. For a given traffic process, we say the rate vector

3 Actually only the rate stability is enough to establish (3) [25], however we
consider this stronger notion of stability.

A = (\,1 € K) is supportable under some policy u € Pe if
all the deficit queues remain stable. Then one can define the
supportable (real-time) rate region of the policy u as

Ay ={X>0: X is supportable by 1} (8)

Note that for a given traffic distribution, a vector X corresponds
to a single vector of delivery rate requirements p exactly. The
supportable rate region under all the causal policies is defined
as A= pEPe A . The overall performance of a policy p is
evaluated by the efficiency ratio v}, which is defined as

7, =sup{y:7A C A} )

For a casual policy u, we aim to provide a universal lower
bound on the efficiency ratio that holds for “all” Markovian
traffic processes (without knowing the transition probability
matrix).

III. RANDOMIZED SCHEDULING ALGORITHMS

In this section, we present our randomized scheduling
algorithms. We start with the collocated networks, and then
proceed to general networks.

A. Collocated Networks

In a collocated network, only one of the links can transmit
a packet at any time. Hence the interference graph Gy is a
complete graph.

Define ¢;(t) = min{d : ¥, 4(t) > 0} to be the deadline
of the earliest-deadline packet available at link [ at time t.
By convention, the minimum of an empty set is considered
infinity. We use a tuple (w;(t), e;(t)); to denote the earliest-
deadline packet of link /! with deadline ¢;(¢) and link deficit
wi(t). We make the following dominance definition.

Definition 1: We say that a link 1y dominates a link ly at
time t if wy, (t) > wy, (t) and ey, (t) < ey, (t). If one of the two
inequalities is strict, we call it a strict dominance. A non-
dominated link is a nonempty link that is not dominated strictly
by any other link at that time.

Recall that B(¢) is the set of links with nonempty buffers.
At every time slot, we first find the set of non-dominated links
Bxp(t). One way to do that is as follows:

Algorithm 1 Finding Set of Non-Dominated Links

1: H «— B(t), Bap(t) < @, i« 0

2: while H # & do

3: t—1+1

Find the largest-deficit non-dominated link h; € H.
Add h; to BND(t)

Remove h; and all the links dominated by it, i.e.

He— H\{leH:elt)>en(t))

AN

7: end while

Algorithm 1 returns a set Bxp(t) = {h1,.., hi}, where h;
is the link selected in the i-th iteration, and the links are
ordered in the order of their deficits, i.e., wp, (t) > wp, (t) >
-+ > wp, (t). See Figure 2 for an illustrative example of the
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Fig. 2. An example for non-dominated links. Each numbered rectangle

denotes the earliest-deadline packet of a link. A solid rectangle indicates that
the link is non-dominated. Dashed rectangles (links) that fall in regions R;
will be dominated.

non-dominated links. Our scheduling algorithm transmits the
earliest-deadline packet of one of the links h; € Bnp(t) ran-
domly, where the probabilities py,, (¢) are computed recursively
as in Algorithm 2. We refer to Algorithm 2 as AMIX-ND

Algorithm 2 AMIX-ND: Randomized Scheduling in Collo-
cated Networks

1: Use Algorithm 1 to find Bxp(t) = {h1, .., hi }.

2:r«—1

3 fori=1to k—1do
4 pp,(t) = min (1 _ w;)}+zf()f)7r)

s orerepn(t)

6: end for

7 pp, (L) =71

8: Send the earliest-deadline packet from link /2; with proba-

bility pp, ().

which stands for Adaptive Mixing over Non-Dominated links.
Theorem 1: In a collocated wireless network with K links,
AMIX-ND achieves an efficiency ratio of at least

K
* s1o(1-L) ezt
YAMIX-ND = K P

Remark 1: Note that AMIX-ND has an efficiency ratio
which is bounded below by 0.63, regardless of the number of
links. In contrast, we can construct Markovian traffic processes
where the efficiency ratio of LDF is less than 1/2 + € [9].
For example, for the traffic patterns of Figure 1 in the model
section, we will see in simulations in Section VI that, while
AMIX-ND can achieve delivery ratios close to 0.99, LDF
cannot do better than 0.5 4 €. Note that our traffic model does
allow traffic patterns as in Figure 1, since we do not need the
traffic Markov chain to be aperiodic.

Remark 2: Assuming access to the earliest deadline packet
of every link, the computational complexity of AMIX-ND is
O(K log K) for assigning probabilities and choosing a packet
for transmission. We describe one such implementation in
Appendix A.

(10)

B. Multipartite Networks and General Networks

Recall that B(t) is the set of links with nonempty buffers,
and 7 is the set of maximal independent sets of the interference
graph G 1. The set of maximal schedules is defined as M(t) =
{D N B(t),D € Z}. Our randomized algorithm selects a
maximal schedule (MS) M € M(t) probabilistically and
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schedules the earliest-deadline packets of the links of M.
We refer to this algorithm as AMIX-MS which stands for
Adaptive Mixing over Maximal Schedules. Before presenting
the algorithm, we make a few definitions.

Definition 2: The weight of a MS M € M(t) at time t is

War(t) = > wi(t). (11)
leM

Let R = |[{M € M(t),Wn(t) > 0}|. We index and order
M € M(t) such that M; has the i-th largest weight at time
t, ie,

WMl (t) > WM2 (t) 2 WMR (t)

Definition 3: Define the subharmonic average of weights of
the first n MS, n < R, at time t to be
n—1
i (W (1)~
The probabilities used by AMIX-MS to select MS M;, at time
t, are as follows

Cn(t) = 12)

Cr(t) .

- 1— , 1<1<n
pir, (1) = pi (1) = Wiz, (1) (13)

0, n<i<|M()]
where 7 is the largest n < R such that {p](¢),1 < i < n}
defines a valid probability distribution over 1 < ¢ < n. Noting
that pj'(t) > pj, () for i < m, and ), pi'(t) = 1, 0 is
therefore given by -

7= n(t) = max{n : p;(t) > 0}. (14)

We drop the dependence on ¢ for 7i(t) when there is no
ambiguity. Algorithm 3 gives a description of AMIX-MS
where 7 is found using a binary search. Then AMIX-MS
selects a MS M; with probability p?(¢) as in (13).

Algorithm 3 AMIX-MS: Randomized Scheduling in General
Interference Graphs

1: n1<—1,n2<—R

2: while ny # no do
3: n <« (%]

4: if pll(t) > 0 then
5: nyL«<n

6:  else

7: ng «—n—1

8: end if

9: end while

10: N «<— Ny

—_
—

: Select MS M, with probability p?{jﬁ (t) as in (13) and
transmit the earliest-deadline packet of each link in M;.

The following theorem states the main result regarding the
efficiency ratio of AMIX-MS.

Theorem 2: In a wireless network with interference graph
G and maximal independent sets I, the efficiency ratio of
AMIX-MS is at least

R
YAMIX-MS = oT -1~ 2
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A special case of this theorem is for networks with a
complete n-partite interference graph, n > 2. In a complete
n-partite graph, with n components, Vi,---,V,, links in
each component do not share any edge but there is an edge
between any two links in different components. Hence, each
component V;, 1 < i < n induces a MS. We state the result
as the following corollary which immediately follows from
Theorem 2.

Corollary 2.1: For a wireless network with a complete
n-partite interference graph, under AMIX-MS,

* > n
YaMIX-Ms = om—1

Remark 3: We emphasize on the importance of Theorem 2
using a simple interference graph with ‘star’ topology. This is
a special case of a bipartite graph with only two components,
V1 is the center node, and V5 are the leaf nodes. Notice that the
guarantee of AMIX-MS in this case is at least % regardless of
the number of nodes K. This is a significant improvement over
LDF, whose efficiency ratio is at least % under i.i.d. traffic
but not better than — under Markovian traffics [9].

Remark 4: We note that the computational complexity of
AMIX-MS could be high for general graphs as it requires
finding an ordering of maximal schedules, the number of
which can be exponential in the number of vertices of
the graph [26]. However, it is easily applicable for small
graphs or graphs with limited number of independent sets.
Moreover, we can further approximate the algorithm by only
ordering a subset of maximal schedules as opposed to finding
all of them. The randomization in AMIX-MS could be
potentially implemented in a distributed manner by using
CSMA-like schemes such as [27]-[29].

IV. ANALYSIS TECHNIQUE

We provide an overview of the techniques in our proofs.
We first mention a lemma below which should be intuitive
and will allow us to restrict our attention to natural policies.

Lemma 1: Without loss of generality, we consider natural
policies that use a maximal schedule to transmit at each time.
Further, if a link is included in the schedule, its earliest-
deadline packet will be selected for transmission.

Proof: The proof is through a standard exchange argument
and can be found in Appendix B. O

Frame Construction: A key step in the analysis of
our scheduling algorithms is a careful frame construction.
We emphasize that the frame construction is only for the
purpose of analysis and is not part of our algorithms. The
F-framed construction in [9] only works for i.i.d. arrivals and
deadlines. Here, we need a construction that can handle our
Markovian traffic model. We present this construction below
where frames have random length as opposed to fixed length
in [9].

Definition 4 (Frames and Cycles): Starting from an initial
traffic state x(0) = x € X, let t; denote the i-th return time
of traffic Markov chain x(t) to x, i = 1,---. By convention,
define tg = 0. The i-th cycle C; is defined from the beginning of
time slot t;_1+1 until the end of time slot t;, with cycle length
C; =t; —t;_1. Given a fixed k € N, we define the i-th frame

fi(k) as k consecutive cycles C;_1)p41, " ,Cik, i.e., from the
beginning of slot t(;_1), + 1 until the end of slot t;. The
length of the i-th frame is denoted by Fi(k) = Z;k:(iq)kﬂ Cj.
Define J(F (k)) to be the space of all possible traffic patterns
(7(t),t € F®) during a frame F*). Note that these patterns
start after x and end with x.

By the strong Markov property and the positive recurrence
of traffic Markov chain, frame lengths Fi(k) are i.i.d with mean
E[F®*)] = kE[C], where E[C] is the mean cycle length which
is a bounded constant [24]. In fact, since state space X is
finite, all the moments of C' (and F(¥)) are finite. We choose
a fixed k, and, when the context is clear, drop the dependence
on k in the notation.

Define the class of non-causal F-framed policies Pyc(F)
to be the policies that, at the beginning of each frame F;, have
complete information about the traffic pattern in that frame,
but have a restriction that they drop the packets that are still in
the buffer at the end of the frame. Note that the number of such
packets is at most dy,axGmax K, Which is negligible compared
to the average number of packets in the frame, @E[F] =
akE[C], as k — oo. Define the rate region

Ave(F) = | A
HEPNc(F)

5)

Given a policy u € Pyc(F), the time-average service rate
I; of link [ is well defined. In fact, by the renewal reward
theorem (e.g. [30], Theorem 5.10), and boundedness of E[F],

ZZ:l Ii(s) _ E [Zte}‘ 1 (tﬂ

i - E[F] =1 (16)
Similarly for the deficit arrival rate \;, defined in (5),
E a(t
M:Al, le k. (17)

E[F]

In Definition 4, each frame consists of k cycles. Using similar
arguments as in [9], it is easy to see (and it is intuitive) that

liminf A yo(F®) D int(A).
k—o0

where int(-) is the interior. Hence, if we prove that for a causal
policy ALG, there exists a constant p, and a large kg, such that
for all k > ko,

pint(ANc(]:(k))) - AALG7 (18)

then it follows that Aare 2 pint(A). For our algorithms,
we find a p such that (18) holds for any traffic process under
our model. Then it follows that v%; ~ > p.

We define the gain of a policy u at time ¢ as
_ () TH
Gu(t) = ZleK wy' (017" (1),

and the gain over a frame is ), -G, (t). To prove (18),
we rely on comparing the gain (total deficit of packets trans-
mitted) by ALG and an optimal max-gain non-causal policy
over a frame. The following proposition states the result for
any general interference graph.

Proposition 1: Consider a frame F = FF), for some
fixed k based on returns of traffic process x(t) to a state
x. Let |lw(to)|| = > ,cxcwi(to) be the norm of the initial

19)
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deficit vector at the start of the frame. Suppose for a causal
policy ALG, given any ¢ > 0, there is a W' such that when
[[w(to)]| > W',

E[>,crGara(t)|S(to)] .
E [Zte}‘gu* (t)|S(t0)} =P ’ (20)

where S(to) = (V(to),w(to),x(to)), and p* is the non-
causal policy that maximizes the gain over the frame. Then
for any X € pint(Anc(F)), the deficit queues are bounded
in the sense of (6).

Proof: The proof of Proposition 1 is through a Lyapunov
argument. It is provided in Appendix C. (]

Gain Analysis. With Proposition 1 in hand, we analyze
the achievable gain of our algorithm over a frame, compared
with that of the optimal non-causal policy p*. Since charac-
terizing p* is hard, we extend a gain comparison technique
from [19]-[21], [31] (developed for constant-weight single
buffer analysis) to stochastic process (¥ (), w(t),x(t)) in a
general network.

Consider a state (U(t),w(t),x(t)) under our randomized
algorithms at time ¢ € , and the state (U#" (t), w* (t), x(t))
under the max-gain policy p*. Note that the traffic process
x(t) is the same during the frame for both algorithms since
we do not assume dependence between the policy decisions
and the traffic process. We change the state of p* (by
modifying its buffers and deficits) to make it identical to
(U(t),w(t),x(t)), and give u* appropriate additional compen-
sation that guarantees that, alongside the state modification,
we have >, -G .(t) > >, 7G,u- (1), where G,. () is the
modified gain, i.e., the changes are advantageous for u*
considering the rest of the frame. Then, taking the expectation
E[G’(t)] with respect to the random decisions of our algorithm,
AMIX-ND or AMIX-MS, and traffic patterns in a frame,
we can bound the optimal gain of p*. Then we can prove the
main results in view of Proposition 1.

The gain analysis of AMIX-ND in collocated networks and
AMIX-MS in general networks is presented in Sections V-A
and V-B, respectively.

V. PROOFS OF MAIN RESULTS

In view of Proposition 1, we provide the gain analysis of
our algorithms. In what follows, we define

Wmax (t) = rl%akx wl(t)]l(\l/l 7& 0); (21)
to be the maximum deficit of a nonempty link at time t.
Also define [N] := {1,2,...,N}. We use Ex[] to denote
conditional expectation E[-|X]. EY[] is used to explicitly
indicate that expectation is taken with respect to some random
variable Y. |A| is used to denote the cardinality of set A.

A. Gain Analysis of AMIX-ND in Collocated Networks

Consider a subclass Py p of all the policies that schedule
Non-Dominated (ND) links at each slot (recall Definition 1).
We refer to policies in Pyp as ND-policies. The roadmap
for proving Theorem 1 through Proposition 1 is as follows.
We first show that the optimal ND-policy is close to the
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optimal non-restricted policy (Lemma 2). This allows us to
focus on comparing the gain of our policy with ND-policies.
The gain comparison is initially performed through the gain
analysis technique described in Section IV on a per-time
slot basis (Lemma 3) and then extended to the whole frame
(Lemma 4). As Proposition 1 is with regard to general policies,
we convert the comparison with ND-policies to that with gen-
eral policies (Theorem 3) to conclude the proof of Theorem 1.

The formal statement of Lemma 2 is as follows.

Lemma 2: Consider any policy p for scheduling packets in
a frame F. Then there is an ND-policy i € Pxp such that,
under the same pattern J € J(F) and initial state S(to),

Zgﬁ, (t) > Zgu (t) - amaxF27
teF teF
where F' is the length of the frame.

Proof: Suppose the first time ;o does not schedule a non-
dominated link is . Suppose u sends earliest-deadline packet
(wy(to),dy) from link y and (wy(to),d,) be the earliest-
deadline packet at a link = (x # y) that strictly dominates
Y, 1.e. we(to) > wy(to), de < dy. Consider some alternative
policy p/ which has the same transmissions as p up to time
to but transmits the packet of = at time ¢y instead. Let
wj(t), I € K denote the link deficits under ;/. Note that
wy(t) = w(t), Vt < to. We differentiate between 2 cases:

1) u does not transmit packet z in the remaining time slots.
In this case, let ;/ transmit the same packets as y in the
remaining slots (after tg). Let I;(t1,t2) = ?:tl Ii(t)

be the number of packets transmitted between ¢ and ¢,
at link / under p (and subsequently under ). And let

AG =3, cr7Gu(t) = > 1 cxGu(t). Then we have

AG Y w, (to) + I (to + 1, F)
— (wy(to) + Lu(to + 1, F))

b

(2) wz(to) — wy(to) - F 2 —F.
To see (a), notice that as a result of transmitting from
link z instead of link g, the deficit of link y under u’
will be one more than that under p at any time ¢ > .
Similarly, the deficit of link 2 under p’ will be one less
than that under y at any time ¢ > to. In (b), we have
used the fact that I;(¢) € {0,1} and wy(to) > wy(to).

2) p transmits packet x at some time slot ¢, where ¢y <

te < to + dg. In this case we let p/ transmit the same
packets as p for all ¢ > ty except for time slot ¢, in
which it transmits packet y instead, which still has not
expired yet by the domination inequality d, > d. It is
easy to check that

Zte]—‘g”' (t) - Zte]—‘g”(t)
= wz(to) +wy(ta) + Iy(to + 1,1, — 1)

—wy(to) — we(ta) — In(to +1,ta — 1). (22)

The total deficit arrival to a link in the frame cannot be
more than am,.F'. Hence,

wx(ta) < wx(to) + Amax ' — Ix(tO; te — 1)7

wy (ta) > wy(to) — Iy(to, ta — 1).
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Using these two inequalities in (22) yields

Ztefg“ Z g“

By repeating this process (at most F' times), we can transform
1 to fi. From this, the final result follows. (]

In what follows, let p; denote the efficiency ratio bound
stated in Theorem 1, i.e.,

—OmazF. (23)

pri=1—(1-1/K)* (24)

Lemma 3 below relates the per time-slot gain of AMIX-ND
to the amortized gain of any other ND-policy.

Lemma 3: Under any pattern J € J(F) of length F, for
each slot t € F, the gain obtained by AMIX-ND, and the
amortized gain by any ND-policy [i, starting from some state

S(t) satisfy:
ER (G, (4)[S(), J] < Winas(t) + Eo
ER[Gamix-np (1)[S#)] > Wimaz (t)p1

where £y = (amaz+1)dmax+F, Wiaz(t) is defined in (21), p1
is defined in (24), and EX[] denotes expectation with respect
to the random decisions of AMIX-ND.

Proof: At time t, after the new arrivals have happened,
we have state S(t). AMIX-ND decides probabilistically to
transmit a packet p, = (wy,ey) from a non-dominated link
f € Bup(t), and the ND-policy fi transmits a packet p, =
(w,,e,) from some other non-dominated link z. We distin-
guish two cases following the same method as in [21] but for
time-varying weights.

(25)
(26)

1) ef < e.,wy < w,: In this case, to maintain the same
buffers for both algorithms, we remove the packet p,
from the buffer of link f under ji and inject the packet
p, to link z so that /i gets a packet with higher deadline
and higher weight at the time ¢. Since both packets
will expire in at most dy,.x slots, the deficit of f can
only increase by at most dmax@max before packet ey
expires, whereas the deficit of z can decrease by at most
dmax. Therefore giving fi an additional compensation of
dmax(@max + 1) will guarantee that the modification is
advantageous. Further, we decrease the deficit of link f
by one (wy — 1 in /1) and we increase the deficit of link
z by one (w, + 1 in f1). Then i and AMIX-ND have
the same exact state. Making this change in the deficit
will reduce the gain for each packet transmitted from
link f in the future by one. To compensate for this,
we give [t extra gain which is the number of packets
transmitted from link f for the rest of the frame, which
is less than F'. Hence, the total compensation is bounded
by F' + (amax + 1)dmax-

2) e, <ey,w, < wy: In this case, we allow /i to addition-
ally transmit the packet p at time ¢, and inject a copy of
packet p,, to the buffer of link z. Allowing /i to transmit
packet p, at time ¢ instead of a later time can only be
disadvantageous from the total-gain perspective in the
case where the deficit of f increases due to other arrivals
in subsequent times, but such increase of deficit can
be at most dyaxamax, hence giving this compensation
guarantees that this modification is advantageous for /.

Further we decrease the deficit counter of link f in
by one, which might not be advantageous for /i for
future times. Similarly to the other case, to guarantee
that the change is advantageous for [, we give it one
extra reward for each possible transmission from link f
in the rest of the frame, which is less than F'.

Note that the additional compensation in both cases is
bounded by & = F + (amax + 1)dmax. Let g;fh”(t)
denote the reward (including the compensation) gained by
[ when it transmits a non-dominated packet h; (recall h;
from Algorithm 1). In each case, i collects the gain of
the transmitted packet wy,, (¢), and further when AMIX-ND
transmits a packet h; such that case 2 applies (i.e. when j < i),
i1 collects the gain from the additional transmission. As a

result, we have,
+ > oul

ER[G, " (1) S (1) < wn, (¢ (€0, (27)
hj:j<i

Note that the right-hand side of (27) is maximized over ¢ for
¢ = 1. This can be seen by showing that the difference of the
values for two successive indexes, ¢ and ¢+ 1, is non-negative:

+ ) )+ &
hj:j<i
—(Whi )+ D pay (Bwn, (1) + o)

hj:j<itl

(a)
= wp, (t) — wn, ., (t) + pn, (wn, (t) > 0,

where (a) follows from the assigned probabilities (line 4 in
Algorithm 2). Further note that for 7 = 1 the right-hand side
of (27) is equal to wp, (t) + &y = Wmaz(t) + Eo. Hence, (25)
indeed holds.

Now regarding AMIX-ND, similar derivation applies as
in [22] to get the final bound. To see that, first let the number
of links with positive probability be B < K. Then

ER[QAMIX-ND )[S(@)]
= S wn (Opn®

i€[B]

- >

i€[B—1]

@ o, (1)

(28)

Wh,; (t)phi (t) + Php (t)th (t)

— Wh g (t)(l — Phg (t))
B

© o, (1) (1 - I -pn, (t)))

i=1

(e) B-1
> un (@)1= (Z5)")
where (a) follows since wp, (t)pn, (t) = wp,(t) — wa,,, (t)
for 7 < B (by line 4 in Algorithm 2 where the minimum is
equal to the first of the two terms for i < B), (b) follows
by wp,,, = wn,(t)(1 — pp,(t)) for i < B, and (c) follows
by applying the inequality between arithmetic and geometric
means for the product of the B terms: 1 —py,(t), ¢ € [B]. O
Next in Lemma 4, we convert the per time-slot gain ratio
of Lemma 3 to a ratio between the total gain of AMIX-ND
and any ND-policy over a frame.
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Lemma 4: Over any frame F, with initial state S(tg) =
(P (tg), w(to),x(to)), and any ND-policy fi.
B3 rGammxnn (1)[S(to)]

BT[> e xGa(0)IS(to)]

Proof: Consider the initial state S(¢p) and a pattern .J
of size F'. Taking expectations of the result of Lemma 3,
conditioned on traffic pattern J of length F', we get
ER[ER(G (4)IS(2), J]IS(to),
ERERGarc(t)IS]IS (o),
where ALG = AMIX-ND. Now notice that

EF[EF[G;(1)S1)]IS(to), J]
= ER[ER(G)(1)[S(t), S(to),
= E®[G(1)[S(to), J]

>p1 (29

llw(to)l|—o0

I SER [Winaa ()| S(to), J]+Eo
J| = ER[wmaI(t”S(tO)a Jp1,

JNS(to), J]

where the first equality is due to the fact that, given S(t),
the gain of [ at time ¢ does not depend on J and S(to).
The second equality is by the tower property of conditional
expectation. Therefore, we get

Gr()IS(to), J] < EF [winas (1)|S(t0),
Using similar arguments for the expected gain of AMIX-ND,
E[Garc(t)|S(to), J] = EF [wimax (1) S (to), J]p1-

Summing the gains over time slots in the frame, we have

Ef| Jl+& (30)

€19

to+F
E[ Y Galt)iS(ta), 7]

t=to
to+F

<ER[Zg/ S (to), }
(ot

Y wmas 0180, 7] + &0 F

t=to

and taking the expectation with respect to the pattern .J,

E’ [Zgﬁ(tﬂsuo)} <E™ [ Winaa (8)[S(0)] +€ (32)

teF teF

where € = (amaz + 1)E[F]dmax + 2E[F?]. Similarly,

E™7 [ZgAMIX-ND @IS (to)} =B [Zwmaz () |S(t0)}

teF teF
(33)

Now consider link /; that has the maximum deficit at time %.
At any time ¢ € F,

wy, (to) + @max F > wy, () > wy, (to) — F.

Recall that wy,q.(t) denotes the maximum deficit among the
nonempty links, and a;, ;) > 0 implies that the link /;’s buffer
is nonempty at time ¢. Therefore

al, (t)

max

Winaa(t) > wi, (1 (ar, (£) > 0) > w, (¢) (34)
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Hence,
a
ER J Zwmax |S t() ER J {Zwll ll ‘S t() :|
teF teF
1
> —ER’J[ }
Z o wy, (to) — Zall t)[S(to)
teF
[w(to)|l ay, 2
> E[F —E[F 35
> LB (]2 — E[F?] G5)

and therefore

lim
[lw(to) || —o0

ER- [Zwm (1)[S(to)] = oo

teF
Using this and (32) and (33), the result follows. From which
it follows that

BT e Gamixnn (£)[S(t0)]
B7[32e £Ga(1)[S(t0)]

as ||lw(to)] — oo. O
Theorem 3 below states the relationship between the gain
of AMIX-ND and that of any policy (not necessarily an
ND-policy), using Lemma 4 and Lemma 2.
Theorem 3: For any policy pu, and AMIX-ND, given any
€ > 0, there is W' such that when ||w(to)| > W’':

E:, {ZQAMIX—ND (t)} > (p1 — €)Ey, [ZQM (t)}

teF teF

> p1—€

Proof: Using Lemma 2 for the optimal p over a frame
F, and the fact that y is at least as effective as

Eoo[Y_Gu(D]ZEeo[Y_Ga(0)]=Eey [y G (1)

teF teF teF

Dividing by Eq, [>,c G, (t)] and taking limits as [[w(to)| —
00, the squeeze limits theorem yields:

Bt 21790 (1))
Eto D 1exGu(t)]
since, as we showed in the proof of Lemma 4,
Eio[>ierGu(t)] — o0, as |lw(to)]| — oo. Using (36)
and Lemma 4, the result follows. OJ

Using Theorem 3 and Proposition 1 concludes the proof of
Theorem 1.

— Omax [FQ]

1 (36)

B. Gain Analysis of AMIX-MS in General Networks

First we show that binary search in Algorithm 3 suffices for
computing 7 defined in (14).

Proposition 2: The binary search in Algorithm 3 computes
n as defined in (14).

Proof: The proof of Proposition 2 is straightforward and

provided in Appendix D. U

To prove Theorem 2, similarly to the proof of Theorem 1,
we rely on the amortized gain analysis technique for a single
slot (Lemma 7) which we then extend to the entire frame
(Theorem 4) and use Proposition 1. We introduce a few
auxiliary Lemmas below to simplify these main steps.

First, we state Lemmas 5 and 6 below regarding the
properties of the probabilities used by AMIX-MS, which are
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used in the gain analysis. Their proofs follow directly from
the probabilities used by AMIX-MS.

Lemma 5: C,,(t) (defined in (12)) is strictly decreasing as
a function of n, for n <n < R.

Proof: The proof is through algebraic manipulations and

provided in Appendix E. (]

Lemma 6: If i & [n] and j € [7], for the choice of
probabilities pj(t) in (13) selected by AMIX-MS, we have

+Z ()W, (1)

<
= WM )+ Zke{n]\{y}

Proof:  Equivalently after simplifying the inequality,
we need to prove:

War, (t) < War, (£)(1 = pj (1)) = Cal(t).

This is trivially true for ¢ > R since Wy, (t) = 0 by the
definition of R (Definition 2). Since i ¢ [n], for the case of
i < R we have Wy, () < C;(t), and from the monotonicity
of Cy,(t) for R > n > 7 (Lemma 5), since ¢ > 71, we have
C;(t) < Cy(t). Therefore, Wy, (t) < Cr(t). O

Lemma 7 below relates the per time-slot gain of AMIX-
MS with the amortized gain of the Max-Gain policy, similarly
to Lemma 3 in the collocated case.

Lemma 7: For any pattern J € J(F), for each time t €
F, the gain obtained by AMIX-MS, and the amortized gain
obtained by the Max-Gain policy p, starting from some state
S(t), satisfy:

WMk()

EMG, (1)) Z W, (t —1)Ca(t) + Em
37
E* [Gamix-ms (£)|S(1)] (38)

=) W (t) — nCal(t)
i€[n]

where &, = K(F + Gmazdmax) and ER is with respect to
decisions of AMIX-MS.

Proof: Using the probabilities computed by AMIX-MS,
the expected gain of AMIX-MS at time ¢ is

ElGamx-ms (DIS()] = Y i ()W, (t)

i€[n)

= > W (t) — nCa(t).

i€[n)

Next for the amortized gain of the Max-Gain Policy pu,
we will apply the same technique as in the collocated networks
case, where we modify the buffers and give p additional
reward. Suppose p transmits M;, and AMIX-MS transmits
some M;. We make the buffers the same by allowing p to
additionally transmit all the packets that are transmitted by
AMIX-MS but not by p (i.e., in links M\ M;). As the deficit
of these packets can increase by at most d,yax@mq, before they
expire, we give a compensation of KdyaxGmax tO . Since
transmitting these additional packet will result in a decrease
of the deficit by one for each link in M; \ M; for p in the
remaining slots, we give p an additional reward K F' which
is an upper bound on the number of packets transmitted by
w from links M; \ M; in the remaining slots. Thus the total

compensation is &, = K(F + amazrdmax).To compute the
expected gain, we differentiate between two cases:
Case 1: i € [n]. In this case, we can write

E[G, " (1)]J]

=W, (t)+ > () (Wag\ar, () + Em)
jeln\{i}
<SWa )+ D> i) (War, () + Em) (39)
je[ﬁ]\{‘}
= W, (t)(1 Z Py ()W, (t
+ Z pj TYI
jeln\{i}
A+ War(t) —nCa(t) + Y pj(t)em
i€[n] j€ln\{s}
(40)
a(t)+ D Wi, () = nCa(t) + Em. (41)
i€[n]
Case 2: i ¢ [n]. In this case, we have
B, (1)) < War(8) + Y PR (W, () + Em)
ken)
(@) i
< Wi, () + Y PROW(8) +Em
ke[n\{s}
= Ca(t)+ > War, (t) = nCx(t) + Em,
i€[n)

where in (a) we applied Lemma 6 for 4, j. Note that in both
cases, the upper bound is the same and does not depend on
the particular choice of M. 0
Lemma 8 below provides a bound on the ratio between the
bounds in Lemma 7 that will be helpful in our subsequent
analysis.
Lemma 8: For Cy(t) in (12), We have

>icin) W, (t) — nCr (1) - |Z|
Eie[ﬁ] Wiz, (t) — (n = 1)Cr(t) — 2|Z] - 1

Proof: Suffices to show that

Ez‘e[n] Wz, (t) — nCr(t) - n
Zie[ﬁ] Wi, (t) — (= 1)Cr(t) — 20— 1’

since |Z| > |[M(t)| > n. For the non-trivial case, we have
7 — 1 > 0, and therefore inequality (42) can equivalently
be written as (7 — 1) 3 ,cm War, (t) > n%(t)Cr(t). This
inequality holds since it follows by applying the inequality
between arithmetic and harmonic means:

(42)

1 7
= WJ\L: t) > —
niez[;l] " Dierm War (1)1

and the fact that m — 1 > 1. O

Combining previous Lemmas, we relate the total gain in a
frame of AMIX-MS and any non-causal policy, given that
both are initialized with the same state, in Theorem 4.
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Theorem 4: Under AMIX-MS, given any ¢ > 0 there is
W’ such that for all ||wol| = >, cwr(to) > W,

Ef’ [ZgAMIX us ( } (p2 — €)E;, [Zg“ }

teF teF

where (1 is any non-causal policy, and ps = %
Proof: By using Lemma 7, summing and taking expecta-

tion similar to the proof of Lemma 4, it follows that

E{Zte}_gAMIX—MS (t)|5(to)} = E[Ztgx(t)lé“(to)}
5 00t0] <2 2[5 0]

where &, = K(E[F?] 4+ E[Flamazdmax), and z(t) = y(t) —
C5(t), where
y(0)= 3" Wi (0 — () = 1)Cal0)
Now notice that
y(t) = Ca(t) + Z W, (t) — nCh(t)
€[]
= War, ()1 = pi (1) + Y b (D)
i€[n)
=W, () + > pPOWa (D)
ie[n]\{1}
> W]\,{l (t) > Wmazx (t) (43)

It then follows
lim ED terz®)IS(to)]

lwoll—o0 B[}, c zy(1)|S(t0)] + Em

@ E[> e 72(t)[S(to)] ©_ 7
lwoll—o0 B[Y,c 7y(#)[S(to)] ~ 2|7 =17

where in (a) we used the fact that £, < oo, and that the
remaining expression in the denominator goes to infinity using
the inequality derived in (43) alongside the argument in (35).
In (b) we used Lemma 8. O

Using Theorem 4 and Proposition 1 concludes the proof of
Theorem 2.

Remark 5: The design of the probabilities in AMIX-ND
and AMIX-MS were such that all the scheduling choices by
the Max-Gain policy p lead to an equal amortized gain or an
equal bound on it. In particular, for the collocated case this was
done by choosing probabilities appropriately in the bound (27),
whereas for the general case, this was obtained by choosing
the probabilities appropriately in (39). This ensures that an
optimal policy does not have an option that provides a big
advantage over our policy.

C. Tightness of Gain Analysis

We construct adversarial examples for each algorithm in
order to find upper bounds on their performance.

AMIX-ND: For AMIX-ND, we can construct an example
such that its expected gain over a frame of size F' is approx-
imately p; = 1 — (1 — 1/K)X fraction of the optimal gain.
Given K links, suppose the ¢-th non-dominated link A; has
deficit L(1 — 1/K)* for a large enough constant L, so that
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during the frame the deficits are effectively constant. Then
assume that each link h; has a large number L' > F of
packets with equal deadline F'—3, so that it always has packets
for transmission during the frame. Further assume K < F.
In this case, every link has an equal probability 1/K of being
scheduled and it can be shown that the majority of the time,
ie., for any t < F' — K, the expected gain of AMIX-ND is
~ L(1-1/K)(1—(1—-1/K)¥) whereas the optimal policy
can obtain ~ L(1 —1/K), i.e., the ratio of the two is p;. This
shows the tightness of Lemma 4.

AMIX-MS: Note that under AMIX-MS, maximal sched-
ules with equal weights have equal probabilities. Consider
a collocated network with K links and apply AMIX-MS,
in which case p» = 572—. Suppose link l;, for i € [K],
has deadline ¢ and deficit L (equal across links). The optimal
policy in this example can transmit all the packets using an
EDF rule, whereas the expected gain of AMIX-MS can be
found through a recursive program. For example for K = 2,
we have two links with packets of deadlines 1 and 2, and
AMIX-MS yields an expected gain of 1.5L and the optimal
yields 2L, thus the ratio is 0.75. For K = 3,...,6, the ratio is
0.722,0.698, 0. 685 0.676, respectively As K — oo, we can
1 . We provide an informal

proof based on fluid limits below

Let UK (¢)| denote the number of remaining packets at time
t in the system, if we start with K packets. Hence W5 (0)| =
K. Let % (t) = WK(% denote the fraction of remaining
packets at time | K¢, and consider the fluid limit

B

P(t) =

In this limiting regime, time ¢ in the scaled system changes in
interval [0, 1], and similarly deadlines are in the range [0, 1].
During [0, t), the scheduler has transmitted packets from those
with deadlines in the ranges [0,¢) and [t,1]. The packets
scheduled from those with deadline in [¢,1] were chosen
uniformly at random, and the number of existing packets
at time ¢ with deadline in [t,1] is v (¢) at the fluid limit.
Hence, at time t, the density of existing packets with deadline
t' > tis ﬁ for any ¢’ > t. Hence, the remaining number
of packets w1th deadline in interval (¢,¢ + dt) at the fluid
limit is %dt, which will all expire by ¢ + dt. Also note
that if «(¢) > 0, buffer is nonempty and we always have a
packet transmission, thus the rate of packet transmission is
one. Hence, the evolution of ¢(¢) can be described as

¥(t)

d
Ew(t) = -7, ]-a

with ¢(0) = 1. It then follows that
Yit)=1—t+ (1 —1t)In(l —1).

It can be seen that ¢)(t) > 0 for ¢ € [0, <L), and ¢(<1) = 0.
This implies that AMIX-MS transmits eel K+o(K) packets.
Recall that the optimal policy can transmit all K packets.

the approximation ratio derived for AMIX-MS cannot be
greater than <. We leave closing the gap between the upper
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(a) Traffic pattern F

Fig. 3. Two of the traffic patterns used in simulations.
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Fig. 4.
network.

Comparison between AMIX-ND and LDF policies in a two-link

bound and lower bound on the performance of AMIX-MS as
an open problem.

VI. SIMULATION RESULTS

If the packet arrival rate becomes very large, any policy
inevitably will be restricted to a small delivery ratio p. But
then due to high availability of packets in the buffers, the pol-
icy can always schedule packets, thus making the deadlines
irrelevant. Similarly, if the packet deadlines become very large,
the problem is reduced to the regular non real-time scheduling
and deadline-oblivious algorithms like LDF should perform
reasonably well. Hence, we focus on the interesting scenario
when packet arrival rates or deadlines are not excessively
large. In our simulations, we also consider two cases for the
deficit admission (see the model section): one is based on coin
tossing where each arrival on a link [ is counted as deficit
with probability p;, and the other is deterministic, where each
arrival increases the deficit by exactly p;.

We compare the performance of our randomized algorithms,
AMIX-ND and AMIX-MS with LDE. Recall that LDF
chooses the longest-deficit link, then removes the interfering
links with this link, and repeat the procedure. We further
consider two versions of LDF: One is LDF that does a random
tie breaking when presented with a deficit tie (LDF-RD), and
the other version tries to schedule the non-dominated link and
its earliest-deadline packet (LDF-ED) in such tie situations.
In the plots, we compare the average deficit (over all links) as
we vary the value of the delivery ratio.

Collocated Networks: We first consider two interfering links
with deterministic deficit admission. The traffic is periodic and
consists of alternating Pattern A and Pattern B of Figure 1,
with the delivery ratios satisfying p2 = p; + 0.001. Figure 4a
shows the result. As we can see, AMIX-ND is able to
achieve roughly p; = 0.996, whereas both versions of LDF
become unstable for p; = 0.5 + €. In Figure 4b, again
for two users, we used a traffic that consists of Pattern C
followed by Pattern B, repeatedly. This time we keep p; = pa.

8

=
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o
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o
o

1
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o
N

Average Deficit over all users
Average Deficit over all users

o
o

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.7 0.8 0.9
Delivery Ratio Delivery Ratio

(a) 3 users under pattern F. (b) 5 users under pattern E.

Fig. 5. Comparison between AMIX-ND and LDF policies in collocated
networks with coin-tossing deficit admission.

le3
gisd —e— LDFEDIF //'
—e— LDFEDIF jod —+ LDFRDIF

—— AMIX-MS e

©

o
o

IS

N
N

Average Deficit over all users
IS

Average Deficit over all users

o

o

0.60 0.65 0.70 0.75 0.80
Delivery Ratio

0.65 0.70 0.75 0.80
Delivery Ratio

. . . . . (b) Deterministic deficit admis-
(a) Coin-tossing deficit adnnssmngign

Fig. 6. Comparison between AMIX-MS and LDF policies in a lightly
connected interference graph with 5 links.

Fig. 7. Interference graph G used for simulations in Figure 6.
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Fig. 8. Comparison between policies on a complete bipartite graph with
8 links, and i.i.d. and Markovian arrivals.

AMIX-ND achieved near p; = 1.0, whereas the better
version of LDF achieved roughly 0.75, resulting in a gap of
around 0.25.

Figure 5a and Figure 5b show the results for collocated
networks with various number of users, when traffic F and
traffic E from Figure 3 are used, respectively. In traffic F, when
p1 = p2 = p3 = p, the optimal policy can support at most
p = 7/8 = 0.875. In this case AMIX-ND achieves at least
p = 0.87, whereas LDF-ED achieves roughly p = 0.73. Traffic
E is similar in nature, but with more users and AMIX-ND
is able to achieve near optimal behavior; the result is shown
in Figure 5b.

General Networks: We first consider the interference graph
Gy in Figure 7 involving 5 links, and interference edges
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El = {(ll,lg), (lg,lg), (l2,14), (l4,l5)}. For links lg and 15,
we have a periodic traffic with period ¢ = 5, where in slot
1 there are 2 packets arriving with deadline 2 and 3 and in
slot 4 a packet arrives with deadline 1, and for links {1, 3, [5,
we have 1 packet arriving with deadline 1 at slot 1, and
1 packet arriving with deadline 2 at slot 4. The result for
this graph is shown in Figure 6.

Next, we consider a complete bipartite graph G with two
components, Vi = {ly,l2,13,l4} and Vo = {l5,1¢,17,1s}. The
traffic used for links l1, l5 is the same as that of link /; in Graph
G1 above. For links I3, 14, we used i.i.d. Bernulli with 1 arrival
having deadline 1 with probability 0.25. For links I5,ls we
used the traffic used for link /5 in Graph G;. For links [7,[g
we used i.i.d. traffic with 7 arrivals with probability 0.05, and
0 arrivals otherwise, and deadline 10. The results are depicted
in Figures 8a and 8b.

As we see, simulation results indicate that there are many
scenarios that result in significant gap between our algorithms
and LDF variants. This gap is especially pronounced when
deterministic deficit admission is used, which is preferable as
it provides a short-term guarantee on the deficit of a user.

VII. CONCLUSION

In this paper, we studied real-time traffic scheduling in
wireless networks under an interference-graph model. Our
results indicated the power of randomization over the prior
deterministic greedy algorithms for scheduling real-time pack-
ets. In particular, our proposed randomized algorithms signif-
icantly outperform the well-known LDF policy in terms of
efficiency ratio. As future work, we will investigate efficient
and distributed implementation of AMIX-MS for general
graphs, and incorporating fading channels in the wireless
network model.

APPENDIX A
COMPUTATIONAL COMPLEXITY OF AMIX-ND

We present an implementation of AMIX-ND. We assume
we have access to the earliest deadline packet of every link.

At every time ¢, we can sort the active links according to
their deficits (and break ties in favor of the earliest-deadline
link) in an array A; and according to their deadlines in
an array Ao using O(K log K) operations. While sorting,
we can connect the sorted elements in A; to their corre-
sponding positions in As,. Finding the set of non-dominated
links can then be obtained as follows: Start with the largest
deficit link [ (obtained as the first element of Ap), add it
to the set of non-dominated links Byp. Find its associated
position 7 in array As in constant time (as these arrays are
linked). Every element before index 7 in Ao corresponds to a
dominated link, hence for each of those links we mark them
as dominated. Then continue in array A; to the next non-
dominated link, add it in the list of non-dominated links, find
its index in A, and mark all its preceding elements in Ay as
dominated if not marked already. This way, we can find the
non-dominated links in O(K log K). We can then compute
the probabilities and schedule a packet according to these
probabilities.

IEEE/ACM TRANSACTIONS ON NETWORKING

APPENDIX B
PROOF OF LEMMA 1

For the first part, assume that a policy p at time tg chooses
a non-maximal schedule, hence a packet = from link [ could
have been included in the schedule. Consider an alternative
policy ' that does schedule any link that could have been
included at time ¢y so that the schedule becomes maximal,
and for the rest of the time, it transmits exactly the same
packets as the initial policy u, except for the transmission of
any packg:t x, if p schedules it at a later point. This results in
S I (s) > Y If(s),¥t > 1, and at the same time
every schedule transmitted by p’ for ¢ < tg is maximal.
We can repeat this argument for times ¢{ > %y to convert
4 to a policy i that transmits maximal schedules. We then
have S0, If'(s) > S°L_, I!"(s),¥t > 1 and from (3) we
see that any delivery ratio supported by p is also supported
by /.

For the second part, consider a policy p that at some time
to transmits a packet that is not the earliest-deadline packet
21 = (w1 (t),dy); in link [. Then there is some other packet
29 = (wy(t),d2); in link [ with do < dy. If we let p transmit
z9 instead of x1, the buffer state will be improved since we
will have the same set of packets in link [ except for one
packet with a longer deadline now. Further, the link’s deficit
will not change.

APPENDIX C
PROOF OF PROPOSITION 1

We look at the state process {S(¢)} at times ¢; when frames
start. We show that the deficits of this sampled chain are stable
in the sense of (6). From this it follows that the deficits of the
original process {S(t)} are also stable as the mean frame size
E[F] is bounded and the mean deficits within a frame can
change at most by a,,q. KE[F].

Since \ € pint(Ay¢), we have for some € > 0, and some
policy 11 € Py (F),

XE[F)(1 +2¢) < pE[S_I*(1)],
teF

(44)

where < is the component-wise inequality between vectors.
this is simply due to the fact that in each frame, the number of
deficit arrivals ), ~a(t) and the number of departures under
the policy p are i.i.d across the frames, with means E[F|\ and
E[ e 71" ()], respectively, by the renewal reward theorem.
hence, to ensure stability, (44) must hold. Next, consider the
lyapunov function

V(t) = V(S() = 5 S ud(0)

lex

Let {I(t),t € F} denote the scheduling decisions by ALG
within the frame. Using (4), we get

wi(t+ 1) —wi(t) < (wi(t) + a(t) — L))" — wi(t)
=2 w(t)(a(t) — L(t)) + (@ (t) — I (t))2
§ 2 wq (t)(&l (t) Il (t) + afnax.

— —
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Then we compute the drift over F' slots

Vit + F) — V(to) = %Z (wh(to + F) — wh(t0))

lek
= —ZZ 2t +1) —wi(t))
teFlek
< Kap oo F/24+ ) wilt) (@(t) = L(t).  (45)
teFlek
Let E,[-] = E[:|S(t0)]- then, over a frame,
By, [V(to + f) = V(to)]
< Eio[Y Y wi)an()] —Ee[Y Y wi(t)li()]+Cr,
teFlek teFlek
(46)
where C; = Ka?2,,, E[F]/2. noting that
wi(to) — F < wi(t) < wi(to) + amaaF' (47)

at any ¢t € F, we can bound

Eio[Y > wi®)a(t)] <> (wi(to)ME[F]) + Ca, (48)
teFlek lex
where we have used (17) and (47), and Cy = a2
0.

Let I*(t) be the scheduling decisions by the policy px*, and
I*(t) be the scheduling decisions by the policy 1 € Py (F)
in (44). note that p* is the non-causal policy that maximizes
the gain over the frame and can transmit packets from a
previous frame (included in the initial buffer 1 (¢y)). this only
improves the performance of p*, compared to starting with

empty buffers, hence,
> Eto ZZwl I H

Bry [>_> wi (®)
lekteF

teFlek

E[F?|K <

max

(49)

using (49) and the proposition assumption, given € > 0, there
is a w’ such that, if [|w(to)| > v/,

Eo [> Y wi(t)Li(t)]

teFlek
> (p— By [ > > wi ()17 (1)]
teFlek
> (p = )Fu [D_D wf ()1} (1))
lEKteF
> (p— By, [> Y (wilto) — ))I'(2)]
lEKtEF
> (p— e [D D wilto)[f()] =Cs,  (50)
leKteF
where C3 = KE[F?] is a constant. Using (50), (48), (46),

Ei [V (to + F) = V(to)]
< Ca+ > _E[Flwi(to)h — (p

— )Y wi(to)Eey, [y I}'(1)]

lex lex teF
< Ci+ Y wi(to) <>\1E[F] —(p— )y, [ZW@)])
lek teF

<Cy— dE[F]Z/\lwl(tO) (51)

lex

< Cy — €E[F] (52)

KM\nin Zwl (tO)a

lex
where C;, = C; + Co + C3, \in, = min; Ay, and in (51) we
have used (44). From this inequality, the stability in the mean
sense (6) follows for the sampled Markov chain by classical
Lyapunov arguments (for example see Section 3.1 in [32]) and
hence stability of the deficits for the original chain follows as
E[F] < cc.

APPENDIX D
PROOF OF PROPOSITION 2

Assume that for some n, p!'(¢t) > 0. In this case we know
that 7 > n since n satisfies (14). Now assume that p!'(t) < 0.
Then we claim that we can conclude 7 < n, or equivalently
pl(t) < 0 for any R > n' > n. It suffices to prove that
pl(t) < 0 implies pzﬁ( ) < 0, from which inductively the
claim follows. To arrive at a contradiction, assume p!(t) < 0,
pﬁﬂ( ) > 0, or equivalently (a): Cy,(t) > Wy, (t) and (b):
Cry1(t) < Wj\47l+1(t). Then

! L w)
WM,L+1( ) nWM,L+1( )
< 1 1
T Cona(t)  nWay,., (1)
- Eie[n+1] W, ()71 1 B Eie[n] W, ()71
n n nWM”H( ) n

n—1 e W) @)n-1 1
n n—1 n Wy, (t)

where in (a’) we used (a) and in (V') we used (b). This
shows n+1(t) WMl" @7 of Wi, (t) > Wiy, (t), which
is a contradiction with the ordering of M;. Hence p}(t) < 0

implies pﬁﬁ(t) < 0.

APPENDIX E
PROOF OF LEMMA 5
Take any n, n < n < R. By the definition of 7 it must
be the case that p’(¢) < 0, which implies Wy, (t) < Cp(t).
From this, and by using (12),

Wi, ()M (n—1) > > Wy, (t (53)
i€n]
We then have
> W ()
1€[n]
> W)+ W, (1)
i€[n—1]
o, n—1 -1 Wi, !
4 Z W, (6) + - QWM" (t) —"
i€[n—1]
(a) L, 1 o W, 7!
> 2 W7 T 3 W - T
i€[n—1] i€[n]
= Z W, (t)il Z W, (1) !
i€[n—1] i€[n—1]
n—1
= Z W, (t)7,
n—
ZE n—1]
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where in (a) we used (53). Dividing both sides by n — 1,
we get Cy, ()71 > Crq (1)1
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