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Abstract— In this paper, we consider the problem of scheduling
real-time traffic in wireless networks under a conflict-graph
interference model and single-hop traffic. The objective is to
guarantee that at least a certain fraction of packets of each
link are delivered within their deadlines, which is referred
to as delivery ratio. This problem has been studied before
under restrictive frame-based traffic models, or greedy maximal
scheduling schemes like LDF (Largest-Deficit First) that can
lead to poor delivery ratio for general traffic patterns. In this
paper, we pursue a different approach through randomization
over the choice of maximal links that can transmit at each time.
We design randomized policies in collocated networks, multi-
partite networks, and general networks, that can achieve delivery
ratios much higher than what is achievable by LDF. Further, our
results apply to any traffic (arrival and deadline) process that
evolves as an unknown positive recurrent Markov chain. Hence,
this work is an improvement with respect to both efficiency
and traffic assumptions compared to the past work. We further
present extensive simulation results over various traffic patterns
and interference graphs to illustrate the gains of our randomized
policies over LDF variants.

Index Terms— Scheduling, real-time traffic, Markov processes,
stability, wireless networks.

I. INTRODUCTION

MUCH of the prior work on scheduling algorithms for
wireless networks focus on maximizing throughput.

However, for many real-time applications, e.g., in Internet
of Things (IoT), vehicular networks, and other cyber-physical
systems, delays and deadline guarantees on packet delivery are
more important than long-term throughput [2]–[4]. Recently,
there has been an interest in developing scheduling algorithms
specifically targeted towards handling deadline-constrained
traffic [5]–[10], when each packet has to be delivered within a
strict deadline, otherwise it is of no use. The key objective
in these works is to guarantee that at least a fraction of
the packets will be delivered to their destinations within
their deadlines, which is referred to as delivery ratio (QoS).
Providing such guarantees is very challenging as it crucially
depends on the temporal pattern of packet arrivals and their
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deadlines, as opposed to long-term averages in traditional
throughput maximization. One can construct adversarial traffic
patterns that all have the same long-term average but their
achievable delivery ratio is vastly different [9], [11].

Recently, there have been two approaches for providing
QoS guarantees for real-time traffic in wireless networks.
One is the frame-based approach [5]–[8], and the other is a
greedy scheduling approach like the largest-deficit-first policy
(LDF) [9], [10]. In the frame-based approach, it is assumed
that each frame is a number of consecutive time slots, and
packets arriving in each frame have to be scheduled before the
end of the frame. They crucially rely on the assumption that all
packets of all users arrive at the beginning of frames [5]–[7],
or the complete knowledge of future packet arrivals and their
deadlines in each frame is available at the beginning of the
frame [8]. This restricts the application of such policies to
specific traffic patterns with periodic arrivals and synchro-
nized users. Partial generalizations of the frame-based traffic
are considered in [12], [13] without performance guarantees.
The results for general traffic patterns without such frame
assumptions are very limited, as in such settings, the real-
time rate region is difficult to characterize and the optimal
policy is unknown. A popular algorithm for providing QoS
guarantees for real-time traffic is the largest-deficit-first (LDF)
policy [5], [9], [10], [14], which is the real-time variation
of the longest-queue-first (LQF) policy (see, e.g., [15], [16]).
It is known that LDF is optimal in collocated networks under
the frame-based model [5], [14]. The performance of LDF in
the non-frame-based setting has been studied in [9] in terms
of the efficiency ratio, which is the fraction of the real-time
throughput region guaranteed by LDF. It is shown that LDF
achieves an efficiency ratio of at least 1

1+β for a network
with interference degree1 β, under i.i.d. (independent and
identically distributed) packet arrivals and deadlines. Further,
when traffic is not i.i.d., the efficiency ratio of LDF is as low as

1
1+

√
β

[9]. In particular, for collocated networks, the efficiency
ratio of LDF under Markovian traffic is 1/2, and in a simple
star topology with one center link and K neighboring links,
it scales down as low as O( 1√

K
). This shows that LDF might

not be suitable for high throughput real-time applications,
especially with non-i.i.d. traffic, which is the case if packet
drops due to deadline expiry trigger re-transmissions.

Besides the works above on providing QoS guarantees
for wireless networks, there is literature on approximation

1The interference degree is the maximum number of links that can be
scheduled simultaneously out of a link and its neighboring links.
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algorithms for single-link buffer management problem [17],
[18]. In this problem, packets arrive to a single link, each
with a non-negative constant weight and a deadline. The goal
is to maximize the total weight of transmitted packets for the
worst input sequence. The approximation algorithms include
the maximum-weight greedy algorithm [17], [18], EDFα [19]
which schedules the earliest-deadline packet with weight at
least α ≤ 1 of the maximum-weight packet, or randomized
algorithms such as [19]–[22] where the scheduling decision is
randomized over pending packets in the link’s buffer. Some
of these randomized algorithms have used a novel amortized
analysis technique initially introduced in [23]. Inspired by such
randomization techniques, we design randomized algorithms
for wireless networks under a general interference model and
given the delivery ratio requirements for the links in the
network.

A. Contributions

Contributions of this paper can be summarized as follows.
Markovian Traffic Model: Our traffic model allows traffic

(arrival and deadline) processes that evolve as an unknown
irreducible Markov chain over a finite state space. This model
is a significant extension from i.i.d. or frame-based traffic
models in [5]–[9]. A key technique in analyzing the achievable
efficiency ratio in our model is to look at the return times
of the traffic Markov chain and analyze the performance of
scheduling algorithms over long enough cycles consisting of
multiple return times.

Randomized Algorithms with Improved Efficiency: We pro-
pose randomized scheduling algorithms that can significantly
outperform deterministic greedy algorithms like LDF. The
key idea is to identify a structure for the optimal policy
and randomize over the possible scheduling choices of the
optimal policy, rather than solely relying on the deficit queues.
For collocated networks and complete bipartite graphs our
randomized algorithms achieve an efficiency ratio of at least
0.63 and 2/3, respectively, and in general graphs, achieve an
efficiency ratio greater than 1/2, all independent of the network
size and without the knowledge of the traffic model.

II. MODEL AND DEFINITIONS

Wireless Network Model. We consider a set of K links (or
users) denoted by the set K, where K = |K|. Time is slotted,
and at each time slot t ∈ N0, each link can transmit one packet
successfully, if there are no interfering links transmitting at the
same time. As in [9], it is standard to represent the interference
relationships between links by an interference graph GI =
(K, EI). Each vertex of GI is a link, and an edge (l1, l2) ∈ EI
indicates links l1 and l2 interfere with each other. Let Il(t) = 1
if link l is transmitting a packet at time t, and Il(t) = 0
otherwise. Hence, any feasible schedule M(t) := {l ∈ K :
Il(t) = 1} at time t has to form an independent set of GI
over links that have packets, i.e., no two transmitting links
can share an edge in GI . We say a feasible schedule M(t) is
maximal if no more links can be added to the schedule without
interfering with some other active link in M(t). Let B(t) be
the set of links that have packets available to transmit at time

Fig. 1. An example of a Markovian traffic process with three traffic patterns
repeating as A → B → C → A · · · . Each rectangle indicates a packet for
a link indicated by its number. The left side of the rectangle corresponds to
its arrival time, and its length corresponds to its deadline. For example on
pattern A, we have 2 packets, 1 from link 2, with deadline 2 slots after the
arrival, and 1 from link 1, with deadline in the same slot.

t. Let I denote the set of all maximal independent sets of GI .
Then, at any time t,

M(t) ⊆ (B(t) ∩D), for some D ∈ I,
where ‘⊆’ holds with ‘=’ if M(t) is a maximal schedule.

Traffic Model. We consider a single-hop traffic with dead-
lines for each link. Let al(t) denote the number of packets
arriving on link l at time t, with al(t) ≤ amax, for some
amax <∞. Each packet upon arrival has a deadline which is
the maximum delay that the packet can tolerate. We define a
vector τl(t) = (τl,d(t); d = 1, · · · , dmax), where τl,d(t) is the
number of packets with deadline d arriving to link l at time
t. A packet arriving with deadline d at time t has to be trans-
mitted before the end of time slot t+ d− 1, otherwise it will
be dropped. The maximum deadline is bounded by a constant
dmax. Hence, the network traffic (arrival, deadline) process is
described by τ(t) = (τl(t); l ∈ K), t ≥ 0. We also use u(t)
to denote any unobservable (hidden) information of the traffic
process, so that the complete traffic process x(t) = (τ(t), u(t))
evolves as an irreducible Markov chain over a finite state
space X = Γ × U , where Γ = {0, · · · , amax}dmax×K and
U := {1, · · · , Umax} for a finite Umax.2

Note that the arrival and deadline processes do not need
to be i.i.d. across times or users. Since the state space X is
finite, x(t) is a positive recurrent Markov chain [24] and the
time-average of any bounded function of x(t) is well-defined,
in particular, the packet arrival rate al, l ∈ K,

lim
t→∞

1
t

∑t

s=1
al(s) = al. (1)

See Figure 1 for an example of a Markovian traffic process.
Buffer Dynamics. The buffer of link l at time t contains the

existing packets at link l which have not expired yet and also
the newly arrived packets τl(t). Formally, we define the buffer
of link l by a vector Ψl(t) = (Ψl,d(t); d = 1, · · · , dmax),
where Ψl,d(t) is the number of packets in the buffer with
remaining deadline d at time t. The remaining deadline of each
packet in the buffer decreases by one at every time slot, until
the packet is successfully transmitted or reaches the deadline
0, which in either case the packet is removed from the buffer,
i.e., the buffer at the beginning of slot t+ 1 is

Ψl,d(t+ 1) = Ψl,d+1(t) + τl,d(t+ 1)− Il,d+1(t), (2)

where Il(t) =
∑dmax

d=1 Il,d(t) ≤ 1, and Il,d(t) = 1 if the
scheduler selects a packet with deadline d to transmit at time t

2Essentially, u(t) assigns labels to τ(t) to allow more complicated depen-
dencies in τ(t). If U = {1}, then τ(t) itself evolves as a Markov chain.
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on link l. By convention, we set Ψl,dmax+1(t) = 0, Ψl,0(t) =
0. We define the network buffer state as Ψ(t) = (Ψl(t); l ∈ K).

Delivery Requirement and Deficit. As in [5]–[9], we assume
that there is a minimum delivery ratio pl (QoS requirement)
for each link l, l ∈ K. This means the scheduling algorithm
must successfully deliver at least pl fraction of the incoming
packets on each link l in long term. Formally,

lim inf
t→∞

∑t
s=1 Il(s)∑t
s=1 al(s)

≥ pl. (3)

We define a deficit wl(t) which measures the amount of
service owed to link l up to time t to fulfill its minimum
delivery rate. As in [8], [9], the deficit evolves as

wl(t+ 1) =
[
wl(t) + ãl(t)− Il(t)

]+
, (4)

where [·]+ = max{·, 0}, and ãl(t) indicates the amount of
deficit increase due to packet arrivals. To determine ãl(t), for
the n-th arriving packet on link l, we increase the deficit of
link l by Xl(n) ≥ 0, where Xl(·) is i.i.d. with E[Xl(·)] = pl,
i.e., we increase the deficit on average by pl. For example,
we can increase the deficit by exactly pl for each packet arrival
to link l, or use a coin tossing process as in [8], [9], i.e., each
packet arrival at link l increases the deficit by one with the
probability pl, and zero otherwise. We refer to ãl(t) as the
deficit arrival process for link l. Note that it holds that

lim
t→∞

1
t

∑t

s=1
ãl(s) = alpl := λl, l ∈ K. (5)

We refer to λl as the deficit arrival rate for link l. We would
like to emphasize that the arriving packet is always added to
the link’s buffer, regardless of whether and how much deficit
is added for that packet. Also note that in (4), each time a
packet is scheduled from the link, Il(t) = 1, the deficit is
reduced by one. The dynamics in (4) define a deficit queueing
system, with bounded increments/decrements, whose stability,
e.g.,

lim sup
t→∞

1
t

∑t

s=1
E[wl(s)] <∞, (6)

implies that (3) holds.3 Define the vector of deficits as w(t) =
(wl(t), l ∈ K). The system state at time t is then defined as

S(t) = (Ψ(t), w(t),x(t)). (7)

Objective. Define PC to be the set of all causal policies, i.e.
policies that do not know the information of future arrivals and
deadlines in order to make scheduling decisions. We assume
that policies in PC can potentially utilize the information of
the hidden state u(t) of the traffic process x(t), however,
we emphasize that the policies designed in this paper do not
need to know this information when making decisions. For a
given traffic process x(t), t ≥ 0, with fixed al, defined in (1),
we are interested in causal policies that can stabilize the deficit
queues for the largest set of delivery rate vectors p = (pl, l ∈
K), or equivalently largest set of λ = (λl := alpl, l ∈ K)
possible. For a given traffic process, we say the rate vector

3Actually only the rate stability is enough to establish (3) [25], however we
consider this stronger notion of stability.

λ = (λl, l ∈ K) is supportable under some policy μ ∈ PC if
all the deficit queues remain stable. Then one can define the
supportable (real-time) rate region of the policy μ as

Λμ = {λ ≥ 0 : λ is supportable by μ}. (8)

Note that for a given traffic distribution, a vector λ corresponds
to a single vector of delivery rate requirements p exactly. The
supportable rate region under all the causal policies is defined
as Λ =

⋃
μ∈PC

Λμ. The overall performance of a policy μ is
evaluated by the efficiency ratio γ�μ which is defined as

γ�μ = sup{γ : γΛ ⊆ Λμ}. (9)

For a casual policy μ, we aim to provide a universal lower
bound on the efficiency ratio that holds for “all” Markovian
traffic processes (without knowing the transition probability
matrix).

III. RANDOMIZED SCHEDULING ALGORITHMS

In this section, we present our randomized scheduling
algorithms. We start with the collocated networks, and then
proceed to general networks.

A. Collocated Networks

In a collocated network, only one of the links can transmit
a packet at any time. Hence the interference graph GI is a
complete graph.

Define el(t) = min{d : Ψl,d(t) > 0} to be the deadline
of the earliest-deadline packet available at link l at time t.
By convention, the minimum of an empty set is considered
infinity. We use a tuple (wl(t), el(t))l to denote the earliest-
deadline packet of link l with deadline el(t) and link deficit
wl(t). We make the following dominance definition.

Definition 1: We say that a link l1 dominates a link l2 at
time t if wl1(t) ≥ wl2(t) and el1(t) ≤ el2(t). If one of the two
inequalities is strict, we call it a strict dominance. A non-
dominated link is a nonempty link that is not dominated strictly
by any other link at that time.

Recall that B(t) is the set of links with nonempty buffers.
At every time slot, we first find the set of non-dominated links
BND(t). One way to do that is as follows:

Algorithm 1 Finding Set of Non-Dominated Links

1: H ← B(t), BND(t)← ∅, i← 0
2: while H 	= ∅ do
3: i← i+ 1
4: Find the largest-deficit non-dominated link hi ∈ H .
5: Add hi to BND(t)
6: Remove hi and all the links dominated by it, i.e.

H ← H \ {l ∈ H : el(t) ≥ ehi(t)}.
7: end while

Algorithm 1 returns a set BND(t) = {h1, .., hk}, where hi
is the link selected in the i-th iteration, and the links are
ordered in the order of their deficits, i.e., wh1(t) > wh2(t) >
· · · > whk

(t). See Figure 2 for an illustrative example of the
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Fig. 2. An example for non-dominated links. Each numbered rectangle
denotes the earliest-deadline packet of a link. A solid rectangle indicates that
the link is non-dominated. Dashed rectangles (links) that fall in regions Ri

will be dominated.

non-dominated links. Our scheduling algorithm transmits the
earliest-deadline packet of one of the links hi ∈ BND(t) ran-
domly, where the probabilities phi(t) are computed recursively
as in Algorithm 2. We refer to Algorithm 2 as AMIX-ND

Algorithm 2 AMIX-ND: Randomized Scheduling in Collo-
cated Networks
1: Use Algorithm 1 to find BND(t) = {h1, .., hk}.
2: r ← 1
3: for i = 1 to k − 1 do
4: phi(t) = min

(
1− whi+1 (t)

whi
(t) , r

)
5: r ← r − phi(t)
6: end for
7: phk

(t) = r
8: Send the earliest-deadline packet from link hi with proba-

bility phi(t).

which stands for Adaptive Mixing over Non-Dominated links.
Theorem 1: In a collocated wireless network with K links,

AMIX-ND achieves an efficiency ratio of at least

γ�AMIX-ND ≥ 1−
(

1− 1
K

)K
>
e− 1
e

. (10)

Remark 1: Note that AMIX-ND has an efficiency ratio
which is bounded below by 0.63, regardless of the number of
links. In contrast, we can construct Markovian traffic processes
where the efficiency ratio of LDF is less than 1/2 + � [9].
For example, for the traffic patterns of Figure 1 in the model
section, we will see in simulations in Section VI that, while
AMIX-ND can achieve delivery ratios close to 0.99, LDF
cannot do better than 0.5+ �. Note that our traffic model does
allow traffic patterns as in Figure 1, since we do not need the
traffic Markov chain to be aperiodic.

Remark 2: Assuming access to the earliest deadline packet
of every link, the computational complexity of AMIX-ND is
O(K logK) for assigning probabilities and choosing a packet
for transmission. We describe one such implementation in
Appendix A.

B. Multipartite Networks and General Networks

Recall that B(t) is the set of links with nonempty buffers,
and I is the set of maximal independent sets of the interference
graph GI . The set of maximal schedules is defined asM(t) =
{D ∩ B(t), D ∈ I}. Our randomized algorithm selects a
maximal schedule (MS) M ∈ M(t) probabilistically and

schedules the earliest-deadline packets of the links of M .
We refer to this algorithm as AMIX-MS which stands for
Adaptive Mixing over Maximal Schedules. Before presenting
the algorithm, we make a few definitions.

Definition 2: The weight of a MS M ∈ M(t) at time t is

WM (t) =
∑
l∈M

wl(t). (11)

Let R = |{M ∈ M(t),WM (t) > 0}|. We index and order
M ∈ M(t) such that Mi has the i-th largest weight at time
t, i.e.,

WM1 (t) ≥WM2(t) · · · ≥WMR(t).

Definition 3: Define the subharmonic average of weights of
the first n MS, n ≤ R, at time t to be

Cn(t) =
n− 1∑n

i=1(WMi (t))−1
. (12)

The probabilities used by AMIX-MS to select MS Mi, at time
t, are as follows

pn̄Mi
(t) ≡ pn̄i (t) =

⎧⎨⎩ 1− Cn̄(t)
WMi(t)

, 1 ≤ i ≤ n̄
0, n̄ < i ≤ |M(t)|

(13)

where n̄ is the largest n ≤ R such that {pni (t), 1 ≤ i ≤ n}
defines a valid probability distribution over 1 ≤ i ≤ n. Noting
that pni (t) ≥ pni+1(t) for i < n, and

∑
i≤n p

n
i (t) = 1, n̄ is

therefore given by

n̄ := n̄(t) = max{n : pnn(t) ≥ 0}. (14)

We drop the dependence on t for n̄(t) when there is no
ambiguity. Algorithm 3 gives a description of AMIX-MS
where n̄ is found using a binary search. Then AMIX-MS
selects a MS Mi with probability pn̄i (t) as in (13).

Algorithm 3 AMIX-MS: Randomized Scheduling in General
Interference Graphs
1: n1 ← 1, n2 ← R
2: while n1 	= n2 do
3: n← �n1+n2

2 �
4: if pnn(t) ≥ 0 then
5: n1 ← n
6: else
7: n2 ← n− 1
8: end if
9: end while

10: n̄← n1

11: Select MS Mi with probability pn̄Mi
(t) as in (13) and

transmit the earliest-deadline packet of each link in Mi.

The following theorem states the main result regarding the
efficiency ratio of AMIX-MS.

Theorem 2: In a wireless network with interference graph
GI and maximal independent sets I, the efficiency ratio of
AMIX-MS is at least

γ�AMIX-MS ≥
|I|

2|I| − 1
>

1
2
.
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A special case of this theorem is for networks with a
complete n-partite interference graph, n ≥ 2. In a complete
n-partite graph, with n components, V1, · · · , Vn, links in
each component do not share any edge but there is an edge
between any two links in different components. Hence, each
component Vi, 1 ≤ i ≤ n induces a MS. We state the result
as the following corollary which immediately follows from
Theorem 2.

Corollary 2.1: For a wireless network with a complete
n-partite interference graph, under AMIX-MS,

γ�AMIX-MS ≥
n

2 n− 1
.

Remark 3: We emphasize on the importance of Theorem 2
using a simple interference graph with ‘star’ topology. This is
a special case of a bipartite graph with only two components,
V1 is the center node, and V2 are the leaf nodes. Notice that the
guarantee of AMIX-MS in this case is at least 2

3 , regardless of
the number of nodesK . This is a significant improvement over
LDF, whose efficiency ratio is at least 1

K under i.i.d. traffic
but not better than 1√

K−1+1
under Markovian traffics [9].

Remark 4: We note that the computational complexity of
AMIX-MS could be high for general graphs as it requires
finding an ordering of maximal schedules, the number of
which can be exponential in the number of vertices of
the graph [26]. However, it is easily applicable for small
graphs or graphs with limited number of independent sets.
Moreover, we can further approximate the algorithm by only
ordering a subset of maximal schedules as opposed to finding
all of them. The randomization in AMIX-MS could be
potentially implemented in a distributed manner by using
CSMA-like schemes such as [27]–[29].

IV. ANALYSIS TECHNIQUE

We provide an overview of the techniques in our proofs.
We first mention a lemma below which should be intuitive
and will allow us to restrict our attention to natural policies.

Lemma 1: Without loss of generality, we consider natural
policies that use a maximal schedule to transmit at each time.
Further, if a link is included in the schedule, its earliest-
deadline packet will be selected for transmission.

Proof: The proof is through a standard exchange argument
and can be found in Appendix B. �

Frame Construction: A key step in the analysis of
our scheduling algorithms is a careful frame construction.
We emphasize that the frame construction is only for the
purpose of analysis and is not part of our algorithms. The
F-framed construction in [9] only works for i.i.d. arrivals and
deadlines. Here, we need a construction that can handle our
Markovian traffic model. We present this construction below
where frames have random length as opposed to fixed length
in [9].

Definition 4 (Frames and Cycles): Starting from an initial
traffic state x(0) = x ∈ X , let ti denote the i-th return time
of traffic Markov chain x(t) to x, i = 1, · · · . By convention,
define t0 = 0. The i-th cycle Ci is defined from the beginning of
time slot ti−1+1 until the end of time slot ti, with cycle length
Ci = ti − ti−1. Given a fixed k ∈ N, we define the i-th frame

F (k)
i as k consecutive cycles C(i−1)k+1, · · · , Cik, i.e., from the

beginning of slot t(i−1)k + 1 until the end of slot tik. The

length of the i-th frame is denoted by F (k)
i =

∑ik
j=(i−1)k+1 Cj .

Define J (F (k)) to be the space of all possible traffic patterns
(τ(t), t ∈ F (k)) during a frame F (k). Note that these patterns
start after x and end with x.

By the strong Markov property and the positive recurrence
of traffic Markov chain, frame lengths F (k)

i are i.i.d with mean
E[F (k)] = kE[C], where E[C] is the mean cycle length which
is a bounded constant [24]. In fact, since state space X is
finite, all the moments of C (and F (k)) are finite. We choose
a fixed k, and, when the context is clear, drop the dependence
on k in the notation.

Define the class of non-causal F -framed policies PNC(F)
to be the policies that, at the beginning of each frame Fi, have
complete information about the traffic pattern in that frame,
but have a restriction that they drop the packets that are still in
the buffer at the end of the frame. Note that the number of such
packets is at most dmaxamaxK , which is negligible compared
to the average number of packets in the frame, alE[F ] =
alkE[C], as k →∞. Define the rate region

ΛNC(F) =
⋃

μ∈PNC(F)

Λμ. (15)

Given a policy μ ∈ PNC(F), the time-average service rate
Īl of link l is well defined. In fact, by the renewal reward
theorem (e.g. [30], Theorem 5.10), and boundedness of E[F ],

lim
t→∞

∑t
s=1 Il(s)
t

=
E
[∑

t∈F Il(t)
]

E[F ]
= Īl. (16)

Similarly for the deficit arrival rate λl, defined in (5),

E[
∑

t∈F ãl(t)]
E[F ]

= λl, l ∈ K. (17)

In Definition 4, each frame consists of k cycles. Using similar
arguments as in [9], it is easy to see (and it is intuitive) that

lim inf
k→∞

ΛNC(F (k)) ⊇ int(Λ).

where int(·) is the interior. Hence, if we prove that for a causal
policy ALG, there exists a constant ρ, and a large k0, such that
for all k ≥ k0,

ρ int(ΛNC(F (k))) ⊆ ΛALG, (18)

then it follows that ΛALG ⊇ ρ int(Λ). For our algorithms,
we find a ρ such that (18) holds for any traffic process under
our model. Then it follows that γ�ALG ≥ ρ.

We define the gain of a policy μ at time t as

Gμ(t) =
∑

l∈Kw
μ
l (t)Iμl (t), (19)

and the gain over a frame is
∑

t∈FGμ(t). To prove (18),
we rely on comparing the gain (total deficit of packets trans-
mitted) by ALG and an optimal max-gain non-causal policy
over a frame. The following proposition states the result for
any general interference graph.

Proposition 1: Consider a frame F ≡ F (k), for some
fixed k based on returns of traffic process x(t) to a state
x. Let ‖w(t0)‖ =

∑
l∈Kwl(t0) be the norm of the initial
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deficit vector at the start of the frame. Suppose for a causal
policy ALG, given any � > 0, there is a W � such that when
‖w(t0)‖ > W �,

E
[∑

t∈FGALG(t)|S(t0)
]

E
[∑

t∈FGμ�(t)|S(t0)
] ≥ ρ− �, (20)

where S(t0) = (Ψ(t0), w(t0),x(t0)), and μ� is the non-
causal policy that maximizes the gain over the frame. Then
for any λ ∈ ρ int(ΛNC(F)), the deficit queues are bounded
in the sense of (6).

Proof: The proof of Proposition 1 is through a Lyapunov
argument. It is provided in Appendix C. �

Gain Analysis. With Proposition 1 in hand, we analyze
the achievable gain of our algorithm over a frame, compared
with that of the optimal non-causal policy μ�. Since charac-
terizing μ� is hard, we extend a gain comparison technique
from [19]–[21], [31] (developed for constant-weight single
buffer analysis) to stochastic process (Ψ(t), w(t),x(t)) in a
general network.

Consider a state (Ψ(t), w(t),x(t)) under our randomized
algorithms at time t ∈ F , and the state (Ψμ�

(t), wμ
�

(t),x(t))
under the max-gain policy μ�. Note that the traffic process
x(t) is the same during the frame for both algorithms since
we do not assume dependence between the policy decisions
and the traffic process. We change the state of μ� (by
modifying its buffers and deficits) to make it identical to
(Ψ(t), w(t),x(t)), and give μ� appropriate additional compen-
sation that guarantees that, alongside the state modification,
we have

∑
t∈FG�μ�(t) >

∑
t∈FGμ�(t), where G�μ�(t) is the

modified gain, i.e., the changes are advantageous for μ�

considering the rest of the frame. Then, taking the expectation
E[G�(t)] with respect to the random decisions of our algorithm,
AMIX-ND or AMIX-MS, and traffic patterns in a frame,
we can bound the optimal gain of μ�. Then we can prove the
main results in view of Proposition 1.

The gain analysis of AMIX-ND in collocated networks and
AMIX-MS in general networks is presented in Sections V-A
and V-B, respectively.

V. PROOFS OF MAIN RESULTS

In view of Proposition 1, we provide the gain analysis of
our algorithms. In what follows, we define

wmax(t) = max
l∈K

wl(t)1(Ψl 	= 0), (21)

to be the maximum deficit of a nonempty link at time t.
Also define [N ] := {1, 2, . . . , N}. We use EX [·] to denote
conditional expectation E[·|X ]. E

Y [·] is used to explicitly
indicate that expectation is taken with respect to some random
variable Y . |A| is used to denote the cardinality of set A.

A. Gain Analysis of AMIX-ND in Collocated Networks

Consider a subclass PND of all the policies that schedule
Non-Dominated (ND) links at each slot (recall Definition 1).
We refer to policies in PND as ND-policies. The roadmap
for proving Theorem 1 through Proposition 1 is as follows.
We first show that the optimal ND-policy is close to the

optimal non-restricted policy (Lemma 2). This allows us to
focus on comparing the gain of our policy with ND-policies.
The gain comparison is initially performed through the gain
analysis technique described in Section IV on a per-time
slot basis (Lemma 3) and then extended to the whole frame
(Lemma 4). As Proposition 1 is with regard to general policies,
we convert the comparison with ND-policies to that with gen-
eral policies (Theorem 3) to conclude the proof of Theorem 1.

The formal statement of Lemma 2 is as follows.
Lemma 2: Consider any policy μ for scheduling packets in

a frame F . Then there is an ND-policy μ̂ ∈ PND such that,
under the same pattern J ∈ J (F) and initial state S(t0),∑

t∈F
Gμ̂(t) ≥

∑
t∈F
Gμ(t)− amaxF 2,

where F is the length of the frame.
Proof: Suppose the first time μ does not schedule a non-

dominated link is t0. Suppose μ sends earliest-deadline packet
(wy(t0), dy) from link y and (wx(t0), dx) be the earliest-
deadline packet at a link x (x 	= y) that strictly dominates
y, i.e. wx(t0) ≥ wy(t0), dx ≤ dy . Consider some alternative
policy μ� which has the same transmissions as μ up to time
t0 but transmits the packet of x at time t0 instead. Let
w�
l(t), l ∈ K denote the link deficits under μ�. Note that

w�
l(t) = wl(t), ∀t ≤ t0. We differentiate between 2 cases:
1) μ does not transmit packet x in the remaining time slots.

In this case, let μ� transmit the same packets as μ in the
remaining slots (after t0). Let Il(t1, t2) =

∑t2
t=t1

Il(t)
be the number of packets transmitted between t1 and t2
at link l under μ (and subsequently under μ�). And let
ΔG :=

∑
t∈FGμ′(t)−∑t∈FGμ(t). Then we have

ΔG (a)
= wx(t0) + Iy(t0 + 1, F )
− (wy(t0) + Ix(t0 + 1, F ))

(b)

≥ wx(t0)− wy(t0)− F ≥ −F.
To see (a), notice that as a result of transmitting from
link x instead of link y, the deficit of link y under μ�

will be one more than that under μ at any time t > t0.
Similarly, the deficit of link x under μ� will be one less
than that under μ at any time t > t0. In (b), we have
used the fact that Il(t) ∈ {0, 1} and wx(t0) ≥ wy(t0).

2) μ transmits packet x at some time slot ta where t0 <
ta < t0 + dx. In this case we let μ� transmit the same
packets as μ for all t > t0 except for time slot ta in
which it transmits packet y instead, which still has not
expired yet by the domination inequality dy ≥ dx. It is
easy to check that∑

t∈FGμ′ (t)−
∑

t∈FGμ(t)
= wx(t0) + w�

y(ta) + Iy(t0 + 1, ta − 1)
−wy(t0)− wx(ta)− Ix(t0 + 1, ta − 1). (22)

The total deficit arrival to a link in the frame cannot be
more than amaxF . Hence,

wx(ta) ≤ wx(t0) + amaxF − Ix(t0, ta − 1),
w�
y(ta) ≥ wy(t0)− Iy(t0, ta − 1).

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 11,2021 at 19:05:37 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TSANIKIDIS AND GHADERI: ON POWER OF RANDOMIZATION FOR SCHEDULING REAL-TIME TRAFFIC IN WIRELESS NETWORKS 7

Using these two inequalities in (22) yields∑
t∈FGμ′(t)−

∑
t∈FGμ(t) ≥ −amaxF. (23)

By repeating this process (at most F times), we can transform
μ to μ̂. From this, the final result follows. �

In what follows, let ρ1 denote the efficiency ratio bound
stated in Theorem 1, i.e.,

ρ1 := 1− (1− 1/K)K . (24)

Lemma 3 below relates the per time-slot gain of AMIX-ND
to the amortized gain of any other ND-policy.

Lemma 3: Under any pattern J ∈ J (F) of length F , for
each slot t ∈ F , the gain obtained by AMIX-ND, and the
amortized gain by any ND-policy μ̂, starting from some state
S(t) satisfy:

E
R[G�μ̂(t)|S(t), J ] ≤ wmax(t) + E0 (25)

E
R[GAMIX-ND (t)|S(t)] ≥ wmax(t)ρ1 (26)

where E0 = (amax+1)dmax+F , wmax(t) is defined in (21), ρ1

is defined in (24), and E
R[·] denotes expectation with respect

to the random decisions of AMIX-ND.
Proof: At time t, after the new arrivals have happened,

we have state S(t). AMIX-ND decides probabilistically to
transmit a packet pf = (wf , ef) from a non-dominated link
f ∈ BND(t), and the ND-policy μ̂ transmits a packet pz =
(wz , ez) from some other non-dominated link z. We distin-
guish two cases following the same method as in [21] but for
time-varying weights.

1) ef ≤ ez, wf ≤ wz: In this case, to maintain the same
buffers for both algorithms, we remove the packet pf
from the buffer of link f under μ̂ and inject the packet
pz to link z so that μ̂ gets a packet with higher deadline
and higher weight at the time t. Since both packets
will expire in at most dmax slots, the deficit of f can
only increase by at most dmaxamax before packet ef
expires, whereas the deficit of z can decrease by at most
dmax. Therefore giving μ̂ an additional compensation of
dmax(amax + 1) will guarantee that the modification is
advantageous. Further, we decrease the deficit of link f
by one (wf − 1 in μ̂) and we increase the deficit of link
z by one (wz + 1 in μ̂). Then μ̂ and AMIX-ND have
the same exact state. Making this change in the deficit
will reduce the gain for each packet transmitted from
link f in the future by one. To compensate for this,
we give μ̂ extra gain which is the number of packets
transmitted from link f for the rest of the frame, which
is less than F . Hence, the total compensation is bounded
by F + (amax + 1)dmax.

2) ez ≤ ef , wz ≤ wf : In this case, we allow μ̂ to addition-
ally transmit the packet pf at time t, and inject a copy of
packet pz to the buffer of link z. Allowing μ̂ to transmit
packet pf at time t instead of a later time can only be
disadvantageous from the total-gain perspective in the
case where the deficit of f increases due to other arrivals
in subsequent times, but such increase of deficit can
be at most dmaxamax, hence giving this compensation
guarantees that this modification is advantageous for μ̂.

Further we decrease the deficit counter of link f in μ̂
by one, which might not be advantageous for μ̂ for
future times. Similarly to the other case, to guarantee
that the change is advantageous for μ̂, we give it one
extra reward for each possible transmission from link f
in the rest of the frame, which is less than F .

Note that the additional compensation in both cases is
bounded by E0 := F + (amax + 1)dmax. Let G�μ̂(hi)(t)
denote the reward (including the compensation) gained by
μ̂ when it transmits a non-dominated packet hi (recall hi
from Algorithm 1). In each case, μ̂ collects the gain of
the transmitted packet whi(t), and further when AMIX-ND
transmits a packet hj such that case 2 applies (i.e. when j < i),
μ̂ collects the gain from the additional transmission. As a
result, we have,

E
R[G�μ̂(hi)(t)|S(t)] ≤ whi(t) +

∑
hj :j<i

phj(t)whj (t)+E0. (27)

Note that the right-hand side of (27) is maximized over i for
i = 1. This can be seen by showing that the difference of the
values for two successive indexes, i and i+1, is non-negative:

whi(t) +
∑
hj:j<i

phj (t)whj (t) + E0

−(whi+1(t) +
∑

hj :j<i+1

phj (t)whj (t)) + E0)

= whi(t)− whi+1(t) + phi(t)whi(t)
(a)

≥ 0, (28)

where (a) follows from the assigned probabilities (line 4 in
Algorithm 2). Further note that for i = 1 the right-hand side
of (27) is equal to wh1(t) + E0 = wmax(t) + E0. Hence, (25)
indeed holds.

Now regarding AMIX-ND, similar derivation applies as
in [22] to get the final bound. To see that, first let the number
of links with positive probability be B ≤ K . Then

E
R[GAMIX-ND (t)|S(t)]

=
∑
i∈[B]

whi(t)phi(t)

=
∑

i∈[B−1]

whi(t)phi(t) + phB (t)whB (t)

(a)
= wh1(t)− whB (t)(1 − phB (t))

(b)
= wh1(t)

(
1−

B∏
i=1

(1 − phi(t))
)

(c)

≥ wh1(t)
(
1− (B − 1

B

)B)
,

where (a) follows since whi(t)phi(t) = whi(t) − whi+1(t)
for i < B (by line 4 in Algorithm 2 where the minimum is
equal to the first of the two terms for i < B), (b) follows
by whi+1 = whi(t)(1 − phi(t)) for i < B, and (c) follows
by applying the inequality between arithmetic and geometric
means for the product of the B terms: 1−phi(t), i ∈ [B]. �

Next in Lemma 4, we convert the per time-slot gain ratio
of Lemma 3 to a ratio between the total gain of AMIX-ND
and any ND-policy over a frame.
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Lemma 4: Over any frame F , with initial state S(t0) =
(Ψ(t0), w(t0),x(t0)), and any ND-policy μ̂.

lim
�w(t0)�→∞

E
R,J [

∑
t∈FGAMIX-ND (t)|S(t0)]

EJ [
∑

t∈FGμ̂(t)|S(t0)]
≥ ρ1 (29)

Proof: Consider the initial state S(t0) and a pattern J
of size F . Taking expectations of the result of Lemma 3,
conditioned on traffic pattern J of length F , we get

E
R[ER[G�μ̂(t)|S(t), J ]|S(t0), J ]≤E

R[wmax(t)|S(t0), J ]+E0
E
R[ER[GALG(t)|S(t)]|S(t0), J ] ≥ E

R[wmax(t)|S(t0), J ]ρ1,

where ALG = AMIX-ND. Now notice that

E
R[ER[G�μ̂(t)|S(t)]|S(t0), J ]

= E
R[ER[G�μ̂(t)|S(t),S(t0), J ]|S(t0), J ]

= E
R[G�μ̂(t)|S(t0), J ]

where the first equality is due to the fact that, given S(t),
the gain of μ̂ at time t does not depend on J and S(t0).
The second equality is by the tower property of conditional
expectation. Therefore, we get

E
R[G�μ̂(t)|S(t0), J ] ≤ E

R[wmax(t)|S(t0), J ] + E0 (30)

Using similar arguments for the expected gain of AMIX-ND,

E
R[GALG(t)|S(t0), J ] ≥ E

R[wmax(t)|S(t0), J ]ρ1. (31)

Summing the gains over time slots in the frame, we have

E

[ t0+F∑
t=t0

Gμ̂(t)|S(t0), J
]

≤ E
R
[ t0+F∑
t=t0

G�μ̂(t)|S(t0), J
]

≤ E
R
[ t0+F∑
t=t0

wmax(t)|S(t0), J
]

+ E0 F

and taking the expectation with respect to the pattern J ,

E
J
[∑
t∈F
Gμ̂(t)|S(t0)

]
≤E

R,J [
∑
t∈F

wmax(t)|S(t0)]+Ē (32)

where Ē = (amax + 1)E[F ]dmax + 2E[F 2]. Similarly,

E
R,J
[∑
t∈F
GAMIX-ND (t)|S(t0)

]
≥ρ1E

R,J
[∑
t∈F

wmax(t)|S(t0)
]

(33)

Now consider link l1 that has the maximum deficit at time t0.
At any time t ∈ F ,

wl1(t0) + amaxF ≥ wl1(t) ≥ wl1(t0)− F.
Recall that wmax(t) denotes the maximum deficit among the
nonempty links, and al1(t) > 0 implies that the link l1’s buffer
is nonempty at time t. Therefore

wmax(t) ≥ wl1(t)1(al1(t) > 0) ≥ wl1(t)
al1(t)
amax

. (34)

Hence,

E
R,J [

∑
t∈F

wmax(t)|S(t0)] ≥ E
R,J
[∑
t∈F

wl1(t)
al1(t)
amax

∣∣S(t0)
]

≥ 1
amax

E
R,J
[
(wl1(t0)− F )

∑
t∈F

al1(t)
∣∣S(t0)

]
≥ ‖w(t0)‖

K
E[F ]

al1
amax

− E[F 2] (35)

and therefore

lim
�w(t0)�→∞

E
R,J
[∑
t∈F

wmax(t)|S(t0)
]

=∞.

Using this and (32) and (33), the result follows. From which
it follows that

E
R,J [

∑
t∈FGAMIX-ND (t)|S(t0)]

EJ [
∑

t∈FGμ̂(t)|S(t0)]
≥ ρ1 − �

as ‖w(t0)‖ → ∞. �
Theorem 3 below states the relationship between the gain

of AMIX-ND and that of any policy (not necessarily an
ND-policy), using Lemma 4 and Lemma 2.

Theorem 3: For any policy μ, and AMIX-ND, given any
� > 0, there is W � such that when ‖w(t0)‖ ≥W �:

Et0

[∑
t∈F
GAMIX-ND (t)

]
≥ (ρ1 − �)Et0

[∑
t∈F
Gμ(t)

]
.

Proof: Using Lemma 2 for the optimal μ over a frame
F , and the fact that μ is at least as effective as μ̂

Et0 [
∑
t∈F
Gμ(t)]≥Et0 [

∑
t∈F
Gμ̂(t)]≥Et0 [

∑
t∈F
Gμ(t)]− amaxE[F 2]

Dividing by Et0 [
∑
t∈FGμ(t)] and taking limits as ‖w(t0)‖ →

∞, the squeeze limits theorem yields:

Et0 [
∑

t∈FGμ̂(t)]
Et0 [

∑
t∈FGμ(t)]

→ 1 (36)

since, as we showed in the proof of Lemma 4,
Et0 [

∑
t∈FGμ(t)] → ∞, as ‖w(t0)‖ → ∞. Using (36)

and Lemma 4, the result follows. �
Using Theorem 3 and Proposition 1 concludes the proof of

Theorem 1.

B. Gain Analysis of AMIX-MS in General Networks

First we show that binary search in Algorithm 3 suffices for
computing n̄ defined in (14).

Proposition 2: The binary search in Algorithm 3 computes
n̄ as defined in (14).

Proof: The proof of Proposition 2 is straightforward and
provided in Appendix D. �

To prove Theorem 2, similarly to the proof of Theorem 1,
we rely on the amortized gain analysis technique for a single
slot (Lemma 7) which we then extend to the entire frame
(Theorem 4) and use Proposition 1. We introduce a few
auxiliary Lemmas below to simplify these main steps.

First, we state Lemmas 5 and 6 below regarding the
properties of the probabilities used by AMIX-MS, which are
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used in the gain analysis. Their proofs follow directly from
the probabilities used by AMIX-MS.

Lemma 5: Cn(t) (defined in (12)) is strictly decreasing as
a function of n, for n̄ ≤ n ≤ R.

Proof: The proof is through algebraic manipulations and
provided in Appendix E. �

Lemma 6: If i 	∈ [n̄] and j ∈ [n̄], for the choice of
probabilities pn̄k (t) in (13) selected by AMIX-MS, we have

WMi(t) +
∑

k∈[n̄]
pn̄k (t)WMk

(t)

≤WMj (t) +
∑

k∈[n̄]\{j} p
n̄
k (t)WMk

(t)

Proof: Equivalently after simplifying the inequality,
we need to prove:

WMi (t) ≤WMj (t)(1− pn̄j (t)) = Cn̄(t).

This is trivially true for i > R since WMi(t) = 0 by the
definition of R (Definition 2). Since i 	∈ [n̄], for the case of
i ≤ R we have WMi(t) < Ci(t), and from the monotonicity
of Cn(t) for R ≥ n ≥ n̄ (Lemma 5), since i > n̄, we have
Ci(t) < Cn̄(t). Therefore, WMi(t) < Cn̄(t). �

Lemma 7 below relates the per time-slot gain of AMIX-
MS with the amortized gain of the Max-Gain policy, similarly
to Lemma 3 in the collocated case.

Lemma 7: For any pattern J ∈ J (F), for each time t ∈
F , the gain obtained by AMIX-MS, and the amortized gain
obtained by the Max-Gain policy μ, starting from some state
S(t), satisfy:

E
R[G�μ(t)|S(t), J ] ≤

∑
i∈[n̄]

WMi(t)− (n̄− 1)Cn̄(t) + Em

(37)

E
R[GAMIX-MS (t)|S(t)] =

∑
i∈[n̄]

WMi(t)− n̄Cn̄(t) (38)

where Em = K(F + amaxdmax) and E
R is with respect to

decisions of AMIX-MS.
Proof: Using the probabilities computed by AMIX-MS,

the expected gain of AMIX-MS at time t is

E[GAMIX-MS (t)|S(t)] =
∑
i∈[n̄]

pn̄i (t)WMi (t)

=
∑
i∈[n̄]

WMi(t)− n̄Cn̄(t).

Next for the amortized gain of the Max-Gain Policy μ,
we will apply the same technique as in the collocated networks
case, where we modify the buffers and give μ additional
reward. Suppose μ transmits Mi, and AMIX-MS transmits
some Mj . We make the buffers the same by allowing μ to
additionally transmit all the packets that are transmitted by
AMIX-MS but not by μ (i.e., in links Mj \Mi). As the deficit
of these packets can increase by at most dmaxamax before they
expire, we give a compensation of Kdmaxamax to μ. Since
transmitting these additional packet will result in a decrease
of the deficit by one for each link in Mj \Mi for μ in the
remaining slots, we give μ an additional reward KF which
is an upper bound on the number of packets transmitted by
μ from links Mj \Mi in the remaining slots. Thus the total

compensation is Em = K(F + amaxdmax).To compute the
expected gain, we differentiate between two cases:

Case 1: i ∈ [n̄]. In this case, we can write

Et[G�μ̂Mi(t)|J ]

= WMi(t) +
∑

j∈[n̄]\{i}
pn̄j (t)

(
WMj\Mi

(t) + Em
)

≤ WMi(t) +
∑

j∈[n̄]\{i}
pn̄j (t)

(
WMj (t) + Em

)
(39)

= WMi(t)(1 − pn̄i (t)) +
∑
j∈[n̄]

pn̄j (t)WMj (t)

+
∑

j∈[n̄]\{i}
pn̄j (t)Em

= Cn̄(t) +
∑
i∈[n̄]

WMi(t)− n̄Cn̄(t) +
∑

j∈[n̄]\{i}
pn̄j (t)Em

(40)

≤ Cn̄(t) +
∑
i∈[n̄]

WMi(t)− n̄Cn̄(t) + Em. (41)

Case 2: i 	∈ [n̄]. In this case, we have

Et[G�μ̂Mi(t)|J ] ≤ WMi(t) +
∑
k∈[n̄]

pn̄k (t)(WMk
(t) + Em)

(a)

≤ WMj (t) +
∑

k∈[n̄]\{j}
pn̄k (t)WMk

(t) + Em

= Cn̄(t) +
∑
i∈[n̄]

WMi(t)− n̄Cn̄(t) + Em,

where in (a) we applied Lemma 6 for i, j. Note that in both
cases, the upper bound is the same and does not depend on
the particular choice of Mi. �

Lemma 8 below provides a bound on the ratio between the
bounds in Lemma 7 that will be helpful in our subsequent
analysis.

Lemma 8: For Cn̄(t) in (12), We have∑
i∈[n̄]WMi (t)− n̄Cn̄(t)∑

i∈[n̄]WMi(t)− (n̄− 1)Cn̄(t)
≥ |I|

2|I| − 1
.

Proof: Suffices to show that∑
i∈[n̄]WMi(t)− n̄Cn̄(t)∑

i∈[n̄]WMi (t)− (n̄− 1)Cn̄(t)
≥ n̄

2n̄− 1
, (42)

since |I| ≥ |M(t)| ≥ n̄. For the non-trivial case, we have
n̄ − 1 > 0, and therefore inequality (42) can equivalently
be written as (n̄ − 1)

∑
i∈[n̄]WMi(t) ≥ n̄2(t)Cn̄(t). This

inequality holds since it follows by applying the inequality
between arithmetic and harmonic means:

1
n̄

∑
i∈[n̄]

WMi (t) ≥
n̄∑

i∈[n̄]WMi(t)−1
,

and the fact that n̄− 1 ≥ 1. �
Combining previous Lemmas, we relate the total gain in a

frame of AMIX-MS and any non-causal policy, given that
both are initialized with the same state, in Theorem 4.
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Theorem 4: Under AMIX-MS, given any � > 0 there is
W’ such that for all ‖w0‖ =

∑
l∈KwL(t0) ≥W �,

E
R,J
t0

[∑
t∈F
GAMIX-MS (t)

]
≥ (ρ2 − �)EJt0

[∑
t∈F
Gμ(t)

]
,

where μ is any non-causal policy, and ρ2 = |I|
2|I|−1 .

Proof: By using Lemma 7, summing and taking expecta-
tion similar to the proof of Lemma 4, it follows that

E

[∑
t∈FGAMIX-MS (t)|S(t0)

]
= E

[∑
t∈Fx(t)|S(t0)

]
,

E

[∑
t∈FGμ̂(t)|S(t0)

]
≤ Ēm + E

[∑
t∈Fy(t)|S(t0)

]
,

where Ēm = K(E[F 2] + E[F ]amaxdmax), and x(t) = y(t) −
Cn̄(t), where

y(t) :=
∑

i∈[n̄]
WMi(t)− (n̄(t)− 1)Cn̄(t).

Now notice that

y(t) = Cn̄(t) +
∑
i∈[n̄]

WMi(t)− n̄Cn̄(t)

= WM1(t)(1 − pn̄1 (t)) +
∑
i∈[n̄]

pn̄i (t)WMi(t)

= WM1(t) +
∑

i∈[n̄]\{1}
pn̄i (t)WMi(t)

≥ WM1(t) ≥ wmax(t). (43)

It then follows

lim
�w0�→∞

E[
∑

t∈Fx(t)|S(t0)]
E[
∑

t∈Fy(t)|S(t0)] + Ēm
(a)
= lim

�w0�→∞
E[
∑

t∈Fx(t)|S(t0)]
E[
∑

t∈Fy(t)|S(t0)]

(b)

≥ |I|
2|I| − 1

,

where in (a) we used the fact that Ēm < ∞, and that the
remaining expression in the denominator goes to infinity using
the inequality derived in (43) alongside the argument in (35).
In (b) we used Lemma 8. �

Using Theorem 4 and Proposition 1 concludes the proof of
Theorem 2.

Remark 5: The design of the probabilities in AMIX-ND
and AMIX-MS were such that all the scheduling choices by
the Max-Gain policy μ lead to an equal amortized gain or an
equal bound on it. In particular, for the collocated case this was
done by choosing probabilities appropriately in the bound (27),
whereas for the general case, this was obtained by choosing
the probabilities appropriately in (39). This ensures that an
optimal policy does not have an option that provides a big
advantage over our policy.

C. Tightness of Gain Analysis

We construct adversarial examples for each algorithm in
order to find upper bounds on their performance.

AMIX-ND: For AMIX-ND, we can construct an example
such that its expected gain over a frame of size F is approx-
imately ρ1 = 1 − (1 − 1/K)K fraction of the optimal gain.
Given K links, suppose the i-th non-dominated link hi has
deficit L(1 − 1/K)i for a large enough constant L, so that

during the frame the deficits are effectively constant. Then
assume that each link hi has a large number L� > F of
packets with equal deadline F−i, so that it always has packets
for transmission during the frame. Further assume K � F .
In this case, every link has an equal probability 1/K of being
scheduled and it can be shown that the majority of the time,
i.e., for any t ≤ F −K , the expected gain of AMIX-ND is
≈ L(1− 1/K)(1− (1− 1/K)K) whereas the optimal policy
can obtain ≈ L(1−1/K), i.e., the ratio of the two is ρ1. This
shows the tightness of Lemma 4.

AMIX-MS: Note that under AMIX-MS, maximal sched-
ules with equal weights have equal probabilities. Consider
a collocated network with K links and apply AMIX-MS,
in which case ρ2 = K

2K−1 . Suppose link li, for i ∈ [K],
has deadline i and deficit L (equal across links). The optimal
policy in this example can transmit all the packets using an
EDF rule, whereas the expected gain of AMIX-MS can be
found through a recursive program. For example for K = 2,
we have two links with packets of deadlines 1 and 2, and
AMIX-MS yields an expected gain of 1.5L and the optimal
yields 2L, thus the ratio is 0.75. For K = 3, . . . , 6, the ratio is
0.722, 0.698, 0.685, 0.676, respectively. As K → ∞, we can
show that the ratio converges to e−1

e . We provide an informal
proof based on fluid limits below.

Let |ΨK(t)| denote the number of remaining packets at time
t in the system, if we start with K packets. Hence |ΨK(0)| =
K . Let ψK(t) = |ΨK(	Kt
)|

K denote the fraction of remaining
packets at time �Kt�, and consider the fluid limit

ψ(t) := lim
K→∞

ψK(t) = lim
K→∞

|ΨK(�Kt�)|
K

.

In this limiting regime, time t in the scaled system changes in
interval [0, 1], and similarly deadlines are in the range [0, 1].
During [0, t), the scheduler has transmitted packets from those
with deadlines in the ranges [0, t) and [t, 1]. The packets
scheduled from those with deadline in [t, 1] were chosen
uniformly at random, and the number of existing packets
at time t with deadline in [t, 1] is ψ(t) at the fluid limit.
Hence, at time t, the density of existing packets with deadline
t� > t is ψ(t)

1−t , for any t� > t. Hence, the remaining number
of packets with deadline in interval (t, t + dt) at the fluid
limit is ψ(t)

1−t dt, which will all expire by t + dt. Also note
that if ψ(t) > 0, buffer is nonempty and we always have a
packet transmission, thus the rate of packet transmission is
one. Hence, the evolution of ψ(t) can be described as

d

dt
ψ(t) = − ψ(t)

1− t − 1,

with ψ(0) = 1. It then follows that

ψ(t) = 1− t+ (1 − t) ln(1− t).
It can be seen that ψ(t) > 0 for t ∈ [0, e−1

e ), and ψ( e−1
e ) = 0.

This implies that AMIX-MS transmits e−1
e K+o(K) packets.

Recall that the optimal policy can transmit all K packets.
Hence, as K →∞, the approximation ratio is e−1

e . Therefore,
the approximation ratio derived for AMIX-MS cannot be
greater than e−1

e . We leave closing the gap between the upper
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Fig. 3. Two of the traffic patterns used in simulations.

Fig. 4. Comparison between AMIX-ND and LDF policies in a two-link
network.

bound and lower bound on the performance of AMIX-MS as
an open problem.

VI. SIMULATION RESULTS

If the packet arrival rate becomes very large, any policy
inevitably will be restricted to a small delivery ratio p. But
then due to high availability of packets in the buffers, the pol-
icy can always schedule packets, thus making the deadlines
irrelevant. Similarly, if the packet deadlines become very large,
the problem is reduced to the regular non real-time scheduling
and deadline-oblivious algorithms like LDF should perform
reasonably well. Hence, we focus on the interesting scenario
when packet arrival rates or deadlines are not excessively
large. In our simulations, we also consider two cases for the
deficit admission (see the model section): one is based on coin
tossing where each arrival on a link l is counted as deficit
with probability pl, and the other is deterministic, where each
arrival increases the deficit by exactly pl.

We compare the performance of our randomized algorithms,
AMIX-ND and AMIX-MS with LDF. Recall that LDF
chooses the longest-deficit link, then removes the interfering
links with this link, and repeat the procedure. We further
consider two versions of LDF: One is LDF that does a random
tie breaking when presented with a deficit tie (LDF-RD), and
the other version tries to schedule the non-dominated link and
its earliest-deadline packet (LDF-ED) in such tie situations.
In the plots, we compare the average deficit (over all links) as
we vary the value of the delivery ratio.

Collocated Networks: We first consider two interfering links
with deterministic deficit admission. The traffic is periodic and
consists of alternating Pattern A and Pattern B of Figure 1,
with the delivery ratios satisfying p2 = p1 + 0.001. Figure 4a
shows the result. As we can see, AMIX-ND is able to
achieve roughly p1 = 0.996, whereas both versions of LDF
become unstable for p1 = 0.5 + �. In Figure 4b, again
for two users, we used a traffic that consists of Pattern C
followed by Pattern B, repeatedly. This time we keep p1 = p2.

Fig. 5. Comparison between AMIX-ND and LDF policies in collocated
networks with coin-tossing deficit admission.

Fig. 6. Comparison between AMIX-MS and LDF policies in a lightly
connected interference graph with 5 links.

Fig. 7. Interference graph G1 used for simulations in Figure 6.

Fig. 8. Comparison between policies on a complete bipartite graph with
8 links, and i.i.d. and Markovian arrivals.

AMIX-ND achieved near p1 = 1.0, whereas the better
version of LDF achieved roughly 0.75, resulting in a gap of
around 0.25.

Figure 5a and Figure 5b show the results for collocated
networks with various number of users, when traffic F and
traffic E from Figure 3 are used, respectively. In traffic F, when
p1 = p2 = p3 = p, the optimal policy can support at most
p = 7/8 = 0.875. In this case AMIX-ND achieves at least
p = 0.87, whereas LDF-ED achieves roughly p = 0.73. Traffic
E is similar in nature, but with more users and AMIX-ND
is able to achieve near optimal behavior; the result is shown
in Figure 5b.

General Networks: We first consider the interference graph
G1 in Figure 7 involving 5 links, and interference edges
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El = {(l1, l2), (l2, l3), (l2, l4), (l4, l5)}. For links l2 and l5,
we have a periodic traffic with period t = 5, where in slot
1 there are 2 packets arriving with deadline 2 and 3 and in
slot 4 a packet arrives with deadline 1, and for links l1, l3, l5,
we have 1 packet arriving with deadline 1 at slot 1, and
1 packet arriving with deadline 2 at slot 4. The result for
this graph is shown in Figure 6.

Next, we consider a complete bipartite graph G2 with two
components, V1 = {l1, l2, l3, l4} and V2 = {l5, l6, l7, l8}. The
traffic used for links l1, l2 is the same as that of link l1 in Graph
G1 above. For links l3, l4 we used i.i.d. Bernulli with 1 arrival
having deadline 1 with probability 0.25. For links l5, l6 we
used the traffic used for link l2 in Graph G1. For links l7, l8
we used i.i.d. traffic with 7 arrivals with probability 0.05, and
0 arrivals otherwise, and deadline 10. The results are depicted
in Figures 8a and 8b.

As we see, simulation results indicate that there are many
scenarios that result in significant gap between our algorithms
and LDF variants. This gap is especially pronounced when
deterministic deficit admission is used, which is preferable as
it provides a short-term guarantee on the deficit of a user.

VII. CONCLUSION

In this paper, we studied real-time traffic scheduling in
wireless networks under an interference-graph model. Our
results indicated the power of randomization over the prior
deterministic greedy algorithms for scheduling real-time pack-
ets. In particular, our proposed randomized algorithms signif-
icantly outperform the well-known LDF policy in terms of
efficiency ratio. As future work, we will investigate efficient
and distributed implementation of AMIX-MS for general
graphs, and incorporating fading channels in the wireless
network model.

APPENDIX A
COMPUTATIONAL COMPLEXITY OF AMIX-ND

We present an implementation of AMIX-ND. We assume
we have access to the earliest deadline packet of every link.

At every time t, we can sort the active links according to
their deficits (and break ties in favor of the earliest-deadline
link) in an array A1 and according to their deadlines in
an array A2 using O(K logK) operations. While sorting,
we can connect the sorted elements in A1 to their corre-
sponding positions in A2. Finding the set of non-dominated
links can then be obtained as follows: Start with the largest
deficit link l (obtained as the first element of A1), add it
to the set of non-dominated links BND. Find its associated
position i in array A2 in constant time (as these arrays are
linked). Every element before index i in A2 corresponds to a
dominated link, hence for each of those links we mark them
as dominated. Then continue in array A1 to the next non-
dominated link, add it in the list of non-dominated links, find
its index in A2 and mark all its preceding elements in A2 as
dominated if not marked already. This way, we can find the
non-dominated links in O(K logK). We can then compute
the probabilities and schedule a packet according to these
probabilities.

APPENDIX B
PROOF OF LEMMA 1

For the first part, assume that a policy μ at time t0 chooses
a non-maximal schedule, hence a packet x from link l could
have been included in the schedule. Consider an alternative
policy μ� that does schedule any link that could have been
included at time t0 so that the schedule becomes maximal,
and for the rest of the time, it transmits exactly the same
packets as the initial policy μ, except for the transmission of
any packet x, if μ schedules it at a later point. This results in∑t
s=1 I

μ′
l (s) ≥ ∑t

s=1 I
μ
l (s), ∀t ≥ 1, and at the same time

every schedule transmitted by μ� for t ≤ t0 is maximal.
We can repeat this argument for times t > t0 to convert
μ to a policy μ̃ that transmits maximal schedules. We then
have

∑t
s=1 I

�μ
l (s) ≥ ∑t

s=1 I
μ
l (s), ∀t ≥ 1 and from (3) we

see that any delivery ratio supported by μ is also supported
by μ̃.

For the second part, consider a policy μ that at some time
t0 transmits a packet that is not the earliest-deadline packet
x1 = (w1(t), d1)l in link l. Then there is some other packet
x2 = (w1(t), d2)l in link l with d2 < d1. If we let μ transmit
x2 instead of x1, the buffer state will be improved since we
will have the same set of packets in link l except for one
packet with a longer deadline now. Further, the link’s deficit
will not change.

APPENDIX C
PROOF OF PROPOSITION 1

We look at the state process {S(t)} at times ti when frames
start. We show that the deficits of this sampled chain are stable
in the sense of (6). From this it follows that the deficits of the
original process {S(t)} are also stable as the mean frame size
E[F ] is bounded and the mean deficits within a frame can
change at most by amaxKE[F ].

Since λ ∈ ρ int(ΛNC), we have for some � > 0, and some
policy μ ∈ PNC(F),

λE[F ](1 + 2�) � ρE[
∑
t∈F

Iμ(t)], (44)

where � is the component-wise inequality between vectors.
this is simply due to the fact that in each frame, the number of
deficit arrivals

∑
t∈F ã(t) and the number of departures under

the policy μ are i.i.d across the frames, with means E[F ]λ and
E[
∑

t∈FI
μ(t)], respectively, by the renewal reward theorem.

hence, to ensure stability, (44) must hold. Next, consider the
lyapunov function

V (t) := V (S(t)) =
1
2

∑
l∈K

w2
l (t).

Let {I(t), t ∈ F} denote the scheduling decisions by ALG
within the frame. Using (4), we get

w2
l (t+ 1)− w2

l (t) ≤ (wl(t) + ãl(t)− Il(t))2 − w2
l (t)

= 2 wl(t)(ãl(t)− Il(t)) + (ãl(t)− Il(t))2
≤ 2 wl(t)(ãl(t)− Il(t)) + a2

max.
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Then we compute the drift over F slots

V (t0 + F )− V (t0) =
1
2

∑
l∈K

(
w2
l (t0 + F )− w2

l (t0)
)

=
1
2

∑
t∈F

∑
l∈K

(
w2
l (t+ 1)− w2

l (t)
)

≤ Ka2
maxF/2 +

∑
t∈F

∑
l∈K

wl(t) (ãl(t)− Il(t)) . (45)

Let Et0 [·] = E[·|S(t0)]. then, over a frame,

Et0 [V (t0 + f)− V (t0)]

≤ Et0 [
∑
t∈F

∑
l∈K

wl(t)ãl(t)]−Et0 [
∑
t∈F

∑
l∈K

wl(t)Il(t)]+C1,

(46)

where C1 = Ka2
maxE[F ]/2. noting that

wl(t0)− F ≤ wl(t) ≤ wl(t0) + amaxF, (47)

at any t ∈ F , we can bound

Et0 [
∑
t∈F

∑
l∈K

wl(t)ãl(t)] ≤
∑
l∈K

(wl(t0)λlE[F ]) + C2, (48)

where we have used (17) and (47), and C2 = a2
maxE[F 2]K <

∞.
Let I�(t) be the scheduling decisions by the policy μ�, and

Iμ(t) be the scheduling decisions by the policy μ ∈ PNC(F)
in (44). note that μ� is the non-causal policy that maximizes
the gain over the frame and can transmit packets from a
previous frame (included in the initial buffer ψ(t0)). this only
improves the performance of μ�, compared to starting with
empty buffers, hence,

Et0

[∑
t∈F

∑
l∈K

w�l (t)I
�
l (t)

] ≥ Et0

[∑
l∈K

∑
t∈F

wμl (t)Iμl (t)
]
. (49)

using (49) and the proposition assumption, given � > 0, there
is a w� such that, if ‖w(t0)‖ > w�,

Et0

[∑
t∈F

∑
l∈K

wl(t)Il(t)
]

≥ (ρ− �)Et0
[∑
t∈F

∑
l∈K

w�l (t)I
�
l (t)

]
≥ (ρ− �)Et0

[∑
l∈K

∑
t∈F

wμl (t)Iμl (t)
]

≥ (ρ− �)Et0
[∑
l∈K

∑
t∈F

(wl(t0)− f)Iμl (t)
]

≥ (ρ− �)Et0
[∑
l∈K

∑
t∈F

wl(t0)I
μ
l (t)

]− C3, (50)

where C3 = KE[F 2] is a constant. Using (50), (48), (46),

Et0

[
V (t0 + F )− V (t0)

]
≤ C4 +

∑
l∈K

E[F ]wl(t0)λl − (ρ− �)
∑
l∈K

wl(t0)Et0
[∑
t∈F

Iμl (t)
]

≤ C4 +
∑
l∈K

wl(t0)

(
λlE[F ]− (ρ− �)Et0

[∑
t∈F

Iμl (t)
])

≤ C4 − �E[F ]
∑
l∈K

λlwl(t0) (51)

≤ C4 − �E[F ]Kλmin
∑
l∈K

wl(t0), (52)

where C4 = C1 + C2 + C3, λmin = minl λl, and in (51) we
have used (44). From this inequality, the stability in the mean
sense (6) follows for the sampled Markov chain by classical
Lyapunov arguments (for example see Section 3.1 in [32]) and
hence stability of the deficits for the original chain follows as
E[F ] <∞.

APPENDIX D
PROOF OF PROPOSITION 2

Assume that for some n, pnn(t) ≥ 0. In this case we know
that n̄ ≥ n since n satisfies (14). Now assume that pnn(t) < 0.
Then we claim that we can conclude n̄ < n, or equivalently
pn

′
n′(t) < 0 for any R ≥ n� > n. It suffices to prove that
pnn(t) < 0 implies pn+1

n+1(t) < 0, from which inductively the
claim follows. To arrive at a contradiction, assume pnn(t) < 0,
pn+1
n+1(t) ≥ 0, or equivalently (a): Cn(t) > WMn(t) and (b):
Cn+1(t) ≤WMn+1(t). Then

1
WMn+1(t)

− 1
nWMn+1(t)

(b′)

≤ 1
Cn+1(t)

− 1
nWMn+1(t)

=

∑
i∈[n+1]WMi(t)−1

n
− 1
nWMn+1(t)

=

∑
i∈[n]WMi(t)−1

n

=
n− 1
n

∑
i∈[n]WMi(t)−1

n− 1
(a′)
<

n− 1
n

1
WMn(t)

,

where in (a�) we used (a) and in (b�) we used (b). This
shows 1

WMn+1(t) <
1

WMn (t) or WMn+1(t) > WMn(t), which

is a contradiction with the ordering of Mi. Hence pnn(t) < 0
implies pn+1

n+1(t) < 0.

APPENDIX E
PROOF OF LEMMA 5

Take any n, n̄ < n ≤ R. By the definition of n̄ it must
be the case that pnn(t) < 0, which implies WMn(t) < Cn(t).
From this, and by using (12),

WMn(t)−1(n− 1) >
∑
i∈[n]

WMi(t)
−1. (53)

We then have∑
i∈[n]

WMi (t)
−1

=
∑

i∈[n−1]

WMi(t)
−1 +WMn(t)−1

=
∑

i∈[n−1]

WMi(t)
−1 +

n− 1
n− 2

WMn(t)−1 − WMn(t)−1

n− 2

(a)
>

∑
i∈[n−1]

WMi(t)
−1 +

1
n− 2

∑
i∈[n]

WMi(t)
−1 − WMn(t)−1

n− 2

=
∑

i∈[n−1]

WMi(t)
−1 +

1
n− 2

∑
i∈[n−1]

WMi(t)
−1

=
n− 1
n− 2

∑
i∈[n−1]

WMi(t)
−1,
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where in (a) we used (53). Dividing both sides by n − 1,
we get Cn(t)−1 > Cn−1(t)−1.
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[31] Ł. Jeż, F. Li, J. Sethuraman, and C. Stein, “Online scheduling of
packets with agreeable deadlines,” ACM Trans. Algorithms, vol. 9, no. 1,
pp. 1–11, Dec. 2012.

[32] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synth. Lectures Commun. Netw.,
vol. 3, no. 1, pp. 1–211, Jan. 2010.

Christos Tsanikidis (Graduate Student Member,
IEEE) received the B.Sc. degree from the National
Technical University of Athens in 2018 and the
master’s degree from Columbia University in 2020,
where he is currently pursuing the Ph.D. degree with
the Electrical Engineering Department. He has been
researching scheduling and algorithmic problems in
the area of computer networks. He was a recipient of
the Best Paper Award and the Student Travel Grant
from IEEE INFOCOM 2020.

Javad Ghaderi (Senior Member, IEEE) received the
B.Sc. degree from the University of Tehran, Iran,
in 2006, the M.Sc. degree from the University of
Waterloo, Canada, in 2008, and the Ph.D. degree
from the University of Illinois at Urbana–Champaign
(UIUC) in 2013, all in electrical and computer engi-
neering. He is currently an Associate Professor of
electrical engineering with Columbia University. His
research interests include network algorithms, con-
trol, and optimization. He spent a one-year Simons
Post-Doctoral Fellowship at The University of Texas

at Austin before joining Columbia. He was a recipient of the Mac Van
Valkenburg Graduate Research Award at UIUC, the Best Student Paper
Finalist at the 2013 American Control Conference, the Best Paper Award
at ACM CoNEXT 2016, the NSF CAREER Award in 2017, the Best Paper
Award at IEEE INFOCOM 2020, and the Best Student Paper Award at IFIP
Performance 2020.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 11,2021 at 19:05:37 UTC from IEEE Xplore.  Restrictions apply. 


