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Abstract—Many network design problems encompass two 
tasks, routing and resource allocation, that are so intricately 
intertwined  as  to  contribute  significantly to  the  intractability 
of  such  problems.  In  this  paper,  we  make  two  contributions 
to addressing general network design problems of this nature. 
First, we present a new decomposition method that optimally 
decouples resource allocation from routing, making it possible 
to tackle each of these aspects separately. Second, we develop 
a recursive branch-and-bound algorithm to search the routing 
space  exhaustively,  yet  in  a  scalable  manner.  We  apply  our 
method to a well-known intractable problem in optical networks, 
routing and spectrum assignment (RSA). Our results indicate 
that the recursive algorithm is able to search efficiently the entire 
routing space of topologies representative of large-scale wide area 
networks. 

 
 

I.  INTRODUCTION 

Network design problems are complex problems that arise 
naturally in the planning, engineering and deployment of the 
Internet infrastructure. Consequently, the overall operation and 
economic model of the Internet, and its capacity to deliver 
reliable and critical communication services, rely crucially on 
efficient and effective solutions to a range of network design 
problems. Similar observations apply to optical networks that 
constitute the foundation of the backbone (long-haul) and 
regional (metro-area) parts of the global infrastructure, and 
are now reaching into the access part in the form of PON 
architectures [1]. 

Over the past three decades, researchers have investigated 
an abundance of optical network design problems, including 
routing and wavelength assignment (RWA) [2]–[5], traffic 
grooming [6], [7], routing and spectrum assignment (RSA) [8], 
[9], and network survivability [10]. Whereas integer linear 
program (ILP) formulations may in theory yield exact solu- 
tions to these problems, in practice ILP models do not scale 
to instances typical of commercial networks. Consequently, 
the literature is replete with heuristics that were developed 
with large networks in mind; unfortunately, in general there 
is little information about the accuracy of solutions produced 
by heuristic algorithms [11]. Moreover, heuristic designs are 
usually one-off, carefully crafted to solve a specific problem 
rather than apply to a more general class of problems. Even 
if adapting such a heuristic to variants of the original prob- 
lem were feasible, applying the modifications would require 
expertise in both the domain of the problem (e.g., network 
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design, graph theory) and a range of related disciplines that 
include mathematical programming, operations research, and 
discrete optimization. Therefore, most approaches currently 
impose significant demands on computational resources and 
human expertise, and severely limit our ability to investigate 
the sensitivity of design decisions to problem inputs, including 
forecast traffic demands or capital and operating cost consid- 
erations. 

Our work is motivated by the observation that many network 
design problems encompass two tasks, routing and resource 
allocation, that are so intricately intertwined as to contribute 
significantly to the intractability of such problems. Therefore, 
we make two contributions to addressing general network 
design problems of this nature. First, we present a new decom- 
position method that optimally decouples resource allocation 
from routing, making it possible to tackle each of these aspects 
separately. Second, we develop a recursive branch-and-bound 
algorithm to search the routing space exhaustively, yet in a 
scalable manner. Although we apply our method to routing and 
spectrum assignment (RSA), a well-known intractable problem 
in optical networks, our approach has broad applications as 
it decouples optimally the routing and resource allocation 
components of the optimization. 

The  remainder of  the  paper  is  organized as  follows.  In 
Section II, we present a formulation of a generic network 
design problem that we use to illustrate our approach, and 
we introduce a new decomposition algorithm for this problem 
in Section III. We develop a scalable recursive method for 
searching the routing space in Section IV, and we present 
experimental results for the RSA problem in Section V. We 
conclude the paper in Section VI. 
 

II.  A REFERENCE ILP FO RM U LATIO N 

We consider network optimization problems that may be 
expressed using ILP formulations and are NP-hard [5]. There 
are  two  general types of  ILP  models, link-based [12]  and 
path-based [13]. In the former, the entities of interest (that 
is, decision variables) relate to network links; in the latter, 
variables relate to end-to-end paths. With a link-based model, 
the optimization problem is expressed as a multicommodity 
flow formulation, and the solver is forced to consider the entire 
space of network paths between any two nodes. On the other 
hand, path-based formulations take as input a (usually small) 
set of paths between each pair of nodes. Hence, path-based ILP 
models produce a solution that is optimal only within the input 
set of paths; such solution is no better than the optimal solution 
obtained by a link-based formulation of the same problem. 
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In this paper, we consider the following reference ILP for- 
mulation of a generic routing and resource allocation (RRA) 
optimization problem PRRA . Although this is a path-based 
formulation, we discuss shortly how it may be used to produce 
optimal solutions equivalent to a link-based formulation. 
The reference optimization problem PRRA 

•  Input: 
–  Network topology: a connected graph G  = (V, A) 

where V denotes the set of nodes and A denotes the 
set of arcs (directed links) in the network. 

–  Traffic demands: a traffic demand matrix T = [tsd ], 
where tsd is a non-negative value representing the 
amount of traffic from node s to node d, in some ap- 
propriate units (e.g., bandwidth, wavelengths, spec- 
trum slots, etc). 

– Routing paths: a set Ksd of paths for source- 
destination pair (s, d),  such that all traffic from s 
to d is constrained to take path(s) in this set only; 
the paths are generated in advance and their number 
may vary based on the source-destination pair. 

•  Constraints: 
–  A set of constraints on available network resources 

(e.g., link and/or switch capacity) and/or on the 
routing of traffic demands. 

•  Metric:  A  performance  metric  of  interest,  e.g.,  the 
amount of network resources to be deployed. 

•  Output: 
–  Routing: a routing of demands over network paths. 
– Resource allocation: an assignment of network re- 

sources (e.g., wavelength or block of spectrum slots) 
to each demand. 

•  Objective: The performance metric of interest is opti- 
mized while all constraints are satisfied. 

Note that, while the above is a path-based formulation, if 
we let Ksd  be the set of all possible paths (rather than a 
subset of all paths) between nodes s and d, then the solver 
will be forced to consider all paths in the network just as 
with  a  link-based  formulation. Therefore,  we  will  use  the 
above reference formulation as representing both classes of 
formulations, path- or link-based. Of course, to make this 
equivalent to a link-based formulation, one would have to 
generate all paths between every pair of nodes in the network; 
this number is exponential in the size of the network [14]. We 
address this challenge later in this work. 

In  general,  optimization problems represented by  PRRA 
are NP-hard and exact solutions may be obtained only for 
networks of small size [11]; for Internet-scale topologies, it is 
not possible to solve the ILP model optimally in a reasonable 
amount of time. Consequently, network design problems of 
this nature are typically solved using heuristic algorithms; for 
instance, surveys of heuristic approaches for a collection of 
RSA problem variants are available in [8], [9]. Furthermore, 
column generation and/or decomposition techniques may be 
used to manipulate the ILP model so as to tackle a principal 

Decomposition algorithms reduce the problem by dividing 
it into two simpler ILP models that are then solved in se- 
quence [15]. The first model addresses only the routing aspect 
of the original problem, and it is designed so as to produce 
paths that are likely to lead to a good overall solution. The 
second ILP model is concerned only with resource allocation 
along the paths calculated by the first model. The two ILP 
models are solved iteratively until no further improvement to 
the performance metric of interest can be achieved. Whereas 
such an iterative process often yields good solutions, in general 
the decomposition into two sequential subproblems is not 
optimal, and in certain circumstances it may fail to even 
produce feasible solutions. 

Column generation is another iterative technique that aims 
to obtain an optimal solution without considering all network 
paths [16], [17]. Rather, a new path is generated at the end 
of an iteration only if it is determined that it would lead to 
an improvement of the solution currently at hand. A recent 
study [18] presented a new column generation model that uses 
lightpath configurations and can achieve a significant speedup. 
Another study [19] developed a branch-and-price algorithm 
and combined it with additional techniques, including relax- 
ations, cuts, and heuristics. These studies [18], [19] are able to 
solve larger RSA problem instances than commercial solvers 
by carefully crafting solutions to the specific problem and 
objective considered. By contrast, the decomposition algorithm 
we present next is both intuitive and generic and hence, 
applicable to a wide range of network design problems and 
objectives. 
 

III.  DECOMPOSITION ALGORITHM FOR PROBLEM PRRA 

Consider now the problem PRA , derived from the reference 
problem PRRA we defined in the previous section by providing 
as input only a single path for each pair of nodes in the 
network, i.e., |Ksd | = 1 for PRA . In other words, the routing 
of demands is fixed and not part of the optimization process, 
hence PRA is purely a resource allocation (RA) problem. 
Intuitively, the solution space of problem PRA is significantly 
smaller than that of problem PRRA , and hence we expect the 
former to be “easier” to solve than the latter1 . This observation 
motivates us to explore a solution to PRRA that decomposes 
the problem into routing and resource allocation sub-problems 
that are tackled independently but differently than previous 
decomposition approaches. 

Let us define a routing configuration Ri , i = 1, . . . , L, as an 
assignment of one path to each pair of nodes in the network, 
whereby the path assigned to pair (s, d) is selected among the 
set Ksd of paths input to problem PRRA . Let L be the number 
of distinct routing configurations for PRRA , and note that 

L    =  Πs,d |Ksd | (1) 
 
may be a very large integer. Consider now the following 
decomposition algorithm for problem PRRA : 

challenge, i.e., the large numbers of network paths for each 
traffic  demand  that  need  to  be  considered  in  an  optimal 

 
1 Note  that  we  do  not  claim  that  problem 

 
PRA 

 
has  lower  asymptotic 

 

solution. 
complexity than problem PRRA , only that the size of the solution space 
that a solver must explore is considerably smaller. 
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sd 

Decomposition Algorithm (RRA-DA) for PRRA 

1)  Preprocessing/Path Computation. Generate a set Ksd 
of paths between each source-destination pair (s, d). 

2) Exhaustive Demand Routing. Generate all L routing 
configurations Ri , i = 1, . . . , L, from the path sets Ksd , 
where L is given by (1). 

3)  Resource Allocation. Solve the L  resource allocation 
sub-problems PRA (Ri ), i  = 1, . . . , L.  Each  problem 
PRA (Ri )  is  derived from problem PRRA  by routing 
the traffic demand between a  pair of nodes over the 
corresponding path in routing configuration Ri . 

4)  Postprocessing. Let PRA (Rk ) be the problem2  whose 
solution yields the optimal objective value. Return rout- 
ing configuration Rk and the resource allocation deter- 
mined by this solution as the overall solution to PRRA . 

Note that, unlike earlier heuristics (e.g., [15]) that de- 
compose the problem into routing and spectrum allocation 
subproblems that are solved independently and sequentially, 
the above RRA-DA algorithm performs an exhaustive search 
over the entire routing space and returns the best among the 
L routing configurations. In other words, RRA-DA is optimal 
with respect to the set of paths generated by the preprocessing 
Step 1. Therefore, if all possible paths between every pair 
of  nodes are  generated at  Step  1,  RRA-DA is  an  optimal 
algorithm for problem PRRA . Therefore, with this exhaustive 
routing search, our approach represents an exact decoupling of 
the routing and resource allocation aspects of the optimization, 
and hence, it has broad applications. 

In  practice,  of  course,  each  of  the  three  Steps  1-3  of 
RRA-DA poses significant computational challenges. As we 
mentioned earlier, the number of paths between each node pair 
is exponential in the size of the network; furthermore, often 
the  resource  allocation  subproblem  (e.g.,  spectrum  assign- 
ment [20]) is NP-hard for general topologies. Nevertheless, 
it is possible to only generate a large but polynomial number 
of paths (e.g., using k-shortest path algorithms), whereas the 
resource allocation subproblem may be solved effectively on 
fixed paths using polynomial-time heuristics that work well in 
practice [21]. On the other hand, even if we use polynomial- 
time algorithms for path generation and resource allocation, 
the number L  of routing configurations in (1) that have to 
be generated in Step 2 (and, hence, the number of resource 
allocation subproblems that have to be solved in Step 3) 
remains exponential. 

1) Application to the RSA Problem: The focus of this work 
is to implement in a scalable manner the exhaustive search 
over the entire space of routing configurations without having 
to enumerate (in Step 2) or evaluate (in Step 3) all possible 
configurations Ri . The exhaustive search algorithm, presented 
in  the  following  section,  may  be  applied  to  any  network 
design problem represented by PRRA . Nevertheless, in order 

source-destination pair; the constraints include the contiguity, 
continuity, and non-overlapping spectrum constraints; and the 
objective is to minimize the number of spectrum slots used in 
any network link [21]. In the following, we will use PRSA and 
PSA to refer specifically to the RSA problem and its spectrum 
allocation (SA) subproblem, respectively. 

We apply the following well-known solutions to the path 
computation (Step 1) and spectrum assignment (Step 3) com- 
ponents of the RRA-DA decomposition algorithm: 

•  Path Computation. We apply depth-first search (DFS) 
to generate all paths between each source-destination pair 
in the network. Since the number of paths between each 
pair of nodes is not known in advance, we run DFS twice; 
the first time to determine the number of paths for each 
pair and allocate memory, and the second time to build 
the data structure that holds the paths. Since our goal is 
to implement efficiently a search over the entire space 
of routing configurations, using the maximum number of 
paths (and, hence, routing configurations) is the best way 
to test the scalability of the approach we present in the 
next section. 

•  Spectrum Assignment. For a given routing configuration 
R,  we solve the spectrum assignment problem PSA (R) 
using the longest first-fit (LFF) policy [21]. LFF considers 
each traffic demand in descending order of path length 
(i.e., demands with longer paths are considered first), and 
assigns spectrum slots to each demand along its (single) 
path using the first-fit allocation policy [3]. The LFF 
heuristic is fast and performs well when routing is fixed 
and the objective is to minimize the maximum amount 
of spectrum used on any link [21]. 

Note that since we are using a heuristic for the spectrum 
assignment  subproblem,  the  RRA-DA  algorithm  may  not 
necessarily  find  an  optimal  solution  to  PRSA  despite  the 
fact that it searches the entire routing space. Nevertheless, 
in the context of our decomposition approach the spectrum 
assignment  algorithm  is  orthogonal  to  the  algorithm  used 
to  search  the  routing  space,  in  the  sense  that  the  former 
is used to solve each subproblem PSA (Ri ) separately from 
others  and  hence  is  independent3   of  the  strategy  that  the 
latter uses in navigating the space of routing configurations 
Ri . Therefore, the search algorithm we present next may be 
combined with any algorithm for the spectrum assignment 
subproblem, including optimal ones, and will deliver similar 
benefits. 
 

IV.  SCALABLE RECURSIVE ROUTING SEA RCH 

Let us assume that the path computation step (Step 1) of the 
RRA-DA algorithm has generated a set of Ksd paths for each 
node pair (s, d),  and that the paths of each set are labeled 

to illustrate our technique, we will consider the RSA problem as  p1  2
 Ksd

 

sd , psd , · · · , p
|
 

|.  Let  N   be  the  number of  nodes  in 
within  the  class  of  problems  PRRA .  In  RSA,  the  traffic 
demands  represent  the  number  of  spectrum  slots  for  each 

 
2 If there are multiple solutions with the same optimal value, the algorithm 

may  return  one  solution  chosen  arbitrarily,  all  solutions,  or  a  subset  of 
solutions using criteria other than the objective value. Without loss of 
generality, we assume that one solution of optimal value is returned. 

the network and let kmin = mins,d {|Ksd |} be the minimum 
number of paths generated for any node pair. Since there are 
 

3 The choice of a spectrum assignment algorithm affects both the overall 
running time and whether the decomposition is guaranteed to reach an optimal 
solution or not. But as we mentioned earlier, in this work we are only 
concerned with developing efficient strategies for searching the routing space. 
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sd 

2 
 

O(N 2 ) node pairs, expression (1) implies that L is Ω(kN 
 

).    
min 

Therefore, any algorithm to  enumerate all possible routing 
configurations R must take time that is exponential in the size 
of the network even if kmin is a small integer independent of 
the number N  of nodes. 

Consider now a routing configuration R and let SOL(R) be 
the solution to the spectrum assignment problem on this con- 
figuration obtained by the LFF policy4 . A lower bound LB(R) 
on the solution to the spectrum assignment problem for R may 
be obtained by ignoring any spectrum fragmentation that may 
result from satisfying the spectrum contiguity and continuity 
constraints, and simply accounting for the fact that each link 
.£  of the network must use at least as many spectrum slots as 
to carry all the demands whose path includes this link: 

Algorithm 1 Scalable Recursive Routing Search 
SRRS(s, d, R, LB) 
Input: 

s: source node 
d: destination node 
R: routing configuration 
LB:  lower bound of configuration R 
BestSOL: best solution so far (global variable) 
BestR: best routing configuration so far (global variable) 

Output: 
Best routing configuration and corresponding solution 

1:  if s > N  then {R is a complete configuration} 
2: SOL  = solution obtained by LFF on R; 

ñ 

LB(R)  =  max 
ò  )

 

ü 

tsd 

ý
 

 
≤  SOL(R)  (2) 

3: if SOL  < BestSOL then 
4: //Update best known solution 
5: BestSOL = SOL;   BestR = R; ó

s,d:  ∈psd 
þ

 6: end if 
Let BestSOL be the best solution that has been obtained 

while searching the routing space at the time that we consider 
some configuration R. If LB(R) ≥ BestSOL, then we know 
that R  cannot lead to a better solution since, because of (2), 
SOL(R) ≥ BestSOL. We now make two observations with 
respect to any routing configuration R  whose lower bound is 
worse than the current best solution. 

• We do not need to invoke the LFF policy to obtain a 
spectrum assignment for R. At first thought this may not 
appear to provide any computational savings: calculating 
the lower bound from (2) takes time O(M N 2 ), where M 
is the number of edges in the network, the same asymp- 
totic complexity as executing the LFF policy. However, 
suppose that R is derived from another configuration Rt 
by only changing the path for a single node pair, and 
that LB(Rt)  is known. Then LB(R) may be computed 
in time O(M ) by simply updating the demands along the 
links of the two paths (old and new) between this node 
pair, representing a significant decrease in complexity, 
especially for larger networks. 

•  More importantly, let R be a partial routing configuration 
in that it specifies paths for only a subset of node pairs 
and has no paths for the remaining pairs. Then, adding 
a path for some node pair (s, d)  that is not currently 
represented in  R  may  only  increase the  lower  bound 
in (2) since the links of the path will have to carry the 
new demand tsd . Therefore, we may terminate the search 
for configurations derived from the partial configuration 
R at this point, potentially eliminating a large fraction of 
the routing space from further consideration. 

Based on these observations, we have developed a scalable 
branch-and-bound recursive routing search (SRRS) procedure, 
shown as Algorithm 1, to search the entire space of routing 
configurations. The algorithm starts from an empty configu- 

7: return; 
8:  end if 
9:  if d > N  then {Continue with next source node} 

10:       s++; d = 1; 
11:       SRRS(s, d, R, LB); 
12:  end if 
13:  if s = d then {Continue with next destination node} 
14:       d = s + 1; 
15:       SRRS(s, d, R, LB); 
16:  end if 
17:  //Main Recursion 
18:  for k = 1;  k ≤ |Ksd |;  k++ do 
19:       newR = add path pk   to R;    //Update R 
20:       newLB = update LB  as described in the text; 
21:       if newLB < BestSOL then 
22:            SRRS(s, d + 1, newR, newLB); 
23:       else 
24:            return; 
25:       end if 
26:  end for 

 
 
 
Whenever a path between a source-destination pair is added 
to form a new partial configuration, the lower bound for the 
new configuration is calculated by updating the spectrum slots 
along the links of the new path, as discussed above. If this 
lower bound is not better than the best current solution, then 
the recursion terminates immediately: all complete routing 
configurations that may be derived from this partial config- 
uration are guaranteed to have a solution that is worse than 
the current one, hence there is no need to generate or evaluate 
them. 

To describe the SRRS recursion, we may think of a routing 
configuration R  as  a  N  × N   matrix.  If  R  is  a  complete 

5 

ration R0 , i.e., one without any paths, and recursively adds configuration, then element R[sd], s 
=/ 

d, is one of the paths 

one path at a time until it reaches a complete configuration. from s  to  d,  i.e.,  R[sd]  ∈  Ksd , s  =/ d.  If  R  is  a  partial 
 

 
4 All the observations in this section are valid regardless of the specific 

spectrum assignment algorithm used to obtain SOL(R). We refer to the LFF 
policy only because it is the algorithm we use in this work. 

configuration, then some elements R[sd], s /= d may be null, 
 

5 We assume that there is no traffic from a node to itself, hence elements 
R[sd] are always null for s = d. 
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sd 

sd 

pk 

1,2 

i.e., the corresponding paths have yet to be filled in. We also 
assume that there are two global variables, BestSOL and 
BestR, that store the best solution and corresponding best 
complete configuration, respectively, that have been found so 
far. We initialize BestR to the configuration with R[sd] = p1 

for all node pairs (s, d), and BestSOL to the solution obtained 
by  applying  the  LFF  algorithm  to  this  configuration. For 
instance, this configuration and solution may correspond to 
shortest path routing. 

The first call is to SRRS(s = 1, d = 2, R0 , 0), where R0 
is the empty configuration (no paths) and the corresponding 
lower bound LB(R0 ) = 0. There are three base cases for the 
recursion. 

1) Whenever s > N  (Lines 1-9), the algorithm has con- 
sidered all possible node-pairs and has produced a com- 
plete configuration R. This configuration is evaluated by 
applying the LFF algorithm to perform spectrum assign- 
ment. If the result is better than the best known solution 
so far, the global variables BestSOL and BestR are 
updated accordingly. The recursion terminates at that 
point. 

2)  If d > N  (Lines 10-13), the algorithm has considered 
all node pairs with source nodes up to and including s, 
and has produced a corresponding partial configuration. 
It then makes a recursive call to consider node pairs with 
source s + 1 (and beyond). 

3)  Finally, if s = d (Lines 14-17), since there are no paths 
between a node and itself to consider, the algorithm 
makes a recursive call to continue with the next des- 
tination d = s + 1. 

The main body of the algorithm is the for loop in Lines 19- 
27. This loop iterates over all possible paths between the given 
node pair (s, d). For each path pk  , it installs it in the partial 
routing configuration passed to this call (which did not include 
such a path) and updates the lower bound as we discussed 
earlier. If the new lower bound is less than the best known 
solution, then this is a promising new configuration that has the 
potential to lead to a better solution. Therefore, the algorithm 
makes a recursive call to consider the next destination. On the 
other hand, if the new lower bound is equal to or higher than 
the best known solution, then adding paths (and hence traffic 
demands to the corresponding links) is guaranteed to produce 
solutions that are no better than the current best one. In this 
case, no recursive call is made, eliminating this part of the 
search space from further consideration. 

To illustrate, consider the initial call to SRRS(s = 1, d = 
2, R0 , 0). The for loop of this call will make K1,2  recursive 
calls, each of which will have as argument a routing con- 
figuration with  only  one  path,  i.e.,  one  of  the  K1,2  paths 

1,2  between  nodes  1  and  2.  In  turn,  each  of  these  calls 
will make K1,3  recursive calls, each of which will have a 

the current best solution, at which time the corresponding 
recursion ends. 

We emphasize that, in the worst case, the SRRS recursion 
may be forced to generate all, or close to all, possible routing 
configurations and hence take exponential time to complete. 
However, the simulation results we present in the next section 
indicate that, in practice, the SRRS algorithm will need to 
explore only a tiny fraction of the routing space. Thus, SRRS 
represents a scalable solution to large RSA problems. 
 
 

V.  SIMULATION STU DY 
 

We have evaluated the performance of the SRRS algorithm 
by carrying out simulation experiments with RSA problem 
instances characterized by three parameters: (1) the network 
topology, (2) the set Ksd of paths for each source-destination 
pair (s, d), and (3) the probability distribution of traffic de- 
mands. We considered two network topologies, the 14-node, 
21-link NSFNet and the 32-node, 54-link GEANT2 network. 
We used DFS to generate the |Ksd |  = k  shortest paths for 
each source-destination pair, k = 1, 2, 3, as well as all paths 
between each node pair; we denote the latter as k = all. We 
assume symmetric routing of demands, i.e., traffic from s to 
d takes the same path as traffic from d to s, for all s, d. 

We assume data rates of 10, 40, 100, 400, and 1000 Gbps. 
For a given instance, we generate a random value for the 
demand between a pair of nodes based on one of three 
distributions: 1) Uniform: each of the five rates is selected with 
equal probability; 2) Skewed low: the rates above are selected 
with probability 0.30, 0.25, 0.20, 0.15, and 0.10, respectively; 
or 3) Skewed high: the five rates are selected with probability 
0.10, 0.15, 0.20, 0.25, and 0.30, respectively. 

The metric we consider is the maximum number of spec- 
trum slots on any network link that SRRS returns as the (best) 
solution value SOL.   We let SRRSk   denote the version of 
the algorithm that generates k  paths for each node pair in 
Step 1, k = 1, 2, 3, all, and let SOLk denote the corresponding 
solution. Since SRRS uses the LFF heuristic for spectrum 
allocation, it is important to compute a lower bound in order to 
evaluate the quality of a solution SOLk . Consider a complete 
routing configuration R  generated by SRRS within the if 
statement of Lines 1-9. The lower bound LB(R) given by 
expression (2) on this configuration is a lower bound on the 
optimal solution of this RSA instance. Therefore, we modify 
the algorithm to calculate not only the LFF solution on R  in 
Line 3, but also the lower bound LB(R). Then, the lower 
bound LBk  for algorithm SRRSk   is taken as the minimum 
of the lower bounds LB(R) over all complete configurations 
generated by this algorithm. Finally, the overall lower bound 
is: LB  = mink {LBk }. 

The metric we use to characterize the quality of the so- 
lution constructed by algorithm SRRSk   is the ratio Qk   = 

configuration with only two paths, the path pk passed to SOLk /LB. Clearly, Qk ≥ 1; the closer Qk is to 1, the better 
it and one of the K1,3  paths between nodes 1 and 3. Each 
of these recursions will continue until either (1) a complete 
configuration is  reached (first base case) that contains one 
path for every source-destination node, or (2) the lower bound 
of an intermediate partial configuration becomes higher than 

the solution, i.e., the closer it is to the optimal one. 
Figures 1 plot the average quality ratio Qk for the NSFNet 

and GEANT2 topologies. Each figure includes three curves, 
one each for demand matrices generated by the uniform, 
skewed low, and skewed high distributions, respectively. Each 
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size of the routing space is O(291 ) for NSFNet and O(2496 ) 
for GEANT2. Nevertheless, SRRS eliminated huge swaths of 
the routing space and completed in less than two hours for 
NSFNet and less than four hours for GEANT2. In other words, 
the algorithm scales well to problem instances representative 
of topologies encountered in practice. 
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Fig. 1.    Average ratio, Q, vs the number k of paths, NSFNet and GEANT2 
 

TABLE I 
RU N N I N G T I M E (S E C ) O F SRRS F O R NSFN E T A N D GEANT2 

 
 

 K Uniform Skewed high Skewed low 
NSFNet k = 2 1,222 279 1,381 

k = 3 1,513 2,231 2,614 
k = all 5,183 5,919 3,398 

GEANT2 k = 2 12,102 13,294 13,668 
k = 3 12,799 13,661 13,391 

k = all 11,174 10,715 12,204 
 
 
 

data point is the average of 100 random problem instances 
generated for the stated parameters (i.e., network topology, 
number k of paths, and traffic demand distribution). 

As we can see, the solution quality improves (i.e., the ratio 
Qk  decreases) with the number k of paths. Note that k = 1 
in the figures corresponds to spectrum assignment along the 
shortest paths (i.e., a single routing configuration), while as k 
increases the algorithm considers a significantly larger set of 
routing configurations and hence is able to find increasingly 
better solutions. This improvement in solution quality as k 
increases is observed for both topologies and across all three 
traffic distributions. For the smaller NSFNet topology, we also 
observe that with as few as k = 3 paths most benefits of the 
routing search are realized, and there is little improvement 
even when we consider all possible paths between each node 
pair. For the larger GEANT2 network, on the other hand, there 
is a substantial improvement in solution quality as we move 
from k  = 3 to all paths. Finally, we note that, while SRRS 
searches the entire routing space, it uses a heuristic spectrum 
assignment algorithm. As a result, the SRRS algorithm may 
not obtain the optimal solution even when it is given as input 
all the paths between each node pair. On the other hand, we 
also emphasize that the lower bound may not be achievable, 
and hence, the ratio Qk  for optimal solution may be strictly 
larger than 1.0. In any case, we observe that the solutions 
obtained for all paths achieve a ratio that is very close to 1.0. 

Table I lists the running time (in seconds) of the SRRS 
algorithm for the NSFNet and GEANT2 networks, averaged 
over the 100 problem instances for the stated topology, number 
k  of  paths,  and  traffic distribution.  We  run  SRRS  on  the 
Aziz  Supercomputer facility  at  King  Abdulaziz University. 
Each  problem instance was  run  on  a  single  core  (i.e.,  no 
parallelization). To appreciate the effectiveness of SRRS, we 
note  that  for  a  network  with  N   nodes  and  k  paths  per 
node, there are O(kN (N ­1)/2 ) routing configurations under the 
symmetric routing we consider; i.e., just for k = 2 paths, the 

In this work we have made two contributions: (1) a new de- 
composition of network optimization problems that completely 
and exactly decouples the routing aspect from the resource 
allocation aspect, and (2) a new recursive branch-and-bound 
method that searches the entire routing space efficiently. Our 
current efforts are directed to developing a recursive algorithm 
for  generic  resource  allocation  problems,  and  to  adapting 
SRRS for parallel execution on multi-core architectures. 
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