
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 11,2021 at 19:06:28 UTC from IEEE Xplore. Restrictions apply.

G
LO

BE
CO

M
 2

02
0

- 2
02

0
IE

EE
 G

lo
ba

l C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e

|
97

8 -
1-

72
81

-8
29

8-
8/

20
/$

31
.0

0
©

20
20

 IE
EE

 |
 D

O
I:

10
.1

10
9/

G
LO

BE
CO

M
42

00
2.

20
20

.9
32

24
39

A Scalable Solution to Network Design Problems:
Decomposition with Exhaustive Routing Search

Mahmoud Fayez•, Iyad Katib†, George N. Rouskas*†, Tarek F. Gharib•, H. K. Ahmed•, H.M. Faheem•

† King Abdulaziz University, * North Carolina State University, •Ain Shams University

Abstract—Many network design problems encompass two
tasks, routing and resource allocation, that are so intricately
intertwined as to contribute significantly to the intractability
of such problems. In this paper, we make two contributions
to addressing general network design problems of this nature.
First, we present a new decomposition method that optimally
decouples resource allocation from routing, making it possible
to tackle each of these aspects separately. Second, we develop
a recursive branch-and-bound algorithm to search the routing
space exhaustively, yet in a scalable manner. We apply our
method to a well-known intractable problem in optical networks,
routing and spectrum assignment (RSA). Our results indicate
that the recursive algorithm is able to search efficiently the entire
routing space of topologies representative of large-scale wide area
networks.

I. INTRODUCTION

Network design problems are complex problems that arise
naturally in the planning, engineering and deployment of the
Internet infrastructure. Consequently, the overall operation and
economic model of the Internet, and its capacity to deliver
reliable and critical communication services, rely crucially on
efficient and effective solutions to a range of network design
problems. Similar observations apply to optical networks that
constitute the foundation of the backbone (long-haul) and
regional (metro-area) parts of the global infrastructure, and
are now reaching into the access part in the form of PON
architectures [1].

Over the past three decades, researchers have investigated
an abundance of optical network design problems, including
routing and wavelength assignment (RWA) [2]–[5], traffic
grooming [6], [7], routing and spectrum assignment (RSA) [8],
[9], and network survivability [10]. Whereas integer linear
program (ILP) formulations may in theory yield exact solu-
tions to these problems, in practice ILP models do not scale
to instances typical of commercial networks. Consequently,
the literature is replete with heuristics that were developed
with large networks in mind; unfortunately, in general there
is little information about the accuracy of solutions produced
by heuristic algorithms [11]. Moreover, heuristic designs are
usually one-off, carefully crafted to solve a specific problem
rather than apply to a more general class of problems. Even
if adapting such a heuristic to variants of the original prob-
lem were feasible, applying the modifications would require
expertise in both the domain of the problem (e.g., network

This work was supported by the National Science Foundation under Grant

CNS-1907142 and by the High Performance Computing Project at King
Abdulaziz University.

design, graph theory) and a range of related disciplines that
include mathematical programming, operations research, and
discrete optimization. Therefore, most approaches currently
impose significant demands on computational resources and
human expertise, and severely limit our ability to investigate
the sensitivity of design decisions to problem inputs, including
forecast traffic demands or capital and operating cost consid-
erations.

Our work is motivated by the observation that many network
design problems encompass two tasks, routing and resource
allocation, that are so intricately intertwined as to contribute
significantly to the intractability of such problems. Therefore,
we make two contributions to addressing general network
design problems of this nature. First, we present a new decom-
position method that optimally decouples resource allocation
from routing, making it possible to tackle each of these aspects
separately. Second, we develop a recursive branch-and-bound
algorithm to search the routing space exhaustively, yet in a
scalable manner. Although we apply our method to routing and
spectrum assignment (RSA), a well-known intractable problem
in optical networks, our approach has broad applications as
it decouples optimally the routing and resource allocation
components of the optimization.

The remainder of the paper is organized as follows. In
Section II, we present a formulation of a generic network
design problem that we use to illustrate our approach, and
we introduce a new decomposition algorithm for this problem
in Section III. We develop a scalable recursive method for
searching the routing space in Section IV, and we present
experimental results for the RSA problem in Section V. We
conclude the paper in Section VI.

II. A REFERENCE ILP FO RM U LATIO N

We consider network optimization problems that may be
expressed using ILP formulations and are NP-hard [5]. There
are two general types of ILP models, link-based [12] and
path-based [13]. In the former, the entities of interest (that
is, decision variables) relate to network links; in the latter,
variables relate to end-to-end paths. With a link-based model,
the optimization problem is expressed as a multicommodity
flow formulation, and the solver is forced to consider the entire
space of network paths between any two nodes. On the other
hand, path-based formulations take as input a (usually small)
set of paths between each pair of nodes. Hence, path-based ILP
models produce a solution that is optimal only within the input
set of paths; such solution is no better than the optimal solution
obtained by a link-based formulation of the same problem.

978-1-7281-8298-8/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 11,2021 at 19:06:28 UTC from IEEE Xplore. Restrictions apply.

In this paper, we consider the following reference ILP for-
mulation of a generic routing and resource allocation (RRA)
optimization problem PRRA . Although this is a path-based
formulation, we discuss shortly how it may be used to produce
optimal solutions equivalent to a link-based formulation.
The reference optimization problem PRRA

• Input:
– Network topology: a connected graph G = (V, A)

where V denotes the set of nodes and A denotes the
set of arcs (directed links) in the network.

– Traffic demands: a traffic demand matrix T = [tsd],
where tsd is a non-negative value representing the
amount of traffic from node s to node d, in some ap-
propriate units (e.g., bandwidth, wavelengths, spec-
trum slots, etc).

– Routing paths: a set Ksd of paths for source-
destination pair (s, d), such that all traffic from s
to d is constrained to take path(s) in this set only;
the paths are generated in advance and their number
may vary based on the source-destination pair.

• Constraints:
– A set of constraints on available network resources

(e.g., link and/or switch capacity) and/or on the
routing of traffic demands.

• Metric: A performance metric of interest, e.g., the
amount of network resources to be deployed.

• Output:
– Routing: a routing of demands over network paths.
– Resource allocation: an assignment of network re-

sources (e.g., wavelength or block of spectrum slots)
to each demand.

• Objective: The performance metric of interest is opti-
mized while all constraints are satisfied.

Note that, while the above is a path-based formulation, if
we let Ksd be the set of all possible paths (rather than a
subset of all paths) between nodes s and d, then the solver
will be forced to consider all paths in the network just as
with a link-based formulation. Therefore, we will use the
above reference formulation as representing both classes of
formulations, path- or link-based. Of course, to make this
equivalent to a link-based formulation, one would have to
generate all paths between every pair of nodes in the network;
this number is exponential in the size of the network [14]. We
address this challenge later in this work.

In general, optimization problems represented by PRRA
are NP-hard and exact solutions may be obtained only for
networks of small size [11]; for Internet-scale topologies, it is
not possible to solve the ILP model optimally in a reasonable
amount of time. Consequently, network design problems of
this nature are typically solved using heuristic algorithms; for
instance, surveys of heuristic approaches for a collection of
RSA problem variants are available in [8], [9]. Furthermore,
column generation and/or decomposition techniques may be
used to manipulate the ILP model so as to tackle a principal

Decomposition algorithms reduce the problem by dividing
it into two simpler ILP models that are then solved in se-
quence [15]. The first model addresses only the routing aspect
of the original problem, and it is designed so as to produce
paths that are likely to lead to a good overall solution. The
second ILP model is concerned only with resource allocation
along the paths calculated by the first model. The two ILP
models are solved iteratively until no further improvement to
the performance metric of interest can be achieved. Whereas
such an iterative process often yields good solutions, in general
the decomposition into two sequential subproblems is not
optimal, and in certain circumstances it may fail to even
produce feasible solutions.

Column generation is another iterative technique that aims
to obtain an optimal solution without considering all network
paths [16], [17]. Rather, a new path is generated at the end
of an iteration only if it is determined that it would lead to
an improvement of the solution currently at hand. A recent
study [18] presented a new column generation model that uses
lightpath configurations and can achieve a significant speedup.
Another study [19] developed a branch-and-price algorithm
and combined it with additional techniques, including relax-
ations, cuts, and heuristics. These studies [18], [19] are able to
solve larger RSA problem instances than commercial solvers
by carefully crafting solutions to the specific problem and
objective considered. By contrast, the decomposition algorithm
we present next is both intuitive and generic and hence,
applicable to a wide range of network design problems and
objectives.

III. DECOMPOSITION ALGORITHM FOR PROBLEM PRRA

Consider now the problem PRA , derived from the reference
problem PRRA we defined in the previous section by providing
as input only a single path for each pair of nodes in the
network, i.e., |Ksd | = 1 for PRA . In other words, the routing
of demands is fixed and not part of the optimization process,
hence PRA is purely a resource allocation (RA) problem.
Intuitively, the solution space of problem PRA is significantly
smaller than that of problem PRRA , and hence we expect the
former to be “easier” to solve than the latter1 . This observation
motivates us to explore a solution to PRRA that decomposes
the problem into routing and resource allocation sub-problems
that are tackled independently but differently than previous
decomposition approaches.

Let us define a routing configuration Ri , i = 1, . . . , L, as an
assignment of one path to each pair of nodes in the network,
whereby the path assigned to pair (s, d) is selected among the
set Ksd of paths input to problem PRRA . Let L be the number
of distinct routing configurations for PRRA , and note that

L = Πs,d |Ksd | (1)

may be a very large integer. Consider now the following
decomposition algorithm for problem PRRA :

challenge, i.e., the large numbers of network paths for each
traffic demand that need to be considered in an optimal

1 Note that we do not claim that problem

PRA

has lower asymptotic

solution.
complexity than problem PRRA , only that the size of the solution space
that a solver must explore is considerably smaller.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 11,2021 at 19:06:28 UTC from IEEE Xplore. Restrictions apply.

sd

Decomposition Algorithm (RRA-DA) for PRRA

1) Preprocessing/Path Computation. Generate a set Ksd
of paths between each source-destination pair (s, d).

2) Exhaustive Demand Routing. Generate all L routing
configurations Ri , i = 1, . . . , L, from the path sets Ksd ,
where L is given by (1).

3) Resource Allocation. Solve the L resource allocation
sub-problems PRA (Ri), i = 1, . . . , L. Each problem
PRA (Ri) is derived from problem PRRA by routing
the traffic demand between a pair of nodes over the
corresponding path in routing configuration Ri .

4) Postprocessing. Let PRA (Rk) be the problem2 whose
solution yields the optimal objective value. Return rout-
ing configuration Rk and the resource allocation deter-
mined by this solution as the overall solution to PRRA .

Note that, unlike earlier heuristics (e.g., [15]) that de-
compose the problem into routing and spectrum allocation
subproblems that are solved independently and sequentially,
the above RRA-DA algorithm performs an exhaustive search
over the entire routing space and returns the best among the
L routing configurations. In other words, RRA-DA is optimal
with respect to the set of paths generated by the preprocessing
Step 1. Therefore, if all possible paths between every pair
of nodes are generated at Step 1, RRA-DA is an optimal
algorithm for problem PRRA . Therefore, with this exhaustive
routing search, our approach represents an exact decoupling of
the routing and resource allocation aspects of the optimization,
and hence, it has broad applications.

In practice, of course, each of the three Steps 1-3 of
RRA-DA poses significant computational challenges. As we
mentioned earlier, the number of paths between each node pair
is exponential in the size of the network; furthermore, often
the resource allocation subproblem (e.g., spectrum assign-
ment [20]) is NP-hard for general topologies. Nevertheless,
it is possible to only generate a large but polynomial number
of paths (e.g., using k-shortest path algorithms), whereas the
resource allocation subproblem may be solved effectively on
fixed paths using polynomial-time heuristics that work well in
practice [21]. On the other hand, even if we use polynomial-
time algorithms for path generation and resource allocation,
the number L of routing configurations in (1) that have to
be generated in Step 2 (and, hence, the number of resource
allocation subproblems that have to be solved in Step 3)
remains exponential.

1) Application to the RSA Problem: The focus of this work
is to implement in a scalable manner the exhaustive search
over the entire space of routing configurations without having
to enumerate (in Step 2) or evaluate (in Step 3) all possible
configurations Ri . The exhaustive search algorithm, presented
in the following section, may be applied to any network
design problem represented by PRRA . Nevertheless, in order

source-destination pair; the constraints include the contiguity,
continuity, and non-overlapping spectrum constraints; and the
objective is to minimize the number of spectrum slots used in
any network link [21]. In the following, we will use PRSA and
PSA to refer specifically to the RSA problem and its spectrum
allocation (SA) subproblem, respectively.

We apply the following well-known solutions to the path
computation (Step 1) and spectrum assignment (Step 3) com-
ponents of the RRA-DA decomposition algorithm:

• Path Computation. We apply depth-first search (DFS)
to generate all paths between each source-destination pair
in the network. Since the number of paths between each
pair of nodes is not known in advance, we run DFS twice;
the first time to determine the number of paths for each
pair and allocate memory, and the second time to build
the data structure that holds the paths. Since our goal is
to implement efficiently a search over the entire space
of routing configurations, using the maximum number of
paths (and, hence, routing configurations) is the best way
to test the scalability of the approach we present in the
next section.

• Spectrum Assignment. For a given routing configuration
R, we solve the spectrum assignment problem PSA (R)
using the longest first-fit (LFF) policy [21]. LFF considers
each traffic demand in descending order of path length
(i.e., demands with longer paths are considered first), and
assigns spectrum slots to each demand along its (single)
path using the first-fit allocation policy [3]. The LFF
heuristic is fast and performs well when routing is fixed
and the objective is to minimize the maximum amount
of spectrum used on any link [21].

Note that since we are using a heuristic for the spectrum
assignment subproblem, the RRA-DA algorithm may not
necessarily find an optimal solution to PRSA despite the
fact that it searches the entire routing space. Nevertheless,
in the context of our decomposition approach the spectrum
assignment algorithm is orthogonal to the algorithm used
to search the routing space, in the sense that the former
is used to solve each subproblem PSA (Ri) separately from
others and hence is independent3 of the strategy that the
latter uses in navigating the space of routing configurations
Ri . Therefore, the search algorithm we present next may be
combined with any algorithm for the spectrum assignment
subproblem, including optimal ones, and will deliver similar
benefits.

IV. SCALABLE RECURSIVE ROUTING SEA RCH

Let us assume that the path computation step (Step 1) of the
RRA-DA algorithm has generated a set of Ksd paths for each
node pair (s, d), and that the paths of each set are labeled

to illustrate our technique, we will consider the RSA problem as p1 2
 Ksd

sd , psd , · · · , p
|

|. Let N be the number of nodes in
within the class of problems PRRA . In RSA, the traffic
demands represent the number of spectrum slots for each

2 If there are multiple solutions with the same optimal value, the algorithm

may return one solution chosen arbitrarily, all solutions, or a subset of
solutions using criteria other than the objective value. Without loss of
generality, we assume that one solution of optimal value is returned.

the network and let kmin = mins,d {|Ksd |} be the minimum
number of paths generated for any node pair. Since there are

3 The choice of a spectrum assignment algorithm affects both the overall
running time and whether the decomposition is guaranteed to reach an optimal
solution or not. But as we mentioned earlier, in this work we are only
concerned with developing efficient strategies for searching the routing space.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 11,2021 at 19:06:28 UTC from IEEE Xplore. Restrictions apply.

sd

2

O(N 2) node pairs, expression (1) implies that L is Ω(kN

).
min

Therefore, any algorithm to enumerate all possible routing
configurations R must take time that is exponential in the size
of the network even if kmin is a small integer independent of
the number N of nodes.

Consider now a routing configuration R and let SOL(R) be
the solution to the spectrum assignment problem on this con-
figuration obtained by the LFF policy4 . A lower bound LB(R)
on the solution to the spectrum assignment problem for R may
be obtained by ignoring any spectrum fragmentation that may
result from satisfying the spectrum contiguity and continuity
constraints, and simply accounting for the fact that each link
.£ of the network must use at least as many spectrum slots as
to carry all the demands whose path includes this link:

Algorithm 1 Scalable Recursive Routing Search
SRRS(s, d, R, LB)
Input:

s: source node
d: destination node
R: routing configuration
LB: lower bound of configuration R
BestSOL: best solution so far (global variable)
BestR: best routing configuration so far (global variable)

Output:
Best routing configuration and corresponding solution

1: if s > N then {R is a complete configuration}
2: SOL = solution obtained by LFF on R;

ñ

LB(R) = max
ò)

ü

tsd

ý

≤ SOL(R) (2)

3: if SOL < BestSOL then
4: //Update best known solution
5: BestSOL = SOL; BestR = R; ó

s,d: ∈psd
þ

 6: end if
Let BestSOL be the best solution that has been obtained

while searching the routing space at the time that we consider
some configuration R. If LB(R) ≥ BestSOL, then we know
that R cannot lead to a better solution since, because of (2),
SOL(R) ≥ BestSOL. We now make two observations with
respect to any routing configuration R whose lower bound is
worse than the current best solution.

• We do not need to invoke the LFF policy to obtain a
spectrum assignment for R. At first thought this may not
appear to provide any computational savings: calculating
the lower bound from (2) takes time O(M N 2), where M
is the number of edges in the network, the same asymp-
totic complexity as executing the LFF policy. However,
suppose that R is derived from another configuration Rt
by only changing the path for a single node pair, and
that LB(Rt) is known. Then LB(R) may be computed
in time O(M) by simply updating the demands along the
links of the two paths (old and new) between this node
pair, representing a significant decrease in complexity,
especially for larger networks.

• More importantly, let R be a partial routing configuration
in that it specifies paths for only a subset of node pairs
and has no paths for the remaining pairs. Then, adding
a path for some node pair (s, d) that is not currently
represented in R may only increase the lower bound
in (2) since the links of the path will have to carry the
new demand tsd . Therefore, we may terminate the search
for configurations derived from the partial configuration
R at this point, potentially eliminating a large fraction of
the routing space from further consideration.

Based on these observations, we have developed a scalable
branch-and-bound recursive routing search (SRRS) procedure,
shown as Algorithm 1, to search the entire space of routing
configurations. The algorithm starts from an empty configu-

7: return;
8: end if
9: if d > N then {Continue with next source node}

10: s++; d = 1;
11: SRRS(s, d, R, LB);
12: end if
13: if s = d then {Continue with next destination node}
14: d = s + 1;
15: SRRS(s, d, R, LB);
16: end if
17: //Main Recursion
18: for k = 1; k ≤ |Ksd |; k++ do
19: newR = add path pk to R; //Update R
20: newLB = update LB as described in the text;
21: if newLB < BestSOL then
22: SRRS(s, d + 1, newR, newLB);
23: else
24: return;
25: end if
26: end for

Whenever a path between a source-destination pair is added
to form a new partial configuration, the lower bound for the
new configuration is calculated by updating the spectrum slots
along the links of the new path, as discussed above. If this
lower bound is not better than the best current solution, then
the recursion terminates immediately: all complete routing
configurations that may be derived from this partial config-
uration are guaranteed to have a solution that is worse than
the current one, hence there is no need to generate or evaluate
them.

To describe the SRRS recursion, we may think of a routing
configuration R as a N × N matrix. If R is a complete

5

ration R0 , i.e., one without any paths, and recursively adds configuration, then element R[sd], s
=/

d, is one of the paths

one path at a time until it reaches a complete configuration. from s to d, i.e., R[sd] ∈ Ksd , s =/ d. If R is a partial

4 All the observations in this section are valid regardless of the specific

spectrum assignment algorithm used to obtain SOL(R). We refer to the LFF
policy only because it is the algorithm we use in this work.

configuration, then some elements R[sd], s /= d may be null,

5 We assume that there is no traffic from a node to itself, hence elements
R[sd] are always null for s = d.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 11,2021 at 19:06:28 UTC from IEEE Xplore. Restrictions apply.

sd

sd

pk

1,2

i.e., the corresponding paths have yet to be filled in. We also
assume that there are two global variables, BestSOL and
BestR, that store the best solution and corresponding best
complete configuration, respectively, that have been found so
far. We initialize BestR to the configuration with R[sd] = p1

for all node pairs (s, d), and BestSOL to the solution obtained
by applying the LFF algorithm to this configuration. For
instance, this configuration and solution may correspond to
shortest path routing.

The first call is to SRRS(s = 1, d = 2, R0 , 0), where R0
is the empty configuration (no paths) and the corresponding
lower bound LB(R0) = 0. There are three base cases for the
recursion.

1) Whenever s > N (Lines 1-9), the algorithm has con-
sidered all possible node-pairs and has produced a com-
plete configuration R. This configuration is evaluated by
applying the LFF algorithm to perform spectrum assign-
ment. If the result is better than the best known solution
so far, the global variables BestSOL and BestR are
updated accordingly. The recursion terminates at that
point.

2) If d > N (Lines 10-13), the algorithm has considered
all node pairs with source nodes up to and including s,
and has produced a corresponding partial configuration.
It then makes a recursive call to consider node pairs with
source s + 1 (and beyond).

3) Finally, if s = d (Lines 14-17), since there are no paths
between a node and itself to consider, the algorithm
makes a recursive call to continue with the next des-
tination d = s + 1.

The main body of the algorithm is the for loop in Lines 19-
27. This loop iterates over all possible paths between the given
node pair (s, d). For each path pk , it installs it in the partial
routing configuration passed to this call (which did not include
such a path) and updates the lower bound as we discussed
earlier. If the new lower bound is less than the best known
solution, then this is a promising new configuration that has the
potential to lead to a better solution. Therefore, the algorithm
makes a recursive call to consider the next destination. On the
other hand, if the new lower bound is equal to or higher than
the best known solution, then adding paths (and hence traffic
demands to the corresponding links) is guaranteed to produce
solutions that are no better than the current best one. In this
case, no recursive call is made, eliminating this part of the
search space from further consideration.

To illustrate, consider the initial call to SRRS(s = 1, d =
2, R0 , 0). The for loop of this call will make K1,2 recursive
calls, each of which will have as argument a routing con-
figuration with only one path, i.e., one of the K1,2 paths

1,2 between nodes 1 and 2. In turn, each of these calls
will make K1,3 recursive calls, each of which will have a

the current best solution, at which time the corresponding
recursion ends.

We emphasize that, in the worst case, the SRRS recursion
may be forced to generate all, or close to all, possible routing
configurations and hence take exponential time to complete.
However, the simulation results we present in the next section
indicate that, in practice, the SRRS algorithm will need to
explore only a tiny fraction of the routing space. Thus, SRRS
represents a scalable solution to large RSA problems.

V. SIMULATION STU DY

We have evaluated the performance of the SRRS algorithm
by carrying out simulation experiments with RSA problem
instances characterized by three parameters: (1) the network
topology, (2) the set Ksd of paths for each source-destination
pair (s, d), and (3) the probability distribution of traffic de-
mands. We considered two network topologies, the 14-node,
21-link NSFNet and the 32-node, 54-link GEANT2 network.
We used DFS to generate the |Ksd | = k shortest paths for
each source-destination pair, k = 1, 2, 3, as well as all paths
between each node pair; we denote the latter as k = all. We
assume symmetric routing of demands, i.e., traffic from s to
d takes the same path as traffic from d to s, for all s, d.

We assume data rates of 10, 40, 100, 400, and 1000 Gbps.
For a given instance, we generate a random value for the
demand between a pair of nodes based on one of three
distributions: 1) Uniform: each of the five rates is selected with
equal probability; 2) Skewed low: the rates above are selected
with probability 0.30, 0.25, 0.20, 0.15, and 0.10, respectively;
or 3) Skewed high: the five rates are selected with probability
0.10, 0.15, 0.20, 0.25, and 0.30, respectively.

The metric we consider is the maximum number of spec-
trum slots on any network link that SRRS returns as the (best)
solution value SOL. We let SRRSk denote the version of
the algorithm that generates k paths for each node pair in
Step 1, k = 1, 2, 3, all, and let SOLk denote the corresponding
solution. Since SRRS uses the LFF heuristic for spectrum
allocation, it is important to compute a lower bound in order to
evaluate the quality of a solution SOLk . Consider a complete
routing configuration R generated by SRRS within the if
statement of Lines 1-9. The lower bound LB(R) given by
expression (2) on this configuration is a lower bound on the
optimal solution of this RSA instance. Therefore, we modify
the algorithm to calculate not only the LFF solution on R in
Line 3, but also the lower bound LB(R). Then, the lower
bound LBk for algorithm SRRSk is taken as the minimum
of the lower bounds LB(R) over all complete configurations
generated by this algorithm. Finally, the overall lower bound
is: LB = mink {LBk }.

The metric we use to characterize the quality of the so-
lution constructed by algorithm SRRSk is the ratio Qk =

configuration with only two paths, the path pk passed to SOLk /LB. Clearly, Qk ≥ 1; the closer Qk is to 1, the better
it and one of the K1,3 paths between nodes 1 and 3. Each
of these recursions will continue until either (1) a complete
configuration is reached (first base case) that contains one
path for every source-destination node, or (2) the lower bound
of an intermediate partial configuration becomes higher than

the solution, i.e., the closer it is to the optimal one.
Figures 1 plot the average quality ratio Qk for the NSFNet

and GEANT2 topologies. Each figure includes three curves,
one each for demand matrices generated by the uniform,
skewed low, and skewed high distributions, respectively. Each

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 11,2021 at 19:06:28 UTC from IEEE Xplore. Restrictions apply.

Q
ua

lit
y

Q
ua

lit
y

1.4

1.3

1.2

1.1

Solution Quality (NSFNet)

Uniform

Skewed High

Skewed Low

1.2

1.15

1.1

1.05

Solution Quality (GEANT2)

Uniform

Skewed High

Skewed Low

size of the routing space is O(291) for NSFNet and O(2496)
for GEANT2. Nevertheless, SRRS eliminated huge swaths of
the routing space and completed in less than two hours for
NSFNet and less than four hours for GEANT2. In other words,
the algorithm scales well to problem instances representative
of topologies encountered in practice.

1

1 2 3
1

all 1

2 3 all

Number of Paths between pairs Number of Paths between pairs VI. CONCLUDING REM ARKS

Fig. 1. Average ratio, Q, vs the number k of paths, NSFNet and GEANT2

TABLE I
RU N N I N G T I M E (S E C) O F SRRS F O R NSFN E T A N D GEANT2

 K Uniform Skewed high Skewed low
NSFNet k = 2 1,222 279 1,381

k = 3 1,513 2,231 2,614
k = all 5,183 5,919 3,398

GEANT2 k = 2 12,102 13,294 13,668
k = 3 12,799 13,661 13,391

k = all 11,174 10,715 12,204

data point is the average of 100 random problem instances
generated for the stated parameters (i.e., network topology,
number k of paths, and traffic demand distribution).

As we can see, the solution quality improves (i.e., the ratio
Qk decreases) with the number k of paths. Note that k = 1
in the figures corresponds to spectrum assignment along the
shortest paths (i.e., a single routing configuration), while as k
increases the algorithm considers a significantly larger set of
routing configurations and hence is able to find increasingly
better solutions. This improvement in solution quality as k
increases is observed for both topologies and across all three
traffic distributions. For the smaller NSFNet topology, we also
observe that with as few as k = 3 paths most benefits of the
routing search are realized, and there is little improvement
even when we consider all possible paths between each node
pair. For the larger GEANT2 network, on the other hand, there
is a substantial improvement in solution quality as we move
from k = 3 to all paths. Finally, we note that, while SRRS
searches the entire routing space, it uses a heuristic spectrum
assignment algorithm. As a result, the SRRS algorithm may
not obtain the optimal solution even when it is given as input
all the paths between each node pair. On the other hand, we
also emphasize that the lower bound may not be achievable,
and hence, the ratio Qk for optimal solution may be strictly
larger than 1.0. In any case, we observe that the solutions
obtained for all paths achieve a ratio that is very close to 1.0.

Table I lists the running time (in seconds) of the SRRS
algorithm for the NSFNet and GEANT2 networks, averaged
over the 100 problem instances for the stated topology, number
k of paths, and traffic distribution. We run SRRS on the
Aziz Supercomputer facility at King Abdulaziz University.
Each problem instance was run on a single core (i.e., no
parallelization). To appreciate the effectiveness of SRRS, we
note that for a network with N nodes and k paths per
node, there are O(kN (N ­1)/2) routing configurations under the
symmetric routing we consider; i.e., just for k = 2 paths, the

In this work we have made two contributions: (1) a new de-
composition of network optimization problems that completely
and exactly decouples the routing aspect from the resource
allocation aspect, and (2) a new recursive branch-and-bound
method that searches the entire routing space efficiently. Our
current efforts are directed to developing a recursive algorithm
for generic resource allocation problems, and to adapting
SRRS for parallel execution on multi-core architectures.

REFEREN CES

[1] J. M. Simmons, Optical network design and planning. Springer, 2014.
[2] J. Simmons and G. N. Rouskas, “Routing and wavelength (spectrum)

allocation,” in Springer Handbook of Optical Networks, 2020.
[3] G. N. Rouskas, “Routing and wavelength assignment in optical wdm

networks,” Wiley Encyclopedia of Telecommunications, 2003.
[4] R. Dutta, G. N. Rouskas, et al., “A survey of virtual topology design

algorithms for wavelength routed optical networks,” Optical Networks
Magazine, vol. 1, no. 1, pp. 73–89, 2000.

[5] B. Jaumard, C. Meyer, and B. Thiongane, “Comparison of ilp formula-
tions for the rwa problem,” OSN, vol. 4, no. 3-4, pp. 157–172, 2007.

[6] R. Dutta and G. N. Rouskas, “Traffic grooming in wdm networks: Past
and future,” IEEE network, vol. 16, no. 6, pp. 46–56, 2002.

[7] H. Wang and G. N. Rouskas, “Hierarchical traffic grooming: A tutorial,”
Computer Networks, vol. 69, pp. 147–156, 2014.

[8] M. Klinkowski, P. Lechowicz, and K. Walkowiak, “Survey of resource
allocation schemes and algorithms in spectrally-spatially flexible optical
networking,” OSN, vol. 27, no. C, pp. 58–78, 2018.

[9] S. Talebi, F. Alam, I. Katib, M. Khamis, R. Salama, and G. N. Rouskas,
“Spectrum management techniques for elastic optical networks: A
survey,” Optical Switching and Networking, vol. 13, pp. 34–48, 2014.

[10] D. Zhou and S. Subramaniam, “Survivability in optical networks,” IEEE
network, vol. 14, no. 6, pp. 16–23, 2000.

[11] B. Jaumard and M. Daryalal, “Efficient spectrum utilization in large
scale rwa problems,” IEEE/ACM Transactions on Networking (TON),
vol. 25, no. 2, pp. 1263–1278, 2017.

[12] Z. Liu and G. N. Rouskas, “Link selection algorithms for link-based
ILPs and applications to RWA in mesh networks,” in ONDM, 2013.

[13] Z. Liu and G. N. Rouskas, “A fast path-based ILP formulation for offline
RWA in mesh optical networks,” in GLOBECOM, pp. 2990–2995, 2012.

[14] M. R. Garey and D. S. Johnson, Computers and intractability, vol. 29.
wh freeman New York, 2002.

[15] K. Christodoulopoulos, I. Tomkos, and E. Varvarigos, “Routing and
spectrum allocation in OFDM-based optical networks with elastic band-
width allocation,” in Proceedings of IEEE Globecom, 2010.

[16] B. Jaumard, C. Meyer, and B. Thiongane, “On column generation
formulations for the rwa problem,” Discrete Applied Mathematics,
vol. 157, no. 6, pp. 1291–1308, 2009.

[17] M. Dawande, R. Gupta, S. Naranpanawe, and C. Sriskandarajah, “A
traffic-grooming algorithm for wavelength-routed optical networks,”
INFORMS Journal on Computing, vol. 19, no. 4, pp. 565–574, 2007.

[18] J. Enoch and B. Jaumard, “Towards optimal and scalable solution
for routing and spectrum allocation,” Electronic Notes in Discrete
Mathematics, vol. 64, pp. 335–344, 2018.

[19] M. Klinkowski, M. Ż otkiewicz, K. Walkowiak, M. Pió ro, M. Ruiz, and
L. Velasco, “Solving large instances of the rsa problem in flexgrid elastic
optical networks,” IEEE/OSA JOCN, vol. 8, no. 5, pp. 320–330, 2016.

[20] S. Talebi, E. Bampis, G. Lucarelli, I. Katib, and G. N. Rouskas,
“Spectrum assignment in optical networks: A multiprocessor scheduling
perspective,” IEEE/OSA JOCN, vol. 6, no. 8, pp. 754–763, 2014.

[21] M. Fayez, I. Katib, G. N. Rouskas, and H. Faheem, “Spectrum assign-
ment in mesh elastic optical networks,” in ICCCN, 2015.

