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Chain stiffness boosts active nanoparticle transport in polymer networks
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Recent advances in technologies such as nanomanufacturing and nanorobotics have opened new pathways
for the design of active nanoparticles (NPs) capable of penetrating biolayers for biomedical applications, e.g.,
for drug delivery. The coupling and feedback between active NP motility (with large stochastic increments
relative to passive NPs) and the induced nonequilibrium deformation and relaxation responses of the polymer
network, spanning scales from the NP to the local structure of the network, remain to be clarified. Using
molecular dynamics simulations, combined with a Rouse mode analysis of network chains and position and
velocity autocorrelation functions of the NPs, we demonstrate that the mobility of active NPs within cross-linked,
concentrated polymer networks is a monotonically increasing function of chain stiffness, contrary to passive
NPs, for which chain stiffness suppresses mobility. In flexible networks, active NPs exhibit a behavior similar to
passive NPs, with a boost in mobility proportional to the self-propulsion force. These results are suggestive of
design strategies for active NP penetration of stiff biopolymer matrices.
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I. INTRODUCTION

Biological gels such as mucus that coats various human
organs have the remarkable ability to selectively reject versus
allow transport of specific molecules, proteins, or pathogens
[1–4]. Targeted delivery of inhaled or ingested therapeutic
drug-carrier particles must account for the mucus barriers
in order to control the uptake by specific cells, tumors, or
vasculature [5–7]. One approach is to design the surface
chemistry of drug-carrier nanoparticles (NPs) so that they
penetrate gel barriers with controlled passage times [8–11].
Chemically neutral NPs in mucus gels transport by passive
diffusion with mobility properties dependent on NP size rel-
ative to the free volume fraction and pore size distribution of
the polymer network. Nanoparticle diffusion is governed by
viscous drag for sufficiently small NPs relative to the pore
size, steric interactions for NPs commensurate with the mean
pore size, and entropic fluctuations of the polymer network
for NPs much larger than the pores. In the latter two cases,
NP diffusion is strongly influenced if there are attractive or
repulsive interactions between the NP surface chemistry and
the polymers. For large NPs, the existence of a “shell” of
modified polymers surrounding the NP led to the methods
of two-bead microrheology, where cross correlations of two
nearby beads allow one to extract the equilibrium network
properties and filter out the modified signals of individual
beads [12]. More inspiration for active NPs in polymers comes
from molecular motors fueled by ATP that stochastically walk
along microtubules to transport cargo [13,14] and by small
proteins that transiently cross-link genes and that extrude
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loops on chromosomal DNA to densely confine the genome
and create gene clusters to perform cellular functions such as
homology searches [15,16]. Progress in nanotechnology has
also stimulated synthesis of active NPs [17,18] for a broad
range of applications at the length scales that biopolymer
chains perform biological functions.

Here we consider an alternative scenario in which active
nonequilibrium forces between the NP and polymer network
drive NP transport, a stochastic variation on active magnetic
microbead rheology. In active microbead rheology, an atomic
force microscope tip imposes a force direction and amplitude
on the microbead [19,20]. Active NPs consume fuel in the
system (via either chemical reactions [21–23], light-induced
temperature gradients [24,25], or strong repulsive interac-
tions with the polymer network [20]) and convert that energy
into locally ballistic increments an order of magnitude larger
than increments due to thermal fluctuations of the surround-
ing polymers. Such strong NP-polymer activity amplifies an
otherwise equilibrium NP increment process that underlies
passive microrheology (for micron-scale NPs) or nanorhe-
ology (for nanometer-scale NPs). This strong NP-polymer
activity creates a stochastic analog of active microrheology
or nanorheology. With each NP increment, the surrounding
polymer network is driven out of equilibrium and the nonlin-
ear response of the network imparts a direction to the force
which again is amplified by NP fuel consumption. Were the
network a simple viscous fluid, this NP behavior would simply
reduce to Brownian motion with an amplified temperature
[26]; in that case, all NP transport statistics are known and
the medium itself never stores any stress, so all increments
are uncorrelated. However, in a polymer network, the nonlin-
ear viscous and elastic response of the network couples with
the amplified deformation and stress generated by the NP in
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every stochastic increment. Below we model this stochastic
analog of active NP rheology to explore the mobilities of NPs
with diameters equal to three monomers, comparable to the
averaged pore size of the cross-linked concentrated polymer
network, for polymer networks that are relatively stiff and
gel-like. We show how the stiffness of the polymer network
strongly affects the diffusive scaling of active stochastic NPs,
which turn increasingly superdiffusive above an active force
threshold, reducing the NP passage times through the network
[27].

II. MODEL AND METHODS

A. Simulation model of polymer chains and NPs

In the simulations, a polymer chain is composed of
Lennard-Jones (LJ) spheres representing Kuhn monomers that
are connected by anharmonic springs governed by a finitely
extensible nonlinear elastic (FENE) potential [28], defined as

UFENE(r) = −0.5κR2
0 ln

[
1 −

(
r

R0

)2]

+ 4ε0

[(
σm

r

)12

−
(
σm

r

)6]
+ ε0, r < R0, (1)

where κ = 30ε0/σ 2
m is the spring constant, ε0 is the energy

unit, and R0 = 1.5σm is the maximum pair length of bonded
neighboring monomers to prohibit a break of polymer chains.
By adopting the FENE bond potential, the averaged bond
length is set to 〈lbond〉 = 0.97σ0, where σ0 is the length unit of
the modeling system. The monomer diameter is σM/σ0 = 1
and NPs are larger with σNP/σ0 = 3. Note that the NP di-
ameter is chosen to be larger than one monomer length and
comparable to the mesh size of the studied polymer network
as described below. Energies are expressed in units of kT , with
the Boltzmann constant k = 1, and the temperature is fixed
at T/T0 = 1, with T0 being the temperature unit. Interparticle
pair interactions are LJ potentials, truncated at their minima
rc = 1.12σi j to approximate an implicit athermal solvent [29].
The monomer-monomer, NP-monomer, and NP-NP interac-
tions are modeled as truncated and shifted LJ potentials
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, r < rc, (2)

where σi j = σ0, σi j = σM + σNP, and σi j = σNP stand for the
mean size of two particles (ith and jth) involved in the
monomer-monomer, NP-NP, and NP-monomer pair interac-
tions, respectively. The parameter rc = 21/6σi j is the cutoff
distance. It is easily verified that with this cutoff implemented,
the attractive contribution to this potential is eliminated, i.e.,
ULJ(r) = 0 when r > rc. The stiffness of polymer chains is
governed by defining the bending potential between every two
neighboring bonds

Ubend(θ ) = εb(θ − π )2, (3)

where θ is the angle between the two bonds. A larger bending
potential coefficient εb corresponds to stiffer polymers. Via
computing the bond-bond correlation function, it is confirmed

in our simulations that the persistence length lp is linearly
proportional to εb, when εb/kT > 2, for the adopted chain
model. In addition, lp = 2σ0, 4σ0, and 8σ0 when εb/kT = 2,
4, and 8, respectively.

The equation of motion for the displacement of a passive
monomer with index i is given by the Langevin equation
[30,31]

mi
d2ri
dt2

= −∇Ui − ζ
dri
dt

+ Fi, (4)

where mi = m0 for monomers, ri is the position of the ith
monomer, and Ui is the total conservative potential energy
acting on the ith monomer. The quantity Fi is a random exter-
nal force without drift and a second moment proportional to
the temperature and the friction constant ζ . For the active NP,
there is an additional force pointing into the current direction
of its velocity vector,

mNP
d2rNP
dt2

= −∇UNP − ζ
drNP
dt

+ FNP + fspev (t ), (5)

where ev (t ) is the unit vector of the active NP’s instantaneous
velocity at time t , and fsp gives the value of self-propelling
force. In our simulations, the temperature is fixed at T = 1, a
time step �t = 0.005τ0, and the friction coefficient ζ = τ−1

0
is implemented. Note that hydrodynamic interactions are not
considered in the present study. The masses of the parti-
cles are set to mM/m0 = 1 (monomers) and mNP/m0 = 27
(nanoparticle), with m0 the mass unit. The temperature is then
normalized to that energy unit using a Boltzmann constant
kB = 1 with the temperature unit T0 = ε0/kB. The time unit
is given by τ0 = σ0(m0/ε0)1/2. The force unit is given by
f0 = ε0/σ0 and all forces given in the paper are multiples of
this unit.

B. Network creation and NP activation

All simulations start from a phase in which polymer chains
are distributed homogeneously in a cubic box with periodic
boundary conditions in all directions and the initial bulk
number density of monomers is nm = Nm/V = 0.051, where
V and Nm are the system volume and the total number of
monomers included in the system, respectively. The molecular
weights of polymer chains are fixed at N = 512, with the
corresponding critical number density of monomers cross-
ing over from the dilute to the semidilute regime being at
n∗
m = 3

4πN0.5 ≈ 0.010. Individual polymer chain coils are in-
terpenetrated into each other in the semidilute regime. To
form a regular network, each chain contains 32 cross-linking
monomers regularly distributed along the chain, i.e., one
cross-linking monomer per subchain of contour length lcrsub =
512
32 = 16. These cross-linking monomers serve as binding
sites to create permanent intrachain or interchain cross-links
(CLs). This approach leads to networks with pore sizes that
are sufficiently large to grant passage of the NPs. A NP is
initially planted and frozen at the center of the simulation box.
A dynamical monitoring of CLs is performed continuously
and automatically as the simulation time evolves, with every
potential binding site in polymer chains being capable of par-
ticipating in just one CL. The number of CLsNCL converges to
a plateau value when the cross-linking process is completed,
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FIG. 1. Modeled system of NPs in a polymer network, with a
large red particle, dark blue particles, and light green particles rep-
resenting the NP, permanent CLs, and non-cross-linked monomers,
respectively. In addition, a single polymer chain is colored in dark
olive in order to display the configuration taken by individual poly-
mer chains. All components are shown in the left panel, while
the non-cross-linked monomers are transparent in the right panel.
Here the bending energy between neighboring bonds, governing the
stiffness of polymer chains, is at εb/kT = 8 and the bulk number
densities of monomers and permanent CLs are given by nm = 0.80
and nCL = 0.026, respectively.

i.e., close to all binding sites have reacted. We then halt the
cross-linking kinetics and compress the simulation box size
to obtain a concentrated polymer phase with homogeneous
densities of monomers and CLs as shown in Fig. 1.

In simulations, each system is relaxed by a simulation run
of the order of 103τsub, where τsub ∼ lcr2sub is the configurational
relaxation time of polymer subchains with contour length lcrsub,
i.e., the length of polymer strands between neighboring cross-
links. The τsub value, defining the time for the system to reach
equilibrium, is determined from calculating the stress relax-
ation modulus G(t ) of an un-cross-linked polymer melt at the
same concentration nm = 0.80. Subsequently, a much longer
run (of the order of 106τsub) of data acquisition is performed,
during which a trajectory of thousands of conformations is
stored for the data analysis of the statistical properties of the
active NP and the viscoelastic behavior induced by the active
NP on the polymer networks. Starting from the equilibrium
condition obtained above, we activate the NP and introduce
a self-propelling force acting along its velocity (or last incre-
ment) vector, as defined by Eq. (5). In a set of simulations
we study the variations in NP mobility due to polymer chain
stiffness and as a function of the amplitude of the NP’s self-
propelling force.

III. RESULTS AND DISCUSSION

A. Enhanced motion of active NPs

It is well known that the motion of a NP, immersed in a
polymer melt or a concentrated polymer network, is coupled
to the dynamic structural relaxation of surrounding polymer
subchains [32–34]. A necessary condition for the NP to pass
through the permanent network is that the subchain contour
length between neighboring cross-links, lcrsub, exceeds the di-
ameter of the NP, σNP. The critical timescale τ cr

re for a passive
NP to escape from being trapped by polymer chains is of
the same order of magnitude as the relaxation time τsub of
subchains with end-to-end distance equal to the NP diameter.
In addition to the permanent cross-links, individual polymer
strands among cross-links may impose topological obstacles

on each other, e.g. entanglements [35]. The presence of entan-
glements delays the structural relaxation of polymer chains
on length scales above the entanglement length lent, which is
defined as the averaged contour length of polymer subchains
between neighboring entanglements. Note that the number of
entanglements increases and thus the corresponding entangle-
ment length lent decreases with increasing persistence length
(stiffness) of polymer chains [36], which possibly results in
the smaller size of entanglement length compared to the NP
diameter, as confirmed below by performing Rouse mode
analysis to detect the relaxation spectrum of polymer net-
works at εb/kT = 4 and 8. Therefore, increasing the stiffness
of polymer chains has a scenario of effectively immobilizing
the passive NP due to chain entanglements when lent < σNP <

lcrsub, though the separations between permanent cross-links are
large enough for the NP to escape. Figure 2(a) shows such
an example in which the trajectories of a passive NP inside a
stiff polymer network remain confined within a small volume
of the same order as the NP size. In such a situation, an
active force is required for the NP to escape confinement.
Furthermore, the corresponding self-propelling force fsp of
the active NP has to exceed the trapping force ftrap induced
by the surrounding polymer segments in order to overcome
the stiff network barrier constraint.

When a self-propelling force acts on the NP, as shown
in Fig. 2(b), the position increments exhibit stochastic fluc-
tuations, superimposed on a persistent ballistic motion over
distances larger than the NP diameter. This allows the NP to
overcome the trapping barrier induced by the stiff polymer
chains on the same timescales. On longer timescales, the
position increments of the self-propelling NP reveal a zigzag
pattern, reflecting the elastic feedback induced by every incre-
ment as the stiff polymer network is driven out of equilibrium
by the active NP, after which the stored elastic stress pushes
back in the direction opposite to the last increment. Thus
one observes a correlation in the increments, similar to the
mechanisms behind passive microbead rheology in polymer
networks and solutions, but now with larger increments due
to both the strong NP propulsion force and the stiff elastic
response of the network. Note further that the amplitudes
of the NP increments diminish as the network stiffness is
weakened, as visible when comparing Figs. 2(b) and 2(c). The
self-propelling NP covers longer distances in the stiff polymer
network over the same time interval.

To quantify the NP mobility, the averaged mean square
displacement (MSD) of a self-propelled NP in a stiff polymer
network with varying self-propelling forces,

g(t ) = 〈[r(t + t0) − r(t0)]
2〉, (6)

is computed and presented in Fig. 3(a). With constant stiffness
of polymer chains and varying propulsion force fsp, the NP
ballistic regime [defined by the short-term superdiffusive scal-
ing g(t ) ∼ tγ with γ ≈ 2] persists over longer lag times before
crossing over into the subdiffusive regime [g(t ) ∼ tγ with
γ < 1]. The MSD g(t ) versus fsp plot confirms that the self-
propelling force has to exceed a critical value, the trapping
force, in order to “unlock” a trapped NP on those timescales
in a stiff polymer network: There is almost no propagation
(γ ≈ 0) in the subdiffusive regime, at which (γ ≈ 0) and
g(t ) ≈ σ 2

0 for lag times of t < tNPrel , when fsp/ f0 � 40. Note
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FIG. 2. Examples of NP trajectories within identical time intervals. (a) Passive NP inside a stiff polymer network with a constant bending
energy between neighboring bonds of εb/kT = 8. (b) Self-propelled NP inside a stiff polymer network with fsp/ f0 = 100 and εb/kT = 8.
Note the different scales of the axes and the considerably longer position increments of the NP. (c) Self-propelled NP inside a flexible polymer
network with driving force fsp/ f0 = 100 and bending energy constant εb/kT = 1. The monomer density nm = 0.80 and the CL density nCL =
0.026.

that tNPrel ≈ 104τ0 is related to the structural relaxation time of
polymer subchains of size comparable to the NP diameter.
With large driving forces fsp/ f0 � 50, the crossover of the
NP motion from subdiffusion with γ < 1 to linear diffusion
with γ = 1 occurs at a lag time shorter than tNPrel , indicating
that the NP has already pushed through the barrier before the
structural relaxation of the polymer subchains has occurred.
Therefore, there exists a threshold of the self-propelling force,
specifically between fsp/ f0 = 40 and 50 at chain stiffness
εb/kT = 8, above which the NP motion decouples from the
dynamical structural relaxation of polymer subchains. Fur-
thermore, due to the stochasticity of the active increment
process, the ballistic motion is of finite duration: Even at
the highest driving force fsp/ f0 = 100, as shown in Fig. 3,
the NP leaves its ballistic propagation regime and crosses

FIG. 3. (a) Averaged mean square displacements of a NP dif-
fusing in a stiff polymer network with εb/kT = 8, at varying
self-propelling forces of the NP. (b) Power exponent, indicating
subdiffusion as shown by the black straight dashed lines in the
intermediate time regime of (a), plotted against the self-propelling
force. Here nm = 0.80 and nCL = 0.026.

over to a subdiffusive regime. The timescale at which the
constraining effect of the stiff network disturbs the ballistic
NP motion can be shortened, by softening the network chains,
as shown in Fig. 4(a). Hence, the duration of the ballistic
motion (persistence time) of the NP is an increasing function
of network stiffness. This effect is opposite to the results for
passive NPs where mobility is a monotonically decreasing
function of network stiffness [see Fig. 4(b)]. Thus there is a

FIG. 4. Mean square displacements of (a) an active NP with
fNP/ f0 = 100 and (b) a passive NP with fNP/ f0 = 0, diffusing in
networks of various degrees of stiffness. The insets display the power
exponents as shown by the maroon straight dashed lines in the short-
time regime, which is diffusive (γ = 1) for passive particles and
nearly ballistic (γ ≈ 2) for driven particles. The monomer density
nm = 0.80 and the CL density nCL = 0.026.
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FIG. 5. Averaged autocorrelation functions of the Rouse modes
of network chains on different length scales and at various degrees
of chain stiffness. Here N = 512 is the length of individual polymer
chains, and the minimum mesh size of polymer network, i.e., the
polymer subchain contour length between two neighboring cross-
links, is at lcrsub = N

P = 16, nm = 0.80, and nCL = 0.026.

clear cooperative effect, a positive feedback, between stiffness
of the network and the NP self-propelling force.

B. Interaction of active NPs with polymer networks

To correlate the structural relaxation spectrum of polymer
chains to the trapping effect of polymer subchains on the
NP, we perform a Rouse mode analysis for the relaxation
dynamics of polymer chains in the network [37]. The pth
Rouse mode is computed as

X p(t ) =
(
2

N

)1/2 N∑
i=1

ri cos
[
pπ

N

(
i − 1

2

)]
. (7)

The averaged autocorrelation functions 〈X p(t ) · X p(0)〉/〈X 2
p〉

are presented in Fig. 5. In the Rouse mode analysis, the
pth mode corresponds to the structural relaxation of a sub-
chain containing (N − 1)/pmonomers, while the p = 0 mode
corresponds to the center of mass of the entire chain. In
the case of a polymer network consisting of flexible chains,
i.e., εb/kT = 1 [Fig. 5(a)], the conformations of subunits of
contour lengths shorter than the cross-linking length lcr = 16
are relaxing. On length scales beyond lcr, however, such a
relaxation is hindered by the presence of the (permanent)
cross-links of the polymer network. These networks are un-
able to trap a NP, as long as its size remains smaller than the
mesh size lcr, since the structural relaxation of polymer sub-
chains occasionally opens a gate to release the NP. Increasing
the chain stiffness, we find the minimum unrelaxed structure
of polymer subchains shifts to shorter length scales due to the
presence of entanglements of polymer strands among cross-
links. In the case of εb/kT = 8, the polymer subchains relax
only on length scales comparable to or smaller than the NP
size, while their structure is physically frozen on relatively
larger length scales; the polymer chains thereby have the
ability to arrest the motion of a passive NP.

FIG. 6. Viscoelastic property of polymer networks at various
degrees of chain stiffness: (a) stress relaxation moduli of the poly-
mer network and (b) corresponding storage and loss moduli. Here
nm = 0.80 and nCL = 0.026.

The trapping effect that constrains a NP inside a stiff poly-
mer network is a result of the NP’s inability to elastically
deform the surrounding polymer chains that form its cage
for a sufficiently long time that its entropic fluctuations find
an opening. In order to investigate the mechanism that is
responsible for the trapping effect of polymer subchains on
the NP, we compute both the elastic and viscous moduli of the
network. In the simulations, the pressure tensor is computed
as a six-element vector. The six components of the vector are
ordered σxx, σyy, σzz, σxy, σxz, and σyz. The equation for the
I and J components (where I and J = x, y, z) is given by a
combination of the kinetic energy tensor and the virial tensor

σIJ =
∑NB

k mkvkIvkJ

V
+

∑NB
k rkI fkJ
V

, (8)

where NB gives the number of all particles including NPs and
monomers contained in the system and V is the system vol-
ume. Here rKI and fkI are the Ith elements of the position and
force vector of the kth particle, respectively. The virial term,
which includes energy contributions except for the kinetic
energy as given by the first term, is the sum of contributions
of pair and bond interactions to the force on individual beads.
The computed tensors for the stress relaxation modulus are
stored after the system converges to equilibrium.We first com-
pute the stress relaxation modulus G(t ). There is a standard
protocol of relating G(t ) to the stress autocorrelation function
S (t ) of the off-diagonal elements of the system’s stress tensor,
based on the Green-Kubo relation [36,38,39]

G(t ) = V

3kBT
[〈σxy(t )σxy(0)〉 + 〈σyz(t )σyz(0)〉

+ 〈σxz(t )σxz(0)〉], (9)

with σxy, σyz, and σxz the off-diagonal elements of the system
tensor. As revealed in Fig. 6, the plateau modulus at large
lag times in G(t ) for relatively flexible polymer chains, with
εb/kT = 1 and 2, arises due to the unrelaxed cross-linking
structure of the permanent network. By contrast, the unrelaxed
structure of the network due to dense entanglements of stiff
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polymer chains, with εb/kT = 4 and 8, results in plateaus at
smaller timescales. We then compute the complex modulus
G∗(ω), the Fourier transform of the stress relaxation function
G(t ), with the storage (elastic) modulus G′(ω) and loss (vis-
cous) modulus G′′(ω) given by the real and imaginary parts

G∗(ω) = G′(ω) + iG′′(ω), (10)

where ω = 2π/t is the angular frequency. The results of

G′(ω) = Gp + ω

∫ ∞

0
[G(t ) − Gp] sin(ωt )dt,

G′′(ω) = ω

∫ ∞

0
[G(t ) − Gp] cos(ωt )dt,

(11)

where Gp is the plateau modulus, are shown in Fig. 6(b). The
figures reveal the polymer network of flexible chains: at high
frequencies, Rouse-like characteristics of a transition state
between sol and gel phases, withG′ ≈ G′′, and at low frequen-
cies, elasticity-dominated gel characteristics, with G′ 	 G′′.
However, the polymer network is elasticity dominated and
gel-like in the full range of frequencies for sufficiently stiff
polymer chains, εb/kT = 4 or 8.

The strong elastic gel characteristics of stiffer networks
imply that the self-propelling NP forcing is primarily resisted
by the elastic restoring force of the deformed polymer strands,
more so than the viscous drag force of the network. Further-
more, in the “wake” of the NP increment, there is a propensity
for the stiff chains to tend to align with the direction of previ-
ous increments, while permanent cross-links are compressed
along the leading edge of the NP increment and build up an
elastic restoring force [40]. This nonequilibrium deformation
induces a bias for the NP to recoil, once the stored elastic
network stress exceeds the NP self-propulsion force, prefer-
entially along the path of those previous increments. Over
whatever timescale it takes for this anisotropic deformation
and stress to accumulate and exceed the NP propulsion force,
the NP recoils, biased by the anisotropy in the network align-
ment and stress. To visualize the mobility patterns of a passive
or active NP in stiff versus flexible polymer networks, we plot
the NP increment time series along each of the x, y, and z axes,
as shown in Fig. 7(a). There is essentially zero mobility of a
passive NP in a sufficiently stiff polymer network, whereas
an active NP is visibly mobile for a high self-propelling force
fsp/ f0 = 100. Furthermore, the active NP reverses direction
on timescales of several increments, reflecting the buildup of
an elastic restoring force from the nonequilibrium deforma-
tion of the stiff network that exceeds the NP’s self-propelling
force, persisting until the stored stress relaxes. As sketched in
Figs. 7(b) and 7(c), the elastic rebound phenomenon observed
in a stiff polymer network withG′ 	 G′′ is absent for the same
self-propelled NP in a flexible polymer network, where the
elastic and viscous moduli are comparable, G′ ≈ G′′.

C. Tubelike channel

Contrary to the motion of a passive particle that is driven by
thermal fluctuations, active NPs with a sufficiently large self-
propelling force fsp > ftrap deform the surrounding polymer
subchains to align in its wake with the direction of its previous
increment, which is the direction of the self-propelling force.

FIG. 7. Mobility patterns of active and passive NPs. (a) One-
dimensional trajectories of passive ( fsp/ f0 = 0) and active ( fsp/ f0 =
100) NP positions in flexible (εb/kT = 1) and stiff (εb/kT = 8)
polymer networks. The dashed gray lines in the middle panel are
plotted to show U-turn moments of active NPs diffusing in a stiff
polymer network. Here nm = 0.80 and nCL = 0.026. (b) Sketch of
an active NP randomly diffusing in a viscoelastic network consisting
of flexible polymer chains. (c) Sketch of an active NP diffusing and
rebounding in an elastic gel-like network consisting of stiff polymer
chains.

This actions of the network and the NP occur on a timescale
shorter than the structural relaxation time of the subchains
and thus the NP motion is uncoupled from the structural
relaxation. During this time, the network’s elastic and viscous
moduli resist the NP, while the self-propelled NP is driving
the network out of equilibrium as it deforms chains. In this
process, stiffer networks store more deformational stress and
are more prone to induce chain alignment along the path of the
NP, while energy is lost due to the viscous drag on the NP. In
flexible polymer networks, polymer strands surrounding the
NP are easily displaced by the advancing NP and the viscous
drag force is the dominant resistance to the NP motion. As a
result, the NP trajectory resembles a three-dimensional diffu-
sion due to random collisions with surrounding monomers.
However, inside a stiff polymer network, fluctuations per-
pendicular to the increments of the NP are suppressed by
the bending resistance of the polymer strands. Thus, once a
threshold driving force is passed, the NP-network interaction
establishes an effective local tubelike channel for the NP mo-
tion with its instantaneous moving direction along the path of
the previous few increments. The self-propelling NP’s motion
in the tubelike channel is similar to the directional motion of
self-propelled stiff filaments that are confined to move along
the path of their contour lengths in crowded environments
[41].

To explore the existence of a tubelike channel for the su-
perdiffusive motion of a self-propelling NP in stiff polymer
networks, the time-dependent averaged autocorrelation func-
tions of the NP’s velocity and position vectors are computed
as

gvel(t ) = 〈|ex(t )ex(0) + ey(t )ey(0) + ez(t )ez(0)|〉,
gcor (t ) = 〈|ux(t )ux(0) + uy(t )uy(0) + uz(t )uz(0)|〉,

(12)

with (ex, ey, ez ) and (ux, uy, uz ) the unit vectors of the NP
velocity and position increment, respectively. Note that our
aim here is to detect the dimensionality of the NP’s motion,
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FIG. 8. Averaged autocorrelation functions of the unit vectors of
(a) velocity and (b) position of an active (inactive) NP diffusing in a
flexible (stiff) polymer network. Here nm = 0.80 and nCL = 0.026.

without distinguishing between opposite directions of the vec-
tors in the correlation computations. That is why absolute
values are used in the above correlation functions. With the
absolute value being considered, the dot product of two unit
vectors remains invariant if we replace the angle between the
two vectors, θ , by π − θ . Theoretically, the autocorrelation
function should converge to 0.5 at very large timescales when
the memory is lost completely. The corresponding results
are shown in Fig. 8: The autocorrelation functions of driven
NPs inside stiff networks decay significantly slower when
compared to driven NPs in flexible networks or to passive
NPs. This implies that the superdiffusive motion of the NP
persists longer in sufficiently stiff networks, supporting the
tubelike network deformation induced by sufficiently strong
self-propelling force of the NP. Note that the trajectory of
a self-propelling NP in a stiff polymer network after every
rebouncing does not match completely its moving route prior
to the turning point, since the elastic stretching interaction
between the NP and polymer chains does not perfectly align
with the NP velocity due to the NP’s viscous interaction
with polymer network; therefore, the NP’s one-dimensional
to and fro movement resembles a zigzag. In flexible networks,
the nonequilibrium deformations induced by active NP incre-
ments quickly decorrelate as those network length scales relax
rapidly.

IV. CONCLUSION

In summary, our investigation shows that the transport
efficiency of an active particle inside a dense polymer net-

work increases with the chain stiffness. This counterintuitive
behavior is ascribed to a one-dimensional ballistic motion
through a tubelike channel, confined by the surrounding poly-
mer strands that remain unrelaxed on the timescale the active
particle pushes through. Contrary to that, inside a flexible net-
work, the same active particle undergoes a three-dimensional
Brownian motion that reduces its propagation efficiency. At
a given self-propelling force, the persistence length of the
NP’s ballistic motion increases with the chain stiffness of the
polymer network. Our Rouse mode analysis and the stress re-
laxation moduli confirm that a stiffening of the polymer chains
makes the polymer network rather gel-like with stronger
contribution of elasticity. For a NP in such a network, the
tension it exerts onto the confining polymer strands induces
an elasticity-dominated resistance which may eventually re-
verse the direction of the particle’s motion, while at the same
time any propagation into directions perpendicular to the self-
propelling force is hindered by the resistance from unrelaxed
polymer subchains on length scales comparable to or shorter
than the NP size, resulting in the NP’s one-dimensional to
and fro motion pattern. Inside a flexible polymer network,
however, the particle collides randomly with monomers, and
in the absence of elastic contributions, the effective forces
acting on the particle are viscous and dissipative, causing the
NP to exhibit an effective three-dimensional isotropic Brow-
nian motion. The investigation of autocorrelation functions
of the active walker’s position and velocity vectors confirms
the increased persistence of ballistic motion inside stiff net-
works. While the fast decay of these correlation functions of
a self-propelled particle resembles that of a passive Brownian
walker in flexible networks, these correlation functions dis-
play a slower decay when the active particle propagates in stiff
networks. Our study has shed light on the correlation between
the viscous and elastic properties of polymer networks and
the propagation of self-propelled particles therein, providing
theoretical and computational insights into a goal-driven de-
sign of synthetic nanomotors in crowded environments. Given
that the rigidity of polymer chains can be modified by simply
tuning temperature and/or water content, this study offers di-
rectives for a cellular level drug delivery in biological systems
[42–47].

ACKNOWLEDGMENTS

This research was supported in part by the National
Science Foundation of China through Grants No. NSFC-
11974291 and No. NSFC-11974292. This work was also
partly supported by the Fundamental Research Funds for the
Central Universities (Grant No. 20720160123) and the Nat-
ural Science Foundation of Fujian Province of China (Grant
No. 2020J01009). Additional support was provided by the
U.S. National Science Foundation Grants No. DMS-1664645,
No. DMS-1816630, and No. OAC-1931516.

[1] B. C. Tang, M. Dawson, S. K. Lai, Y.-Y. Wang, J. S.
Suk, M. Yang, P. Zeitlin, M. P. Boyle, J. Fu, and
J. Hanes, Proc. Natl. Acad. Sci. U.S.A. 106, 19268
(2009).

[2] O. Lieleg and K. Ribbeck, Trends Cell Biol. 21, 543 (2011).
[3] C. S. Schneider, Q. Xu, N. J. Boylan, J. Chisholm, B. C.

Tang, B. S. Schuster, A. Henning, L. M. Ensign, E. Lee, P.
Adstamongkonkul et al., Sci. Adv. 3, e1601556 (2017).

052501-7

https://doi.org/10.1073/pnas.0905998106
https://doi.org/10.1016/j.tcb.2011.06.002
https://doi.org/10.1126/sciadv.1601556


CAO, MERLITZ, WU, AND FOREST PHYSICAL REVIEW E 103, 052501 (2021)

[4] R. Bansil and B. S. Turner, Adv. Drug Delivery Rev. 124, 3
(2018).

[5] L. M. Ensign, C. Schneider, J. S. Suk, R. Cone, and J. Hanes,
Adv. Mater. 24, 3887 (2012).

[6] J. M. Newby, I. Seim, M. Lysy, Y. Ling, J. Huckaby, S. K. Lai,
and M. G. Forest, Adv. Drug Delivery Rev. 124, 64 (2018).

[7] E. Fernández Fernández, B. Santos-Carballal, C. De Santi, J. M.
Ramsey, R. MacLoughlin, S.-A. Cryan, and C. M. Greene,
Materials 11, 122 (2018).

[8] C. P. Goodrich, M. P. Brenner, and K. Ribbeck, Nat. Commun.
9, 4348 (2018).

[9] I. Santiago, Nano Today 19, 11 (2018).
[10] F. Xu, J. M. Newby, J. L. Schiller, H. A. Schroeder, T. Wessler,

A. Chen, M. G. Forest, and S. K. Lai, ACS Infect. Dis. 5, 1570
(2019).

[11] J. Leal, X. Peng, X. Liu, D. Arasappan, D. C. Wylie, S. H.
Schwartz, J. J. Fullmer, B. C. McWilliams, H. D. Smyth, and
D. Ghosh, J. Control. Release 332, 457 (2020).

[12] J. M. Newby, A. M. Schaefer, P. T. Lee, M. G. Forest, and S. K.
Lai, Proc. Natl. Acad. Sci. U.S.A. 115, 9026 (2018).

[13] J. R. Baylis, J. H. Yeon, M. H. Thomson, A. Kazerooni, X.
Wang, A. E. S. John, E. B. Lim, D. Chien, A. Lee, J. Q. Zhang
et al., Sci. Adv. 1, e1500379 (2015).

[14] A. Somasundar, S. Ghosh, F. Mohajerani, L. N. Massenburg, T.
Yang, P. S. Cremer, D. Velegol, and A. Sen, Nat. Nanotechnol.
14, 1129 (2019).

[15] C. Hult, D. Adalsteinsson, P. A. Vasquez, J. Lawrimore, M.
Bennett, A. York, D. Cook, E. Yeh, M. G. Forest, and K. Bloom,
Nucleic Acids Res. 45, 11159 (2017).

[16] Y. He, J. Lawrimore, D. Cook, E. E. Van Gorder, S. C.
De Larimat, D. Adalsteinsson, M. G. Forest, and K. Bloom,
Nucleic Acids Res. 48, 11284 (2020).

[17] D. Yamamoto and A. Shioi, KONA Powder Part. J. 32, 2
(2015).

[18] C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G.
Volpe, and G. Volpe, Rev. Mod. Phys. 88, 045006 (2016).

[19] A. A. Solovev, W. Xi, D. H. Gracias, S. M. Harazim, C. Deneke,
S. Sanchez, and O. G. Schmidt, ACS Nano 6, 1751 (2012).

[20] M. Guix, S. M. Weiz, O. G. Schmidt, and M. Medina-Sánchez,
Part. Part. Syst. Char. 35, 1700382 (2018).

[21] J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R.
Vafabakhsh, and R. Golestanian, Phys. Rev. Lett. 99, 048102
(2007).

[22] W. Gao, A. Pei, R. Dong, and J. Wang, J. Am. Chem. Soc. 136,
2276 (2014).

[23] J. Katuri, X. Ma, M. M. Stanton, and S. Sánchez, Acc. Chem.
Res. 50, 2 (2017).

[24] J. Palacci, S. Sacanna, S.-H. Kim, G.-R. Yi, D. Pine, and P.
Chaikin, Philos. Trans. R. Soc. A 372, 20130372 (2014).

[25] C. Lozano, B. Ten Hagen, H. Löwen, and C. Bechinger, Nat.
Commun. 7, 12828 (2016).

[26] M. E. Cates, Rep. Prog. Phys. 75, 042601 (2012).
[27] C. R. Esther, M. S. Muhlebach, C. Ehre, D. B. Hill, M. C.

Wolfgang, M. Kesimer, K. A. Ramsey, M. R. Markovetz, I. C.
Garbarine, M. G. Forest et al., Sci. Transl. Med. 11, eaav3488
(2019).

[28] K. Kremer and G. S. Grest, J. Chem. Phys. 92, 5057 (1990).
[29] J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys.

54, 5237 (1971).
[30] S. Plimpton, J. Comput. Phys. 117, 1 (1995).
[31] B. Dünweg and W. Paul, Int. J. Mod. Phys. C 2, 817 (1991).
[32] C. A. Grabowski and A. Mukhopadhyay, Macromolecules 47,

7238 (2014).
[33] J. T. Kalathi, U. Yamamoto, K. S. Schweizer, G. S. Grest, and

S. K. Kumar, Phys. Rev. Lett. 112, 108301 (2014).
[34] X.-Z. Cao, H. Merlitz, and C.-X. Wu, J. Phys. Chem. Lett. 8,

2629 (2017).
[35] M. Rubinstein and R. H. Colby, Polymer Physics (Oxford

University Press, Oxford, 2003).
[36] W. B. Lee and K. Kremer, Macromolecules 42, 6270 (2009).
[37] A. Kopf, B. Dünweg, and W. Paul, J. Chem. Phys. 107, 6945

(1997).
[38] A. E. Likhtman, S. K. Sukumaran, and J. Ramirez,

Macromolecules 40, 6748 (2007).
[39] N. Iwaoka, K. Hagita, and H. Takano, J. Phys. Soc. Jpn. 84,

044801 (2015).
[40] P. Chen, Z. Xu, G. Zhu, X. Dai, and L.-T. Yan, Phys. Rev. Lett.

124, 198102 (2020).
[41] S. Mandal, C. Kurzthaler, T. Franosch, and H. Löwen, Phys.

Rev. Lett. 125, 138002 (2020).
[42] T. M. Allen and P. R. Cullis, Science 303, 1818 (2004).
[43] C. H. Lee, H. Kim, D. V. Harburg, G. Park, Y. Ma, T. Pan, J. S.

Kim, N. Y. Lee, B. H. Kim, K.-I. Jang et al., NPG Asia Mater.
7, e227 (2015).

[44] J. K. Patra, G. Das, L. F. Fraceto, E. V. R. Campos, M. del Pilar
Rodriguez-Torres, L. S. Acosta-Torres, L. A. Diaz-Torres, R.
Grillo, M. K. Swamy, S. Sharma et al., J. Nanobiotechnol. 16,
71 (2018).

[45] J. Y. Oh, H. S. Kim, L. Palanikumar, E. M. Go, B. Jana, S. A.
Park, H. Y. Kim, K. Kim, J. K. Seo, S. K. Kwak, C. Kim, S.
Kang, and J.-H. Ryu, Nat. Commun. 9, 4548 (2018).

[46] M. Y. Saleh, N. Prajapati, M. A. DeCoster, and Y. Lvov, Front.
Bioeng. Biotechnol. 8, 451 (2020).

[47] W. Tai, P. Zhao, and X. Gao, Sci. Adv. 6, eabb0310 (2020).

052501-8

https://doi.org/10.1016/j.addr.2017.09.023
https://doi.org/10.1002/adma.201201800
https://doi.org/10.1016/j.addr.2017.12.002
https://doi.org/10.3390/ma11010122
https://doi.org/10.1038/s41467-018-06851-5
https://doi.org/10.1016/j.nantod.2018.01.001
https://doi.org/10.1021/acsinfecdis.9b00109
https://doi.org/10.1016/j.jconrel.2020.03.032
https://doi.org/10.1073/pnas.1804420115
https://doi.org/10.1126/sciadv.1500379
https://doi.org/10.1038/s41565-019-0578-8
https://doi.org/10.1093/nar/gkx741
https://doi.org/10.1093/nar/gkaa871
https://doi.org/10.14356/kona.2015005
https://doi.org/10.1103/RevModPhys.88.045006
https://doi.org/10.1021/nn204762w
https://doi.org/10.1002/ppsc.201700382
https://doi.org/10.1103/PhysRevLett.99.048102
https://doi.org/10.1021/ja413002e
https://doi.org/10.1021/acs.accounts.6b00386
https://doi.org/10.1098/rsta.2013.0372
https://doi.org/10.1038/ncomms12828
https://doi.org/10.1088/0034-4885/75/4/042601
https://doi.org/10.1126/scitranslmed.aav3488
https://doi.org/10.1063/1.458541
https://doi.org/10.1063/1.1674820
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1142/S0129183191001037
https://doi.org/10.1021/ma501670u
https://doi.org/10.1103/PhysRevLett.112.108301
https://doi.org/10.1021/acs.jpclett.7b01049
https://doi.org/10.1021/ma9008498
https://doi.org/10.1063/1.474934
https://doi.org/10.1021/ma070843b
https://doi.org/10.7566/JPSJ.84.044801
https://doi.org/10.1103/PhysRevLett.124.198102
https://doi.org/10.1103/PhysRevLett.125.138002
https://doi.org/10.1126/science.1095833
https://doi.org/10.1038/am.2015.114
https://doi.org/10.1186/s12951-018-0392-8
https://doi.org/10.1038/s41467-018-06979-4
https://doi.org/10.3389/fbioe.2020.00451
https://doi.org/10.1126/sciadv.abb0310

