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a b s t r a c t

We study the parallelization of a flexible order Cartesian treecode algorithm for evaluating electrostatic
potentials of charged particle systems in which N particles are located on the molecular surfaces of
biomolecules such as proteins. When the well-separated condition is satisfied, the treecode algorithm
uses a far-field Taylor expansion to compute O(N logN) particle–cluster interactions to replace the
O(N2) particle–particle interactions. The algorithm is implemented using the Message Passing Interface
(MPI) standard by creating identical tree structures in the memory of each task for concurrent
computing. We design a cyclic order scheme to uniformly distribute spatially-closed target particles to
all available tasks, which significantly improves parallel load balancing. We also investigate the parallel
efficiency subject to treecode parameters such as Taylor expansion order p, maximum particles per leaf
N0, and maximum acceptance criterion ✓ . This cyclically parallelized treecode can solve interactions
among up to tens of millions of particles. However, if the problem size exceeds the memory limit of
each task, a scalable domain decomposition (DD) parallelized treecode using an orthogonal recursive
bisection (ORB) tree can be used instead In addition to efficiently computing the N-body problem of
charged particles, our approach can potentially accelerate GMRES iterations for solving the boundary
integral Poisson–Boltzmann equation.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Pairwise interactions among N particles/objects are ubiqui-
tous. These interactions arise in various forms in applications as
varied as astrophysics [1], fluid dynamics [2], statistical machine
learning [3], electrodynamics [4,5], low-frequency scattering [6],
and linear elasticity [7]. Since brute-force computation of these
interactions has O(N2) complexity, which is prohibitively ex-
pensive when N is large, numerous fast algorithms have been
developed to reduce the computational cost. These algorithms
can be categorized into mesh-based methods [8], and tree-based
methods [1,4,5,7,9,10]. Tree-based methods have shown tremen-
dous promise in both efficiency and accuracy, and can be fur-
ther categorized into roughly the particle–cell method [1,9] and
the cell–cell method [4,10]. In tree-based methods, particles are
partitioned into a hierarchy of clusters having a tree structure,
allowing the pairwise particle–particle interactions to be calcu-
lated more efficiently. For example, in the treecode method [5,9]
particle–particle interactions are replaced by particle–cluster in-
teractions; these can then be evaluated using a far-field multi-
pole expansion when certain criteria are satisfied. Similarly, the

I The review of this paper was arranged by Prof. David W. Walker.⇤ Corresponding author.
E-mail address: wgeng@smu.edu (W. Geng).

fast multipole method (FMM) [4,7,11–15] is a more elaborate
procedure that evaluates cluster–cluster interactions using both
far-field and near-field expansions.

In principle, for a given order of expansion, the treecode algo-
rithm requires O(N logN) execution time and the FMM requires
O(N) execution time. However, the performance of an algorithm
is also determined by the size of pre-factor, memory usage, cod-
ing complexity, and parallelizability. In practice, several factors
can affect the observed performance, including the number of
levels in the tree, the homogeneity or sparseness of the particle
distribution, and the cache size of the computer. Optimizing these
methods and extending them to new applications are active areas
of research. Recently, increased attention has been given to the
parallelization of these fast algorithms in response to the rapid
development of multicore computers. These efforts have included
parallel algorithms for treecode [16–20] and FMM [11,13,14,
21–24], as well as their implementations on GPUs [25,26].

Recently, a flexible order Cartesian treecode algorithm [5,27]
was developed for efficiently computing N-body interactions
based on Barnes–Hut’s tree structure [9]. This treecode algorithm
has the following important features, which make the challenging
task of studying dynamics on large-scale problems possible.
(1) Treecode uses particle–cluster interactions to replace the
particle–particle interactions for far-field interactions, thereby

https://doi.org/10.1016/j.cpc.2020.107742
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Fig. 1. Details of treecode; (a) tree structure of particle clusters; (b) particle–cluster interaction between particle xi and cluster c = {yj}; yc is the cluster center, R
is the particle–cluster distance, and rc is the cluster radius.

significantly reducing the computational cost from O(N2) to O(N
logN).
(2) In treecode, the far-field expansion uses a Cartesian Taylor
expansion, with Taylor coefficients computed using effective re-
currence relations. The accuracy of the treecode approximation
may therefore be flexibly controlled by the order of this Taylor
expansion.
(3) Treecode has been applied widely to a variety of N-body
problems, including Vortex Sheet [28], Ewald Summation [29],
Radial Basis function [30], Plasma simulation [31], and Screened
Coulomb potential [5,32]. It has also been extended to solving
PDEs using a boundary integral formulation [33].
(4) The key advantages of the treecode algorithm compared with
the popular FMM [4] are its ease of implementation, memory
savings (an O(N) cost with a small pre-factor), and efficient par-
allelization.

In this paper, we focus on strategies to improve the par-
allel performance of this flexible order Cartesian treecode al-
gorithm [5,27]. Our main work is on developing a cyclically
parallelized treecode, which is easy to implement with high par-
allel efficiency. By building the entire tree in the memory of
each task, this cyclically parallelized treecode can rapidly com-
pute interactions among tens of millions of particles. However,
if the problem size exceeds the memory limit of each task, a
scalable domain decomposition (DD) parallelized treecode using
an orthogonal recursive bisection (ORB) tree can be used instead.
Although the approach applies to general N-body problems, we
particularly focus on the electrostatic interaction among charges
distributed on the molecular surface [34,35] of proteins, which
resembles the induced charges on each element when the molec-
ular surface is discretized by triangles. Fast computation of such
interactions forms a critical step toward efficient solution of the
boundary integral Poisson–Boltzmann equation, as well as to
efficient computation of the electrostatic potential at any spacial
location [33]. In addition to computing the induced surface charge
interactions on proteins, the current study has many other appli-
cations. For example, the parallelization strategy used here can be
conveniently extended to other kernels and structures. Further-
more, computation of Coulomb interactions for the more accurate
point multipole model (instead of the widely-used point partial
charge model) demand highly efficient algorithms for computing
N-body interactions [36,37].

The rest of this paper is organized as follows. In Section 2,
we provide our treecode algorithm and MPI-based paralleliza-
tion schemes, paying particular attention to the cyclic ordering
scheme for optimal load balancing. In Section 3, we provide nu-
merical results examining parallel performance on one selected
protein with different treecode parameters for both sequential
order and cyclic order, then on a series of proteins with var-
ious sizes and geometries. This paper ends with a section of
concluding remarks.

2. Methods

In this section, we first briefly go over the flexible order
Cartesian treecode algorithm (for further details see [5]), then
provide our scheme for MPI-based parallelization, followed by the
cyclic ordering scheme for improved load balance.

2.1. Treecode for electrostatic interactions

For a system of N particles located at xi with partial charges
qi, i = 1, . . . ,N , we denote the induced potential at xi by

Vi =
NX

j=1,j6=i

qi G(xi, xj), (1)

where G(x, y) is the Coulomb or the screened Coulomb potential,
defined respectively by

G0(x, y) =
1

4⇡ |x � y| (2)

and

G (x, y) =
e
�|x�y|

4⇡ |x � y| . (3)

Note we attempted to use CGI units here but supply the ad-
ditional 4⇡ coefficient in the denominator to represent elec-
trostatic potential generated from partial charges with units of
fundamental charges, as from most force field generators such as
CHARMM [38] and AMBER [39].

The cost of evaluating Vi for i = 1, . . . ,N by direct summation
is O(N2), which is prohibitively expensive when N is large. This
cost can be substantially reduced through the treecode algorithm,
without significant loss of accuracy.

2.1.1. Particle–cluster interaction

We assume that the particles have been partitioned into a
hierarchy of clusters as illustrated in Fig. 1(a). In the partition
process, each cluster (a rectangle in 2-D or a rectangular par-
allelepiped in 3-D) is divided into four (or eight for 3-D) sub-
clusters until the pre-determined treecode parameter N0, the
maximum number of particles per leaf (a cluster without sub-
clusters), is satisfied. Here we illustrate in 2-D using N0 = 3;
the more practical 3-D case is similar. Treecode evaluates the
potential in Eq. (1) as a sum of particle–cluster interactions,

Vi =
X

c

Vi,c, (4)

where

Vi,c =
X

yj2c
qj G(xi, yj) (5)
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is the interaction between a target particle xi and a cluster of
sources c = {yj}. A particle–cluster interaction is shown schemat-
ically in Fig. 1(b): the cluster center, yc , is the geometric center of
the rectangle; R is the particle–cluster distance; and the cluster
radius, rc , is the distance from yc to one of the vertices of the
rectangle.

The treecode algorithm has two options for computing a
particle–cluster interaction Vi,c . It can use direct summation as
in the definition Eq. (5), or Taylor approximation as in Eq. (9).
In practice, the Taylor approximation is used if the following
criterion is satisfied,
rc

R
 ✓ , (6)

where ✓ is a user-specified Maximum Acceptance Criterion (MAC)
parameter for controlling the error [9]. If the criterion is not
satisfied, the code examines the children or sub-clusters of cluster
c, or it performs direct summation if c is a leaf of the tree.

While this discussion has focused on the problem of evaluat-
ing the electrostatic potential Vi, similar considerations apply to
computations of the electric field Ei = �rVi, where treecode can
also be applied.

2.1.2. Cartesian Taylor expansion

If the particle xi and cluster c are well-separated, i.e. the MAC
(6) has been satisfied, then the terms in Eq. (5) can be expanded
in a Taylor series with respect to y about yc ,

G(xi, yj) =
1X

kkk=0

1
k!D

k
yG(xi, yc)(yj � yc)k, (7)

where Cartesian multi-index notation has been used with k =
(k1, k2, k3), ki 2 N, kkk = k1 + k2 + k3, k! = k1!k2!k3!, y =
(y1, y2, y3), yi 2 R, yk = y

k1
1 y

k2
2 y

k3
3 , and D

k
y = D

k1
y1D

k2
y2D

k3
y3 . The

Taylor expansion Eq. (7) converges for rc < R, and it plays the
same role in treecode as the far-field multipole expansion in
FMM. Substituting Eq. (7) into Eq. (5) yields

Vi,c =
X

yj2c
qj

1X

kkk=0

1
k!D

k
yG(xi, yc)(yj � yc)k

=
1X

kkk=0

1
k!D

k
yG(xi, yc)

X

yj2c
qj(yj � yc)k (8)

⇡
pX

kkk=0

a
k(xi, yc)mk

c
, (9)

where the Taylor series has been truncated at order p,

a
k(xi, yc) =

1
k!D

k
yG(xi, yc) (10)

is the kth Taylor coefficient of the potential, and

m
k
c
=
X

yj2c
qj(yj � yc)k (11)

is the kth moment of cluster c. Note that the Taylor coefficients
a
k(xi, yc) are independent of the sources yj in cluster c , and

the cluster moments m
k
c
are independent of the target xi. These

features may be exploited to reduce execution time.

2.1.3. Recurrence relation

Explicit formulas for the Taylor coefficients of the Coulomb
and screened Coulomb potentials in Eq. (10) would be cumber-
some to evaluate. However, we may leverage recurrence
relations to efficiently computate these coefficients to high

order [5,28]. To this end, we define an auxiliary function and its
Taylor coefficients,

 (x, y) = e
�|x�y|, b

k(x, y) = 1
k!D

k
y (x, y). (12)

With these functions, the recurrence relations are given by [5]

kkk|x � y|2ak � (2kkk � 1)
3X

i=1

(xi � yi)ak�ei + (kkk � 1)

⇥
3X

i=1

a
k�2ei

= 
⇣ 3X

i=1

(xi � yi)bk�ei �
3X

i=1

b
k�2ei

⌘
, (13)

kkkbk = 
⇣ 3X

i=1

(xi � yi)ak�ei �
3X

i=1

a
k�2ei

⌘
, (14)

for kkk � 2, where ei are the Cartesian basis vectors. Note
that although the equations for a

k and b
k are coupled, these can

be solved by explicit marching; the values of a
k, bk for kkk =

0, 1 are computed from the definitions, and then the recurrence
relations are applied to compute the coefficients for kkk �
2. The computational cost of these recurrence relations for the
screened Coulombic interaction/kernel is O(p3). We further note
that Tausch [7] has developed similar recurrence relations for
arbitrary Green’s functions of Cartesian based FMM having O(p4)
complexity.

2.2. MPI-based parallelization

In designing our MPI-based parallelization strategy, we point
out that treecode requires low O(N) memory usage, and our
focus is on computing interactions between induced charges on
triangular elements characterizing molecular surfaces. We there-
fore store an identical copy of the entire tree on each MPI task
(even for very large systems), permitting the application of a
simple replicated data algorithm. Assuming that each MPI task
has 24 GB of available memory, our parallel algorithm can handle
interactions between about 20 million charged particles, which is
more than needed in this biological scenario. However, we note
that for some three-dimensional applications, e.g. in astrophysics,
which have much larger numbers of particles, this approach of
tree replication will rapidly limit scalability. To this end, we can
alternatively apply a scalable domain decomposition (DD) par-
allelized treecode using an orthogonal recursive bisection (ORB)
tree [40]. Numerical results using both treecode parallelization
strategies are provided for comparison.

In treecode, we loop over target particles, and each parti-
cle can be treated as an independent interaction with the tree,
whose copies are available on every task. Hence our implemen-
tation divides the particle array into np segments (for the se-
quential scheme, see below) or groups (for the cyclic scheme,
see below) of size N/np, where np is the number of tasks, and
the segments/groups are processed concurrently. The pseudocode
is shown in Table 1. Communications are handled using the
MPI_Allreduce routine with the MPI_SUM reduction opera-
tion [41].

2.3. Optimal load balancing

The initial and intuitive method to assign target particles to
tasks is to use sequential ordering, in which the 1st task handles
the first N/np particles in a consecutive segment, the 2nd task
handles the next N/np particles, etc. The illustration of this job

3
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Table 1
Pseudocode for MPI-based parallel treecode for electrostatic potential using replicated data.

1 On the main task:
2 Read protein geometry data (atom locations)
3 Generate triangulation, and assign particles at triangle centroids with unit charges
4 Copy particle locations to all other tasks
5 On each task:
6 Build local copy of tree and compute moments
7 Compute assigned segment/group of source terms by direct sum
8 Compute assigned segment/group of particle–cluster interaction by treecode
9 Copy result to the main task

10 On the main task:
11 Add segments/groups of all interactions and output result

Fig. 2. (a): methods for assigning target particles to tasks: sequential order (top) vs. cyclic order (bottom); (b): an illustration of an ORB tree using tasks 0–15 in
four subdivisions. The binary code in color shows the partner of each task at different level. For example: task 0 ⇠ (0000)2 has task 8 ⇠ (1000)2, task 4 ⇠ (0100)2,
task 2 ⇠ (0010)2, and task 1 ⇠ (0001)2 as its 0–1 partner at level 1 (red), level 2 (green), level 3 (purple), and level 4 (orange) respectively. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

assignment is shown in the top of Fig. 2(a). However, when
examining the resulting CPU time on each task, we noticed starkly
different times on each task, indicating a severe load imbal-
ance. This may be understood by the fact that for particles at
different locations, the types of interactions with the other par-
ticles through the tree can vary. For example, a particle with
only a few close neighbors uses more particle–cluster interac-
tions than particle–particle interactions, thus requiring less CPU
time than a particle with many close neighbors. We also notice
that for particles that are nearby one another, their interactions
with other particles, either by particle–particle interaction or
particle–cluster interaction, are quite similar, so some consecu-
tive segments ended up computing many more particle–particle
interactions than others that were instead dominated by particle–
cluster interactions. Based on these observations, we designed a
cyclic ordering scheme, as illustrated on the bottom of Fig. 2(a)
to improve load balancing. In this scheme, particles nearby one
another are uniformly distributed to different tasks. For example,
for a group of particles close to each other, the first particle
is handled by the first task, the second particle is handled by
the second task, etc. The cycle repeats starting from the (np +
1)th particle. The numerical results that follow demonstrate the
significantly improved load balance from this simple scheme. We
note that we also tried other approaches, such as using random
numbers to assign particles to tasks, but these did not result in
as significant improvements as the cyclic approach.

2.4. Domain decomposition parallelized treecode

The cyclically parallelized treecode algorithm has two signif-
icant advantages: easy implementation and high parallel effi-
ciency. However, due to the fact that the entire tree is built on
each task, the scale of the problem this algorithm can handle
is limited by the memory capacity associated to each task. As a
remedy, for very large problems beyond this memory limit, we
implement a Domain Decomposition (DD) parallelized treecode
under the framework of the orthogonal recursive bisection (ORB)
tree from Salmon’s thesis [40], whose open source C++ im-
plementation using the 0th moment (center of mass) is con-
tributed by Barkman and Lin [42]. Here we briefly describe the
DD-parallelized treecode using the ORB tree structure.

Starting from one rectangular domain containing all particles,
the ORB treecode algorithm recursively divides particles into two
equal amounts of groups by splitting the domain using an orthog-
onal hyperplane (perpendicular to the longest dimension of the
domain) until the finest level in which the number of tasks equals
the number of subdomains at that level as illustrated in Fig. 2(b).
In this manner, each task, as loaded with the same number of
particles, is associated to a subdomain and has a partner task
(illustrated as the 0–1 difference using the same color in their
binary code) at each level of the ORB tree division. Once the ORB
tree is constructed, each task builds a local B-H tree [5,9] based
on their loaded particles, and communicates with its partner task
at each level to exchange additional tree structure information

4
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such as clusters and their moments. Here cluster information is
sent only when the maximum acceptance criteria (MAC) between
particles of the receiving task and clusters on the sending task
is satisfied. After this procedure each task stores only a small
part of the entire tree such that the far fields are seen only at
a coarse level while near fields are seen down to the leaves, as
controlled by the MAC. Note that such a ‘‘local essential tree’’
is a subset of the full tree and is the necessary tree structure
information for computing interactions between the task’s loaded
particles and the entire tree. This is the major difference from the
cyclically parallelized treecode in which the entire tree is built in
the memory of each task. The details of constructing the ORB tree
can be found in [40] and our new and additional contribution is
to implement the arbitrary order Taylor expansion as opposed to
the original 0th order (center of mass) expansion. In updating the
moments for lower levels of (larger) clusters using moments from
higher levels of (smaller) clusters, a moments to moments (MtM)
transformation as described in [7] is applied.

3. Results

The numerical results in this section serve four purposes.
First, we show that the cyclic ordering scheme improves the
parallel efficiency of the treecode by improving the load balance.
Second, we show how the treecode parameters such as N0, the
number of maximum particles per leaf, p, the order of Taylor
expansion, and ✓ , the maximum acceptance criterion, affect the
parallel efficiency. By comparing the parallel efficiency of the
cyclic and sequential ordering schemes at different combinations
of treecode parameters, we show that the cyclic scheme reduces
the effect of these parameters while providing a uniformly im-
proved parallel efficiency. With these data, treecode users can
choose an optimal combination of treecode parameters subject
to the trade-off between time and error. Third, we provide nu-
merical results in a cube with uniformly distributed charges and
on the molecular surfaces of a series of proteins of various sizes,
to demonstrate the general usage and consistent performance
of the cyclic ordering scheme for our MPI-based parallelization.
Finally, the comparison between cyclically parallelized treecode
and DD-parallelized treecode in computing electrostatic interac-
tions for charges distributed on the molecular surface of a protein
is provided, showing the advantages in parallel efficiency for the
former and in memory scalability for the latter.

Except for the one example on a cube, these numerical results
compute the electrostatic potential induced from partial charges
(point charges) distributed on molecular surfaces. Throughout
this section, we report the relative L2 error of the electrostatic
potentials,

e� =
 P

N

i=1 |�num(xi) � �dir(xi)|2P
N

i=1 |�dir(xi)|2

!1/2

(15)

where N is the number of charged elements of the triangulated
surface, �dir is the potential computed using direct summation
(which serves as a reference value), and �num is the potential
computed using treecode.

Unless specified otherwise, simulations are run on the Mane-

Frame cluster, sponsored by the Southern Methodist University
(SMU) Center for Scientific Computing. This cluster has 1084
nodes, each with 24G of RAM and 8-core Intel Xeon CPU X5560
@ 2.80 GHz processors. Each simulation uses up to 128 cores,
with one MPI task assigned per core. The code is written in C and
compiled using the mvapich2/2.0-gcc-4.9.1 library with the -O2

optimization flag. This cluster uses a high speed DDR infiniband
network at 20 Gbps for its interconnect.

Fig. 3. triangulated molecular surface of the protein 1a63 with MSMS density 10
(vertices/Å2), which produces 132,196 triangles with point charges at centroids.
Note: we use a density of 20 in our simulations, however we show a density
of 10 here for better illustration of the triangular surface mesh.

3.1. Improving parallel efficiency through optimal load balance

We first focus on one particular protein to extensively study
the parallel performance of our algorithms. We pick the pro-
tein with PDB ID 1a63 (Protein Data Bank: www.pdb.org) with
2069 atoms/130 residues. Beyond the structure, the biological
significance of this protein is not our main concern. In our simula-
tions, the molecular surface is generated and triangulated by the
mesh generator MSMS [43], with atom locations obtained from
the PDB file. The software MSMS has a user-specified density
parameter d that controls the number of vertices per Å2 in the
triangulation. For this case, the MSMS density d is chosen to be
20, which produces 265,000 triangles. We choose the treecode
order p = 3, maximum number of particles N0 = 500, and
MAC parameter ✓ = 0.8, for the screened Coulombic potential
with ionic screening parameter  = 1. The particles are located
at the centroid of each triangle with unit partial charges. An
illustration of the triangulated molecular surface of protein 1a63
with reduced density d = 10 is given in Fig. 3 to illustrate the
triangulated surface.

Table 2 reports the CPU time and parallel efficiency (P.E.) for
both the cyclically and sequentially parallelized treecode methods
using increasing numbers of tasks. For comparison purposes, the
same values are also reported for the parallelized direct summa-
tion method

�
O(N2)

�
. From the ‘‘Direct Sum’’ columns, the CPU

time is essentially halved when the number of tasks is doubled,
indicating a 95+% parallel efficiency when using 128 tasks. This is
due to the fact that electrostatic interactions computed by direct
sum for all particles are homogeneous, resulting in almost perfect
load balance. However, when the treecode is used for electro-
static interactions, this homogeneity is no longer maintained, as
different particles interact with the tree differently.

For the ‘‘Treecode’’ columns in Table 2, the ‘‘N-body Interac-
tions + Utilities’’ columns contain both the serial computations
(build the tree and compute the moments) and parallel com-
putations (compute the electrostatic interaction). The ‘‘N-body
Interactions’’ columns contain only the parallel computations. We
report the CPU time and parallel efficiency for both the sequen-
tially parallelized treecode (seq.) and the cyclically parallelized
treecode (cyc.). Due to the fact that small portions of the code
are not parallelizable (the ‘‘serial’’ part), when 128 tasks are
used the parallel efficiency of sequentially parallelized treecode
for ‘‘N-body Interactions + Utilities’’ is reduced to 48%, while
the cyclically parallelized treecode improves it to 53%. However,
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Table 2
CPU time and parallel efficiency (P.E.) for parallelized direct sum, sequentially parallelized treecode (seq.) and cyclically parallelized
treecode (cyc.) for computing electrostatic interactions on the molecular surface of protein 1a63 with 265,000 triangles. The treecode
parameters are ✓ = 0.8, N0 = 500, and p = 3, resulting in relative L2 error e� = 9.65 ⇥ 10�3. The number of tasks np ranges over
1, 2, 4, . . . , 128. We use ‘‘amd.’’ to denote the parallel efficiency predicted by Amdahl’s law.
np Direct sum Treecode

N-body interaction + Utilities N-body interaction
CPU (s) P.E. (%) CPU (s) P.E. (%) CPU (s) P.E. (%)

seq. cyc. seq. cyc. amd. seq. cyc. seq. cyc.
1 3408.51 100.00 18.06 18.04 100.00 100.00 100.00 17.97 17.96 100.00 100.00
2 1708.79 99.73 9.31 9.12 96.99 98.93 99.20 9.22 9.03 97.44 99.41
4 887.77 95.98 5.11 4.83 88.30 93.44 97.63 5.02 4.73 89.51 94.83
8 446.31 95.46 2.64 2.46 85.40 91.52 94.63 2.55 2.37 88.13 94.70

16 222.70 95.66 1.44 1.29 78.63 87.08 89.17 1.34 1.20 83.74 93.44
32 110.51 96.39 0.80 0.70 70.70 80.90 79.93 0.70 0.60 80.18 93.01
64 55.66 95.69 0.47 0.41 59.93 68.23 66.21 0.38 0.32 74.37 87.72

128 27.80 95.80 0.29 0.27 48.41 53.01 49.29 0.20 0.17 71.10 81.51

Table 3
Profile of 8 costliest subroutines in treecode for computing the electrostatic potential. Treecode parameters:
✓ = 0.8, N0 = 500, p = 3, and N = 265,000.
Index % Time (s) Subroutine Description
1* 67.75 7.66 compp_direct Compute direct summation
2* 16.28 1.84 compp_tree Compute particle–cluster interactions
3* 13.98 1.58 comp_tcoeff Compute Taylor coefficients
4 0.97 0.11 readin Input protein structure, triangulation
5 0.62 0.07 comp_ms Compute moments
6 0.18 0.02 main Main subroutine
7 0.18 0.02 partition Partition particles into upper/lower groups
8 0.09 0.01 triangle_area Calculate triangle area of each element

if we consider only the parallelizable portion of the algorithm,
consisting of the N-body electrostatic interactions after the tree
has been constructed, the parallel efficiency with 128 tasks is
71.10% for the sequential ordering scheme, and 81.51% for the
cyclic ordering scheme, a very encouraging result for the treecode
parallelization.

The reduction in overall parallel efficiency (N-body Interaction
+ Utilities) can be well-explained by the information contained
in Table 3. Here, we report the profile (CPU time elapsed on
each routine, excluding the portion taken by its subroutines) of
the eight most time-consuming subroutines. These results were
obtained using the GNU profiling tool gprof, which returns the
top time-consuming subroutines, with one MPI task. We divide
these subroutines into three groups: Group 1 (underlined indices
4,6,8) are those that generate particle location and charges, which
are not included in our CPU time calculation for Table 2; Group
2 (bold indices 5 and 7) are the subroutines that build the tree
and compute the moments, which are implemented in serial;
Group 3 (indices with a star: 1–3) are subroutines for the N-body
interaction, which are implemented in parallel. The time of Group
2 is negligible compared with Group 3 for small numbers of tasks.
However, as more tasks are used, the percentage of time used by
Group 2 becomes more and more significant, which explains the
overall parallel efficiency reduction in Table 2.

The reduction in parallel efficiency when ‘‘Utilities’’ are in-
cluded in the CPU time can be predicted using Amdahl’s law.
To see this, we set T1 = 18.04 from the first entry of the 5th
column of Table 2 as the serial time. We then use the data from
Table 3 to compute the parallelizable fraction f = t1/(t1 + t2) =
11.08/11.17 ⇡ 0.9919, where t1 = 7.66+1.84+1.58 = 11.08 is
the CPU time of Group 1 and t2 = 0.07+ 0.02 = 0.09 is the CPU
time of Group 2. Amdahl’s law then predicts the parallel efficiency
as T1/T (np)/np, where T (np) = f (T1/np) + (1 � f )T1. These
predictions are shown in the ‘‘amd.’’ column in Table 2, which
are relatively consistent with the computed parallel efficiency of
the cyclic order scheme, ‘‘cyc.’’.

To examine how the choice of sequential versus cyclic order-
ing scheme affects load balancing, we plot the CPU time on each

Table 4
The standard deviation of the CPU times reported in Fig. 4.

32 cores 64 cores 128 cores
Sequential Cyclic Sequential Cyclic Sequential Cyclic

1a63 0.0561 0.0023 0.0318 0.0021 0.0181 0.0033
Cube 0.0565 0.0012 0.0332 0.0048 0.0195 0.0006

task for computing the electrostatic interactions in Fig. 4. From
Fig. 4(a)(c)(e), we can see that when using 32, 64, and 128 tasks
for the protein 1a63, the cyclic scheme has much more balanced
load (red circles) than the sequential scheme (blue squares). To
verify this result for more general cases, e.g. for particles dis-
tributed uniformly in space, in Fig. 4(b)(d)(f) we perform the same
experiment for 265,000 particles, uniformly distributed on a cube
with 10 Å length per side. The result shows a similar pattern
as for protein 1a63, which justifies the general use of the cyclic
order scheme. We quantified this load balance by calculating
the standard deviations among all the CPU times used within
each experiment (shown in Table 4), which shows significant
reduction in standard deviation of the CPU time for the cyclic
ordering scheme in comparison with the sequential ordering
scheme.

3.2. The effect of treecode parameters on parallel efficiency

The CPU time and memory use of the serial treecode algorithm
subject to treecode parameters has been extensively examined
in [5]. Here we study how the CPU time and parallel efficiency
change subject to treecode parameters within our parallel imple-
mentation. We first show in Section 3.2.1 that the cyclic ordering
scheme improves the parallel efficiency at various choices of the
parameters, and it also makes the parallel efficiency less sensitive
to the choice of parameters in a case, as compared with the
sequential ordering scheme. This is done by plotting the parallel
efficiency as each parameter is varied. Second, in Section 3.2.2
we show that the general stability of cyclic ordering scheme can
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Fig. 4. CPU time consumed on each task with sequential ordering (red circles) and cyclic ordering (blue squares) for 32 tasks (a)(b), 64 tasks (c)(d), and 128 tasks
(e)(f), using protein 1a63 with 265,000 triangles (a,c,e) and on a cube with 265,000 particles (b,d,f). Treecode parameters: ✓ = 0.8, N0 = 500, p = 3.

be further verified on a time-error scatter plot, which can also
help us to choose the most efficient treecode parameters for a
desired error tolerance. Third, in Section 3.2.3 we use a (parallel
efficiency)-error scatter plot to reveal the fact that when the

number of particles per leaf (N0) is small, the parallel efficiency
becomes more sensitive to the choices of other treecode parame-
ters, thus leaving space for future research on improving parallel
efficiency.
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Fig. 5. Effects of treecode parameters on parallel efficiency (1 vs. 64 tasks). Reference treecode parameters: ✓ = 0.8, N0 = 500, p = 3, d = 20. (a) d = 5, 10, 20, 40, 80
(resulting N = 70,018, 132,196, 265,000, 536,886, 1,100,549); (b) order p = 1, 3, 5, 7, 9; (c) N0 = 50, 200, 500, 800; (d) ✓ = 0.2, 0.5, 0.8.

3.2.1. Parallel efficiency across various treecode parameters

We consider four treecode parameters: number of particles
per leaf N0, MSMS density d (proportional to the number of
particles N), Taylor expansion order p, and MAC threshold ✓ .
We change these variables one at a time and plot the parallel
efficiency (N-body interaction only) using 64 tasks in Fig. 5. Each
data point on these plots represents a different combination of
the parameters ✓ , N0, p, and d. We use ✓ = 0.8, N0 = 500, p = 3,
and d = 20 (N = 265,000) as fixed parameters when one of the
parameters is changing. Two significant patterns may be observed
from these graphs. First, the cyclic ordering scheme shows better
parallel efficiency than the sequential ordering scheme for all
parameter combinations. Second, the cyclic ordering scheme has
more stable results than the sequential ordering scheme, as all the
red circles are near 90% when different choices of the parameters
are made, whereas the blue squares fluctuate more significantly
(particularly as d and p are varied). Additional simulations on
several other proteins confirms the first pattern, but not the
second pattern in general.

3.2.2. Scatter plot results: time vs. error

To further investigate the parallel treecode using the cyclic or-
dering scheme, we provide scatter plots of CPU time versus error
as treecode parameters are varied. Each data point represents a
different combination of the ✓ , N0, and p. Once again, we use
✓ = 0.8, N0 = 500, p = 3 as fixed parameters when one of

the parameters is changing. The density d is uniformly kept at 20
(thus N = 265,000).

Fig. 6(top) is the scatter plot when using one task; similar re-
sults can be found in our previous work [5,33]. Using this scatter
plot, we can identify optimal combinations of the parameters ✓ ,
N0, and p for a given accuracy tolerance. For example, to obtain a
relative error of 10�4, one should choose N0 = 50, ✓ = 0.5, and
p = 5 for the fastest speed. Additionally, we see that for fixed
✓ (same color), the order p essentially determines the accuracy
(especially for larger ✓ ). Therefore, if these two parameters are
fixed for a desired accuracy, smaller N0 will generally provide
the best results. This can be explained by the fact that smaller
N0 results in deeper trees, and thus more particle–cluster interac-
tions are used, resulting in reduced CPU time. Fig. 6(bottom) is the
corresponding scatter plot when using 128 tasks. We note that
this shows similar results as the single task plot, which supports
our general conclusion that the parallel efficiency when using the
cyclic ordering scheme is rather stable. Both scatter plots show
that larger ✓ brings faster but less accurate results. In addition,
they indicate that smaller N0 (triangle) uses less CPU time for a
desired error at fixed p and ✓ , thus we should use smaller N0 for
faster calculations. However, if we instead investigate a scatter
plot of parallel efficiency against error, as in the next section, an
interesting phenomenon is revealed.
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Fig. 6. Scatter plots of time vs. error on protein 1a63 for 1 task (top) and 128
tasks (bottom). Treecode parameters: p = 1, 3, 5, 7, 9 from right to left on one
connected line; d = 20 (N = 265,000); N0 = 50, 200, 500, 800; ✓ = 0.2, 0.5, 0.8.

3.2.3. Scatter plot results: parallel efficiency vs. error

In Fig. 7 we show a scatter plot for the same testing case as in
Fig. 6, but where the vertical axis is the parallel efficiency instead
of the CPU time. While the results in this plot may at first seem
slightly erratic, they elucidate some interesting phenomena. First,
if we temporarily hide the lines with triangles (N0 = 50), all par-
allel efficiency values are within the 75%–90% range, and thus the
parallel efficiency values are generally stable. Second, focusing
only on the lines connecting triangles (N0 = 50) we see that
the parallel efficiency values fluctuate rapidly, indicating that the
load balance becomes sensitive to p and ✓ when N0 is small. This
observation opens space for future research to improve parallel
efficiency for the case of small numbers of particles per leaf, N0.

3.3. Accuracy and efficiency across a wide collection of proteins

We finally compute the electrostatic interactions on a series
of 24 proteins with different sizes and geometries. The numerical
results are reported in Table 5. Here, the first column is an iden-
tification index for convenience in the discussion that follows.
The second column is each protein’s four-digit protein data bank
(PDB) ID. Column 3 is the number of elements on the triangulated

Fig. 7. Scatter plot of parallel efficiency vs. error. Treecode parameters: p =
1, 3, 5, 7, 9 from right to left on one connected line; N = 265,000; N0 =
50, 200, 500, 800; ✓ = 0.2, 0.5, 0.8.

molecular surfaces of each protein. This determines the surface
areas of each protein, as shown in column 6. Column 4 is the
number of atoms in, and column 5 is the total charge carried by,
the proteins, respectively. We uniformly choose MSMS density
d = 20 so that proteins with larger molecular surface areas
(column 6) will normally generate larger numbers of elements. A
few exceptions occur because MSMS modifies the given density
to fit its triangulation needs, resulting in a slightly mismatched
order for the data in columns 3 and 6; however, the general
pattern remains that a larger number of atoms results in larger
molecular surface areas and numbers of elements. Columns 7 and
8 show the time for computing N-body electrostatic interactions
on one CPU (T1) and 128 CPUs (T (128)) in seconds, respectively.
Column 9 reports the parallel efficiency calculated resulting from
columns 7 and 8, and indicate an overall parallel efficiency of
70%–85%. More importantly, larger systems generally result in
higher parallel efficiency. Column 10 shows the memory used
in each calculation, which is small and linear O(N) with respect
to N from column 3. This memory saving feature is one of the
key advantages of the treecode algorithm. The last column shows
the L2 potential errors, which are consistently about 10�2. This
table demonstrates the general applicability of the cyclic order-
ing scheme for parallel treecode on different geometries and
structures.

3.4. Comparison between cyclically parallelized and DD-parallelized

treecodes

Here we provide numerical results demonstrating difference
in terms of CPU time, parallel efficiency and memory usage be-
tween the cyclically parallelized treecode and the DD-parallelized
treecode, both using the ORB tree structure for a fair compari-
son. The simulations are run on clusters using intel processors
(Intel(R) Xeon(R) Gold 6148 CPU @ 2.40 GHz) sponsored by the
Institute for Cyber-Enabled Research (ICER) at Michigan State
University (MSU).

Table 6 shows a comparison between domain decomposition
(DD) parallelized ORB treecode and cyclically parallelized ORB
treecode (cyc.) in computing electrostatic interactions between
charges located on the surface of protein 1a63 as used in Table 2.
In the column titled ‘‘N-body Interactions + Utilities’’, the time
for tree construction and the moment computation are included

9



J. Chen, W. Geng and D.R. Reynolds Computer Physics Communications 260 (2021) 107742

Table 5
Parallel efficiency for electrostatic interaction calculations on molecular surfaces of 24 proteins: N is the number particles; treecode
parameters are p = 3, ✓ = 0.8, N0 = 500, d = 20.
ID PDB N Na Charge Area T1 (s) T (128) (s) P. E. (%) Memory (K) e�

1 1ajj 81 798 519 �5 2171.5 5.121 0.055 73.43 10264 9.56e�3
2 2erl 87 136 573 �6 2323.5 5.738 0.059 75.68 10868 9.40e�3
3 1cbn 88765 648 0 2371.4 5.307 0.060 69.72 11156 8.40e�3
4 1vii 94 458 596 2 2482.1 6.795 0.067 78.81 11624 9.42e�3
5 1fca 95901 729 �7 2552.7 7.738 0.076 79.37 12012 1.07e�2
6 1bbl 98311 576 1 2610.6 5.636 0.060 73.72 12324 9.43e�3
7 1sh1 102866 702 0 2750.1 6.268 0.067 73.55 12828 8.71e�3
8 2pde 103456 667 3 2721.7 6.776 0.069 76.81 12828 9.14e�3
9 1vjw 105744 828 �6 2792.4 5.837 0.061 74.34 13216 8.90e�3
10 1uxc 107704 809 4 2842.1 6.273 0.070 70.48 13404 8.92e�3
11 1ptq 108958 795 3 2904.0 7.164 0.073 77.11 13472 9.13e�3
12 1bor 109649 832 �3 2910.4 7.088 0.072 76.87 13392 9.02e�3
13 1fxd 110126 824 �15 2928.7 6.535 0.068 74.71 13624 8.55e�3
14 1r69 115278 997 4 3061.5 6.904 0.071 75.53 14088 8.92e�3
15 1mbg 116093 903 6 3080.5 7.396 0.076 76.12 14164 9.17e�3
16 1bpi 120948 898 6 3240.2 9.720 0.102 74.47 14756 1.13e�2
17 1hpt 123178 858 �1 3270.1 7.519 0.075 78.08 15184 9.44e�3
18 451c 158468 1216 �1 4168.6 9.231 0.092 78.31 18980 9.72e�3
19 1frd 165392 1478 �11 4377.2 11.327 0.109 81.09 19268 8.68e�3
20 1a2s 169679 1272 �9 4447.0 10.539 0.104 79.00 19704 9.34e�3
21 1svr 176906 1435 �2 4654.8 11.991 0.114 82.21 20176 9.11e�3
22 1neq 179327 1187 4 4727.4 12.502 0.119 81.79 20300 9.87e�3
23 1a63 265000 2065 �1 6989.4 17.960 0.172 81.51 30348 9.65e�3
24 1a7m 294285 2809 7 7751.8 27.428 0.250 85.70 32584 1.12e�2

Table 6
CPU time, parallel efficiency (P.E.), and memory usage for DD-parallelized ORB treecode (DD) and cyclically parallelized ORB treecode
(cyc.) for computing electrostatic interactions on the molecular surface of protein 1a63 with 265,000 triangles. The treecode
parameters are ✓ = 0.8, and p = 3. The number of tasks np ranges over 1, 2, 4, . . . , 128. Memory is reported as the average
memory usage per core.
np N-body interaction + Utilities N-body interaction Memory usage

CPU (s) P.E. (%) CPU (s) P.E. (%) Mem. (MB) P.E. (%)
DD cyc. DD cyc. DD cyc. DD cyc. DD cyc. DD cyc.

1 50.67 50.84 100.00 100.00 49.80 49.84 100.00 100.00 97.20 97.2 100.00 100
2 25.39 25.64 99.77 99.16 25.09 25.13 99.26 99.14 51.29 97.2 94.76 50
4 13.66 13.53 92.73 93.94 13.38 13.23 93.09 94.17 26.96 97.2 90.13 25
8 6.97 7.01 90.86 90.64 6.80 6.81 91.58 91.46 14.96 97.2 81.21 12.5

16 4.36 3.96 72.68 80.34 3.97 3.83 78.46 91.43 8.20 97.2 74.04 6.25
32 2.51 2.44 63.13 65.01 2.10 1.95 73.98 79.90 4.73 97.2 64.23 3.13
64 1.46 1.24 54.11 64.18 1.15 1.00 67.66 78.04 3.27 97.2 46.40 1.56

128 1.15 1.09 34.41 36.31 0.62 0.52 63.26 74.05 2.19 97.2 34.63 0.78

in addition to the time for computing electrostatic interactions.
In the column titled ‘‘N-body Interactions’’, only the time for
computing electrostatic interactions is recorded. From these two
columns, we can see that the parallel efficiency for building
local essential trees is not as high as N-body interactions, thus
drags down the overall parallel efficiency. This is due to the
intensive message passing process involved in building the tree
and exchanging cluster information, particularly when high or-
der moments are used for arbitrary order Taylor expansion. For
example, when 128 cores are used the parallel efficiency of DD-
parallelized treecode is 34.41% as compared with 36.31% for the
cyclically parallelized treecode. Note in order to test the cyclically
parallelized treecode on the ORB tree, a full tree on each task is
built using local essential trees on all tasks by message passing.
As for the time for ‘‘N-body Interaction’’, the parallel efficiency
with 128 cores is 63.26% for DD-parallelized treecode and 74.05%
for the cyclically parallelized treecode. This difference in paral-
lel efficiency can be well explained by the load balance shown
in Fig. 8. The cyclically parallelized treecode builds the entire
tree in the memory of each task thus could optimize the load
balance by cyclically assigning particles that are geometrically
close to different tasks while the DD-parallelized treecode must
assign particles that are geometrically close to the same task.
Meanwhile, parallelization by building the entire B-H tree on
each task has higher parallel efficiency as seen in Table 2 than

parallelization by building local essential trees on each task as
seen in Table 6. However, from the memory usage shown Table 6,
we can see that the DD-parallelized treecode is scalable, thus it
can handle very large sized N-body problems, while the cyclically
parallelized treecode inherently limits the problem size to the
memory capacity associated with each MPI task.

4. Conclusions

The flexible order Cartesian treecode method uses particle–
cluster computations to replace the particle–particle compu-
tations for far-field interactions for N-body problems, thereby
significantly reducing the computational cost from O(N2) to O(N
logN). The key advantages of the treecode algorithm compared
with the popular FMM [4] are its ease of implementation, mem-
ory savings (an O(N) cost with a small pre-factor), and efficient
parallelization.

In this paper, we show that through replication of the tree
structure on all tasks, MPI-based parallelization of treecode is
straightforward, but care must be taken when decomposing the
work among tasks. To this end, the novel cyclic ordering scheme
significantly improves the load balancing, and thus the parallel
efficiency, in comparison with a standard sequential ordering.
We show that when using 128 tasks for a protein surface with
265,000 partial charges, the cyclic ordering scheme can com-
pute the pairwise screened Coulombic interaction in 0.17s with
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Fig. 8. CPU time consumed on each task with cyclically parallelized treecode (red circles) and DD-parallelized treecode (blue squares) for 64 tasks (a), and 128 tasks
(b), using protein 1a63 with 265,000 triangles. Treecode parameters: ✓ = 0.8, p = 3.

81.5% parallel efficiency, which has more than 10% improvement
compared with the sequential ordering scheme. Additionally, the
cyclic ordering scheme for the treecode parallelization can be
conveniently extended to other kernels and structures.

We also investigate how the parallel efficiency changes based
on different choices of the treecode parameters, such as Tay-
lor expansion order p, Maximum Acceptance Criterion ✓ , and
maximum number of particles per leaf N0. By studying plots
of parallel efficiency against parameters as well as the time-
error and (parallel efficiency)-error scatter plots, we conclude
that the cyclic ordering scheme improves the parallel efficiency
at various choices of the parameters, and also makes the par-
allel efficiency less sensitive to these parameter choices than
the sequential ordering scheme for the tested case. We further
show that the time-error scatter plot can help to select the most
efficient treecode parameters for a desired error tolerance. Fur-
thermore, the (parallel efficiency)-error scatter plot reveals the
fact that when using a small number of particles per leaf N0 (for
saving CPU time), the parallel efficiency becomes more sensitive
to the selection of treecode parameters. We will research this
topic for further improvement in future work.

The current work can be further extended in the following
directions. First, we plan to parallelize the processes for building
the tree and computing moments, which will further improve
the overall parallel efficiency by increasing the parallelizable
fraction. Second, we are working toward the parallelization of
a Poisson–Boltzmann equation solver based on the boundary
element method; this uses treecode to efficiently compute the
matrix–vector product Ax in each GMRES iteration. Due to its
algorithmic simplicity and small memory requirements, treecode
is a good candidate for GPU-based parallelization [26,44]. We
note that recursion has been recently supported on GPUs, which
will make our treecode implementation on such architectures
more convenient. Third, the Coulomb interactions for the more
accurate point multipole model (instead of the widely used point
partial charge model) demand highly efficient calculations of
N-body interactions [36,37], and may additionally benefit from
the advances in this work. Finally, for some three-dimensional
applications, e.g. in astrophysics, which have much larger num-
bers of particles, this approach of tree replication will rapidly
limit scalability, which calls for parallelization using MPI domain
decomposition. To this end, we implement a DD-parallelized
treecode algorithms using the ORB trees. the numerical results

show its scalability in memory as the problem size and number
of tasks are simultaneously increased.

For dissemination to the greater science community, we pub-
lished the cyclically parallelized treecode and the DD-parallelized
treecode as open source software on GitHub (https://github.
com/Jiahuic/treecode_parallel) under the General Public License
(GNU); this software is maintained by Jiahui Chen, who was an
SMU graduate student and is now as a postdoc at MSU.
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