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ABSTRACT: As one of the most promising candidates of photo-
anode material, bismuth vanadate (BiVO4) has been paid wide
attention and achieved remarkable progress. However, the full
exploitation of solar-energy-conversion potential of bismuth vanadate
(BiVO4) is still limited by poor charge transport. Introducing dopants
into BiVO4 has been proved to be a feasible method to improve the
photoelectrochemical water splitting performance. In this work,
lithium is introduced as an interstitial dopant to crystalline BiVO4
thin film photoanode, with the aid of pulsed laser deposition (PLD).
Solid-state transport characterization demonstrates increased carrier
density and electron conductivity in BiVO4 bulk due to interstitial
lithium doping, which also increased the photocurrent and photon-to-
current conversion efficiency both by up to 20% for solar water
splitting. Computational results based on density functional theory determine the effect of lithium doping on the electronic and
atomic structures of BiVO4 and verify the role of lithium dopant as a shallow donor that improves the conductivity of BiVO4.

■ INTRODUCTION

Photoelectrochemical (PEC) solar fuel conversion offers an
alternative and environmentally friendly approach to address-
ing the outlook of irreversible climate change in the near
future, due to CO2 emission from fossil fuel consumption.1,2

The design and construction of efficient and robust photo-
electrochemical cell devices, normally composed of semi-
conductor photoelectrodes, is the core of harvesting solar
energy through photoelectrochemical solar water splitting.3−5

Among various semiconductor photoelectrode materials,
bismuth vanadate (BiVO4) has emerged as one of the most
promising photoanode candidates, because of its many
outstanding advantages including a relatively narrow bandgap
(2.4−2.6 eV), suitable band alignment to water redox
reactions, favorable photocurrent onset, and reasonable
stability in aqueous environment, etc.6,7 However, its full
potential for solar energy harvesting is currently hindered by
several material limitations, such as low majority carrier
(electron) mobility, mediocre electron−hole separation
efficiency, and a high kinetic barrier for carrier injection across
the aqueous interface.8

Doping with extrinsic defects is a viable strategy to enhance
the photoelectrochemical performance of BiVO4 photoanode
by improving charge transport, separation, and/or light
absorption.9−11 As a ternary oxide, there are several kinds of
sites available for bulk doping in BiVO4, including substitu-
tional doping at Bi-, V-, and O-sites, as well as interstitial

doping sites.4 The related literature of intrinsic/extrinsic defect
doping in BiVO4 is summarized in Table S1. To improve the
majority carrier transport, the most common doping method is
to use hexavalent Mo or W as V site substituent, which can
significantly increase the major carrier density and improve the
electron mobility by lowering the small polaron hopping
barrier.7,9,10,12 However, the V-site donors often contribute to
hole traps and reduce the hole diffusion length, which limits
the overall improvement to water splitting activity.13 A few
nonmetallic dopants have been applied to the O-site in BiVO4

as well, including nitrogen,11 fluorine,14 and oxygen vacancy
(VO), which all demonstrate improvement to the photo-
catalytic performance at various degrees. In recent years, much
interest has been received to investigate interstitial hydrogen as
a donor defect in BVO, which is usually introduced through
postsynthesis treatments such as thermal annealing in hydro-
gen.15−17 Although clearly improving the conductivity and
photocatalytic activity of BVO, such treatment would
inevitably introduce extra oxygen vacancies to the lattice,
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which also act as donor defects and make it difficult to
explicitly evaluate the role of interstitial hydrogen.
In recent years, BiVO4 has been proposed as a promising

anode material in Li-ion capacitors, due to its excellent
volumetric capacity that benefited from the ion insertion/
extraction process and energetically favorable lithiation.18−20

Yin et al. reported that Li can serve as a shallow donor at the
interstitial site in BiVO4 from a computational perspective,21

although this work did not consider the formation of small
polarons and their role on carrier concentration and transport.
Here we investigate the use of lithium, a group I metal that is
earth abundant and isoelectronic to hydrogen, as an interstitial
dopant in BVO, through a combined computational and
experimental study. The small size of lithium (0.76 Å) as
compared to the interstitial site (octahedral, 2.09 Å)
determines the role of the interstitial dopant. On the basis of
a synthetic strategy developed by our group in a series of
previous work, Li-doped single-crystalline BVO thin film
photoanodes are fabricated in a single step utilizing pulsed
laser deposition (PLD),8,22,23 which offers a facile and
consistent way to tune the thin film stoichiometry by simply
adjusting the elemental composition of laser ablation target
within a similar range.24 When compared to the photoanode of
pristine BVO fabricated under identical conditions, the doping
of Li leads to a 20% improvement in photocatalytic activity for
water splitting that is accompanied by a significant increase of
electrical conductivity. Computational studies by first-princi-
ples calculations confirm the stability of Li as an interstitial
dopant and systematically determine the effect of Li-doping on
the atomic and electronic structures, optical absorption

spectra, and carrier transport properties, whereas the latter is
largely defined by the hopping transport of small polarons near
V5+ centers. The doping effect on polaron hopping in BiVO4
has been investigated in several computational works,10,11,25−27

by employing either a microscopic picture from polaron
hopping rates with kinetic Monte Carlo sampling or a
macroscopic picture of small polaron theory from the dielectric
continuum model. In this work, we follow the macroscopic
methodology to evaluate the effect of interstitial Li-dopant and
conclude that doping has little effect on the small polaron
mobility, despite introducing shallow donors and significantly
increasing the majority carrier density. These computational
results agree very well with experimental findings through
solid-state transport measurements, which serve as an explicit
confirmation to the effectiveness of interstitial doping of group
I elements.

■ RESULTS AND DISCUSSION
Crystalline thin film photoanodes of pristine BVO and Li-
doped BVO (Li-BVO) are fabricated over (001) yttrium-
stabilized zirconia (YSZ) substrates by pulsed laser deposition
(PLD) at conditions similar to those in our previous reports
(Figure 1a).8 Between the BVO layer and YSZ substrate, an
epitaxial buffer layer of indium tin oxide (ITO) is grown by
PLD as the conductive back contact.8 In a typical photoanode,
the BVO layer is 140 nm thick and the ITO layer is 50 nm.
The doping levels of BVO thin films are regulated by the
stoichiometry of laser ablation targets. To ensure Li being
doped into interstitial sites, the Bi to V ratio is kept at unity for
all targets, with various amounts of Li added in the form of

Figure 1. (a) Device layout of Li-doped BVO thin film photoanode. (b) X-ray diffraction (XRD) patterns of 5% Li-doped BVO (red) and pristine
BVO (black) thin films. (inset) A zoomed-in view for the BVO(002) diffraction peaks of the two samples. (c) HAADF-STEM image of the cross-
section of 5% Li-doped BVO/ITO/YSZ heterostructure (upper left) and EDX mapping for the area marked by the dashed rectangle. Scale bars =
100 nm. (d) Tauc plots of 5% Li-doped BVO (red) and pristine BVO (black) that represent direct transition (solid) and indirect transition
(dashed).
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Li2CO3, for Li doping levels of 0% (pristine), 5%, and 10%, in
terms of atomic percentage (at. %) to BiVO4 unit. The
incorporation of lithium into the BVO thin film is confirmed
by inductively coupled plasma mass spectrometry (ICP-MS),
with the doping level identical to the target. In the discussion
that follows, the Li-BVO film has a nominal Li doping level of
5 at. % unless otherwise specified. Scanning electron
microscopy (SEM, Figure S1a,b) and atomic force microscopy
(AFM, Figure S1c) reveal a grainy surface morphology with an
RMS surface roughness of 19 ± 3 nm, which is similar between
Li-doped and pristine BVO. X-ray diffraction (XRD) confirms
that the Li-BVO film has high phase purity as monoclinic
scheelite (space group I2/b, PDF no. 01-14-0688) and is
epitaxial to the ITO/YSZ substrate, with only c-plane (00l)
diffraction peaks of BVO presented (Figure 1b).10 The XRD
patterns of Li-BVO and pristine BVO are very similar to barely
any peak shift (Figure 1b, inset), which indicates that Li
interstitial has a negligible impact on the lattice parameters of
BVO. This is likely due to the smaller size of lithium ion (0.76
Å) when compared to the interstitial site (octahedral, 2.09

Å).28 The X-ray absorption near-edge structure (XANES)
spectra collected at the V K-edge also show great similarity
between Li-BVO and pristine BVO, which suggests that Li
doping brings negligible structural distortion at the V5+ center
(Figure S2). The phase purity of the Li-BVO/ITO/YSZ
heterostructure is confirmed by high-angle annular dark-field
scanning transmission electron microscopy (HAADF-STEM,
Figure 1c).
X-ray photoelectron spectroscopy (XPS) verifies that Bi and

V, respectively, have an oxidation state of +3 and +5 in both
pristine and Li-doped BVO, despite a subtle difference in
binding energy values (Figure S3). The binding energies are
163.90 eV (Bi 4f5/2), 158.55 eV (Bi 4f7/2), 524.05 eV (V
2p1/2), and 516.55 eV (V 2p3/2) for Li-BVO, which all shift
toward lower energy by 0.5−0.6 eV when compared to pristine
BVO. This confirms the role of Li as a donor defect to BVO
lattice, which contributes extra electrons to the conduction
band and lowers electron binding energies for each constituent.
In addition, the content of oxygen vacancies near the sample
surface is analyzed using an O 1s core-level XPS spectrum and

Figure 2. (a) Total (black) and projected (red for O 2p, blue for V 3d, and green for Bi 6s) density of states for pristine BiVO4. (b) Band structures
of pristine (black) and Li-doped (orange = spin up, red = spin down) BiVO4. The VBM is set to zero in both cases. The occupied state around 1.4
eV corresponds to the electron polaron contributed by Li doping. (c) Total and projected density of states for Li-doped BiVO4. (Inset) The
polaron state induced by Li, which is mostly composed of V 3d and O 2p states. All three panels share the same energy scale on the y-axis.

Figure 3. (a) Li-doped BiVO4 (green for Li, purple for Bi, gray for V, and red for O), with isosurface shown for the electron small polaron (yellow
cloud labeled “SP” on V atom). An isosurface value of 10% of the maximum is used. (b) Calculated absorption spectra of pristine (black) and Li-
doped (red) BiVO4. Li-doped BiVO4 has a negligible change in band−band absorption above 2 eV and introduced transitions below 2 eV, due to
polaron state-band transitions. (c) Defect formation energy (FE) diagram of Li in BiVO4 computed at the O-poor condition. FE diagram for all
possible p-type compensating defects for Li interstitial (n-type) can be found in Supporting Information, Figure S6.
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shows barely any difference with or without Li doping (Figure
S4).29 Optical extinction spectra of pristine and Li-BVO are
measured in the spectral range of 350−700 nm, by using an
ITO/YSZ substrate as spectral reference. The spectral profile
and optical densities are similar between Li-doped and pristine
BVO (Figure S5). By using the Tauc plot,30 we determine a
direct band gap of 2.61 eV and an indirect band gap of 2.56 eV
for Li-BVO, which are identical to those of pristine BVO and
suggest a negligible impact to the optical band gap due to Li
doping (Figure 1d).
First-principles calculations using the DFT+U method are

performed for both Li-doped and pristine BVO. For Li-BVO,
the calculations are performed with Li interstitial doping in a
96-atom supercell, that is, 1 Li:16 BiVO4. The calculation on
formation enthalpy confirms that Li stably occupies the
interstitial site that is 6-coordinated with Li−O bond lengths
between 2.04 and 2.26 Å as shown in Figure 3a. According to
the calculated electronic band structure shown in Figure 2, the
band gap of pristine BVO is 2.26 eV with an indirect transition,
consistent with previous DFT+U calculations.11,31 After Li
doping, the band gap of BVO remains unchanged (without
considering the isolated gap state) as shown in Figure 2b,
which is comparable to the experimental finding. Li-doping
introduces a localized midgap state (Figure 2b) that
corresponds to the electron small polaron formed by the
electron donated by Li with the local lattice distortion on a
single V site (Figure 3a). To evaluate the effects of Li-doping
on optical absorption, the complex dielectric function (ε ̃ = ε1 +
iε2) is computed using the random phase approximation as
implemented in the YAMBO code32 with eigenvalues and wave
functions computed at the DFT+U level. The absorption
coefficient α(ω) is given by33−35

c
( )

( )2

( ) ( ) ( )

2
1 1

2
2

2
α ω ω ε ω

=
ε ω ε ω ε ω+ +

The calculated absorption spectrum (Figure 3b) shows a
negligible change in the main absorption edge of BVO around
2.3 eV. However, Li-doping does introduce weak additional
optical absorption below 2 eV, which must be due to
transitions between the conduction band and the midgap
electron polaron state, according to the electronic structure of
Li-BVO.

The role of Li dopant as a donor defect is experimentally
confirmed by electrochemical impedance spectroscopy (EIS)
studies that determine space-charge capacitance (Csc) at a
series of potentials (E). The donor density (ND) is then
deduced using the Mott−Schottky model:

i
k
jjjj

y
{
zzzzC e N

E E
k T
e

1 2

sc
2

0 D
FB

B

εε
= − −

where e is the magnitude of elementary charge, ε = 68 is the
relative permittivity of BVO, ε0 is the vacuum permittivity, EFB
is the flat band potential, and kBT is the thermal energy.
According to the Mott−Schottky (Csc

−2−E) plot (Figure 4a),
the Li-BVO photoanode is uniformly n-type doped with ND =
9.52 × 1018 cm−3 and EFB = 0.16 VRHE. The donor density is 8
times higher than that of pristine BiVO4 (ND = 1.20 × 1018

cm−3), which confirms the active role of Li as an n-type
donor.8 Had Li been substitutionally doped to replace Bi or V,
the photoelectrode would exhibit a p-type doping rather than
the observed n-type doping. Solid-state transport measure-
ments reveal strong anisotropy in conductivity for both Li-
doped and pristine BVO thin films, with significantly higher
out-of-plane conductivity (σ⊥) than in-plane conductivity (σ∥).
As explained in our previous work, this is due to the presence
of vertical domain boundaries, which gives rise to an extra
conductive channel for out-of-plane electronic transport.8 Li
doping increases the electronic conductivity of the BVO film,
with the effect particularly significant for σ∥ (Figure 4b). At
room temperature, σ∥ of Li-BVO is 1.16 × 10−5 S cm−1 and is
over 2 orders of magnitude larger than that of pristine BVO
(6.22 × 10−8 S cm−1), which suggests that interstitial Li acts as
a shallow donor. On the other hand, the out-of-plane
conductivity of Li-BVO is only about 40% larger than that of
pristine BVO (6.44 × 10−4 S cm−1 vs 4.48 × 10−4 S cm−1),
which matches the assertion that the out-of-plane charge
transport is mostly contributed by domain boundaries rather
than carriers in the bulk energy band. From room temperature
to 450 K, the in-plane conductivity increases monotonically
against temperature, for both Li-doped and pristine BVO
(Figure 4c). The behavior is consistent with the small polaron
hopping mechanism,36−38 according to which a polaron
hopping barrier, Eh, governs over the temperature dependence
of conductivity, through the relation σ(T) ∝ T−1 exp(−Eh/
kBT).

8,10 Linear fitting according to the relation suggests that,
although Li-doping significantly increases carrier concentra-

Figure 4. (a) Mott−Schottky plots of 5% Li-doped BVO (red) and pristine BVO (black). Their respective linear fittings are shown as the dashed
lines. (b) Out-of-plane (dashed) and in-plane (solid) current−voltage (J−E) curves of 5% Li-doped BVO (red) and pristine BVO (black). (c)
Temperature-dependent in-plane conductivity of 5% Li-doped BVO (red) and pristine BVO (black). The inset shows the respective linear fittings
based on the small-polaron transport model.
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tion, its effect on hopping barrier is relatively small. As
compared to pristine BVO (Eh = 462 meV), Li-doping only
lowers the barrier by about 30 meV, to 431 meV (Figure 4c,
inset).
First-principles calculations of the ionization energy of the

electron polaron contributed by interstitial Li confirm it
behaves as a shallow donor in BVO. To consider the effects of
Li on the carrier concentration in BVO, it is necessary to
compute the formation energy of the defect in each of its
charge states q.

E E N qFEq q
i

i i qF pst F∑ε μ ε[ ] = − − Δ + + Δ

Here, FEq is the formation energy of a defect with charge q, Eq
is the total energy of the defect system (Li-doped BVO) with
charge q, Epst is the total energy of the pristine BVO, ΔNi is the
change in the number of atomic species i with chemical
potential μi, εF is the Fermi energy, and Δq is the defect charge
correction.39 Given that BVO is deposited under a relatively
low pressure of oxygen (20 mTorr) and n-type doped, the FEq
values are calculated at the O-poor condition (μ(O) = −2.8
eV), where Li interstitial has a lower formation energy than
other possible point defects (Figure S6).21 The value of the
Fermi level (εF) in which the system undergoes a transition of
charge state q to q′ (specifically for interstitial Li, q = 1, q′ = 0)
defines the charge transition level εq|q′.

q q

FE FEq q q qF Fε
ε ε

=
[ ] − [ ]

′ −
| ′ ′

Typically, the charge transition level of an electron donor
from one charge state to a more positive charge state
referenced to the CBM defines the ionization energy of the
defect, which is 0.319 eV for Li doping, and implies Li is rather
difficult to be ionized at room temperature. However, due to
the spontaneous formation of small polarons in BVO,40 the
feasibility of small polaron hopping is determined not by the
ionization energy of the defect with respect to the CBM but by
the ionization energy of the defect with respect to a free
polaron state where the polaron is not bound to a
defect.27,34,41,42 Therefore, the true ionization energy of
interstitial Li is equal to the energy difference between the
charge transition levels of the defects (0.319 eV below CBM,

solid red dots in Figure 3c) and the free polaron level (0.248
eV below CBM, gray dashed line in Figure 3c), that is, 0.071
eV, relatively small as compared to kT. The Fermi level
corresponding to the ε0|−1 transition in the pristine system
defines the free polaron level. Therefore, interstitial Li
contributes electrons to the system without introducing trap
states and thus increases the majority carrier concentration of
BVO.
Computation based on the small polaron theory reveals that

Li-doping barely affects the majority carrier mobility in BVO.
Here, the small polaron binding energy (WP) and activation
energy (WH) are calculated using the phonon frequencies and
dielectric constants from density functional perturbation
theory, described in detail in the Supporting Information.43

According to the results, the small polaron binding energy WP
is over 0.5 eV (Table S2) and is significantly larger than kBT at
room temperature (26 meV), which confirms the energetically
favorable formation of small polarons and the polaronic nature
of BVO. On the other hand, Li-doping only slightly weakens
the BVO lattice and introduces minor changes to the static and
high-frequency dielectric constants (ε0 and ε∞). Given thatWH
∝ (ε∞

−1 − ε0
−1), the value of WH turns out to be identical

between Li-doped and pristine BVO (0.152 eV, Table S2).
Because the carrier mobility μ ∝ T−1 exp(−WH/kBT), we
further conclude that Li-doping does not affect the mobility of
BVO, and that the improved conductivity observed exper-
imentally is the sole result of increased carrier concentration.
Improved electron conductivity in Li-BVO leads to

enhanced photocatalytic activity. The photoelectrochemical
characteristics of Li-BVO thin film photoanodes are studied by
linear sweep voltammetry under simulated AM 1.5G radiation
and are compared to those of pristine BVO. The illumination
is from the back side of photoanode to compensate the low
electron mobility of BVO. A phosphate buffer at pH 7 is used
as the electrolyte to measure water oxidation efficiency. For
BVO photoanodes of different Li doping levels, the photo-
current reaches a maximum when nLi/nBVO = 0.05, that is, a
doping level of 5 at. % (Figure S7). According to the
photocurrent density−potential (J−V) relations in Figure 5a,
water oxidation over the Li-BVO photoanode reaches a
photocurrent density (Jaq) of 0.87 mA/cm2 at 1.23 VRHE,
which is 18% larger than the pristine BVO (0.74 mA/cm2)

Figure 5. (a) Photocurrent density−potential characteristics (J−V curve) of 5% Li-doped BVO (red) and pristine BVO (black) in phosphate buffer
(pH 7) under back illumination (solid). The dashed line represents the J−V curve of 5% Li-doped BVO in the dark. (b) Photocurrent density−
potential characteristics (J−E curve) of 5% Li-doped BVO in phosphate buffer (pH 7) without (solid) and with (dashed) 1.0 M sulfite (Na2SO3)
under AM 1.5 illumination (red) and in the dark (blue). (c) IPCE versus wavelength at 1.23 VRHE of 5% Li-doped BVO (red) and pristine BVO
(black) in phosphate buffer (pH 7) with 1.0 M sulfite (Na2SO3) under back illumination.
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under identical conditions. The relatively low photocurrents
reflect the low activity of BVO surface for water oxidation. To
isolate the effect of Li-doping on charge carrier separation, 1.0
M sodium sulfite (Na2SO3) is added as a hole scavenger to
eliminate the surface kinetic barrier. Accordingly, photocurrent
densities in buffered sulfite electrolyte increase significantly for
both samples, with a cathodic shift of the photocurrent onset
potential by about 0.2 V (Figure 5b). The photocurrent from
Li-BVO reaches 2.57 mA/cm2, which is 20% higher than that
of pristine BVO (2.15 mA/cm2, Figure S8). The enhancement
to photocurrent is apparently correlated to the improvement in
majority carrier (electron) transport led by Li-doping. On the
other hand, the PEC activity is reduced if the doping level is
further elevated to 10% (Figure S7), due to the increased
impact of minority carrier recombination at donor sites. Li
doping also induces a relatively small cathodic shift to the
onset potential for water oxidation. However, due to its very
slow kinetics near the flat band potential, the exact shift cannot
be determined very precisely. We note the enhancement to the
photocatalytic activity and electron conductivity is similar to
the case of BVO photoanode post-treated by thermal annealing
in hydrogen (H-BVO).16 However, both H-interstitial and
oxygen vacancies may be introduced in the case of H-BVO,
which make it less straightforward to determine the
contribution of interstitial site doping. In the present case of
Li-BVO, the fabrication process does not introduce extra
oxygen vacancies when compared to pristine BVO, which
explicitly demonstrates the effectiveness of doping BVO with a
group I element at the interstitial site as a shallow donor.
Photocurrent delivered by a photoelectrode is limited by the

charge separation efficiency (ηsep) and carrier injection
efficiency into the electrolyte (ηinj), that is, J = Jmaxηsepηinj, in
which Jmax is the theoretical maximum photocurrent density
derived from the AM 1.5G spectrum and optical absorption
profile of the photoanode. For a 140 nm-thick BVO film, we
find Jmax = 4.85 mA/cm2. By assuming ηinj = 1 in sulfite
electrolyte, we determine ηsep = 0.53 for Li-BVO, which is 20%
higher than that of pristine BVO (ηsep = 0.44). The result is
consistent with the measurement of incident photon to current
efficiency (IPCE, Figure 5c), in which a uniform improvement
in IPCE values is achieved by Li-doping, for all energies above
BVO band gap. We note that, although doping with donors is a
proven strategy to improve electron transport in the BVO
water splitting photoanode, such a strategy usually improves
ηsep only at low doping levels (≤2%), as the donor defects such
as MoVI also serve as a hole trap. However, in the present case,
the optimal Li doping level is as high as 5 at. %, which suggests
that interstitial Li dopant is a less effective hole trap. This may
be due to the smaller size (0.76 Å) and low charge (+1) of Li+.
On the other hand, the hole injection efficiency into water, ηinj

aq,
is conveniently given by ηinj

aq = Jaq/Jsulfite. We therefore
determine that ηinj

aq equals 34% for both Li-doped and pristine
BVO. The values are very similar, which suggests that Li-
doping has little effect on BVO surface. The summary of
photocurrents in phosphate buffer (pH 7) with and without
1.0 M sulfite (Na2SO3) and calculated charge injection and
separation efficiency of Li-BVO and pristine BVO is shown in
Table 1. In our previous works, we used a similar fabrication
method to introduce dopants such as Mo10 and used the
postgrowth treatment, such as CO-reduction, to introduce
oxygen vacancies.13 The photocurrent from Li-BVO is nearly
10% higher than that from Mo-doped BVO and is very
comparable with CO-treated BVO that contains oxygen

vacancy defects. The simple, one-step fabrication discussed
here makes Li doping a competitive option of doping for BVO
photoanodes.
In summary, lithium is investigated and identified as a

unique interstitial dopant in bismuth vanadate that boosts its
photoelectrochemical water oxidation performance, based on
the computational and experimental studies on single-
crystalline bismuth vanadate thin film. With doping concen-
tration optimized at 5 at. %, Li-BVO increases the photo-
electrochemical water oxidation activity by about 20%, when
compared to the pristine BVO thin film of identical
morphology and crystalline phase. First-principles calculations
suggest that interstitial Li acts as a shallow electron donor in
BVO and significantly improves the majority carrier concen-
tration, without a significant change to the carrier mobility.
These findings are confirmed experimentally by electro-
chemical impedance spectroscopy and solid-state transport
measurement, in which we observe an increase of conductivity
by almost 2 orders of magnitude. Because the fabrication
process introduces no extra oxygen vacancies, we thus obtain
explicit confirmation that interstitial Li dopant is indeed an
effective electron donor in BVO. As such, this work casts new
insight into using group I elements as a low cost, environ-
mentally friendly dopant to improve electronic transport in
metal oxide-based solar water splitting photoelectrodes.

■ METHODS
Computational Methods. Spin-polarized DFT+U calculations

are carried out using the open-source plane-wave code Quantum-
ESPRESSO44 with norm-conserving pseudopotentials45 and the
Perdew−Burke−Ernzerhof exchange correlation functional.46 A
Hubbard U correction of 2.7 eV is applied on all vanadium atoms
in accordance with ref 47. All calculations are performed with a 96-
atom supercell, unless otherwise noted. A 2 × 2 × 2 k-point mesh is
used for Brillouin-zone sampling, with a wave function energy cutoff
of 50 Ry and a charge density cutoff of 300 Ry. The lattice parameters
are optimized for the pristine BiVO4 cell, and then held constant for
the doped cells. For charged systems, a charged cell correction is
implemented to minimize the effects of spurious charge interactions
between periodic images.39 All phonon and dielectric constant
calculations are performed with the Vienna ab initio software package
(VASP)48 with projector augmented-wave (PAW) potentials49 and a
PBE+U exchange correlation functional. These calculations used a 48-
atom supercell with a 3 × 3 × 2 k-point mesh with a wave function
energy cutoff of 520 eV.

Thin Film Photoanode Preparation. Li-doped and pristine
BVO thin films are deposited on YSZ(001) single-crystalline
substrates (MTI Corp) by PLD using a KrF excimer laser (λ = 248
nm) that operated at a repetition rate of 20 Hz and a fluence of 1.8 J/
cm2. Li-doped and pristine BVO laser ablation targets are prepared by
a conventional ceramic sintering method, using BiVO4 powder, with
and without the addition of Li2CO3 powder. For photoelectrochem-
ical characterization of BVO photoanodes, a 50 nm thick ITO film is
first deposited over the YSZ substrate at 600 °C and under a base
pressure of 6 × 10−7 Torr. BVO films are subsequently deposited at

Table 1. Summary of Photocurrents in Phosphate Buffer
(pH 7) with (Jsulfite) and without (Jwater) 1.0 M Sulfite
(Na2SO3) and the Calculated Charge Injection and
Separation Efficiency of 5% Li-Doped BVO and Pristine
BVO

Jsulfite
(mA/cm2)

Jwater
(mA/cm2) ηinj (%) ηsep (%)

5% Li-doped BVO 2.57 0.87 34 53
pristine BVO 2.15 0.74 34 44

Chemistry of Materials pubs.acs.org/cm Article

https://dx.doi.org/10.1021/acs.chemmater.0c01481
Chem. Mater. 2020, 32, 6401−6409

6406

http://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.0c01481/suppl_file/cm0c01481_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.0c01481/suppl_file/cm0c01481_si_001.pdf
pubs.acs.org/cm?ref=pdf
https://dx.doi.org/10.1021/acs.chemmater.0c01481?ref=pdf


625 °C in 20 mTorr of oxygen. After deposition, the films are cooled
to room temperature under the same atmosphere at a rate of 10 °C
min−1.
Microstructural, Chemical, and Optical Characterization.

Crystalline phases of the thin film are characterized by X-ray
diffraction (XRD, Rigaku Ultima III) using Cu Kα radiation (λ =
1.5418 Å). The surface morphology is investigated with the aid of
scanning electron microscopy (SEM, Hitachi 4800) and atomic force
microscopy (AFM, Park NX 20). The microstructure of the film is
characterized by transmission electron microscopy (TEM, FEI Talos
200X). The optical absorption and bandgap of the thin film are
obtained from a UV−vis−NIR spectrophotometer (PerkinElmer,
Lambda 950, and Lambda 25). X-ray photoelectron spectroscopy
measurement is performed in a high vacuum (∼10−7 Torr) using Al
Kα (1486.6 eV) as the excitation source.
Electronic Transport Characterization. Electrochemical im-

pedance spectroscopy (EIS) is carried out in a pH 7.0 phosphate
buffer, in a frequency range between 100 Hz and 100 kHz. The
measured spectra are analyzed by Zview software (Scribner
Associates). Solid-state electronic transport properties are charac-
terized using a probe station (Signatone), with Ti (3 nm)/Au (60
nm) top electrodes deposited over the BVO thin film by thermal
evaporation. For out-of-plane measurements, the ITO underlayer is
partially exposed by using a shadow mask during BVO deposition, so
that the measurements are between the top Ti/Au electrode and the
bottom ITO electrode. For in-plane measurements, BVO thin films
are deposited over bare YSZ substrate without the ITO underlayer,
and the measurements are between the pairs of top electrodes.
Photoelectrochemical Characterization. PEC characterization

is performed using a potentiostat (PAR VersaStat 4) in the three-
electrode configuration, with a Li-doped or pristine BVO thin film as
the working electrode, Ag/AgCl (3 M KCl) as the reference electrode,
and a Pt wire as the counter electrode. The electrolyte solution is a
pH phosphate buffer, with or without the addition of 1.0 M Na2SO3
as hole scavenger. Solar illumination is simulated by a 150 W solar
simulator with an AM 1.5G filter (Newport). The incident light
power is calibrated by a calibrated quartz-windowed Si solar cell
(Newport) to a nominal power of 100 mW cm−2. For the incident
photon-to-current efficiency (IPCE) measurement, monochromatized
illumination is generated using a 300 W xenon arc lamp and a grating
monochromator equipped with band-pass filters for removing higher
order diffractions. The light power at each wavelength is measured by
an optical power meter (Newport 1936-R) and a UV-enhanced Si
photodiode sensor.
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