
Revisiting Design Choices in Proximal Policy Optimization

Chloe Ching-Yun Hsu Celestine Mendler-Dünner Moritz Hardt

{chloehsu,mendler,hardt}@ berkeley.edu

University of California, Berkeley

Abstract

Proximal Policy Optimization (PPO) is a popular deep policy gradient algo-
rithm. In standard implementations, PPO regularizes policy updates with
clipped probability ratios, and parameterizes policies with either continu-
ous Gaussian distributions or discrete Softmax distributions. These design
choices are widely accepted, and motivated by empirical performance com-
parisons on MuJoCo and Atari benchmarks.

We revisit these practices outside the regime of current benchmarks, and
expose three failure modes of standard PPO. We explain why standard design
choices are problematic in these cases, and show that alternative choices of
surrogate objectives and policy parameterizations can prevent the failure
modes. We hope that our work serves as a reminder that many algorithmic
design choices in reinforcement learning are tied to specific simulation envi-
ronments. We should not implicitly accept these choices as a standard part
of a more general algorithm.

1 Introduction

The PPO algorithm [22] is a policy gradient method that is used in diverse high profile reinforcement
learning (RL) applications to train policies, including playing DOTA [7], manipulating a Rubik’s
cube [2], and designing chip placement [15].

The key feature of the PPO algorithm is a surrogate objective for computing policy updates. The
surrogate objective regularizes large policy updates, in the spirit of a trust region method, so that
each policy update step stays within a close neighborhood around the previous-iteration policy.
This increases the validity of the surrogate objective which is based on data collected from the
previous-iteration policy. The algorithm then incrementally refines the policy using multiple steps
of stochastic gradient ascent before collecting new data.

In its full generality PPO refers to a family of algorithms, where the exact choice of the surrogate
objective is left as a flexible design choice to the user. As a consequence, several versions of this
algorithm have been proposed in the literature. All of them build on the idea of regularizing the
distance between the initial and the updated policy, but they differ in their implementation.

A natural approach to incorporate regularization is to use the Kullback-Leibler (KL) divergence
between successive policy iterations as a penalty in the surrogate objective. Such an approach can
be theoretically motivated by approximating the Trust Region Policy Optimization [21] (TRPO)
method that is known to monotonically improve policies.

Rather surprisingly, a different, more ad-hoc surrogate objective has emerged as the most common
design choice among practitioners. This alternative surrogate objective is the so-called clipped
objective. Instead of regularizing the update with a penalty, it greedily ignores any change to the
parameter update after the probability ratio between the initial and the updated policy exceeds a
predefined threshold. This heuristic is easy to implement and has demonstrated good empirical
performance on a number of MuJoCo benchmarks [22]. Today, most implementations follow this

ar
X

iv
:2

0
0
9
.1

0
8
9
7
v
1

[c

s.
L

G
]

 2
3
 S

ep
 2

0
2
0

design choice and it is considered a standard part of PPO – to the extent that it is often not even
mentioned in experimental setups.

The choice of surrogate model is only one example for a standard design choice used to learn
policies with PPO. Another example is the distribution family used for policy parameterization.
Standard PPO implementations use diagonal Gaussian distributions on continuous action spaces,
and categorical Softmax distributions on discrete action spaces. Alternative families of distributions
have been proposed in the literature in the context of other RL algorithms, and there is no reason
to rule them out a priori for PPO.

In this paper we revisit these standard design choices for the PPO algorithm. Our main concern is
that they have been made within the limited regime of current benchmarks, in particular, MuJoCo
and Atari. It is not a priori clear how robust these methods are when used in different environments.
Our goal is to contribute to a more principled understanding of PPO. We point out potential
issues with current design choices, investigate alternative design choices, and propose avenues for
improving the PPO method.

1.1 Our contributions

We design simple test cases to isolate three failure modes where standard PPO (using the clipped
objective and Gaussian/Softmax policy parameterization) does not achieve the desired convergence
behavior: On continuous action spaces, standard PPO is unstable when rewards vanish outside
bounded support, and it is sensitive to initialization when there are locally optimal actions close to
initialization. On discrete action spaces with sparse high rewards, standard PPO often gets stuck at
suboptimal actions. We analyze the reason for these failure modes and explain why they are not
exposed by standard benchmarks.

We then revisit alternative design choices and evaluate their performance in these situations. On
discrete action spaces, we revisit the more principled KL-regularized surrogate objectives, and
show that they make PPO more robust to our failure mode example. In fact, KL-regularized PPO
even comes with convergence guarantees for one of the settings, and concerningly this favorable
property is not preserved by the clipping heuristic.

On continuous action spaces, we find that policy parameterization with Beta distributions is
a favorable combination with PPO, because it is more robust to outliers and can be initialized
uniformly. Beta policies avoid the identified failure modes, while also significantly improving PPO
performance on MuJoCo environments. For example, PPO with beta policy achieves 2x cumulative
rewards on the OpenAI Gym [8] Humanoid-v2 task.

In summary, our study suggests that Beta policy parameterization and KL-regularized objectives
should be reconsidered for PPO, especially when moving outside the regime of current benchmarks.
While we do not claim that our proposed alternatives improve PPO in all settings, we show that the
community might have ruled out these variants too soon based on early MuJoCo experiments. We
hope this paper serves as a reminder that many algorithmic design choices in RL are decided based
on specific simulation environments. Without a deeper understanding, we need to reassess these
conclusions in new environments.

2 Background and related work

We start by providing some background on the PPO algorithm and then introduce the different
design choices that we investigate and compare in this manuscript.

2.1 Proximal Policy Optimization

PPO is a policy gradient algorithm that learns a parameterized policy πθ . It iteratively updates the
parameters θ of the policy by solving a local optimization problem:

θnew ← argmax
θ

L(θ; Âπold). (1)

2

LCLIP (θ) := E
a,s∼πold

[

min

(

πθ(a|s)

πold(a|s)
Âπold (a, s), clip

(

πθ(a|s)

πold(a|s)
,1− ǫ,1+ ǫ

)

Âπold (a, s)

)]

(2a)

LKL,forward (θ) := E
a,s∼πold

[

πθ(a|s)

πold(a|s)
Âπold (a, s)

]

− βDKL(πold||πθ) (2b)

LKL,reverse (θ) := E
a,s∼πold

[

πθ(a|s)

πold(a|s)
Âπold (a, s)

]

− βDKL(πθ ||πold) (2c)

Figure 1: Design choices for PPO surrogate objective.

Gaussian πθ(a|s) :=N
(

µθ(s),σ
2
θ (s)

)

(3a)

Beta πθ(a|s) := f

(

a− l

r − l
,αθ(s),βθ(s)

)

with f (x,α,β) :=
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− xβ−1) (3b)

Softmax πθ(a|s) :=
1

cs
eφθ (s,a) with cs =

∑

a′∈A

eφθ (s,a
′) (3c)

Figure 2: Design choices for PPO policy parameterization.

The surrogate objective L uses the advantage estimates Âπold(s,a) ∀s,a to assess how much better a
particular action a is on state s compared to a randomly sampled action from the previous-iteration
policy πold(·|s). These estimates are obtained by sampling trajectories from πold prior to each
optimization step. Based on these estimates, the surrogate objective L is then optimized to find a
new parameter vector θnew for the policy πθ . The optimization (1) is not performed exactly in PPO,
but using multiple epochs of stochastic gradient ascent.

2.1.1 Policy regularization

The surrogate objective L in (1) is the key feature of PPO, as it regularizes excessively large policy
updates and allows the algorithm to efficiently reuse available data. There are different variants to
implement this regularization, we focus on the three primary variants summarized in Figure 1.

The first objective LCLIP in (2a) corresponds to the clipping heuristic proposed in [22]. It is simple
to implement and uses a clipping threshold ǫ > 0 to control the size of each policy update. This
objective is most popular amongst practitioners because of its good benchmark performance.

The second objective LKL,forward in (2b) uses a soft constraint on the forward KL distance between
the initial and the updated policy. The regularization strength is controlled by the regularization
parameter β. This objective was also proposed in [22] and is closely related to TRPO [21], a well
understood trust region algorithm related to PPO.

The third objective LKL,reverse in (2c) uses the reversed KL-distance for regularization. This objective
has not been studied empirically but has been the main focus of theoretical studies around PPO [11,
14, 16]. The reason is its close connection to mirror descent, a well understood optimization method
with provable convergence guarantees.

To make the connection between KL-regularized PPO and mirror descent formal, Liu et al. [14]
use the representation power of overparameterized neural networks to approximate the infinite-
dimensional mirror descent updates, while other works focus on MDPs with finite state and action
spaces. We review and extend these theoretical studies connecting PPO to mirror descent in
Appendix A. We simplify their exposition and clarify that the assumptions in the convergence
analyses of [14, 16] are satisfied only for certain families of policy parameterizations. These refined
theoretical insights help us draw new intuition on the convergence properties of the PPO variants,
and how the choice of policy parameterization affects PPO behavior.

3

2.1.2 Policy parameterization

Standard PPO implementations use diagonal Gaussian distributions for parameterizing the policy
πθ on continuous action spaces, and Softmax distributions on discrete action spaces. In this paper
we consider Beta distributions as an alternative parameterization for continuous action spaces. The
respective policies πθ(a|s) are stated in Figure 2.

Beta policy parameterizations have previously been proposed in [9] for the TRPO algorithm. The
authors chose Beta policy parameterizations because they can explicitly incorporate action space
boundaries a ∈ [l, r] and eliminate the biased boundary effects caused by truncated Gaussians.
In this work we demonstrate that this is not the only benefit of using Beta parameterization, it
also leads to more reliable convergence behavior of the PPO algorithm in our test cases and can
outperform standard PPO even in settings where boundary effects are not relevant.

2.2 Empirical studies

Previous works have already expressed concerns about the robustness of standard PPO. Henderson
et al. [12] highlight the concern that RL algorithm comparisons depend on the environments, and
show that PPO and other deep RL algorithms are sensitive to random initialization and reward
scaling. Our work complements previous work with more in-depth analysis of standard PPO’s lack
of robustness in relation to the two design choices: policy parameterization and surrogate objective.

Recent ablations studies [3, 10] investigate how some hyperparameters and design choices affect
the performance of PPO and other on-policy RL algorithms on MuJoCo benchmarks. While these
studies provide empirical results on how to optimize PPO performance onMuJoCo benchmarks, our
work takes a first step in examining failure modes of standard PPO outside of current benchmarks.
Our work also differs from existing empirical work on the studied design choices. Motivated by the
discovered failure modes of standard PPO, we choose to focus on policy parameterizations and
surrogate objectives. While the alternative design choices we study have been previously proposed,
their impact on PPO performance has been largely unknown and unquestioned. For example, in a
recent large-scale study [3] of more than 50 design choices in on-policy RL algorithms, the choices
of clipping as regularization and Gaussian policy are not included in the studied design choices.

3 Failure modes of standard PPO

We start by outlining three failure modes of the common combination of clipped surrogate objective
with continuous Gaussian and discrete Softmax policy parameterization. We refer to these design
choices as standard PPO.

3.1 Reward signal with bounded support

The first failure mode illustrates a scenario where the clipped objective fails to recover from a bad
Gaussian policy update step. The clipping mechanism effectively prevents the policy from moving
further away once it is outside the trust region, but it does not bound the size of an individual
policy update step. This behavior is particularly problematic if a single reward signal can cause the
policy to end up in regions with low reward signal. To illustrate this issue, consider the following
toy example where the support of the reward signal is bounded:

Failure mode 1. Consider the simple 1-dimensional example on a continuous action space illustrated
in Figure 3a. The reward landscape, visualized in the left plot, has a single peak of high reward around
a = −0.9 and is purely random noise outside the interval [−1.0,−0.8]. For this simple example we illustrate
the training of a Gaussian policy with the clipped objective in the right plot. We see that in the initial
phase of training the policy πθ quickly moves towards the high-reward peak and concentrates by rapidly
decreasing the standard deviation. But then, at iteration 10, it starts to diverge and drifts away into low
reward regions. The experienced reward across iterations is shown in Figure 3b.

The undesirable behavior of Failure mode 1 can reliably be reproduced in similar 1-dimensional
settings, where reward signals are bounded to a subregion of the action space. The abruptly

4

large variance which in turn puts large probability mass outside the action boundaries. With Beta
policies, when α = β = 1, the Beta distribution is by definition uniform across the interval. With the
softplus parameterization of α = log(1+ exp(xα)) + 1, α = 1 corresponds to xα = −∞, and similarly
for β. In practice, we initialize with xα ,xβ ≈ −4 and hence α,β ≈ 1.018 for a close approximation of
the uniform distribution. This eliminates suboptimal convergence due to bad initialization and
hence fixes the failure mode on multi-peak reward landscapes, as shown in Figure 6b.

MuJoCo performance. In addition to preventing the two above failure modes, we found that Beta
policy parameterization also improves benchmark performance on some MuJoCo tasks, compared
to Gaussian policies, as illustrated in Figure 9. In particular, PPO achieves 2x cumulative reward
on the Humanoid-v2 task (1M steps) with beta policy, compared to Gaussian policy.

5 Discussion

Many algorithmic design choices in RL are made based on empirical comparisons and it is easy
to forget that their justification is limited to the regime of the chosen benchmark tasks. Our
study highlights, at the example of PPO, that widely accepted design choices do not necessarily
generalize to new environments. We conduct failure mode analyses on synthetic test cases in order
to understand and diagnose the broader implications of such design choices. We believe that such
an approach offers a principled tool to isolate specific convergence issues of an algorithm and it
augments classical benchmarks that often confound many different aspects of the environment.

We emphasize two main insights of our PPO study: First, Beta policy parameterization has attractive
properties compared to standard Gaussian parameterization. i) It avoids excessively large stochastic
gradient updates caused by actions in the distribution tails, which are particularly problematic
in combination with the clipped surrogate objective. ii) It allows for approximately uniform
initialization and is thus less sensitive to suboptimal initialization. iii) As pointed out by prior
work [9] it also eliminates the bias towards boundaries in truncated Gaussians on bounded action
spaces. Second, the advantage of clipping over the more principled KL-regularized objective is
limited to the regime of MuJoCo benchmarks with Gaussian policies. On synthetic examples,
KL-regularized objective is more robust. On MuJoCo benchmarks with Beta policy, KL-regularized
PPO has similar or better performance than clipped PPO in most tasks.

While our main analysis focuses on the choice of surrogate objective and policy parameterization,
we include several surprising findings around two other common implementation choices in PPO
in Appendix E – advantage normalization and reward scaling. Briefly, we find that constant reward
scaling can replace the complex reward scaling scheme studied in [10] without loss in performance;
that advantage normalization helps PPO on some tasks but hurts on others; and that advantage
normalization effectively anneals the mirror descent step size. We hope that our initial findings
provide a valuable starting point for further work towards fully understanding these design choices.

Finally, we believe that our insights on PPO can also help to better understand other policy
gradient algorithms such as Natural Policy Gradient (NPG) [13] and V-MPO [23], as they are closely
connected to KL-regularized PPO as discussed in Appendix A.

Achnowledgements

The authors would like to thank Ben Recht for insightful discussions and for providing feedback
on the initial draft of this work. In addition, the second author wishes to acknowledge support
from the Swiss National Science Foundation Early Postdoc Mobility Fellowship Program.

Code availability

Our code is available at https://github.com/chloechsu/revisiting-ppo.

12

References

[1] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. Optimality and ap-
proximation with policy gradient methods in markov decision processes. arXiv preprint
arXiv:1908.00261, 2019.

[2] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur
Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s
cube with a robot hand. arXiv preprint arXiv:1910.07113, 2019.

[3] Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphael
Marinier, Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, et al. What
matters in on-policy reinforcement learning? a large-scale empirical study. arXiv preprint
arXiv:2006.05990, 2020.

[4] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a
meta-algorithm and applications. Theory of Computing, 8(1):121–164, 2012.

[5] Boaz Barak, Moritz Hardt, and Satyen Kale. The uniform hardcore lemma via approximate
bregman projections. In Proceedings of the twentieth annual ACM-SIAM symposium on Discrete
algorithms, pages 1193–1200. SIAM, 2009.

[6] Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods
for convex optimization. Operations Research Letters, 31(3):167–175, 2003.

[7] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

[8] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[9] Po-Wei Chou, Daniel Maturana, and Sebastian Scherer. Improving stochastic policy gradients
in continuous control with deep reinforcement learning using the beta distribution. In Doina
Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pages 834–843, International
Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

[10] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation matters in deep RL: A case study on PPO
and TRPO. In International Conference on Learning Representations, 2020.

[11] Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized markov decision
processes. arXiv preprint arXiv:1901.11275, 2019.

[12] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep reinforcement learning that matters. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

[13] Sham M Kakade. A natural policy gradient. In Advances in neural information processing
systems, pages 1531–1538, 2002.

[14] Boyi Liu, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural proximal/trust region policy
optimization attains globally optimal policy. arXiv preprint arXiv:1906.10306, 2019.

[15] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Jiang, Ebrahim Songhori, Shen Wang,
Young-Joon Lee, Eric Johnson, Omkar Pathak, Sungmin Bae, et al. Chip placement with deep
reinforcement learning. arXiv preprint arXiv:2004.10746, 2020.

[16] Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-regularized
markov decision processes. arXiv preprint arXiv:1705.07798, 2017.

[17] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration
via bootstrapped dqn. In Advances in neural information processing systems, pages 4026–4034,
2016.

13

[18] Ian Osband, Benjamin Van Roy, Daniel J Russo, and Zheng Wen. Deep exploration via
randomized value functions. Journal of Machine Learning Research, 20(124):1–62, 2019.

[19] Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen,
Xi Chen, Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for
exploration. arXiv preprint arXiv:1706.01905, 2017.

[20] Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom
Van de Wiele, Volodymyr Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by
playing-solving sparse reward tasks from scratch. arXiv preprint arXiv:1802.10567, 2018.

[21] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International conference on machine learning, pages 1889–1897,
2015.

[22] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[23] H Francis Song, Abbas Abdolmaleki, Jost Tobias Springenberg, Aidan Clark, Hubert Soyer,
Jack W Rae, Seb Noury, Arun Ahuja, Siqi Liu, Dhruva Tirumala, et al. V-mpo: On-policy
maximum a posteriori policy optimization for discrete and continuous control. arXiv preprint
arXiv:1909.12238, 2019.

[24] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John
Schulman, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration
for deep reinforcement learning. In Advances in neural information processing systems, pages
2753–2762, 2017.

[25] Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nicolas
Heess, Thomas Rothörl, Thomas Lampe, and Martin Riedmiller. Leveraging demonstrations
for deep reinforcement learning on robotics problems with sparse rewards. arXiv preprint
arXiv:1707.08817, 2017.

14

Appendix

A KL-regularized PPO: convergence guarantees and connections to mirror
descent, NPG, and V-MPO

We first focus on the connection between KL-regularized PPO and mirror descent. We extend and
simplify existing expositions of this connection and derive convergence guarantees for PPO with
parameterized policy classes.

Then, we also connect KL-regularized PPO to natural policy gradient (NPG) and V-MPO. We note
that PPO with KL penalty in either direction is approximately equivalent to both Natural Policy
Gradient [13] and mirror descent with I-projection, while V-MPO [23] is equivalent to mirror
descent with reverse I-projection (also known as M-projection).

A.1 Connection to mirror descent

Mirror Descent has proven a valuable theoretical tool for deriving convergence results for policy
gradient-type methods [1, 11, 14, 16].

We recall that mirror descent [6] in its general form is applied to an objective f and optimizes over
a distribution family P . Each mirror descent iteration optimizes for a linear approximation of f
plus a KL-regularization term:

πk+1 := argmin
π∈P

{

〈∇f (πk),π〉+
1

η
DKL(π || π

k)

}

, (5)

where η denotes the step size and the negative entropy is used for the Bregman divergence.

When applied to the RL setting where the goal is to maximize expected advantage1 we choose f to
measure the expected advantage at each state s, i.e.,

fs(πθ) = − E
a∼πθ (·|s)

[Aπθk (s,a)] ∀s.

The corresponding infinite-dimensional gradient is ∇fs(πθk) = A
πθk (s, ·). Hence, one step of mirror

descent for this particular choice of f is equivalent to maximizing the LKL,reverse(θ) PPO surrogate
objective in (2c).

πθk+1(·|s) := argmax
θ∈Θ

{

E
a∼πθ (·|s)

[Aπθk (s,a)]−
1

η
DKL(πθ || πθk)

}

. (6)

A.2 Connection to projected multiplicytive weights

Mirror descent can be shown to follow the multiplicative weights (MW) update rule. Multiplicative
weights (MW) minimize regret in an online learning setting with respect to payoff functions
mk : X → [−ρ,ρ] with width ρ. Given a domain X , MW starts with the uniform distribution π0.
In the k-th round, MW observes payoffs mk(x) for each x ∈ X and updates the distribution πk
according to the following update rule:

πk+1(x) ∝ πk(x) e
ηmk (x), (7)

where η ∈ (0, 12) is the MW learning rate. Intuitively, the update rule boosts elements with high

payoff and down-weigh elements with low payoff2.

1The advantage Aπ(s,a) is a proxy for how much better a particular action a is on state s compared to a
randomly sampled action from π(·|s).

2The update rule is sometimes written in multiplicative weights literature with penalty instead of payoff,
and with a linear factor 1+ηmk instead of the exponential factor eηmk . The differences lead to slightly different
bounds. See Section 2 in [4] for a detailed discussion.

15

Information projection. The MW update is nonparameteric and hence the updated policy πMW

proposed by MW is not necessarily in the parameteric family P . When working with parameter-
ized distributions, information projection is a natural way to project the exact MW update to a
parameterized family P = {πθ : θ ∈Θ}. Information projection finds the closest distribution within
the family, as measured by KL-distance.

Definition A.1 (I-projection). The information projection of a probability distribution q onto a set of
distributions P is

I-Proj
P

q = argmin
p∈P

DKL(p || q). (8)

Therefore, reverse-KL-regularzied PPO also follows projected MW, with target updates proportional
to exponentiated advantages:

πMW (·|s) ∝ πθk (·|s) exp(ηA
πθk (s, ·)); πθk+1(·|s) = I-Proj

{πθ (·|s): θ∈Θ}

πMW , (9)

With information projection, we can project the infinite-dimensional target MW update to a
parameterized family. In practice, MW with information projection formulates an optimization
objective, requiring only an implicit representation of the target MW update.

Using the definition of KL-divergence we can write

DKL

(

πθ ||
1

Zk
πk e

ηmk
)

= logZk +

∫

πθ(logπθ − logπk − ηmk)

= logZk +DKL(πθ || πk)− η E
πk

[

πθ
πk
mk

]

.

Hence, for β = 1/η minimizing the information projection distance is equivalent to maximizing the
KL-regularized PPO objective LKL,reverse (2c).

A.3 Convergence guarantees

Building on the connection of KL-regularized PPO to mirror descent and multiplicative weights,
we review and extend existing convergence analysis.

The KL-regularized version of PPO inherits convergence guarantees of mirror descent for policy
families that are closed under mixture. Thius includes softmax parameterization of discrete action
spaces. In the following we will extend existing convergence analyses to cover a more practical
setting of PPO, including approximate updates and adaptive step sizes.

Therefore, we extend existing MW convergence guarantees to approximately projected MW on
closed and convex distribution families. A parameterized family P = {πθ : θ ∈Θ} is convex when P
is closed under mixture. Examples of convex families include distributions with a bounded support
and distributions with a bounded probability density range. In contrast to MW , each update step
in PPO (9) is only solved approximately via a fixed number of stochastic gradient steps. To capture
the approximation, we introduce the notion of approximate projection.

Definition A.2 (Approximate I-projection). A distribution p̃ ∈ P is an α-approximate information
projection of q if for any p ∈ P ,

DKL(p || p̃) ≤DKL(p || I-Proj
P

q) +α.

Intuitively, p̃ is an α-approximate projection of q if it is close to the exact projection I-ProjP q,
such that the KL-distance from any other distribution in the family to p̃ is about the same as its
KL-distance to the exact projection I-ProjP q.

When mirror descent does not solve for the argmax in (6) exactly, it corresponds to an approximate
information projection of the multiplicate weights update rule. An α-approximate projected MW

16

update is an α-approximate projection of the implicitly represented infinite-dimensional MW
update distribution from the update rule (7).

We also review Bregman’s theorem here, which will be used in the convergence analysis.

Theorem A.3 (Bregman). Let p,q be two distributions such that p is in the non-empty closed convex set
Γ of measures. Then,

DKL(p || I-Proj
Γ

q) +DKL(I-Proj
Γ

q || q) ≤DKL(p || q).

Now we are ready to state the convergence guarantees for projected multiplicative weights. We
first state Theorem A.4 in projected multiplicative weights language, and restate the theorem as
Theorem A.5 in RL language. The proof extends main ideas from the proof of Lemma 4.1 in [5]
with a finer-grain analysis, using Bregman’s theorem.

Theorem A.4. Let P = {πθ : θ ∈ Θ} be a family of distributions closed under mixture. Let mk : X →
[−ρk ,ρk] be payoff functions. Starting from any initial distribution πθ0 , after K rounds of α-approximate

projected multiplicative weights update with step size η1, · · · ,ηK such that ηk ∈ (0,
1
ρk
), the payoff difference

between πθk and the optimal distribution πθ∗ is bounded by

K
∑

k=1

ηk

(

E
πθ∗

[mk]− E
πθk

[mk]

)

≤DKL(πθ∗ || πθ0) +αK +

K
∑

k=1

η2k E
πθk

[m2
k],

and in the special case of constant step size η and constant payoff function width ρ, we can simplify the
bound as

1

K

K
∑

k=1

(

E
x∼πθ∗

[mk(x)]− E
x∼πθk

[mk(x)]

)

≤ ηρ2 +
α

η
+

1

ηK
DKL(πθ∗ || π0). (10)

Proof. Let pMWk be the multiplicative weights update pMWk = πθk e
ηmk /Zk . For any θ, by definition,

DKL(πθ || p
MW
k)−DKL(πθ || πθk) = −

∫

πθ log
pMWk

πθk
= logZk − η E

πθ
[mk]. (11)

Meanwhile, since mk is bounded by [−ρk ,ρk], ηkmk is bounded by [−1,1], so using ex ≤ 1+ x+ x2 for
x ∈ [−1,1],

Zk = E
πθk

[eηkmk] ≤ 1+ ηk E
πθk

[mk] + η
2
k E
πθk

[m2
k],

and using log(1 + x) ≤ x,

logZk ≤ ηk E
πθk

[mk] + η
2
k E
πθk

[m2
k]. (12)

Substituting into Equation 11, we have

DKL

(

πθ || p
MW
k

)

−DKL(πθ || πθk) ≤ ηk

(

E
πθk

[mk]− E
πθ
[mk]

)

+ η2k E
πθk

[m2
k] (13)

By Bregman’s Theorem,

DKL

(

πθ || p
MW
k

)

≥DKL

(

πθ || I-Proj
P

pMWk

)

. (14)

Since πθk+1 is an α-approximation of I-ProjP p
MW
k ,

DKL

(

πθ || I-Proj
P

pMWk

)

≥DKL(πθ || πθk+1)−α. (15)

17

Therefore, combining Equation 13, Equation 14, and Equation 15,

DKL(πθ || πθk+1)−DKL(πθ || πθk) ≤ ηk

(

E
πθk

[mk]− E
πθ
[mk]

)

+ η2k E
πθk

[m2
k] +α. (16)

From the telescope sum of Equation 16 from k = 1 to K , we have

DKL(πθ || πθK)−DKL(πθ || πθ0) ≤ αK +















K
∑

k=1

ηk

(

E
πθk

[mk]− E
πθ
[mk]

)















+

K
∑

k=1

η2k E
πθk

[m2
k],

and hence
K

∑

k=1

ηk

(

E
πθ
[mk]− E

πθk

[mk]

)

≤DKL(πθ || πθ0) +αK +

K
∑

k=1

η2k E
πθk

[m2
k].

In the special case of constant step size η, we get the desired bound

1

K

K
∑

k=1

E
πθ
[mk]−

1

K

K
∑

k=1

E
πθk

[mk] ≤
η

K

K
∑

k=1

E
πθk

[m2
k] +

α

η
+

1

ηK
DKL(πθ || πθ0).

If we further substituting with Eπθk
[m2

k] ≤ ρ
2 for constant payoff width ρ, we get the simpler but

coarser bound.

The α
η term captures the additional error caused by PPO not exactly optimizing the surrogate

objective in each iteration. With α = 0 and π0 being the uniform distribution, Theorem A.4
can recover the regret bound for exact MW on finite domain X (see Theorem 2.3 in [4]), using
DKL(π || π0) ≤ ln |X | on discrete spaces.

Theorem A.5 (Restating Theorem A.4). Let P = {πθ : θ ∈ Θ} be a family of policies closed under

mixtur. Assume bounded advantages Âπθk ∈ [−ρk ,ρk], and assume the gradient steps in each PPO
iteration achieve an α-approximate projection of the surrogate objective (2c) on state s. Starting from
initial policy πθ0 , after K iterations with step sizes η1, · · · ,ηK such that ηk ∈ (0,

1
ρk
), we can bound the

difference in advantages between πθk and the optimal policy πθ∗ on state s by

K
∑

k=1

ηk













E
a∼πθ∗ (·|s)

[Âπθk (s,a)]− E
a∼πθk (·|s)

[Âπθk (s,a)]













≤

DKL(πθ∗(·|s) || πθ0(·|s)) +αK +

K
∑

k=1

η2k E
a∼πθk (·|s)

[Âπθk (s,a)2],

and in the special case of constant step size η and constant advantage width ρ on discrete action spaces,
we can simplify the bound as

1

K

K
∑

k=1













max
a
Âπθk (s,a)− E

a∼πθk (·|s)
[Âπθk (s,a)]













≤ ηρ2 +
α

η
+

1

ηK
DKL(πθ∗(·|s) || π0(·|s)),

meaning the average action under πθk is close to the best action under advantage function Âπθk .

On discrete action spaces, when using uniform initialization, the upper bound in TheoremA.5 holds
with 1

ηKDKL(πθ∗ ||πθ0) ≤ log |A|. As the number of training iterations K increases, 1
ηKDKL(πθ∗ ||πθ0)

vanishes, and the impact of initialization diminishes.

18

A.4 Connection to Natural Policy Gradient

The Hessian of the KL penalty term in either KL-direction is Fisher information matrix F(θk), and
the second-order Taylor expansion is

DKL(πθ || πθk) ≈DKL(πθk || πθ) ≈
1

2
(θ −θk)

TF(θold)(θ −θk).

Therefore, optimizing either KL-regularized objective (2b) or (2c) results in

θk+1 ≈ θk −
1

β
F−1(θk)∇θL(θk),

which is the natural gradient update of the unregularized policy gradient objective.

Each iteration of KL-regularized PPO is approximately equivalent to one natural gradient update
in general. As a special case, on finite Markov Decision Processes (MDPs) with finite state space
and softmax parameterization for finite action space, the Fisher information matrix is constant, and
both NPG and KL-regularized PPO correspond to exact multiplicative weights.

A.5 Comparison with V-MPO

Compared to KL-regularized PPO as multiplicative weights with information projection (9), V-MPO
corresponds to multiplicative weights with moment projection. Information projection minimizes
KL distance DKL(πθ || pMW) to the target nonparametric distribution, where as moment project
minimizes the flipped KL distance DKL(pMW || πθ).

On-Policy Maximum A Posteriori Policy Optimization (V-MPO) [23] is also related to multiplicative
weights. The E-step in V-MPO constructs the nonparametric target distribution ψ by using the
same multiplicative weight updates rule as in (9), and the M-step projects the target distribution to
the parameterized family by maximizing weighted maximum likelihood loss

∑

s,aψ(s,a) logπθ(a|s).
Maximizing this weighted log likelihood is equivalent to minimizing DKL(ψ || πθ), known as
moment projection. V-MPO only takes samples corresponding to the top half advantages in
the weighted maximum likelihood loss, which can be interpreted in the multiplicative weights
framework as setting the bottom half advantages to − inf.

While V-MPO and PPO are related in the multiplicative weights update form, information pro-
jection and moment projection results in different projections: when the nonparametric target
distribution is multi-modal cannot be fit within the parametric family, information projection is
more mode-seeking, whereas moment projection tends to be spread out more to cover the entire
support.

19

B Derivation of surrogate objective gradients

We will use ✶ to represent the indicator function and write r(a|s) :=
πθ (a|s)
πold(a|s)

and Âa,s := Â
πold(a, s) to

simplify notation.

B.1 Unregularized objective

The gradient of the unregularized objective L(θ) = Ea,s∼πold

[

r(a|s)Âa,s
]

corresponds to

∇θL(θ) = E
a,s∼πold

[

r(a|s)Âa,s∇θ logπθ(a|s)
]

B.2 Clipped objective

The gradient of the clipped objective (2a) corresponds to:

∇θL
CLIP(θ) = E

x∼πold

[

r(a|s)Âa,s∇θ logπθ(a|s) ·✶
{

r(a|s) ∈ (1− ǫ,1+ ǫ) or sgn(r(a|s)− 1) , sgn(Âa,s)
}]

.

B.3 KL-regularized objectives

The gradient of the forward-KL objective (2b) is

∇θL
KL,forward(θ) = ∇θL(θ)− β∇θDKL(πold || πθ) = E

x∼πold

[(

πθ
πold

A+ β

)

∇θ logπθ

]

and the gradient of the reverse-KL objective (2c) is

∇θL
KL,reverse(θ) = ∇θL(θ)− β∇θDKL(πθ || πold) = E

x∼πold

[

πθ
πold

(

A− β log(
πθ
πold

)

)

∇θ logπθ

]

.

To derive these expressions we first look at the KL penalty term. For forward KL we get

∇θDKL(πold || πθ) = ∇θ

∫

x
πold(x) log(

πold(x)

πθ(x)
) =

∫

x
∇θ

(

πold(x) log(
πold(x)

πθ(x)
)

)

= −

∫

x
πold(x)∇θ(log(πθ(x)))

= − E
x∼πold

[∇θ(logπθ)]

and for reverse-KL

∇θDKL(πθ || πold) = ∇θ

∫

x
πθ(x) log(

πθ(x)

πold(x)
) =

∫

x
∇θ

(

πθ(x) log(
πθ(x)

πold(x)
)

)

=

∫

x
∇θ(πθ(x)) log(

πθ(x)

πold(x)
) +

∫

x
πθ(x)∇θ log(πθ(x))

= E
x∼πold

[

πθ
πold

log(
πθ
πold

)∇θ(logπθ)

]

,

where we used
∫

x
πθ(x)∇θ log(πθ(x)) =

∫

x
∇θ(πθ(x)) = ∇θ

∫

x
πθ(x) = ∇θ(1) = 0.

20

When πold
πθ
≈ 1, by Taylor expansion

πθ
πold

log

(

πθ
πold

)

≈
πθ
πold

− 1+
1

2

(

πθ
πold

− 1

)2

,

so using the identity
∫

x
πθ(x)∇θ log(πθ(x)) = 0 again,

∇θDKL(πθ || πold) ≈ − E
x∼πold

[∇θ(logπθ)] +
1

2
E

x∼πold

[∣

∣

∣

∣

∣

πθ
πold

− 1

∣

∣

∣

∣

∣

2

∇θ(logπθ)

]

= ∇θDKL(πold || πθ) +
1

2
E

x∼πold

[∣

∣

∣

∣

∣

πθ
πold

− 1

∣

∣

∣

∣

∣

2

∇θ(logπθ)

]

Or equivalently, the difference between the two KL penalties is

∇θDKL(πθ || πold)−∇θDKL(πold || πθ) ≈
1

2
E

x∼πold

[

|
πθ
πold

− 1|2∇θ(logπθ)

]

This difference in gradients is only large if πθ
πold

is far away from 1where the score function∇θ(logπθ)

has large magnitude. We empirically evaluate the correlation of DKL(πθ || πold) and DKL(πold || πθ)
in Figure 13

B.4 Weighting of examples

We state in Table 1 the weighting of examples in the gradient calculation for each of the four
surrogate objectives. Since Ex∼πold [

πθ
πold
∇θ logπθ] = 0, the weightings are up to constant

A(x)
. We chose

the constants such that the weighting is 1 when πθ = πold.

Table 1: Gradients interpreted as weighting of examples.

Weighting of examples

∇θL 1

∇θL
KL,reverse 1−

β
A(x)

log
(

πθ (x)
πold(x)

)

= 1+
β
A(x)

log
(

πold(x)
πθ (x)

)

∇θL
KL,forward 1+

β
A(x)

(

πold(x)
πθ (x)

− 1
)

∇θL
CLIP

✶

{

πθ (x)
πold(x)

∈ (1− ǫ,1+ ǫ) or sgn
(

πθ (x)
πold(x)

− 1
)

, sgn(A(x))
}

21

Environment Observation Dimension Action Dimension Action Range (per dim)

Walker2d 17 6 [-1, 1]

Humanoid 376 17 [-0.4, 0.4]

Swimmer 8 2 [-1, 1]

Hopper 11 3 [-1, 1]

HalfCheetah 17 6 [-1, 1]

InvertedPendulum 4 1 [-3, 3]

Reacher 11 2 [-1, 1]

InvertedDoublePendulum 11 1 [-1, 1]

Table 2: MuJoCo environment description.

C Experimental setups

C.1 Constructed environments

In all constructed environments, we use the same training configuration: In each PPO iteration, we
sample 512 timesteps (16 batches, 32 in each minibatch) and run 10 epochs with learning rate 0.1.
We chose a relatively high learning rate in order to illustrate the failure behavior in a small number
PPO iterations for illustrative purposes. Similar failure examples also happen with varying batch
sizes and learning rates.

Single-peak 1D environment (Figure 3). The reward is 1.0 on the interval (−1.0,−0.8), and zero
otherwise, with Gaussian noise of standard deviation 0.1. For Beta policy and discretized policy,
we set the action bounds to be [−1.5,1.5]. The discrete policy discretizes the action space uniformly
in 0.1 increments.

Double-peak 1D environment (Figure 6). The reward is given by

r(a) = 1.1× exp{−1.2× (a+2)2}+0.9× exp{−0.9× (a− 1)2},

with Gaussian noise of standard deviation 0.1. The action bounds are [−5,5] for Beta policy.

Discrete grid environment (Figure 5). We evaluate PPO on discrete grid environments of different
sizes, varying the number of actions from 10 to 100 in increments of 10. In an environment with
n actions, the rewards are zero on n/2 actions, 0.5 on (n− 1)/2 actions, and 1 on a single optimal
action. We then also add Gaussian noise of scale 0.1 to rewards. This discrete environment satisfies
the assumptions in Theorem A.5 for convergence guarantees. When evaluting the probability of
converging to optimal action, we repeat 20 runs for each settin, and define ‘converging to optimal
action‘ as ≥ 95% probability on the optimal action in the policy after 50 iterations. When inspecting
the learned policies, we find a bimodal behavior that after 50 iterations the policy has either ≥ 95%
probability or ≤ 5% probability on the optimal action.

C.2 MuJoCo experiments

We choose hyperparameters based on the default hyperparameter values in the original PPO
paper [22] and a recent PPO ablation study [10]. For important hyperparameters related to policy
optimization (clipping threshold, KL penalty coefficient, number of epochs per PPO iteration,
minibatch size, etc.) we consider a range of hyperparameters, and find that the default values work
well. See Table 3 for the range considered and the final values used.

Following [9], we parameterize the α and β parameters in Beta distribution by softplus, with an
added constant 1 to ensure α,β ≥ 1.

22

Hyperparameter Value Range Considered

Total timesteps 1M N/A

Timesteps per iteration (horizon) 2000 1000 - 4000

Discount factor (γ) 0.99 N/A

GAE discount (λ) 0.95 N/A

Minibatch size 64 32 - 512

Clipping Threshold (ǫ) 0.2 0.0 - 0.5

KL penalty coeff (β) 3.0 0.1 - 10.0

Policy # epochs 10 1 - 40

Policy LR 3× 10−4 1× 10−5 - 5× 10−4

Policy network hidden layers [64,64] N/A

Value # epochs 10 N/A

Value LR 2× 10−5 N/A

Value network hidden layers [64,64] N/A

Table 3: PPO hyperparameters used for MuJoCo tasks. The clipping threshold and the KL penalty coefficient
are exclusive, i.e., in the clipped objective version, the clipping threshold is 0.2 and the KL penalty coefficient

is 0, while in the KL-regularized version the clipped threshold is 1× 108 and the KL penalty coefficient is 3.

We evaluate on eight MuJoCo tasks in OpenAI gym as listed in Table 2. For each task, we report the
mean cumulative episode reward and the 95% confidence interval over 10 runs in all the figures.

23

	1 Introduction
	1.1 Our contributions

	2 Background and related work
	2.1 Proximal Policy Optimization
	2.1.1 Policy regularization
	2.1.2 Policy parameterization

	2.2 Empirical studies

	3 Failure modes of standard PPO
	3.1 Reward signal with bounded support
	3.2 High-dimensional discrete action spaces
	3.3 Locally optimal actions close to initialization

	4 Improvements for PPO failure modes
	4.1 KL-regularized surrogate objectives
	4.1.1 Clarification of KL direction
	4.1.2 Advantages of KL-regularization

	4.2 Beta policy parameterization on continuous action spaces

	5 Discussion
	A KL-regularized PPO: convergence guarantees and connections to mirror descent, NPG, and V-MPO
	A.1 Connection to mirror descent
	A.2 Connection to projected multiplicytive weights
	A.3 Convergence guarantees
	A.4 Connection to Natural Policy Gradient
	A.5 Comparison with V-MPO

	B Derivation of surrogate objective gradients
	B.1 Unregularized objective
	B.2 Clipped objective
	B.3 KL-regularized objectives
	B.4 Weighting of examples

	C Experimental setups
	C.1 Constructed environments
	C.2 MuJoCo experiments

	D Supplementary figures
	E Additional studies on PPO: reward scaling and advantage normalization
	E.1 Reward scaling
	E.2 Advantage normalization

