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Abstract 12 

Protein glycosylation, the enzymatic modification of amino acid sidechains with sugar 13 

moieties, plays critical roles in cellular function, human health, and biotechnology. However, 14 

studying and producing defined glycoproteins remains challenging. Cell-free glycoprotein 15 

synthesis systems, in which protein synthesis and glycosylation are performed in crude cell 16 

extracts, offer new approaches to address these challenges. Here, we review versatile, state-of-17 

the-art systems for biomanufacturing glycoproteins in prokaryotic and eukaryotic cell-free systems 18 

with natural and synthetic N-linked glycosylation pathways. We address existing challenges and 19 

future opportunities in the use of cell-free systems for the manufacture, study, and design of 20 

glycoprotein biomedicines.  21 

Introduction 22 

Cell-free protein synthesis (CFPS) systems have emerged as promising platforms to 23 

accelerate protein design, biomanufacturing, and testing [1–8]. CFPS relies on the activation of 24 

transcriptional and translational machinery from crude cell extracts to produce proteins without 25 
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intact cells (Fig. 1). As CFPS technologies have matured, the cost and time required to prepare 1 

reactions have decreased, while protein yields have increased, in some cases, to grams of protein 2 

produced per liter of reaction [2, 9–12]. One reason for the continued development of cell-free 3 

systems is that CFPS provides distinct advantages over cellular expression for high-throughput 4 

experimentation. For example, in screening campaigns, CFPS reactions provide excellent speed 5 

and flexibility because they can produce protein from linear DNA templates in a matter of hours, 6 

avoiding rate-limiting transformation or transfection procedures [13].  Additionally, assembly of 7 

CFPS reactions can be automated and tuned using liquid-handling systems, increasing 8 

throughput for protein expression, optimization, and characterization [14–19].  9 

 Recently, CFPS systems that are tailored to produce proteins with post-translational 10 

modifications have been developed, opening the door to biomanufacturing therapeutically-11 

relevant proteins. A key feature of these efforts has been developing strategies to leverage the 12 

open nature of CFPS, which affords rigorous control over the molecular environment of protein 13 

expression. This control allows users to study and optimize site-specific protein modifications that 14 

are often critical for proper folding and bioactivity of therapeutics and vaccines [2, 3, 20–24]. For 15 

Fig. 1. Cell-free protein synthesis schematic. Cell-free protein synthesis is the 
activation of transcription and translation using crude cellular extracts instead of intact 
cells. Extracts are supplemented with exogenous resources, including amino acids, 
nucleotides, a secondary energy substrate, salts, and other necessary factors for protein 
synthesis. CFPS systems are modular with respect to the protein produced, requiring 
only changes in DNA or mRNA templates to produce different proteins. 
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example, CFPS offers flexibility to tune enzymatic protein modifications by varying the enzyme 1 

identity, concentration, and available substrates, thereby allowing control over parameters that 2 

can be confounding in living organisms [25–33]. Additionally, CFPS extracts can be prepared 3 

from an array of different culturable cell lines, allowing users to leverage strain-specific 4 

endogenous (or heterologous) biological machinery. As a result, CFPS systems are now capable 5 

of producing products such as antibodies, antibody fragments, multi-subunit enzymes, and 6 

conjugate vaccines that may require disulfide bonds and glycosylation for activity. CFPS also 7 

offers unique advantages for biomanufacturing, including simplified scalability from microliter to 8 

100 liter reactions [34], and the ability to freeze-dry reactions that are in turn shelf-stable until 9 

rehydration at the point of use [15, 35–39].  10 

The ability to produce and study glycoproteins is of great importance for engineering 11 

therapeutics and vaccines. Protein glycosylation, the covalent conjugation of sugars to amino acid 12 

sidechains, is one of the most prevalent and important protein modifications, occurring in all 13 

domains of life [40–44]. Glycosylation occurs on ~50% of eukaryotic proteins [45] and on the 14 

majority of preclinical and FDA-approved biologics [46], profoundly impacting protein folding [47],  15 

stability [48, 49], and immunogenicity [50, 51]. Unfortunately, building and testing defined 16 

glycoproteins in cells remains challenging for several reasons. These include glycoprotein 17 

heterogeneity [52–54], gaps in the methods and basic knowledge required to build defined 18 

glycoforms with desired pharmacological activities [55, 56], and the high costs and long times 19 

required to generate stable cell lines in mammalian cell culture. To address these issues, 20 

diverse CFPS platforms that allow user-defined glycosylation have been developed  [56, 57].  21 

Outline and scope 22 

Here, we review CFPS systems for producing defined glycoproteins with asparagine-linked 23 

(N-linked) glycosylation (Fig. 2). A wide array of systems that interface glycosylation with cell-free 24 

protein synthesis, which we refer to as cell-free glycoprotein synthesis (CFGpS), have been 25 
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developed to date. While there are many other platforms that utilize chemical techniques [58–61] 1 

or enzymatic reactions with purified components to obtain defined glycoproteins [62, 63], here we 2 

restrict our scope to systems where (i) enzymatic glycosylation is used, and (ii) target 3 

glycoproteins are synthesized via CFPS in crude extracts. Studies using purified translation 4 

components, such as the protein synthesis using recombinant elements (PURE [64]) system are 5 

excluded, and systems using purified glycosylation components are excluded unless otherwise 6 

noted. More exhaustive reviews of CFPS [1–4, 6, 65, 66], and glycoengineering can be found 7 

elsewhere [56, 57, 67–72]. 8 

CFGpS platforms that use extracts from a variety of host organisms to install a diverse array 9 

of glycoforms have been developed. In this review, we classify CFGpS systems by topology and 10 

the origin of the glycosylation machinery (Fig. 2), which are key characteristics when determining 11 

Fig. 2. OST-dependent and OST-independent cell-free glycoprotein synthesis systems. 
Membrane-bound OST-dependent glycosylation systems using endogenous (a) and 
heterologous (b) glycosylation machinery. (a) Cell-free glycoprotein synthesis systems 
derived from eukaryotic cell extracts enriched or supplemented with endoplasmic reticulum 
(ER) microsomes containing glycosylation components. (b) Cell-free glycoprotein synthesis 
systems derived from glycoengineered E. coli cells harboring heterologous, membrane-bound 
glycosylation machinery. (c) OST-independent glycosylation enzymes are mixed to make 
synthetic glycosylation pathways. 



6 
 

their best application areas. The topology of the glycosylation machinery is either membrane-1 

bound and oligosaccharyltransferase (OST)-dependent, or soluble and OST-independent. 2 

Glycosylation machinery can be derived from endogenous expression in cells, heterologous 3 

expression in cells, or in vitro expression in CFPS. We order the sections from the most “natural 4 

systems” (containing endogenous enzymes naturally found in the host strain) to the most 5 

synthetic (containing heterologous and novel enzyme combinations, generating glycans that are 6 

not found in nature). This distinction illustrates how the use of synthetic biology principles in 7 

glycosylation systems has expanded their scope and provided access to new glycoforms [56].  8 

In Sections 1 and 2, we review CFGpS systems that use OST-dependent N-linked 9 

glycosylation systems. All of these systems rely on membrane-bound OSTs to transfer complex, 10 

prebuilt glycans from lipid-linked oligosaccharide (LLO) donors to target proteins but vary in 11 

application depending on the glycan transferred. Section 1 describes systems using endogenous 12 

glycosylation machinery from eukaryotic cells (Fig. 2a). Section 2 describes Escherichia coli-13 

based systems that contain heterologous glycosylation machinery (Fig. 2b). Thus far, the ability 14 

of eukaryotic systems to install human-like glycans points to greater utility in expression of 15 

functional therapeutics such as antibodies [73, 74]. E. coli-based systems have shown greater 16 

promise for expressing antimicrobial glycoconjugate vaccines that can be biomanufactured with 17 

low cost and in an on-demand format [75]. In Section 3, we discuss platforms that utilize CFPS 18 

to characterize, assemble, and prototype OST-independent pathways composed of soluble 19 

glycosyltransferase (GT) enzymes [17, 27]. In these systems, cell-free derived GTs sequentially 20 

decorate glycoproteins with minimal, synthetic glycans (Fig. 2c) [27, 76]. We anticipate that 21 

minimal glycosylation could enable fundamental understanding of the properties of isolated glycan 22 

motifs and open doors for the production on new bioactive proteins.  23 
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Main text 1 

OST-dependent glycosylation systems 2 

OST-dependent N-linked glycosylation consists of conserved steps, all taking place on or 3 

across lipid membranes (the periplasmic membrane in prokaryotes, and the endoplasmic 4 

reticulum (ER) in eukaryotes) [43, 52]. The first conserved step is the assembly of the LLO donor. 5 

LLO assembly occurs stepwise as biosynthetic enzymes incorporate monosaccharides to a 6 

growing chain which is then flipped across the lipid membrane into the periplasm or ER. Next, the 7 

oligosaccharide from the LLO donor is transferred to asparagine residues within an acceptor 8 

polypeptide by a membrane-bound OST. OSTs mediate glycosylation by their substrate 9 

specificity, glycosylating only when specific polypeptide acceptor sequences and LLO donor 10 

structures are recognized. While the general acceptor peptide motif (N-X-S/T) (or “sequon”) is 11 

conserved, specific sequons and LLOs recognized by OSTs vary across organisms [52, 56]. In 12 

eukaryotes, OSTs are multi-subunit complexes assembled around a core catalytic subunit called 13 

STT3 [42, 77]. In prokaryotes, OSTs called PglB are single-subunit enzymes that bear homology 14 

to STT3, but are more tractable for heterologous expression [78]. Even the simplest OSTs, 15 

however, are large enzymes with ~13 transmembrane passes and require proper membrane 16 

embedding for activity [79]. Due to the complexity of OST-dependent glycosylation, the use of 17 

cellular extracts enriched with, or supplemented with, native cellular lipids and membrane-bound 18 

machinery has been the main strategy for obtaining active CFGpS systems [80].   19 

Section 1: OST-dependent glycosylation with endogenous eukaryotic glycosylation 20 

machinery  21 

The coactivation of CFPS and OST-dependent protein glycosylation was first observed in 22 

eukaryotic cell extracts supplemented with ER microsomes. CFGpS was reported in extracts from 23 

various origins (wheat germ cells [81], rabbit reticulocytes [82–86], and other higher eukaryotes 24 

[87]) supplemented with mammalian-derived microsomes. Additionally, homologous systems 25 
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were developed from yeast [88–90] and other fungal cells [91] by supplementing microsomes 1 

derived from the same strain as the extract. Taken together, these studies demonstrated that 2 

proteins fused to a proper microsome-targeting leader sequence could be produced and 3 

translocated into ER microsomes in vitro, and that N-linked glycosylation could occur on these 4 

microsome-targeted proteins.  5 

While the original eukaryotic CFGpS systems were intended to study protein secretion and 6 

processing, the realization that glycosylation could be combined with the benefits of CFPS 7 

prompted the development of more robust, biomanufacturing-oriented systems. Other useful 8 

features of eukaryotic CFPS systems for manufacturing therapeutics include the presence of 9 

endogenous folding chaperones (e.g., protein disulfide isomerase) and a lack of endotoxins.  10 

Recent advances in eukaryotic CFPS have enabled increases in protein titers, throughput, 11 

and glycosylation efficiency. Protein expression titers in commonly-used eukaryotic strains have 12 

now reached hundreds of μg/mL of model and non-model proteins by employing semi-continuous 13 

(where CFPS is run using dialysis) reaction conditions [92, 93]. Additionally, the implementation 14 

of internal ribosome mediated entry site (IRES) mediated translation has enabled programming 15 

of eukaryotic CFPS reactions with DNA templates instead of mRNA templates, increasing 16 

throughput by obviating the need to prepare mRNA templates [92, 94]. Processing methods have 17 

also been established for enriching extracts with intact microsomes, circumventing the need for 18 

tedious microsome purification/supplementation protocols. By using optimized lysis and extract 19 

preparation techniques, the ER is rearranged into well-defined microsomes that remain in the final 20 

extract and are active for glycosylation (Fig. 2a). Microsome-enriched extracts can now be made 21 

without the need for specialized cell disruption equipment or chromatography steps, simplifying 22 

extract preparation [95]. Moving forward, further improvement of batch eukaryotic CFPS systems 23 

to match the comparatively low costs and high CFPS titers of E. coli-based counterparts could 24 

make the technology more accessible [2, 3, 96]. 25 
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Importantly for the production of defined glycoproteins, the cell lines – and thus, the diversity 1 

of glycosylation systems – available for preparing microsome-enriched extracts has expanded to 2 

include tobacco BY-2 [96], hybridoma [97], human [94, 97], insect [94, 95, 98–100], and Chinese 3 

hamster ovary (CHO) [93, 94, 101–103] cells. These systems have been used to produce a variety 4 

of complex, active glycoprotein targets. Table 1 shows representative yields of proteins and 5 

glycoproteins synthesized in selected CFGpS systems. Notably, expression of active, multi-6 

subunit glycoproteins stabilized by disulfide bonds, such as antibodies [73] and glucose oxidase, 7 

[96] is achievable in eukaryotic systems. Toward advanced biomanufacturing applications, the 8 

well-developed CHO and insect platforms have been interfaced with non-canonical amino acid 9 

(ncAA) incorporation [104–106], enabling glycosylation and incorporation of site-specific ncAAs 10 

[73, 100]. These advances enable, for the first time, high-throughput screening of valuable, 11 

chemically-defined glycoprotein therapeutics [100] and antibody-drug conjugates [73].   12 

Extract Protein ~Yield* Quantitation 
method 

Glycosylation 
machineryϮ Notes Reference 

Tobacco 

Luc 270 Luminescence E Not glycosylated [96] 

GOx 7 U/mL Colorimetric GOx 
activity assay E 

Multi-subunit, 
DSB required for 

activity 
[96] 

Insect 

Luc 45 Luminescence N/A Not glycosylated Promega 
TNT T7 kit 

gp120 25 WB densitometry E  [98] 

EPO 5 Radioactive counting, 
autoradiography E  [100] 

CHO 

Luc 50 Luminescence E Not glycosylated [101] 

IgG 1,  
9 (SC) 

Radioactive counting, 
autoradiography E 

Multi-subunit, 
DSB required for 

activity 
[73] 

EPO 5 Radioactive counting, 
autoradiography E  [102] 

EPO 120 (SC) ELISA 

Supplemented via 
CHO-derived 
ER/Golgi 
microsomes 

 [93] 

Table 1. Cell-free glycoprotein synthesis titers with OST-dependent glycosylation systems.  
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E. coli 

sfGFP 600 Fluorescence CjLLO, CjOST Not glycosylated [107] 

sfGFP-glyco 120 Fluorescence, 
WB densitometry CjLLO, CjOST  [107] 

EPO 10 ELISA CjLLO, CjOST Non-native 
sequons [108] 

MBP 20 Radioactive counting, 
WB densitometry FtLLO, CjOST  [75] 

 1 

A compelling present application of eukaryotic CFGpS systems is producing and screening 2 

therapeutic proteins, whose activity and immunogenicity can be strongly affected by differences 3 

in glycan structures [49, 55, 60, 109]. Therefore, developing methods to produce glycoproteins 4 

with the defined, human-like glycans present on therapeutic proteins is critical. Fig. 3a 5 

summarizes the information inferred from glycan analysis in a variety of eukaryotic, OST-6 

dependent CFGpS platforms. Glycosylation in eukaryotic CFGpS is typically confirmed using 7 

enzymatic deglycosylation with PNGase F (specific for all eukaryotic glycans with a Man3GlcNAc2 8 

core without α1-3 fucosylation) and/or Endo H (specific for Man5GlcNAc2 hybrid and high 9 

mannose glycans). Knowledge of these minimum recognition motifs, and of the LLO specificity of 10 

eukaryotic OSTs, indicates that glycans are consistent with ER-dependent N-linked glycosylation 11 

involving the transfer of a glycan resembling (Glc3Man9GlcNAc2) [110]. The extent to which these 12 

glycans are trimmed and elaborated—as they would be in the ER and Golgi apparatus in living 13 

cells—still requires further characterization. The implementation of higher-resolution assays, such 14 

as those recently performed on insect and CHO systems (Fig. 3a), is helping to clarify the diversity 15 

of glycans that can be produced by CFGpS [93, 100]. For example, a mass spectrometry (MS) 16 

*All units are in μg/mL unless indicated. U/mL refers to active enzyme units per mL CFGpS reaction. All reactions 
were conducted in batch, unless denoted with ‘SC’ for semicontinuous reaction conditions.  

ϮE denotes when extracts were enriched with the endogenous glycosylation machinery from the host strain. For 
E. coli systems, the OST and LLO recombinantly expressed in the strain prior to lysis are indicated.  

Abbreviations are: active firefly luciferase (Luc), glucose oxidase (GOx), human epidermal growth factor receptor 
(EGFR), HIV-1 envelope glycoprotein (gp120), super folder green fluorescent protein (sfGFP) maltose binding 
protein (MBP), erythropoietin (EPO), Francisella tularensis (Ft), Campylobacter jejuni (Cj), disulfide bond (DSB), 
Western blot (WB), and enzyme linked immunosorbent assay (ELISA) 
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based analysis of erythropoietin (EPO) derived from insect CFGpS revealed that glycans were 1 

trimmed down to structures as minimal as Man5GlcNAc2 [100]. Lectin-based analysis of EPO 2 

derived from CHO CFGpS supplemented with ER and Golgi vesicles showed the presence of 3 

high mannose, fucosylated, and galactose-terminated structures, indicating that the activity of 4 

Golgi enzymes is possible when microsomes are prepared appropriately [93]. 5 
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1 

Fig. 3. Glycosylation in cell-free glycoprotein synthesis systems. (a) OST-dependent 
glycosylation in eukaryotic and E. coli extracts. (b) Bottom-up synthesis of glycoproteins in 
an OST-independent manner. The bottom panel shows a figure legend. When structural 
characterization was performed by deglycosylation studies, minimal recognition motifs 
(shown as structures with elaboration arrows) were inferred based on known glycosidase 
and OST specificities. References (‘Ref.’) for each structure are listed in the top right-hand 
corner of each section. 



13 
 

Further characterization of CFGpS products using high-resolution techniques such as MS and 1 

nuclear magnetic resonance spectroscopy are needed to define glycoforms in the future. These 2 

methods will be critical to develop strategies to control and remodel glycan structures. Promising 3 

avenues to achieve defined glycoforms include the use of glyco-engineered cell lines containing 4 

edited glycosylation pathways [111] and the supplementation of reactions with glycan-editing 5 

enzymes [112].  6 

Section 2: OST-dependent glycosylation in glycoengineered E. coli extracts  7 

E. coli-based platforms are the most robust and cost-effective CFPS systems currently 8 

available. With protein yields of thousands of μg/mL and costs at less than $5/mL [2], E. coli 9 

systems surpass eukaryotic systems in batch yields by an order of magnitude and are two orders 10 

of magnitude less expensive than commonly used CHO and insect  systems [2, 3, 96]. 11 

Additionally, E. coli is faster and easier to grow than eukaryotic strains, enabling cell growth, 12 

harvest, and extract preparation to be completed in less than one day [113–115]. Furthermore, 13 

extracts from laboratory strains of E. coli provide a ‘blank slate’ for N-linked glycosylation because 14 

they contain no endogenous N-linked glycosylation machinery. Despite these advantages, 15 

laboratory E. coli strains could not be used to produce glycoproteins until the recent discovery of 16 

bacterial N-linked glycosylation systems [116, 117]. Efforts to harness these systems by 17 

transferring them into E. coli expression systems for engineering functional therapeutics, 18 

vaccines, and materials has spawned the new discipline of bacterial glycoengineering [118–120]. 19 

Of emerging interest for glycoengineering are single-subunit bacterial OSTs, which, despite 20 

having stringent sequon specificity [121–123], can be used as a tool to transfer diverse glycans 21 

to acceptor proteins engineered with proper sequons [118]. Since the functional transfer of the 22 

model N-linked glycosylation pathway from Campylobacter jejuni into E. coli [124], E. coli has 23 

been engineered with myriad OST-dependent glycosylation pathways. Glycan structures 24 

including the eukaryotic Man3GlcNAc2 core for mimicking eukaryotic glycosylation [125], microbial 25 

O-antigens for glycoconjugate vaccine development [126–128], Lewis structures for therapeutic 26 
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development [129], and exotic bacterial glycans [108] have been ported into living E. coli. In 1 

practice, recapitulating eukaryotic glycosylation in E. coli systems remains challenging, but the 2 

expression of bacterial glycosylation systems is relatively straightforward, enabling prototyping 3 

and biomanufacturing antimicrobial conjugate vaccines [69]. 4 

The first E. coli CFGpS system was developed via supplementation of purified C. jejuni OST 5 

(CjOST) and LLO (CjLLO) into CFPS reactions where the nascent acceptor protein was 6 

glycosylated via purified components [130]. This system provided a proof-of-principle that 7 

bacterial N-linked glycosylation is possible in the absence of intact cellular membranes. Toward 8 

a lower-cost, simpler system, the pathway from C. jejuni was recapitulated in vitro using crude E. 9 

coli extracts prepared from strains overexpressing the CjOST and CjLLO (Fig. 2b) [108]. The key 10 

idea is that OST and LLOs are overexpressed in the E. coli cells, then are subsequently enriched 11 

in the crude extract, rather than purified. Glycosylation components are present in E. coli extracts 12 

in nanoscale [107] membrane vesicles which serve the dual purpose of enabling (i) the activation 13 

of ATP regeneration through oxidative phosphorylation [131] and (ii) harboring active membrane-14 

bound LLOs and OSTs [108]. Glycoengineered extracts of E. coli have been used to synthesize 15 

a variety of glycoproteins, such as EPO, with diverse glycan structures (Table 1).  16 

Recently, the E. coli CFGpS platform has been combined with efforts in decentralized 17 

biomanufacturing to enable in vitro bioconjugate vaccine expression (iVAX) from freeze-dried, 18 

shelf stable reactions. iVAX is modular, allowing the transfer of diverse bacterial O-antigens to 19 

protein targets (Fig. 3a) and the expression of conjugate vaccine carriers including detoxified 20 

Corynebacterium diphtheriae toxin (known as CRM197) and the Clostridium tetani toxin [75]. 21 

Importantly, iVAX-derived vaccines against the pathogen Francisella tularensis have proven to 22 

be efficacious in vivo, protecting vaccinated mice from a lethal pathogen challenge [75]. iVAX 23 

glycoconjugate titers (Table 1) enable individual vaccine doses of 10 μg to be produced in one 24 

hour for ~$6 [75]. In efforts to drive biomanufacturing costs down further, E. coli CFGpS was 25 
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recently optimized to synthesize glycoprotein titers of >100 μg/mL in batch by increasing the 1 

concentrations of the LLO- and OST-harboring vesicles during extract preparation [107].  2 

E. coli systems are a promising venue for producing therapeutic glycoproteins and on-demand 3 

vaccines. From a biomanufacturing perspective, concerns over producing disulfide bond proteins 4 

and the presence of endotoxin have recently been overcome [24, 132]. From the perspective of 5 

glycosylation, a major advantage of the E. coli system is the possible breadth of glycans that can 6 

be installed with OSTs, which will expand as new glycosylation pathways are engineered and 7 

characterized. Toward this goal, a class of bacterial OSTs termed O-OSTs (which carry out O-8 

linked glycosylation on serine and threonine residues) that are structurally similar to bacterial N-9 

OSTs, but with relaxed LLO specificities have recently been characterized [133, 134]. O-OSTs, 10 

which further expand the palette of glycoconjugate vaccines available for manufacture in E. coli, 11 

[67, 132] have recently been shown to be active in E. coli CFGpS [107].  12 

A major challenge that remains for synthesizing therapeutic proteins, is the transfer of 13 

eukaryotic-type N-linked glycosylation in a high-yielding E. coli system. While advances have 14 

been made toward increasing eukaryotic LLO production in E. coli [137], and Man3GlcNAc2 has 15 

been installed both with purified E.coli-derived components in vitro [108] and in living E. coli cells 16 

[138], efforts have been limited by low transfer efficiency of Man3GlcNAc2 (Fig. 3a) by bacterial 17 

OSTs. Additionally, because the polypeptide substrates of well-expressing bacterial OSTs differ 18 

from eukaryotic OSTs, naturally-occurring sequons in therapeutic proteins must be replaced with 19 

synthetic sequons, changing the primary protein sequence [108, 138, 139]. To address these 20 

issues, characterization of natural [139] and engineered [140, 141] bacterial OSTs to improve 21 

conjugation efficiency of diverse glycans is of key importance for advancing E. coli CFGpS. To 22 

this end, the structure of a widely-used bacterial OST in complex with an LLO and an acceptor 23 

sequon was recently solved, providing high-resolution information for rational engineering of 24 

OSTs and providing new opportunities for glycoprotein biomanufacturing [141, 142].  25 
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OST-independent glycosylation systems 1 

Section 3: E. coli cell-free systems for OST-independent glycoprotein synthesis 2 

In addition to biomanufacturing, cell-free systems provide a flexible environment to construct 3 

and optimize new biosynthetic glycosylation pathways, and to interface glycosylation with high-4 

throughput experimental workflows. A key determinant of the throughput accessible to study and 5 

engineer glycosylation systems in cell-free is the ability to utilize or synthesize glycosylation 6 

components outside of living cells, where they can be more easily varied, sampled, and controlled. 7 

The innovations described in Sections 1 and 2 provide methodologies to utilize OST-dependent 8 

glycosylation components generated inside of living cells in a cell-free environment. However, 9 

taking full advantage of the cell-free paradigm for glycosyltransferase (GT) characterization, 10 

engineering, and biosynthetic pathway prototyping, requires the synthesis of glycosylation 11 

components outside of living cells.  12 

A key challenge with OST-dependent N-linked glycosylation is that LLOs and OSTs are 13 

membrane-associated and are therefore more difficult to synthesize than soluble proteins. This 14 

challenge was partially overcome by supplementing E. coli CFPS reactions with lipid-protein 15 

nanodiscs to enable the synthesis of active OSTs at high titers in vitro [25], opening the door to 16 

high-throughput OST characterization. However, the in vitro, bottom-up synthesis of LLOs 17 

remains challenging [58] and the co-activation of LLO biosynthesis and CFGpS has not been 18 

demonstrated. Additionally, cell-free synthesis of eukaryotic OST complexes (e.g., STT3) has not 19 

yet been reported, limiting the diversity of OSTs that can be synthesized using current in vitro 20 

systems. Given the challenges associated with synthesizing OSTs and LLOs in vitro, recent 21 

efforts have sought to study and engineer OST-independent glycosylation pathways in a cell-free 22 

environment [17, 18, 27, 76]. The absence of membrane-associated enzymes or substrates in 23 

OST-independent glycosylation pathways make them easier to implement in cell-free and permits 24 
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the direct transfer of developed pathways into the bacterial cytoplasm. Furthermore, OST-1 

independent systems promise to be more modular as they circumvent the specificities of OSTs 2 

for LLOs by sequentially installing monosaccharides onto proteins. 3 

Thus far, OST-independent cell-free glycoengineering efforts have focused on a recently 4 

discovered class of cytoplasmic enzymes known as N-glycosyltransferases (NGTs) to transfer of 5 

a single glucose residue from a nucleotide-activated sugar (UDP-Glc) onto an acceptor 6 

asparagine within acceptor sequons that resemble the eukaryotic N-X-S/T glycosylation motif 7 

[143–146]. Because the acceptor sequence specificity of NGTs had not been rigorously 8 

characterized, and this information is required for site-specific modification of glycoproteins, initial 9 

efforts in this area used CFPS with a high-throughput experimentation platform for glycosylation 10 

sequence characterization and optimization by rapid expression and screening (GlycoSCORES) 11 

[17]. GlycoSCORES uses CFPS to produce a polypeptide-modifying glycosyltransferase of 12 

interest and self-assembled monolayers for matrix-assisted laser desorption/ionization mass 13 

spectrometry (SAMDI-MS) to determine its specificity [147]. This method was applied to determine 14 

the sugar donor and peptide acceptor sequence specificities of both N- and O-linked polypeptide 15 

modifying GTs from bacteria and humans using 3,480 unique peptides and 13,903 unique 16 

reaction conditions. This information was then used to redesign glycosylation sites within 17 

heterologous proteins (including the Fc region of human IgG) to increase their glycosylation 18 

efficiency by up to 5 fold in living E. coli and in a cell-free environment [17]. This method was later 19 

adapted to intact proteins, enabling the analysis of an 87-member protein library containing a 20 

single glycosylation site at all positions along the protein backbone. This assay provided insight 21 

into how the position of the acceptor sequon within a target protein can affect glycosylation [18], 22 

an approach called shotgun glycomutagenesis [148]. Another effort used the GlycoSCORES 23 

method to produce 41 putative NGT homologs in CFPS and rigorously characterize their acceptor 24 

sequence specificities. This campaign discovered four NGT variants with conditionally orthogonal 25 



18 
 

peptide acceptor specificities that were used to develop new workflows for sequential and site-1 

specific glycosylation at up to four distinct locations within a single protein [76]. These works show 2 

how cell-free systems have been interfaced with OST-dependent glycosylation to accelerate 3 

glycoprotein design and testing.  4 

 Besides controlling the efficiency and position of glycan modifications, OST-independent 5 

cell-free systems have also enabled the bottom-up construction of multi-enzyme synthetic 6 

glycosylation pathways in vitro to generate proteins modified with a wide variety of glycan 7 

structures. A recent study reported the development and application of a modular, cell-free 8 

platform for glycosylation pathway assembly by rapid in vitro mixing and expression 9 

(GlycoPRIME) in which a target protein and GTs were synthesized in separate CFPS reactions 10 

and then combined to generate unique protein glycosylation pathways (Fig. 2c) [27]. The key idea 11 

is that cell-free biosynthesis “units” are made from crude cell lysates that are selectively enriched 12 

with pathway enzymes produced directly in lysates by cell-free protein synthesis. Then, these 13 

units are assembled modularly, in a mix-and-match fashion, to build and study biosynthetic 14 

pathways. Biosynthetic pathways yielding 23 unique glycosylation motifs were developed using 15 

this method (Fig. 3b). Once discovered in vitro, the pathways developed using GlycoPRIME were 16 

successfully transferred to living E. coli for cytoplasmic production of glycoproteins. These 17 

pathways were also shown to be functional in a one-pot format in which all plasmids for the target 18 

protein and GTs are combined in the CFPS reaction supplemented with activated sugar donors 19 

to generate glycoprotein in 24 hours. The use of OST-independent glycosylation systems has 20 

greatly expanded the diversity of number of glycosylation structures available for production in 21 

cell-free [17, 18, 27, 76] and cellular [17, 149–151] systems and they hold promise for applications 22 

including adjuvants and antigens for vaccines [149, 151–154], glycoprotein antitoxins [155, 156], 23 

biomaterials that promote cell growth or differentiation by interfacing with cellular lectins [157, 24 

158], and stabilized therapeutics [159].  25 
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The ease of implementation of OST-independent CFGpS systems have enabled enzyme 1 

characterization and glycoprotein analysis at high throughput and may offer new paradigms for 2 

glycoprotein biomanufacturing methods. The glycans installed using these methods, however, 3 

are generally smaller than those installed by OSTs (Fig. 3) and do not occur in exactly the same 4 

form in nature. Further characterization of the functionality of minimal glycans is a critical pursuit 5 

to understanding and leveraging OST-independent glycoforms in the future. Several hurdles 6 

remain before human N-glycosylation can be precisely mimicked using OST-independent 7 

machinery. Specifically, NGTs discovered to date are unable to transfer GlcNAc, the reducing 8 

end sugar in all eukaryotic N-linked glycans [146]. Therefore, the discovery and engineering of 9 

NGTs capable of transferring GlcNAc remains an active area of research [17, 76, 160]. 10 

Conclusion 11 

 Cell-free systems hold great promise for expediting expression, testing, and 12 

biomanufacturing glycoproteins. Here, we reviewed natural and synthetic cell-free glycoprotein 13 

synthesis platforms that are useful for an array of applications including, but not limited to 14 

eukaryotic systems for expression of complex glycosylated therapeutics and engineered E. coli 15 

systems for glycoprotein expression and on-demand biomanufacturing. We also described works 16 

in the emerging field of bottom-up glycoprotein synthesis using synthetic glycosylation systems, 17 

highlighting how cell-free systems have expedited their development. We anticipate that the 18 

modularity and flexibility of cell-free glycosylation systems will continue to increase our 19 

understanding of glycosylation, advance applications in on-demand biomanufacturing, and 20 

accelerate glycoprotein research and development timelines. 21 
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