
BranchNet: A Convolutional Neural Network to
Predict Hard-To-Predict Branches
Siavash Zangeneh∗, Stephen Pruett∗, Sangkug Lym†, and Yale N. Patt∗

siavash.zangeneh@utexas.edu, stephen.pruett@utexas.edu, slym@nvidia.com, patt@ece.utexas.edu
∗University of Texas at Austin †Nvidia

Abstract—The state-of-the-art branch predictor, TAGE, re-
mains inefficient at identifying correlated branches deep in a
noisy global branch history. We argue this inefficiency is a
fundamental limitation of runtime branch prediction and not
a coincidental artifact due to the design of TAGE. To further
improve branch prediction, we need to relax the constraint of
runtime only training and adopt more sophisticated prediction
mechanisms. To this end, Tarsa et al. proposed using convo-
lutional neural networks (CNNs) that are trained at compile-
time to accurately predict branches that TAGE cannot. Given
enough profiling coverage, CNNs learn input-independent branch
correlations that can accurately predict branches when running
a program with unseen inputs. We build on their work and
introduce BranchNet, a CNN with a practical on-chip inference
engine tailored to the needs of branch prediction. At runtime,
BranchNet predicts a few hard-to-predict branches, while TAGE-
SC-L predicts the remaining branches. This hybrid approach
reduces the MPKI of SPEC2017 Integer benchmarks by 7.6%
(and up to 15.7%) when compared to a very large (impractical)
MTAGE-SC baseline, demonstrating a fundamental advantage
in the prediction capabilities of BranchNet compared to TAGE-
like predictors. We also propose a practical resource-constrained
variant of BranchNet that improves the MPKI by 9.6% (and up
to 17.7%) compared to a 64KB TAGE-SC-L without increasing
the prediction latency.

I. INTRODUCTION

Branch prediction remains a major bottleneck in improv-
ing single-thread performance. Even with TAGE-SC-L [1],
the state-of-the-art branch predictor, many SPEC2017 Integer
benchmarks still suffer from high branch mispredictions per
kilo instructions (MPKI), resulting in significant loss of per-
formance. Moreover, the branch misprediction penalty wors-
ens as processors move towards deeper and wider pipelines
[2]–[5]. Unfortunately, fundamental breakthroughs in branch
prediction have become rare [6]. All predictors submitted to
the 2016 Championship Branch Prediction competition were
variants of existing TAGE and Perceptron designs [1], [7]–
[10]. Branch prediction research needs new insights to further
improve the prediction accuracy.

Traditional branch predictors like TAGE [11] and Percep-
tron [12] are designed to be updated online, i.e., at run time.
Thus, their update algorithms have to be simple, cheap, and
quick to adapt to execution phase behavior. While simplicity
and adaptivity are necessary for predicting most branches at
runtime, limitations in training time and processing power
make it difficult for online branch predictors to learn complex
correlations in the branch history. To learn these correla-
tions, it is necessary to adopt more sophisticated prediction
mechanisms that require more computationally-heavy training
algorithms and additional compiler support.

Building on the work of Tarsa et al. [13], we propose
BranchNet, a convolutional neural network (CNN) that ad-

mcf
leela xz

deepsjeng gcc
omnetpp

exchange2
x264

perlbench

xalancbmk
mean

0.0

2.5

5.0

7.5

10.0

12.5

15.0

M
PK

I

CNN Improvements for top 8 branches
CNN Improvements for top 25 branches
CNN Improvements for top 50 branches
Remaining Mispredictions

12.6%

34.0%
23.7%

17.1%
2.5%

20.3%

2.7% 8.6%
0.0% 0.0%

19.1%

MPKI Reduction with 50 CNN branches (%)

Fig. 1. MPKI Reduction of using large CNNs to predict a few hard-to-predict
branches along 64KB TAGE-SC-L.

dresses a key weakness of TAGE-like predictors: identifying
correlated branches in a noisy global history. When the global
history is noisy, (i.e., the global history contains uncorrelated
branches that constantly change directions, or the positions
of correlated branches in the history are nondeterministic), a
TAGE-like predictor has to dedicate unique prediction counters
for each possible history pattern. Thus, the number of counters
needed grows exponentially with the size of the history,
making a TAGE-like approach infeasible when correlated
branches appear deep into a noisy history. A CNN, however,
learns to ignore uncorrelated branches and identify correlated
branch patterns anywhere in the history, enabling expressive
prediction functions that remain efficient even with a long
noisy history.

This increase in prediction capability, however, comes at
the cost of computationally-expensive training and the need
for large training data. Therefore, it is not possible to train
BranchNet at runtime. Instead, we use offline (i.e., compile-
time) training by profiling targeted applications. Offline train-
ing works if a predictor can learn invariant branch relationships
that are true at all phases of a program with any inputs. By
profiling runs of a program with multiple inputs, one can
collect diverse training examples to train powerful machine
learning models that can infer such invariant relationships. Af-
ter offline training, one can attach the trained models (i.e., the
collection of weights that represent the branch relationships)
to the program binary. At runtime, the branch predictor uses
the trained models to predict the directions of these hard-to-
predict branches without further training.

Fig. 1 shows the potential of using large CNNs to predict
the top few hard-to-predict branches that benefit the most from
CNNs. Each bar shows the MPKI of 64KB TAGE-SC-L when
running SPEC2017 Integer Speed benchmarks. The segments
in each bar show the mispredictions that could be avoided if
we use CNNs to predict up to 8, 25, or 50 static branches. The
figure demonstrates that for most benchmarks, predicting 8

118

2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)

978-1-7281-7383-2/20/$31.00 ©2020 IEEE
DOI 10.1109/MICRO50266.2020.00022

branches with CNNs is sufficient for significant overall MPKI
reduction, and often predicting more than 25 branches with
CNNs has diminishing returns. Thus, we opt for a hybrid
approach, using CNNs to predict a few hard-to-predict static
branches and using state-of-the-art runtime predictors for all
other branches.

Tarsa et al. [13] were the first to propose using CNNs
with offline training to predict hard-to-predict branches. They
showed that (1) CNN branch predictors could identify in-
dividual correlated branches in the global branch history,
and (2) that CNNs could be trained offline to avoid their
expensive training algorithms at runtime. BranchNet builds
on their approach and tailors the CNN architecture to branch
prediction, resulting in higher prediction accuracy and better
storage-efficiency. The contributions of this paper are:
• We identify a class of branches that are hard-to-predict by

conventional runtime branch predictors but can be predicted
accurately by convolutional neural networks. These branches
are correlated to the counts of other braches in a noisy global
history. When the history is noisy, a table-based predictor
(e.g. TAGE) relies on allocating predictor entries for each
history pattern, which is infeasible for long histories. How-
ever, a CNN expresses the actual branch relationship by
counting the explicitly identified correlated branches in the
global history.

• We make a new case for branch prediction with offline
training. We show that unlike previously proposed offline
training techniques, BranchNet relies less on the represen-
tativeness of the training data and more on coverage. The
key is exposing enough control flow paths to detect input-
independent branch correlations that can be generalized to
unseen inputs.

• We propose a CNN architecture tailored to branch predic-
tion requirements in two ways. One, we draw inspiration
from traditional branch predictors and use geometric history
lengths as inputs. Two, we use sum-pooling layers to aggres-
sively compress the information in the global branch history.
Because of its specialized design, BranchNet significantly
outperforms its predecessor CNN branch predictor.

• We demonstrate a novel way to approximate wide convo-
lution filters and sum-pooling layers. These approximations
enable BranchNet to have the same prediction latency as
TAGE-SC-L (4 cycles) and be more storage-efficient.
In the rest of the paper, we first motivate why CNNs with

offline training can overcome a key limitation of prior work.
We then describe the architecture of BranchNet, the process to
train BranchNet offline, the design of an inference engine to
make predictions at runtime, and the ISA/OS support needed
to use BranchNet. We show that without area constraints,
BranchNet reduces the average MPKI of SPEC2017 Integer
benchmarks by 7.6% (up to 15.7% for the most improved
benchmark) when compared to an unlimited MTAGE-SC base-
line. We also show that by using our area/latency constrained
BranchNet inference engine along with a 64KB TAGE-SC-L,
we can improve the MPKI by 9.6% (up to 17.7%), and IPC
by 1.3% (up to 7.9%) over a 64KB TAGE-SC-L baseline.

II. LIMITATIONS OF STATE-OF-THE-ART

Current-day online (runtime) branch predictors have a key
weakness: they need an exponentially growing capacity in the

presence of long noisy histories. Even though we argue this
weakness is a fundamental consequence of runtime training,
prior branch predictors that use offline training (with profiling)
do not remedy this weakness. In this section, we describe
the phenomenon of noisy history and make a case for why
deep learning can succeed where previous attempts at offline
training failed.

A. Online Branch Predictors
All state-of-the-art branch predictors are variants of TAGE

[11] and the hashed perceptron [14]. While their prediction
mechanisms may differ, all conventional predictors hash the
global branch and path history into one or more indices to
access prediction tables. Ideally, the predictors would allocate
unique table entries for each history pattern they observe.
In practice, they employ storage-saving mechanisms to avoid
redundant allocations for the most common branch behaviors
(e.g. TAGE uses an approximation of PPM compression [15]).
However, when the global history is noisy, i.e., uncorrelated
branches constantly change directions or branches appear
in nondeterministic positions in the history, these storage-
saving mechanisms do not work well, requiring the online
predictors to allocate unique entries for all possible history
patterns. The number of entries required to remember all
history patterns is an exponential function of the history size.
When these entries are not available, the predictors cannot
produce accurate predictions. Even if capacity were available,
the runtime predictors would require a long time to warm up
the large number of table entries, and can never generalize
their predictions to unseen history patterns.

TAGE-SC-L. TAGE-SC-L is the winner of Championship
Branch Prediction 2016 [1]. Its main component, TAGE [11],
hashes the global branch and path history to lookup tables of
tagged saturating counters that provide the prediction. It uses
multiple counter tables, each corresponding to a unique history
length. Longer history tables are used only when shorter
history tables cannot provide accurate predictions. If prediction
accuracy depends on correlated branches deep into a noisy
global history, short history tables do not provide any value,
resulting in high allocation pressure on the long history tables.
In the worst case, a long history TAGE table behaves similarly
to a global 2-level predictor [16], which requires O(2n) table
entries for an n-bit history input, which is infeasible for a large
n.

Perceptron. Perceptron-based branch predictors use a
single-layer neural network to learn the correlations of the
branch outcome to its history bits. To make a prediction,
the predictors add the correlation factors and compare the
sum to the branch bias. The Perceptron predictor [12] finds
an individual correlation factor for each bit position in the
global history. When the positions of branches in the global
history are nondeterministic, the correlations to the history
bits become unreliable. The hashed perceptron [14] (also used
in the newest perceptron-based predictor, Multiperspective
Perceptron [8]) learns correlation factors for hashes of the
global branch and path history, which mitigates the problem
of nondeterministic positions. Still, when the history is noisy,
the hashed perceptron suffers from significant aliasing among
history patterns and their hashes, resulting in significant loss
of accuracy.

119

Perceptron-based branch predictors have another inherent
limitation: because they use a single-layer neural network,
they cannot learn non-linear relationships between branches.
The fact that all prior perceptron-based predictors use a single
neuron is a consequence of runtime training. The training
algorithm for multi-layer perceptrons is too expensive to be
implementable at runtime.

Since TAGE predictors outperform Perceptron-based pre-
dictors on our benchmarks, we use TAGE as our baseline for
state-of-the-art runtime branch predictors.

B. Branch Predictors with Offline Training
Prior predictors. Many prior studies propose using offline

profiling to improve branch prediction. Some train static pre-
dictors that simply learn the statistical bias of branches, which
is useful for compile-time optimizations, but not for predicting
hard-to-predict branches [17]–[20]. Some work use profiling to
train application-specific predictors, resulting in a comparable
accuracy to contemporary dynamic branch predictors [21]–
[25]. The most recent proposal, Spotlight [25], is a gshare-like
predictor [26] that uses profiling to identify the most useful
fragment of the global branch history. However, Spotlight is
still susceptible to shifts in the history and cannot identify
correlated branches that appear in nondeterministic positions
in the history. Spotlight’s training mechanism also relies on
exhaustively comparing all possible views of history, which
does not scale when training more complicated predictors
with long histories. Similar to Spotlight, most prior predictors
are either too simple to help with hard-to-predict branches
or there is no known way to use them in conjunction with
state-of-the-art online predictors. The only offline method
we can easily apply to TAGE-SC-L is to use static branch
biases when TAGE-SC-L is not confident. However, we have
observed that using static biases only slightly improves the
accuracy of TAGE-SC-L (0.3% MPKI reduction for the best
benchmark, 0.0% for many) and its benefits are orthogonal to
the contributions of BranchNet.

Since state-of-the-art predictors do not benefit from using
prior offline techniques, we only compare BranchNet to the
best online predictors.

Representativeness vs. coverage. The key advantage of
offline training is the removal of time and compute constraints
from training, enabling arbitrarily complex training algorithms.
However, prior offline predictors never fully leverage this
because they only train simple prediction mechanisms that
rely on the repetition of exact history patterns. Thus, prior
work could only perform well when the input sets used
for profiling were representative of future runs, which is
challenging. For example, for Spotlight to be effective, the
positions of correlated branches in the global history should
be exactly the same during profiling and at runtime. However,
the positions of branches that appear deep in the global history
are rarely generalizable to other inputs, especially for the
hard-to-predict branches of state-of-the-art runtime predictors.
In contrast, deep learning does not need representative input
sets; it just needs enough coverage in the training set to
expose generalizable input-independent relationships between
branches. As long as the training set includes enough examples
of different branch behavior (i.e., different program phases that
exercise different control flows), deep learning algorithms can

Transformed
History

2-channel
Convolution

Layer Outputs

Pooling
Layer

Outputs

Fully-Connected
Neuron
Output

history
length

One-hot
Vector

Global
Branch/Path

History

Convolution
Width

Pooling
Width

Fig. 2. Dataflow in a simple CNN branch predictor.

identify input-independent correlations that are always true.
Section IV provides a concrete example of this distinction.

III. BACKGROUND

Convolutional Neural Networks (CNN) are state-of-the-art
in both image classification [27], [28], and sequential tasks like
natural language understanding [29]. When used as a branch
predictor, a CNN first identifies important branch patterns in
the global history and then classifies the branch as taken or
not taken using the identified patterns.

In this section, we provide a high-level description of
a simple CNN branch predictor. The goal is to introduce
the terminology and provide an intuition for how the CNN
components work together to predict branches.

A. CNN Building Blocks
Fig. 2 shows the data flow for branch prediction using a

simple CNN. The CNN takes the global branch and path
history (program counters and directions of branches) as
input, operates on the input using a sequence of operations,
and finally produces a prediction. The critical operations are
referred to as layers. The layers operate using a collection of
trainable parameters (weights). The combination of the CNN
layers and their trained parameters form a CNN model.

Input as one-hot vectors. CNNs assume that the magni-
tude of each input conveys information about the input. For
example, the inputs to a CNN image classifier convey the color
intensity of an image at each pixel. However, the inputs to a
branch predictor are branch program counters and directions,
whose magnitudes convey nothing about the branches. Thus,
we need to represent branches in a format that makes it
easier for CNNs to distinguish different program counters. One
solution is to represent components in the history as one-hot
vectors.

Input as embeddings. Alternatively, we can use embed-
dings to transform each history element into a vector repre-
sentation trained specifically for the problem we want to solve
[30]. For large-enough discrete numbers, embeddings often
lead to a more efficient solution than simply using one-hot
vectors 1. For example, Hashemi et al. [31] use embeddings
to represent PC and memory addresses in a model for data
prefetching, which is very similar to BranchNet representing
branch PC and directions.

Convolutional layers. At a high level, a convolution layer
identifies the occurrences of features in its input [30], [32].
The set of weights that are trained to identify a feature is

1e.g., representing a 12-bit program counter as a one-hot vector requires
212 = 4096 trainable weights for a 1-wide convolution filter, but embeddings
can still be effective with much fewer weights (e.g., 32).

120

1 i n t x = 0 ;
2 f o r (i n t i = 0 ; i < N; ++ i) {
3 i f (r a n d o m c o n d i t i o n (a l p h a)) { // Branch A
4 / / x i n c r e m e n t s i f Branch A i s n o t t a k e n
5 x += 1 ;
6 }
7 }
8
9 u n c o r r e l a t e d f u n c t i o n () ;

10
11 f o r (i n t j = 0 ; j < x ; ++ j) { // Branch B
12 . . .
13 } / / e x i t s when Branch B i s t a k e n

Branch
History

Convolutional
Layer

Outputs

Sum Pooling
Layer

Outputs

Final
 Fully-connected

Neuron
PC Direction

X 1
B 0

X
0A
1

1
A 0

X
A 0

Channel 0 Channel 1

0 0
1 0

0

0
00
00

1

0 1 1 2

≥

Predict
Taken

If Greater or
Equal

∑∑

0

Youngest
Branch

Uncorrelated
Branches

Fig. 3. A program with a hard-to-predict branch (Branch B) and a trained
CNN that can accurately predict the branch.

called a filter. The convolution width controls the number of
neighboring items that form a feature. For branch prediction,
the neighboring items we consider are neighboring entries in
the branch/path history. Applying a filter to the inputs produces
an output channel. For branch prediction, each filter identifies
the presence of a specific correlated branch pattern in the
history and marks its location by outputting a non-zero value
to the corresponding output channel for the filter.

Sum-pooling layers. A sum-pooling layer reduces the
computational requirements of subsequent layers by combing
the neighboring outputs of the convolution output channel
into a sum [30]. The pooling width defines the number of
neighboring outputs that are summed together. Effectively, the
outputs (i.e. generated sums) of a sum-pooling layer indicate
the occurrence counts of the feature identified in each channel.
Sum-pooling reduces the computational needs of the next
CNN layers at the cost of discarding fine-grained positions
of identified features. As we show later in Section IV, this is
often a good trade-off for branch prediction because the exact
positions of correlated branches do not matter.

Fully-connected layers. A fully-connected layer is made of
multiple neurons, where each neuron learns a linear function
of all its inputs [30]. It is possible to cascade fully-connected
layers to learn nonlinear functions of convolution outputs.
For branch prediction, the fully-connected layers map the
identified feature counts to a prediction.

B. Training Algorithm
We train CNNs using a large set of input and expected

output pairs (the training set) that define the desired behavior
of the model. Conceptually, the training algorithm constantly
iterates through the examples in the training set and identifies
consistent signals for producing the expected output. Since this
algorithm (Stochastic Gradient Descent [33] using Backprop-
agation [34]) is computationally expensive, the training has to
be done offline using profiling. Thus, a good training set for

0.2 0.4 0.6 0.8 1.0
 in the Test Set

0

20

40

60

80

100

Te
st

 S
et

 A
cc

ur
ac

y
(%

)

CNN with training set 3: = 0.5, N ~ rand(1,4)
CNN with training set 2: = 1.0, N ~ rand(5,10)
CNN with training set 1: = 1.0, N = 10
64KB TAGE-SC-L with runtime training

Fig. 4. Accuracy of predicting Branch B from Fig. 3. N ∼ rand(5, 10) in
the test set.

branch prediction should contain examples from multiple input
sets and exercise different control flow paths, which enables
the CNN to learn invariant branch relationships.

IV. MOTIVATION

We use the source code in Fig. 3 to show how CNNs
can predict otherwise hard-to-predict branches. The code is
a simplified version of a hot segment of the benchmark leela,
which is responsible for a significant fraction of the total
number of mispredictions.

Can we predict Branch B using the global history?
Branch B is the exit branch of the second loop in the source
code. The number of iterations of the second loop equals the
variable x, which is set by the first loop. Branch B is taken only
if the variable j (the loop variable) is equal to the variable x.
There is enough information in the global history to infer the
values of x and j: x equals the number of not taken instances
of Branch A in the history, and j equals the number of not
taken instances of branch B. Thus, in theory, a branch predictor
should be able to predict this branch accurately.

Why do state-of-the-art predictors fail to predict Branch
B? Unfortunately, state-of-the-art predictors have no way of
knowing which branches in the global history are actually
useful for prediction. Thus, as explained in Section II-A,
they hash the whole global history and attempt to learn a
prediction for the history pattern as a whole. However, due to
the large number of loop iterations, the probabilistic nature of
the correlated branches, and the uncorrelated branches close
to Branch B, the number of observable history patterns for
Branch B is beyond what online predictors can predict. For ex-
ample, if N=10 and uncorrelated function has 20 conditional
branches, a TAGE-like predictor has to allocate storage for at
least 10 × 2(10+20) history patterns. This amount of storage
is infeasible. As a result, Multi-Perspective Perceptron and
TAGE-SC-L predict branch B with 81% accuracy, which is
only slightly more accurate than always predicting not taken
with 78% accuracy.

Note that even if an online predictor has enough storage to
remember all history patterns it sees, it will take a long time
to warm up and can never generalize its predictions to the
history patterns it has not seen.

How does a CNN predict Branch B accurately? A CNN
can directly infer the values of variables x and j from the global
history, allowing it to predict Branch B both accurately and
efficiently. Fig. 3 shows the outputs of a manually trained CNN
that predicts the direction of Branch B 100% accurately. The
input on the left is a snapshot of the global history before pre-
dicting branch B. The program counters of branches that are

121

PC
 a

nd
 P

at
h

H
is

to
ry

Inputs

H1

H5

Em
be

dd
in

g

(H5)

1D
 C

on
vo

lu
tio

n

(H5, E)

Su
m

 P
oo

lin
g

(H5, C5)

 (H1) (H1, E) (H1, C1)

H
id

de
n

Fu
lly

-c
on

ne
ct

ed
 L

ay
er

(H5/P5, C5)

(H1/P1, C1)

Si
ng

le
 S

ig
m

oi
d

(N)

Slice 1

Slice 5

Feature Extraction Classification

Prediction

Fig. 5. High-level diagram of Big-BranchNet CNN architecture for one branch.

not involved in the prediction (i.e. uncorrelated branches) are
marked as X. The history is encoded as one-hot vectors (not
shown in the figure for brevity) and fed into a convolutional
layer. The convolution width is 1 and there are 2 channels.
Channel 0 is trained to identify the not-taken instances of
Branch B. Channel 1 is trained to identify not-taken instances
of Branch A. We use a sum-pooling layer as wide as the
history. Thus, the outputs of sum-pooling are simply the counts
of not taken instances of Branch A and Branch B, which equal
the values of variables j and x right before the branch executes.
The final fully-connected neuron is trained to predict taken
only if j ≥ x (sum-pooled channel 0 ≥ sum-pooled channel
1), resulting in 100% prediction accuracy.

Does offline training work? Thus far, we have shown
that a manually configured CNN can predict Branch B. Now,
we show that we can train a CNN offline using profiling.
Suppose the random condition in line 3 of Fig. 3 is set using
a Bernoulli distribution that is true with probability α, and N
is set using a uniform distribution with adjustable minimum
and maximum. We collected three different training sets for
Branch B with three program inputs: (1) N = 10, α = 1,
(2) N ∼ rand(5, 10), α = 1, and (3) N ∼ rand(1, 4),
α = 0.5. We then evaluated the accuracy of CNNs trained
on each of the three training sets on runs of the program
with N ∼ rand(5, 10) and α ranging from 0.2 to 1. We also
evaluated the accuracy of a 64KB TAGE-SC-L (with normal
runtime training) on the same test sets. Fig. 4 shows the results.
We see that CNNs trained using sets (1) and (2) perform
even worse than TAGE-SC-L, especially when α < 1. These
two training sets do not expose input-independent branch
relationships to the CNN. When training with the set (1), the
CNN likely learns that the length of the second loop is always
10, which is not true. When training with the set (2), since
Branch A is always not taken, the CNN might learn that the
length of the second loop equals the length of the first loop,
which is true only when α = 1. However, the branch behavior
in the set (3) is diverse enough to expose the input-independent
correlation. Thus, the CNN trained with the set (3) can predict
Branch B with 100% accuracy for runs with any value of α.

Is representativeness of profiling required? No! Note that
the range of N in the set (3) (N ∼ rand(1, 4)) does not over-
lap with the range of N on evaluation runs (N ∼ rand(5, 10))
at all. Yet, the trained model still generalizes perfectly to
history patterns it has not seen. The key criterion for a good
training set is good coverage of different branch behaviors,
not representativeness of history patterns.

Can a CNN predict all branches? A CNN is only accurate

if there exist persistent branch relationships that are indepen-
dent of input data and program phase behavior. Sometimes
there is no branch in the global history that can provide
any information about the outcome of the target branch. For
example, some branches depend on data that was stored in
memory long before the branch executes. In this case, there
is nothing in the recent branch history that is correlated to the
data in memory. Using only global branch history as input, it
is impossible to learn any branch prediction strategy offline.
Thus, we defer to the baseline online branch predictor to
predict these branches.

As discussed earlier in Section I, Fig. 1 shows the MPKI
reduction of using large CNN models to predict the top hard-
to-predict branches in SPEC2017 benchmarks. Since we use
the same input signals for TAGE-SC-L and the CNN models,
the difference in prediction accuracy is mainly due to the capa-
bility of CNNs in identifying useful information in the global
history. Thus, the 19.1% reduction in MPKI can be interpreted
as an approximation for the fraction of branch mispredictions
due to noisy history. The remaining mispredictions are due to
data-dependent or inherently unpredictable branches.

Can Other Machine Learning Models Predict Branches?
Any sophisticated learning model can learn invariant branch
relationships from large training sets. For example, Recurrent
Neural Network can also predict the same type of hard-to-
predict branches as BranchNet. However, we limit the scope of
this paper to the study of CNNs for branch prediction because
we see a clearer path towards low-latency and storage-efficient
branch predictors with CNNs.

V. BRANCHNET

Having described the general principles behind using CNNs
for branch prediction, we now present Big-BranchNet and
Mini-BranchNet. Both variants of BranchNet are CNN models
that we train offline to accurately predict many branches that
are hard to predict for traditional branch predictors. We use
Big-BranchNet to show available headroom in using CNNs for
branch prediction. Big-BranchNet does not have a practical
on-chip inference engine. Mini-BranchNet is a smaller model
co-designed with a practical inference engine.

A. Big-BranchNet

Big-BranchNet is a pure software model and we do not
propose using it as a practical branch predictor. Big-BranchNet
is composed of 5 feature extraction sub-networks and two
fully-connected layers. We call each feature extraction sub-

122

TABLE I
BRANCHNET ARCHITECTURE KNOBS.

Knob Big-BranchNet Mini-BranchNet Mini-BranchNet Mini-BranchNet Mini-BranchNet Tarsa-Ternary
2KB 1KB 0.5KB 0.25KB 5.125KB

H: History sizes 42,78,150,294,582 37,77,152,302,603 37,77,152,302,603 37,77,152,302,603 44,92,182 200
C: Convolution channels 32,32,32,32,32 4,5,5,4,4 3,3,4,4,3 3,3,3,2,2 2,2,2 32
P: Pooling widths 3,6,12,24,48 7,15,30,60,120 7,15,30,60,120 7,15,30,60,120 7,15,30 N/A
Use Precise pooling N/A Y,Y,Y,N,N Y,Y,N,N,N Y,Y,N,N,N Y,Y,N N/A
p: Branch PC width 12 12 12 12 12 7
h: Convolution hash width N/A 8 8 7 7 N/A
E: Embedding dimensions 32 32 32 32 32 N/A
K: Convolution width 7 3 3 3 3 1
N: Hidden neurons 128, 128 10 8 6 4 N/A
q: Fully-connected quantization N/A 4 3 3 3 2

network a slice2. Each slice uses an embedding layer, a
convolution layer, and a sum-pooling layer to extract features
out of the branch history. Different slices operate on different
history lengths, with the history lengths forming a geometric
series. The benefits of using geometric history lengths are
well studied for branch predictors [35]. Finally, the outputs
of the slices are concatenated and fed into two sequential
fully-connected layers to make a prediction. Fig. 5 shows a
high-level diagram of Big-BranchNet.

We define Big-BranchNet in terms of a set of architecture
knobs. For now, we explain the functionality of all Big-
BranchNet layers using these architecture knobs. We report
the knob values we used for Big-BranchNet and other related
CNN models in Table I.

History Format. We concatenate the direction and the
least significant bits of the program counter of each branch
to represent it as an integer. Thus, if we use p bits of PC,
and a history size of H for a slice, the input history is a 1-
dimensional array of H integers, ranging from 0 to 2p+1 − 1.

Embedding Layers. Embeddings transform each branch in
the input history to a dense vector of numbers. The size of
the embedding vectors is controlled by knob E . Note that
as mentioned in Section III, we could have used one-hot
encodings instead of the embeddings, but we found that using
embeddings improved the convergence and training time of
BranchNet.

Convolutional Layers. Ci denotes the number of output
channels for slice i and K denotes the convolution width. With
more output channels, BranchNet can learn more independent
features of the branch history. With a larger K , BranchNet
can identify longer sequences of correlated branches. We
always use a convolution stride of 1. The convolution operation
is followed by batch normalization3 and ReLU activations4.
The type of activation functions is not important for Big-
BranchNet’s accuracy.

Sum-Pooling Layers. In each slice, a sum-pooling layer
down-samples the convolution outputs with a width and stride
of Pi . We use geometric pooling sizes proportional to the
history lengths of each slice. Larger pooling widths for longer
history lengths work well because history becomes noisier
deeper into the history. Aggressive pooling for features found

2In deep learning, sub-networks in a larger neural network are often called
branches. We avoid this terminology and use the term ”slice” to avoid
confusion with branch instructions.

3Batch normalization converts each output channel to a standard normal
distribution, which guides the learning algorithms towards better solutions
without affecting the prediction capability [36].

4Activations are non-linear element-wise functions that are applied after
convolution and fully-connected operations [30].

Branch 1
Slices

Branch 41
Slices

Hash of 3
Most Recent

Branches

Weight
Table

PC of the
Target Branch

Fully-connected
Layers

Prediction

Convolutional
Histories

BranchNet
Hit / Miss

PC in
BranchNet?

Branch ID

Prediction PipelineUpdate Pipeline

Fig. 6. Mini-BranchNet inference engine.

deep into the history makes BranchNet resilient against shifts
in history by eliminating fine-grained positions of the identi-
fied features in the history.

Fully-connected Layers. The first fully-connected layer
consists of N neurons. Each neuron is connected to the
outputs of all slices. The fully-connected neurons are followed
by batch normalization and ReLU activation functions. The
final fully-connected layer is made of a single neuron with a
Sigmoid activation function to make the final prediction.

B. Mini-BranchNet
Mini-BranchNet is a smaller variant of BranchNet that we

co-design with an inference engine that could work as a
practical branch predictor. For the most part, Mini-BranchNet
is similar to Big-BranchNet with architecture knobs that we
tuned to minimize storage and latency overheads. In the rest
of this subsection, we describe key optimizations in designing
an inference engine for Mini-BranchNet. We also explain
other modifications to the BranchNet CNN architecture as they
pertain to the inference engine optimizations.

Optimization 1: Maintaining Convolutional Histories.
Computing the outputs of the various slices of BranchNet
feature extraction layers involves operations on hundreds of
branches in the global history. Instead of doing all these
operations at prediction-time, the inference engine processes
incoming branches one at a time and buffers their down-
sampled convolution outputs for future use. We call these
buffers Convolutional Histories. Fig. 6 shows the block di-
agram of a Mini-BranchNet inference engine that can predict
up to 41 static branches in a program. The update pipeline
maintains the convolutional histories of all 41 Mini-BranchNet

123

PC, dir

PC, dir

PC, dir

Input
Branches Embedding

Table
Convolution

Weights

Batch
Normalization

and ReLU

(a) Big-BranchNet Training and Inference

PC, dir

PC, dir 256x32
LUT

PC, dir

Input
Branches

Embedding
Table

Convolution
Weights

Batch
Normalization
and Binarized

Sigmoid

(b) Mini-BranchNet Training

hash

PC, dir

PC, dir 256x1
LUT

PC, dir

Input
Branches

Convolution
Table

(c) Mini-BranchNet Inference

hash

7x32

1x328

13

8
0 or 1

8192x32
LUT

7-wide
window

3-wide
window

3-wide
window

Fig. 7. BranchNet convolutional layer.

+

Running
Sum

-

Pooling
Layer

Outputs

Latest
Convolution

Output

+

Running
Sum

Latest
Convolution

Output

Sum
Controller

Clear
Sum

Enqueue

(b) Mini-BranchNet Inference Engine Precise Pooling

(c) Mini-BranchNet Inference Engine Sliding Pooling

(a) Big-BranchNet Sum-pooling

Convolution
Layer

Outputs

+

+

Pooling
Layer

Outputs

Pooling
Layer

Outputs

Fig. 8. BranchNet 4-wide sum-pooling.

models. To make a prediction, the prediction pipeline simply
selects the convolutional histories corresponding to the target
branch and computes only the two fully-connected layers.
Without this optimization, the predictor would need to com-
pute 4865 convolution operations for each prediction. With this
optimization, the engine computes 521 convolution operations
every time that a branch is inserted into the global history.

Optimization 2: Replacing Convolutions with Table
Lookups. A convolution operation on a single window of
branches involves a dot product operation. Fig. 7a shows
how Big-BranchNet computes one convolution output. Mini-
BranchNet eliminates all the arithmetic operation in two steps.
During training, instead of embedding each branch in the
convolution window independently, it embeds a smaller hash
of the branches in a window (Fig. 7b) and uses binarized sig-
moid [37] activations instead of ReLU. After training is done,
for each possible branch hash, we compute the convolution
output (embedding + dot product + normalization + binarized

sigmoid), which is exactly 0 or 1. These binary values can now
be stored in small tables that the Mini-BranchNet inference
engine looks up to get the convolution output for a branch
hash (Fig. 7c). No arithmetic operation is needed at runtime,
eliminating a 32-dimensional inner product per convolution
operation.

Optimization 3: Using Running Sum Registers. Fig. 8a
shows the sum-pooling operation of Big-BranchNet. Mini-
BranchNet inference engine uses two designs to compute the
sum-pooling outputs. For shorter history slices, the engine
implements precise pooling (Fig. 8b). Precise pooling uses
a buffer and a running sum register to constantly compute
the output of the most recent pooling window and inserts
the pooling outputs into a second set of buffers. As a result,
this second set of buffers contains the pooling outputs of
overlapping windows. At prediction-time, only 1 out of P
pooling outputs (recall P = pooling width) are fed into
the next layer. The buffer space needed to implement pre-
cise pooling grows linearly with the history size. To reduce
storage needs for longer history slices, the Mini-BranchNet
inference engine uses sliding pooling (Fig. 8c). Sliding pooling
accumulates the pooling output of a window over multiple
cycles and inserts the output in the pooling buffer once every
P cycles. The trade-off is that at prediction-time, the most
recent convolution outputs may not have formed a complete
pooling window. Thus, some of the most recent branches in the
history are not used for prediction, and in general, the pooling
windows have nondeterministic boundaries. In practice, this
is not a problem because we only use sliding poolings in
long-history slices of Mini-BranchNet, which do not rely on
fine-grained positions of identified features because of their
proportionally wide pooling widths. To account for sliding
poolings during training, we randomly discard some of the
most recent branches (0 to P − 1 branches) that are fed
into the long-history slices. This randomization makes the
training algorithm resilient against nondeterministic pooling
boundaries at runtime.

Optimization 4: Quantizing Fully-connected Layers.
Mini-BranchNet uses fixed-point arithmetic to compute the
outputs of the fully-connected layers. We empirically found
that using 3 or 4 bits of precision (denoted by architecture
knob q) is sufficient for the sum-pooling outputs and the
first fully-connected weights. The outputs of the first fully-
connected layers need even less precision and can be binarized.
We replace ReLU activations with Tanh to restrict the layer
outputs to be between -1 and 1, which helps with quantization
[37]. We also insert batch normalization and Tanh after the
sum-pooling layer to stabilize the inputs to the fully-connected
layers. After training is done, we fuse the batch normalization
operations with the fully-connected dot products to eliminate
their latency. Since the hidden fully-connected outputs are
binarized, we can use a lookup table to eliminate arithmetic
operations of the last layer.

Optimal Architecture Knobs. It is not storage-efficient
to use the same architecture knobs for all hard-to-predict
branches. Some branches need larger CNN models for good
prediction accuracy, while some can be predicted well with
much smaller storage budgets. Thus, we evaluate four Mini-
BranchNet models with varying storage budgets per branch.
Table I reports the architecture knob values for each configu-

124

TABLE II
BREAKDOWN OF THE MINI-BRANCHNET INFERENCE ENGINE STORAGE

REQUIREMENTS FOR ONE STATIC BRANCH.

Using Architecture Knobs 1KB Config
Convolution Tables

∑
(2h) 0.53 KB

Precise Pooling Buffers
∑

(5 + Pi + q(1 +Hi − Pi)) 0.11 KB
Sliding Pooling Buffers

∑
(7 + log2(Pi) + q(Hi/Pi)) 0.04 KB

Fully-connected weights qN
∑

(Ci(Hi/Pi) + 2N 0.29 KB

ration.

C. On-chip Constraints
Storage. Table II shows the breakdown of storage needed

to predict a single hard-to-predict branch using the Mini-
BranchNet inference engine. As an example, it also shows
the storage breakdown for a 1KB Mini-BranchNet model.

Prediction Latency. Modern processors typically have two
tiers of branch predictors: a less accurate light-weight predictor
that provides early single-cycle predictions and a heavy-weight
predictor that can later correct the prediction if necessary [38].
We envision BranchNet to be a heavy-weight predictor with
multi-cycle latency.

The critical path of updating the convolutional histories
consists of hashing the most recent branches, the convolution
table look-up, an addition (7-bit running sum), quantization,
and insertion into a convolution history buffer. Using CACTI
[39] for the table lookups and counting the gate delays of the
arithmetic operations, we computed the update latency to be
roughly equal to the latency of a 64-bit Kogge-Stone adder (21
gate delays). Since 64-bit additions are single-cycle operations
in modern processors [40], we estimate that Mini-BranchNet
updates are also single-cycle operations. The critical path
of the prediction pipeline for a 2KB Mini-BranchNet model
includes the weight table look-up, the selection of the convolu-
tional history, and a forward pass of the fully-connected layers
(a 4-bit multiply, a 110-input 8-bit adder tree, a comparison,
and accessing a 1024-entry table). The prediction latency is
roughly 4 times the latency of a 64-bit Kogge-Stone adder. The
latency of a 64KB TAGE-SC-L5 is 1.1 times the latency of
the Mini-BranchNet inference engine. Thus, we conservatively
estimate both Mini-BranchNet and 64KB TAGE-SC-L are 4-
cycle predictors.

Recovery. At the time of a pipeline flush, the convolutional
histories and accumulator registers can easily be recovered
using a mechanism similar to what already exists to restore
long global histories. Extra shadow space is reserved in each
register to hold the n most recently shifted out entries of each
register. This allows us to recover the state of the predictor
by shifting back in the lost state, as long as we restrict our
design to allow n branches in flight.

D. Differences with Prior Work
BranchNet builds on the CNN predictor of Tarsa et al. [13].

We refer to their proposed model as Tarsa-Ternary and define
Tarsa-Ternary in terms of BranchNet architecture knobs in
Table I. BranchNet is different from Tarsa-Ternary in five
ways: it uses sum-pooling layers, it approximates 3-wide

5The critical path of TAGE-SC-L: accessing banked TAGE tables, tag
comparisons, TAGE mux tree (with a depth of log(n)), selection logic for
alternative prediction and the loop predictor, accessing the statistical corrector
GEHL tables, a 20-input 6-bit adder tree, and final selection logic.

convolution filters, it uses multiple history lengths, it has an
additional fully-connected layer, and it uses heterogeneous
model sizes based on the needs of each branch. As a result,
Mini-BranchNet is smaller, faster, and more accurate than
Tarsa-Ternary.

The sum-pooling layers are critical in enabling BranchNet
to be more storage-efficient and have lower prediction latency.
Without sum-poolings, each convolutional history in Tarsa-
Ternary has to buffer 200 ternary values (proportional to
history length). In contrast, Mini-BranchNet’s convolutional
histories using sliding sum-poolings need to buffer only five
4-bit values (independent of history length). Because of large
storage and latency savings of using sum-poolings, Mini-
BranchNet can use longer history lengths and a second fully-
connected layer (necessary for higher accuracy), while remain-
ing smaller and faster than Tarsa-Ternary.

E. Offline Training Process
We profile target programs with a diverse set of inputs

to collect branch traces. We divide these traces into three
mutually exclusive sets: the training set, the validation set,
and the test set. We then train BranchNet using the training set
and the validation set in a 3-step process. First, we select the
100 highest MPKI branches (hard-to-predict branches) in the
validation set. Then, we train one CNN model for each hard-
to-predict branch using the training set. Finally, we measure
the MPKI reduction of each branch on the validation set and
attach the BranchNet models for the most improved branches
(up to 41 branches for iso-latency Mini-BranchNet) to the
program binary. To measure the final accuracy on unseen
inputs, we report the accuracy of BranchNet on the test set.

F. System and ISA Requirements
BranchNet requires collaboration across the software stack

for loading trained BranchNet models to the on-chip unit at
runtime. We envision an approach where the trained Branch-
Net models are augmented to the program binary and the oper-
ating system (OS) is responsible for loading these models into
the on-chip BranchNet engine at load-time or during context
switches. The ISA should provide BranchNet instructions that
the OS uses to enable, disable, or update the on-chip engine.
As a design choice, these instructions may be implemented
as non-blocking instructions to hide the overhead of loading
BranchNet models. Lee et al. [41] proposed a similar approach
for using the OS to save and restore the state of runtime branch
predictors during context switches, albeit for a different goal
of mitigating context switch penalties on branch prediction
accuracy. We leave a more detailed analysis and evaluation
of System and ISA requirements or alternative approaches to
future work.

VI. RESULTS

In this section, we show the effectiveness of BranchNet
on SPEC2017 Integer Speed Benchmarks. We chose SPEC
benchmarks because we could use various inputs for the same
benchmark to test the generalization of offline training to
unseen data. Big-BranchNet results demonstrate the available
headroom of branch prediction with offline deep learning.
Mini-BranchNet results show the benefits of using CNN
branch predictors in practical settings.

125

TABLE III
INPUTS OF SPEC WORKLOADS THAT WE USE TO EVALUATE BRANCHNET.

Inputs Purpose
The training set Alberta Training BranchNet models
The validation set SPEC train Identifying best BranchNet branches
The test set SPEC ref Final evaluation of accuracy

mcf
leela xz

deepsjeng gcc
omnetpp

exchange2
x264

perlbench

xalancbmk
mean

0.0

2.5

5.0

7.5

10.0

12.5

15.0

M
PK

I

64KB TAGE-SC-L
Unlimited GTAGE
Unlimited GTAGE-SC, No local Components
Unlimited MTAGE-SC
Unlimited MTAGE-SC Warmed Up
Unlimited MTAGE-SC + Big-BranchNet

5

0

5

10

15

20

25

N
or

m
al

iz
ed

 M
PK

I R
ed

uc
tio

n
(%

)
O

ve
r U

nl
im

ite
d

M
TA

G
E-

SC

6.5%

15.7%

8.7%

3.8%

0.0%
1.3%

0.1%
1.5%

0.0% 0.0%

7.6%

Fig. 9. MPKI of MTAGE-SC and Big-BranchNet on SPEC2017 benchmarks.

A. Evaluation Methodology
We run each SPEC2017 Integer Speed benchmark using

inputs provided by SPEC (train and ref inputs) and Alberta
inputs [42]. We collect up to 10 branch traces from each
workload’s representative regions using SimPoints [43]. We
then train BranchNet models using the process described in
Section V-E. Table III shows how we partition the inputs to
generate the datasets needed for offline training. All numbers
reported in this section refer to measurements on the test set
(the SPEC ref inputs), adjusted according to SimPoint weights.
Depending on the configuration, our training infrastructure
takes between 6 to 18 hours on 4 GPUs to train all BranchNet
models for a given benchmark. Training could be easily sped
up with more GPUs since BranchNet models are trained in
parallel. We have open-sourced our evaluation infrastructure
[44].

We make a slight adjustment to the training and validation
inputs of gcc and xz. As part of their inputs, these two bench-
marks have high-level control flags (optimization settings and
compression level, respectively). Since these control flags
likely do not change frequently in deployment, it is reasonable
to train specialized CNN models targeting runs with certain
execution flags. The data inputs remain different in training,
validation, and test sets.

We evaluate the IPC of benchmarks using Scarab [45], an
execution-driven, cycle-level simulator for x86-64 processors,
which accurately models branch misprediction behavior by
fetching and executing wrong-path instructions. We use a
4KB gshare predictor as the single-cycle lightweight predictor
and TAGE-SC-L and BranchNet as 4-cycle late predictors. If
the prediction of the late predictor disagrees with the early
predictor, we flush the frontend and re-fetch the instructions
after the branch using the new prediction. We configure the
processor to resemble a high-performance processor: 6-wide
fetch, 512-entry ROB, 2MB LLC, 10-stage frontend pipeline,
execution latency similar to an Intel Skylake processor [40],
and DDR4 main memory simulated with Ramulator [46].

B. Measuring Headroom with Big-BranchNet
Fig. 9 shows the MPKI reduction of using Big-BranchNet

along with MTAGE-SC, the best predictor in the unlimited

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Most Improved Branches of leela

0
20
40
60
80

100

A
cc

ur
ac

y
(%

)

64KB TAGE-SC-L Unlimited MTAGE-SC Big-BranchNet

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Most Improved Branches of mcf

0
20
40
60
80

100

A
cc

ur
ac

y
(%

)

0.0

0.1

0.2

0.3

M
PK

I R
ed

uc
tio

n
O

ve
r M

TA
G

E-
SC

0.0

0.1

0.2

0.3

M
PK

I R
ed

uc
tio

n
O

ve
r M

TA
G

E-
SC

Fig. 10. Accuracy of most improved branches using Big-BranchNet.

storage category of CBP 2016 [7]. Adding Big-BranchNet
to MTAGE-SC reduces the average MPKI from 3.42 to
3.16 (7.6% reduction). Big-BranchNet improves the overall
MPKI by predicting only a few static branches that are hard-
to-predict. On average, BranchNet improves the prediction
accuracy on 19 static branches per benchmark, varying from
71 improved static branches in leela to no improved branches
in gcc, xalancbmk, and perlbench.

There is a large variance in MPKI reduction among the ten
benchmarks. In general, high-MPKI benchmarks tend to have
hard-to-predict branches that are more suitable for BranchNet.
In particular, the MPKI of benchmarks leela, xz, mcf, and
deepsjeng are reduced significantly. On the other hand, the
MPKI reduction on omnetpp is small since the main hard-
to-predict branches in omnetpp are data-dependent branches,
which BranchNet cannot improve. Even worse, there is almost
no MPKI gain for gcc. gcc contains many static branches that
equally contribute to the total MPKI because of its large code
footprint and many execution phases. Our current methodology
cannot improve such benchmarks significantly. exchange2,
x264, perlbench, and xalancbmk do not have many hard-to-
predict branches, so there is little opportunity for BranchNet.

To better understand the limitations of TAGE-SC, Fig. 9 also
shows the MPKI of MTAGE-SC without certain key compo-
nents (GTAGE is the global history component of MTAGE).
Most of the accuracy gap between TAGE-SC-L and MTAGE-
SC is due to the larger size of the global history TAGE and the
Statistical Corrector. This means that high-MPKI benchmarks
exert high allocation pressure on the predictor tables, which
is a sign that their global histories are indeed noisy. The local
history components are also significant for a few benchmarks.

We also evaluated MTAGE-SC with an additional warmup
phase of 20 million instructions. The MPKI improvement due
to warmup is not significant.

C. Characteristics of Improved Branches
To better understand why BranchNet outperforms TAGE

predictors, we have examined the source code of some of the
most improved branches in mcf and leela. We describe our
observations on the nature of these branches.

Most mispredicting branches of mcf appear in the qsort
function. Branches in the comparison function are naturally
hard-to-predict as they depend on data in an unsorted array.

126

10

0

10

20

30

40

R
el

at
iv

e
M

PK
I

R
ed

uc
tio

n
(%

)
Tarsa-Ternary
148.6 KB Tarsa-Float Mini-BranchNet

iso-storage
Mini-BranchNet
iso-latency Big-BranchNet

mcf
leela xz

deepsjeng gcc
omnetpp

exchange2
x264

perlbench

xalancbmk
mean

0

2

4

6

8

10

R
el

at
iv

e
IP

C
Im

pr
ov

em
en

t (
%

) 19.0%

Fig. 11. MPKI and IPC improvement of BranchNet and other CNN branch
predictors compared to 64KB TAGE-SC-L.

BranchNet does not improve these data-dependent branches.
However, there are many branches in the body of qsort that
depend on the results of these comparisons. TAGE does not
learn these relationships because of the noisy nature of the
history when running qsort. BranchNet, on the other hand,
learns to ignore the noise and learn the relationships.

leela spends most of its execution time in evaluating the
properties of a Go board. The directions of most mispredicting
branches are functions of these properties. In theory, many
of these branches should be predictable because there are
often other branches in the global history that depend on a
shared property. However, there are also many uncorrelated
branches, which make the history too noisy. Again, BranchNet
circumvents the noisy history by only counting the correlated
branches. Although the exact form of trained models vary
(e.g., the number of required filters, the nonlinear function,
the minimum history length), they are conceptually similar to
the example we provided in Section IV.

Fig. 10 shows the accuracy of the 16 most improved
branches of leela and mcf compared to unlimited MTAGE-
SC. The branches are sorted using MPKI reduction from
left to right. In many cases, Big-BranchNet improves the
prediction accuracy to almost 100%. For example, take the
fourth branch in leela and the top two branches in mcf,
BranchNet improves their accuracies from 79.1%, 73.9%, and
67.4% to 99.98%, 98.4%, and 98.6%. Even with its large
storage budget, MTAGE-SC predicts the same branches with
much lower accuracy (91.4%, 78.9%, and 82.6% respectively).
Note that even if BranchNet cannot predict these branches
100% accurately, any improvement in accuracy results in high
MPKI reduction because these branches are among the most
frequently mispredicted branches.

D. Practical Mini-BranchNet Results
Fig. 11 shows the MPKI and IPC improvement of Branch-

Net and the CNN branch predictor of Tarsa et al. [13]
compared to a 64KB TAGE-SC-L baseline. We disable the
local history components of the Statistical Corrector because
realistic processors avoid maintaining speculative local histo-
ries because of design challenges. For each Mini-BranchNet
storage budget, we try all possible assignments of top hard-
to-predict branches to configurations and use the best combi-
nation of models across all SPEC benchmarks.

We evaluated BranchNet in three settings. The iso-storage
setting pairs an 8KB Mini-BrachNet (one 2KB model, one
1KB model, seven 0.5KB models, and six 0.25KB models)

1 input

1 sim
point

1 input

3 sim
points

1 input

all sim
points

2 inputs

all sim
points

3 inputs

all sim
points

4 inputs

all sim
points

0
1
2
3
4
5

M
PK

I R
ed

uc
tio

n
(%

)

Fig. 12. Sensitivity of Big-BranchNet to the training set size.

1 8 16 24 32 40 48
Total Mini-BranchNet Storage (KB)

0.0
2.5
5.0
7.5

10.0
12.5

SP
EC

20
17

 A
ve

ra
ge

M
PK

I R
ed

uc
tio

n
(%

)

Fig. 13. Sensitivity of iso-latency Mini-BranchNet to its storage budget on
SPEC2017 benchmarks.

with a 56KB TAGE-SC-L6, showing 5.5% average MPKI
reduction, up to 9.5%, and 0.6% average IPC improvement, up
to 3.9%. The iso-latency setting pairs a 32KB Mini-BranchNet
(eight 2KB models, seven 1KB models, ten 0.5KB models, and
sixteen 0.25KB models) with the baseline 64KB TAGE-SC-L,
showing 9.6% MPKI reduction on average (up to 17.7%) and
a geometric mean of 1.3% IPC Improvement (up to 7.9%).
Finally, the Big-BranchNet setting shows the opportunity if
it were possible to get the full benefits of floating-point
BranchNet models with a 4-cycle latency at runtime: 2.9%
average improvement, up to 19.0% for the best benchmark.

We evaluated two configurations of Tarsa’s CNNs. Tarsa-
Float is an oracular software model, analogous to Big-
BranchNet. Tarsa-Ternary is analogous to iso-latency Mini-
BranchNet but with a much larger storage budget (5.125KB
per branch, up to 29 static branches). As discussed in Section
V-D, Mini-BranchNet architecture and optimizations allow
it to use longer histories and a deeper network with less
storage. Thus, as Fig. 11 shows, BranchNet is significantly
more accurate than Tarsa’s CNNs.

E. Sensitivity Analysis

Fig. 12 shows the MPKI reduction of BranchNet over un-
limited MTAGE-SC using different training set sizes. Training
with all the SimPoints of one program provides much better
coverage of branch behavior compared to using only one
SimPoint, which improves the generalization of the trained
models. Similarly, using more than one input further improves
the MPKI reduction. However, once the coverage is enough
to expose all input-independent correlations, using additional
inputs shows diminishing returns.

Fig. 13 shows the sensitivity of iso-latency Mini-BranchNet
to its storage budget. Since storage more than 32KB shows
diminishing returns, we chose 32KB as the budget for iso-
latency Mini-BranchNet.

Table IV illustrates the negative impact of various con-
straints and approximations needed to make Mini-BranchNet

6We build the 56KB TAGE-SC-L by decreasing the number of table entries
and tag bits of TAGE.

127

TABLE IV
PROGRESSION OF MPKI REDUCTION OF leela FROM BIG-BRANCHNET TO

MINI-BRANCHNET.

Big-BranchNet: No branch capacity limit 35.8 %
Big-BranchNet: Same branches as Mini-BranchNet 25.1 %
Mini-BranchNet: Floating-point 20.0 %
Mini-BranchNet: Quantized convolution 18.7 %
Mini-BranchNet: Fully-quantized 15.7 %

practical. Quantization of convolution layers has the least
significant impact on MPKI reduction, which agrees with our
intuition that the role of the convolution layer is to simply
identify correlated branch patterns, so a binary output should
be sufficient.

Note: these sensitivity studies were done with a slightly
different training setup, resulting in lower MPKI reduction
compared to what we reported in earlier sections.

F. Weaknesses and Future Directions
The poor performance of BranchNet on gcc highlights

the first weakness: if the mispredictions of a program are
distributed among many static branches, BranchNet cannot
significantly improve its accuracy by improving the prediction
just a few branches. Even if we can train an accurate CNN
model for each mispredicting branch, we need a large storage
area to keep the models. One possible direction is to use the
methodology of Predictor Virtualization [47] to maintain all
the models in the main memory and use either a runtime
mechanism or explicit BranchNet instructions to load the
BranchNet models into the inference engine as needed.

The large gap between the accuracy of Big-BranchNet and
Mini-BranchNet is another weakness that can be improved.
Training multi-layer neural networks often relies on some
degree of overparameterization, i.e., there is redundancy in
trained models. Regularization and pruning are machine-
learning tools to combat this inefficiency. Furthermore, static
analysis and input preprocessing can help to learn even more
specialized prediction functions for branch prediction [48].

Finally, perhaps the biggest weakness of BranchNet is data-
dependent branches. Our goal for BranchNet is to improve
branch prediction using the global branch history. However,
the combination of deep learning and offline training has the
potential to further push branch prediction by using signals
other than the global branch history that can help to predict
data-dependent branches.

VII. OTHER RELATED WORK

Store-Load-Branch (SLB) predictor [49] and Probabilistic
Branch Support (PBS) [50] improve branch prediction for
data-dependent and probabilistic branches. Although the goal
of SLB and PBS is different from BranchNet, they all break
the runtime abstraction around branch prediction. SLB uses
the compiler to identify data-dependent branches and ex-
poses their dependence chains to the branch predictor. PBS
uses programmer directives to change program semantics for
probabilistic branches to simplify branch prediction. While
different from profiling, these approaches agree with our
general assertion that we need to revisit compile-time support
for branch prediction.

Gope and Lipasti [51] propose bias-free branch predictors to
remove biased and redundant branches from branch histories.

BranchNet and the bias-free predictor both target the same
problem that not all branches in the history matter. The bias-
free predictor addresses this problem using a simple runtime
filtering mechanism. However, offline deep learning allows
BranchNet to be more powerful.

Evers et al. [52] describe how identifying correlated
branches in the history is useful for improving branch pre-
diction accuracy. To this end, Thomas et al. [53] use an on-
chip mechanism to track dataflow dependencies to identify
correlated branches in the history. However, their mechanism
cannot track dataflow through memory. This is particularly
problematic for identifying correlations that appear deep into
a long history because dataflow dependencies through memory
become more likely.

Seznec et al. [54] propose using Inner Most Loop Iteration
(IMLI) counters to identify correlated branches in history.
Inspired by the Wormhole predictor [55], IMLI counters are
useful for predicting branches within nested loops that are
correlated to the branches in the previous iterations of the outer
loop. BranchNet is compatible with using IMLI counters as
inputs. We leave the study of using IMLI counters as inputs
to BranchNet for future work.

VIII. CONCLUSION

BranchNet is a convolutional neural network that we train
offline to predict many branches that are fundamentally
hard-to-predict for state-of-the-art predictors. State-of-the-art
branch predictors fail to accurately predict these branches
because they need exponentially large storage to identify
branch correlations that appear deep into a noisy in the global
history. In contrast, by using the abundant data and com-
putation available during offline training, BranchNet learns
to ignore uncorrelated noise in the history and use only the
correlated branches to make a prediction. To show the inherent
advantage of CNNs in predicting this category of branches,
we have compared Big-BranchNet to MTAGE-SC without
considering practical constraints. We have shown that Big-
BranchNet outperforms MTAGE-SC on some of the most
mispredicting branches among the SPEC2017 benchmarks,
resulting in 7.6% MPKI reduction. Furthermore, to show the
effectiveness of CNNs as practical branch predictors, we have
compared Mini-BranchNet to 64KB TAGE-SC-L. Without
increasing the prediction latency, Mini-BranchNet reduces the
MPKI by 9.6%. While the IPC gains of Mini-BranchNet are
limited (average 1.3%, up to 7.9%), these results should not be
interpreted as a limit to the potential benefits of deep learning
for branch prediction. The key takeaway from BranchNet is
that offline deep learning is a powerful approach to address
the weaknesses of state-of-the-art runtime branch predictors.
Further research and innovation can complement BranchNet
to remedy the remaining weaknesses of runtime predictors.

ACKNOWLEDGMENT

We thank the anonymous reviewers, members of HPS
research group, and Yongkee Kwon for their feedback and
help with improving this paper. We thank Intel, Arm, and
Microsoft for their financial support. We acknowledge the
Texas Advanced Computing Center (TACC) for providing
compute resources.

128

REFERENCES

[1] A. Seznec, “Tage-sc-l branch predictors again,” in 5th JILP Workshop on
Computer Architecture Competitions (JWAC-5): Championship Branch
Prediction (CBP-5), 2016.

[2] C.-K. Lin and S. J. Tarsa, “Branch prediction is not a solved problem:
Measurements, opportunities, and future directions,” in IEEE Interna-
tional Symposium on Workload Characterization, 2019.

[3] P. Michaud, A. Seznec, and S. Jourdan, “An exploration of instruction
fetch requirement in out-of-order superscalar processors,” International
Journal of Parallel Programming, vol. 29, no. 1, pp. 35–58, Feb 2001.
[Online]. Available: https://doi.org/10.1023/A:1026431920605

[4] T. S. Karkhanis and J. E. Smith, “A first-order superscalar processor
model,” in Proceedings. 31st Annual International Symposium on Com-
puter Architecture, 2004., June 2004, pp. 338–349.

[5] E. Sprangle and D. Carmean, “Increasing processor performance by
implementing deeper pipelines,” in Computer Architecture, 2002. Pro-
ceedings. 29th Annual International Symposium on. IEEE, 2002, pp.
25–34.

[6] P. Michaud, “An alternative tage-like conditional branch predictor,”
ACM Trans. Archit. Code Optim., vol. 15, no. 3, Aug. 2018. [Online].
Available: https://doi.org/10.1145/3226098

[7] A. Seznec, “Exploring branch predictability limits with the MTAGE+SC
predictor,” in 5th JILP Workshop on Computer Architecture
Competitions (JWAC-5): Championship Branch Prediction (CBP-
5), Seoul, South Korea, Jun. 2016, p. 4. [Online]. Available:
https://hal.inria.fr/hal-01354251

[8] D. Jiménez, “Multiperspective perceptron predictor,” in 5th JILP Work-
shop on Computer Architecture Competitions (JWAC-5): Championship
Branch Prediction (CBP-5), 2016.

[9] ——, “Multiperspective perceptron predictor with tage,” in 5th JILP
Workshop on Computer Architecture Competitions (JWAC-5): Champi-
onship Branch Prediction (CBP-5), 2016.

[10] S. Pruett, S. Zangeneh, A. Fakhrzadehgan, B. Lin, and Y. Patt, “Dy-
namically sizing the tage branch predictor,” in 5th JILP Workshop on
Computer Architecture Competitions (JWAC-5): Championship Branch
Prediction (CBP-5), 2016.

[11] A. Seznec and P. Michaud, “A case for (partially) tagged geometric
history length branch prediction,” J. Instruction-Level Parallelism, vol. 8,
2006.

[12] D. A. Jimenez and C. Lin, “Dynamic branch prediction with percep-
trons,” in Proceedings HPCA Seventh International Symposium on High-
Performance Computer Architecture, Jan 2001, pp. 197–206.

[13] S. J. Tarsa, C.-K. Lin, G. Keskin, G. Chinya, and H. Wang, “Improving
branch prediction by modeling global history with convolutional neural
networks,” in The 2nd International Workshop on AI-assisted Design for
Architecture, 2019.

[14] D. Tarjan and K. Skadron, “Merging path and gshare indexing
in perceptron branch prediction,” ACM Trans. Archit. Code Optim.,
vol. 2, no. 3, pp. 280–300, Sep. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1089008.1089011

[15] J. Cleary and I. Witten, “Data compression using adaptive coding and
partial string matching,” IEEE Transactions on Communications, vol. 32,
no. 4, pp. 396–402, April 1984.

[16] T.-Y. Yeh and Y. N. Patt, “Two-level adaptive training branch predic-
tion,” in Proceedings of the 24th Annual International Symposium on
Microarchitecture, ser. MICRO 24. New York, NY, USA: ACM, 1991,
pp. 51–61.

[17] A. Krall, “Improving semi-static branch prediction by code replication,”
SIGPLAN Not., vol. 29, no. 6, pp. 97–106, Jun. 1994. [Online].
Available: http://doi.acm.org/10.1145/773473.178252

[18] B. Calder, D. Grunwald, M. Jones, D. Lindsay, J. Martin, M. Mozer,
and B. Zorn, “Evidence-based static branch prediction using machine
learning,” ACM Trans. Program. Lang. Syst., vol. 19, no. 1, pp.
188–222, Jan. 1997. [Online]. Available: http://doi.acm.org.ezproxy.lib.
utexas.edu/10.1145/239912.239923

[19] J. R. C. Patterson, “Accurate static branch prediction by value range
propagation,” SIGPLAN Not., vol. 30, no. 6, pp. 67–78, Jun. 1995.
[Online]. Available: http://doi.acm.org.ezproxy.lib.utexas.edu/10.1145/
223428.207117

[20] C. Young and M. D. Smith, “Improving the accuracy of static
branch prediction using branch correlation,” SIGOPS Oper. Syst.
Rev., vol. 28, no. 5, pp. 232–241, Nov. 1994. [Online]. Available:
http://doi.acm.org/10.1145/381792.195549

[21] D. A. Jimenez, H. L. Hanson, and C. Lin, “Boolean formula-based
branch prediction for future technologies,” in Proceedings 2001 Interna-
tional Conference on Parallel Architectures and Compilation Techniques,
Sep. 2001, pp. 97–106.

[22] T. Sherwood and B. Calder, “Automated design of finite state machine
predictors for customized processors,” in Proceedings 28th Annual
International Symposium on Computer Architecture, June 2001, pp. 86–
97.

[23] M. . Tarlescu, K. B. Theobald, and G. R. Gao, “Elastic history buffer: a
low-cost method to improve branch prediction accuracy,” in Proceedings
International Conference on Computer Design VLSI in Computers and
Processors, Oct 1997, pp. 82–87.

[24] J. Stark, M. Evers, and Y. N. Patt, “Variable length path branch
prediction,” SIGOPS Oper. Syst. Rev., vol. 32, no. 5, pp. 170–179, Oct.
1998. [Online]. Available: http://doi.acm.org/10.1145/384265.291042

[25] S. Verma, B. Maderazo, and D. M. Koppelman, “Spotlight - a low
complexity highly accurate profile-based branch predictor,” in 2009
IEEE 28th International Performance Computing and Communications
Conference, Dec 2009, pp. 239–247.

[26] S. Mcfarling, “Combining branch predictors,” Digital Equipment Cor-
poration, Western Research Lab, Tech. Rep., 1993.

[27] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,”
2016.

[28] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun
2018. [Online]. Available: http://dx.doi.org/10.1109/CVPR.2018.00745

[29] F. Wu, A. Fan, A. Baevski, Y. N. Dauphin, and M. Auli, “Pay less
attention with lightweight and dynamic convolutions,” 2019.

[30] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[31] M. Hashemi, K. Swersky, J. Smith, G. Ayers, H. Litz, J. Chang,
C. Kozyrakis, and P. Ranganathan, “Learning memory access
patterns,” in Proceedings of the 35th International Conference on
Machine Learning, ser. Proceedings of Machine Learning Research,
J. Dy and A. Krause, Eds., vol. 80. Stockholmsmssan, Stockholm
Sweden: PMLR, 10–15 Jul 2018, pp. 1919–1928. [Online]. Available:
http://proceedings.mlr.press/v80/hashemi18a.html

[32] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551, Dec.
1989. [Online]. Available: http://dx.doi.org/10.1162/neco.1989.1.4.541

[33] H. Robbins and S. Monro, “A stochastic approximation method,”
Ann. Math. Statist., vol. 22, no. 3, pp. 400–407, 09 1951. [Online].
Available: https://doi.org/10.1214/aoms/1177729586

[34] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Repre-
sentations by Back-Propagating Errors. Cambridge, MA, USA: MIT
Press, 1988, p. 696699.

[35] A. Seznec, “Analysis of the o-geometric history length branch predictor,”
in 32nd International Symposium on Computer Architecture (ISCA’05),
June 2005, pp. 394–405.

[36] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proceedings
of the 32Nd International Conference on International Conference on
Machine Learning - Volume 37, ser. ICML’15. JMLR.org, 2015,
pp. 448–456. [Online]. Available: http://dl.acm.org/citation.cfm?id=
3045118.3045167

[37] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks with weights
and activations constrained to +1 or -1,” 2016.

[38] D. A. Jimenez, S. W. Keckler, and C. Lin, “The impact of delay on the
design of branch predictors,” in Proceedings 33rd Annual IEEE/ACM
International Symposium on Microarchitecture. MICRO-33 2000, Dec
2000, pp. 67–76.

[39] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing
nuca organizations and wiring alternatives for large caches with cacti
6.0,” in 40th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO 2007), Dec 2007, pp. 3–14.

[40] A. Fog, “Instruction tables: Lists of instruction latencies, throughputs
and micro-operation breakdowns for intel, amd and via cpus,”
Technical University of Denmark, Tech. Rep. [Online]. Available:
https://www.agner.org/optimize/instruction tables.pdf

[41] M.-S. Lee, Y.-J. Kang, J.-W. Lee, and S.-R. Maeng, “Opts: increasing
branch prediction accuracy under context switch,” Microprocessors and
Microsystems, vol. 26, no. 6, pp. 291 – 300, 2002. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0141933102000418

[42] J. N. Amaral, E. Borin, D. R. Ashley, C. Benedicto, E. Colp, J. H. S.
Hoffmam, M. Karpoff, E. Ochoa, M. Redshaw, and R. E. Rodrigues,
“The alberta workloads for the spec cpu 2017 benchmark suite,” in 2018
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), April 2018, pp. 159–168.

[43] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in Proceedings of

129

the 10th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS X.
New York, NY, USA: ACM, 2002, pp. 45–57. [Online]. Available:
http://doi.acm.org/10.1145/605397.605403

[44] “Branchnet,” https://github.com/siavashzk/BranchNet.
[45] “Scarab,” https://github.com/hpsresearchgroup/scarab.
[46] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible

dram simulator,” IEEE Computer Architecture Letters, vol. 15, no. 1,
pp. 45–49, Jan 2016.

[47] I. Burcea, S. Somogyi, A. Moshovos, and B. Falsafi, “Predictor
virtualization,” in Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS XIII. New York, NY, USA: Association
for Computing Machinery, 2008, p. 157167. [Online]. Available:
https://doi.org/10.1145/1346281.1346301

[48] S. Zangeneh, S. Pruett, and Y. Patt, “Branch prediction with multi-
layer neural networks: The value of specialization,” ML for Computer
Architecture and Systems, 2020.

[49] M. Farooq, K. Khubaib, and L. John, “Store-load-branch (slb) predictor:
A compiler assisted branch prediction for data dependent branches,” 02
2013, pp. 59–70.

[50] A. Adileh, D. Lilja, and L. Eeckhout, “Architectural support for prob-
abilistic branches,” in 51st annual IEEE/ACM International Symposium
on Microarchitecture, Fukuoka, Japan, Oct 2018.

[51] D. Gope and M. H. Lipasti, “Bias-free branch predictor,” in 2014 47th
Annual IEEE/ACM International Symposium on Microarchitecture, Dec
2014, pp. 521–532.

[52] M. Evers, S. J. Patel, R. S. Chappell, and Y. N. Patt, “An
analysis of correlation and predictability: What makes two-level
branch predictors work,” in Proceedings of the 25th Annual
International Symposium on Computer Architecture, ser. ISCA 98.
USA: IEEE Computer Society, 1998, p. 5261. [Online]. Available:
https://doi.org/10.1145/279358.279368

[53] R. Thomas, M. Franklin, C. Wilkerson, and J. Stark, “Improving
branch prediction by dynamic dataflow-based identification of correlated
branches from a large global history,” in Proceedings of the 30th Annual
International Symposium on Computer Architecture, ser. ISCA 03.
New York, NY, USA: Association for Computing Machinery, 2003, p.
314323. [Online]. Available: https://doi.org/10.1145/859618.859655

[54] A. Seznec, J. S. Miguel, and J. Albericio, “The inner most loop iteration
counter: A new dimension in branch history,” in Proceedings of the
48th International Symposium on Microarchitecture, ser. MICRO-48.
New York, NY, USA: ACM, 2015, pp. 347–357. [Online]. Available:
http://doi.acm.org/10.1145/2830772.2830831

[55] J. Albericio, J. S. Miguel, N. E. Jerger, and A. Moshovos, “Wormhole:
Wisely predicting multidimensional branches,” in Proceedings of the
47th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO-47. Washington, DC, USA: IEEE Computer Society,
2014, pp. 509–520. [Online]. Available: http://dx.doi.org/10.1109/
MICRO.2014.40

130

