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ABSTRACT: When compared with differences in snow accumulation predicted by widely used hydrological models, there

is a much greater divergence among otherwise ‘‘good’’ models in their simulation of the snow ablation process. Here, we

explore differences in the performance of the Variable Infiltration Capacity model (VIC), Noah land surface model with

multiparameterization options (Noah-MP), the Catchment model, and the third-generation Simplified Simple Biosphere

model (SiB3) in their ability to reproduce observed snow water equivalent (SWE) during the ablation season at 10

Snowpack Telemetry (SNOTEL) stations over 1992–2012. During the ablation period, net radiation generally has stronger

correlations with observed melt rates than does air temperature. Average ablation rates tend to be higher (in both model

predictions and observations) at stations with a large accumulation of SWE. The differences in the dates of last snow

between models and observations range from several days to approximately a month (on average 5.1 days earlier than in

observations). If the surface cover in the models is changed from observed vegetation to bare soil in all of the models, only

the melt rate of the VIC model increases. The differences in responses of models to canopy removal are directly related to

snowpack energy inputs, which are further affected by different algorithms for surface albedo and energy allocation across

the models. We also find that the melt rates become higher in VIC and lower in Noah-MP if the shrub/grass present at the

observation sites is switched to trees.
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1. Introduction

Snow is a dominant aspect of the land surface hydrolog-

ical cycle of the western United States, especially in the

headwaters of the major river basins. Snowpacks store

precipitation during the cold season and release water via

melt during the following warm season, effectively provid-

ing a natural reservoir that shifts the timing of peak runoff

relative to precipitation by several months. In most western

U.S. river basins, snow is the largest (seasonally varying)

water storage component (Mote et al. 2005). Li et al. (2017)

found that 53% of the runoff over the western United States

originates from melting snowpacks, a number that increases

to 70% in the mountainous parts of the region. In relatively

dry and heavily populated Southern California, more than

half the water supply is derived from snowmelt from remote

mountainous sources (Waliser et al. 2011). As temperatures

have warmed in recent decades, snowpack behavior and

corresponding hydrological processes have been severely

affected. For instance, Mote et al. (2018) report that over

90% of the snow monitoring stations across the western

United States with long-term records have shown declines

over 1955–2014. As temperatures continue to warm, Rauscher

et al. (2008) estimate that snowmelt-driven runoff over the

West could occur as much as two months earlier than it has

historically.

Despite its importance to surface water hydrology, deter-

mining representations of the complicated mechanisms that

govern snowpack accumulation and ablation in hydrologic

models remain challenging. Given both the scientific chal-

lenges and practical implications, Dozier et al. (2016) have

argued that estimation of the spatial distribution of SWE over

mountainous areas is the most important unsolved issue in

snow hydrology. The problem is complicated by the fact that

snow depth variability can be caused by a mix of multiple

process at various spatial scales (Clark et al. 2011). On the

other hand, snow accumulation over the western United States

can usually be predicted by the accumulated precipitation oc-

curring during the winter at temperatures below a threshold

(typically slightly greater than 08C on daily average). For in-

stance, Fig. 1a shows that SWE estimated using a very simple

rule, which is to approximate the seasonal maximum SWE as

the accumulation of all precipitation that occurs during the

winter season below a fixed (daily average) temperature,

yielding plausible predications of maximum winter snow

accumulations at a great number of Snowpack Telemetry

(SNOTEL) sites. Figure 1c shows, when the models are ini-

tialized with the observed seasonal SWE maxima, the varia-

tions in ablation rates are substantial, and can lead to variations

in the predicted date of last SWE that exceed one month.
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Here, we explore, in offline simulations, the ablation

season performance of four energy-based snow models that

are widely used in macroscale hydrologic models and cou-

pled land–atmosphere models. In particular, we examine

their ability to reproduce observed snow ablation rates at

selected SNOTEL sites [snow pillows operated by the

Natural Resources Conservation Service (NRCS)] across

the western United States. We examine differences among

the snow models (and between models and observations)

during the ablation period by analyzing the factors that

control snow ablation. The remainder of the paper is orga-

nized as follows: section 2 describes the data and models

used in the comparisons. We report results in section 3, with

discussion and interpretation in section 4. Our conclusions

are presented in section 5.

2. Data and methods

a. Snow observations and ablation estimate

The USDA Natural Resources Conservation Service

(NRCS) Snow Survey and Water Supply Forecasting Program

(https://www.wcc.nrcs.usda.gov/) has a network of 808 auto-

mated SNOTEL stations in the western states. Starting in the

early 1980s, the SNOTEL stations began to report daily snow

water equivalent (SWE) using snow pillows (which weigh the

accumulated snowpack continuously in time), as well as (most

sites) daily precipitation, and daily maximum and minimum

temperature. We selected 10 SNOTEL stations distributed

over the western United States (Fig. 2) whose data are of high

quality (missing values less than 5%). The snow types in the

western mountainous regions are either alpine or maritime

according to Sturm et al. (1995), and the sites we selected in-

clude both types (three are alpine and seven are maritime).

These stations form the basis for our analyses and station

names and elevations are given in Table 1.

To evaluate snow ablation characteristics, we first need to

define the ablation process and melt rates. Previous studies

have attempted to employ snow depth and SWE values to

determine the ablation period (Dyer and Mote 2007; Trujillo

and Molotch 2014). Our main objectives are to explore the

behavior and the controlling factors during the snowmelt sea-

son and to determine the bias and uncertainty among the

FIG. 1. (a) Climatology of annual maximum SWE estimated by accumulated precipitation below 08C (Acc-P), observations (OBS), and

percent error for 1986–2005 averaged over ;100 SNOTEL stations. (b) Empirical cumulative probability curves for annual maximum

SWE from observations (OBS) and accumulated precipitation (ACC-P) over all of the stations in (a). (c) Observed and simulated SWE

time series plot for Schofield Pass, Colorado, for spring 1999. The models are all initialized with the observed maximum SWE on

7 May 1999.
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models in estimating SWE during this period. Therefore, we

use the SWE-based definition of Trujillo and Molotch (2014),

which is that for each water year (October–September), the

ablation period is the time from the date of maximum SWE to

the last day of snow existence (SWE. 0). Further, we extract

the 20th–80th quantile of the ablation period, which we define

as the period from the date when 80% of the maximum ac-

cumulated SWE remains to the date when 20% of SWE re-

mains. Based on our exploratory analysis, focusing on this

central portion of the melt period seems to provide a repre-

sentation of the ablation process that minimizes unusual

conditions near the beginning and end of the melt period

(e.g., occasional accumulation events early in the melt period,

and very warm conditions with partial snow cover late in the

melt period). Therefore, In the analyses we report below, our

results are based on the 20th–80th quantile definition unless

stated otherwise. Accordingly, we calculate snow ablation

rates for each year as the 80th quantile of SWEminus the 20th

quantile of SWE divided by the number of days between the

corresponding dates.

b. Land surface models

We examined simulations of SWE using four land surface

models (LSMs): Variable Infiltration Capacity (VIC), Noah

Multiparameterization (Noah-MP), Catchment, and the third-

generation Simplified Simple Biosphere (SSiB3), all of which

have been applied in numerous snow-related studies (e.g., Tan

et al. 2011; Shi et al. 2013; Chen et al. 2014; Newman et al. 2014;

Xia et al. 2017; Magand et al. 2013; Xue et al. 2018; Oaida et al.

2015; Cortés et al. 2016; Rutter et al. 2009, among many

others). The relevant archival references for the snow algo-

rithms in the four models are as follows: VIC (Andreadis et al.

2009), Noah-MP (Niu et al. 2011), Catchment (Stieglitz et al.

2001), and SSiB3 (Sun et al. 1999; Xue et al. 2003). The key

features of the snow algorithms in each of the model are

summarized in Table 2. We also provide brief descriptions of

each model below.

VIC is a physically based, macroscale hydrologic model

with an energy-based snow module that explicitly accounts

for snow accumulation and ablation in the vegetation canopy

(Andreadis et al. 2009). It represents two layers in the vertical

(one for thin snowpacks)—a relatively thin surface layer,

and a deeper pack layer. The VIC model represents the snow

interception effect of the canopy, and fractional snow cover is

represented as well. Further, shortwave attenuation through

the canopy is also represented using a Beers-law formulation

(Andreadis et al. 2009). Snow albedo a in VIC decays with

time from snowfall t according to a scaled exponential rela-

tionship based on USACE (1956).

Noah-MP has much different physics than the original Noah

LSM (Chen and Dudhia 2001; Ek et al. 2003) to the extent that

it essentially is a different model. Regarding the snowpack

modeling, the Noah-MP snow model partitions the snowpack

into up to three layers according to snow depth and snow cover

fraction as determined by snow density, snow depth, and

ground roughness length. Noah-MP relates the vegetation

cover fraction to prescribed leaf area index (LAI) values (Niu

et al. 2011). To calculate the energy terms at the snow surface,

Noah-MP utilizes a ‘‘semi tile’’ scheme to calculate the energy

balance and solves for the snow temperature over vegetated

and bare fractions separately. Shortwave radiation fluxes

(ground- and canopy-absorbed) are computed over the entire

grid cell assuming the canopy is evenly distributed; the other

fluxes (ground heat, latent heat, sensible heat, and longwave

TABLE 1. Site locations and attributes for the selected SNOTEL sites.

Site No. Station name Lon Lat State Elev (m)

1 Olallie Meadows 2121.44 47.37 WA 1228

2 Hand Creek 2114.84 48.31 MT 1535

3 Pike Creek 2113.33 48.30 MT 1808

4 Hemlock Butte 2115.63 46.48 ID 1771

5 Banner Summit 2115.23 44.30 ID 2146

6 Blue Mountain Spring 2118.52 44.25 OR 1789

7 Silver Creek 2121.18 42.96 OR 1750

8 Central Sierra Snow Laboratory 2120.37 39.33 CA 2101

9 Leavitt Meadows 2119.55 38.30 CA 2194

10 Schofield Pass 2107.05 39.02 CO 3261

FIG. 2. Selected NRCS SNOTEL stations over the western

United States. The names and index numbers correspond to the

information given in Table 1.
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radiation) are calculated for bare soil and vegetated parts of a

‘‘tile’’ (grid cell) separately. The scheme in Noah-MP, which

considers gap probabilities for shortwave radiation transfer, is

designed to avoid overshading effect of the canopy. The snow

albedo is adopted from the Canadian Land Surface Scheme

(CLASS) model (Verseghy 1991), which accounts for snow

age, grain size, and accumulated debris on the snow surface.

Catchment incorporates a three-layer snow module to ac-

count for snowpack growth and ablation (Stieglitz et al. 2001).

Catchment determines the net solar radiation flux using esti-

mates of surface albedo; this albedo is calculated separately for

the snow-covered and snow-free fractions of the land element,

and vegetation ‘‘sticking out’’ of the snowpack modifies the

albedo in the snow-covered fraction. Catchment does not

separate downward solar radiation according to vegetated and

bare-soil surfaces; that is, it does not use a two-stream scheme

as do the other three models. Rather, it first calculates the

average surface albedo (with and without snow) and computes

the net solar radiation for the entire surface. In Catchment,

snowpack albedo is parameterized as a function of snow sur-

face aging (Stieglitz et al. 2001). Catchment’s snow-free pa-

rameterization is designed to match MODIS climatological

mean albedo at the location at any given time. The snow pa-

rameterization in Catchment (Stieglitz et al. 2001) uses a

13-mm threshold of SWE to compute the snow-covered frac-

tion; that is, if SWE is greater than or equal to 13mm, the entire

tile is assumed to be snow covered.

SSiB3 uses the snow–atmosphere–soil transfer (SAST)

model of Sun et al. (1999). SAST uses up to three layers to

represent snow in vegetation-free areas and under canopies.

Snow albedo decays with snow age as adjusted by cloud cover

and sun elevation angle. The land surface in SSiB3 is divided

into canopy and bare soil parts according to the vegetation

fraction in the same way as is done by SSiB for snow-free

areas. The snow energy fluxes and surface soil temperature

are solved simultaneously to guarantee energy conservation

at each time step. SSiB3 employs (fixed) monthly varying

parameters for vegetation cover fraction and LAI, both of

which are also dependent on the predefined vegetation type

(Sellers et al. 1996). Table S1 in the online supplemental

material gives the LAI values for SSiB3 as well as for VIC.

Noah-MP and Catchment utilize LAI climatologies at each

individual site, as sourced in the caption of Table S1.

c. Forcings and experimental setup

We extracted daily meteorological observations (daily pre-

cipitation and temperature maxima and minima) at 10 selected

SNOTEL sites. Because trends in daily temperature minimum

(Tmin) at SNOTEL sites over the west have been reported to

be artificially amplified (Oyler et al. 2015), we performed an-

other experiment to examine the possible effects of these ar-

tificial changes. We corrected the Tmin from the SNOTEL

records using another temporally consistent data, the Hamlet

and Lettenmaier (H&L) data (Hamlet and Lettenmaier 2005),

which we extended to 2014 (Mote et al. 2018). We adjusted

Tmin records extracted from SNOTEL after the year 1997,

when the artificial modification first occurred (Oyler et al.

2015), to guarantee that the average differences in monthly

Tmin between SNOTEL and H&L were the same for before

and after 1997. We then tested the models with the adjusted

forcings.We found that the results show no obvious differences

relative to our base experiments (Figs. S1 and S2 in the online

supplemental material). Therefore, we used the original tem-

perature records from each of the SNOTEL sites in our anal-

ysis. We used wind speed from the Livneh dataset (Livneh

et al. 2013) that is interpolated from the lowest layer of the

NCEP–NCAR reanalysis (Kalnay et al. 1996). We applied

the Mountain Climate (MTCLIM) algorithms (Hungerford

et al. 1989) as incorporated in the VIC model (Bohn et al.

2013) at each station to produce hourly precipitation and

temperature, downward solar and longwave radiation, pres-

sure and humidity forcings. Our study period is from 1992

to 2012, which was determined by the availability of the

SNOTEL meteorological observations and the temporal

coverage of the Livneh dataset.

To evaluate the magnitude and nature of differences in

ablation rates among the models, we manually adjusted the

SWE predictions for all models tomatch the SNOTEL annual

maxima for each water year (i.e., within every year, when the

SNOTEL observation reached its annual maximum, we

replaced the simulated SWE on that day with the observed

value). We also performed sensitivity tests to examine the

possibility of carryover effects associated with snowpack cold

content and liquid water storage, and we found the differ-

ences to be negligible (Fig. S3 in the online supplemental

material). For each model, we performed model simulations

from each year’s observed date of maximum SWE through

the (model’s) date of last SWE, and we repeated the process

for the next water year. This procedure allowed us to reduce

the differences among models in the accumulation period.

We determined the vegetation type at each site using site

images provided by NRCS (Fig. S4 in the online supplemental

material). As shown in the photos, the snow pillows are all in

openings.We classified CSS Laboratory (site 8) as grass, and all

TABLE 2. Key features of the snow-related physics in the four land surface models.

VIC Noah-MP SSiB Catchment

Snow albedo decay Yes Yes Yes Yes

Canopy interception Liquid and snow Liquid and snow Liquid and snow Liquid and snow

Canopy radiation transfer Two streams Two streams Two streams Tile average

Max snow layers 2 layers 3 layers 3 layers 3 layers

Canopy attenuation of solar radiation Yes Yes Yes Yes

Canopy attenuation of wind Yes Yes Yes No
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other sites as shrub. Two of the 10 sites (Hand Creek and Pike

Creek) did not have site images and we chose shrub as their

vegetation cover according to Google Earth satellite imagery.

We specifically extracted the heat fluxes (net radiation, sensi-

ble heat, latent heat, etc.) at the snow surface (below the

canopy) as well as above the canopy from each model to

evaluate their effects on ablation process.

For shrub and grass vegetation types, the differences be-

tween energy fluxes above and below canopy generally are

small (in part because snow covers the vegetation through

much of the ablation period in the models). Therefore, we

performed an experiment in which the vegetation cover at all

sites was set to trees and then compared the energy terms

above and below canopy with the runs corresponding to the

vegetation actually present at each site (see section 4).

3. Results

a. Ablation rates

Figure 3 shows the average ablation rates (calculated as

described in section 2a) at each of the SNOTEL sites for the

entire study period. Overall, the Catchment model produced

the best estimates as compared with observations in terms of

mean absolute error (MAE). VIC, Noah-MP, and SSiB gen-

erally have melt rates that were biased high with one exception

(site 10 for SSiB). The overall bias across all models is slightly

positive (the observations have lower ablation rates than the

simulations) while only Catchment has generally negative

biases. The multimodel ensemble-average yielded melt rates

with MAEs that were higher than those of the best model

(Catchment). The station-averaged errors (model minus ob-

served averaged over years) in the estimated last day of the

ablation period were 23.6 (VIC), 26.1 (Noah-MP), 25.0

(SSiB), 0.3 (Catchment), and 25.1 (model average) days, re-

spectively. However, these station averages obscure substan-

tial variability, as VIC differences ranged from 210.9 to

2.6 days across the 10 stations, Noah-MP ranged from 212.6

to 20.1, SSiB ranged from 212.7 to 3.2, Catchment ranged

from 23.7 to 4.3, and the model average ranged from 210.9

to 20.8 days.

Table 3 summarizes the climatologies of the 10 SNOTEL

sites in terms of average temperature and maximum annual

SWE. Considering the ablation rates in Fig. 3 and the maxi-

mumSWEvalues in the table, the stations that have the highest

SWE accumulations also tend to experience faster melt rates.

Figure 4 reports the correlation coefficients between average

annual maximum SWE and average ablation rates for the ob-

servations and modeled results across all 10 stations. Linear

regression relationships are also plotted in the figure. The re-

sults from observations are highly correlated (coefficient r 5
0.97) as are the Catchment results. The r values of othermodels

range from 0.85 to 0.97. One possible reason to explain the

correlations is that the low SWE stations melt their snow be-

fore the period of highest available energy (late spring and

early summer). As the downward solar radiation increases

seasonally, only those stations with higher SWE remain snow

FIG. 3. Snow ablation rates at the 10 SNOTEL sites averaged over 1992s–2012. Index numbers correspond to Table 1; ‘‘stn-avg’’ is the

mean over all stations.
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covered. The snowpack at these high SWE stations receives

more downward shortwave radiation later in the year, and thus

tends to have higher ablation rates. We do note, however, that

the cloud cover might cause exceptions to this general trend.

b. Dependence on temperature and net radiation

Figure 5 shows the results of linear regressions of the com-

puted ablation rates on the average temperature during the

melt season along with the correlation coefficients for observed

and simulated results. Overall, the correlations between abla-

tion and temperature are high, with values from observations

ranging from 0.51 to 0.92 with an average of 0.73. The model

results also show more or less linear dependences, with only

6% of the r values across all stations and models less than 0.6.

Although there are some deviations for individual models, the

model-averaged results in general capture the observed rela-

tionships between temperature and ablation rates at each of

the SNOTEL sites.

Figure 6 is similar to Fig. 5, except that temperature was

replaced with net radiation at the snow surface. There is no

observation-based net radiation, instead we used the average

net radiation from the four LSMs as a surrogate for observa-

tions. The correlation coefficients in Fig. 6 generally are higher

than in Fig. 5. In particular, the station average for both

observation-based (0.93 in the last subplot of Fig. 6) and

model-averaged (0.97 in the last subplot of Fig. 6) r values are

substantially higher than those in Fig. 5 (0.73 for observed

analysis and 0.69 for model average). Statistically, 61% of the r

values in Fig. 5 are greater than 0.8, and this percentage in-

creases to 94% in the Fig. 6 net radiation correlation results.

This result should not be surprising as net radiation is the domi-

nant source of melt energy, and temperature appears only in the

net longwave radiation component of net radiation (which gen-

erally ismuch smaller than net shortwave during themelt season).

We also performed a similar test of the relationship between

wind speed and ablation rate. We found that correlations were

weak inmost cases. Only three SNOTEL sites have statistically

significant (p , 0.05) correlations between wind speed and

ablation rate (Fig. S5 in the online supplemental material). At

those three sites, there is a (weak) inverse relationship between

net radiation and wind speed, which likely leads to the ap-

parent relationship with wind speed. We do note that the

source of our wind speed data is the surface level wind in the

NCEP–NCAR reanalysis (Kalnay et al. 1996), which is a

coarse-scale product (2.58 latitude by longitude) that is unable

to capture local-scale variations in wind speed. However, a

larger factor likely is that wind speed is a determinant of tur-

bulent fluxes (latent and sensible heat) that generally are of

opposite sign during the ablation period, and therefore tend to

be small in magnitude relative to net radiation. During rain-on-

snow events (which do occur occasionally during the ablation

period), latent heat flux can be an important contributor to

melt (Moore and Owens 1984; Guan et al. 2016). However,

such events occur infrequently enough, and are of small

enoughmagnitude during themelt period, that they appear not

to have a major effect on ablation.

c. Energy components

To better understand the factors that control snowmelt, we

need to identify the sources of melt energy. The surface energy

budget equation (which is represented directly in all four of the

LSMs), can be expressed as

Q
M
5Rn1 SH1LH1GH1Q

A
,

where QM is the energy absorbed by the snowpack (melt en-

ergy), Rn is the net radiation, SH is the sensible heat flux, LH is

TABLE 3. Climatology of average April–July daily temperature T, annual maximum SWE, and average temperature during ablation

as defined in section 2a at selected stations over 1992–2012.

No. Station name Avg Apr–Jul T (8C) Avg SWE (mm) Avg T during melt period (8C)

1 Olallie Meadows 7.3 1492 7.4

2 Hand Creek 8.7 299 4.1

3 Pike Creek 8.0 628 6.6

4 Hemlock Butte 8.8 1224 8.5

5 Banner Summit 7.3 673 5.4

6 Blue Mountain Spring 8.9 434 4.0

7 Silver Creek 9.8 322 3.1

8 Central Sierra Snow Laboratory 8.8 1066 4.7

9 Leavitt Meadows 10.0 345 2.5

10 Schofield Pass 5.6 998 5.3

FIG. 4. Linear regressions between annual maximum SWE (cli-

matological mean) and average melt rates over the 10 sites. The

legend provides the correlation coefficients. The circles are the

mean observed melt rate vs mean observed SWE.
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the latent heat flux, GH is the ground heat flux, and QA is the

energy advected to the snowpack by precipitation (the direc-

tions of these energy terms in the equation are all downward).

The GH and QA are usually small during the melt season, and

we neglect them. We focus here on Rn, SH, LH, and their sum

QM (Rn 1 SH 1 LH), which accounts for most of the melt

energy. All of the energy terms in this section are the fluxes at

the snow surface unless stated otherwise.

We show simulated net radiation, sensible heat, and latent

heat fluxes for each model and station in Fig. 7. Net shortwave,

net longwave and net downward radiation are shown in Fig. 8.

In Fig. 7, the white circles indicate QM, the melt energy. The

four models all have positive sensible heat fluxes, which means

that energy is transferred from the air to the surface. Of the

four models, Noah-MP produces the most net radiation.

However, its ablation rate is not the highest, as it also has large

negative latent heat fluxes. Generally, VIC and SSiB have the

largest melt energy QM at those selected sites, but only VIC

produces higher ablation rates. SSiB allocates more energy in

the snowpack to ground heat flux, which reduces the energy

available for ablation. The estimated net longwave radiation

among all models is generally similar. Therefore, the net ra-

diation differences are largely attributable to net shortwave

radiation differences, which in turn are primarily attributable

to differences in ground surface albedo and vegetation shading

effect among the models. We discuss this further in the fol-

lowing section.

4. Discussion

a. Vegetation cover effects

During the ablation process, the vegetation canopy, if

present, can play an important role in energy transfer to the

snowpack. Usually (although not always) SNOTEL sites are

located in clearings surrounded with short vegetation that is

covered by snow for most of the ablation season. Each

model’s vegetation cover mechanism is distinct as is its

representation of the interaction between canopy and land

surface and snow on and under vegetation (described in

section 2b). Furthermore, the models have different repre-

sentations of how much snow can be intercepted by the

vegetation canopy and the energetics of snow on and below

FIG. 5. Linear regressions of melt rate (mm day21) vs average temperature (8C) during the melt period across all stations for both

observations and simulations (correlation coefficients are given in the legend). The black circles are the observed ablation rates. Larger

plot symbols indicate higher r values.
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the canopy. Their representations of the effects of the can-

opy on absorption and reradiation of solar radiation, as well

as the effects of the canopy on wind, and hence undercanopy

turbulent fluxes also vary. Arguably the first consideration

(snow interception) is less important during the ablation

season than is the second (vegetation effects on under-

canopy net radiation and turbulent fluxes).

To evaluate the canopy effects and corresponding model

behaviors, we performed a parallel set of simulations, the

setup of which was the same as the baseline described above

but with the canopy cover removed. Figure 9 shows the

ablation rates that resulted from the no-vegetation experi-

ment (note that the melt rates calculated from the obser-

vations are identical to the results shown in Fig. 3 as they

require no assumptions about vegetation). From Fig. 9, we

see that, without the canopy cover, the ablation rate in VIC

increases. Melt rates for Noah-MP, Catchment, and SSiB

are reduced relative to their baseline runs when the vege-

tation is removed. Removal of vegetation results in degra-

dation of VIC performance relative to observations (MAE

increases to 10.29 mm day21 from 8.25 mm day21 in the

baseline experiment). Noah-MP and SSiB have smaller

MAEs in the no-canopy condition relative to the baseline.

The MAE of Catchment increases slightly in the no-

vegetation simulation. We do note that at some of the sites

(Olallie Meadows, Banner Summer, Blue Mountain Spring,

and Silver Creek in particular; Fig. S4 in the online sup-

plemental material) the photographs of the SNOTEL sites

show the presence of some vegetation in the vicinity of the

snow pillow; that is, the no-vegetation assumption may not be

entirely appropriate. In those cases, the no-vegetation as-

sumption is best interpreted as an end point for comparison

with the vegetated base runs.

To explain the cause and effect of different model behav-

iors, we need to analyze the energy components in the no-

vegetation simulations and relate them to the models’ own

algorithms. Figure 10 shows the energy terms at snow surface

and Fig. 11 presents the breakdown of net radiation (net

shortwave and net longwave) for all models from the no-

vegetation simulations. The behavior of models’ ablation

rates matches the responses of QM with no canopy in Fig. 10:

VIC shows increased QM whereas in the other three models

QM decreases. The last panel (stn-avg) of Fig. 10 shows the

overall average responses of Rn, LH, and SH. Rn during the

FIG. 6. As in Fig. 5, but with temperature replaced by net radiation (Wm22). For the ‘‘Obs’’ curves we used model-averaged net radiation

as a surrogate for observations.
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ablation period decreases slightly in VIC and Noah-MP

without canopy while it increases in SSiB3 and Catchment

(Fig. 11). LH does not reflect obvious effects of removing the

canopy cover. SH decreases in SSiB3 and Catchment while it

increases in VIC. SH in Noah-MP is similar in the no-

vegetation and baseline simulations.

Because Rn is the dominant factor that controls the ablation

process, we further investigated the Rn responses of the models

when the canopy cover was removed. As noted above, Rn de-

creases in VIC and Noah-MP but increases in SSiB3 and

Catchment. Rn differences are mostly associated with net short-

wave (net-SW) differences as the changes in net longwave are

small (Fig. 11). Net-SW is strongly influenced by ground albedo,

which is essentially the snow surface albedo during the 20th–80th-

quantile ablation period. Snow albedo and incoming shortwave

fluxes are not much affected without shrub/grass in VIC and

Catchment. Therefore, the surface net SW of these two models is

almost identical in that case. However, removing the canopy

changes roughness height in those two models thereby affecting

the allocation of energy to SH, and that causes changes in the

ablation periods (earlier melting for VIC and later for

Catchment). The snowpack can absorb more energy when the

snow season is longer as incoming solar radiation increases

through the ablation season. Therefore, Rn in VIC and

Catchment show similar responses under no-vegetation scenarios.

In Noah-MP, the shrub/grass would absorb extra shortwave en-

ergy as incoming solar to heat the snow surface (Niu and Yang

2007).Because the shading effect inNoah-MP is designed to avoid

overestimation (Niu et al. 2011), the solar radiation absorbed by

the ground in Noah-MP does not increase substantially when the

canopy is removed. One effect of the Noah-MP parameterization

is that removing the vegetation cover results in a decrease in

shortwave flux absorbed by the snow surface, which leads to less

net SW in Noah-MP. SSiB has the greatest increase in net-SW

when the canopy is removed, which is traceable to its relatively

large shading effect even for short vegetation (shrubs and grass).

For VIC, Noah-MP and Catchment, the shading effect associated

with shrub and grassland are less obvious. The controlling factor in

the differences inRnof these threemodels is therefore the ground

surface albedo algorithm in short vegetation scenario. We con-

ducted another experiment to further explore vegetation shading

effects as reported in the following subsection.

b. Energy above and below trees

We performed another vegetation scenario to further elu-

cidate the differences between energy fluxes above and below

FIG. 7. Energy components (W m22) at the snow surface for each of the 10 SNOTEL stations. The deep-colored bars indicate net

radiation (Rn), the white bars are the latent heat (LH), and the shaded bars are the sensible heat (SH). The white dots indicate the energy

difference term QM (Rn 1 LH 1 SH).
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the canopy during the ablation season. As noted above, the

vegetation at SNOTEL sites (as contrasted in most cases with

the surrounding area) is either grass or shrubs, both of which

have only modest effects on snow ablation. A much larger

contrast would be expected between forested and no-vegetation

conditions. Therefore, we created a scenario where we prescribe

needleleaf trees as the canopy type for all SNOTEL sites to

guarantee that a shading effect occurs during the ablation season

(VIC, for instance, does not employ a shading mechanism for

shrubs and grass). However, the offline version of Catchment

does not include wind attenuation for trees and performs better

when forced with modified (attenuated) near-surface wind

speed.Becausewe are usingwind speed from theNCEP–NCAR

reanalysis product, the wind forcing arguably is a plausible ap-

proximation of near-surface wind for short-canopies (grass and

shrub) scenarios but not for under forest. In exploratory simu-

lations we found this leads to unrealistically high melt rates in

Catchment. For this reason, in the simulations we report below,

we only tested VIC, Noah-MP and SSiB3. The related param-

eterization of needleleaf trees (height; LAI) are retained as the

default in each model.

Figure 12 shows the average ablation rates across all stations

and the Rn, LH, and SH from VIC, Noah-MP, and SSiB3

extracted from the tree simulation. For all the three models,

the magnitudes of changes in melt rate between canopy-

covered and no-vegetation simulations will increase if we

switch shrub/grass to trees in the simulation. Relative to ab-

lation rates from bare-soil experiments (VIC 26.3, Noah-MP

24.0, SSiB 18.5 as in Fig. 9), switching shrub/grass to trees leads

to slower ablation in VIC (tree: 21.4; shrub/grass: 24.3) and

faster in Noah-MP (tree: 26.4; shrub/grass: 25.0). The changes

in SSiB snow ablation aremodest (tree: 22.8; shrub/grass: 22.9).

The middle panel shows the energy terms at the snow surface

below the canopy and the right panel shows the fluxes at the top

of the canopy. The Rn below the canopy in all three models are

smaller relative to the Rn of the entire canopy-cover surface at

the top of the trees, which results from the attenuation of

shortwave transmission through the forest for the models.

Also, the canopy in Noah-MP can absorb additional shortwave

(SW) energy for the surface (i.e., total absorbed SW radiation

equals the sum of SW absorbed by canopy and SW absorbed by

the ground), which results in higher Rn for the entire canopy-

covered surface thanRn at the ground. The sensible heat varies

differently among the models. VIC produces upward sensible

heat flux at the top of the canopy, which implies that the surface

is warming the atmosphere. Having upward sensible heat flux

FIG. 8. Snow surface downward net shortwave (positive) and net longwave (negative) radiation (W m22) over all of the SNOTEL sites.

White circles indicate the net radiation (i.e., net shortwave minus net longwave) term.
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over the forest is not unrealistic, as shown by ground observa-

tions reported in Fig. 9 in Chen et al. (2014). In SSiB3, the

sensible heat exceeds net radiation, which implies that the air

below the trees transfers considerable heat to the snow. The

forest effect on ablation below the trees can shift depending on

the relative importance of the shading and wind attenuation

effects (Lundquist et al. 2013). The differences among the

models (which are caused by the combination of different solar

radiation attenuation effects, absorbed net shortwave associated

with different surface albedos, and various algorithms of energy

allocated to SH) point to the need for high-quality, broad-

coverage radiative and flux data above and below forest canopies.

c. Interpretation

Some patterns of the ablation process as revealed by our

multimodel experiments are in good agreement with previous

studies. In Fig. 4 we show that sites with higher SWE accu-

mulation generally have higher ablation rates, because those

stations experience higher daily incoming solar radiation at the

time of peak SWE, which generally is later in the year than for

stations with lower peak SWE. Musselman et al. (2017) argue

that in a warmer climate, snow ablation rates in the western

United States will decrease for this reason (peak SWE will

occur at a time of generally lower incoming solar radiation),

which is consistent with our results. We also demonstrate that

the net radiation at the snow surface has a stronger effect on

ablation than temperature (Figs. 5 and 6). This result is con-

sistent with Painter et al. (2018) who show (in the context of

the role of dust on snowmelt rates) that radiative forcings

are a much more important determinant of snowmelt rates

that control the rising limb of the hydrograph in the Upper

Colorado’s spring runoff than is temperature. One could in

fact argue that the only reason that the temperature corre-

lations in Fig. 5 are as high as they are is that high tempera-

tures tend to be correlated with clear sky conditions during

the melt period, which in turn are associated with high

downward solar radiation.

By comparing the performance of the land surface models in

all the scenarios, considerable differences and variations are

apparent in the models’ responses. Given that estimating the

spatial distribution of SWE in mountain areas remains an im-

portant unsolved question in snow hydrology (Dozier et al.

2016), it is not surprising that there are large uncertainties

among different models. Our results show, not surprisingly,

that the presence or absence of forest leads to relatively large

differences among models because of differences among

models in the way they treat the effects of forest cover on

surface energy components. Differences in short-canopy cover

(shrub/grassland) lead to relatively modest differences among

the models in their simulation of surface processes. Land sur-

face models utilize simplified equations to represent compli-

cated snow process, and the simplifications vary among

models. For example, longwave radiation and reflection can

play important roles in canopy-dense areas. However, this is

usually not well represented in macroscale land surface

models. In this respect, the paucity of high-quality energy flux

FIG. 9. As in Fig. 3, but results are extracted from the no-vegetation experiment.
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observations (below/above the canopy, among different types of

land cover) is a strong constraint on model improvements. The

differences among models we report here argue for better use of

existing field data by incorporating observations that have been

collected by different parties. Such use of ‘‘crowd sourced’’ field

observations to evaluate model predictions arguable would be

more cost effective than comprehensive field campaigns.

5. Summary and conclusions

We employed four widely used energy-based LSMs’ snow

models in offline simulations to explore differences in melt-

season ablation rates at 10 SNOTEL stations across the west-

ernUnited States.We extracted precipitation and temperature

data from in situ observations at each of the SNOTEL sites.We

manually adjusted the maximum annual SWE value each year

to match the in situ observations for the purpose of focusing on

differences in model performance during the ablation periods.

We assessed the linear dependence of the ablation rate on two

major atmospheric factors: temperature and radiation.We also

performed a no-vegetation scenario and an artificial-forest

scenario to study the effects of vegetation on ablation rates at

each of the SNOTEL sites. From these experiments, we con-

clude the following:

1) On average, the four LSMs produce ablation rates that

match observations at the SNOTEL sites in the baseline

experiments plausibly well. The average MAE for all

models is 5.4 mm day21 (28% of the observed average

ablation rate across the 10 stations), ranging from 3.6

(Catchment) to 8.3 mm day21 (VIC). Catchment is the

only model that has negative bias (lower ablation rate

than observations) in the baseline experiments. The

multimodel average of the estimated last day of the

ablation period has a bias of about a week (last day of

snow on average 5.1 days earlier than in observations). In

experiments where we removed the canopy cover, the

MAE averaged over models becomes 26% of the ob-

served station-average ablation rate. The MAE of each

individual model in the no-vegetation simulations is

close to the baseline results: SSiB and Noah-MP have

some improvement while VIC and Catchment produce

slightly higher values.

2) The modeled ablation rates are highly correlated with

accumulated maximum SWE in part because high SWE

stations have their ablation periods at a time of year

(generally later in spring than low SWE sites) when down-

ward solar radiation, and hence net radiation, is higher. Net

radiation is highly correlated with ablation rates (more so

FIG. 10. As in Fig. 7, but results are extracted from the no-vegetation experiment.
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than is temperature), which is consistent with other pub-

lished studies. Wind speed is not a strong predictor of

ablation rates during the melting process.

3) The effects of vegetation canopy cover vary substantially

across the models. The presence of a vegetation canopy

increases the average ablation rates in VIC but decreases

ablation in Noah-MP, SSiB, and Catchment. Under the

short-canopy scenario, the differences among models are

mainly attributable to differences in net radiation (Rn)

estimates and energy fluxes (SH/LH) allocation; Rn is

primarily affected by net shortwave radiation, whichmainly

results from differences in ground surface albedo in VIC,

Noah-MP, and Catchment. SSiB alone has large shading of

incoming solar energy even for a short-canopies scenario,

which distinguishes it from the other models.

4) If the vegetation type is switched from shrub/grass to trees,

the ablation rate would become slower in VIC and faster in

Noah-MP. By comparing the energy flux terms below and

FIG. 11. As in Fig. 8, but the results are extracted from the no-vegetation experiment.

FIG. 12. (a) Station-average ablation rate extracted from the tree-scenario simulation. The black bar is calculated fromobservation, as in

Fig. 3. (b) Energy flux terms for the tree experiment (as in Fig. 7) for VIC, Noah-MP, and SSiB3 for the snow surface. (c) As in (b), but for

fluxes at the top of the canopy. Results for Catchment are not shown for the reasons given in section 4b.
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above trees, we also find that the representation of energy

allocation can be of great difference among themodels. The

differences in model parameterizations point to the need

for observations of radiative data below and above the

canopy. Given the magnitudes of the difference among

models, differences in the effects of vegetation on snow

ablation should be a topic for further development in the

modeling community.
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