
ML for Computer Architecture and Systems 2020

Branch Prediction with Multi-Layer Neural
Networks: The Value of Specialization

Siavash Zangeneh*
siavash.zangeneh@utexas.edu

Stephen Pruett*
stephen.pruett@utexas.edu

*The University of Texas at Austin

Yale Patt*
patt@ece.utexas.edu

Abstract—Multi-layer neural networks show promise in im-
proving branch prediction accuracy. Tarsa et al. have shown that
convolutional neural networks (CNNs) can accurately predict
many branches that state-of-the-art branch predictors cannot.
Yet, strict latency and storage constraints make naive adoption
of typical neural network architectures impractical. Thus, it is
necessary to understand the unique characteristics of branch
prediction to design constraint-aware neural networks. This
paper studies why CNNs are so effective for two hard-to-
predict branches from the SPEC benchmark suite. We identify
custom prediction algorithms for these branches that are more
accurate and cost-efficient than CNNs. Finally, we discuss why
out-of-the-box machine learning techniques do not find optimal
solutions and propose research directions aimed at solving these
inefficiencies.

I. INTRODUCTION

Branch prediction is a success story of using machine
learning to improve computer architecture. Predictors like
TAGE and Perceptron use learning algorithms to capture
correlations between branch history and future branch out-
comes. Unfortunately, TAGE and Perceptron are not capable
of isolating correlated branches but rely on brute force to
capture it [12]. While this approach is effective for many
branches, there remain a small number of hard-to-predict static
branches that disproportionately drive up mispredictions per
kilo-instruction (MPKI) [8]. These hard-to-predict branches
are plagued by variations in the long branch history register 1,
which generate a large number of signatures for runtime
predictors to memorize.

Tarsa et al. [14] introduce a Convolutional Neural Network
(CNN) that directly isolates correlated branches in the long
branch history. The main insight of Tarsa’s work is that
training the CNN, widely considered to be too expensive
(compute and latency) to do on chip at runtime, can be
done offline to detect invariant correlations between the same
branches in a program. Once the heavy lifting of detecting
correlations is done, a relatively simple online inference engine
is used to generate predictions at runtime. While we believe
offline training is groundbreaking for branch prediction, the
implementation introduced by Tarsa does not live up to its
potential. Specifically, Tarsa’s runtime predictor requires an
extra 148.6 KB of storage, increasing the branch predictor
budget by 232%, while only improving the MPKI of branch-
sensitive benchmarks by only 3.9%.

1Some configurations of TAGE-SC-L use up to 1000 bits of history

mcf leela xz deepsjeng gcc omnetpp mean
0.0
2.5
5.0
7.5

10.0
12.5
15.0

M
PK

I

TAGE
TAGE + Tarsa's CNN (Ternary)
TAGE + Tarsa's CNN (Float)
TAGE + Large CNN (Float)

Fig. 1: MPKI of branch-sensitive SPEC2017 benchmarks.

We argue the costliness of Tarsa’s predictor stems from the
fact that the CNN architecture was not customized for branch
prediction. This paper examines case studies of real-world
branches where CNNs significantly outperform traditional
predictors. We use those examples to identify the benefits and
inefficiencies of CNN branch predictors. Finally, we highlight
new areas of research that we believe would improve the
overall cost of CNNs for branch prediction.

II. BACKGROUND

The use of multi-layer neural networks represents a new
chapter for branch prediction. This class of predictors is
capable of directly isolating correlated branches in the branch
history, discovering more sophisticated forms of correlation
than was previously detectable by online predictors such as
TAGE [6], [9], [10], [13] and Perceptron [5], [7]. The key
insight enabling this breakthrough is that neural networks can
be trained offline, thus avoiding the use of highly expensive
and impractical training algorithms at runtime. While the
networks we discuss in this paper may seem small in the world
of deep learning, training the networks requires cascading
long-latency floating-point operations, which is far beyond
any reasonable budget for the branch predictor, even for a
high-performance core. Offline training, however, allows the
network to be trained once, after compilation, and the weights
to be reused until the program is compiled again.

Offline training discovers correlated branches by training the
network on many different runs of the same program, but with
different inputs. Each input exercises a different control flow
path in the program, exposing new combinations of branches.
Once the network has been trained on enough examples, it
learns which branches are correlated and which are not. This
information (i.e., the trained weights) can be applied to the
branch history at runtime to efficiently and accurately predict
the result of hard-to-predict branches.

1

1 v o i d q s o r t (vo id * a , s i z e t n , . . .) {
2 i f (n < 7) {
3 i n s e r t i o n s o r t (a , n , . . .) ;
4 r e t u r n ;
5 }
6
7 / / s t a r t p a r t i t i o n i n g
8 f o r (i n t i = 0 t o n) {
9 i f (a [i] < p i v o t) {

10 . . . / / i n s e r t a [i] i n t h e l e f t p a r t i t i o n
11 }
12 i f (a [i] > p i v o t) {
13 . . . / / i n s e r t a [i] i n t h e r i g h t p a r t i t i o n
14 }
15 }
16 / / f i n i s h e d p a r t i t i o n i n g
17
18 i f (s i z e o f t h e l e f t p a r t i t i o n > 1) {
19 q s o r t (. . .) / / r e c u r s e on t h e l e f t p a r t i t i o n
20 }
21 i f (s i z e o f t h e r i g h t p a r t i t i o n > 1) {
22 q s o r t (. . .) / / r e c u r s e on t h e r i g h t p a r t i t i o n
23 }
24 }

Listing 1: Simplied pseudo-code of qsort.

While Tarsa’s work addressed the bulk of the cost by
training the CNN offline, their online inference engine is
still costly when compared to other online branch predictors.
The inference engine is a 2 layer network, consisting of a
32-filter convolution layer and a fully connected layer. The
predictor uses a history length of 200, with each history
element consisting of 7 bits of PC and 1 bit of direction. The
history is converted to 1-hot format, producing a 200x256 bit
input for the CNN to process. The resulting CNN is a 15 stage
circuit (we estimate 4 cycles of latency) that requires 5.125
KB of storage per branch and improves MPKI by 3.9%. This
increases the total storage allocated to the predictor by 232%,
which may be unacceptable to chip designers. Moreover, as
Fig. 1 shows, the MPKI reduction of Tarsa’s CNN is only a
fraction of what is achievable by a larger and more capable
CNN (MPKI reduction of Large CNN is 18.5%).

We argue that the cost of Tarsa’s online inference engine
could be reduced if the network and training algorithms were
customized specifically for branch prediction. Improving the
cost-effectiveness of CNNs also has the additional benefit of
enabling more capable (e.g. more layers, more filters) neural
networks, resulting in more accuracy. In the next section,
we discuss two branches in the qsort algorithm that benefit
from deep neural networks. We discuss the properties of those
branches that result in a poor accuracy on TAGE, and the
shortcomings of Tarsa’s predictor that cause its resources to
be used inefficiently.

III. CASE STUDIES

We use two hard-to-predict branches from the qsort2 func-
tion as examples of branches that a CNN can accurately
predict. We choose qsort because it is hot code in mcf, one of
SPEC 2017 Integer benchmarks [2], and because it contains
several branches that have sophisticated correlations with the

2qsort is a C library function for in-place sorting, typically implemented
using the Quicksort algorithm.

1 i n t l e f t p a r t i t i o n s i z e ;
2
3 v o id u p d a t e (n e x t e x e c u t i o n l i n e) {
4 s w i t c h (n e x t e x e c u t i o n l i n e) {
5 c a s e q s o r t : : l i n e 7 : l e f t p a r t i t i o n s i z e = 0 ;
6 c a s e q s o r t : : l i n e 1 0 : l e f t p a r t i t i o n s i z e += 1 ;
7 }
8 }
9

10 boo l p r ed () {
11 r e t u r n (l e f t p a r t i t i o n s i z e < 2) ;
12 }

Listing 2: Perfect custom predictor for the if-statement in line 18.

branch history. Listing 1 shows a simplified pseudo-code3 for
SPEC’s implementation of qsort with the two example hard-to-
predict branches highlighted in yellow. Both example branches
can be predicted 100% accurately; however, both are predicted
poorly by TAGE4. For each example, we present a custom
predictor that predicts the branch perfectly. Then, we show
why a CNN can predict the branch much more accurately
than TAGE. Finally, we identify inefficiencies in Tarsa’s CNN
by contrasting it to our targeted solution, which predicts with
higher accuracy, lower latency, and better storage-efficiency.

A. Case Study 1: branch guarding the left recursion (line 18)

After the partitioning phase of qsort is done (lines 7-16),
the algorithm decides whether to recursively call qsort on each
partition (lines 19 and 22). In this case study, we focus on the
branch in line 18 of Listing 1. We assume that for each if-
statement, the taken direction of the guard branch skips the
body. TAGE-SC-L predicts this branch with 94.7% accuracy,
which is only slightly better than the static bias of the branch
(92.7% not-taken). However, we know the branch will be not-
taken (i.e., qsort will be recursively called) only if the partition
has at least two items in it. Therefore, the size of the partition
can be used to predict the branch with 100% accuracy —
predict not-taken only if the partitioning phase has inserted at
least two items in the left partition (line 10 was executed at
least 2 times). We can use the branch history to determine the
number of times line 10 was executed. If the count reaches
two, then we know there are at least two elements in the left
partition and the branch at line 18 should be predicted not-
taken (or taken if the count is less than two). Note, there are
two caveats to this approach. First, the predictor must know
when the partitioning phase begins so that it can initialize the
count to zero. Second, once compiled, the resulting assembly
code for Listing 1 contains 3 branches (instead of just one)
that guard the execution of line 10. Therefore, the branch
predictor should directly isolate those three branches to count
the number of elements inserted into the left partition.

Listing 2 defines the update and prediction algorithm for a
targeted branch predictor that implements a perfect prediction
strategy for this case study. It consists of three components:
the predictor state (left partition size), an update algorithm

3The Listing does not show all of the implementation details required for
high performance, but does capture the branch behavior as it pertains to the
two example branches.

4We use the hot code of mcf for evaluating prediction accuracy of the
example branches throughout the paper.

2

that updates the state every time a branch is fetched, and a
prediction function. To implement this algorithm in hardware,
we require a 2-bit saturating counter for left partition size,
a single register to track the PC of the branch leading to
qsort::line7, and 3 registers used to track the PCs of branches
that guard qsort::line10, amounting to 198 bits of storage.

Even though this simple prediction algorithm exists, TAGE
cannot predict this branch accurately because it cannot dis-
tinguish the correlated branches in the history (line 9) from
the uncorrelated ones (all other branches). As a result, the
pollution in the branch history creates too many signatures
for TAGE to memorize, resulting in a low accuracy.

Tarsa’s CNN predictor, however, uses a convolution layer
that acts as a filter for identifying correlated branches and re-
moves uncorrelated branches. Once the uncorrelated branches
have been removed, the final layer of the network can easily
check the size of the partition by counting the not-taken
occurrences of line 9. In fact, both the ternary and the floating-
point version of Tarsa’s CNN predict this branch with high
accuracy (99.35% and 99.7% respectively). Note, however,
that we only want to calculate the size of the most recent
partition in the history. Our targeted solution handled this by
resetting the counters before the partitioning began. Tarsa’s
CNN, however, must learn on its own which regions of the
history register are important. This leads to an inefficiency
between Tarsa and the custom logic that will be discussed
later.

Unfortunately, the high prediction accuracy of Tarsa’s CNN
comes at a high storage cost. Table I compares the accuracy
and storage of TAGE 5, Tarsa’s CNN predictors, and custom
logic 6. Even though Tarsa’s CNN is much more accurate than
TAGE, it is still not perfect and requires unnecessarily large
storage.

TABLE I: case study 1: accuracy and storage of predictors.
TAGE Tarsa Tarsa Large Custom

Ternary Float CNN Logic
Accuracy 94.7% 99.35% 99.7% ∼100.0% 100%
Size N/A 5.1 KB 82 KB 17.7 MB 198 bits

Why does Tarsa’s CNN not reach 100%? Identifying
the most immediate partitioning phase in the global branch
history is a highly non-linear task. Thus, Tarsa’s CNN with
only one fully-connected layer cannot ever learn to predict
this branch the optimal way. The CNN compensates for this
inability by learning to use any correlated branch in the history
to improve its accuracy. For example, if the sizes of left and
right partitions are correlated in the training set, the CNN
will use the right partition size for prediction. In general, this
overfitting may lower prediction accuracy at runtime, but in
this case, such a data-driven approach is sufficient for > 99%
accuracy.

Another disadvantage of a CNN compared to the optimal
algorithm is the relatively small history length. We measured

5Storage cost of TAGE per branch is dynamic and depends on the allocation
pressure from other branches, so we will not quantify it.

6Custom Predictor defined in Listing 2.

the minimum history length to identify at least two items
have been inserted into the left partition in our test set. The
median distance is 30 branches, the 99th percentile is 156,
and the maximum distance is 710. Since the history length of
Tarsa’s CNN is 200 branches, it cannot accurately determine
the correct size of the partitions. In this case, however, a 200-
branch history happens to be enough for determining whether
the partition has more than one element or not, which is all
that is needed for correct prediction. In general, predictors
that seek to achieve high accuracy need to worry about what
history lengths are needed to cover most of the cases.

Sources of storage-inefficiency As described earlier,
Tarsa’s CNN model is incapable of learning the optimal
prediction algorithm and instead relies on using any correlated
branches in the history. Thus, it needs many convolution filters
to identify all useful correlated branches. Moreover, some
degree of over-parameterization is necessary for convergence
when training multi-layer neural networks [1], which by
definition implies sub-optimal predictor size. This factor can
be somewhat alleviated with post-training network pruning.

Another source of storage-inefficiency is the fully-connected
layer, which is a much more general function than needed.
Note that the inference engine not only needs to store all the
fully-connected weights but also should buffer the convolution
outputs that feed the fully-connected layer. In our custom
design, this was replaced by incrementing a 2-bit saturating
counter at the appropriate times.

B. Case Study 2: branch guarding insertion sort (line 2)

A common technique for speeding up quick-sort is to
switch sorting algorithms once a partition is smaller than some
threshold. Line 2 in Listing 1 is the if-statement that controls
this switch. This branch is very hard-to-predict for TAGE with
66.4% accuracy (the static bias of the branch is 56.2% taken).

At first glance, this branch may seem as predictable as the
branch in case study 1. For all recursive calls to qsort, the value
of n is produced by the partitioning phase in the caller instance
of qsort. Thus, similar to case study 1, a branch predictor
can determine n by tracking insertions into the left and right
partitions. However, this prediction task is actually much more
difficult than the prediction task in case study 1 because the
caller instance of qsort may appear arbitrarily deep into the
branch history. A single fully-connected layer, especially if
ternarized, is too simple to learn this behavior. As a result,
the accuracy of the ternary and the floating-point version of
Tarsa’s CNN are 82.4% and 88.4% respectively.

The poor accuracy of Tarsa’s CNN does not mean that
CNNs cannot predict this branch accurately. We train a larger
CNN (e.g. more filters, wider convolutions, longer history, 2
fully-connected layers) to predict this branch. The large CNN
predicts this branch with 98.2% accuracy, albeit as the cost
of a 17.7MB model. Of course, such a large prediction model
is not helpful at runtime. The more interesting question is
whether a CNN can be accurate and cost-efficient at the same
time.

3

1 i n t l e f t p a r t i t i o n s i z e , r i g h t p a r t i t i o n s i z e ;
2 boo l l e f t r e c u r s i o n ;
3 s t a c k<i n t> r i g h t p a r t i t i o n p r e d i c t i o n s ;
4
5 v o i d u p d a t e (n e x t e x e c u t i o n l i n e) {
6 s w i t c h (n e x t e x e c u t i o n l i n e) {
7 / / D e t e r m i n i n g p a r t i t i o n s i z e s
8 c a s e q s o r t : : l i n e 7 :
9 l e f t p a r t i t i o n s i z e = 0 ;

10 r i g h t p a r t i t i o n s i z e = 0 ;
11 c a s e q s o r t : : l i n e 1 0 : l e f t p a r t i t i o n s i z e += 1 ;
12 c a s e q s o r t : : l i n e 1 3 : r i g h t p a r t i t i o n s i z e += 1 ;
13
14 / / Push t h e p r e d i c t i o n f o r t h e r i g h t
15 / / p a r t i t i o n i n a s t a c k
16 c a s e q s o r t : : l i n e 1 6 :
17 i f r i g h t p a r t i t i o n s i z e > 1 :
18 p red = (r i g h t p a r t i t i o n s i z e > 6) ;
19 r i g h t p a r t i t i o n p r e d i c t i o n s . push (p red) ;
20
21 / / Update l e f t r e c u r s i o n b e f o r e each c a l l
22 c a s e : q s o r t : : l i n e 1 9 : l e f t r e c u r s i o n = t r u e ;
23 c a s e q s o r t : : l i n e 2 2 : l e f t r e c u r s i o n = f a l s e ;
24 }
25 }
26
27 boo l p r ed () {
28 i f l e f t r e c u r s i o n :
29 r e t u r n (l e f t p a r t i t i o n s i z e > 6) ;
30 e l s e :
31 r e t u r n r i g h t s t a c k . pop () ;
32 }

Listing 3: Perfect custom predictor for the if-statement in line 2.

Listing 3 shows an accurate and cost-efficient algorithm
for predicting this branch by observing the incoming branch
stream. First, similar to Listing 2, it tracks insertions into the
left and right partitions using saturating counters (lines 7-12).
After the partitioning, the algorithm produces a prediction for
the if-statement in qsort::line2 of the right partition and pushes
the prediction in a prediction stack (lines 16-19). Furthermore,
before a recursive call on either the left or right partition, it
sets the flag left recursion accordingly (lines 22-23). Finally,
to make a prediction, if the left recursion flag is set, it
simply uses the size of the left partition to make a prediction,
otherwise, it pops a prediction off the stack. This algorithm
fails when predicting the root of the recursion tree, but is
otherwise completely accurate. To implement this algorithm
in hardware, we require 11 registers to track the PC, branch-
direction pairs, two 3-bit counters for determining the left and
right partition sizes, and a 64-entry stack (1-bit per entry) used
to hold the predictions for the right partition, amounting to a
total of 609 bits.

Similar to the previous case study, representing this optimal
algorithm by a CNN is unrealistic because of insufficient
history length. This case study is even more difficult be-
cause if qsort is entered because of a recursive call on the
right partition, the global branch history is polluted with
an unknown number of partitioning branches because of the
earlier recursion on the left partition. For predicting 90% of
the instances of this branch in qsort, the optimal algorithm
discards up to 641 youngest branches in the global history.

As Table II shows, there remains a large gap between Tarsa’s
CNN and the accuracy of a large CNN or the cost-efficiency

TABLE II: case study 2: accuracy and storage of predictors.
TAGE Tarsa Tarsa Large Custom

Ternary Float CNN Logic
Accuracy 66.4% 82.4% 88.4% 98.2% 100%
Size N/A 5.1 KB 82 KB 17.7 MB 609 bits

of a targeted solution. To bridge this gap, it is necessary to
specialize CNNs for the task of branch prediction. In the next
section, we describe several research directions we believe will
lead to efficient CNN branch predictors.

IV. RESEARCH DIRECTIONS

In this section we discuss our view of important research
directions to continue to improve the prediction accuracy and
storage efficiency of multi-layer neural networks for branch
prediction.

Long history lengths. Case study 2 showed that some
branches benefit from longer history lengths, but naively
increasing the history length is impractical because of infer-
ence hardware constraints. Traditional online predictors [11],
[13] use geometrically increasing history registers to conserve
storage by using short history lengths for most branches and
long history lengths only when required.

Specialized structures. In both case studies, CNNs are
worse than custom predictors in terms of both accuracy
and storage-efficiency. This is because the CNN must learn
functions that the custom logic was directly programmed
to perform. On the other hand, the custom predictors are
not general enough to deploy in an actual branch predictor.
What we need is a predictor that is general enough to learn
to predict branches in new algorithms, but contains enough
custom logic that it does not need to re-learn functions that
are common among many branches. If we implement custom
structures targeted towards common operations, we can bridge
the gap between a trainable predictor and our custom solutions.
A key challenge will be finding ways to plug the custom
logic into the network during training. Network designers may
need to use functions that work with backpropagation, or use
regularization, pruning, and/or post-training transformations to
steer neurons towards the targeted custom hardware.

Input pre-processing. Branch history is an effective pre-
dictor for most branches. Unfortunately, branch history either
loses or obfuscates a lot of semantic information from the
program. The predictor is then forced to re-learn cryptic
relationships that were known in advance by the compiler.
Instead, we can take advantage of offline program analysis to
pre-process the inputs to the CNN to simplify the prediction
task. For example, let us reconsider case study 1. If the
algorithm for identifying the relevant region in the history
was produced through other means (e.g. static analysis), the
role of the CNN would be to simply count the insertions into
the partition up to a threshold. This task would only need
1 convolution layer and, in ideal training conditions, can be
learned by a single fully-connected layer, resulting in a CNN
with only a 0.21KB of storage with approximately 99.94%
accuracy (the remaining inaccuracy is due to limited history
length).

4

Hardware-aware training algorithms. As discussed
throughout this paper, on-chip branch predictors have tight la-
tency and storage constraints that must be obeyed. This makes
quantization, pruning, and regularization very important. Tarsa
et al. use the training algorithm of Courbariau et al. [4] to
ternarize their CNN models. However, unlike the binarized
neural networks studied by Courbariau et al., branch prediction
accuracy significantly drops with quantization. This is partially
because Tarsa’s CNN is many orders of magnitude smaller
than the CNN models that are evaluated in prior quantization
work, increasing the likelihood of converging to bad local
optimum solutions [1]. A more effective training strategy is to
initially over-provision the network, then gradually regularize
and prune the network to meet the hardware constraints. Such
approaches are well studied in various prior work [3], [15],
[16], albeit on larger models and more flexible inference
engines. Hardware-aware training algorithms would allow us
to use an over-parameterized network to assist with training,
while still fitting in the predefined hardware budget for in-
ference. For example, let us revisit case study 1. In theory a
1-filter CNN can predict the branch almost perfectly; however,
training a 1-filter CNN results in only 93.0% accuracy, with
a 2-filter CNN reaching 97.5%, and a 3-filter CNN reaching
99.7%. Now, if we over-parameterize the CNN with 4 filters,
then use regularization to penalize redundant filters and prune
the unused filters, we can achieve 99.7% accuracy with only
2 filters.

Recurrent Neural Networks. The most expensive compo-
nent of a CNN branch predictor is the fully-connected layer.
The fully connected layer is responsible for combining all of
the signals extracted from the history by the CNN layer into a
final prediction. To accomplish this, the hardware must buffer
all signals produced by the CNN layer, producing buffers that
require storage proportional to the length of the branch history
register. An alternative approach would be to use Recurrent
Neural Networks (RNNs). An ideal RNN branch predictor
would process branches one at a time, updating its hidden state
as branches are fetched. Sequential processing can simplify
prediction tasks that rely on the order of branches in the
history. For example, identifying the partitioning region of the
case studies using RNNs is a relatively trivial task. However,
there are other problems. The main hurdle is that there are no
natural boundaries in the branch stream to indicate the start of
input sequences. Using a fixed history length to form an input
sequence does not work because the branch predictor does
not know in advance when a hard-to-predict branch will be
fetched. Still, even though we do not have a practical design
for an inference engine, we have observed that small Gated
Recurrent Units (GRUs) can also accurately predict many
hard-to-predict branches, which leads us to believe that there
is room for improvement using specialization and domain-
specific techniques.

V. CONCLUSION

Convolutional neural networks are a helpful tool in improv-
ing the prediction accuracy of many hard-to-predict branches.

However, hardware constraints for branch predictions make the
naive adoption of CNNs impractical. This paper is a detailed
study on the inefficiencies of a CNN compared to a perfect
custom predictor. To address these inefficiencies, we argue
for several research directions that share a common theme:
specialization is necessary for enabling cost-efficient branch
prediction with multi-layer neural networks.

REFERENCES

[1] Z. Allen-Zhu, Y. Li, and Z. Song, “A convergence theory for deep
learning via over-parameterization,” arXiv preprint arXiv:1811.03962,
2018.

[2] J. Bucek, K.-D. Lange, and J. v. Kistowski, “Spec cpu2017: Next-
generation compute benchmark,” in Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering, ser. ICPE ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
41–42. [Online]. Available: https://doi.org/10.1145/3185768.3185771

[3] C. Chen, F. Tung, N. Vedula, and G. Mori, “Constraint-aware deep neural
network compression,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 400–415.

[4] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks with weights
and activations constrained to +1 or -1,” 2016.

[5] D. Jiménez, “Multiperspective perceptron predictor,” in 5th JILP Work-
shop on Computer Architecture Competitions (JWAC-5): Championship
Branch Prediction (CBP-5), 2016.

[6] D. Jiménez, “Multiperspective perceptron predictor with tage,” in 5th
JILP Workshop on Computer Architecture Competitions (JWAC-5):
Championship Branch Prediction (CBP-5), 2016.

[7] D. A. Jimenez and C. Lin, “Dynamic branch prediction with percep-
trons,” in Proceedings HPCA Seventh International Symposium on High-
Performance Computer Architecture, Jan 2001, pp. 197–206.

[8] C. Lin and S. J. Tarsa, “Branch prediction is not a solved problem:
Measurements, opportunities, and future directions,” CoRR, vol.
abs/1906.08170, 2019. [Online]. Available: http://arxiv.org/abs/1906.
08170

[9] P. Michaud, “An alternative tage-like conditional branch predictor,”
ACM Trans. Archit. Code Optim., vol. 15, no. 3, pp. 30:1–30:23, Aug.
2018. [Online]. Available: http://doi.acm.org/10.1145/3226098

[10] S. Pruett, S. Zangeneh, A. Fakhrzadehgan, B. Lin, and Y. Patt, “Dy-
namically sizing the tage branch predictor,” in 5th JILP Workshop on
Computer Architecture Competitions (JWAC-5): Championship Branch
Prediction (CBP-5), 2016.

[11] A. Seznec, “Analysis of the o-geometric history length branch predictor,”
in 32nd International Symposium on Computer Architecture (ISCA’05),
June 2005, pp. 394–405.

[12] A. Seznec, J. S. Miguel, and J. Albericio, “The inner most loop iteration
counter: A new dimension in branch history,” in 2015 48th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2015, pp. 347–357.

[13] A. Seznec, “TAGE-SC-L Branch Predictors,” in JILP - Championship
Branch Prediction, Minneapolis, United States, Jun. 2014. [Online].
Available: https://hal.inria.fr/hal-01086920

[14] S. J. Tarsa, C. Lin, G. Keskin, G. N. Chinya, and H. Wang, “Improving
branch prediction by modeling global history with convolutional neural
networks,” CoRR, vol. abs/1906.09889, 2019. [Online]. Available:
http://arxiv.org/abs/1906.09889

[15] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware
automated quantization with mixed precision,” 2018.

[16] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Advances in neural information
processing systems, 2016, pp. 2074–2082.

5

