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ABSTRACT
System reliability is quantified by the probability that a

system performs its intended function in a period of time without
failure. System reliability can be predicted if all the limit-state
functions of the components of the system are available, and such
a prediction is usually time consuming. This work develops a
time-dependent system reliability method that is extended from
the component time-dependent reliability method that uses the
envelop method and second order reliability method. The
proposed method is efficient and is intended for series systems
with limit-state functions whose input variables include random
variables and time. The component reliability is estimated by the
existing second order component reliability method, which
produces component reliability indexes. The covariance between
components responses are estimated with the first order
approximations, which are available from the second order
approximations of the component reliability analysis. Then the
Jjoint probability of all the component responses is approximated
by a multivariate normal distribution with its mean vector being
component reliability indexes and covariance being those
between component responses. The proposed method is
demonstrated and evaluated by three examples.

Keywords: System reliability, Second order approximation,
Envelope method, Numerical method

1. INTRODUCTION

System reliability is measured by the probability that the
system performs its intended function in routine circumstances
during a specified period of time [1]. It is necessary to predict
system reliability accurately and efficiently in the early design
stage since it can be used to estimate the lifecycle cost, determine
maintenance policies, and optimize the system performance [2-
4]. A mechanical system consists of multiple components, and
each component may also have multiple failure modes. In this
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work, we consider a failure mode as a component. If the limit-
state function of a failure mode is invariant over time, its
reliability and probability of failure are constant. However, the
limit-state function varies over time in many engineering
problems, such as function generator mechanisms [5] and
bridges under stochastic loading [6]. Then a time-dependent
reliability method is required.

Suppose the limit-state function of the i-th failure mode is
given by

YL' =9 L'(X’ t) (1)

where Y; isacomponent response and it varies with time t; and
X=(X;,..,X,)T is the vector of independent random
variables. Then the time-dependent component reliability over a
time interval [t,,ts] is defined by

R(tO! ts) = Pr(g(xﬂ t) Z 0! vVt € [tO! ts]) (2)
and the corresponding probability of failure is defined by
pf (tO! ts) = Pr(g(xﬂ t) < 0! it e [tOI ts]) (3)

Eq. (3) indicates that if g(-) < 0 occurs at any instant of
time on [tg, ts], the component fails.

In this study, we focus on series system. If one failure mode
occurs, the entire system fails. For a time-dependent series
system, if any failure mode occurs at any instant of time, the
system fails. The system reliability R (t,,t;) and probability of
failure pys(to,ts) are given by

Rs(to,ts) = Pr (ﬂ 9iX,t;) = 0,vt; € [to'ts]> 4)

i=1
and

m
Prs(to, ts) = Pr (U 9i(X,t;) <0,3t; € [to'ts]> (5)
i=1
where U and N stand for union intersection, respectively.
Component reliability analysis is required for system
reliability analysis. Methods of time-dependent component
reliability analysis include three groups: Rice’s formula based
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methods [7-9], meta-model based methods [10-13], and methods
which convert time-dependent into time-independent reliability.
Rice’s formula based methods are most commonly used [14].
For example, the PHI2 method [8] allows for time-variant
reliability problems to be solved using classical time-invariant
reliability method, the first order reliability method (FORM). Hu
and Du then proposed the joint up-crossing rate method in
estimating the time-dependent reliability [9]. Rice’s formula-
based methods prove more efficient than others but may lead to
large errors if up-crossings are strongly dependent.

Higher accuracy can be achieved by meta-model based
methods. Hu and Du introduced a mixed efficient global
optimization method employing the adaptive Kriging-Monte
Carlo simulation (MCS) so that this high accuracy is achieved
[12]. Wang and Wang developed a nested extreme response
surface method by employing Kriging for reliability analysis
with time-variant performance characteristics [13]. This group of
methods may result in a high computational cost ifthe dimension
of the problem is high.

Converting a time-dependent problem into a time-
independent counterpart is possible by using the extreme value
of the limit-state function. The methods include the envelope
function method [15], extreme value response method [16], and
the composite limit-state function method [17]. Still, obtaining
accurate distribution of the extreme value in an efficient way is
complicated. Hu and Du recently employed sequential efficient
global optimization (EGO) to transform the time-dependent
reliability problem into a time-independent problem with a
second order method. The Hessian matrix is approximated by a
quasi-Newton approach. It uses the gradients of the limit-state
function at the points before the MPP search converges to the
MPP. The method is efficient, but it may not accurately
approximate the Hessian matrix since the points may not be on
the surface of the envelope function [18].

Many studies have been conducted on time-dependent
system reliability as well. For instance, Song and Der Kiureghian
developed a joint first-passage probability method based on the
conditional distribution analysis in estimating the reliability of
systems subjected to stochastic excitation [19]. Radhika et al.
investigated nonlinear vibrating systems under stochastic
excitations by implementing the asymptotic extreme value
theory and Monte Carlo simulation (MCS) [20]. Yu et al.
employed the combination of the extreme value moment and
improved maximum entropy method to access the time-variant
system reliability with temporal parameters [21]. Gong and
Frangopol proposed a new efficient method for time-dependent
reliability which is formulated as a large-scale series system
consisting of time-independent response functions [22]. Hu and
Mahadevan proposed a novel and efficient methodology for
time-dependent system reliability by considering the system as
an equivalent Gaussian random field [23].

Time-independent system reliability can be approximated
by the multidimensional integration of the joint probability
density function (PDF) of random variables once the marginal
distributions and correlation coefficients of component states are
obtained by the second and first order approximations [24]. Wu

and Du proposed a method of predicting the time-independent
system reliability by approximating the marginal distributions
with the second order saddlepoint method (SOSPA) [25].

It is desirable to take advantages of time-dependent
component reliability methods and time-independent system
reliability methods. To this end, we integrate the second order
saddlepoint approximation [18], which is for time-dependent
component reliability analysis and the second order saddlepoint
approximation for time-independent system reliability analysis.
The new method approximates the joint probability density
function of the evelope functions of component responses by a
multivariate normal density, whose mean vector and covariance
matrix are obtained by the second and first order approximations,
respectively. The proposed method approximates the envelope
function of a component limit-state function at the Most
Probable Points (MPPs) of the envelope function with a full
quadratic function, and this allows for the use of most popular
reliability methods, including the first and second order
reliability methods (FORM and SORM). The employment of the
MPP and second order approximation makes the proposed
method both efficient and accurate.

This paper is organized as follows: Section 2 reviews the
first order reliability method for time dependent reliability
analysis. Section 3 discusses the proposed method for time-
dependent system reliability analysis. Section 4 presents three
examples, and Section 5 provides conclusions and discusses the
possible future work.

2. METHODOLOGY REVIEW

The second order time-dependent system reliability method
is based several existing methods, which are reviewed in this
section.

2.1 Time-Dependent Component Reliability

The limit-state function of a component is given in Eq. (1),
and its reliability is therefore a function of time (or timespan) as
indicated in Eq. (2). The most commonly used reliability method
is FORM, which is reviewed below.

2.1.1 First Order Reliability Method

FORM is originally used for time-independent reliability
analysis, and it can also be used for time-dependent reliability
analysis. It converts a general non-Gaussian process response
into an equivalent Gaussian process response. X is at first
transformed into standard normal variables U. Then the most
probable point (MPP) u* at t is identified by the following

model:
{min\/ uuT ©)
s.t. giX,t) = g(T(U),t) =0
where T(*) is an operator of the transformation from U to X.
The limit-state function is linearized at u* (t) by

N
6]
(1), ) = g(w', )+ ) =8
=1

=Vgu,)(U—u")

Ui-u) ()
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u* re dUpn u*

where Vg(u*,t) = g

T
] is the gradient , and
au,

u; is the i-th component of u*.
Then the probability of failure is computed by
pr = Pr(g(X,t) < 0,3t € [t,, t,]) (8)
=Pr(B(t) + a(®)U < 0,3t € [ty, t,])
where B(t) is the time-dependent reliability index,

L) =llua ©
and a(t) is the time-dependent unit gradient vector
_ vg@®
a(t) = Va1 [a;(t), ay(t), ..., ay (O)]T (10)

As Eq. (7) shows, the non-Gaussian process g(X,t) has
been transformed into an equivalent Gaussian process
represented as a sum of standard normal random variables. After
this, many methodologies are available for solving for the
probability of failure, such as the upcrossing rate method [8, 9]
and MCS [26].

2.1.2 Sequential optimization with EGO

The time-dependent probability of failure can be evaluated

by the extreme value of the limit-state function.
pr(torts) = Pr(g(X,0) < 0,3¢ € [t,,t]) (1)

= Pr{ i 9000 <0)
The extreme limit-state function is also known as envelope
function [15] or the composite limit-state function [17],

min_g(X,t) is obtained by

teltots]
GO = min g(X.t) = g(X,E0) (12)

where G(X) is the global minimum value of g(X,t) with
respectto t. G(X) istime independent and only depends on X.
{ is the time instant when the global minimal value occurs. £ is
the function of X.

The envelope function G(X) is a spatial surface that is
tangent to all the instantaneous limit-state functions at different
time instants £. Since it is hard to analytically obtain the
envelope function G(X), FORM is used to approximated G(X).
The MPP of the envelope function is obtained by

{min\/UUT

i _ (14)
s.t. ter[rtltl)gs] g(TU),t)=0

Eq. (11) is a double loop optimization problem. The inner
loop is the global optimization with respect to time ¢, while the
outer loop is the MPP search with respect to U. The double loop
is decoupled into a sequential single-loop process.

The first cycle is FORM analysis, the MPP u(,, at the
initial time t, by

{min\/ uuT (15)
s.t. g(T(U),t,) =0

Then the time is updated by global optimization at u,,, and

the new time is denoted by £, which is given by

t® = argming (T(“fn 't)) (16)

tE[tots]

In the next cycle, the new MPP uz‘z) is located at the time
instant £ using Eq. (15). And then the time is updated to £(®
by performing global optimization at u,).

£@ =argming (T(uz‘z) ,t)) (17)
tEto,ts]

The above process is repeated until convergence.

The Efficient Global Optimization (EGO) is employed to
solve the time t [27]. EGO has been widely used in various
areas because it can efficiently search for the global optimum
[12, 28]. The task is to solve for the time so that g(t) =
g(T(uypp), t) is minimized. With a number of training points,
the function is approximated by the following surrogate model:

¥ =g(®) = g(T(umpp), ) = F()"y + Z(1) (18)
where F(t)Ty is a deterministic term, F(t) is a vector of
regression functions, y is a vector of regression coefficients,
and Z(t) is a stationary Gaussian process with zero mean and a
covariance given by

Cov(Z(ty), Z(ty)) = 02R(ty, t5) (19)
where ¢Z is process variance, and R(:,) is the correlation
function.

The output of the surrogate model is a Gaussian random
variable following

¥ = gO~N(u(®),0%()) (20)
where u(t) and o(t) are the mean and standard deviation of
¥, respectively.

After building the initial model, the expected improvement
(EI) metric is used to identify the new training point with the
highest probability to produce a better extreme value of the
response. The improvement is defined by

[ = max(y* —y,0) (21)
where y* = i_rlnzinkg(ti) is the current minimum response

obtained from the sample training points.
Thus its expectation or EI is computed by

EI(t) = E[max(y" —,0)] (22)
o y*—u) y*—u(t)
=(y u(t))cl>< e ) + a(t)qb( e
where ®(-) and ¢(-) are the cumulative distribution function
(CDF) and PDF of a standard normal variable, respectively.
The new training point t,,,, is identified as the time that

maximizes the expected improvement.
thew = argminEI(t) (23)

t
The convergence criterion of EGO could be set to e =
ly*| X 2%. By combining sequential strategy with EGO, the
MPP u* of extreme limit-state function G(X) can be obtained
efficiently by solving Eq. (14). The probability of failure with
FORM is estimated by
Pr (to' ts) = Pr(g(X, t)<0,3te [to' ts]) (24)
=Pr(G(X) < 0) = 2(—p)
where f =|l u* || is the first order reliability index.
The method is named FORM since FORM is involved in Eq.
(14). In general, the envelope function can be highly nonlinear
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and FORM may not be accurate enough. Thus, a second order
method is preferred and it uses envelope theorem to obtain the
second order information of the extreme limit-state function.
Then SOSPA is used to estimate the probability of failure.

3. PROPOSED METHOD
3.1 Overview

The envelope function of a component (or limit-state
function) is generally nonlinear as shown in Fig. 1. It is the
reason we use a second order approximation for the envelope
function. Specifically, we approximate the envelope function at
its MPP with a quadratic function. As a result, we also need the
gradient and the Hessian matrix of the envelope function at the
MPP.

It is shown that the MPP of the envelope function is the
worst-case MPP of the limit-state function on [t,,t,] [18]. In
other words, the MPP is the closest point between the origin and
all the instantaneous limit-state functions on [tg,t,]. This is
illustrated in Fig. 1. The MPP of the envelope function can be
efficiently found using a sequential single loop method [18]. This
MPP is also the MPP of the worst-case limit-state function; as a
result, the gradient of the envelope function is equal to the
gradient of the worst-case limit-state function [18].

The Hessian matrix of the envelope function, however, may
not be the Hessian matrix of the worst-case limit-state function
as shown in Fig. 1. The Hessian matrix of the envelope function
can be approximated by the gradients of the instantaneous limit-
state functions [18], but the second derivative of the envelope
function with respect to time is not considered. The method in
[18] may not always work. In this work, we derive analytical
second derivatives of the envelope function with respect to both
random input variables and time, and the Hessian matrix of the

envelope function can then be obtained accurately.
Limit-state function
g(u,n=0

¥

Failure region

Envelope function
G(u)=0
»

ou
Fig. 1 Tangential relationship between limit-state
function and envelope function
The general procedure of finding the second order
information of the envelope is summarized below.
At first we employ the method in [18] to find the MPP of the
envelope function using Eq. (14). Once we get the MPP of the
envelope function, we know the gradient of the envelope because

it is equal to the gradient of the limit-state function at the MPP.
Next we determine the Hessian matrix of the envelope function
with Eq. (35). The Hessian matrix consists of second derivatives
of the limit-state function with respect to random input variables
X and time t. The equations are derived in Sec. 3.2. Once the
MPP, gradient and Hessian matrix are available, we use the
second order saddlepoint approximation to find the probability
of component failure and then perform system reliability
analysis. The method hereby is denoted by SOSPA involved.

3.2 Hessian matrix of the envelope function

After the MPP of the envelope function is found, the
quadratic envelope function is formulated as [25]

G(U)=a+bTU+UTCU (25)
where
|(a —(u )THu* — VG (u*)Tu*
4 b = VG(u*) — Hu* (26)
| 1
kC —H diag(é,, &, ..., Ey)
S 96 i i
Vé(u*) = <6U1 o u*> is the gradient of the
envelope function. H is the Hessian matrix, which is given by
[ 0°G %G
| U2 aulaUnI
=| o 27)
| 0%G %G |
130,00, vz 1.
The envelope function G(X) =0 at u* is given by
G(U) = min g(U,t) =g(U, Ol (28)
t is the worst-case time instant, and it is found by
gU,)=0 (29)

where g isthe derivative function of g with respect to t.
The first derivative of G(U) with respect to a random input

variable at u* is
¢ dg 0 ag ot

au; ~ au; T 3E o (30)
As g(U,t) =0, Eq. (26) becomes
aG  dg

Eq. (31) indicates the envelope function and the limit-state
function have the same gradient at u*. Then, the second
derivative of G(U) with respect random input random variables

at u* is
26 9 (0G\ @ [dg
oUdU; a_uj(a_ui) B W(W)
d%g d%g ot
= av,00, T av,atay;

We then take the derivative of Eq. (26) w1th respect to U,
it is given by

(32)

ag 99 ot

au, T acau, 0 (33)
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at ag ag

0U 6U at

Bytakmg Eq (29) and (34) 1nto Eq. (32), the Hessian matrix
Hat u* and f can be expressed as

0%G _ 0d%g d0%g 09%g (9%g

U 0| . .~ OUdU;| . . 9U;0tdU;0t at?

In this case, the finite difference method is used to obtaln the
gradient and Hessian matrix of the envelope function.

Next, the second order saddlepoint approximation is
employed to estimate the probability of failure. Saddlepoint
approximation has several excellent features. It yields an
accurate probability estimation, especially in the tail area of a
distribution [29, 30].

The cumulant generatmg functlon (CGF) is formulated as

(34)

(35)

K(s) = —Bs + s ——Z log(1 — 2sk;) (36)

where k; = ¢;
The derivatives of CGF are

1

K'(S)=—B+S+Zl_—zlsk 37)
! o

K (S)=1+Zm (38)

The saddlepoint s, is obtained by solving the following
equation:

k.
K,(t)=_ﬁ+s+21——215k'=0 (39)
= i

i=
Then the probability of failure is evaluated by

pr(to,ts) = Pr(g(X,t) < 0,3t € [t,,t;])
1 1
= o) + o) (= -2 (40)
where
1
w = sgn(t){2[-K (fs)]}f (41)
v = t[K"(t,)]? (42)

in which sgn(s,)= +1, -1 or 0, depending on whether s, is
positive, negative, or zero.

The detailed steps of SOSPA are summarized below.

Step 1: Set k = 1, the initial time instant express as the
initial extreme value time () = t,, the initial MPP u(y, = u,
is a unit vector.

Step 2: Search for the MPP at time instant £®*~Vand obtain
MPP ug,, by solving the formulas

{min\/ uuT “3)
s.t. g(T(U),t*k-D) =0

Step 3: Determine the optimal time %) by implementing
EGO method with ug,.

Step 4: Determine the gradient VG®and Hessian matrix
H® of the envelope function at ug,.

Step 5: Calculate p; using SOSPA based on the
information (ugy), VG QO : (OM)

However, the proposed method does not work when the
extreme value of the limit-state function occurs at the beginning
or end of the time period. The is because the limit-state function
g(X, t) is not differentiable at the beginning or end point of the
time period. In other words, the Eq. (29) is invalid when the
optimal time instant of the extreme value function occurs at the
beginning and end point of the time period [¢,, t]. As a result,
the Hessian matrix derivative Eq. (35) is not true for the above
reason.

3.3 System reliability with SOSPA

In this section, we discuss how to extend SOSPA for time
dependent component reliability to time dependent system
reliability analysis.

System reliability can be estimated by integrating the joint
PDF of all responses in the safe region. To use SOSPA, we
consider the PDF of component responses directly. The system
state is determined by component states predicted from
component limit-state functions Y; = g;(X,t) (i = 1,2, ...m).

Given all the limit-state functions with time, the series
system is then determined by the

Ry = Pr(ﬂYi = g.(X,0)>0,i= 1,2,...,m> (44)
i=1

Eq. (44) enable us to consider component reliability and
dependencies since it needs the joint PDF f;(y) of Y=
(Y1, Y,, ..., Y,,). Hereby, it is an alternative way to predict the
system reliability that the joint PDF fy(y) is approximated by
a multivariate normal distribution.

If we only consider the first order term of the extreme limit-
state function Eq. (25), it becomes as follows:

G;(U) = —=VG(u})Tu; + VG(u))U (45)

If we divide both sides of Eq. (45) by the magnitude of the
gradient, we obtain

GO V6T VG;(up)
weapn - e Tivean Y 49
or
G;(U)
A 47

The event of the safe component G;(U) > 0 is equivalent
to the event —f5; + a;U >0. We then define a new variable

Zi = _ﬁi + (in (4’8)
where «; is the directional vector and is given below
VG;(uj) 49)
a =
VG @)l

Z; is an equivalent component response. It is obvious that
Z; follows a normal distribution. As a result, all the equivalent
component responses follow a multivariate normal distribution
if the envelope functions of all the components are linearized at
their MPPs. The system reliability is then approximated by

Ry = Pr(ﬂ 7,(U) > o) - pr<ﬂ - B +aU> o) (50)

i=1 i=1
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As a result, Z = (Z{,Z,,...,Z,) follows a multivariate
normal distribution denoted by N(p,, X,), where p, is the
mean vector and X, is the covariance matrix. System reliability
thus becomes the CDF &,,(0; —p, X;) of Z at 0; namely

Rs = By (0 —iy, Ep) = f f f@dz G

where f,(z) is the joint PDF of Z and the joint PDF of Z =
(Z1,Z,, ..., Z,,) is expressed below

Ty-1
T e e JE
V@m)™ |2, 2

The accuracy of the mean vector p, and covariance matrix
Y, determine the accuracy of the multivariate normal
integration in Eq. (52). In order to improve the accuracy of the
Eq. (52) with high efficiency, the SOSPA method and the FORM
are engaged in determining p, and X, respectively. Since the
SOSPA is in general more accurate than the traditional FORM,
the new method has higher accuracy. We use the SOSPA to
approximate the marginal CDF of Z; at 0, which is the
component reliability

Rspa; = Pr(Z; > 0) (53)
where Rgpa; 1s SOSPA method given in Eq. (40). Then the
associated reliability index is determined by

Bspai = @7 (Rspai) (54)
and fspa; is an equivalent reliability index.

Since fSspa is estimated in a more accurate reliability way,
we use it to replace f in Eq. (47). The mean vector of the
multivariable distribution of Z becomes

uz = (Bspars -» Pspam) (55)

The above treatment ensures that the component reliability
or the marginal distributions of component responses are
accurately estimated by the sequential efficient global
optimization with the second order approximation. Simplified
computation and high efficiency can be achieved by using the
first order approximation with Eq. (49) to estimate the
covariance matrix X, [25, 31]. Let the components of X, be
pij(i #J, i,j =1,2,...,,m), The covariance is given by

py = aja (56)
Then X, is given by
L pim
z, =[ H R l (57)
P LA

With uzand X, available, the system reliability R, with
time can be easily calculated by integrating the PDF in Eq. (52)

from (—oo,...,—00) to (0,..,0) and the time dependent
probability of system failure is
Prs = 1—-R; (58)

Many methods such as the first order multi-normal
approximation (FOMN) [32] and Alan Genz method [33] are
developed to integrate f;(z) in Eq. (52).

The proposed method provides a new way to estimate the
time dependent system reliability with nonlinear limit-state
functions. The dependencies between component responses are
automatically accommodated in the system covariance matrix,
and component marginal CDFs can be obtained accurately using

the sequential efficient global optimization with second-order
SPA method. This method not only achieves high accuracy in
estimating system reliability but also simplifies the computations
while maintaining high efficiency.

The procedure of the system reliability analysis with the
SOSPA is briefly summarized below. The flowchart of this
procedure is illustrated in Fig. 2.

| Transform variables X to U

!

MPP search and Efficient Global optimization

{min\/ uuT

s.t. g(T(W),Ex-D) =0
*ul(\ZIC}lP

ming (T (“1(\51{1)») ) t)

h

Determine Hessian H®)and gradient V6 ®)
of the envelope function

(k) k k
uMPP'VG( ),H( )

| Calculate R; of component i using SOSPA |

!

Calculate all the equivalent indexes Sspa;
and the directional vector o

v

Form the mean value

u; = (Bspa1, - Pspam)
: _ ol
and the covariance p;; = o; «;

!

Calculate the system reliability

Fig.2 Flowchart of time-dependent system reliability

Step 1: Transform random variables X into U in the
standard normal space.

Step 2: Search for MPPs u(y,,, obtain the optimal time £
of the component limit-state function with the efficient global
optimization method. The process is repeated until it is
convergent at iteration .

Step 3: Determine gradient VG® and Hessian matrix
H® of the envelope function.

Step 4: Calculate component probability of failure based on
the above component information (g, V6™, H®) , and use
SOSPA result to find the mean of equivalent component
responses.
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Step 5: Repeat step 2-step 5 to analyze all components in
system.

Step 6: Use respective MPPs and reliability indexes to find
the system covariance matrix.

Step 7: Form the multivariate normal PDF and integrate it
to obtain time dependent system reliability.

4. EXAMPLES

In this section, three examples are presented to test SOSPA

for system reliability analysis. Example 1 is a mathematical

problem which is used to demonstrate the details of the proposed

method. Example 2 and 3 are engineering problems. The

accuracy is measured by the percentage error with respect to a
solution from MCS. The error is calculated by

|p _ pmcsl

= 1Prs ~Prs
p}\gcs

where py; is the result from SOSPA or FORM and pp® is
the result from MCS. We also use the number of function calls
as a measure of efficiency.

X 100% (59)

4.1 Example 1: A math problem

A series system consists of two components with random
basic variables X = (X;,X,) . X; (i =12) is normally
distributed with parameter u; = 3.5 and o0; = 0.3. The two
limit-state functions are given by

91X t) = X7X, — 5X;t + (X, + 1)t? — 8.2 (60)

g,(X,t) = (cos(57) X; +sin(5") X,)?(—sin(5°)X;
+c0s(5)X,) — 5(cos(5°) X; + sin(5") X,)t +
((—sin(5)X; + cos(5) X, + 1)t? — 3.9 (61)
where t varies within [0,5].

Fig. 3 shows the parabolic curve of the envelope function of
g1(X,t) formed by the instantaneous limit-state surface at
different discretized time instants within the interval [0,5]. The
contours of the analytical envelope functions of g, and g, are
plotted in Fig. 4. The shaded area represents the system failure
region.

In order to explain clearly how the SOSPA method works,
we only show the details for g,(X,t). First, the MPP of the
envelope function at £ is obtained using sequential EGO. The
iteration history is shown in Table 1. Once the iteration is
convergent, the MPP is found at (—1.0714,—-3.1172).

Table 1 Iteration history of MPP search for g,

Iterations u* t
1 (—6.1450,—1.7052) | 1.4735
2 (—2.1526,—2.9252) 1.9689
3 (—1.3877,-3.0305) | 2.1483
4 (=1.1631,-3.0878) 2.2063
5 (—1.0941,-3.1096) | 2.2251
6 (—1.0714,-3.1172) | 2.2314

The probabilities of failure for g, and g, from SOSPA
are pp; = 6.0040 x 107 and pj;, = 7.2248 x 107*. The mean

values of the two equivalent component responses Z = (Z;,Z,)
are then given by u, = Bsospa = (—3.2387,—3.1855).

10\

2 0 Envolope funcion
-5
-10 -
-10 -5 0 5 10
U,
Fig.3 Envelope function formed by instantaneous
limit-state surfaces
10, — Extreme limit-state function G1

) - - Extreme limit-state function G2

Fig.4 System extreme limit-state function

The unit directional vectors of the two limit-state functions
are a; = (0.3254,0.9456) and a, = (0.0098,1.0). Thus, the
correlation coefficient between g, and g, is p;, = @, =
0.9487, and the covariance matrix is obtained as follow.

v = [ 1 plz] _ [ 1 0.9487]
z P21 1 0.9487 1

The probability of system failure from SOSPAis pys = 1 —
R, = 9.4747 x 10~*. When FORM is used, the covariance is the
same as X,, and the mean values of the two equivalent
component responses are below

u, = Brorm = (—3.2963,—-3.2079).

The probability of system failure from FORM is pss =
8.3738 x 10~*. The MCS solution with a sample size of 10° is
also obtained. For MCS, the time interval [0,5] is discretized
evenly into 100 time instants. The total number of function calls
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is therefore 108. The results are shown in Table 2 where the
errors calculated by Eq. (59) are given in brackets. Table 2 shows
that SOSPA is much more accurate than FORM which produces
a large error due to the nonlinearity of the envelope functions.

Table 2 Probability of system failure in Example 1

Methods SOSPA__ FORM _ MCS
P | e 4 e | 62010

4.2 Example 2: A roof truss structure

A roof truss problem [25] is modified as our second
example. The top boom and all the compression bars of the bar
are made of concrete while the bottom boom and all the tension
bars are made of steel. The bars bear a uniformly distributed load
q(t) = q,(0.1sin(0.25¢t) + 0.9), t €[0,10] years. A, and
E. are the cross sectional area and elastic modulus of the
concrete bars, respectively. Ag and Eg are the cross sectional
area and elastic modulus of the steel bars, respectively. All
parameters are independent and are listed in Table 3.

Table 3 Distribution of random variables

V(%lnail:;e Mean géi?i?;i Distribution
q,(N/m) 14000 1680 Normal
L(m) 12 0.12 Normal
Ag(m?) 9.0x10~* | 9.0x10°° Normal
A-(m?) 5x1072 5x1073 Normal
E;(N/m?) 2x10! 2x101° Normal
E-(N/m?) 3x101° 3x10° Normal
fo(N/m?) | 3.35x10% | 6.7x107 Normal
fo(N/m?) | 1.34x107 | 2.68x10° Normal

The perpendicular deflection of the roof peak node is
calculated by

AC

_ q_lz(3.81 1.13) (62)

A failure occurs when the perpendicular deflection AC
exceeds 1.37 cm. The limit-state function is then defined by

_q12(3.81 1.13)
90 = (G + ) 00137 (63)

2

The second failure mode is that the internal force of one bar

exceeds its ultimate stress. The internal force of the bar is

1.185ql, and the ultimate strength of the bar is f-A., where f,

is the compressive stress of the bar. The second limit-state
function is then given by

g>(X,t) = 1.185ql — f A, (64)

The third failure occurs when the internal force of another

bar 0.75ql exceeds its ultimate stress fgAg, where fg is the

tensile strength of the bar. Therefore, the third limit-state
function is formulated by

gs(X,t) = 0.75ql — fsAs (65)
SOSPA produces the means the equivalent component
responses and the covariance matrix as follows:
n, = (—2.6083,—-3.3940, —2.7237)
1 - pg3 1 0.1396 0.2846
X, = [ oo l = IO.1396 1 0.0463
P31 1 0.2846 0.0463 1
The probability of system failure from SOSPA is pf; =
8.0023 x 1073,
FORM and MCS are also used, and the results from the three
methods are given in Table 4, showing that SOSPA has the higher
accuracy than FORM with less efficiency.

Table 4 Probability of system failure in Example 2

Methods SOSPA_ FORM _ MCS
ps | My | ey | 32670x107
by | P02 6>f%1)0‘3 6-55?;;%)1)0_3 8.1870 x 10~

4.3 Example 3: A Function Generator Mechanism System

Fig. 5 shows a function generator mechanism system, which
can achieve a desire motion. This system consists of two function
generator mechanisms [34].

Fig. 5 A Function Generator Mechanism System

Mechanism 1 is a four-bar linkage mechanism with links
B;, B,, B;, and B,, and it generates a sine function. Its motion
error is the difference between the actual motion output and the
required motion output. It is defined as
& (X1, ¥) = kX, ¥) —kq4() (66)
where X, = (B;,B;, B;,B,) and links B, and Bs are welded
together. The two input angles satisfy
y=62°+0 (67)
From the mechanism analysis, k,(X;,y) and k;(y) can
be obtained by

~E, +\JEZ + DZ — F?
ke (Xq,y) =2 arctan( L L ! ! (68)
Fy =D,

and
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ky(y) = 60° + 60° sin <% (y— 97°)> (69)

where D; = 2B,(B; — B,cosy) , E, = —2B,B,siny , and
F, = B} + B + B? — B2 — 2B, B, cosy.

Mechanism 2 is the other four-bar linkage mechanism with
links By, Bs, Bg,and B, and it generates a logarithm function.
The motion error is given by

& (XZI 6) = r]a(XZ' 9) —Na (9) (68)
where X, = (By, Bs, Bg, B;).
—E, +JEZ + DZ — F22> 9
F, =D,
. [(6 +15°)/60°]
n4(6) = 60’log,, log. 2 (70)
where D, = 2B,(B, — Bscosf) , E, =—2B:B,sinf , and
F, = B} + BZ + B? — B? — 2B, Bscos6.
Mechanism 1 is considered reliable if {ez <egX,y) <

n,(X;,8) = 2arctan

el}, where e; and e, are allowable motion errors with e; =

1.4 and e, = —0.8. When the motion error is positive, the
limit-state function is defined by
91X y) =Xy, ¥)—e (71)

As for the negative motion error, the limit-state function is
given by

9:Xpy) =e(Xpy) —e; (72)

Similarly, the limit-state functions of mechanism 2 are as
follows:

93(X2,0) = &(X;,0) —e; (74)
94((X2, 9)) =&(X,,0) —e, (75)
in which e; = 1.0 and e, = —2.9. The random variables are

given in Table 5. The mechanism system performs its intended
functions over an interval of [8,,8,]=[45",95 ]. The system is
a series system with four components (limit-state functions).

Table 5 Parameters in Example 2

V(%fil:;e Mean Séi?i?gi Distribution
B; (mm) 100 0.3 Normal
B, (mm) 55.5 0.05 Normal
B;(mm) 144.1 0.05 Normal
B,(mm) 72.5 0.05 Normal
Bs(mm) 79.5 0.05 Normal
B, (mm) 203 0.05 Normal
B, (mm) 150.8 0.05 Normal

Table 6 shows the results. It indicates that the accuracy of
SOSPA is in general better than FORM. However, both methods
produce almost identical results for ps, and pg,. The reason is
that the extreme values of two corresponding limit-state
functions occur at the beginning of the time period (at 45°).
Thus, the Hessian matrices of the two envelope functions are not
accurate, and SOSPA is not accurate for ps, and pg,. Since the
two probabilities of component failure are much smaller than the
other two probabilities, their effect on the probability of system
failure is insignificant.

Table 6 Probability of system failure in Example 3

SOSPA i FORM i MCS
- 6.86(»??);%1)0 5 5-6(212?9:%;) 5 6.9420 x 1073
P | P e | loson | 24760x 107
CONCLUSION

The proposed time dependent system reliability method
predicts system reliability with a second order approximation. It
is therefore in general more accurate than the first order
approximation methods. But it is less efficient than the latter
methods due to the needs of second derivatives.

The new method converts a time dependent problem into a
time independent problem by using the envelope function or the
extreme value of a limit-state function over the time span under
consideration. The most probable point (MPP) of the envelope is
found with the help of efficient global optimization. Then the
envelope function is approximated at the MPP with its gradient
and Hessian matrix. The reliability of each component is
calculated by the second order saddlepoint approximation, and
the dependences between component responses are considered
with the first approximation for the sake of efficiency. Once the
estimated marginal component distributions and component
correlations are available, the joint distribution of all the
component responses is formed by a multivariate normal
distribution, which leads to a fast evaluation of the system
reliability.

The proposed envelope method works well if the envelope
function is convex. The global MPP of the envelope function
may not be found if the envelope function has multiple MPPs.
For this case, the MPP search may start from different instants of
time, and then the worst-case MPP is used. The proposed method
does not work for a special case where the extreme value of a
limit-state function occurs at the beginning or end of the period
of time under consideration, and the reason is that the derivations
of the Hessian matrix of the envelope function are for the case
where the extreme value occurs inside the period of time.

Out future work will address the above two issues. The
proposed method can also be further extended to time and space
dependent problems where random processes and random fields
are also involved.
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