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ABSTRACT 
 System reliability is quantified by the probability that a 

system performs its intended function in a period of time without 

failure. System reliability can be predicted if all the limit-state 

functions of the components of the system are available, and such 

a prediction is usually time consuming. This work develops a 

time-dependent system reliability method that is extended from 

the component time-dependent reliability method that uses the 
envelop method and second order reliability method. The 

proposed method is efficient and is intended for series systems 

with limit-state functions whose input variables include random 

variables and time. The component reliability is estimated by the 

existing second order component reliability method, which 

produces component reliability indexes. The covariance between 

components responses are estimated with the first order 

approximations, which are available from the second order 

approximations of the component reliability analysis. Then the 

joint probability of all the component responses is approximated 

by a multivariate normal distribution with its mean vector being 
component reliability indexes and covariance being those 

between component responses. The proposed method is 

demonstrated and evaluated by three examples. 

Keywords: System reliability, Second order approximation, 

Envelope method, Numerical method 

 

1． INTRODUCTION 

System reliability is measured by the probability that the 

system performs its intended function in routine circumstances 

during a specified period of time [1]. It is necessary to predict 

system reliability accurately and efficiently in the early design 

stage since it can be used to estimate the lifecycle cost, determine 

maintenance policies, and optimize the system performance [2-
4]. A mechanical system consists of multiple components, and 

each component may also have multiple failure modes. In this 
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work, we consider a failure mode as a component. If the limit-

state function of a failure mode is invariant over time, its 

reliability and probability of failure are constant. However, the 

limit-state function varies over time in many engineering 

problems, such as function generator mechanisms [5] and 

bridges under stochastic loading [6]. Then a time-dependent 

reliability method is required. 

Suppose the limit-state function of the i-th failure mode is 
given by 

𝑌𝑖 = 𝑔𝑖(𝐗, 𝑡) (1) 
where 𝑌𝑖 is a component response and it varies with time 𝑡; and 
𝐗 = (𝑋1, … , 𝑋𝑛)

T  is the vector of independent random 

variables. Then the time-dependent component reliability over a 

time interval [𝑡0, 𝑡𝑠] is defined by 

𝑅(𝑡0, 𝑡𝑠) = Pr(𝑔(𝐗, 𝑡) ≥ 0, ∀𝑡 ∈ [𝑡0, 𝑡𝑠]) (2) 
and the corresponding probability of failure is defined by 

𝑝𝑓(𝑡0, 𝑡𝑠) = Pr(𝑔(𝐗, 𝑡) < 0, ∃𝑡 ∈ [𝑡0, 𝑡𝑠]) (3) 
Eq. (3) indicates that if 𝑔(⋅) < 0 occurs at any instant of 

time on [𝑡0, 𝑡𝑠], the component fails.  

In this study, we focus on series system. If one failure mode 

occurs, the entire system fails. For a time-dependent series 

system, if any failure mode occurs at any instant of time, the 

system fails. The system reliability 𝑅𝑠(𝑡0, 𝑡𝑠) and probability of 
failure 𝑝𝑓𝑠(𝑡0, 𝑡𝑠) are given by  

𝑅𝑠(𝑡0, 𝑡𝑠) = Pr(⋂𝑔𝑖(𝐗, 𝑡𝑖)

𝑚

𝑖=1

≥ 0, ∀𝑡𝑖 ∈ [𝑡0, 𝑡𝑠]) (4) 

and 

       𝑃𝑓𝑠(𝑡0, 𝑡𝑠) = Pr(⋃𝑔𝑖(𝐗, 𝑡𝑖)

𝑚

𝑖=1

< 0, ∃𝑡𝑖 ∈ [𝑡0, 𝑡𝑠]) (5) 

where ∪ and ∩ stand for union intersection, respectively. 
Component reliability analysis is required for system 

reliability analysis. Methods of time-dependent component 

reliability analysis include three groups: Rice’s formula based 
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methods [7-9], meta-model based methods [10-13], and methods 

which convert time-dependent into time-independent reliability. 

Rice’s formula based methods are most commonly used [14]. 

For example, the PHI2 method [8] allows for time-variant 

reliability problems to be solved using classical time-invariant 
reliability method, the first order reliability method (FORM). Hu 

and Du then proposed the joint up-crossing rate method in 

estimating the time-dependent reliability [9]. Rice’s formula-

based methods prove more efficient than others but may lead to 

large errors if up-crossings are strongly dependent.  

Higher accuracy can be achieved by meta-model based 

methods. Hu and Du introduced a mixed efficient global 

optimization method employing the adaptive Kriging-Monte 

Carlo simulation (MCS) so that this high accuracy is achieved 

[12]. Wang and Wang developed a nested extreme response 

surface method by employing Kriging for reliability analysis 

with time-variant performance characteristics [13]. This group of 
methods may result in a high computational cost if the dimension 

of the problem is high.  

Converting a time-dependent problem into a time-

independent counterpart is possible by using the extreme value 

of the limit-state function. The methods include the envelope 

function method [15], extreme value response method [16], and 

the composite limit-state function method [17]. Still, obtaining 

accurate distribution of the extreme value in an efficient way is 

complicated. Hu and Du recently employed sequential efficient 

global optimization (EGO) to transform the time-dependent 

reliability problem into a time-independent problem with a 
second order method. The Hessian matrix is approximated by a 

quasi-Newton approach. It uses the gradients of the limit-state 

function at the points before the MPP search converges to the 

MPP. The method is efficient, but it may not accurately 

approximate the Hessian matrix since the points may not be on 

the surface of the envelope function [18]. 

Many studies have been conducted on time-dependent 

system reliability as well. For instance, Song and Der Kiureghian 

developed a joint first-passage probability method based on the 

conditional distribution analysis in estimating the reliability of 

systems subjected to stochastic excitation [19]. Radhika et al. 

investigated nonlinear vibrating systems under stochastic 
excitations by implementing the asymptotic extreme value 

theory and Monte Carlo simulation (MCS) [20]. Yu et al. 

employed the combination of the extreme value moment and 

improved maximum entropy method to access the time-variant 

system reliability with temporal parameters [21]. Gong and 

Frangopol proposed a new efficient method for time-dependent 

reliability which is formulated as a large-scale series system 

consisting of time-independent response functions [22]. Hu and 

Mahadevan proposed a novel and efficient methodology for 

time-dependent system reliability by considering the system as 

an equivalent Gaussian random field [23].  
Time-independent system reliability can be approximated 

by the multidimensional integration of the joint probability 

density function (PDF) of random variables once the marginal 

distributions and correlation coefficients of component states are 

obtained by the second and first order approximations [24]. Wu 

and Du proposed a method of predicting the time-independent 

system reliability by approximating the marginal distributions 

with the second order saddlepoint method (SOSPA) [25].  

It is desirable to take advantages of time-dependent 

component reliability methods and time-independent system 
reliability methods. To this end, we integrate the second order 

saddlepoint approximation [18], which is for time-dependent 

component reliability analysis and the second order saddlepoint 

approximation for time-independent system reliability analysis. 

The new method approximates the joint probability density 

function of the evelope functions of component responses by a 

multivariate normal density, whose mean vector and covariance 

matrix are obtained by the second and first order approximations, 

respectively. The proposed method approximates the envelope 

function of a component limit-state function at the Most 

Probable Points (MPPs) of the envelope function with a full 

quadratic function, and this allows for the use of most popular 
reliability methods, including the first and second order 

reliability methods (FORM and SORM). The employment of the 

MPP and second order approximation makes the proposed 

method both efficient and accurate. 

This paper is organized as follows: Section 2 reviews the 

first order reliability method for time dependent reliability 

analysis. Section 3 discusses the proposed method for time-

dependent system reliability analysis. Section 4 presents three 

examples, and Section 5 provides conclusions and discusses the 

possible future work. 

2． METHODOLOGY REVIEW 

The second order time-dependent system reliability method 

is based several existing methods, which are reviewed in this 

section.  

2.1 Time-Dependent Component Reliability 

The limit-state function of a component is given in Eq. (1), 

and its reliability is therefore a function of time (or timespan) as 

indicated in Eq. (2). The most commonly used reliability method 

is FORM, which is reviewed below. 

2.1.1 First Order Reliability Method  

FORM is originally used for time-independent reliability 

analysis, and it can also be used for time-dependent reliability 

analysis. It converts a general non-Gaussian process response 

into an equivalent Gaussian process response. 𝐗  is at first 
transformed into standard normal variables 𝐔 . Then the most 
probable point (MPP) 𝐮∗  at 𝑡  is identified by the following 
model: 

{min
√𝐔𝐔T

s. t.  𝑔(𝐗, 𝑡) = 𝑔(T(𝐔), 𝑡) = 0
(6) 

where T(∙) is an operator of the transformation from 𝐔 to 𝐗. 
The limit-state function is linearized at  𝐮∗ (𝑡) by  

𝑔(T(𝐔), 𝑡) = 𝑔( 𝐮∗ , 𝑡) +∑
𝜕𝑔

𝜕𝑈𝑖

𝑁

𝑖=1

|

𝐮∗

(𝑈𝑖 − 𝑢𝑖
∗) (7) 

= ∇𝑔(𝐮∗ , 𝑡)(𝐔 − 𝐮∗ )  
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where ∇𝑔(𝐮∗ , 𝑡) = [
𝜕𝑔

𝜕𝑈1
|
𝐮∗
, … ,

𝜕𝑔

𝜕𝑈𝑁
|
𝐮∗  

]

T

  is the gradient , and 

𝑢𝑖
∗ is the i-th component of 𝐮∗. 

Then the probability of failure is computed by   
𝑝𝑓 = Pr(𝑔(𝐗, 𝑡) < 0, ∃𝑡 ∈ [𝑡0, 𝑡𝑠]) (8) 

         = Pr(𝛽(𝑡) + 𝛂(𝑡)𝐔 < 0, ∃𝑡 ∈ [𝑡0, 𝑡𝑠])  

where 𝛽(𝑡) is the time-dependent reliability index,  
𝛽(𝑡) =∥ 𝐮∗ ∥ (9) 

and 𝛂(𝑡) is the time-dependent unit gradient vector 

𝛂(𝑡) =
∇𝑔(𝑡)

∥ ∇𝑔(𝑡) ∥
= [ 𝛼1(𝑡), 𝛼2(𝑡),… , α𝑁(𝑡)]

T (10) 

As Eq. (7) shows, the non-Gaussian process 𝑔(𝐗, 𝑡)  has 
been transformed into an equivalent Gaussian process 

represented as a sum of standard normal random variables. After 

this, many methodologies are available for solving for the 

probability of failure, such as the upcrossing rate method [8, 9] 

and MCS [26]. 

2.1.2 Sequential optimization with EGO 

The time-dependent probability of failure can be evaluated 
by the extreme value of the limit-state function. 

𝑝𝑓(𝑡𝑜 , 𝑡𝑠) = Pr(𝑔(𝐗, 𝑡) < 0, ∃𝑡 ∈ [𝑡𝑜 , 𝑡𝑠]) (11)  

             = Pr( min
𝑡∈[𝑡𝑜,𝑡𝑠]

𝑔(𝐗, 𝑡) < 0)   

The extreme limit-state function is also known as envelope 
function [15] or the composite limit-state function [17], 

min
𝑡∈[𝑡𝑜,𝑡𝑠]

𝑔(𝐗, 𝑡) is obtained by 

𝐺(𝐗) = min
𝑡∈[𝑡𝑜,𝑡𝑠]

𝑔(𝐗, 𝑡) = g(X, 𝑡̃(𝐗)) (12) 

where 𝐺(𝐗)  is the global minimum value of 𝑔(𝐗, 𝑡)  with 
respect to 𝑡. 𝐺(𝐗) is time independent and only depends on 𝐗.  
𝑡̃ is the time instant when the global minimal value occurs. 𝑡̃ is 
the function of 𝐗. 

𝑡̃ = {𝑡̃| min
𝑡∈[𝑡𝑜,𝑡𝑠]

𝑔(𝐗, 𝑡)} (13) 

The envelope function 𝐺(𝐗)  is a spatial surface that is 
tangent to all the instantaneous limit-state functions at different 

time instants 𝑡̃ . Since it is hard to analytically obtain the 
envelope function 𝐺(𝐗), FORM is used to approximated 𝐺(𝐗). 
The MPP of the envelope function is obtained by 

{
min√𝐔𝐔T

s. t. min
𝑡∈[𝑡𝑜,𝑡𝑠]

𝑔(T(𝐔), 𝑡) = 0
(14) 

Eq. (11) is a double loop optimization problem. The inner 

loop is the global optimization with respect to time t, while the 

outer loop is the MPP search with respect to 𝐔. The double loop 
is decoupled into a sequential single-loop process. 

The first cycle is FORM analysis, the MPP 𝐮(1)
∗   at the 

initial time 𝑡0 by 

{min
√𝐔𝐔T

s. t.  𝑔(T(𝐔), 𝑡0) = 0
(15) 

Then the time is updated by global optimization at 𝐮(1)
∗ , and 

the new time is denoted by 𝑡̃(1), which is given by 

𝑡̃(1) = argmin
𝑡∈[𝑡𝑜,𝑡𝑠]

𝑔 (T(𝐮(1)
∗  , 𝑡)) (16) 

In the next cycle, the new MPP 𝐮(2)
∗   is located at the time 

instant 𝑡̃(1) using Eq. (15). And then the time is updated to 𝑡̃(2) 
by performing global optimization at 𝐮(2)

∗ . 

𝑡̃(2) = argmin
𝑡∈𝑡𝑜,𝑡𝑠]

𝑔 (T(𝐮(2)
∗  , 𝑡)) (17) 

The above process is repeated until convergence. 

The Efficient Global Optimization (EGO) is employed to 

solve the time 𝑡  [27]. EGO has been widely used in various 
areas because it can efficiently search for the global optimum 

[12, 28]. The task is to solve for the time so that 𝑔(𝑡) =
𝑔(T(𝐮MPP), 𝑡) is minimized. With a number of training points, 
the function is approximated by the following surrogate model: 

𝑦̂ = 𝑔(𝑡) = 𝑔(T(𝐮MPP), 𝑡) = 𝐹(𝑡)
T𝛾 + Z(𝑡) (18) 

where 𝐹(𝑡)T𝛾  is a deterministic term, 𝐹(𝑡)  is a vector of 
regression functions, 𝛾  is a vector of regression coefficients, 
and 𝑍(𝑡) is a stationary Gaussian process with zero mean and a 
covariance given by 

Cov(𝑍(𝑡1), 𝑍(𝑡2)) = 𝜎𝑍
2𝑅(𝑡1, 𝑡2) (19) 

where 𝜎𝑍
2  is process variance, and 𝑅(∙,∙)  is the correlation 

function. 

The output of the surrogate model is a Gaussian random 

variable following 

𝑦̂ = 𝑔(𝑡)~𝑁(𝜇(𝑡), 𝜎2(𝑡)) (20) 

where 𝜇(𝑡) and 𝜎(𝑡) are the mean and standard deviation of 
𝑦̂, respectively. 

After building the initial model, the expected improvement 

(EI) metric is used to identify the new training point with the 

highest probability to produce a better extreme value of the 

response. The improvement is defined by 
I = max(𝑦∗ − 𝑦, 0) (21) 

where 𝑦∗ = min
𝑖=1,2,…,𝑘

𝑔(𝑡𝑖)  is the current minimum response 

obtained from the sample training points.  

Thus its expectation or EI is computed by      

EI(𝑡) = E[max(𝑦∗ − 𝑦, 0)] (22) 

= (𝑦∗ − 𝜇(𝑡))Φ(
𝑦∗ − 𝜇(𝑡)

𝜎(𝑡)
) + 𝜎(𝑡)𝜙 (

𝑦∗ − 𝜇(𝑡)

𝜎(𝑡)
) 

where Φ(∙) and 𝜙(∙) are the cumulative distribution function 
(CDF) and PDF of a standard normal variable, respectively. 

The new training point 𝑡𝑛𝑒𝑤 is identified as the time that 
maximizes the expected improvement. 

𝑡𝑛𝑒𝑤 = argminEI
𝑡

(𝑡) (23) 

The convergence criterion of EGO could be set to 𝜀EI =
|𝑦∗| × 2% . By combining sequential strategy with EGO, the 

MPP 𝐮∗ of extreme limit-state function 𝐺(𝐗) can be obtained 
efficiently by solving Eq. (14). The probability of failure with 

FORM is estimated by      
𝑝𝑓(𝑡𝑜 , 𝑡𝑠) = Pr(𝑔(𝐗, 𝑡) < 0, ∃𝑡 ∈ [𝑡𝑜 , 𝑡𝑠]) (24) 

             = Pr(𝐺(𝐗) < 0) = Φ(−β) 
where 𝛽 =∥ 𝐮∗ ∥ is the first order reliability index.  

The method is named FORM since FORM is involved in Eq. 

(14). In general, the envelope function can be highly nonlinear 
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and FORM may not be accurate enough. Thus, a second order 

method is preferred and it uses envelope theorem to obtain the 

second order information of the extreme limit-state function. 

Then SOSPA is used to estimate the probability of failure. 

3.  PROPOSED METHOD 

3.1 Overview 

The envelope function of a component (or limit-state 

function) is generally nonlinear as shown in Fig. 1. It is the 

reason we use a second order approximation for the envelope 

function. Specifically, we approximate the envelope function at 

its MPP with a quadratic function. As a result, we also need the 

gradient and the Hessian matrix of the envelope function at the 

MPP.  
It is shown that the MPP of the envelope function is the 

worst-case MPP of the limit-state function on [𝑡0, 𝑡𝑠] [18]. In 
other words, the MPP is the closest point between the origin and 

all the instantaneous limit-state functions on [𝑡0, 𝑡𝑠] . This is 
illustrated in Fig. 1. The MPP of the envelope function can be 

efficiently found using a sequential single loop method [18]. This 

MPP is also the MPP of the worst-case limit-state function; as a 

result, the gradient of the envelope function is equal to the 

gradient of the worst-case limit-state function [18].  

The Hessian matrix of the envelope function, however, may 
not be the Hessian matrix of the worst-case limit-state function 

as shown in Fig. 1. The Hessian matrix of the envelope function 

can be approximated by the gradients of the instantaneous limit-

state functions [18], but the second derivative of the envelope 

function with respect to time is not considered. The method in 

[18] may not always work. In this work, we derive analytical 

second derivatives of the envelope function with respect to both 

random input variables and time, and the Hessian matrix of the 

envelope function can then be obtained accurately. 

 
Fig. 1 Tangential relationship between limit-state 

function and envelope function 

The general procedure of finding the second order 

information of the envelope is summarized below. 

At first we employ the method in [18] to find the MPP of the 

envelope function using Eq. (14). Once we get the MPP of the 
envelope function, we know the gradient of the envelope because 

it is equal to the gradient of the limit-state function at the MPP. 

Next we determine the Hessian matrix of the envelope function 

with Eq. (35). The Hessian matrix consists of second derivatives 

of the limit-state function with respect to random input variables 

𝐗 and time 𝑡. The equations are derived in Sec. 3.2. Once the 
MPP, gradient and Hessian matrix are available, we use the 

second order saddlepoint approximation to find the probability 

of component failure and then perform system reliability 

analysis. The method hereby is denoted by SOSPA involved. 

3.2 Hessian matrix of the envelope function 

After the MPP of the envelope function is found, the 

quadratic envelope function is formulated as [25] 

𝐺(𝐔) = a + 𝐛T𝐔+𝐔T𝐂𝐔 (25) 
where      

{
 
 

 
 𝑎 =

1

2
(𝐮∗)T𝐇𝐮∗ − ∇𝐺(𝐮∗)T𝐮∗

𝐛 = ∇𝐺(𝐮∗) − 𝐇𝐮∗

𝐂 =
1

2
𝐇 = diag(𝑐̃1, 𝑐̃2, … , 𝑐̃𝑁)

(26) 

∇G(𝐮∗) = (
𝜕𝐺

∂𝑈1
|
𝐮∗
, … ,

𝜕𝐺

∂𝑈𝑛
|
𝐮∗
)  is the gradient of the 

envelope function. 𝐇 is the Hessian matrix, which is given by 

𝐇 =

[
 
 
 
 
 
𝜕2𝐺

𝜕𝑈1
2 ⋯

𝜕2𝐺

𝜕𝑈1𝜕𝑈𝑛
⋮ ⋱ ⋮

𝜕2𝐺

𝜕𝑈𝑛𝜕𝑈1
⋯

𝜕2𝐺

𝜕𝑈𝑛
2 ]
 
 
 
 
 

𝐮∗

(27) 

The envelope function 𝐺(𝐗) = 0 at 𝐮∗ is given by 

𝐺(𝐔) = min
𝑡∈[𝑡𝑜,𝑡𝑠]

𝑔(𝐔, 𝑡) =𝑔(𝐔, 𝑡̃)|𝐮∗ (28) 

𝑡̃ is the worst-case time instant, and it is found by 
𝑔̇(𝐔, 𝑡) = 0 (29) 

where 𝑔̇ is the derivative function of 𝑔 with respect to 𝑡. 
The first derivative of 𝐺(𝐔) with respect to a random input 

variable at 𝐮∗ is 
𝜕𝐺

𝜕𝑈𝑖
=
∂𝑔

∂𝑈𝑖
+
∂𝑔

∂𝑡̃

𝜕𝑡̃

𝜕𝑈𝑖
(30) 

As  𝑔̇(𝐔, 𝑡) = 0, Eq. (26) becomes 
𝜕𝐺

𝜕𝑈𝑖
=
∂𝑔

∂𝑈𝑖
(31) 

Eq. (31) indicates the envelope function and the limit-state 

function have the same gradient at 𝐮∗ . Then, the second 
derivative of 𝐺(𝐔) with respect random input random variables 
at 𝐮∗ is 

𝜕2𝐺

𝜕𝑈𝑖𝜕𝑈𝑗
=

𝜕

𝜕𝑈𝑗
(
𝜕𝐺

𝜕𝑈𝑖
) =

𝜕

𝜕𝑈𝑗
(
𝜕𝑔

𝜕𝑈𝑖
) 

          =
𝜕2𝑔

𝜕𝑈𝑖𝜕𝑈𝑗
+
𝜕2𝑔

𝜕𝑈𝑖𝜕𝑡

∂𝑡

∂𝑈𝑗
(32) 

We then take the derivative of Eq. (26) with respect to 𝑈𝑗 , 

it is given by 
∂𝑔̇

∂𝑈𝑗
+
∂𝑔̇

∂𝑡

∂𝑡

∂𝑈𝑗
= 0 (33) 
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∂𝑡

∂𝑈𝑗
= −

∂𝑔̇

∂𝑈𝑗

∂𝑔̇

∂𝑡
⁄ (34) 

By taking Eq. (29) and (34) into Eq. (32), the Hessian matrix 

H at 𝐮∗ and 𝑡̃ can be expressed as 
𝜕2𝐺

𝜕𝑈𝑖𝜕𝑈𝑗
|
𝐮∗ ,𝑡

=
𝜕2𝑔

𝜕𝑈𝑖𝜕𝑈𝑗
|
𝐮∗ ,𝑡

−
𝜕2𝑔

𝜕𝑈𝑖𝜕𝑡

𝜕2𝑔

𝜕𝑈𝑗𝜕𝑡

𝜕2𝑔

𝜕𝑡2
⁄ |

𝐮∗ ,𝑡

(35) 

In this case, the finite difference method is used to obtain the 

gradient and Hessian matrix of the envelope function. 

Next, the second order saddlepoint approximation is 

employed to estimate the probability of failure. Saddlepoint 

approximation has several excellent features. It yields an 
accurate probability estimation, especially in the tail area of a 

distribution [29, 30].  

The cumulant generating function (CGF) is formulated as 

𝐾(𝑠) = −β𝑠 +
1

2
𝑠2 −

1

2
∑ log(1 − 2𝑠𝑘𝑖)

𝑛−1

𝑖

(36) 

where 𝑘𝑖 = 𝑐̃𝑖 
The derivatives of CGF are      

𝐾′(𝑠) = −𝛽 + 𝑠 +∑
𝑘𝑖

1 − 2𝑠𝑘𝑖

𝑛−1

𝑖=1

(37) 

𝐾′′(𝑠) = 1 +∑
𝑘𝑖
2

(1 − 2𝑠𝑘𝑖)
2

𝑛−1

𝑖=1

(38) 

The saddlepoint 𝑠𝑠  is obtained by solving the following 
equation:  

𝐾′(𝑡) = −𝛽 + 𝑠 +∑
𝑘𝑖

1 − 2𝑠𝑘𝑖

𝑛−1

𝑖=1

= 0 (39) 

 Then the probability of failure is evaluated by     
𝑝𝑓(𝑡𝑜 , 𝑡𝑠) = Pr(𝑔(𝐗, 𝑡) < 0, ∃𝑡 ∈ [𝑡𝑜 , 𝑡𝑠])  

= Φ(𝑤) + 𝜙(𝑤) (
1

𝑤
−
1

𝑣
) (40) 

where 

𝑤 = sgn(𝑡𝑠){2[−𝐾(𝑡𝑠)]}
1
2 (41) 

𝑣 = 𝑡𝑠[𝐾
′′(𝑡𝑠)]

1
2 (42) 

in which sgn(𝑠𝑠)   11, -1 or 0, depending on whether 𝑠𝑠  is 
positive, negative, or zero. 

The detailed steps of SOSPA are summarized below. 

Step 1: Set k = 1 , the initial time instant express as the 
initial extreme value time 𝑡̃(0) = 𝑡0, the initial MPP 𝐮(1)

∗ = 𝐮0 

is a unit vector. 

Step 2: Search for the MPP at time instant 𝑡̃(𝑘−1)and obtain 
MPP 𝐮(𝑘)

∗  by solving the formulas    

{
min√𝐔𝐔T

s. t.  𝑔(T(𝐔), 𝑡̃(𝑘−1)) = 0
(43) 

Step 3: Determine the optimal time 𝑡̃(𝑘) by implementing 

EGO method with 𝐮(𝑘)
∗ .  

Step 4: Determine the gradient ∇𝐺(𝑘) and Hessian matrix 
𝐇(𝑘) of the envelope function at 𝐮(𝑘)

∗ . 

Step 5: Calculate 𝑝𝑓   using SOSPA based on the 

information (𝐮(𝑘)
∗ , ∇𝐺(𝑘), 𝐇(𝑘)). 

However, the proposed method does not work when the 

extreme value of the limit-state function occurs at the beginning 

or end of the time period. The is because the limit-state function 

𝑔(𝐗, 𝑡) is not differentiable at the beginning or end point of the 
time period. In other words, the Eq. (29) is invalid when the 

optimal time instant of the extreme value function occurs at the 

beginning and end point of the time period [𝑡𝑜 , 𝑡𝑠]. As a result, 
the Hessian matrix derivative Eq. (35) is not true for the above 
reason.  

3.3 System reliability with SOSPA 

In this section, we discuss how to extend SOSPA for time 

dependent component reliability to time dependent system 

reliability analysis.  

System reliability can be estimated by integrating the joint 

PDF of all responses in the safe region. To use SOSPA, we 

consider the PDF of component responses directly. The system 
state is determined by component states predicted from 

component limit-state functions 𝑌𝑖 = 𝑔𝑖(𝐗, 𝑡) (𝑖 = 1,2,…𝑚). 
Given all the limit-state functions with time, the series 

system is then determined by the   

𝑅𝑆 = Pr(⋂𝑌𝑖 = 𝑔𝑖(𝐗, 𝑡) > 0

𝑚

𝑖=1

, 𝑖 = 1,2,… ,𝑚) (44) 

Eq. (44) enable us to consider component reliability and 

dependencies since it needs the joint PDF 𝑓𝐘(𝒚)  of 𝐘 =
(𝑌1, 𝑌2, … , 𝑌𝑚) . Hereby, it is an alternative way to predict the 
system reliability that the joint PDF 𝑓𝐘(𝒚) is approximated by 
a multivariate normal distribution. 

If we only consider the first order term of the extreme limit-

state function Eq. (25), it becomes as follows: 

𝐺𝑖(𝐔) = −∇𝐺(𝐮𝑖
∗)T𝐮𝑖

∗ + ∇𝐺(𝐮𝑖
∗)𝐔 (45) 

If we divide both sides of Eq. (45) by the magnitude of the 

gradient, we obtain 

𝐺𝑖(𝐔)

‖∇𝐺(𝐮𝑖
∗)‖

= −
∇𝐺𝑖(𝐮𝑖

∗)T

‖∇𝐺(𝐮𝑖
∗)‖

𝐮𝑖
∗ +

∇𝐺𝑖(𝐮𝑖
∗)

‖∇𝐺(𝐮𝑖
∗)‖

𝐔 (46) 

or 
𝐺𝑖(𝐔)

‖∇𝐺(𝐮𝑖
∗)‖

= −𝛽𝑖 +𝜶𝑖𝐔 (47) 

The event of the safe component 𝐺𝑖(𝐔) > 0 is equivalent 
to the event −𝛽𝑖 + 𝜶𝑖𝐔 >0. We then define a new variable  

𝑍𝑖 = −𝛽𝑖 + 𝛂𝑖𝐔 (48) 
where 𝛂𝑖 is the directional vector and is given below 

𝜶𝑖 =
∇𝐺𝑖(𝐮𝑖

∗)

‖∇𝐺(𝐮𝑖
∗)‖

(49) 

𝑍𝑖 is an equivalent component response. It is obvious that 
𝑍𝑖 follows a normal distribution. As a result, all the equivalent 
component responses follow a multivariate normal distribution 

if the envelope functions of all the components are linearized at 

their MPPs. The system reliability is then approximated by 

𝑅𝑆 = Pr(⋂𝑍𝑖(𝐔) > 0

𝑚

𝑖=1

) = Pr(⋂= −𝛽𝑖 +𝜶𝑖𝐔 > 0

𝑚

𝑖=1

) (50) 



 6 © 2020 by ASME 

As a result, 𝐙 = (𝑍1, 𝑍2,… , 𝑍𝑚)  follows a multivariate 
normal distribution denoted by 𝑁(𝛍𝑍 , 𝚺𝑍) , where 𝛍𝑍  is the 
mean vector and 𝚺𝑍 is the covariance matrix. System reliability 
thus becomes the CDF Φ𝑚(𝟎;−𝛍𝑍 , 𝚺𝑍) of Z at 0; namely  

𝑅𝑆 = Φ𝑚(𝟎;−𝛍𝑍 , 𝚺𝑍) = ∫ ⋯∫ 𝑓𝑧

0

−∞

0

−∞

(𝒛)𝑑𝒛 (51) 

where 𝑓𝑧(𝒛) is the joint PDF of Z and the joint PDF of 𝐙 =
(𝑍1, 𝑍2,… , 𝑍𝑚) is expressed below 

𝑓𝑍(𝐳) =
1

√(2𝜋)𝑚|𝚺𝑍|
exp(−

(𝐳 − 𝐮𝑍)
T𝚺−1(𝐳 − 𝐮𝑍)

2
) (52) 

The accuracy of the mean vector 𝛍𝑍  and covariance matrix 
𝚺𝑍  determine the accuracy of the multivariate normal 

integration in Eq. (52). In order to improve the accuracy of the 
Eq. (52) with high efficiency, the SOSPA method and the FORM 

are engaged in determining 𝛍𝑍 and 𝚺𝑍, respectively. Since the 
SOSPA is in general more accurate than the traditional FORM, 

the new method has higher accuracy. We use the SOSPA to 

approximate the marginal CDF of 𝑍𝑖  at 0, which is the 
component reliability  

𝑅SPA𝑖 = Pr(𝑍𝑖 > 0) (53) 
where 𝑅SPA𝑖   is SOSPA method given in Eq. (40). Then the 
associated reliability index is determined by  

𝛽SPA𝑖 = Φ
−1(𝑅SPA𝑖) (54) 

and 𝛽SPA𝑖  is an equivalent reliability index. 
Since 𝛽SPA is estimated in a more accurate reliability way, 

we use it to replace 𝛽  in Eq. (47). The mean vector of the 
multivariable distribution of Z becomes 

𝐮𝑍 = (𝛽SPA1, … , 𝛽SPA𝑚) (55) 
The above treatment ensures that the component reliability 

or the marginal distributions of component responses are 
accurately estimated by the sequential efficient global 

optimization with the second order approximation. Simplified 

computation and high efficiency can be achieved by using the 

first order approximation with Eq. (49) to estimate the 

covariance matrix 𝚺𝑍 [25, 31]. Let the components of 𝚺𝑍 be 
𝜌𝑖𝑗(𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2,… ,𝑚), The covariance is given by   

𝜌𝑖𝑗 = 𝜶𝑖
T𝜶𝑗 (56) 

Then 𝚺𝑍 is given by  

𝚺𝑍 = [
1 ⋯ 𝜌1𝑚
⋮ ⋱ ⋮
𝜌𝑚1 ⋯ 1

]

𝑚×𝑚

(57) 

With 𝐮𝑍 and 𝚺𝑍  available, the system reliability 𝑅𝑠  with 
time can be easily calculated by integrating the PDF in Eq. (52) 

from (−∞,… , −∞)  to (0, … ,0)  and the time dependent 
probability of  system failure is 

𝑝𝑓𝑠 = 1− 𝑅𝑠 (58) 
Many methods such as the first order multi-normal 

approximation (FOMN) [32] and Alan Genz method [33] are 

developed to integrate 𝑓𝑍(𝐳) in Eq. (52). 
The proposed method provides a new way to estimate the 

time dependent system reliability with nonlinear limit-state 

functions. The dependencies between component responses are 

automatically accommodated in the system covariance matrix, 

and component marginal CDFs can be obtained accurately using 

the sequential efficient global optimization with second-order 

SPA method. This method not only achieves high accuracy in 

estimating system reliability but also simplifies the computations 

while maintaining high efficiency.  

The procedure of the system reliability analysis with the 
SOSPA is briefly summarized below. The flowchart of this 

procedure is illustrated in Fig. 2. 

 
Fig.2 Flowchart of time-dependent system reliability 

Step 1: Transform random variables 𝐗  into 𝐔  in the 
standard normal space. 

Step 2: Search for MPPs 𝐮(𝑘)
∗ , obtain the optimal time 𝑡̃(𝑘) 

of the component limit-state function with the efficient global 

optimization method. The process is repeated until it is 

convergent at iteration k.  

Step 3: Determine gradient ∇𝐺(𝑘)  and Hessian matrix 
𝐇(𝑘) of the envelope function. 

Step 4: Calculate component probability of failure based on 

the above component information (𝐮(𝑘)
∗ , ∇𝐺(𝑘), 𝐇(𝑘)) , and use 

SOSPA result to find the mean of equivalent component 

responses. 
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Step 5: Repeat step 2-step 5 to analyze all components in 

system. 

Step 6: Use respective MPPs and reliability indexes to find 

the system covariance matrix. 

Step 7: Form the multivariate normal PDF and integrate it 
to obtain time dependent system reliability. 

4.  EXAMPLES 
In this section, three examples are presented to test SOSPA 

for system reliability analysis. Example 1 is a mathematical 

problem which is used to demonstrate the details of the proposed 

method. Example 2 and 3 are engineering problems. The 

accuracy is measured by the percentage error with respect to a 

solution from MCS. The error is calculated by 

𝜀 =
|𝑝𝑓𝑠 − 𝑝𝑓𝑠

MCS|

𝑝𝑓𝑠
MCS × 100% (59) 

where  𝑝𝑓𝑠 is the result from SOSPA or FORM and 𝑝𝑓𝑠
MCS is 

the result from MCS. We also use the number of function calls 

as a measure of efficiency. 

4.1 Example 1: A math problem 

A series system consists of two components with random 

basic variables 𝐗 = (𝑋1, 𝑋2) . 𝑋𝑖  (𝑖 = 1,2) is normally 

distributed with parameter 𝜇𝑖 = 3.5   and 𝜎𝑖 = 0.3 . The two 
limit-state functions are given by 

𝑔1(𝐗, 𝑡) = 𝑋1
2𝑋2 − 5𝑋1𝑡 + (𝑋2 + 1)𝑡

2 − 8.2 (60) 

𝑔2(𝐗, 𝑡) = (cos(5
°)𝑋1 + sin(5

°)𝑋2)
2(− sin(5°)𝑋1

+cos (5°)𝑋2) − 5(cos(5
°)𝑋1 + sin(5

°)𝑋2)𝑡 +

((−sin(5°)𝑋1 + cos(5
°)𝑋2 + 1)𝑡

2 − 3.9 (61)

 

where 𝑡 varies within [0,5]. 
Fig. 3 shows the parabolic curve of the envelope function of 

𝑔1(𝐗, 𝑡)  formed by the instantaneous limit-state surface at 
different discretized time instants within the interval [0,5]. The 

contours of the analytical envelope functions of 𝑔1 and 𝑔2 are 
plotted in Fig. 4. The shaded area represents the system failure 

region.  

In order to explain clearly how the SOSPA method works, 

we only show the details for 𝑔1(𝐗, 𝑡) . First, the MPP of the 

envelope function at 𝑡̃ is obtained using sequential EGO. The 
iteration history is shown in Table 1. Once the iteration is 

convergent, the MPP is found at (−1.0714,−3.1172). 

Table 1 Iteration history of MPP search for 𝑔1 

Iterations 𝐮∗ 𝑡̃ 
1 (−6.1450,−1.7052) 1.4735 

2 (−2.1526,−2.9252) 1.9689 

3 (−1.3877,−3.0305) 2.1483 

4 (−1.1631,−3.0878) 2.2063 

5 (−1.0941,−3.1096) 2.2251 

6 (−1.0714,−3.1172) 2.2314 

 

 

The probabilities of failure for 𝑔1  and 𝑔2  from SOSPA 
are 𝑝𝑓1 = 6.0040 × 10−4  and 𝑝𝑓2 = 7.2248 × 10−4 . The mean 

values of the two equivalent component responses 𝐙 = (𝑍1, 𝑍2) 
are then given by 𝐮z = 𝛃SOSPA = (−3.2387, −3.1855). 

 

 
Fig.3 Envelope function formed by instantaneous  

limit-state surfaces 

 
Fig.4 System extreme limit-state function 

The unit directional vectors of the two limit-state functions 

are 𝛂1 = (0.3254,0.9456) and 𝛂2 = (0.0098,1.0). Thus, the 
correlation coefficient between 𝑔1  and 𝑔2  is 𝜌12 = 𝛂1𝛂2

T =
0.9487, and the covariance matrix is obtained as follow. 

𝚺z = [
1 𝜌12
𝜌21 1

] = [
1 0.9487

0.9487 1
] 

The probability of system failure from SOSPA is 𝑝𝑓𝑠 = 1−

𝑅𝑠 = 9.4747 × 10−4. When FORM is used, the covariance is the 

same as 𝚺z , and the mean values of the two equivalent 
component responses are below 

𝐮z = 𝛃FORM = (−3.2963, −3.2079). 
The probability of system failure from FORM is 𝑝𝑓𝑠 =

8.3738 × 10−4. The MCS solution with a sample size of 106 is 
also obtained. For MCS, the time interval [0,5] is discretized 

evenly into 100 time instants. The total number of function calls 
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is therefore 108 . The results are shown in Table 2 where the 
errors calculated by Eq. (59) are given in brackets. Table 2 shows 

that SOSPA is much more accurate than FORM which produces 

a large error due to the nonlinearity of the envelope functions. 

Table 2 Probability of system failure in Example 1 

Methods SOSPA FORM MCS 

𝑝𝑓1  
6.0040× 10−4 

(1.57%) 
4.8989× 10−4 

(19.69%) 
6.10× 10−4 

𝑝𝑓2  
7.2248× 10−4 

(1.03%) 
6.6864× 10−4 

(8.41%) 
7.30× 10−4 

𝑝𝑠𝑓 
9.4747× 10−4 

(3.32%) 
8.3738× 10−4 

(14.6%) 
9.80× 10−4 

4.2 Example 2: A roof truss structure 

A roof truss problem [25] is modified as our second 

example. The top boom and all the compression bars of the bar 

are made of concrete while the bottom boom and all the tension 

bars are made of steel. The bars bear a uniformly distributed load 

𝑞(𝑡) = 𝑞𝑜(0.1 sin(0.25𝑡) + 0.9) , 𝑡 ∈ [0, 10] years. 𝐴𝐶  and 
𝐸𝐶  are the cross sectional area and elastic modulus of the 
concrete bars, respectively. 𝐴𝑆 and 𝐸𝑆 are the cross sectional 
area and elastic modulus of the steel bars, respectively. All 

parameters are independent and are listed in Table 3.  

 

Table 3 Distribution of random variables 

Variable 

(Unit) 
Mean 

Standard 

deviation 
Distribution 

𝑞𝑜(N/m) 14000 1680 Normal 

𝐿(m) 12 0.12 Normal 

𝐴𝑆(m
2) 9.010−4 9.010−5 Normal 

𝐴𝐶(m
2) 510−2 510−3 Normal 

𝐸𝑆(N/m
2) 21011 21010 Normal 

𝐸𝐶(N/m
2) 31010 3109 Normal 

𝑓𝑆(N/m
2) 3.35108 6.7107 Normal 

𝑓𝐶(N/m
2) 1.34107 2.68106 Normal 

 

The perpendicular deflection of the roof peak node is 

calculated by  

∆𝐶 =
𝑞𝑙2

2
(
3.81

𝐴𝐶𝐸𝐶
+
1.13

𝐴𝑆𝐸𝑆
) (62) 

A failure occurs when the perpendicular deflection ∆𝐶 
exceeds 1.37 cm. The limit-state function is then defined by 

𝑔1(𝐗, 𝑡) =
𝑞𝑙2

2
(
3.81

𝐴𝐶𝐸𝐶
+
1.13

𝐴𝑆𝐸𝑆
) − 0.0137 (63) 

The second failure mode is that the internal force of one bar 

exceeds its ultimate stress. The internal force of the bar is 

1.185𝑞𝑙, and the ultimate strength of the bar is 𝑓𝐶𝐴𝐶, where 𝑓𝐶  
is the compressive stress of the bar. The second limit-state 

function is then given by 
𝑔2(𝐗, 𝑡) = 1.185𝑞𝑙 − 𝑓𝐶𝐴𝐶 (64) 

The third failure occurs when the internal force of another 

bar 0.75𝑞𝑙  exceeds its ultimate stress 𝑓𝑆𝐴𝑆 , where 𝑓𝑆  is the 
tensile strength of the bar. Therefore, the third limit-state 

function is formulated by 

𝑔3(𝐗, 𝑡) = 0.75𝑞𝑙 − 𝑓𝑆𝐴𝑆 (65)  

SOSPA produces the means the equivalent component 

responses and the covariance matrix as follows: 

𝛍𝑧 = (−2.6083,−3.3940,−2.7237) 

𝚺z = [
1 ⋯ 𝜌13
⋮ ⋱ ⋮
𝜌31 ⋯ 1

] = [
1 0.1396 0.2846

0.1396 1 0.0463
0.2846 0.0463 1

] 

The probability of system failure from SOSPA is 𝑝𝑓𝑠 =
8.0023 × 10−3. 

FORM and MCS are also used, and the results from the three 

methods are given in Table 4, showing that SOSPA has the higher 

accuracy than FORM with less efficiency.  

Table 4 Probability of system failure in Example 2 

Methods SOSPA FORM MCS 

𝑝𝑓1  
4.5497× 10−3 

(3.68%) 
3.3738× 10−3 

(28.58%) 
4.70× 10−3 

𝑝𝑓2  
3.4434× 10−4 

(3.27%) 

3.1805× 10−4 
(10.66%) 

3.560× 10−4 

𝑝𝑓3  
3.2279× 10−3 

(1.20%) 
2.9547× 10−3 

(9.55%) 
3.2670× 10−3 

𝑝𝑠𝑓 
8.0023× 10−3 

(2.26%) 
6.5583× 10−3 

(19.9%) 
8.1870× 10−3 

4.3 Example 3: A Function Generator Mechanism System 

Fig. 5 shows a function generator mechanism system, which 

can achieve a desire motion. This system consists of two function 

generator mechanisms [34]. 

 

Fig. 5 A Function Generator Mechanism System 

Mechanism 1 is a four-bar linkage mechanism with links 

𝐵1, 𝐵2, 𝐵3 , and 𝐵4, and it generates a sine function. Its motion 
error is the difference between the actual motion output and the 

required motion output. It is defined as 

𝜀1(𝐗1, 𝛾) = 𝜅𝑎(𝐗1, 𝛾) − 𝜅𝑑(𝛾) (66) 
where 𝐗1 = (𝐵1 , 𝐵2, 𝐵3 , 𝐵4) and links 𝐵2 and 𝐵5 are welded 
together. The two input angles satisfy 

𝛾 = 62∘ + 𝜃 (67) 
From the mechanism analysis, 𝜅𝑎(𝐗1, 𝛾) and 𝜅𝑑(𝛾)  can 

be obtained by 

𝜅𝑎(𝐗1, 𝛾) = 2 arctan(
−𝐸1 ±√𝐸1

2 +𝐷1
2 − 𝐹1

2

𝐹1 −𝐷1
) (68) 

and  
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𝜅𝑑(γ) = 60
° + 60° sin (

3

4
(γ − 97°)) (69) 

where 𝐷1 = 2𝐵4(𝐵1 − 𝐵2𝑐𝑜𝑠𝛾) , 𝐸1 = −2𝐵2𝐵4𝑠𝑖𝑛𝛾 , and 
𝐹1 = 𝐵1

2 + 𝐵2
2 +𝐵4

2 −𝐵3
2 − 2𝐵1𝐵2𝑐𝑜𝑠𝛾. 

Mechanism 2 is the other four-bar linkage mechanism with 

links 𝐵1 , 𝐵5, 𝐵6 , and 𝐵7 , and it generates a logarithm function. 
The motion error is given by 

𝜀2(𝐗2, 𝜃) = 𝜂𝑎(𝐗2, 𝜃) − 𝜂𝑑(𝜃) (68) 
where 𝐗2 = (𝐵1, 𝐵5,𝐵6 , 𝐵7). 

𝜂𝑎(𝐗2, 𝜃) = 2 arctan(
−𝐸2 ±√𝐸2

2 +𝐷2
2 − 𝐹2

2

𝐹2 −𝐷2
) (69) 

𝜂𝑑(𝜃) = 60
°log10

[(𝜃 + 15°) 60°⁄ ]

log10 2
(70) 

where 𝐷2 = 2𝐵7(𝐵1 −𝐵5𝑐𝑜𝑠𝜃) , 𝐸2 = −2𝐵5𝐵7𝑠𝑖𝑛𝜃 , and 
𝐹2 = 𝐵1

2 +𝐵5
2 +𝐵7

2 −𝐵6
2 − 2𝐵1𝐵5𝑐𝑜𝑠𝜃. 

Mechanism 1 is considered reliable if {𝑒2 < 𝜀
1
(𝐗1, 𝛾) <

𝑒1}, where 𝑒1 and 𝑒2 are allowable motion errors with 𝑒1 =
1.4  and 𝑒2 = −0.8 . When the motion error is positive, the 

limit-state function is defined by 

𝑔1(𝐗1, 𝛾) = 𝜀1(𝐗1, 𝛾)−𝑒1 (71) 
As for the negative motion error, the limit-state function is 

given by 

𝑔2(𝐗1, 𝛾) = 𝜀1(𝐗1, 𝛾)− 𝑒2 (72) 
Similarly, the limit-state functions of mechanism 2 are as 

follows: 

𝑔3(𝐗2, 𝜃) = 𝜀2(𝐗2, 𝜃)− 𝑒3 (74) 
𝑔4((𝐗2, 𝜃)) = 𝜀2(𝐗2, 𝜃)− 𝑒4 (75) 

in which 𝑒3 = 1.0 and 𝑒4 = −2.9. The random variables are 
given in Table 5. The mechanism system performs its intended 

functions over an interval of [𝜃0, 𝜃𝑠]  [45
°, 95°]. The system is 

a series system with four components (limit-state functions).  

Table 5 Parameters in Example 2 

Variable 

(Unit) 
Mean 

Standard 

deviation 
Distribution 

𝐵1(mm) 100 0.3 Normal 

𝐵2(mm) 55.5 0.05 Normal 

𝐵3(mm) 144.1 0.05 Normal 

𝐵4(mm) 72.5 0.05 Normal 

𝐵5(mm) 79.5 0.05 Normal 

𝐵6(mm) 203 0.05 Normal 

𝐵7(mm) 150.8 0.05 Normal 
 

Table 6 shows the results. It indicates that the accuracy of 

SOSPA is in general better than FORM. However, both methods 

produce almost identical results for 𝑝𝑓2  and 𝑝𝑓4 . The reason is 

that the extreme values of two corresponding limit-state 

functions occur at the beginning of the time period (at 45°) . 
Thus, the Hessian matrices of the two envelope functions are not 

accurate, and SOSPA is not accurate for 𝑝𝑓2  and 𝑝𝑓4 . Since the 

two probabilities of component failure are much smaller than the 

other two probabilities, their effect on the probability of system 

failure is insignificant.  

Table 6 Probability of system failure in Example 3 

 SOSPA FORM MCS 

𝑝𝑓1  
6.8663× 10−3 

(1.09%) 
5.6273× 10−3 

(18.94%) 
6.9420× 10−3 

𝑝𝑓2  
5.7646× 10−5 

(5.50%) 
5.7646× 10−5 

(5.50%) 
6.10 × 10−5 

𝑝𝑓3  
2.5156× 10−3 

(1.60%) 
2.0 × 10−3 
(19.20%) 

2.4760× 10−3 

𝑝𝑓4  
2.5460× 10−6 

(15.31%) 
2.5460× 10−6 

(15.31%) 
3.0 × 10−6 

𝑝𝑠𝑓 
7.1242× 10−3  

(0.92%) 
5.7465× 10−3 

(20.1%) 
7.190× 10−3 

CONCLUSION  
The proposed time dependent system reliability method 

predicts system reliability with a second order approximation. It 

is therefore in general more accurate than the first order 
approximation methods. But it is less efficient than the latter 

methods due to the needs of second derivatives.  

The new method converts a time dependent problem into a 

time independent problem by using the envelope function or the 

extreme value of a limit-state function over the time span under 

consideration. The most probable point (MPP) of the envelope is 

found with the help of efficient global optimization. Then the 

envelope function is approximated at the MPP with its gradient 

and Hessian matrix. The reliability of each component is 

calculated by the second order saddlepoint approximation, and 

the dependences between component responses are considered 
with the first approximation for the sake of efficiency. Once the 

estimated marginal component distributions and component 

correlations are available, the joint distribution of all the 

component responses is formed by a multivariate normal 

distribution, which leads to a fast evaluation of the system 

reliability. 

The proposed envelope method works well if the envelope 

function is convex. The global MPP of the envelope function 

may not be found if the envelope function has multiple MPPs. 

For this case, the MPP search may start from different instants of 

time, and then the worst-case MPP is used. The proposed method 

does not work for a special case where the extreme value of a 
limit-state function occurs at the beginning or end of the period 

of time under consideration, and the reason is that the derivations 

of the Hessian matrix of the envelope function are for the case 

where the extreme value occurs inside the period of time. 

Out future work will address the above two issues. The 

proposed method can also be further extended to time and space 

dependent problems where random processes and random fields 

are also involved.  
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