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ABSTRACT

Reliability-based design (RBD) identifies design variables
that maintain reliability at a required level. For many routine
component design jobs, RBD may not be practical as it requires
nonlinear optimization and specific reliability methods,
especially for those design jobs which are performed manually
or with a spreadsheet. This work develops a practical approach
to reliability-based component design so that the reliability
target can be achieved by conducting traditional component
design repeatedly using a deterministic safety factor. The new
component design is based on the First Order Reliability
Method, which iteratively assigns the safety factor during the
design process until the reliability requirement is satisfied. In
addition to a number of iterations of deterministic component
design, the other additional work is the calculation of the
derivatives of the design margin with respect to the random input
variables. The proposed method can be used for a wide range of
component design applications. For example, if a deterministic
component design is performed manually or with a spreadsheet,
so it the reliability-based component design. Three examples are
used to demonstrate the practicality of the new design method.

Keywords: Reliability in design, Design of machine
elements, Design methodologies, Algorithms

1. INTRODUCTION

Safety factors are routinely used in mechanical design to
account for uncertainty [1-6]. They are particularly useful when
complete distributions of random variables are unknown. When
such distributions are available, the safety factor-based design
can be replaced by the reliability-based design (RBD) [7-16].
RBD solves an optimization problem by identifying optimal
design variables that minimize a cost-type objective function

while satisfying reliability constraints. The reliability in RBD is
the probability that a design requirement is satisfied [17].

There are many RBD methodologies. The most common
ones employ the First Order Reliability Method (FORM) [18-20]
to evaluate reliability constraints during the optimization
process. FORM can not only provide a good balance between
accuracy and efficiency, but also make it possible to decouple
deterministic optimization from reliability analysis, thereby
further reducing the computational cost. RBD has been
successfully used in many applications, for example, design of
composite over-wrapped tanks [21], B-pillar design for side
impact [22], crashworthiness of vehicle side impact [23], and
engine piston design for secondary motion [24].

The concept of safety factor, with which engineers are
familiar, can also be incorporated in RBD. The safety-factor
based approach for RBD [2, 5] is such a method. This method
employs nonlinear optimization and FORM, calling
deterministic optimization and FORM sequentially until all the
reliability constraints are satisfied. During this process, partial
safety factors are applied to all the input random variables.

The RBD methodologies [25-29], however, may not be
applicable for many component design problems. There are
several reasons for this. First, optimization may not be needed
for routine mechanical component design. Design variables can
be determined using safety factors by following design codes and
standards. Second, many engineers are not readily equipped with
knowledge of optimization, and they do not have access to
nonlinear optimization algorithms and software. Third,
optimization may not be performed at the component design
level, but at higher levels. Fourth, many engineers perform their
routine component design jobs manually or semi-manually with
the help of spreadsheets or simple programming. Some of the
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design variables are chosen from tables and graphs and are
integers or discrete values, and human interference is also likely
needed. Optimization cannot be conveniently used for this kind
of routine design. Last, RBD requires reliability analysis. If
FORM is used, the Most Probable Point (MPP) [30-32] should
be found. The MPP search itself is also an optimization problem.

It is therefore desirable to design a practical RBD approach
that relies on only the routine deterministic component design.
One approach, which satisfies this requirement is the mechanical
design approach using the First Order Second Moment (FOSM)
method [33-38]. This method can find design variables for a
given reliability target with only the minimal extra work: the
calculation of derivatives of a response variable with respect to
input random variables. It is therefore very practical and can be
used for routine component design. The accuracy of the
reliability produced by the design variables, however, may be
poor. This means that the designed reliability may be far away
from the required reliability. The reason is that FOSM uses a first
order approximation around the means of input random variables
and only the first two moments (means and standard deviations).

This work develops a practical approach to reliability-based
component design, which does not need to specify a cost-type
objective. And it uses FORM and produces higher accuracy than
FOSM. During the design process, the method iteratively
updates a safety factor for the deterministic component design
until the reliability requirement is satisfied. In addition to a
number of iterations of the deterministic component design, the
only additional work is the calculation of the derivatives of the
design margin with respect to the random input variables. The
major advantage of this approach is that engineers can use it in
the same way as they perform their deterministic routine
component design, either manually or by other means.

Reliability-based design and the safety factor are reviewed
in Section 2, and the new component design approach is
presented in Section 3, followed by three examples in Section 4.
Conclusions are given in Section 5.

2. Review of RBD and Safety Factor

Reliability-based design (RBD) is a design methodology
that minimizes a cost-type objective and maintains reliability
requirements when uncertainty (randomness) presents.
Uncertainty can also be accommodated deterministically by
using a safety factor. Both of the design methodologies are
briefly reviewed here.

2.1 Reliability-based design
A typical RBD model is given by

Min f(d)
s.t. Pr{G;(d,X)>0}>[R]i=12..,n, (D
di<d=<d’

In the above model, d is the vector of design variables with
their lower and upper bounds d’ and dY, respectively. X =
(X1, X,, ..., X)) 1is the vector of random variables. f(:) is a
cost-type objective function, and G;(d,X) is a limit-state

function. The requirement is G;(d, X) > 0, and the probability
of satisfying the requirement is called reliability, denoted by R;;
namely

R, = Pr{G,(d, X) > 0} 2)

The constraint associated with G;(d,X) is that R; should
be greater than or equal to the desired reliability [R;] or 1 —
[pf,], where [py,] is the allowable probability of failure.

The reliability R; is obtained by

R, =Pr{G;(d,X) > 0} = f fr(x) dx A3)

Gi(d,X)>0

where f,(x) is the joint probability density function (PDF) of
X. The First Order Reliability Method (FORM) is commonly
used to calculate R; . FORM first transforms X into
independent standard normal variables U with X = T(U) [31,
32], where T(:) denotes the transformation operation. The
limit-state function then becomes

G(d, X) =G(d, T()) (4)
Then R; is approximated by
R; = ®(B) 5)

where f is the reliability index, which is the shortest distance
from the origin of the U-space to the limit-state contour
g(d,T(U)) =0. The distance is obtained by solving the
following optimization model:

{Min Il

st. G(d,T(w) =0 (6)

The solution u* is called the most probable point (MPP), whose
norm is the reliability index.

B =llwll @)

where ||-|| stands for the norm of a vector.

2.2 Safety factor

A safety factor is the ratio of the maximum mechanical
strength divided by the maximum load employed to specify
component or structure. For example, if the yield strength of the
component is S and the maximum load carried by the
component is L, for a yield failure mode, the safety factor is
given by

Sp = I 8)

As indicated by Eq. (8), the safety factor is a random
variableifboth S and L arerandom. We call it arandom safety
factor. It must be greater than 1. The design task is to identify
design variables d so that the random safety factor is greater
than 1 or the following design function holds:

S
g(d) = 5. L(d) >0 9
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The strength and load used in this work are in a general
sense. A general strength could be anything that is related to the
capacity of a component, for example, a yield strength, permitted
deflection, or required fatigue life; a general load could be
anything that related to demand of the component or the loading
acting on or generated in the component, such a normal stress,
force, deflection, and fatigue damage accumulation.

3. A Practical Method for

Component Design

As discussed in Section 1, RBD requires a cost-type
function in its design model and an optimizer to solve the model.
A cost-type function may not exist and optimization may not be
needed for a regular component design. In the routine
mechanical component design process, engineers may perform
their design job with the help of computer programs such as
spreadsheets or even manually while following professional or
corporation design codes and procedures. In this case, it is
difficult to perform RBD rigorously even though distributions of
random variables are available.

This work develops a practical reliability-based component
design method using FORM and the safety factor. The method
called reliability-based component design with safety factor, or
RBD/SF for short. For a given reliability target, RBD/SF allows
design engineers to update the safety factor by repeatedly
performing their routine deterministic design method until the
reliability target is reached. Engineers can therefore quickly
obtain a feasible design solution with satisfied reliability. Next,
we use an example in Section 3.1 to highlight the deterministic
design procedure then discuss how it can be extended to achieve
the required reliability by RBD/SF in Section 3.2. The
implementation procedure of RBD/SF is given in Section 3.3.

Reliability-Based

3.1 An example of traditional deterministic design

A force P = 1.2 kN is applied to a cantilever bar as shown
in Fig. 1. A failure occurs when the von Mises stress g’ is
greater than the yield strength s,,. Then the factor of safety

sy/c" should be greater than 1. The deterministic design
function is then given by

2
IO J[szp(a + b)] i3 (16Pe>2 (10)

Sy
Sr Sk wd? wd?

g(d) =

where ¢’ is

o =.0%+ 312, 1D

in which
32P(a + b)
O =~ (12)
16Pe
TZJC = n,d3 (13)

The design variable is the diameter of the shaft d. The
required safety factor Sp is 2. Given a = 300 mm, b = 50

mm, e =350 mm, and s, =530 MPa, the design variable

can be obtained by solving the design function ;—y —g' >0,0r
F

G(d) = s, — Spo’, which yields d > 32.77 mm. The designer
may finally choose d = 33 mm. This example demonstrates

Fig. 1 A cantilever bar

that the deterministic design does not need any optimization.
Only one design variable is involved here, but there may be more
design variables in a general problem.

3.2 The RBD/SF method

The proposed method is based on FORM. The random
variables and their nominal values (means) are X =
(X1, X5, ., X)) and x = (x4, %y, ..., X,), respectively. Let the
cumulative distribution function of (CDF) X; be F;(X;), i =
1,2,...,n, and assume all the variables in X are independent.
The general strength of the component is S, which is the first
element of X, namely, X; =S. S could be a yield strength,
permissible deflection, or capacity. Let the rest of X be Y =
(X,, X5, ..., X,). The general load L of the component is given
by L(d,Y), whered and Y are vectors to represent multiple
design variables and parameters, respectively. The general load
could be a force, moment, and stress. For the example above, the
general strength is the yield strength; namely, S = S,,; and the
general load is von Mises stress ¢', namely, L = ¢, which is a
function of the design variable or the diameter d.

If we use the nominal values of general strength and general
load to calculate the safety factor given in Eq. (8), we get a
deterministic safety factor Sg.

S S

"T1TI@y

where s and [ are nominal values of the strength and load,
respectively. We simply call S a safety factor. Note that the
nominal value of a random variable is the median of a random
variable or its mean value if its distribution is symmetric. The

deterministic design function is g(d) = Si —L(d) >0 as
F

(14)

already been given in Eq. (9).
The design margin, or the difference between the general
strength and general load, is given by
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G¢d,X)=5S-L(dY)>0 (15)
As we have discussed, the probability of satisfying a nonnegative
design margin R =Pr{G(d,X) > 0} is the component
reliability. If the required reliability is [R], from Eq. (5), the
reliability index is
p =o' ([RD (16)
Many studies [2, 5, 8, 16, 39] have shown that the reliability
requirement R = Pr{G(d, X) > 0} > [R] is equivalent to
Gd,x)=S"—-L{d,y)>0 a7
where x* = (§%,y") is the MPP in the X-space, and it is
transformed from the MPP u* = (u;);-;, in the U-space. We
rewrite Eq. (17) by
ST s L(d,y")
sL(dy) L(dy)
The X- to U space transformation is given by

Fi(xi) = (u;) (19)

>0 (18)

Then
x{ = F7 o)) = T(u;) (20)

It can be proved from the optimization model in Eq. (7) that
at the MPP [40]

uf = —Pa 2D
where
aG(d, T(w"))

ou;
a; = ”VGl” (22)
where V; is the gradient of G(-) and is given by
aG(d, T(w*
v, = (—( < ))> (23)
0y -
i=1,..,n
aG(d, T(w* 0G(d, x*)) dx;
(dTG) _ 96 x)dx (24)
ou; ox;  du;
From Eq. (20)
dx; ¢ (7RG
w, X ( ( i\ )) (25)

Cdup o fiG)
where ¢(:) and f;(-) are the probability density function
(PDF) of a standard normal variable and X;, respectively. For
commonly used distributions, w; is listed in the appendix.
aG(d, T(u")) 9G(d, x*)
P =W P
ou; ox;]

L L
a6 (d, x*)
Vo=\Wi—%x
L

t i=1,...,n

(26)

_ <W1 aG(d, x*) w, aG(d, x*) w 6G(d,x*)> 7
ox; ' oxy; T oxy
From Eq. (22), at the MPP x*
W OG(d,*x*)
g =— 0% (28)
7l

By substituting «; into Eq. (21), we obtain the value of u;.
Then, we can obtain x; by substituting u; into Eq. (20). Let

S*
and
L(d,y")
A= 30
L= 1@y GO
Substituting Egs. (29) and (30) into Eq. (18), we have
Assp - AL > 0 (31)

By solving the inequality equation, we have the range for design
variables. Once we specify the design variables, the safety factor
for the given design is

=2
To design the component with the reliability target, we can

then use the deterministic design function, which is rewritten
here.

Sr (32)

1
gd) = 55 —L(d)>0 (33)

In the above deterministic design function, only the nominal
values y of Y areinvolved. No random variables appear in the
function. If the MPP x™ is given, solving for d needs just one
deterministic design as discussed in Section 3.1. We have
therefore converted a reliability-based design into a deterministic
design. To determine final design variables d, we need to repeat
this process iteratively since the MPP x* depends on d. The
true MPP is found upon the convergence of the design. The result
of the true MPP is the same as the result solved by FORM.

Note that the proposed approach relies on the MPP, and the
MPP search, which can be considered as an optimization
problem, is performed implicitly. The approach, however, does
not require an explicit optimization model and is therefore easy
to implement. The proposed approach is not optimization, and its
execution may not be automatic, totally depending on how the
deterministic design is performed.

3.3 The procedure
The design margin function G(d,X) =S —L(d,Y) and

deterministic design function g(d) = Sis — L(d) are usually
F

nonlinear functions. As the safety factor Sp depends on d,
directly solving for d from g(d) > 0 requires a numerical
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procedure, which diminishes the practicality of the design. We
develop a straightforward procedure so that the design variables
can be obtained iteratively by performing deterministic design a
number of times. The procedure is discussed below.

Initial design
1) Perform the initial deterministic design by using Sp = 1

or other value of S > 1. From g(d) = és —-L(d) >

0, initial deterministic design variables d are obtained.
Then the initial design is completed.

Since the safety factor used here may not satisfy the
reliability requirement, it will be updated iteratively
next. To prepare for the iterations, set d to be the
current design, and set the MPP x* to be the means of
all random input variables.

Iterative design
2) At the current design point d and x*, calculate the
gradient of the design margin function G(d,X) and
update the MPP following the procedures in Fig. 3.
3) Update Ag and A, using Egs. (29) and (30), and solve
for the safety factor Sp using Eq. (32).
4) Solve for new design point d by plugging the new Sg

into the deterministic design function g(d) = Sis -
F
L(d).
5) Check convergence. The criterion is that the distance of

the design point d between two consecutive designs is
sufficiently small, which is given by

”dcurrent - dprevious ”
<e¢ (34)

dcurrent
where ¢ is a small positive quantity. € = 0.1%, ¢ =
0.01%, or other values could be used. If convergence is
not achieved, go to step 2); otherwise, go to step 6).

Final design

6) Based on d obtained, choose appropriate final design

variables.

The MPP is updated after a new design d is identified. u*
obtained during each iteration before convergence is not the true
MPP for a given design d. Upon convergence of the entire
design process, u* will be the true MPP for the final design. This
will not only save design time but also guarantee the target
reliability is achieved.

The flowcharts of the proposed approach are provided in
Figs. 2 and 3.

4. Examples

In this section, we provide three examples. Example 1 is the
shaft design problem we have discussed previously in Sec. 3.1.
All details of using RBD/SF are given so that an interested reader
could easily repeat the process and reproduce the result. Example
2 has more than one discrete design variable selected from the

preferred values in a table. This example shows the capability
and feasibility of RBD/SF for solving practical design problems.

l B, initial S

Deterministic Design
s/Sp —L(d)=0

Update MPP
(Flowchart in Fig. 3)

' As=S'/s, = L(dy)/L(dy) '

Sp = AL/4s

Converge?
(Eq. (34))

Fig. 2 Flowchart of reliability-based component
design

ld, x*

Calculate 7 using Eq. (27)
1%

Calculate a using Eq. (28)
iU
L

Calculate u* using Eq. (21)
X
' update x* using Eq. (20) '

Fig. 3 Flowchart of MPP updating

Example 3 demonstrates that RBD/SF can also be used to design
a component with multiple failure modes.

4.1 A shaft design

A cantilever shaft is shown in Fig. 1. The design margin
function has been given in Eq. (10). The yield strength and the
applied force follow normal distributions S,~N(530,202)
MPa and P~N(1200,100%) N, respectively. S, and P are
independent. The random variables are therefore X = (S, P).
All other parameters have also been given in Section 3.1. The
design task is to determine the diameter of the shaft d so that
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the reliability of the shaft is no less than [R] = 0.9999. The
design margin function is

32P(a + b)|° 16Pe)>
nd3 ] +3 ( nd3 ) (35)

G(d,X) =S, —L(d,Y) = J[

And the deterministic design function in Eq. (10) is
rewritten as

g(d) =2~ 1(d) = j[32p(a i b)] +3 (16pe>

Sp d? wd?

where p is the nominal value of P.

Design process
Determine the reliability index
B = & ([R]) = ©71([0.9999]) = 3.7190

Derive the gradient

. 06(d, X) _( oG aa)
oo\ aXi i=1,..,n -\ aXl e aXZ

G 3G
ox, as,
0G _0G _ 16y/4(a +b)? + 3e?
X, 0P md3

From Table Al, we have

w; =0, = 20 MPa,w, =0, = 1.2 kN

Iteration 1

Start from the deterministic design by setting Sp = 1.0.
Then plug the nominal values of S, and P, which are s, =
530 MPa and p = 1200 N, respectively, into

_Sy [32p(a + b)]2 (16pe)2
g(d)—SF J — +3 — >0

We have
530(10)° — ’A% +3BZ>0

32(1.2)(10)3(300 + 50)(10)_3
A =
d3

where

16(1.2)(10)3(350)(10)73
B = nd3
which yields the initial design d > 22.02 mm. Substituting d

into A; and B, the general load (normal stress) at the design
point d = 22.02 mm is

L(dy) = /A% + 3B? = 530.0 MPa
Iteration 2

At d = 22.02 mm, using Eq. (27) we obtain the gradient

G 9G
V, = (w1 " O_xZ) = (2.0 X 107, —4.4167 x 107)

w aG w aG

1ox, 7?0x,
a=(a,a,) = ) = (0.4125,-0.9110
(@) =\ Jp e | = ¢ )

u* = (uj,u3) = (—Ba,, —Pa,) = (—1.5341,3.3879)
x* = (x1,%3) = (F7 @], F7 [@(u,)])
= (499.3176 MPa, 1.5388 kN)
and the general strength S* = x; = 499.3176 MPa.
ST 499.3176

ST 530
The general load at y* = (x3) is

L(d,y") = /Ag + 3B2 = 679.6302 MPa

_32(1.5388)(10)%(300 + 50)(10)~*
2T 7(22.02 x 10-3)3

=0.9421

where

_ 16(1.5388)(10)3(350)(10)~
2= 7(22.02 x 1073)3

L(d,y*) 679.6302
L~ Ly 5300
Then the updated safety factor is
A, 1.2813
= 09421

Plugging the new Sp into the deterministic design function in
Eq. (33), we have

530(10)° [, .
ST /Cz +3D% >0

= 1.2813

=1.3611

where
32(1.2)(10)3(300 + 50)(10)~3
Cz = d3
T
D. — 16(1.2)(10)3(350)(10)73
2™ nd3
which yields
d > 24.40 mm
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At d = 24.40 mm, L(d,y) = 389.3857 MPa. Check the
convergence using Eq. (34) and we obtain

SF,current - SF,previous' _ |13611 - 10'

SF,previous 1.0

€= =36.11%
It is greater than the tolerance 0.01%, and the process continues.

Iteration 3
At d = 24.40 mm, we have

aG G
v, = (Wl%,wz F) = (2.0 x 107, —3.2449 x 107)
1 2

w a2G w G

1ox; 72 0x3
a=(a;,a,) = ——,—= | = (0.5247,-0.8513
e I TAT AT Al )

u* = (uj,uy) = (—Ba;, —Pa,) = (—1.9514,3.1660)
x' = (x1,%3) = (F7 @ (uy)], FH @)
= (490.9729 MPa, 1.5166 kN)
and the general strength S* = x7 = 490.9729 MPa.

ST 4909729
ST s 530
The general load at y* = (x3) is

L(d,y*) = ’A% + 3BZ = 492.1173 MPa

_32(1.5166)(10)%(300 + 50)(10)*
3T w(24.40 x 10-3)3

=0.9264

where

_ 16(1.5166)(10)3(350)(10)~
37 7(24.40 X 10-3)3

L(d,y*) 4921173
~L(d,y) 389.3857
Then the updated safety factor is

A, 1.2638
F= 2 09264

Plugging the new Sy into the deterministic limit-state function
in Eq. (33), we have

530(10)° [, ..o
T3a [c2+3D2 >0

32(1.2)(10)3(300 + 50)(10)~3
C; = d3
16(1.2)(10)3(350)(10)~3
D; = d3

AL =1.2638

= 1.3643

where

which yields
d > 24.42 mm
Check the convergence using Eq. (34) and we obtain

SF,current - SF,previous| — |13643 - 13611'
1.3611

=0.22%

S F,previous

which is greater than the convergence tolerance 0.01%. After one
more iteration, the process converges and the final design
variable is d > 24.42 mm. This design will meet the reliability
target 0.9999, which is equivalent to a probability of failure
107* . To verify this, Monte Carlo simulation (MCS) is
performed with a large sample size of 108. The probability of
failure produced by MCS is 1.01 X 10™*, very close to the
required probability of failure. For a manufacturability
consideration, we can set the final design d = 24.5 mm, which
ensures higher reliability than the required one. The entire design
process is summarized in Table 1.

Table 1 Design Process of the Shaft Design

Iteration Ve Sg d (mm) &%)
1 - 1.0 22.6 -
(2.0 x 107,
2 —44167 x 107) 1.3611 25.07 36.11
(2.0 x 107,
3 —3.2449 x 107) 13643  25.09 0.22
7
4 (2.0 % 10°, 13643  25.09 0.00

—3.2373 x 107)

4.2 Reliability-based design for a cantilever tube

The design task is to select a tube (Fig. 4) so that it can
withstand random forces F and P; and a random torque T,
with the reliability greater than or equal to [R] = 0.99998.
The random variables are X = (Sy,P, F,T,L), where L is the
length of the tube, and S, is the yield strength of the material.
All the random variables are independent, and their distributions
are given in Table 2. The design variables are d = (d,,t),
which can be chosen only from the following list of preferred
sizes for dy Xt (mm): 12x2, 16x2, 16x3, 20x4, 24x4, 25x5,
30x4, 30x5, 42x4, 425, 50x4, 50%5.

F
/
a /_r l ‘f

Fig. 4 A cantilever tube
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This problem is more general than Example 1 because it
involves a non-normally distributed random variable and more
than one design variable, and design variables are discrete.

Table 2 Distributions of the random variables in Example 2

Random C Standard
Variable Distribution Mean Deviation
Sy (MPa) Normal 250 20
P(N) Normal 80000 9000
F(N) Lognormal 1500 100
T (N'm) Normal 75 10
L (m) Normal 0.15 0.001

Design Process
The design margin is defined with

G(d,X)=S,—L(dY)=S, - /a)? + 372, (36)

And the deterministic design function is
s s
g(d) == —L(d) = = — o + 375, 37)
F F

where s, is the mean value of S,. The random normal stress
and its mean value are given by

d
i p FL (70)
%y~ 207 T @ —(dy -2 P
4 64
d
- p + ! <70) (39)
P = T(dZ — (dg — 20)2) | (dd — (dg — 20)%)
4 64

where p, f,[ are the means of P,F, L. The random shear stress
and its mean value are given by

)

"z = 7 — (dg — 209 (40)
32
d

(3) -

22 = 7(dd = (dg — 209
32

where t is the mean value of T. Plugging Egs. (38) and (40)
into Eq. (36), we obtain

1
G(d,X) = Sy —;

4P 32FLdy 2 16Tdg  \?
J(d%—(do—Zt)z + dg—(do—zt)4) +3 (dg—(ao—zt)4) (42)
Determine the reliability index
B = ®71([R]) = ®71([0.99998]) = 4.1074

Derive the gradient

06(d, X)
Vo=\"i"ox,
t i=1,..n

_( aG aG aG aG 66)
—\Max, "2ax, M ox, Wrax, Vs ax,

oG dG
ox, ds,
G dG  4P(d§ +(dy —2t)*) + 32d,FL
X, dP An(d? — (d, — 2t)?)
9G _dG _ 8d,L((d} + (d, — 21)?) + 32d,FL)
X, dF An(d§ — (dy — 2t)%)
G dG 192T d?

0X, dT  An(di— (dy — 20)%)

0G _dG _ 8dyF((d3 + (dy — 2t)?) + 32d,FL)
0X;  dL An(dy* — (dy — 2t)*)

where

A= \/(P(dé + (dy — 28)%) + 8d,FL)? + 48T2d?2

From Table Al, we have

w=(w, Wy, W3, Wy, Ws)
= (2 X 107,9 x 103, 6.6 x 1072, 10, 1 x 10_3)

Iteration 1

Start from the deterministic design by setting Sp = 1.0.
Plugging the mean values into Eq. (37), we find that the smallest
size for g(d) >0 is 42 X 4; namely, d, =42 mm, t =4
mm. At this design point, the general load (normal stress) is
222.3 MPa.

Iteration 2
Update the MPP following the procedures in Fig. 3, we have
X" = (X7, X3, X3, X4, X5)
= (190.15 MPa,105317.11 N, 1496.71 N,
75.22N-m, 0.15 m)

The general strength is S* = x; = 190.15 MPa. Update Ag by
Eq. (29), we have Ag = 0.7606. The general load at y* is
275.12 MPa. Updating A; by Eq. (30), we have 4, = 1.2376.
Then the updated safety factor is 1.6271 by Eq. (32). Plugging
the new Sp into the deterministic design function in Eq. (37),
we have the new design point 50 X 5; namely, d, = 50 mm,
t = 5 mm. Check the convergence using Eq. (34), and we obtain
& = 62.71%, which is larger than the tolerance 0.01%, and the
process continues.

After two more iterations, the process converges and the
final design variable is d =50 X5 mm. Since the final
solution d, = 50 mm, t =5 mm satisfies Y > 0, we expect
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the actual reliability is greater than the require reliability [R] =

46700 X 107¢, less than 2 x 1075 .

The calculations are

0.99998, or the actual probability of failure is less than summarized in Table 3.
2x107° . This is confirmed by MCS, which produces
Table 3 Design Process of the Cantilever Tube
Iteration Vg Sg dy X t (mm) e (%)
1 - 1 42 X 4 -
2 (2.00 x 107,—1.88 x 107, —2.40 x 103,—1.47 x 10%,—3.61 x 10°) 1.6271 50x5 62.71
3 (2.00 x 107,—1.27 x 107, —1.38 x 103, —7.42 x 10%, —2.07 x 10°) 1.6513 50x5 1.49
4 (2.00 x 107,—1.27 x 107, —1.38 x 103, —7.42 x 10%, —2.07 x 10°) 1.6513 50 X 5 0.00
4.3 A key design ( S 4P
The task is to design a key (Fig. 5) for a shaft with a diameter | G,(E,.X)=S,—L,(E,Y) == 0
of 22 mm so that its hub can withstand compression and shearing 4 Sk ~ DHEw (43)
stress induced by the transmission power P . The target |G, (E,X) = S., — L,(E,Y) = Sﬂ _ 2p 0
reliability is [R] = 0.999999 . The width and height are 2 sy R Sr, DWEw
determined given by shaft diameter according ANSI Standard,
which are 8 mm and 7 mm, respectively. The random variables [ Sy y 4p
are x=(S, P,w) , where S, is the compression | 9:(E) = S. L, (E) = S. DHE 0
Sy' ’ > % 4 F Fy wy
(crushing) yleld strength of the material, S, = 0.577S,, is the I Ssy Ssy 2p (44)
shearing strength of the material, P is the transmission power, kgz (E) = S L,(E) = S, DWEw >0
F F, u

and w 1is the angular velocity of the shaft. All the random
variables are independent, and their distributions are given in
Table 4. The design variable E is the length of the key, namely,
d = (E), which should be less than 30 mm because the diameter

Determine the reliabili

where s, Sy, p, w, arethe meansof S, S

sy Py @, respectively.

ty index

B = ¢71([0.999999]) = 4.7534

of the shaft is 22 mm.
Derive the gradient
l\I?.:!l"lcn:\‘jku_\' SharFisne _ (W aGl W aGl aGl)
Ko o o,
| _8G, ,8G, G,
= (Wi 5% Wi %, s ax,)
where
06, 0G;
M sl 0X, ~ 98S,
(a) Side View (b) Pictorial View aGl aGl 4
Fig. 5 A key of shaft-hub gear dX, 0P  DHEw
Table 4 Distributions of the random variables in Example 3 aﬂ = aﬂ = Lz
Random o Standard 0X; dw DHEw
. Distribution Mean .
Variable Deviation a6 PYe
S, (MPa) Normal 450 30 2 _ 2 _
S, (MPa) Normal ~ 0.577 X450  0.577 X 30 0Xy 05y
P (Watt) Normal 20000 1200 G, 3G 2
w(rpm) Normal 650 32.5 —2__2_
X, 0P DHEw
There are two failure modes existed because the key needs 9G. G 2
. . . . 2 2
to withstand compression and shearing stress induced by the 3. - 90 - DHED?
transmission power. Therefore, the design margin function and X3 @  DHEw

deterministic design function are defined by From Table A1, we have

— 1 1 1
wy = (W11W21W3

) = (3 x107,1200,32.5)
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Table S Design Process of the Key Design

Iteration Ve, Vs, Sr> Sk, EyL,E, (mm) g,8 (%)
1 B 1.0, 17.0, 3
1.0 12.8

5 (3x107,—-2.7 x 107,2.25 x 107), 1.6611, 28.2, 66.11,
(1.73 x 107,—1.56 x 107,1.30 x 107) 1.6611 21.4 66.11

3 (3x107,-1.8x 107,2.02 x 107), 1.6728, 28.4, 0.7,
(1.73 x 107,—-1.06 x 107,1.17 x 107) 1.6728 21.5 0.7

4 (3x107,-1.8x 107,1.95 x 107), 1.6729, 28,4, 6.4x 1073,
(1.73 x 107,—1.06 x 107,1.13 x 107) 1.6729 21.5 6.4x 1073

wy = (W2, w2, w2) = (17.31 x 10°,1200, 32.5)

Iteration 1

Start from the deterministic design by setting Sp = 1.0.
Plugging the means into Eq. (44), We find that the smallest sizes
for g;(E) >0and g,(E) >0 are E; =17.0 mm and E, =
12.8 mm, respectively. At these design points, the general loads

(normal stress) are L;(E;,y) =450MPa , L,(E,y)=
259.65 MPa, respectively.
Iteration 2

Following the procedures in Fig. 3, we have
x5 = (aF, x3*,x1*) = (357 MPa, 23333 Watt, 60.19 rad/s)

x; = (x*,x2%, x2*) = (206 MPa, 23333 Watt, 60.19 rad/s)
1x

The general strength is S; = x;" =357 MPa, S, =
x{* = 206 MPa. Updating A5, and Ag, by Eq. (29), we have
As, =0.7943 and A5, = 0.7643. The general load at y; =
(x35x3) ., yy=(x%,x2) are L,(d,y;)=594MPa ,
L,(d,y3) = 343 MPa, repectively. Updating 4,;, and 4,, by
Eq. (30), we have 1, =1.3193 and 4,, = 1.3193. Then the
safety factors are obtained by Eq. (32) that S, = 1.6611 and
Sr, = 1.6611. Plugging the new Sg,, Sp, into the deterministic
design function in Eq. (44), we have the new design E; =
28.2mm and E, = 21.4 mm. Checking the convergence using
Eq. (34), we obtain & = 66.11% and &, = 66.11%, which
are larger than the tolerance 0.01%, and the iterative process
continues.

After one more iteration, the process converges and the final
design variables are E; =28.4mm and E, =21.5mm.
This design will meet the reliability target 0.999999, which is
equivalent to a probability of failure 1076, To verify this, Monte
Carlo simulation (MCS) is performed with a large sample size of
108. The probability of failure produced by MCS is 1.09 X
107, very close to the required probability of failure. For a
manufacturability and safety consideration, we can set the final
design E =29 mm, which ensure higher reliability than the
required one. The entire design process is summarized in Table
5.

The three examples demonstrate that the deterministic
design is performed several times with the additional
computations for the derivatives of the design margin with

10

respect to random variables. In the examples, the deterministic
design is conducted manually, and so is the proposed reliability-
based design method.

5. CONCLUSION

This work develops a practical approach to reliability-based
component design. The approach is practical because it is
essentially the traditional safety factor design approach with
which engineers are familiar. The safety factor is determined by
the specified reliability of the component. The First Order
Reliability Method (FORM) is used to link the safety factor and
component reliability. Since the safety factor for the required
reliability also depends on design variables, the design process
is iterative, and the proposed efficient numerical procedure
ensures that the design process can converge with a few
iterations.

The prerequisites of the practical reliability-based
component design approach are as follows: the availability of
derivatives of the design margin function with respect to basic
input variables and the availability of distributions of the basic
input variables. In addition to the derivative calculation, the
traditional safety factor design method is performed repeatedly
several times. The new approach can be therefore conducted in
the same manner as the traditional safety factor design method,
manually, numerically, or with the help of computer software
such as a spreadsheet. No optimization is needed.

Note that the proposed approach is not optimization and
cannot make decisions (find design variables) automatically. It
provides a safety factor for engineers to meet their reliability
target. How to get the design variables from the safety factor
largely depends on how engineers perform their deterministic
component design. If the deterministic component design can
deal with black-box models, so can the proposed approach.

The proposed approach is based on the first order reliability
method (FORM), and it performs a complete MPP search. It is
possible, however, the proposed approach does not converge,
especially when the design margin function is highly nonlinear
in the transformed normal space. The approach may produce a
large error if multiple MPPs exist. Our future research will
investigate possible ways to avoid divergence and to deal with
multiple MPPs.
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Appendix

Table A1 w for distributions

Distribution PDF w
1 (x — p)?
Normal f@x) = Yooz P\ T 52 o
W: mean, o: standard deviation
1(1 Inx —pu
1 (In(x) — p)? p|lo? —(1 + erf( )
. | f@) = exp (— . 2 V2o
ognorma 2o 20 /
w: mean of Inx, o: standard deviation of Inx 1 e (_ (n() —p) )
xV2ma? 20°
— X —
1 x—p x—u 8|07 (e (~exn (-2 5)))
Gumbel fx) —Eexp - 5 + exp (— 5 > oy -
) nexp| —|—Fp— t+exp (— )
w: location parameter, : scale parameter B B B
1 1
_ Fexp(—ﬁx> x =0, ¢[(I) 1(1—exp<—‘[lgx> ]
Exponential fx) = 0 x < 0. < 1 )
exp|—%x
B:mean, (?: variance BP\"B
k /x\k—1 0k
o 10 e (-G)) x=20 B0 (1 — exp(=Ce/ D]
Weibull K—1
0 x <0. kx x
3(3) exp(-@/n6)
A: scale parameter, k: shape parameter
bia a<x<bh ¢[q)_1(x—a)]
Uniform J@) = 0 otherwise. #
b—a

a+b 1 .
— i mean, — (b — a)?: variance
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