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ABSTRACT 
Reliability-based design (RBD) identifies design variables 

that maintain reliability at a required level. For many routine 

component design jobs, RBD may not be practical as it requires 

nonlinear optimization and specific reliability methods, 

especially for those design jobs which are performed manually 

or with a spreadsheet. This work develops a practical approach 
to reliability-based component design so that the reliability 

target can be achieved by conducting traditional component 

design repeatedly using a deterministic safety factor. The new 

component design is based on the First Order Reliability 

Method, which iteratively assigns the safety factor during the 

design process until the reliability requirement is satisfied. In 

addition to a number of iterations of deterministic component 

design, the other additional work is the calculation of the 

derivatives of the design margin with respect to the random input 

variables. The proposed method can be used for a wide range of 

component design applications. For example, if a deterministic 

component design is performed manually or with a spreadsheet, 
so it the reliability-based component design. Three examples are 

used to demonstrate the practicality of the new design method. 

Keywords: Reliability in design, Design of machine 

elements, Design methodologies, Algorithms 

 

1. INTRODUCTION  
 Safety factors are routinely used in mechanical design to 

account for uncertainty [1-6]. They are particularly useful when 

complete distributions of random variables are unknown. When 

such distributions are available, the safety factor-based design 

can be replaced by the reliability-based design (RBD) [7-16]. 
RBD solves an optimization problem by identifying optimal 

design variables that minimize a cost-type objective function 

                                                        
* 723 W. Michigan Street, Indianapolis, IN 46202-5195, USA, Email: duxi@iu.edu 

while satisfying reliability constraints. The reliability in RBD is 

the probability that a design requirement is satisfied [17].  

 There are many RBD methodologies. The most common 

ones employ the First Order Reliability Method (FORM) [18-20] 

to evaluate reliability constraints during the optimization 

process. FORM can not only provide a good balance between 

accuracy and efficiency, but also make it possible to decouple 
deterministic optimization from reliability analysis, thereby 

further reducing the computational cost. RBD has been 

successfully used in many applications, for example, design of 

composite over-wrapped tanks [21], B-pillar design for side 

impact [22], crashworthiness of vehicle side impact [23], and 

engine piston design for secondary motion [24].  

 The concept of safety factor, with which engineers are 

familiar, can also be incorporated in RBD. The safety-factor 

based approach for RBD [2, 5] is such a method. This method 

employs nonlinear optimization and FORM, calling 

deterministic optimization and FORM sequentially until all the 

reliability constraints are satisfied. During this process, partial 
safety factors are applied to all the input random variables.  

 The RBD methodologies [25-29], however, may not be 

applicable for many component design problems. There are 

several reasons for this. First, optimization may not be needed 

for routine mechanical component design. Design variables can 

be determined using safety factors by following design codes and 

standards. Second, many engineers are not readily equipped with 

knowledge of optimization, and they do not have access to 

nonlinear optimization algorithms and software. Third, 

optimization may not be performed at the component design 

level, but at higher levels. Fourth, many engineers perform their 
routine component design jobs manually or semi-manually with 

the help of spreadsheets or simple programming. Some of the 
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design variables are chosen from tables and graphs and are 

integers or discrete values, and human interference is also likely 

needed. Optimization cannot be conveniently used for this kind 

of routine design. Last, RBD requires reliability analysis. If 

FORM is used, the Most Probable Point (MPP) [30-32] should 
be found. The MPP search itself is also an optimization problem. 

 It is therefore desirable to design a practical RBD approach 

that relies on only the routine deterministic component design. 

One approach, which satisfies this requirement is the mechanical 

design approach using the First Order Second Moment (FOSM) 

method [33-38]. This method can find design variables for a 

given reliability target with only the minimal extra work: the 

calculation of derivatives of a response variable with respect to 

input random variables. It is therefore very practical and can be 

used for routine component design. The accuracy of the 

reliability produced by the design variables, however, may be 

poor. This means that the designed reliability may be far away 
from the required reliability. The reason is that FOSM uses a first 

order approximation around the means of input random variables 

and only the first two moments (means and standard deviations).  

 This work develops a practical approach to reliability-based 

component design, which does not need to specify a cost-type 

objective. And it uses FORM and produces higher accuracy than 

FOSM. During the design process, the method iteratively 

updates a safety factor for the deterministic component design 

until the reliability requirement is satisfied. In addition to a 

number of iterations of the deterministic component design, the 

only additional work is the calculation of the derivatives of the 
design margin with respect to the random input variables. The 

major advantage of this approach is that engineers can use it in 

the same way as they perform their deterministic routine 

component design, either manually or by other means.   

 Reliability-based design and the safety factor are reviewed 

in Section 2, and the new component design approach is 

presented in Section 3, followed by three examples in Section 4. 

Conclusions are given in Section 5.  

 
2. Review of RBD and Safety Factor 

Reliability-based design (RBD) is a design methodology 

that minimizes a cost-type objective and maintains reliability 

requirements when uncertainty (randomness) presents. 

Uncertainty can also be accommodated deterministically by 

using a safety factor. Both of the design methodologies are 

briefly reviewed here. 

 

2.1 Reliability-based design 
A typical RBD model is given by 

{

Min   
𝒅

𝑓(𝒅)

𝑠. 𝑡.   Pr{𝐺𝑖(𝒅, 𝑿) > 0} ≥ [𝑅𝑖], 𝑖 = 1,2,… , 𝑛𝑔
          𝒅𝐿 ≤ 𝒅 ≤ 𝒅𝑈

(1) 

In the above model, 𝒅 is the vector of design variables with 

their lower and upper bounds 𝒅𝐿 and 𝒅𝑈, respectively. 𝑿 =
(𝑋1, 𝑋2, … , 𝑋𝑛)  is the vector of random variables. 𝑓(⋅)  is a 

cost-type objective function, and 𝐺𝑖(𝒅, 𝑿)  is a limit-state 

function. The requirement is 𝐺𝑖(𝒅, 𝑿) > 0, and the probability 

of satisfying the requirement is called reliability, denoted by 𝑅𝑖; 
namely 

𝑅𝑖 = Pr{𝐺𝑖(𝒅, 𝑿) > 0} (2) 

The constraint associated with 𝐺𝑖(𝒅,𝑿) is that 𝑅𝑖 should 

be greater than or equal to the desired reliability [𝑅𝑖] or 1 −
[𝑝𝑓𝑖], where [𝑝𝑓𝑖] is the allowable probability of failure. 

The reliability 𝑅𝑖 is obtained by 

𝑅𝑖 = Pr{𝐺𝑖(𝒅, 𝑿) > 0} = ∫ 𝑓𝒙(𝒙)
𝐺𝑖(𝒅,𝑿)>0

𝑑𝒙 (3) 

where 𝑓𝒙(𝒙) is the joint probability density function (PDF) of 

𝑿. The First Order Reliability Method (FORM) is commonly 

used to calculate 𝑅𝑖 . FORM first transforms 𝑿  into 

independent standard normal variables 𝑼 with 𝑿 = 𝑇(𝑼) [31, 

32], where 𝑇(⋅)  denotes the transformation operation. The 

limit-state function then becomes 

𝐺(𝒅, 𝑿) = 𝐺(𝒅, 𝑇(𝑼)) (4) 

Then 𝑅𝑖 is approximated by 

𝑅𝑖 = Φ(𝛽) (5) 

where 𝛽 is the reliability index, which is the shortest distance 

from the origin of the U-space to the limit-state contour 

𝑔(𝒅, 𝑇(𝑼)) = 0 . The distance is obtained by solving the 

following optimization model: 

{
Min ‖𝒖‖

s.t.   𝐺(𝒅, 𝑇(𝒖)) = 0
(6) 

The solution 𝒖∗ is called the most probable point (MPP), whose 

norm is the reliability index. 

𝛽 = ‖𝒖∗‖ (7) 

where ‖∙‖ stands for the norm of a vector.  

 
2.2 Safety factor 

A safety factor is the ratio of the maximum mechanical 

strength divided by the maximum load employed to specify 

component or structure. For example, if the yield strength of the 

component is 𝑆  and the maximum load carried by the 

component is 𝐿, for a yield failure mode, the safety factor is 

given by 

𝑆𝐹 =
𝑆

𝐿
(8) 

As indicated by Eq. (8), the safety factor is a random 

variable if both 𝑆 and 𝐿 are random. We call it a random safety 

factor. It must be greater than 1. The design task is to identify 

design variables 𝒅 so that the random safety factor is greater 

than 1 or the following design function holds: 

𝑔(𝒅) =
𝑆

𝑆𝐹
− 𝐿(𝒅) > 0 (9) 
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The strength and load used in this work are in a general 

sense. A general strength could be anything that is related to the 

capacity of a component, for example, a yield strength, permitted 

deflection, or required fatigue life; a general load could be 

anything that related to demand of the component or the loading 
acting on or generated in the component, such a normal stress, 

force, deflection, and fatigue damage accumulation. 

 

3. A Practical Method for Reliability-Based 
Component Design 
As discussed in Section 1, RBD requires a cost-type 

function in its design model and an optimizer to solve the model. 

A cost-type function may not exist and optimization may not be 

needed for a regular component design. In the routine 

mechanical component design process, engineers may perform 

their design job with the help of computer programs such as 

spreadsheets or even manually while following professional or 
corporation design codes and procedures. In this case, it is 

difficult to perform RBD rigorously even though distributions of 

random variables are available. 

This work develops a practical reliability-based component 

design method using FORM and the safety factor. The method 

called reliability-based component design with safety factor, or 

RBD/SF for short. For a given reliability target, RBD/SF allows 

design engineers to update the safety factor by repeatedly 

performing their routine deterministic design method until the 

reliability target is reached. Engineers can therefore quickly 

obtain a feasible design solution with satisfied reliability. Next, 
we use an example in Section 3.1 to highlight the deterministic 

design procedure then discuss how it can be extended to achieve 

the required reliability by RBD/SF in Section 3.2. The 

implementation procedure of RBD/SF is given in Section 3.3. 

 

3.1 An example of traditional deterministic design 
A force 𝑃 = 1.2 kN is applied to a cantilever bar as shown 

in Fig. 1. A failure occurs when the von Mises stress 𝜎′  is 

greater than the yield strength 𝑠𝑦 . Then the factor of safety 

𝑠𝑦/𝜎
′  should be greater than 1. The deterministic design 

function is then given by 

𝑔(𝒅) =
𝑠𝑦
𝑆𝐹
− 𝜎 ′ =

𝑠𝑦
𝑆𝐹
− √[

32𝑃(𝑎 + 𝑏)

𝜋𝑑3
]

2

+ 3(
16𝑃𝑒

𝜋𝑑3
)
2

(10) 

where 𝜎′ is 

𝜎 ′ = √𝜎𝑥
2 + 3𝜏𝑧𝑥

2 (11) 

in which 

𝜎𝑥 =
32𝑃(𝑎 + 𝑏)

𝜋𝑑3
(12) 

𝜏𝑧𝑥 =
16𝑃𝑒

𝜋𝑑3
(13) 

 

The design variable is the diameter of the shaft 𝑑 . The 

required safety factor 𝑆𝐹  is 2. Given 𝑎 = 300 mm, 𝑏 = 50 

mm, 𝑒 = 350  mm, and 𝑠𝑦 = 530  MPa, the design variable 

can be obtained by solving the design function 
𝑠𝑦

𝑆𝐹
− 𝜎′ > 0, or 

𝐺(𝒅) = 𝑠𝑦 − 𝑆𝐹𝜎
′, which yields 𝑑 > 32.77 mm. The designer 

may finally choose 𝑑 = 33 mm. This example demonstrates  

 

 
 

Fig. 1 A cantilever bar  

 

that the deterministic design does not need any optimization. 

Only one design variable is involved here, but there may be more 

design variables in a general problem. 

 

3.2 The RBD/SF method 
The proposed method is based on FORM. The random 

variables and their nominal values (means) are 𝑿 =
(𝑋1, 𝑋2, … , 𝑋𝑛)  and 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛), respectively. Let the 

cumulative distribution function of (CDF) 𝑋𝑖  be 𝐹𝑖(𝑋𝑖), 𝑖 =
1,2,… , 𝑛, and assume all the variables in 𝑿 are independent. 

The general strength of the component is 𝑆, which is the first 

element of 𝑿, namely, 𝑋1 = 𝑆.  𝑆 could be a yield strength, 

permissible deflection, or capacity. Let the rest of 𝑿 be 𝒀 =
(𝑋2, 𝑋3, … , 𝑋𝑛). The general load 𝐿 of the component is given 

by 𝐿(𝒅,𝒀) , where 𝒅  and 𝒀  are vectors to represent multiple 
design variables and parameters, respectively. The general load 

could be a force, moment, and stress. For the example above, the 

general strength is the yield strength; namely, 𝑆 = 𝑆𝑦; and the 

general load is von Mises stress 𝜎′, namely, 𝐿 = 𝜎′, which is a 

function of the design variable or the diameter 𝑑. 
If we use the nominal values of general strength and general 

load to calculate the safety factor given in Eq. (8), we get a 

deterministic safety factor 𝑆𝐹. 

𝑆𝐹 =
𝑠

𝑙
=

𝑠

𝐿(𝒅, 𝒚)
(14) 

where 𝑠  and 𝑙  are nominal values of the strength and load, 

respectively. We simply call 𝑆𝐹 a safety factor. Note that the 

nominal value of a random variable is the median of a random 

variable or its mean value if its distribution is symmetric. The 

deterministic design function is 𝑔(𝒅) =
𝑠

𝑆𝐹
− 𝐿(𝒅) > 0  as 

already been given in Eq. (9). 

The design margin, or the difference between the general 
strength and general load, is given by 
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𝐺(𝒅, 𝑿) = 𝑆 − 𝐿(𝒅,𝒀) > 0 (15) 

As we have discussed, the probability of satisfying a nonnegative 

design margin 𝑅 = Pr{𝐺(𝒅,𝑿) > 0}  is the component 

reliability. If the required reliability is [𝑅] , from Eq. (5), the 

reliability index is 

𝛽 = Φ−1([𝑅]) (16) 

Many studies [2, 5, 8, 16, 39] have shown that the reliability 

requirement 𝑅 = Pr{𝐺(𝒅, 𝑿) > 0} > [𝑅] is equivalent to 

𝐺(𝒅, 𝒙∗) = 𝑆∗ − 𝐿(𝒅, 𝒚∗) > 0 (17) 

where 𝒙∗ = (𝑆∗, 𝒚∗)  is the MPP in the X-space, and it is 

transformed from the MPP 𝒖∗ = (𝑢𝑖
∗)𝑖=1,𝑛  in the U-space. We 

rewrite Eq. (17) by 

𝑆∗

𝑠

𝑠

𝐿(𝒅, 𝒚)
−
𝐿(𝒅, 𝒚∗)

𝐿(𝒅, 𝒚)
> 0 (18) 

The X- to U space transformation is given by 

𝐹𝑖(𝑥𝑖
∗) = Φ(𝑢𝑖

∗) (19) 

Then 

𝑥𝑖
∗ = 𝐹𝑖

−1[Φ(𝑢𝑖
∗)] = 𝑇(𝑢𝑖

∗) (20) 

It can be proved from the optimization model in Eq. (7) that 

at the MPP [40] 

𝑢𝑖
∗ = −𝛽𝛼𝑖 (21) 

where  

𝛼𝑖 =

𝜕𝐺(𝒅, 𝑇(𝒖∗))
𝜕𝑢𝑖

∗

‖𝛻𝐺‖
(22)

 

where 𝛻𝐺 is the gradient of 𝐺(∙) and is given by 

𝛻𝐺 = (
𝜕𝐺(𝒅, 𝑇(𝒖∗))

𝜕𝑢𝑖
∗ )

𝑖=1,…,𝑛

(23) 

𝜕𝐺(𝒅, 𝑇(𝒖∗))

𝜕𝑢𝑖
∗ =

𝜕𝐺(𝒅, 𝒙∗))

𝜕𝑥𝑖
∗

𝑑𝑥𝑖
∗

𝑑𝑢𝑖
∗ (24) 

From Eq. (20) 

𝑤𝑖 =
𝑑𝑥𝑖

∗

𝑑𝑢𝑖
∗ =

𝜙(Φ−1(𝐹𝑖(𝑥𝑖
∗)))

𝑓𝑖(𝑥𝑖
∗)

(25) 

where 𝜙(⋅)  and 𝑓𝑖(⋅)  are the probability density function 

(PDF) of a standard normal variable and 𝑋𝑖, respectively. For 

commonly used distributions, 𝑤𝑖 is listed in the appendix.  

𝜕𝐺(𝒅, 𝑇(𝒖∗))

𝜕𝑢𝑖
∗ = 𝑤𝑖

𝜕𝐺(𝒅, 𝒙∗)

𝜕𝑥𝑖
∗ (26) 

𝛻𝐺 = (𝑤𝑖
𝜕𝐺(𝒅, 𝒙∗)

𝜕𝑥𝑖
∗ )

𝑖=1,…,𝑛

 

= (𝑤1
𝜕𝐺(𝒅, 𝒙∗)

𝜕𝑥1
∗ , 𝑤2

𝜕𝐺(𝒅, 𝒙∗)

𝜕𝑥2
∗ , ⋯ , 𝑤𝑛

𝜕𝐺(𝒅, 𝒙∗)

𝜕𝑥𝑛
∗

) (27) 

From Eq. (22), at the MPP 𝒙∗  

𝛼𝑖 =
𝑤𝑖
𝜕𝐺(𝒅, 𝒙∗)
𝜕𝑥𝑖

∗

‖𝛻𝐺‖
(28)

 

By substituting 𝛼𝑖 into Eq. (21), we obtain the value of 𝑢𝑖
∗. 

Then, we can obtain 𝑥𝑖
∗ by substituting 𝑢𝑖

∗ into Eq. (20). Let 

𝜆𝑆 =
𝑆∗

𝑠
(29) 

and 

𝜆𝐿 =
𝐿(𝒅, 𝒚∗)

𝐿(𝒅, 𝒚)
(30) 

Substituting Eqs. (29) and (30) into Eq. (18), we have 

𝜆𝑆𝑆𝐹 − 𝜆𝐿 > 0 (31) 

By solving the inequality equation, we have the range for design 

variables. Once we specify the design variables, the safety factor 

for the given design is  

 

𝑆𝐹 =
𝜆𝐿
𝜆𝑆

(32) 

To design the component with the reliability target, we can 

then use the deterministic design function, which is rewritten 

here. 

𝑔(𝒅) =
1

𝑆𝐹
𝑠 − 𝐿(𝒅) > 0 (33) 

In the above deterministic design function, only the nominal 

values 𝒚 of 𝒀 are involved. No random variables appear in the 

function. If the MPP 𝒙∗ is given, solving for 𝒅 needs just one 

deterministic design as discussed in Section 3.1. We have 

therefore converted a reliability-based design into a deterministic 

design. To determine final design variables 𝒅, we need to repeat 

this process iteratively since the MPP 𝒙∗ depends on 𝒅. The 

true MPP is found upon the convergence of the design. The result 

of the true MPP is the same as the result solved by FORM.  

Note that the proposed approach relies on the MPP, and the 
MPP search, which can be considered as an optimization 

problem, is performed implicitly. The approach, however, does 

not require an explicit optimization model and is therefore easy 

to implement. The proposed approach is not optimization, and its 

execution may not be automatic, totally depending on how the 

deterministic design is performed.  

 

3.3 The procedure 
The design margin function 𝐺(𝒅,𝑿) = 𝑆 − 𝐿(𝒅, 𝒀)  and 

deterministic design function 𝑔(𝒅) =
1

𝑆𝐹
𝑠 − 𝐿(𝒅) are usually 

nonlinear functions. As the safety factor 𝑆𝐹  depends on 𝒅 , 

directly solving for 𝒅  from 𝑔(𝒅) > 0  requires a numerical 
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procedure, which diminishes the practicality of the design. We 

develop a straightforward procedure so that the design variables 

can be obtained iteratively by performing deterministic design a 

number of times. The procedure is discussed below. 

 

Initial design 

1) Perform the initial deterministic design by using 𝑆𝐹 = 1 

or other value of 𝑆𝐹 > 1. From 𝑔(𝒅) =
1

𝑆𝐹
𝑠 − 𝐿(𝒅) >

0, initial deterministic design variables 𝒅 are obtained. 

Then the initial design is completed.  

Since the safety factor used here may not satisfy the 

reliability requirement, it will be updated iteratively 

next. To prepare for the iterations, set 𝒅  to be the 

current design, and set the MPP 𝒙∗ to be the means of 

all random input variables.  

 

Iterative design 

2) At the current design point 𝒅  and 𝒙∗ , calculate the 

gradient of the design margin function 𝐺(𝒅, 𝑿)  and 

update the MPP following the procedures in Fig. 3. 

3) Update 𝜆𝑆 and 𝜆𝐿 using Eqs. (29) and (30), and solve 

for the safety factor 𝑆𝐹 using Eq. (32). 

4) Solve for new design point 𝒅 by plugging the new 𝑆𝐹 

into the deterministic design function 𝑔(𝒅) =
1

𝑆𝐹
𝑠 −

𝐿(𝒅). 
5) Check convergence. The criterion is that the distance of 

the design point 𝒅 between two consecutive designs is 

sufficiently small, which is given by 

‖𝒅𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝒅𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠‖

𝒅𝑐𝑢𝑟𝑟𝑒𝑛𝑡
≤ 𝜀 (34) 

where 𝜀  is a small positive quantity. 𝜀 = 0.1%, 𝜀 =
0.01%, or other values could be used. If convergence is 

not achieved, go to step 2); otherwise, go to step 6). 

 

Final design 

6) Based on 𝒅 obtained, choose appropriate final design 

variables. 

The MPP is updated after a new design 𝒅 is identified. 𝒖∗ 
obtained during each iteration before convergence is not the true 

MPP for a given design 𝒅 . Upon convergence of the entire 

design process, 𝒖∗ will be the true MPP for the final design. This 

will not only save design time but also guarantee the target 

reliability is achieved.  

The flowcharts of the proposed approach are provided in 

Figs. 2 and 3. 

 

4. Examples 
In this section, we provide three examples. Example 1 is the 

shaft design problem we have discussed previously in Sec. 3.1. 
All details of using RBD/SF are given so that an interested reader 

could easily repeat the process and reproduce the result. Example 

2 has more than one discrete design variable selected from the 

preferred values in a table. This example shows the capability 

and feasibility of RBD/SF for solving practical design problems. 
 

 
 

Fig. 2 Flowchart of reliability-based component 
design 

 

 
 

Fig. 3 Flowchart of MPP updating 
 

Example 3 demonstrates that RBD/SF can also be used to design 

a component with multiple failure modes. 

 
4.1 A shaft design 

A cantilever shaft is shown in Fig. 1. The design margin 

function has been given in Eq. (10). The yield strength and the 

applied force follow normal distributions 𝑆𝑦~𝑁(530,20
2) 

MPa and 𝑃~𝑁(1200,1002) N, respectively. 𝑆𝑦  and 𝑃  are 

independent. The random variables are therefore 𝑿 = (𝑆𝑦 , 𝑃). 

All other parameters have also been given in Section 3.1. The 

design task is to determine the diameter of the shaft 𝑑 so that 
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the reliability of the shaft is no less than [𝑅] = 0.9999. The 

design margin function is   

 𝐺(𝒅, 𝑿) = 𝑆𝑦 − 𝐿(𝒅, 𝒀) = √[
32𝑃(𝑎 + 𝑏)

𝜋𝑑3
]

2

+ 3(
16𝑃𝑒

𝜋𝑑3
)
2

(35) 

And the deterministic design function in Eq. (10) is 

rewritten as 

𝑔(𝒅) =
𝑠𝑦
𝑠𝐹
− 𝐿(𝒅) = √[

32𝑝(𝑎 + 𝑏)

𝜋𝑑3
]

2

+ 3(
16𝑝𝑒

𝜋𝑑3
)
2

 

where 𝑝 is the nominal value of 𝑃.  

 

Design process 

Determine the reliability index 

𝛽 = Φ−1([R]) = Φ−1([0.9999]) = 3.7190 

Derive the gradient  

𝛻𝐺 = (𝑤𝑖
𝜕𝐺(𝒅,𝑿)

𝜕𝑋𝑖
)
𝑖=1,…,𝑛

= (𝑤1
𝜕𝐺

𝜕𝑋1
, 𝑤2

𝜕𝐺

𝜕𝑋2
) 

𝜕𝐺

𝜕𝑋1
=
𝜕𝐺

𝜕𝑆𝑦
= 1 

𝜕𝐺

𝜕𝑋2
=
𝜕𝐺

𝜕𝑃
= −

16√4(𝑎 + 𝑏)2 + 3𝑒2

𝜋𝑑3
 

From Table A1, we have  

𝑤1 = 𝜎1 = 20 MPa, 𝑤2 = 𝜎2 = 1.2 kN 

 

Iteration 1 

Start from the deterministic design by setting 𝑆𝐹 = 1.0. 

Then plug the nominal values of 𝑆𝑦 and 𝑃 , which are 𝑠𝑦 =

530 MPa and 𝑝 = 1200 N, respectively, into  

𝑔(𝒅) =
𝑠𝑦
𝑆𝐹
−√[

32𝑝(𝑎 + 𝑏)

𝜋𝑑3
]
2

+ 3(
16𝑝𝑒

𝜋𝑑3
)
2

> 0 

We have 

530(10)6 −√𝐴1
2 + 3𝐵1

2 > 0 

where  

𝐴1 =
32(1.2)(10)3(300 + 50)(10)−3

𝜋𝑑3
 

𝐵1 =
16(1.2)(10)3(350)(10)−3

𝜋𝑑3
 

which yields the initial design 𝑑 > 22.02 mm. Substituting 𝑑 

into 𝐴1 and 𝐵1 , the general load (normal stress) at the design 

point 𝑑 = 22.02 mm is 

𝐿(𝒅, 𝒚) = √𝐴1
2 + 3𝐵1

2 = 530.0 MPa 

 

Iteration 2 

At 𝑑 = 22.02 mm, using Eq. (27) we obtain the gradient 

𝛻𝐺 = (𝑤1
𝜕𝐺

𝜕𝑥1
, 𝑤2

𝜕𝐺

𝜕𝑥2
) = (2.0 × 107, −4.4167 × 107) 

𝜶 = (𝛼1, 𝛼2) = (
𝑤1

𝜕𝐺
𝜕𝑥1

‖𝛻𝐺‖
,
𝑤2

𝜕𝐺
𝜕𝑥2

‖𝛻𝐺‖
) = (0.4125, −0.9110) 

𝒖∗ = (𝑢1
∗ , 𝑢2

∗) = (−𝛽𝛼1, −𝛽𝛼2) = (−1.5341, 3.3879) 

𝒙∗ = (𝑥1
∗, 𝑥2

∗) = (𝐹1
−1[Φ(𝑢1)],  𝐹2

−1[Φ(𝑢2)]) 
 = (499.3176 MPa, 1.5388 kN) 

and the general strength 𝑆∗ = 𝑥1
∗ = 499.3176 MPa. 

𝜆𝑆 =
𝑆∗

𝑠
=
499.3176

530
= 0.9421 

The general load at 𝒚∗ = (𝑥2
∗) is 

𝐿(𝒅, 𝒚∗) = √𝐴2
2 + 3𝐵2

2 = 679.6302 MPa 

where 

𝐴2 =
32(1.5388)(10)3(300 + 50)(10)−3

𝜋(22.02 × 10−3)3
 

𝐵2 =
16(1.5388)(10)3(350)(10)−3

𝜋(22.02 × 10−3)3
 

𝜆𝐿 =
𝐿(𝒅, 𝒚∗)

𝐿(𝒅, 𝒚)
=
679.6302

530.0
= 1.2813 

Then the updated safety factor is 

𝑆𝐹 =
𝜆𝐿
𝜆𝑆
=
1.2813

0.9421
= 1.3611 

Plugging the new 𝑆𝐹 into the deterministic design function in 

Eq. (33), we have  

530(10)6

1.3611
−√𝐶2

2 + 3𝐷2
2 > 0 

where  

𝐶2 =
32(1.2)(10)3(300 + 50)(10)−3

𝜋𝑑3
 

𝐷2 =
16(1.2)(10)3(350)(10)−3

𝜋𝑑3
 

which yields  

𝑑 > 24.40 mm 
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At 𝑑 = 24.40 mm, 𝐿(𝒅, 𝒚) = 389.3857 MPa. Check the 

convergence using Eq. (34) and we obtain 

𝜀 =
|𝑆𝐹,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑆𝐹,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠|

𝑆𝐹,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠
=
|1.3611 − 1.0|

1.0
= 36.11% 

It is greater than the tolerance 0.01%, and the process continues. 

 

Iteration 3 

At 𝑑 = 24.40 mm, we have 

𝛻𝐺 = (𝑤1
𝜕𝐺

𝜕𝑥1
∗ , 𝑤2

𝜕𝐺

𝜕𝑥2
∗) = (2.0 × 10

7, −3.2449 × 107) 

𝜶 = (𝛼1, 𝛼2) = (
𝑤1

𝜕𝐺
𝜕𝑥1

∗

‖𝛻𝐺‖
,
𝑤2

𝜕𝐺
𝜕𝑥2

∗

‖𝛻𝐺‖
) = (0.5247,−0.8513) 

𝒖∗ = (𝑢1
∗ , 𝑢2

∗) = (−𝛽𝛼1, −𝛽𝛼2) = (−1.9514, 3.1660) 

𝒙∗ = (𝑥1
∗, 𝑥2

∗) = (𝐹1
−1[Φ(𝑢1)],  𝐹2

−1[Φ(𝑢2)]) 
                            = (490.9729 MPa, 1.5166 kN) 

and the general strength 𝑆∗ = 𝑥1
∗ = 490.9729 MPa.  

𝜆𝑆 =
𝑆∗

𝑠
=
490.9729

530
= 0.9264 

The general load at 𝒚∗ = (𝑥2
∗) is 

𝐿(𝒅, 𝒚∗) = √𝐴3
2 + 3𝐵3

2 = 492.1173 MPa 

where  

𝐴3 =
32(1.5166)(10)3(300 + 50)(10)−3

𝜋(24.40 × 10−3)3
 

𝐵3 =
16(1.5166)(10)3(350)(10)−3

𝜋(24.40 × 10−3)3
 

𝜆𝐿 =
𝐿(𝒅, 𝒚∗)

𝐿(𝒅, 𝒚)
=
492.1173

389.3857
= 1.2638 

Then the updated safety factor is 

𝑆𝐹 =
𝜆𝐿
𝜆𝑆
=
1.2638

0.9264
= 1.3643 

Plugging the new 𝑆𝐹 into the deterministic limit-state function 

in Eq. (33), we have  

530(10)6

1.3643
−√𝐶3

2 + 3𝐷3
2 > 0 

where 

𝐶3 =
32(1.2)(10)3(300 + 50)(10)−3

𝜋𝑑3
 

𝐷3 =
16(1.2)(10)3(350)(10)−3

𝜋𝑑3
 

which yields 

𝑑 > 24.42 mm 

Check the convergence using Eq. (34) and we obtain 

𝜀 =
|𝑆𝐹,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑆𝐹,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠|

𝑆𝐹,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠
=
|1.3643 − 1.3611|

1.3611
= 0.22% 

which is greater than the convergence tolerance 0.01%. After one 
more iteration, the process converges and the final design 

variable is 𝑑 > 24.42 mm. This design will meet the reliability 

target 0.9999, which is equivalent to a probability of failure 

10−4 . To verify this, Monte Carlo simulation (MCS) is 

performed with a large sample size of 108. The probability of 

failure produced by MCS is 1.01 × 10−4 , very close to the 

required probability of failure. For a manufacturability 

consideration, we can set the final design 𝑑 = 24.5 mm, which 

ensures higher reliability than the required one. The entire design 

process is summarized in Table 1. 

 

Table 1 Design Process of the Shaft Design 

Iteration 𝛻𝐺 𝑆𝐹 𝑑 (mm)   𝜀(%)   

1 – 1.0 22.6 – 

2 
(2.0 × 107,  

−4.4167 × 107) 
1.3611 25.07 36.11 

3 
(2.0 × 107,  

−3.2449 × 107) 
1.3643 25.09 0.22 

4 
(2.0 × 107,  

−3.2373 × 107) 
1.3643 25.09 0.00 

 

4.2 Reliability-based design for a cantilever tube 
The design task is to select a tube (Fig. 4) so that it can 

withstand random forces 𝐹  and 𝑃 ; and a random torque 𝑇 , 

with the reliability greater than or equal to [𝑅] = 0.99998 .  

The random variables are 𝑋 = (𝑆𝑦 , 𝑃, 𝐹, 𝑇, 𝐿), where 𝐿 is the 

length of the tube, and 𝑆𝑦 is the yield strength of the material. 

All the random variables are independent, and their distributions 

are given in Table 2. The design variables are 𝑑 = (𝑑0, 𝑡) , 

which can be chosen only from the following list of preferred 

sizes for 𝑑0 × 𝑡 (mm): 122, 162, 163, 204, 244, 255, 

304, 305, 424, 425, 504, 505. 

 

 
 

Fig. 4 A cantilever tube 
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This problem is more general than Example 1 because it 

involves a non-normally distributed random variable and more 

than one design variable, and design variables are discrete.  

 

Table 2 Distributions of the random variables in Example 2 

 

Design Process 

The design margin is defined with 

𝐺(𝒅,𝑿) = 𝑆𝑦 − 𝐿(𝒅, 𝒀) = 𝑆𝑦 − √𝜎𝑋
2 + 3𝜏𝑍𝑋

2 (36) 

And the deterministic design function is  

𝑔(𝒅) =
𝑠𝑦
𝑆𝐹
− 𝐿(𝒅) =

𝑠𝑦
𝑆𝐹
− √𝜎𝑥

2 + 3𝜏𝑧𝑥
2 (37) 

where 𝑠𝑦 is the mean value of 𝑆𝑦. The random normal stress 

and its mean value are given by 

𝜎𝑋 =
𝑃

𝜋(𝑑0
2 − (𝑑0 − 2𝑡)2)

4

+
𝐹𝐿(

𝑑0
2
)

𝜋(𝑑0
4 − (𝑑0 − 2𝑡)4)

64

(38) 

𝜎𝑥 =
𝑝

𝜋(𝑑0
2 − (𝑑0 − 2𝑡)2)

4

+
𝑓𝑙 (

𝑑0
2
)

𝜋(𝑑0
4 − (𝑑0 − 2𝑡)4)

64

(39) 

where 𝑝, 𝑓, 𝑙 are the means of 𝑃,𝐹, 𝐿. The random shear stress 

and its mean value are given by 

𝜏𝑋𝑍 =
𝑇 (
𝑑0
2
)

𝜋(𝑑0
4 − (𝑑0 − 2𝑡)

4)
32

(40) 

𝜏𝑧𝑥 =
𝑡(
𝑑0
2
)

𝜋(𝑑0
4 − (𝑑0 − 2𝑡)4)

32

(41) 

where 𝑡 is the mean value of 𝑇. Plugging Eqs. (38) and (40) 

into Eq. (36), we obtain 

𝐺(𝒅, 𝑿) = 𝑆𝑦 −
1

𝜋
 

√(
4𝑃

𝑑0
2−(𝑑0−2𝑡)

2 +
32𝐹𝐿𝑑0

𝑑0
4−(𝑑0−2𝑡)

4
)
2

+ 3(
16𝑇𝑑0

𝑑0
4−(𝑑0−2𝑡)

4
)
2

  (42) 

Determine the reliability index 

𝛽 = Φ−1([𝑅]) = Φ−1([0.99998]) = 4.1074 

Derive the gradient 

𝛻𝐺 = (𝑤𝑖
𝜕𝐺(𝒅, 𝑿)

𝜕𝑋𝑖
)
𝑖=1,…,𝑛

 

= (𝑤1
𝜕𝐺

𝜕𝑋1
,  𝑤2

𝜕𝐺

𝜕𝑋2
,  𝑤3

𝜕𝐺

𝜕𝑋3
,  𝑤4

𝜕𝐺

𝜕𝑋4
,  𝑤5

𝜕𝐺

𝜕𝑋5
) 

𝜕𝐺

𝜕𝑋1
=
𝑑𝐺

𝑑𝑆𝑦
= 1 

𝜕𝐺

𝜕𝑋2
=
𝑑𝐺

𝑑𝑃
= −

4𝑃(𝑑0
2 + (𝑑0 − 2𝑡)

2) + 32𝑑0𝐹𝐿

𝐴𝜋(𝑑0
2 − (𝑑0 − 2𝑡)

2)
 

𝜕𝐺

𝜕𝑋3
=
𝑑𝐺

𝑑𝐹
= −

8𝑑0𝐿((𝑑0
2 + (𝑑0 − 2𝑡)

2) + 32𝑑0𝐹𝐿)

𝐴𝜋(𝑑0
4 − (𝑑0  −  2𝑡)

4)
 

𝜕𝐺

𝜕𝑋4
=
𝑑𝐺

𝑑𝑇
= −

192𝑇𝑑0
2

𝐴𝜋(𝑑0
4 − (𝑑0  −  2𝑡)

4)
 

𝜕𝐺

𝜕𝑋5
=
𝑑𝐺

𝑑𝐿
= −

8𝑑0𝐹((𝑑0
2 + (𝑑0 − 2𝑡)

2) + 32𝑑0𝐹𝐿)

𝐴𝜋(𝑑0
4 − (𝑑0  −  2𝑡)

4)
 

where 

𝐴 = √(𝑃(𝑑0
2 + (𝑑0 − 2𝑡)

2) + 8𝑑0𝐹𝐿)
2 + 48𝑇2𝑑0

2 

From Table A1, we have  

𝒘 = (𝑤,𝑤2 , 𝑤3, 𝑤4, 𝑤5) 
= (2 × 107, 9 × 103, 6.6 × 10−2, 10, 1× 10−3) 

Iteration 1 

Start from the deterministic design by setting 𝑆𝐹 = 1.0. 

Plugging the mean values into Eq. (37), we find that the smallest 

size for 𝑔(𝒅) > 0  is 42 × 4; namely, 𝑑0 = 42 mm, 𝑡 = 4 

mm. At this design point, the general load (normal stress) is 

222.3 MPa. 
 
Iteration 2 

Update the MPP following the procedures in Fig. 3, we have 

𝒙∗ = (𝑥1
∗, 𝑥2

∗, 𝑥3
∗, 𝑥4

∗, 𝑥5
∗) 

= (190.15 MPa,105317.11 N,1496.71 N,  
             75.22 N ∙ m, 0.15 m) 

The general strength is 𝑆∗ = 𝑥1
∗ = 190.15 MPa. Update 𝜆𝑆 by 

Eq. (29), we have 𝜆𝑆 = 0.7606 . The general load at 𝒚∗  is 

275.12 MPa. Updating 𝜆𝐿 by Eq. (30), we have 𝜆𝐿 = 1.2376. 

Then the updated safety factor is 1.6271 by Eq. (32). Plugging 

the new 𝑆𝐹 into the deterministic design function in Eq. (37), 

we have the new design point 50 × 5; namely, 𝑑0 = 50 mm, 

𝑡 = 5 mm. Check the convergence using Eq. (34), and we obtain 

𝜀 = 62.71%, which is larger than the tolerance 0.01%, and the 

process continues. 

After two more iterations, the process converges and the 

final design variable is 𝒅 = 50 × 5  mm. Since the final 

solution 𝑑0 = 50 mm, 𝑡 = 5 mm satisfies 𝑌 > 0, we expect 

Random 

Variable 
Distribution Mean 

Standard 

Deviation 

Sy (MPa) Normal 250 20 

P (N) Normal 80000 9000 

F (N) Lognormal 1500 100 
T (N·m) Normal 75 10 

L (m) Normal 0.15 0.001 
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the actual reliability is greater than the require reliability [𝑅] =
0.99998 , or the actual probability of failure is less than 

2 × 10−5 . This is confirmed by MCS, which produces 

4.6700 × 10−6 , less than 2 × 10−5 . The calculations are 

summarized in Table 3. 

 

Table 3 Design Process of the Cantilever Tube 

Iteration 𝛻𝐺  𝑆𝐹 𝑑0 × 𝑡 (mm)   𝜀 (%)  

1 -  1 42 × 4 -  

2 (2.00 × 107, −1.88 × 107, −2.40 × 103, −1.47 × 105, −3.61 × 105) 1.6271 50 × 5 62.71 

3 (2.00 × 107, −1.27 × 107, −1.38 × 103, −7.42 × 104, −2.07 × 105) 1.6513 50 × 5 1.49 

4 (2.00 × 107, −1.27 × 107, −1.38 × 103, −7.42 × 104, −2.07 × 105) 1.6513 50 × 5 0.00 

4.3 A key design 
The task is to design a key (Fig. 5) for a shaft with a diameter 

of 22 mm so that its hub can withstand compression and shearing 

stress induced by the transmission power 𝑃 . The target 

reliability is [𝑅] = 0.999999 . The width and height are 

determined given by shaft diameter according ANSI Standard, 

which are 8 mm and 7 mm, respectively. The random variables 

are 𝒙 = (𝑆𝑦 , 𝑆𝑠𝑦 , 𝑃,𝜔) , where 𝑆𝑦  is the compression 

(crushing) yield strength of the material, 𝑆𝑠𝑦 = 0.577𝑆𝑦 is the 

shearing strength of the material, 𝑃 is the transmission power, 

and 𝜔  is the angular velocity of the shaft. All the random 

variables are independent, and their distributions are given in 

Table 4. The design variable 𝐸 is the length of the key, namely, 

𝒅 = (𝐸), which should be less than 30 mm because the diameter 
of the shaft is 22 mm. 

 

 
 

Fig. 5 A key of shaft-hub gear  
 

Table 4 Distributions of the random variables in Example 3 

Random 

Variable 
Distribution Mean 

Standard 

Deviation 

Sy (MPa) Normal 450 30 

𝑆𝑠𝑦(MPa) Normal 0.577 × 450 0.577 × 30 

P (Watt) Normal 20000 1200 

𝜔(rpm) Normal 650 32.5 

 

There are two failure modes existed because the key needs 
to withstand compression and shearing stress induced by the 

transmission power. Therefore, the design margin function and 

deterministic design function are defined by 

{
 
 

 
 𝐺1(𝐸, 𝑿) = 𝑆𝑦 − 𝐿1(𝐸, 𝒀) =

𝑆𝑦
𝑆𝐹1

−
4𝑃

𝐷𝐻𝐸𝜔
> 0

𝐺2(𝐸, 𝑿) = 𝑆𝑠𝑦 − 𝐿2(𝐸, 𝒀) =
𝑆𝑠𝑦
𝑆𝐹2

−
2𝑃

𝐷𝑊𝐸𝜔
> 0

(43) 

{
 
 

 
 𝑔1(𝐸) =

𝑠𝑦
𝑆𝐹
− 𝐿1(𝐸) =

𝑠𝑦
𝑆𝐹1

−
4𝑝

𝐷𝐻𝐸𝜔𝜇
> 0

𝑔2(𝐸) =
𝑠𝑠𝑦
𝑆𝐹
− 𝐿2(𝐸) =

𝑠𝑠𝑦
𝑆𝐹2

−
2𝑝

𝐷𝑊𝐸𝜔𝑢
> 0

(44) 

where 𝑠𝑦 , 𝑠𝑠𝑦 , 𝑝, 𝜔𝑢  are the means of 𝑆𝑦 , 𝑆𝑠𝑦 , 𝑃, 𝜔, respectively.  

Determine the reliability index 

𝛽 = ϕ−1([0.999999]) = 4.7534 

Derive the gradient 

𝛻𝐺1 = (𝑤1
1
𝜕𝐺1
𝜕𝑋1

, 𝑤2
1
𝜕𝐺1
𝜕𝑋2

, 𝑤3
1
𝜕𝐺1
𝜕𝑋3

) 

𝛻𝐺2 = (𝑤1
2
𝜕𝐺2
𝜕𝑋1

, 𝑤2
2
𝜕𝐺2
𝜕𝑋2

, 𝑤3
2
𝜕𝐺2
𝜕𝑋3

) 

where  

𝜕𝐺1
𝜕𝑋1

=
𝜕𝐺1
𝜕𝑆𝑦

= 1 

𝜕𝐺1
𝜕𝑋2

=
𝜕𝐺1
𝜕𝑃

= −
4

𝐷𝐻𝐸𝜔
 

𝜕𝐺1
𝜕𝑋3

=
𝜕𝐺1
𝜕𝜔

=
4

𝐷𝐻𝐸𝜔2
 

𝜕𝐺2
𝜕𝑋1

=
𝜕𝐺2
𝜕𝑆𝑠𝑦

= 1 

𝜕𝐺2
𝜕𝑋2

=
𝜕𝐺2
𝜕𝑃

= −
2

𝐷𝐻𝐸𝜔
 

𝜕𝐺2
𝜕𝑋3

=
𝜕𝐺2
𝜕𝜔

=
2

𝐷𝐻𝐸𝜔2
 

From Table A1, we have 

𝒘𝟏 = (𝑤1
1, 𝑤2

1, 𝑤3
1) = (3 × 107, 1200, 32.5) 
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Table 5 Design Process of the Key Design 

Iteration 𝛻𝐺1 , 𝛻𝐺2  𝑆𝐹1, 𝑆𝐹2 𝐸1, 𝐸2 (mm)   𝜀1, 𝜀2 (%)   

1 – 
1.0,  

1.0 

17.0,  
12.8 

–  

2 
(3 × 107, −2.7 × 107, 2.25 × 107), 

(1.73 × 107, −1.56 × 107, 1.30 × 107) 
1.6611, 
 1.6611 

28.2,  
21.4 

66.11,  
66.11 

3 
(3 × 107, −1.8 × 107, 2.02 × 107), 

(1.73 × 107, −1.06 × 107, 1.17 × 107) 
1.6728, 
 1.6728 

28.4,  
21.5 

0.7,  
0.7 

4 
(3 × 107, −1.8 × 107, 1.95 × 107), 

(1.73 × 107, −1.06 × 107, 1.13 × 107) 
1.6729, 
 1.6729 

28,4, 
 21.5 

6.4 × 10−3, 
6.4 × 10−3 

𝒘𝟐 = (𝑤1
2, 𝑤2

2, 𝑤3
2) = ( 17.31 × 106, 1200, 32.5) 

 

Iteration 1 

Start from the deterministic design by setting 𝑆𝐹 = 1.0. 

Plugging the means into Eq. (44), We find that the smallest sizes 

for 𝑔1(𝐸) > 0 and 𝑔2(𝐸) > 0 are 𝐸1 = 17.0 mm and 𝐸2 =
12.8 mm, respectively. At these design points, the general loads 

(normal stress) are 𝐿1(𝐸1, 𝒚) = 450 MPa , 𝐿2(𝐸2, 𝒚) =
 259.65 MPa, respectively.  

Iteration 2 

Following the procedures in Fig. 3, we have 

𝒙𝟏
∗ = (𝑥1

1∗, 𝑥2
1∗, 𝑥3

1∗) = (357 MPa,23333 Watt, 60.19 rad/s) 

𝒙2
∗ = (𝑥1

2∗, 𝑥2
2∗, 𝑥3

2∗) = (206 MPa,23333 Watt, 60.19 rad/s) 

The general strength is 𝑆𝑦
∗ = 𝑥1

1∗ = 357 MPa , 𝑆𝑠𝑦
∗ =

𝑥1
2∗ = 206 MPa. Updating 𝜆𝑆1 and 𝜆𝑆2 by Eq. (29), we have 

𝜆𝑆1 = 0.7943  and 𝜆𝑆2 = 0.7643 . The general load at 𝒚1
∗ =

(𝑥2
1∗, 𝑥3

1∗) , 𝒚2
∗ = (𝑥2

2∗, 𝑥3
2∗)  are 𝐿1(𝒅, 𝒚1

∗) = 594 MPa , 

𝐿2(𝒅, 𝒚2
∗) = 343 MPa , repectively. Updating 𝜆𝐿1  and 𝜆𝐿2  by 

Eq. (30), we have 𝜆𝐿1 = 1.3193 and 𝜆𝐿2 = 1.3193. Then the 

safety factors are obtained by Eq. (32) that 𝑆𝐹1 = 1.6611 and 

𝑆𝐹2 = 1.6611. Plugging the new 𝑆𝐹1, 𝑆𝐹2 into the deterministic 

design function in Eq. (44), we have the new design 𝐸1 =
28.2 mm and 𝐸2 = 21.4 mm. Checking the convergence using 

Eq. (34), we obtain 𝜀1 = 66.11%  and 𝜀2 = 66.11% , which 

are larger than the tolerance 0.01%, and the iterative process 

continues. 

After one more iteration, the process converges and the final 

design variables are 𝐸1 = 28.4 mm  and 𝐸2 = 21.5 mm .  
This design will meet the reliability target 0.999999, which is 

equivalent to a probability of failure 10−6. To verify this, Monte 

Carlo simulation (MCS) is performed with a large sample size of 

108 . The probability of failure produced by MCS is 1.09 ×
10−6 , very close to the required probability of failure. For a 

manufacturability and safety consideration, we can set the final 

design 𝐸 = 29 mm, which ensure higher reliability than the 

required one. The entire design process is summarized in Table 

5. 

The three examples demonstrate that the deterministic 

design is performed several times with the additional 

computations for the derivatives of the design margin with 

respect to random variables. In the examples, the deterministic 
design is conducted manually, and so is the proposed reliability-

based design method. 

 

5. CONCLUSION 
This work develops a practical approach to reliability-based 

component design. The approach is practical because it is 

essentially the traditional safety factor design approach with 

which engineers are familiar. The safety factor is determined by 

the specified reliability of the component. The First Order 

Reliability Method (FORM) is used to link the safety factor and 

component reliability. Since the safety factor for the required 

reliability also depends on design variables, the design process 
is iterative, and the proposed efficient numerical procedure 

ensures that the design process can converge with a few 

iterations. 

The prerequisites of the practical reliability-based 

component design approach are as follows: the availability of 

derivatives of the design margin function with respect to basic 

input variables and the availability of distributions of the basic 

input variables. In addition to the derivative calculation, the 

traditional safety factor design method is performed repeatedly 

several times. The new approach can be therefore conducted in 

the same manner as the traditional safety factor design method, 
manually, numerically, or with the help of computer software 

such as a spreadsheet. No optimization is needed. 

Note that the proposed approach is not optimization and 

cannot make decisions (find design variables) automatically. It 

provides a safety factor for engineers to meet their reliability 

target. How to get the design variables from the safety factor 

largely depends on how engineers perform their deterministic 

component design. If the deterministic component design can 

deal with black-box models, so can the proposed approach. 

The proposed approach is based on the first order reliability 

method (FORM), and it performs a complete MPP search. It is 

possible, however, the proposed approach does not converge, 
especially when the design margin function is highly nonlinear 

in the transformed normal space. The approach may produce a 

large error if multiple MPPs exist. Our future research will 

investigate possible ways to avoid divergence and to deal with 

multiple MPPs. 
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Appendix 

 
Table A1 𝒘 for distributions 

Distribution PDF w 

Normal 
𝑓(𝑥) =

1

√2𝜋𝜎2
exp (−

(𝑥 − 𝜇)2

2𝜎2
) 

𝜇: mean, 𝜎: standard deviation 

𝜎 

Lognormal 
𝑓(𝑥) =

1

𝑥√2𝜋𝜎2
exp(−

(ln(𝑥) − 𝜇)2

2𝜎2
) 

𝜇: mean of ln 𝑥, 𝜎: standard deviation of ln 𝑥 

𝜙 [Φ−1 (
1
2
(1 + erf (

ln 𝑥 − 𝜇

√2𝜎
)))]

1

𝑥√2𝜋𝜎2
exp (−

(ln(𝑥) − 𝜇)2

2𝜎2
)

 

Gumbel 
𝑓(𝑥) =

1

𝛽
exp(−(

𝑥 − 𝜇

𝛽
+ exp (−

𝑥 − 𝜇

𝛽
))) 

𝜇: location parameter, 𝛽: scale parameter 

𝜙 [Φ−1 (exp(−exp (−
𝑥 − 𝜇
𝛽

)))]

1
𝛽 exp

(−(
𝑥 − 𝜇
𝛽 + exp (−

𝑥 − 𝜇
𝛽

)))

 

Exponential 
𝑓(𝑥) = {

1
𝛽 exp

(−
1
𝛽 𝑥
)      𝑥 ≥ 0,

0                              𝑥 < 0.
 

𝛽: mean, 𝛽2: variance 

𝜙 [Φ−1 (1 − exp (−
1
𝛽 𝑥
))]

1
𝛽 exp

(−
1
𝛽 𝑥
)

 

Weibull 
𝑓(𝑥) = {

𝑘
𝜆
(
𝑥
𝜆
)
𝑘−1

exp (−(
𝑥
𝜆
)
𝑘

)      𝑥 ≥ 0,

0                                               𝑥 < 0.
 

𝜆: scale parameter, 𝑘: shape parameter 

𝜙[Φ−1(1 − exp(−(𝑥/𝜆)𝑘))]

𝑘
𝜆
(
𝑥
𝜆
)
𝑘−1

exp(−(𝑥/𝜆)𝑘) 
 

Uniform 
𝑓(𝑥) = {

1
𝑏 − 𝑎         𝑎 ≤ 𝑥 ≤ 𝑏,

0                 otherwise.
 

𝑎+𝑏

2
: mean,  

1

12
(𝑏 − 𝑎)2: variance 

𝜙 [Φ−1 (
𝑥 − 𝑎
𝑏 − 𝑎

)]

1
𝑏 − 𝑎 

 

 


