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We present a real-space computational method called treecode-accelerated Green Itera-
tion (TAGI) for all-electron Kohn-Sham Density Functional Theory. TAGI is based on a 
reformulation of the Kohn-Sham equations in which the eigenvalue problem in differen-
tial form is converted into a fixed-point problem in integral form by convolution with 
the modified Helmholtz Green’s function. In each self-consistent field (SCF) iteration, the 
fixed-points are computed by Green Iteration, where the discrete convolution sums are ef-
ficiently evaluated by a GPU-accelerated barycentric Lagrange treecode. Other techniques 
used in TAGI include a-priori adaptive mesh refinement, Fejér quadrature, singularity sub-
traction, gradient-free eigenvalue update, and Anderson mixing to accelerate convergence 
of the SCF and Green Iterations. Ground state energy computations of several atoms (Li, 
Be, O) and small molecules (H2, CO, C6H6) demonstrate TAGI’s ability to efficiently achieve 
chemical accuracy.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Electronic structure calculations complement materials engineering experiments by predicting properties such as bind-
ing energy, inter-atomic forces, magnetization, and doping effects. Density Functional Theory (DFT) [6], which describes 
a system and its properties by its electron density, has been the workhorse of ground state electronic structure compu-
tations. For an Ne-electron system, the Kohn-Sham approach to DFT [7] reduces the 3Ne-dimensional problem for the 
many-body wavefunction to a 3-dimensional problem for the electron density. In particular, the system of Ne interacting 
electrons is replaced by a fictitious system of Ne non-interacting electrons giving rise to the same electron density. In 
principle, the Kohn-Sham formulation is exact for the ground state properties of materials systems, but it requires knowl-
edge of the exchange-correlation functional, which is not known explicitly and is modeled in practice. Approximating the 
exchange-correlation functional is an active area of research [8–10], and better approximations enable Kohn-Sham DFT to 
more accurately predict ground state materials properties.

Previous related work. There are many options for performing either all-electron or pseudopotential DFT calculations, 
where, in the latter case, only the valence electrons are computed. Often a basis set is used to represent the wavefunctions 
and electron density [11]. For periodic systems, the plane-wave basis is widely used for pseudopotential calculations [12–16], 
and for all-electron calculations that require higher resolution to capture the rapidly oscillating wavefunctions, the aug-
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mented plane wave basis [17] and its variants are employed [18–22]. For non-periodic systems, Gaussian basis sets are 
widely used in quantum chemistry codes [1,2,23,24] as they afford analytic evaluation of many integral and differential op-
erators. A more recent option is the finite-element basis [25–28], which efficiently treats periodic or non-periodic boundary 
conditions, and pseudopotential or all-electron systems using higher order finite-elements [29–32].

The previously described methods are based on solving the Kohn-Sham eigenvalue equation, a single-particle 
Schrödinger-like differential equation. In this work we consider an alternative approach in which the eigenvalue problem 
in differential form is converted into a fixed-point problem in integral form by convolution with the modified Helmholtz 
Green’s function. While integral equation methods are extensively used for the wave equations arising in classical scatter-
ing [3,33–39] and quantum scattering [40–45], these methods have received much less attention for eigenvalue problems 
corresponding to ground state calculations of the Schrödinger or Kohn-Sham equations. The integral equation approach was 
first applied by Kalos [46] to solve the Schrödinger equation for 3- and 4-electron systems using Monte Carlo minimization. 
Later, Zhao et al. [47] used this approach to investigate various 1-electron systems in 3D, where the convolution integrals 
were computed using the Multi-Level Fast Multipole Method.

In recent work, the integral equation approach was extended to the Hartree-Fock and Kohn-Sham equations, where the 
electron density was updated in self-consistent field (SCF) iterations, and the fixed-point problem for the wavefunctions and 
eigenvalues in each SCF was solved by a process called Green Iteration. Harrison et al. [48] implemented Green Iteration 
for the Kohn-Sham equations in a multiwavelet basis that provides local refinement for each wavefunction, and this is now 
incorporated in the MADNESS code [49]. The convergence of Green Iteration for the many-body Schrödinger equation was 
investigated by Mohlenkamp and Young [50,51], who proved that the iteration converges for Ne = 1 and Ne = 2, provided 
the interaction potential belongs to the function space L2(R3) + L∞(R3) and the L∞(R3) piece can be taken to be arbitrarily 
small. Khoromskij [52] later extended this proof to Kohn-Sham DFT, where now the electron-electron interaction potential 
is replaced by the exchange-correlation potential which must satisfy the same function space requirements. Subsequently, 
Rakhuba and Oseledets [53,54] applied Green Iteration to the Hartree-Fock and Kohn-Sham equations in a Tucker tensor 
basis that uses low rank approximations of the wavefunctions.

Present work. We present a new integral equation based method called Treecode-Accelerated Green Iteration (TAGI) for 
all-electron Kohn-Sham DFT calculations. The key features of TAGI that enable accurate and efficient calculations are (1) a-
priori adaptive mesh refinement, (2) high order quadrature, (3) singularity subtraction for convolution integrals, (4) gradient-
free eigenvalue update, (5) Anderson mixing for SCF and Green Iteration, and (6) GPU-accelerated treecode computation of 
discrete convolution sums.

TAGI is a real-space method in which the fields are represented directly at quadrature points. TAGI uses a-priori adaptive 
mesh refinement to efficiently represent the fields, which vary rapidly near the nuclei but decay smoothly in the far-field. 
The adaptive refinement scheme results in a set of cuboid cells, which are discretized with Chebyshev points of the first 
kind, and all integrals are evaluated with the Fejér (“classical” Clenshaw-Curtis) quadrature rule [55,56]. The convolution 
integrals have singular kernels (Coulomb and Yukawa), which impede the accuracy of the quadrature rule, and we employ 
singularity subtraction to reduce the error in the quadrature sums. A standard singularity subtraction scheme is used for the 
Yukawa kernel [57,58] and we developed a modified version for the Coulomb kernel. To further improve accuracy, we use 
a gradient-free eigenvalue update [48] within Green Iteration to eliminate the error arising from numerical differentiation 
in the standard gradient eigenvalue update. We analyze the convergence rate of Green Iteration and use a fixed-point 
acceleration technique to alleviate slow convergence. Finally, the discrete convolution sums are efficiently evaluated using 
a Barycentric Lagrange Treecode [59] (BLTC), which reduces the computational complexity from O (N2) to O (N logN) while 
introducing a small and controllable approximation error. Furthermore, the BLTC is accelerated on GPUs with OpenACC [60]
and across multiple GPUs on a single node with OpenMP. We demonstrate the impact on accuracy and efficiency of each of 
the previously described features on the carbon monoxide molecule, and then perform ground state energy calculations for 
several atoms and molecules, demonstrating TAGI’s ability to achieve chemical accuracy of 1 mHa/atom.

The paper is organized as follows. Section 2 presents Kohn-Sham DFT, and the standard Self-Consistent Field iteration for 
computing the ground state density and wavefunctions. Section 3 presents the integral equation formulation we employ and 
Green Iteration for the resulting fixed-point problem. Section 4 describes the numerical techniques developed in this work to 
enhance the accuracy of the integral formulation, and demonstrates these ideas on the carbon monoxide molecule. Section 5
investigates the convergence rate of Green Iteration and demonstrates the fixed-point acceleration technique used in TAGI. 
Section 6 describes the treecode algorithm for computing fast approximations of the convolution integrals and demonstrates 
the efficiency of the GPU-accelerated implementation used in this work. Section 7 applies TAGI to several atoms and small 
molecules, achieving chemical accuracy of 1 mHa/atom with respect to reference values. Section 8 provides a summary of 
our findings, and discusses a path forward for this approach to further improve performance and scale to larger systems.

2. Kohn-Sham density functional theory

The input to Kohn-Sham DFT consists of the positions and atomic numbers of the atoms in the system, and the output 
consists of the ground-state electron density along with the Kohn-Sham single-electron wavefunctions, from which the 
desired observables (including ground-state energy and ionic forces) can be computed. The Kohn-Sham equations are

H[ρ]ψi(r)= εiψi(r), i = 1,2, . . . , H[ρ] = −1
2
∇2 + Vef f [ρ] , (1)
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where H[ρ] is the Kohn-Sham Hamiltonian, ρ = ρ(r) is the electron density, εi are the Kohn-Sham eigenvalues, and ψi(r)
are the Kohn-Sham eigenfunctions, also referred to as the Kohn-Sham wavefunctions. Here, we restrict ourselves to a spin-
independent formulation on non-periodic systems, but the general ideas presented in this work can be extended to a 
spin-dependent formulation and periodic geometries in a straightforward manner. The effective Kohn-Sham potential has 
the form,

Vef f [ρ](r)= VH [ρ](r)+ Vext(r)+ Vxc[ρ](r), (2)

where the first two terms are the Hartree potential due to the electron density and the external potential due to the NA

atomic nuclei located at R j with charges Z j , respectively,

VH [ρ](r)=
∫

ρ(r′)
|r− r′|dr

′, Vext(r)=
NA∑

j=1

−Z j

|r− R j|
, (3)

and the third term is the exchange-correlation potential Vxc[ρ] = ∂Exc[ρ]/∂ρ depending on the exchange-correlation energy 
Exc[ρ]. The electron density depends on the eigenvalues and wavefunctions,

ρ(r)= 2
Nw∑

i=1

f (εi,µF )|ψi(r)|2, f (ε,µF )=
1

e(ε−µF )/kB T + 1
, (4)

where f (ε, µF ) is the fractional occupation computed by Fermi-Dirac statistics [12,61], with Fermi energy µF , Boltzmann 
constant kB , and temperature T . The Fermi energy µF is determined from the constraint on the total number of electrons 
Ne ,

2
Nw∑

i=1

f (εi,µF )= Ne . (5)

The sums in Eq. (4) and Eq. (5) run over the Nw lowest energy wavefunctions, where Nw is chosen so that the fractional 
occupation of any higher energy wavefunction is negligible.

The preceding equations constitute a non-linear eigenvalue problem and the standard solution method uses the Self-
Consistent Field iteration (SCF) outlined in Algorithm 1. The iteration takes the atomic positions and an initial guess for 
the electron density as input. The output is the converged electron density and wavefunctions, from which observables 
are computed. The iteration starts in line 1. In line 2, at the nth step of the iteration, the effective potential Vef f [ρ(n)

in ] is 
constructed from the input electron density of the current iterate by Eq. (2). In line 3, the eigenvalue problem in Eq. (1)
is solved for the eigenpairs (εi, ψi). In line 4, the Fermi energy µF and fractional occupations f (εi, µF ) are computed. In 
line 5, these quantities are used to compute a new output density ρ(n)

out by Eq. (4). In line 6, the scheme checks whether 
the density has converged to a desired tolerance; if so, then the iteration stops and returns the latest density; otherwise a 
new input density ρ(n+1)

in is constructed by Anderson mixing [62] and the iteration continues. The present work follows this 
approach, but focuses on the solution of the eigenvalue problem (line 3), which is the most computationally intensive step 
in the SCF iteration, using treecode-accelerated Green Iteration (TAGI) described below.

Algorithm 1 Self-Consistent Field Iteration (SCF).
input: atomic positions and initial guess for electron density ρ(0)

in

output: electron density ρ(n)
out and Kohn Sham wavefunctions ψ (n)

i , i = 1, . . . , Nw

1: for n = 0, 1, 2, . . .
2: given ρ(n)

in , construct effective potential Vef f [ρ(n)
in ] by Eq. (2)

3: using Vef f [ρ(n)
in ], solve eigenvalue problem H[ρ(n)

in ]ψ (n)
i = ε(n)i ψ

(n)
i , i = 1, . . . , Nw

4: using ε(n)i , compute Fermi energy µF and fractional occupations f (ε(n)i , µF ) by Eq. (5)
5: using f (ε(n)i , µF ), ψ (n)

i , construct new density ρ(n)
out by Eq. (4)

6: if ||ρ(n)
out − ρ(n)

in ||2 < tolsc f , return ρ(n)
out

7: else construct new density ρ(n+1)
in by Anderson mixing and return to step 2

Having obtained the converged εi, ψi(r), ρ(r), the ground-state energy of the system is

E = Ekin + Exc + EH + Eext + E Z Z . (6)

In this expression, the first two terms are the kinetic energy and exchange-correlation energy, respectively,

Ekin =
Nw∑

i=1

∫
ψi(r)

(
−1

2
∇2

)
ψi(r)dr, Exc[ρ] =

∫
εxc[ρ](r)ρ(r)dr, (7)

3
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where εxc[ρ](r) is the exchange-correlation energy per electron for the chosen DFT functional, and the remaining three 
terms are the Hartree energy, external electrostatic energy, and nuclear repulsion energy, respectively,

EH [ρ] =
1
2

∫
VH [ρ](r)ρ(r)dr, Eext[ρ] =

∫
Vext(r)ρ(r)dr, E Z Z =

1
2

∑

i, j≠i

Zi Z j

|Ri − R j|
. (8)

This work employs the Local Density Approximation (LDA) [63,64] for Vxc[ρ], εxc[ρ] which are computed using the Libxc
package [65,66].

3. Solution of eigenvalue problem by Green iteration

Several methods are available for solving the eigenvalue problem in each step of the SCF iteration (line 3 in Algorithm 1). 
Among real-space methods, finite-difference [4,5,67–69] and finite-element [28,31] methods represent the differential op-
erator as a sparse matrix and use iterative techniques to compute the eigenpairs (εi, ψi). By contrast, in this work the 
differential equation is converted into an integral equation by convolution with the modified Helmholtz Green’s func-
tion [46], and then an iterative technique called Green Iteration is applied to obtain the eigenpairs [48,50,52,53]. We describe 
these steps below.

Following Kalos [46], the Kohn-Sham equations in Eq. (1) are rewritten in the form
(
1
2
∇2 + εi

)
ψi = Vef f [ρ]ψi, (9)

where ρ is the electron density for a given SCF iteration. Since the bound state eigenvalues of the Kohn-Sham Hamiltonian 
are negative, εi < 0, Eq. (9) is a modified Helmholtz equation with Green’s function,

Gεi (r, r
′)= −e−√−2εi |r−r′|

2π |r− r′| , (10)

where free-space boundary conditions are assumed. Then convolution with Eq. (9) yields the integral form of the Kohn-
Sham eigenvalue problem,

ψi(r)= G(εi)ψi(r), i = 1, . . . ,Nw , (11)

where

G(ε)ψ(r)=
∫

Gε(r, r′)Vef f [ρ](r′)ψ(r′)dr′, (12)

defines a 1-parameter family of linear integral operators.
Note that Eq. (11) can be viewed as a fixed-point problem and this motivates the solution method called Green Iteration 

described in Algorithm 2. The scheme takes as input the effective potential Vef f [ρ] for the current SCF and an initial 
guess for the eigenpairs (ε(0)i , ψ (0)

i ), and provides the converged eigenpairs (εi, ψi) as output. Line 1 is the outer loop over 
wavefunctions and line 2 is the iteration for a given wavefunction. Line 3 applies the integral operator G(ε(n)i ) to the current 
wavefunction ψ (n)

i . Line 4 updates the eigenvalue; several methods are available and we compare some of them below. Line 
5 is the deflation step that orthogonalizes the new wavefunction ψ (n+1)

i against the previously converged wavefunctions, 
and line 6 normalizes it. Line 7 checks for convergence; if the tolerance is satisfied, then the eigenpair is stored and the 
process returns to line 1; otherwise the iteration in line 2 continues.

Algorithm 2 Green Iteration.
input: effective potential Vef f [ρ] for current SCF
input: initial guess for eigenpairs (ε(0)i , ψ (0)

i ), i = 1, . . . , Nw
output: eigenpairs (εi , ψi), i = 1, . . . , Nw

1: for i = 1, 2, . . . , Nw
2: for n = 0, 1, 2, . . .
3: compute ψ (n+1)

i = G(ε(n)i )ψ
(n)
i

4: update eigenvalue ε(n+1)
i

5: orthogonalize ψ (n+1)
i against previously converged wavefunctions ψ j , j < i

6: normalize ψ (n+1)
i

7: if ||ψ (n+1)
i − ψ

(n)
i ||2 < tolgi set (εi , ψi) = (ε(n)i , ψ (n)

i ) and return to line 1
8: else return to line 2 and continue iteration

4
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4. Spatial discretization techniques

This section focuses on the spatial discretization techniques used in TAGI. These include the initialization scheme for 
the electron density and wavefunctions, the quadrature and a-priori adaptive mesh refinement techniques, the singularity 
subtraction schemes used to evaluate the convolution integrals, and the gradient-free approach used to update the eigen-
values. The section concludes by demonstrating the effect of these techniques using the carbon monoxide molecule as an 
example. Note that Hartree atomic units are used and a table containing the physical and numerical parameters is provided 
in Appendix A.

4.1. Initial electron density and eigenpairs

Common to many other approaches, TAGI uses a superposition of 1-atom densities to construct the initial guess in the 
first step of the SCF iteration. In particular, the SCF iteration uses an initial guess for the electron density of the form,

ρ(0)(r)=
Na∑

j=1

ρ j(|r− R j|), (13)

where ρ j(|r −R j |) is a radial 1-atom electron density associated with the jth atom. These 1-atom densities are precomputed 
by solving a radial version of the Kohn-Sham problem for each atomic species. In addition, Green Iteration requires an initial 
guess for the eigenpairs, (ε(0)i , ψ (0)

i (r)), i = 1, . . . , Nw . The number of wavefunctions Nw is determined as follows. Since each 
wavefunction is occupied up to two electrons, there is a lower bound, Nw ≥ Ne/2, however there is no sharp upper bound. 
In practice Nw should be chosen large enough to accommodate all states with significant fractional occupation f (εi, µF ). 
To this end, Nw is initialized to be larger than Ne/2, and upon obtaining the eigenpairs, if the fractional occupation of 
the highest state is negligibly small, then Nw is considered large enough; otherwise, Nw is increased and the process is 
repeated until the check is satisfied. The initial guess for the eigenpairs depends on whether or not this is the first step in 
the SCF iteration. In the first step, the wavefunctions are initialized using 1-atom wavefunctions obtained in the radial solve 
for the initial electron density, multiplied by appropriate spherical harmonics, and the initial eigenvalues are computed by 
the Rayleigh quotient, ε(0)i = ⟨ψ (0)

i , Hψ
(0)
i ⟩. In subsequent steps of the SCF iteration, the eigenpairs of the previous step are 

taken as the initial guess.

4.2. Spatial discretization and quadrature schemes

The energy integrals and convolution integrals will be evaluated on a set of cuboid cells representing a bounded compu-
tational domain. Using the Hartree energy as an example,

EH = 1
2

∫
VH (r)ρ(r)dr ≈ 1

2

Nc∑

i=1

∫

Ci

V H (r)ρ(r)dr ≈ 1
2

Nc∑

i=1

(p+1)3∑

j=1

VH (ri j)ρ(ri j)wij, (14)

where Nc is the number of cells, (p + 1)3 is the number of quadrature points in each cell, indices i, j refer to quadrature 
point j in cell i, and wij are the quadrature weights. The total number of mesh points is denoted by Nm = (p + 1)3Nc . We 
note that the wavefunctions, electron density, and potential are represented directly on the mesh points. The quadrature 
scheme uses Chebyshev points of the first kind; on the interval [−1, 1] these are given by

xi = cos θi, θi =
(2i + 1)π
2p + 2

, i = 0 : p. (15)

A tensor product grid of (p + 1)3 Chebyshev points is adapted to each cell; Fig. 1 shows a 2D schematic. Note that the 
Chebyshev points lie entirely inside the cell and never coincide with a vertex; as explained below this is important because 
the cells are chosen so that the atoms are located at cell vertices, thereby avoiding the singularity of the nuclear potential. 
Within each cell, the integrals are evaluated using the Fejér (or “classical” Clenshaw-Curtis) quadrature rule [55,56] with 
quadrature weights wij . The p +1 point Fejér quadrature rule integrates pth-degree polynomials exactly, so we refer to this 
as a pth-order quadrature rule.

The cells are defined using an a-priori adaptive refinement scheme illustrated in Fig. 2 for a 1-atom example. The goal 
of the scheme is to produce cells that resolve the regions with significant electron density and wavefunction variation, 
primarily near the atoms. Level 0 is a large cube surrounding the atoms in the system, with dimensions chosen to ensure 
that the electron density and wavefunctions are sufficiently small at the boundary. The cube is refined by bisecting it in the 
three coordinate directions, resulting in eight child cells. Several levels of uniform refinement are performed, and subsequent 
refinement is done adaptively in the following manner. Given a cell C , we temporarily create the child cells Ci , i = 1 : 8, and 
check the following criterion,

5
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Fig. 1. A tensor product grid of Chebyshev points of the first kind in Eq. (15) with p = 4 in a 2D cell.

Fig. 2. Illustration of the refinement scheme for a 1-atom system with the atom located at (•). Four levels of refinement are shown where the final 
refinement level puts the atom at a cell vertex.

∣∣∣∣∣∣∣

∫

C

t(r)dr −
8∑

i=1

∫

Ci

t(r)dr

∣∣∣∣∣∣∣
< tolm, (16)

where t(r) is a test function specified below and tolm is a user-specified tolerance. The integrals in Eq. (16) are evaluated 
using the Fejér rule. If Eq. (16) is satisfied, then refinement is not needed and the child cells are discarded; otherwise the 
child cells are retained and the process continues. Fig. 2 shows the schematic of a possible outcome where the initial cell is 
refined at level 1, but only the child cell containing the atom is refined at level 2. Once the tolerance is satisfied for every 
cell, a final refinement step occurs; those cells containing an atom are subdivided so that the atoms lie at cell vertices; 
this ensures that the Chebyshev grid points never coincide with an atom position and hence the fields (effective potential, 
wavefunctions, electron density) are smooth on the interior of the cells. If the refinement scheme creates any cells with 
large aspect ratio, these cells are refined along their longest dimension.

Several options for the refinement test function were considered and we decided to use

t(r)=
√

ρ(0)(r)Vext(r), (17)

where ρ(0)(r) is the initial electron density in Eq. (13) and Vext(r) is the external potential in Eq. (3). This choice is moti-
vated by several considerations. First, it resembles the function ψ(r)Vef f (r) appearing in the integral form of the Kohn-Sham 
equations (12); this is because near a nucleus, 

√
ρ(0)(r) has the characteristics of an s-orbital atomic wavefunction, captur-

ing the cusp and decay rate, and although Vef f (r) is not known, Vext(r) is known and contains the Coulomb singularities 
that must be resolved. Second, this test function is accessible at the start of the computation and can be evaluated at arbi-
trary grid points as needed in the refinement scheme, suitable for the a-priori adaptive refinement scheme. Fig. 3 shows an 
example of coarse and fine meshes for the benzene molecule (C6H6) obtained using the refinement scheme described above 
with 4th order quadrature. The molecule lies in the z = 0 plane and a truncated portion of the mesh in that plane is shown. 
The coarse mesh is generated with tolm = 1e−4 and the fine mesh with tolm = 3e−6. The resulting cell density is highest 
near the twelve nuclei, and the carbon atoms are more highly refined than the hydrogen atoms, as expected since the test 
function 

√
ρ(0)(r)Vext(r) grows faster at heavier nuclei. Compared to a variety of other refinement schemes we considered, 

this approach gave the best combination of accuracy and efficiency. Further below we will demonstrate convergence with 
respect to both the order of the quadrature rule p and the mesh tolerance parameter tolm .

The a-priori adaptive mesh refinement scheme described above enables TAGI to achieve chemical accuracy for all-electron 
calculations using only the external potential and initial guess for the electron density, both of which are available at the 
start of the calculation. Alternatively, it would be interesting to investigate a-posteriori adaptive mesh refinement methods, 
such as those used in the finite element community [70,31], to estimate local errors and improve the efficiency of TAGI’s 
mesh refinement scheme.

6
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Fig. 3. Example of the mesh refinement scheme for the benzene molecule (C6H6). 2D slices of the mesh are shown in the plane of the molecule generated 
with 4th order quadrature in Eq. (17) and (a) tolm = 1e−4, (b) tolm = 3e−6.

4.3. Singularity subtraction

Achieving the necessary accuracy for DFT calculations requires careful treatment of the singular integrals arising in Green 
Iteration,

ψ (n+1)(r)= −
∫

Vef f (r′)ψ (n)(r′)
e−

√
−2ε(n)|r−r′|

2π |r− r′| dr′, (18)

and the Hartree potential,

VH (r)=
∫

ρ(r′)
|r− r′|dr

′. (19)

The singular r′ = r term in the quadrature sums is skipped. This error due to skipping the singularity is reduced by weak-
ening the singularities before discretization. For the integral involving the Yukawa kernel in Eq. (18) we implemented a 
standard singularity subtraction scheme [57,58],

∫
f (r′)

e−k|r−r′|

|r− r′| dr
′ =

∫ (
f (r′)− f (r)

) e−k|r−r′|

|r− r′| dr
′ + f (r)

∫
e−k|r−r′|

|r− r′| dr
′. (20)

The second term on the right in Eq. (20) is evaluated analytically,

f (r)
∫

e−k|r−r′|

|r− r′| dr
′ = 4π f (r)

k2
, (21)

while the singularity in the first term on the right has been weakened, so the quadrature scheme yields a more accurate 
result. Note however that the exponential decay rate in the Yukawa kernel is k =

√
−2ε, and a problem arises if ε → 0, 

since in that case the singularity subtraction scheme in Eq. (20) tends to the indeterminate form ∞ − ∞. This is resolved 
by introducing a constant gauge shift in the effective potential,

Vef f (r) → Vef f (r)+ Vshi f t . (22)

The wavefunctions are unaffected and the eigenvalues simply shift by this amount (the shift is removed before computing 
energies). Throughout this work we set Vshi f t = −0.5, ensuring that the eigenvalues of the occupied states are bounded 
away from zero.

The scheme described above however does not work for the Hartree potential in Eq. (19) which corresponds k = 0. In 
this case, we employ a modified form of singularity subtraction using a Gaussian function,

∫
f (r′)

1
|r− r′|dr

′ =
∫ (

f (r′)− f (r)e−|r−r′|2/α2
) 1
|r− r′|dr

′ + f (r)
∫

e−|r−r′|2/α2

|r− r′| dr′, (23)

7
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where α is a scaling parameter. As before, the second term on the right is evaluated analytically,

f (r)
∫

e−|r−r′|2/α2

|r− r′| dr′ = 2π f (r)α2, (24)

and the singularity in the first term has been weakened. In addition, the Gaussian remains smooth for r′ → r, unlike other 
options, and this ensures the accuracy of the quadrature scheme.

The choice of the scaling factor α is guided by the following considerations. Recall that the first integral on the 
right in Eq. (23) is computed using a quadrature scheme on a truncated computational domain, and hence the function 
f (r)e−|r−r′|2/α2

should have certain properties. If α is small, then the Gaussian is narrow and the quadrature scheme would 
struggle to resolve the variation in this function. On the other hand if α is large, then the Gaussian is wide and this would 
require increasing the size of the computational domain. In more detail, the function f (r)e−|r−r′|2/α2

must be sufficiently 
small when r′ is near the domain boundary to ensure that the effect of the domain truncation is small; there are two cases, 
(1) when r lies in the domain interior, then f (r) is not necessarily small, but e−|r−r′ |2/α2

is small as long as α is not too 
large, (2) when r lies near the domain boundary, then f (r) is small while e−|r−r′ |2/α2

is bounded. The conclusion is that 
the Gaussian scaling factor α should not be too small in relation to the spatial discretization and should not be too large 
in relation to the computational domain size; this work uses domains of size [−20, 20]3 a.u. to [−30, 30]3 a.u. with α = 1
a.u., which was determined empirically.

4.4. Gradient-free eigenvalue update

Recall that line 4 in Green Iteration updates the eigenvalue ε(n+1)
i ; in this subsection we describe three methods for this 

purpose. The first method uses the Rayleigh quotient [50],

ε(n+1)
i = ⟨ψ (n+1)

i ,Hψ
(n+1)
i ⟩

⟨ψ (n+1)
i ,ψ

(n+1)
i ⟩

= − 1
2 ⟨ψ (n+1)

i ,∇2ψ
(n+1)
i ⟩+ ⟨ψ (n+1)

i , Vef f ψ
(n+1)
i ⟩

⟨ψ (n+1)
i ,ψ

(n+1)
i ⟩

, (25)

where H is the Kohn-Sham differential operator defined in Eq. (1), Vef f is the effective potential in the current SCF, and 
ψ

(n+1)
i is the wavefunction computed in line 3 of Green Iteration. The second method applies integration by parts in Eq. (25)

to obtain,

ε(n+1)
i =

1
2 ⟨∇ψ

(n+1)
i ,∇ψ

(n+1)
i ⟩+ ⟨ψ (n+1)

i , Vef f ψ
(n+1)
i ⟩

⟨ψ (n+1)
i ,ψ

(n+1)
i ⟩

. (26)

In the present framework the gradient ∇ψ
(n+1)
i in Eq. (26) and Laplacian ∇2ψ

(n+1)
i in Eq. (25) are computed by spec-

tral differentiation using the values of the wavefunction at the Chebyshev points in each cell [71]. The third method is a 
gradient-free update suggested by Harrison et al. [48],

ε(n+1)
i = ε(n)i − ⟨Vef f ψ

(n)
i ,ψ

(n)
i − ψ

(n+1)
i ⟩

⟨ψ (n+1)
i ,ψ

(n+1)
i ⟩

. (27)

In this case, which computes a (εi rather than ε(n+1)
i itself, the initial guess ε(0)i in the first SCF iteration can be given 

using either Eq. (25) or Eq. (26). The gradient-free eigenvalue update enables the total energy to also be computed in a 
gradient-free manner using the alternative expression,

E = Eband − EH + Exc −
∫

ρ(r)Vxc[ρ](r)dr+ E Z Z , (28)

where the band energy is the weighted sum of the eigenvalues,

Eband = 2
Nw∑

i=1

f i(εi,µ)εi . (29)

In contrast to the original expression for the total energy in Eq. (6), the gradient-free expression in Eq. (28) avoids explicitly 
computing the kinetic energy Ekin in Eq. (7) which contains the Laplacian; the kinetic energy is now contained implicitly in 
the band energy, which is obtained with the gradient-free method. Later below we show that the gradient-free method has 
the best accuracy of the three approaches described here.
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Table 1
Error in the total energy per atom for the carbon monoxide molecule using (a) a 
fixed mesh, increasing quadrature order p from 4 to 7, and (b) a fixed quadrature 
order p = 4, decreasing mesh refinement parameter tolm from 3e−6 to 1e−7.
(a)

p tolm Cells Points Error (mHa)

4 3e−7 5293 661625 1.313
5 3e−7 5293 1143288 0.605
6 3e−7 5293 1815499 0.311
7 3e−7 5293 2710016 0.179

(b)

p tolm Cells Points Error (mHa)

4 3e−6 2962 370250 3.946
4 1e−6 3676 459500 2.550
4 3e−7 5293 661625 1.313
4 1e−7 7428 928500 0.674

Table 2
Error in the total energy per atom for the carbon monoxide 
molecule without using singularity subtraction (column 4) and 
with using singularity subtraction (column 5).
tolm Cells Points Error (mHa)

Non-SS SS

3e−6 2962 370250 823 3.946
1e−6 3676 459500 702 2.550
3e−7 5293 661625 558 1.313
1e−7 7428 928500 429 0.674

4.5. Accuracy of computational techniques

This subsection documents the accuracy of the previously described computational techniques in the case of the car-
bon monoxide molecule (NA = 2, Ne = 14, Nw = 8). The computations use domain [−20, 20]3 a.u., temperature T = 200 K , 
gauge shift Vshi f t = −0.5, Green Iteration eigensolve tolerance tolgi = 1e−7, SCF tolerance tolsc f = 1e−6, and Anderson mix-
ing parameter β = 0.5. Except where specified, the computations use singularity subtraction and the gradient-free eigenvalue 
update. We report the energy error |ET AGI − Eref |, where ET AGI is computed using TAGI and Eref = −112.47193 Ha is the 
reference value converged to 1e−4 Ha, which was computed using DFT-FE [28,31].

4.5.1. Quadrature rule and mesh refinement scheme
We first demonstrate the effect of the quadrature rule order p and the mesh refinement tolerance tolm described in 

section 4.2. To test the effect of the quadrature rule order we generate a mesh using order p = 4 and tolerance tolm = 3e−7, 
and then on this mesh the order p is varied; Table 1a shows that the error is reduced from 1.313 mHa with p = 4 to 
0.179 mHa with p = 7. To test the effect of the mesh refinement tolerance we fix the quadrature order to p = 4 and 
vary the mesh refinement tolerance tolm; Table 1b shows that the error is reduced from 3.946 mHa with tolm = 3e−6 to 
0.674 mHa with tolm = 1e−7.

4.5.2. Singularity subtraction
Next we demonstrate the effect of the singularity subtraction schemes described in section 4.3. The quadrature order is 

set to p = 4 and a sequence of mesh refinements is performed. The ground state calculation is performed with and without 
singularity subtraction; in both cases the singular term in the discrete convolution sums is skipped. Table 2 shows that 
singularity subtraction yields a significant improvement in the accuracy of the total energy, over two orders of magnitude 
for mesh size Nm = 661625 which achieves chemical accuracy.

4.5.3. Eigenvalue updates
Finally, we compare the eigenvalue update methods described in section 4.4, Laplacian update (Eq. (25)), gradient update 

(Eq. (26)), and gradient-free update (Eq. (27)). The ground state calculation is performed for a sequence of refined meshes. 
Fig. 4 shows the total energy error per atom versus the number of mesh points Nm for (a) order p = 4 and (b) order p = 6. 
We make the following three observations. First, for a given mesh, the gradient-free update is significantly more accurate 
than the Laplacian and gradient updates. An exception occurs for the coarsest mesh with order p = 4, where the gradient 
update has slightly lower error than the gradient-free update due to a cancellation of errors. In particular, we found that 
using the gradient update, some of the computed eigenvalues have positive error, while others have negative error, leading 
to a cancellation of errors in the band energy and total energy, which ceases as the mesh is refined or the quadrature order 

9
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Fig. 4. Error in the total energy per atom for the carbon monoxide molecule versus the number of mesh points Nm while using different eigenvalue update 
methods in Green Iteration for (a) quadrature order p = 4 and (b) quadrature order p = 6.

Fig. 5. Convergence of the eigenfunction residual ||ψ (n+1)
i − ψ

(n)
i ||2 during Green Iteration in the first SCF iteration for the carbon monoxide molecule. The 

observed residuals (symbols) and the predicted convergence rates ri (black lines, explained below). (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

is increased. Second, for p = 4, the gradient update error saturates around 6 mHa/atom as the mesh is refined. We note 
that the mesh refinement scheme as described in section 4.2 uses feedback from the gradient-free update, and hence it is 
not guaranteed to refine cells having large error in the gradient terms. Third, for p = 6, the gradient update recovers its 
convergence as the mesh is refined, although it is still less accurate than the gradient-free update.

5. Convergence rate of Green iteration

Previously we explained how in each step of the SCF iteration, the Kohn-Sham eigenproblem in Eq. (1) can be converted 
into a fixed-point problem for the integral operator in Eq. (11) and that the fixed-point problem is solved by Green Iteration. 
This section examines the convergence rate of Green Iteration; first an example exhibiting slow convergence is presented, 
then the cause of the problem is identified by reference to power iteration, and finally Anderson mixing is applied to the 
wavefunctions to accelerate convergence.

5.1. Slow convergence of Green iteration

To illustrate the slow convergence of Green Iteration, we consider the first SCF iteration for the carbon monoxide 
molecule. Fig. 5 plots the residual of the first seven wavefunctions determined by Green Iteration versus the iteration 
number. In this case the first two wavefunctions converge rapidly, but the subsequent wavefunctions converge slowly; in 
particular the 4th wavefunction converges extremely slowly. The result is that Green Iteration requires a total of 1246 it-
erations to ensure that the first seven wavefunction residuals fall below 1e−8. This is a tighter tolerance than is used in 
practice, however it helps illustrate the issue. In the next subsection we examine the cause of this slow convergence, as 
well as how the predicted rates (black lines) are computed.

10
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Fig. 6. First SCF iteration for the carbon monoxide molecule. The curves µi(ε) defined by eigenvalue problem Eq. (30) for the integral operator G(ε) are 
plotted versus parameter ε. Intersections with the dashed line µ = 1 yield fixed-points εi of Green Iteration. The spectral gap of the integral operator, 
(µi = 1 −µi+1(εi), is indicated at the fixed-points εi , (a) i = 1, 2, 3, (b) i = 3, 4, 5, (c) i = 5, 6, 7, 8. Numerical values are given in Table 3.

5.2. Convergence analysis

Recall line 3 of Green Iteration (Algorithm 2), ψ (n+1)
i = G(ε(n)i )ψ

(n)
i , which updates the ith eigenfunction using the oper-

ator defined in Eq. (12). The parameter ε(n)i changes in each step of the iteration, but as ε(n)i → εi , the scheme converges 
to power iteration for the operator G(εi) with deflation against the previously determined eigenfunctions ψ j, j < i as indi-
cated in line 5 of the algorithm. This suggests that the convergence rate of ψ (n)

i depends on the spectral gap of G(εi) [72]. 
To demonstrate this it is useful to define a 1-parameter family of curves µi(ε) and functions φi(ε) satisfying the linear 
eigenvalue equation,

G(ε)φi(ε)=µi(ε)φi(ε), i = 1, . . . ,Nw , (30)

subject to the following conditions. For each ε, the eigenvalues are ordered by their magnitude µ1(ε) ≥ · · ·≥µNw (ε). Note 
that if µi(ε) = 1 for some index i and parameter value ε, then Eq. (30) reduces to the fixed-point problem in Eq. (11), ψi =
G(εi)ψi , in which case we have ε = εi and φi(ε) = ψi [50,52]. In addition, the usual orthogonality condition, φi(ε) ⊥ φ j(ε)
for i ̸= j, is modified to be consistent with the deflation step in Green Iteration; that is, ψi ⊥ φ j(ε) for i < j and εi < ε.

Fig. 6 illustrates this for the first SCF iteration of the carbon monoxide molecule, where the curves µi(ε) are plotted 
versus ε for i = 1 : 8. Note that for each parameter value ε, the eigenvalues µi(ε) are computed by power iteration applied 
to the operator G(ε) subject to the modified orthogonality condition stated above. The fixed-points of Green Iteration occur 
when one of the curves µi(ε) intersects the line µ = 1, and the plotted curves terminate there because there are no 
eigenfunctions with µ > 1 due to the orthogonality condition.

Fig. 6 also indicates the spectral gap of the operator G(εi), defined by (µi =µi(εi) −µi+1(εi) = 1 −µi+1(εi); due to the 
continuity of the curves µi(ε), these are correlated with the spectral gap of the Hamiltonian, defined by (εi = εi+1 − εi ; 
hence both gaps are relatively large for i = 1, 2 in Fig. 6a, and relatively small for i = 3, ..., 7 in Fig. 6b,c. Note further 
that the spectrum of the CO molecule contains a degeneracy; ε5 = ε6, hence ψ5 and ψ6 span a degenerate subspace. This 
degeneracy manifests itself in the spectral analysis in several ways. First, ψ5 and ψ6 converge with identical rates in Green 
Iteration (Fig. 5 parallel purple and black), and second, the µ5(ε) and µ6(ε) curves are identical (Fig. 6c overlapping purple 
and black). In the case of a degeneracy, the convergence rate of the wavefunctions to the degenerate subspace is governed 
by the spectral gap to the next distinct eigenvalue. In this example, we define the spectral gaps (µ5 and (µ6 with respect 
to the 7th eigenvalue, (µ5 = 1 −µ7(ε5) and (µ6 = 1 −µ7(ε6). Finally, note that at a fixed-point parameter εi , the largest 
eigenvalue of G(εi) is µi = 1, so the convergence rate of power iteration is ri =µi+1/µi = (µi − (µi)/µi = 1 −(µi ; hence 
a large gap (µi leads to rapid convergence of ψi and a small gap (µi leads to slow convergence.

Table 3 gives the fixed-points εi , spectral gaps (εi and (µi , observed and predicted convergence rates ri , error in 
the predicted rates, and number of iterations required to achieve the 1e−8 tolerance in Green Iteration. For each curve in 
Fig. 5, we observe a rapid initial decay of the residual to roughly 1e−2 or 1e−3, followed by geometric convergence down 
to 1e−8, ||ψ (n+1)

i − ψ
(n)
i ||2 ∼ rni ||ψ

(1)
i − ψ

(0)
i ||2, where n is the iteration index and ri is the geometric convergence rate. 

There are two versions of ri in Table 3; the observed ri were obtained from the actual Green Iteration, and the predicted 
ri = µi+1/µi = (µi − (µi)/µi = 1 − (µi were obtained from the spectrum of the operator in Eq. (30). Reference lines 
with the predicted rate ri appear in Fig. 5 adjacent to the corresponding residual curve. In several cases (ψ1, ψ2, ψ7), the 
observed convergence rate is faster than the predicted rate; this is attributed to the iteration not entering the asymptotic 
power-iteration regime before the tolerance was met. In the slower converging cases (ψ3, ψ4, ψ5, ψ6), the predicted 
convergence rates accurately agree with the observed rates, with percent errors 0.115%, 0.082%, 0.053%, and 0.053%. This 
confirms that the convergence rate of the eigenfunction ψi in Green Iteration is controlled by the spectral gap (µi in the 
integral operator, which in turn is correlated with the spectral gap (εi in the differential operator. Hence, Green Iteration 
may converge slowly whenever a small spectral gap exists in the Hamiltonian; the next subsection applies a mixing method 
to overcome this limitation.
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Table 3
First SCF iteration for the carbon monoxide molecule. Eigenvalue index, Hamiltonian eigenvalues εi , Hamiltonian spectral gap 
(εi , integral operator spectral gap (µi , observed convergence rate, predicted convergence rate, accuracy of the prediction, 
number of iterations for the wavefunction to converge to 1e−8 tolerance.
index, i Spectral Gaps Convergence Rates Number of Iterations

εi (εi (µi observed ri predicted ri % error

1 −18.870 8.862 0.221 0.460 0.779 69.3 19
2 −10.008 8.822 0.491 0.450 0.509 13.1 20
3 −1.186 0.579 0.132 0.867 0.868 0.115 110
4 −0.607 0.087 0.023 0.9752 0.976 0.082 601
5 −0.520 0.124 0.061 0.9385 0.939 0.053 208
6 −0.520 0.124 0.061 0.9385 0.939 0.053 211
7 −0.396 0.262 0.086 0.819 0.914 11.6 77

Fig. 7. Convergence of the eigenfunction residual ||ψ (n+1)
i −ψ

(n)
i ||2 during Green Iteration in the first SCF iterations for the carbon monoxide molecule using 

wavefunction mixing with mixing parameter β = 0.5. Wavefunction mixing reduces the total number of iterations from 1246 to 188.

5.3. Wavefunction mixing

While Green Iteration resembles power iteration as noted above, it is a fixed-point iteration and hence is amenable to 
standard fixed-point acceleration techniques. We define the vector x = (ε, ψ), and the inner product between two vectors 
x1 = (ε1, ψ1) and x2 = (ε2, ψ2) to be (x1, x2) = ε1ε2 +

∫
ψ1(r)ψ2(r)dr. We then use Anderson mixing to update the eigen-

pairs (ε(n)i , ψ (n)
i ) after each step of Green Iteration, in the same way that the electron density is updated after each step of 

the SCF iteration. Fig. 7 shows the effect of applying Anderson mixing to the wavefunctions with mixing parameter β = 0.5, 
for the same computation as above, the first SCF iteration of the carbon monoxide molecule. The total number of itera-
tions is reduced from 1246 (Green Iteration) to 188 (Green Iteration with wavefunction mixing). ψ3 − ψ6 still converge the 
slowest, however they converge significantly faster than without Anderson mixing.

In practice the wavefunction mixing scheme requires a good initial guess to ensure convergence. In the first SCF iteration, 
to achieve a good initial guess, Green Iteration can be performed without wavefunction mixing until convergence to a user-
defined tolerance is achieved, at which point the computed wavefunction is in the basin of attraction of the fixed-point 
scheme and Anderson wavefunction mixing can be safely applied. In subsequent SCF iterations the initial guess for the 
eigenpairs tend to be much better and delaying the use of wavefunction mixing is not necessary. Furthermore, the tolerance 
for Green Iteration tolgi does not have to be the same throughout an SCF iteration. We find that starting with a loose 
tolerance and gradually tightening it after each step in the SCF is beneficial. The gradual reduction of tolgi increases the 
number of steps in the SCF for the electron density to converge to tolsc f , but it significantly reduces the cost of the first few 
steps of the SCF iteration, and results in an overall reduction of computation time.

6. Treecode acceleration

The scheme described above requires computing convolutions of the form,

u(r)=
∫

G(r, r′) f (r′)dr′, (31)

where G(r, r′) is either the Coulomb kernel in the Hartree potential in Eq. (3), or the Yukawa kernel in the integral operator 
G(ε) in Eq. (12) needed in line 3 of Green Iteration. Upon discretization, the integral in Eq. (31) is approximated by the 
discrete convolution sum,
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ui =
Nm∑

j=1
i≠ j

G(ri, r j) f j w j, i = 1, . . . ,Nm, (32)

where ui ≈ u(ri), f j = f (r j), and w j are the quadrature weights. Computing ui by direct summation requires O (N2
m)

operations, and several methods have been developed to reduce the cost including the treecode [73] and fast multipole 
method [74]. This work employs a recently developed barycentric Lagrange treecode (BLTC) [59] which reduces the operation 
count to O (Nm logNm) using barycentric Lagrange interpolation [75]. We use the BLTC because it has several desirable 
features; it is efficient in the high accuracy regime demanded by the DFT application, its kernel-independent property 
facilitates the implementation of the singularity subtraction schemes, the barycentric Lagrange approximation it uses is 
well suited for GPU acceleration, and the code is publicly available. For clarity of presentation, the singularity subtraction 
schemes from Eqs. (20) and (23) have been omitted in Eq. (32), but they are easily accommodated in the BLTC and are 
used in this work. Throughout this section the points ri are called target particles, the points r j are called source particles, 
and Eq. (32) expresses the particle-particle interactions. Below we present an overview of the treecode; references can be 
consulted for more details [59,60,76].

6.1. Source clusters and target batches

The treecode starts by dividing the source particles into a hierarchical tree of source clusters, where the root cluster is 
the minimal bounding box enclosing the computational domain. The root is divided into child clusters by bisection in each 
dimension, and the child clusters are recursively subdivided until they contain fewer than NL particles; these are the leaves 
of the tree. After division each cluster is shrunk to the minimal bounding box containing its particles. Typically a cluster 
is divided into eight children, but if shrinking would cause the aspect ratio to be greater than 

√
2, the cluster is instead 

divided into either two or four children. Note that the source clusters in the treecode are rectangular boxes, and in general 
they are different than the cells in the adaptive mesh. For efficiency purposes as explained below, the target particles are 
also organized into a set of localized batches containing fewer than NB particles, and then the particle-particle interactions 
are organized into batch-cluster interactions between the target particles in a batch and the source particles in a cluster. In 
this work we set NB = NL , and since the target particles and source particles correspond to the same set (the Nm quadrature 
points), the target batches are equivalent to the leaf source clusters in the tree.

6.2. Particle-cluster approximation by barycentric Lagrange interpolation

Note that the sum in Eq. (32) can be rewritten as

ui =
Nm∑

j=1
i≠ j

G(ri, r j) f j w j =
∑

C

u(ri,C), (33)

where the second sum is taken over a set of source clusters C , and

u(ri,C)=
∑

r j∈C
G(ri, r j) f jw j (34)

is the interaction between a target particle ri and a source cluster C = {r j}. Following [59], the particle-cluster interaction 
can be approximated by 3D polynomial interpolation of degree n,

u(ri,C) ≈
n∑

k1=0

n∑

k2=0

n∑

k3=0

G(ri, sk) f̂k, f̂k =
∑

r j∈C
Lk1(r j1)Lk2(r j2)Lk3(r j3) f jw j, (35)

where r j = (r j1, r j2, r j3) is a source particle, sk = (sk1 , sk2 , sk3 ) is a tensor product grid of interpolation points, Lk(t) are 
the 1D Lagrange interpolating polynomials, and f̂k are weights associated with the approximation. It is important to note 
that the approximation in Eq. (35) has the same direct sum structure as the exact interaction in Eq. (34); in one case 
the target particle ri interacts with the source particles r j and in the other it interacts with the interpolation points sk; 
however in both cases the necessary kernel evaluations are independent of each other and can be efficiently computed in 
parallel on a GPU; this is in contrast to other fast summation schemes based on analytic series expansions, such as the 
Taylor treecode [76], where the approximations are recursive, which limits performance on the GPU. A further point is 
that the approximation weights f̂k are independent of the target particle ri , so they can be precomputed and reused for 
different targets. Next we examine the decision of when to use the approximation in Eq. (35), then return to the choice of 
interpolation points sk and the structure of the interpolating polynomial Lk(t).
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Fig. 8. 2D diagram showing a target batch interacting with a source cluster. The target batch of radius rB is a distance R from the source cluster of radius 
rC . If (rB + rC )/R < θ and (n + 1)3 < NS , this interaction will be approximated using Eq. (35).

Fig. 9. Example of a cluster C in 2D, (a) source particles r j in C (these are quadrature points in the adaptive mesh, here defined with order p = 3), 
(b) Chebyshev grid of interpolation points sk (here defined with degree n = 4, these represent the cluster through the particle-cluster approximation in 
Eq. (35)).

In this work the particle-cluster interactions u(ri, C) are organized into batch-cluster interactions. For a given batch of 
target particles, the decision on whether to apply the approximation in Eq. (35) is controlled by the multipole acceptance 
criterion (MAC) which in this work has the form,

rB + rC
R

< θ, (n+ 1)3 < NS , (36)

where rB is the target batch radius, rC is the source cluster radius, R is the distance between the target batch center and 
source cluster center, n is the interpolation degree, and NS is the number of source particles in the cluster. The first part of 
the MAC ensures the approximation’s accuracy and is diagrammed in Fig. 8, while the second part ensures its efficiency.

For the interpolation points, the BLTC uses Chebyshev points of the 2nd kind,

sk = cos θk, θk = πk/n, k= 0, . . . ,n, (37)

which are defined on the interval [−1, 1] and are linearly mapped to clusters located elsewhere. In addition the BLTC uses 
the barycentric form of the Lagrange polynomials [75],

Lk(t)=
bk

t − sk
n∑

k′=0

bk′

t − sk′

, k= 0, . . . ,n, (38)

where due to the scale-invariance of this form [77], the barycentric weights are

bk = (−1)kδk, δk =
{
1, k= 1, . . . ,n − 1,
1/2, k= 0,n.

(39)

Fig. 9 shows a 2D example of a cluster C comprised of seven quadrature cells; Fig. 9a shows the source particles r j
in C (these are quadrature points in the adaptive mesh, here defined with order p = 3), and Fig. 9b shows the Chebyshev 
grid of interpolation points sk in C (here defined with degree n = 4, these represent the cluster through the particle-cluster 
approximation in Eq. (35)). The treecode has two options for computing particle-cluster interactions; the direct sum in 
Eq. (34) requires O (NS) operations, where NS is the number of source particles in C , while the approximation in Eq. (35)
requires O (n3) operations for interpolation of degree n; hence the approximation is more efficient when NS is large and n
is small, as in the example in Fig. 9.
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Fig. 10. Comparison of the treecode approximation error to the underlying discretization error for the carbon monoxide molecule. The mesh contains 
Nm = 661625 points and results in a discretization error of |Eref − Eds|/NA = 6.56e−4 Ha/atom (red dashed line). Solid curves and symbols show the 
treecode approximation error |Eds − Etc |/NA for treecode MAC parameter 0.35 ≤ θ ≤ 0.8 and interpolation degree n = 6, 8, 10.

6.3. Treecode algorithm

The treecode is described in Algorithm 3. The input consists of the quadrature points ri , weights f i, wi , and the treecode 
parameters including MAC θ , interpolation degree n, maximum leaf size NL , maximum batch size NB . Line 1 builds the tree 
of source clusters and the set of target batches. Line 2 computes the approximation weights f̂k for each source cluster. Line 
3 computes the batch-cluster interactions for each target batch via the recursive function ComputePotential; if the MAC 
in Eq. (36) is satisfied, then the approximation is computed with Eq. (35); if the MAC fails because (rB + rC )/R ≥ θ , then 
there are two options; if the cluster is a leaf, then the batch interacts directly with the cluster by Eq. (34), otherwise, the 
cluster has children and the batch interacts with each child; if the MAC fails because (n + 1)3 ≥ NS , then the batch interacts 
directly with the cluster by Eq. (34). The treecode operation count is O (Nm logNm), where the factor Nm is the number of 
target particles and the factor logNm is the number of levels in the tree.

Algorithm 3 Treecode.
input: quadrature points ri and weights f i , wi , i = 1, . . . , Nm
input: treecode MAC parameter θ , interpolation degree n, maximum leaf size NL
output: approximate potential ui, i = 1, . . . , Nm

1: build tree of source clusters {C} and set of target batches {B}
2: for each source cluster, compute approximation weights ̂ fk in Eq. (35)
3: for each target batch, ComputePotential(B , root_cluster)
4:
5: function ComputePotential(Batch, Cluster)
6: if MAC is satisfied, compute batch-cluster approximation by Eq. (35)
7: else if (rB + rC )/R ≥ θ

8: if Cluster is a leaf, compute batch-cluster interaction by direct sum in Eq. (34)
9: else for each Child of Cluster, ComputePotential(Batch, Child)

10: else if (n + 1)3 ≥ NS
11: compute batch-cluster interaction by direct sum in Eq. (34)
12: end function

6.4. Treecode accuracy

The sum in Eq. (32) is a discretization of the convolution integral in Eq. (31), and it is important to ensure that the 
treecode approximation error is less than discretization error. We document the accuracy of the treecode for the carbon 
monoxide molecule with domain [−20, 20]3 a.u., quadrature order p = 4, mesh refinement tolerance tolm = 3e−7, SCF 
tolerance tolsc f = 1e−5, and Green Iteration tolerance tolgi = 1e−6. In this case the number of mesh points is Nm = 661625. 
We compute the ground-state energy with and without the treecode, and record the discretization error |Eref − Eds|/NA , 
and treecode approximation error |Eds − Etc |/NA , where Eref is the reference energy computed by DFT-FE, and Eds, Etc are 
computed by the present method using direct summation and the treecode, respectively. Throughout this work the source 
clusters and target batch size parameters are set to NL = NB = 2000. Fig. 10 shows that the discretization error of the 
present method is |Eref − Eds|/NA = 6.56e−4 Ha/atom (red dashed line), while the treecode approximation error is much 
smaller. This confirms that in this range of parameter values, the numerical errors introduced by the treecode do not upset 
the accuracy of the discretization.
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Table 4
Treecode accuracy and acceleration for the carbon monoxide molecule using quadrature order p = 4 and mesh refinement parameter tolm , giving mesh size 
Nm , Hartree energy EH (Ha) in Eq. (8) for electron density in first SCF iteration, ds error (discretization error, computed using tolm = 1e−8 as reference), 
tc error (treecode error, |EH (ds) − EH (tc)| using MAC θ = 0.7 and interpolation degree n = 8). Run time (s) for the direct sum (ds) and treecode (tc) and 
treecode speedup (ds/tc) on a 6-core CPU and a single GPU.
tolm Nm EH (Ha) ds error tc error 6-core CPU time (s) GPU time (s)

ds tc ds/tc ds tc ds/tc

1e−3 141000 74.88640 6.20e−4 5.31e−7 70.42 26.24 2.68 0.39 0.47 0.82
1e−4 184750 74.87690 8.88e−3 1.20e−6 150.13 41.40 3.63 0.67 0.68 0.97
1e−5 249500 74.88668 9.00e−4 8.85e−6 216.17 80.32 2.69 1.13 1.13 1.00
1e−6 459500 74.88551 2.70e−4 3.68e−5 638.23 196.11 3.25 3.57 2.72 1.31
1e−7 928500 74.88574 4.00e−5 6.33e−6 2509.2 486.54 5.16 13.70 6.49 2.11
1e−8 2224375 74.88578 na 2.57e−6 15239.6 1373.90 11.09 78.31 17.27 4.54

6.5. Treecode efficiency on a 6-core CPU and single GPU

This section documents the BLTC efficiency on a 6-core 2.6 GHz Intel Core i7 processor and a single NVIDIA Titan V GPU. 
The treecode was programmed in C, with OpenMP directives for parallelizing over multiple CPU cores and OpenACC direc-
tives for running on the GPU. As noted above, the GPU implementation takes advantage of the fact that the particle-cluster 
interaction in Eq. (34) and the approximation in Eq. (35) both have the same direct sum structure involving independent 
kernel evaluations. The GPU processes the particle-particle interactions between the target batch and source cluster in par-
allel without thread divergence; this is because the MAC applies uniformly to all particles in a given target batch [60]. In 
practice, interaction lists are precomputed for each target batch to identify the source clusters interacting with the batch.

The performance of the BLTC on both platforms is demonstrated by computing the Hartree energy EH in Eq. (8) for the 
carbon monoxide molecule using the electron density from the first SCF iteration. Results are shown in Table 4 using direct 
summation and the treecode, for quadrature order p = 4 and mesh refinement parameter tolm between 1e−3 and 1e−8
yielding the indicated mesh size Nm . The direct sum energy values in the 3rd column converge as the mesh is refined, and 
the 4th column shows the corresponding discretization error using the value EH = 74.88578 obtained with tolm = 1e−8 as 
the reference. The 5th column records the treecode approximation error for MAC θ = 0.7 and degree n = 8; this is the dif-
ference between the value of EH computed by direct summation (column 3) and the value computed by the treecode (not 
shown). The results show that the treecode approximation error is well below the discretization error and within chemical 
accuracy.

The remainder of Table 4 records computation times on the 6-core CPU and GPU for direct summation (ds) and the 
treecode (tc). Averaging over the six runs in Table 4, direct summation runs 192 times faster on the GPU than on the 
6-core CPU, while the treecode runs 70 times faster. On both platforms the treecode is faster than direct summation, and 
the speedup (ds/tc) increases as the mesh is refined; this is consistent with O (N2

m) scaling for direct summation and 
O (Nm logNm) scaling for the treecode. In particular, for the largest mesh size with approximately 2.2 million mesh points, 
the treecode computation time on the GPU is less than 18 s, which is about 4.5 times faster than direct summation.

6.6. BLTC parallel efficiency on a single GPU node with 1, 2 or 4 GPUs

This subsection documents the parallel efficiency of the BLTC on a single GPU node running with 1, 2 or 4 GPUs, using 
OpenMP to parallelize across GPUs with one thread assigned to each GPU. The test system has 10 million particles ran-
domly located in a cube interacting via the Coulomb kernel. The work is divided into two stages; stage 1 encompasses the 
precomputing tasks in lines 1-2 of Algorithm 3 and stage 2 encompasses the batch-cluster computing in line 3. Fig. 11
shows the parallel efficiency of each stage and the entire computation as the number of GPUs increases from 1 to 4. The 
precompute stage scales less efficiently than the compute phase, due to some serial computation embedded in these tasks 
(85% on 2 GPUs, 63% on 4 GPUs), but this accounts for only a small fraction of the total computation time. The compute 
stage has close to ideal scaling (98% on 2 GPUs, 94% on 4 GPUs); moreover this stage accounts for a large fraction of the 
total computation time and therefore the treecode achieves 90% efficiency for the entire computation on 4 GPUs.

7. Ground state energy computations for atoms and molecules

The ground-state energy of several atoms (Li, Be, O) and small molecules (H2, CO, C6H6) was computed using treecode-
accelerated Green Iteration (TAGI) with the LDA exchange-correlation functional [63,64]. For each system the SCF iteration 
continued until the density residual fell below tolsc f = 1e−4. tolgi was set to 3e−3 for the first step in the SCF, then grad-
ually reduced to 1e−5 over the next four steps. The TAGI discretization parameters (quadrature order p, mesh refinement 
parameter tolm) and treecode parameters (degree n, MAC θ ) were chosen to ensure chemical accuracy of 1 mHa/atom in 
the computed ground-state energy. The computations were performed on a single node, where the treecode (written in C 
with OpenMP+OpenACC) was run on the four GPUs and the remainder of the code (written in Python) was run in serial on 
one CPU core.
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Fig. 11. Parallel efficiency of BLTC on a single GPU node for 10 million particles interacting via Coulomb kernel. Treecode MAC parameter θ = 0.7 and 
interpolation degree n = 7 yield treecode approximation error 2.31e−06 (L2 error with respect to direct sum). The results show computation time (s) and 
ideal scaling time (s) using 1, 2 and 4 GPUs for (a) stage 1 (precompute), (b) stage 2 (compute), and (c) total time. For comparison, the direct sum time on 
4 GPUs is 1668 s.

Table 5
Ground-state energy computations of atoms and small molecules using TAGI with errors computed with 
respect to reference values Eref computed using DFT-FE [31]. TAGI discretization parameters (quadrature 
order p, mesh refinement parameter tolm , mesh size Nm), treecode parameters (degree n, MAC θ ); error 
(Ha/atom) and total wall clock computation time (s) on a single node with 4 GPUs.
system Ne p tolm Nm n θ ET AG I error (Ha/atom) time (s)

Li 3 4 7e−6 232000 6 0.8 −7.334051 4.59e−4 35.75
Be 4 3 1e−5 179712 6 0.8 −14.445658 5.32e−4 29.35
O 8 4 3e−7 421000 6 0.8 −74.469668 −3.38e−4 143.09

H2 2 3 1e−3 51200 6 0.8 −1.13584 9.05e−4 6.67
CO 14 4 3e−7 661625 7 0.7 −112.473372 −7.21e−4 932.03
C6H6 42 4 3e−6 1464500 8 0.6 −230.193158 −3.64e−4 13947.89

Fig. 12. 2D slices of the adaptively refined mesh and computed electron density ρ for (a) carbon monoxide molecule (CO), and (b) benzene molecule 
(C6H6). The slices are taken at z= 0 and show [−15, 15]2 a.u. in xy-plane.

Table 5 presents the parameters and results for each system. The numerical parameters (p, tolm, n, θ ) are chosen to 
ensure chemical accuracy in the energy, and the heavier carbon and oxygen atoms require somewhat higher numerical 
resolution than the lighter hydrogen, lithium, and beryllium atoms. In particular, a larger mesh size Nm requires slightly 
tighter treecode parameters (increasing degree from n = 6 to n = 7, 8, decreasing MAC from θ = 0.8 to θ = 0.7, 0.6). Col-
umn 9 records the error in the ground-state energy computed by TAGI with respect to reference energies computed to 
0.1 mHa/atom accuracy with DFT-FE [31], showing that TAGI achieves chemical accuracy. Column 10 records the total wall 
clock computation time (s). The benzene molecule (C6H6, Ne = 42) is the largest system considered; the computation used 
approximately 1.5 million mesh points and required less than 4 hours of wall clock time.

Fig. 12 show 2D slices of the adaptively refined mesh and computed electron density for the carbon monoxide 
molecule 12a and benzene molecule 12b. Both molecules are located in the z=0 plane; for the CO molecule, the car-
bon atom is at (−1.06581, 0, 0) and the oxygen atom is at (+1.06581, 0, 0); for the benzene molecule, the six carbon atoms 
are at (∓0.682781, ±2.548170, 0), (±2.548230, ∓0.682767, 0), (±1.86544, ±1.86541, 0), and the six hydrogen atoms are 
at (∓1.21247, ±4.52502, 0), (±4.52548, ∓1.21333, 0), (±3.31252, ±3.31351, 0). The slices are taken in the z = 0 plane and 
show the region [−15, 15] a.u. in the xy-plane. The adaptive mesh successfully captures the variation in magnitude of the 
electron density.
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8. Conclusions

We presented a real-space method for all-electron Kohn-Sham DFT computations called Treecode-Accelerated Green 
Iteration (TAGI). TAGI is based on a reformulation of the Kohn-Sham equations in which the eigenvalue problem for the 
energies and wavefunctions (εi, ψi) in differential form is recast as a fixed-point problem in integral form by convolution 
with the bound state Helmholtz Green’s function [46]. In each step of the SCF iteration the fixed-points are computed by 
Green Iteration, where the convolution integrals are discretized on an adaptively refined mesh and the discrete convolution 
sums are efficiently evaluated using a GPU-accelerated treecode.

TAGI relies on several key techniques to achieve chemical accuracy and computational efficiency. First, the Fejér quadra-
ture rule and a-priori adaptive mesh refinement based on integration of a test function are used to compute integrals and 
represent the fields. Second, singularity subtraction is applied to evaluate convolution integrals having singular kernels; in 
particular a standard scheme is used for the Yukawa kernel in the Green Iteration convolutions, and we developed a new 
scheme for the Coulomb kernel in the Hartree potential convolutions since the standard scheme is inapplicable in that case. 
Third, a gradient-free method is employed to update the eigenvalues in Green Iteration. Fourth, the fixed-point iteration for 
the wavefunctions and eigenvalues in Green Iteration is accelerated using Anderson mixing. Fifth, the discrete convolution 
sums are computed efficiently using a barycentric Lagrange treecode (BLTC), which reduces the operation count from O (N2

m)

to O (Nm logNm), where Nm is the number of mesh points. The GPU implementation of the BLTC is facilitated by the proper-
ties of barycentric Lagrange interpolation including its scale-invariance and the fact that the particle-cluster approximation 
in Eq. (35) consists of independent kernel evaluations which can be evaluated concurrently [60].

We demonstrated the effect of these techniques on the carbon monoxide molecule. First, we investigated the quadrature 
rule and a-priori adaptive mesh refinement scheme, showing that the ground-state energy of the CO molecule is computed 
to within chemical accuracy of 1 mHa/atom using roughly 600,000 quadrature points and 4th order quadrature. Second, 
we demonstrated the effect of the singularity subtraction schemes; the ground-state computation was performed with and 
without singularity subtraction on a sequence of progressively refined meshes, and we observed a 100-fold reduction in 
error using singularity subtraction. Third, we compared three methods for updating the eigenvalues in Green Iteration, 1) 
Laplacian update using the Rayleigh quotient of the Hamiltonian differential operator, 2) gradient update using integration by 
parts to reduce the order of the operator, and 3) gradient-free update; on a wide range of meshes the gradient-free update 
yields a 10-fold improvement in accuracy over the gradient update, and a 100-fold improvement over the Laplacian update. 
Fourth, we investigated the convergence of Green Iteration in the first SCF iteration for the CO molecule, showing that 
the spectral gap in the Hamiltonian eigenvalues controls the rate of convergence of the eigenfunctions in Green Iteration; 
in particular, a small gap (εi = |εi+1 − εi | implies slow convergence of the eigenfunction ψi ; the convergence rates were 
predicted and then verified computationally; finally we showed that in the case of slow convergence, Green Iteration can 
be accelerated by applying Anderson mixing to the eigenpairs, yielding a 6-fold reduction in the number of iterations 
in this example. Fifth, we demonstrated the treecode’s ability to rapidly compute accurate approximations of the discrete 
convolution sums; in ground-state computations for the CO molecule, we showed that the treecode approximation error can 
be driven below the discretization error; we then demonstrated the speedup of the treecode over direct summation on both 
a 6-core CPU (parallelized with OpenMP) and a GPU (parallelized with OpenACC), achieving an 11× speedup on the CPU 
and a 4.5× speedup on the GPU; finally we observed a 70× speedup of the treecode running on the GPU in comparison 
with the CPU. A primary advantage of TAGI is that the discrete convolutions are arithmetically intensive and well suited 
for GPU acceleration. This is significant as GPUs become increasingly dominant in HPC systems (GPUs account for 95% of 
available floating point operations on a Summit node at Oak Ridge National Lab [78]).

We then performed TAGI computations for several atoms and small molecules on a single node with 4 GPUs, and verified 
the accuracy of the ground-state energy with respect to reference values. The results demonstrate the chemical accuracy, 
systematic convergence, and computational efficiency afforded by TAGI on these benchmark systems.

Future work. The purpose of this work was to demonstrate the feasibility of TAGI as a real-space integral equation 
based approach for all-electron Kohn-Sham DFT calculations. At present TAGI is less efficient than more mature highly 
optimized state-of-the-art codes; for example, on a single compute node, DFT-FE computes the ground state energy of 
benzene approximately 20× faster than TAGI. However there are several opportunities to improve the efficiency of this 
initial implementation of TAGI as discussed below.

First, TAGI currently employs an a priori mesh refinement scheme and it may be beneficial to investigate instead an a-
posteriori adaptive mesh refinement technique as used in finite element methods [70,31]. Additionally it would be interesting 
to replace the current Cartesian mesh cells by curvilinear cells adapted to the molecular geometry [79,80].

Second, the present form of Green Iteration explicitly computes the eigenvectors in each step of the SCF iteration. How-
ever it has been shown that computing an orthonormal basis for the eigenspace by Chebyshev filtered subspace iteration 
can reduce the computational cost in comparison with explicit eigensolves [81,82]; for example, a 10× speedup over previ-
ous methods was reported using this technique [28,83]. A subspace iteration approach could potentially be applied as well 
in the integral equation framework as an alternative to the present implementation of Green Iteration.

Third, as a real-space method TAGI naturally lends itself to domain decomposition, which will enable the use of paral-
lelized orthogonalization routines, which can also be GPU-accelerated, and a distributed memory implementation of BLTC for 
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parallelized integration [60]. Additionally, a recent version of the treecode based on barycentric Hermite interpolation [84]
has been shown to be more efficient than barycentric Lagrange interpolation in the high accuracy regime demanded by the 
DFT application, and this could also improve TAGI’s efficiency.

Fourth, TAGI can be extended to treat a wider variety of materials systems. In particular, periodic systems such as bulk 
materials or crystal structures can be accommodated using periodic treecodes [85,86]. Furthermore, we are developing a 
pseudopotential version of TAGI using Optimized Norm-Conserving Vanderbilt (ONCV) pseudopotentials; in this approach 
the singular Coulomb potential is replaced by a regularized pseudopotential, alleviating the need for highly refined meshes 
near the nuclei and enabling efficient calculations of larger materials systems. Preliminary results extending TAGI to ONCV 
calculations and using an MPI parallelized domain decomposition can be found in the reference [87].

CRediT authorship contribution statement

Nathan Vaughn: Code developer, Methodology, Data curator, First draft writer. Vikram Gavini: Supervisor, Conceptualiza-
tion, Methodology, Draft editor. Robert Krasny: Supervisor, Conceptualization, Methodology, Draft editor.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgement

We thank the reviewers for carefully reading the original submission and providing useful suggestions. This work was 
supported by National Science Foundation grant DMS-1819094, and the Michigan Institute for Computational Discovery 
and Engineering (MICDE) and Mcubed program at the University of Michigan. RK thanks Lunmei Huang and Li Wang for 
early discussions on the Green’s function approach to DFT. NV thanks Bikash Kanungo and Sambit Das for providing ref-
erence values and the single-atom radial data. Computational resources and services were provided by Advanced Research 
Computing-Technology Services (ARC-TS) at the University of Michigan.

Appendix A. Symbols

Variables, fields, and operators Symbol

Electron density, Eq. (4) ρ
Effective potential, Eq. (2) Vef f [ρ]
Hamiltonian operator, Eq. (1) H[ρ]
Hamiltonian eigenpairs, Eq. (1) (εi ,ψi)

Green Function Integral operator, Eq. (12) G(ε)
Integral eigenpairs, Eq. (30) (µi ,φi)

Physical parameters and constants Symbol

Number of atoms, Eq. (3) NA
Atomic positions, Eq. (3) R j
Nuclear charges, Eq. (3) Z j
Number of electrons, Eq. (5) Ne
Boltzmann constant, Eq. (4) kB
Temperature, Eq. (4) T
Fermi Energy, Eq. (5) µF

Numerical Parameters Symbol

Number of wavefunctions, Eq. (5) Nw
Mesh refinement parameter, Eq. (16) tolm
Number of cells, Eq. (14) Nc
Quadrature order, Eq. (14) p
Number of quadrature points, Eq. (14) Nm
SCF convergence tolerance, Algorithm (1) tolsc f
Green Iteration convergence tolerance, Algorithm (2) tolgi
Anderson mixing parameter β

Gaussian singularity subtraction parameter, Eq. (23) α
Gauge shift, Eq. (22) Vshi f t
Treecode MAC parameter, Eq. (36) θ

Treecode interpolation degree, Eq. (35) n
Treecode maximum batch size NB
Treecode maximum leaf cluster size NL
Number of source particles in cluster NS
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