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Abstract 

Reliability-based design (RBD) employs optimization to identify design variables that satisfy the 

reliability requirement. For many routine component design jobs that do not need optimization, 

however, RBD may not be applicable, especially for those design jobs which are performed 

manually or with a spreadsheet. This work develops a modified RBD approach to component 

design so that the reliability target can be achieved by conducting traditional component design 

repeatedly using a deterministic safety factor. The new component design is based on the First 

Order Reliability Method (FORM), which iteratively assigns the safety factor during the design 

process until the reliability requirement is satisfied. In addition to several iterations of deterministic 

component design, the other additional work is the calculation of the derivatives of the design 

margin with respect to the random input variables. The proposed method can be used for a wide 

range of component design applications. For example, if a deterministic component design is 

performed manually or with a spreadsheet, so is the reliability-based component design. Three 

examples are used to demonstrate the practicality of the new design method. 

Keywords: Reliability in design, Design of machine elements, Design methodologies, Algorithms   
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1. Introduction  

 Safety factors are routinely used in mechanical design to account for uncertainty [1-6]. They 

are particularly useful when complete distributions of random variables are unknown. When such 

distributions are available, the safety factor based design can be replaced by the RBD [7-16]. RBD 

solves an optimization problem [17-21] by identifying optimal design variables that minimize a 

cost-type objective function while satisfying reliability constraints. The reliability in RBD is the 

probability that a design requirement is satisfied [22].  

 There are many RBD methodologies. The most common ones employ the First Order 

Reliability Method (FORM) [23-25] to evaluate reliability constraints during the optimization 

process. FORM can not only provide a good balance between accuracy and efficiency, but also 

make it possible to decouple deterministic optimization from reliability analysis, thereby further 

reducing the computational cost. RBD has been successfully used in many applications, for 

example, design of composite over-wrapped tanks [26], B-pillar design for side impact [27], 

crashworthiness of vehicle side impact [28], and engine piston design for reducing slap noise due 

to the reducing secondary motion [29].  

 The concept of the safety factor, with which engineers are familiar, can also be incorporated in 

RBD. The safety-factor based approach for RBD [2, 5] is such a method. This method employs 

nonlinear optimization and FORM, calling deterministic optimization and FORM sequentially 

until all the reliability constraints are satisfied. During this process, partial safety factors are 

applied to all the input random variables.  

 RBD methodologies [30-34] that involve optimization are usually performed for system design 

and design of key elements whose reliability is required. Optimization is a commonly used tool 
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for system and component design. Many engineering analysis and design software tools have an 

optimization module, and it is quite easy to use it. Some components, however, are not designed 

by optimization, and they may be designed by a safety-factor approach or may be designed based 

on physical experiments. It is therefore desirable to derive an RBD approach for components that 

do not need optimization. 

 One approach, which satisfies this requirement is the mechanical design approach using the 

First Order Second Moment (FOSM) method [35-40]. This method can find design variables for a 

given reliability target with only the minimal extra work: the calculation of derivatives of a design 

margin function with respect to input random variables. It is therefore practical and can be used 

for routine component design. The accuracy of the reliability produced by the design variables, 

however, may be poor. This means that the designed reliability may be far away from the required 

reliability. The reason is that FOSM uses a first-order approximation around the means of input 

random variables and that only the first two moments (means and standard deviations) are used.  

 This work develops a modified approach to reliability-based component design without 

optimization and a cost-type objective. It uses FORM and produces higher accuracy than FOSM. 

During the design process, the method iteratively updates a safety factor for the deterministic 

component design until the reliability requirement is satisfied. In addition to a number of iterations 

of the deterministic component design, the only additional work is the calculation of the derivatives 

of the design margin with respect to the random input variables. The major advantage of this 
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approach is that engineers can use it in the same way as they perform their deterministic routine 

component design, either manually or by other means.   

 Reliability-based design and the safety factor are reviewed in Section 2, and the new 

component design approach is presented in Section 3, followed by three examples in Section 4. 

Conclusions are given in Section 5.  

2. Review of RBD and Safety Factor 

RBD is a design methodology that minimizes a cost-type objective and maintains reliability 

requirements when uncertainty (randomness) is present. Uncertainty can also be accommodated 

by using a safety factor. Both the design methodologies are briefly reviewed here. 

2.1 Reliability-Based Design 

A typical RBD model is given by 

{

Min   
𝒅

𝑓(𝒅)

s. t.   Pr{𝐺𝑖(𝒅, 𝑿) > 0} ≥ [𝑅𝑖], 𝑖 = 1,2, … , 𝑛𝑔

          𝒅𝐿 ≤ 𝒅 ≤ 𝒅𝑈

(1) 

In the above model, 𝒅 is the vector of design variables with their lower and upper bounds 𝒅𝐿  

and 𝒅𝑈 , respectively. 𝑿 = (𝑋1, 𝑋2, … , 𝑋𝑛) is the vector of random variables. 𝑓(⋅) is a cost-type 

objective function, and 𝐺𝑖(𝒅, 𝑿) = 0 is a limit-state function. The requirement is 𝐺𝑖(𝒅, 𝑿) > 0, 

and the probability of satisfying the requirement is called reliability, denoted by 𝑅𝑖; namely 

𝑅𝑖 = Pr{𝐺𝑖(𝒅, 𝑿) > 0} (2) 

The constraint associated with 𝐺𝑖(𝒅, 𝑿) is that 𝑅𝑖 should be greater than or equal to the desired 

reliability [𝑅𝑖] or 1 − [𝑝𝑓𝑖
], where [𝑝𝑓𝑖

] is the allowable probability of failure. 
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The reliability 𝑅𝑖 is obtained by 

𝑅𝑖 = Pr{𝐺𝑖(𝒅, 𝑿) > 0} = ∫ 𝑓𝒙(𝒙)
𝐺𝑖(𝒅,𝑿)>0

𝑑𝒙 (3) 

where 𝑓𝒙(𝒙) is the joint probability density function (PDF) of 𝑿. FORM is commonly used to 

calculate 𝑅𝑖 . FORM first transforms 𝑿 into independent standard normal variables 𝑼 with 𝑿 =

𝑇(𝑼)  [41], where 𝑇(⋅)  denotes the transformation operation. The limit-state function then 

becomes 

𝐺(𝒅, 𝑿) = 𝐺(𝒅, 𝑇(𝑼)) (4) 

Then 𝑅𝑖 is approximated by 

𝑅𝑖 = Φ(𝛽) (5) 

where 𝛽 is the reliability index, which is the shortest distance from the origin of the U-space to the 

limit-state contour 𝐺(𝒅, 𝑇(𝑼)) = 0, Φ(∙) is the cumulative density function (CDF) of a standard 

normal variable. The distance is obtained by solving the following optimization model: 

{
Min ‖𝒖‖

s.t.   𝐺(𝒅, 𝑇(𝒖)) = 0
(6) 

The solution 𝒖∗  is called the most probable point (MPP), whose norm is the reliability 

index.

𝛽 = ‖𝒖∗‖ (7) 

where ‖∙‖ stands for the norm of a vector.  

Directly solving the RBD model involves an expensive double-loop procedure if the MPP is 

used for the reliability analysis. Many sequential single-loop methods [30-33] have been developed 
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to reduce the computational time. One of them is the sequential optimization and reliability 

analysis (SORA) method [42]. SORA solves the model in Eq. (1) with a sequence of cycles of 

optimization and reliability analysis. In each cycle, the optimization is performed by fixing the 

random variables 𝑿 at fixed values determined by the reliability analysis from the last cycle. Then 

the design variables 𝒅 are passed to the reliability analysis that is then performed. This process 

repeats till convergence. 

2.2 Safety Factor and Traditional Deterministic Design 

A safety factor is the ratio of the strength (capacity or resistance) divided by the maximum 

stress (demand or load).  It is given by 

𝑆𝐹 =
𝑆

𝐿
(8) 

where 𝑆 and 𝐿 are the general strength and general stress, respectively. The strength and load used 

in this work are in a general sense. The strength could be anything that is related to the capacity of 

a component, for example, a yield strength, permitted deflection, or required fatigue life; a load 

could be anything that related to the demand of the component or the loading acting on or generated 

in the component, such as normal stress, force, deflection, and fatigue damage accumulation.  

The component design task is to identify design variables 𝒅 so that the safety factor is greater 

than 1, and this gives a design margin function 

𝑔(𝒅) =
𝑆

𝑆𝐹
− 𝐿(𝒅) > 0 (9) 

For example, a cantilever shaft is subjected to a force 𝑃 as shown in Fig. 1. The design margin 

function is given by 
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𝑔(𝑑) =
𝑠𝑦

𝑆𝐹
− 𝜎′ (10) 

where design variable 𝑑 is the diameter, and 𝜎′ is the von Mises stress calculated by 

𝜎′ = √𝜎𝑥
2 + 3𝜏𝑧𝑥

2 (11) 

in which  

𝜎𝑥 =
32𝑃(𝑎 + 𝑏)

𝜋𝑑3
(12) 

𝜏𝑧𝑥 =
16𝑃𝑒

𝜋𝑑3
(13) 

Solving 𝑔(𝑑) = 0 yield the design variable 𝑑. 

------------------------------- 

Fig. 1 here 

------------------------------- 

Fig. 1 A cantilever shaft 

3. A Modified Approach to Reliability-Based Component Design 

In this section, we discuss the modified approach to reliability-based component design. It is 

for mechanical component designs that do not have a cost-type objective function and therefore 

do not require optimization. The approach is practical because the design margin function is 

exactly the same as the one used in the deterministic component design as shown in Eq. (9). It does 

not dramatically alter the way that designers perform the component design. The only additional 

work is to perform the deterministic component design multiple times with different safety factors 

which are updated during the iterative design process.  

3.1 The Proposed Approach 
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The proposed approach is based on FORM. The random variables and their nominal values 

(means) are 𝑿 = (𝑋1, 𝑋2, … , 𝑋𝑛)  and 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) , respectively. Let the CDF of 𝑋𝑖  be 

𝐹𝑖(𝑋𝑖), 𝑖 = 1,2, … , 𝑛, and assume all the variables in 𝑿 are independent. The general strength of 

the component is 𝑆, which is the first element of 𝑿, namely, 𝑋1 = 𝑆. 𝑆 could be a yield strength, 

permissible deflection, or capacity. Let the rest of 𝑿 be 𝒀 = (𝑋2, 𝑋3, … , 𝑋𝑛). The general load 𝐿 of 

the component is determined by 𝒅 and 𝒀  and is therefore given by 𝐿(𝒅, 𝒀), where 𝒅 and 𝒀 are 

vectors to represent multiple design variables and parameters, respectively. The general load could 

be a force, moment, and stress. For the example in Sec. 2.2, the general strength is the yield 

strength; namely, 𝑆 = 𝑆𝑦; and the general load is the von Mises stress 𝜎′, namely, 𝐿 = 𝜎′, which 

is a function of the design variable or the diameter 𝑑. 

If we use the nominal values of general strength and general load to calculate the safety factor, 

we obtain a deterministic safety factor 𝑆𝐹 . 

𝑆𝐹 =
𝑠

𝑙
=

𝑠

𝐿(𝒅, 𝒚)
(14) 

where 𝑠 and 𝑙 are nominal values of the strength and load, respectively, and 𝒚 is a vector of the 

nominal values of 𝒀. Note that the nominal value of a random variable is the median of a random 

variable or its mean value if its distribution is symmetric. The deterministic design margin function 

is 𝑔(𝒅) =
𝑠

𝑆𝐹
− 𝐿(𝒅) > 0 as already been given in Eq. (9). 

The actual design margin, or the difference between the general strength and general load, is 

given by 

𝐺(𝒅, 𝑿) = 𝑆 − 𝐿(𝒅, 𝒀) > 0 (15) 
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As we have discussed, the probability of satisfying the design margin 𝑅 = Pr{𝐺(𝒅, 𝑿) > 0} is the 

component reliability. If the required reliability is [𝑅], the reliability index [43] is 

𝛽 = Φ−1([𝑅]) (16) 

Many studies [2, 5, 8, 16] have shown that the reliability requirement 𝑅 = Pr{𝐺(𝒅, 𝑿) > 0} >

[𝑅] is equivalent to 

𝐺(𝒅, 𝒙∗) = 𝑆∗ − 𝐿(𝒅, 𝒚∗) > 0 (17) 

where 𝒙∗ = (𝑆∗, 𝒚∗) is the MPP in the X-space, and it is transformed from the MPP 𝒖∗ = (𝑢𝑖
∗)𝑖=1,𝑛 

in the standard normal space U-space. We rewrite Eq. (17) by 

𝑆∗

𝑠

𝑠

𝐿(𝒅, 𝒚)
−

𝐿(𝒅, 𝒚∗)

𝐿(𝒅, 𝒚)
> 0 (18) 

The X- to U-space transformation is given by 

𝐹𝑖(𝑥𝑖
∗) = Φ(𝑢𝑖

∗) (19) 

Then 

𝑥𝑖
∗ = 𝐹𝑖

−1[Φ(𝑢𝑖
∗)] = 𝑇(𝑢𝑖

∗) (20) 

where 𝑇(∙) represents the transformation function for simplicity. Since the MPP 𝒖∗ is the shortest-

distance point to the surface 𝐺(⋅) = 0, 𝒖∗ is collinear with the gradient of 𝐺(⋅). This gives [44] 

𝑢𝑖
∗ = −𝛽𝛼𝑖 (21) 

where the reliability index 𝛽 is the magnitude of 𝒖∗; 𝛼𝑖 is the element of the unit vector of the 

gradient 𝛻𝐺  and is given by 
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𝛼𝑖 =

𝜕𝐺(𝒅, 𝑇(𝒖∗))
𝜕𝑢𝑖

∗

‖𝛻𝐺‖
(22)

 

𝛻𝐺  is computed by  

𝛻𝐺 = (
𝜕𝐺(𝒅, 𝑇(𝒖∗))

𝜕𝑢𝑖
∗ )

𝑖=1,…,𝑛

(23) 

More details about the above equations can be found in [44]. By the chain rule of partial 

derivative, we have 

𝜕𝐺(𝒅, 𝑇(𝒖∗))

𝜕𝑢𝑖
∗ =

𝜕𝐺(𝒅, 𝒙∗))

𝜕𝑥𝑖
∗

𝑑𝑥𝑖
∗

𝑑𝑢𝑖
∗ (24) 

Define 𝑤𝑖 =
𝑑𝑥𝑖

∗

𝑑𝑢𝑖
∗, from Eq. (20), we have 

𝑤𝑖 =
𝑑𝑥𝑖

∗

𝑑𝑢𝑖
∗ =

𝜙 (Φ−1(𝐹𝑖(𝑥𝑖
∗)))

𝑓𝑖(𝑥𝑖
∗)

(25) 

where 𝜙(⋅) and 𝑓𝑖(⋅) are the probability density function (PDF) of a standard normal variable and 

𝑋𝑖, respectively, Φ(⋅) is the CDF of a standard normal variable. For commonly used distributions, 

𝑤𝑖 is listed in the appendix. Therefore, we can rewrite Eq. (24) as 

𝜕𝐺(𝒅, 𝑇(𝒖∗))

𝜕𝑢𝑖
∗ = 𝑤𝑖

𝜕𝐺(𝒅, 𝒙∗)

𝜕𝑥𝑖
∗ (26) 

And Eq. (23) can be rewritten as 

𝛻𝐺 = (𝑤𝑖

𝜕𝐺(𝒅, 𝒙∗)

𝜕𝑥𝑖
∗ )

𝑖=1,…,𝑛

= (𝑤1

𝜕𝐺(𝒅, 𝒙∗)

𝜕𝑥1
∗ , 𝑤2

𝜕𝐺(𝒅, 𝒙∗)

𝜕𝑥2
∗ , ⋯ , 𝑤𝑛

𝜕𝐺(𝒅, 𝒙∗)

𝜕𝑥𝑛
∗

) (27) 

From Eqs. (22) and (26), at the MPP 𝒙∗ in X-space, we have 
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𝛼𝑖 =
𝑤𝑖

𝜕𝐺(𝒅, 𝒙∗)
𝜕𝑥𝑖

∗

‖𝛻𝐺‖
(28) 

Plugging Eq. (28) into Eq. (21), we obtain the value of 𝑢𝑖
∗ . Then, we can obtain 𝑥𝑖

∗  by 

substituting 𝑢𝑖
∗ into Eq. (20). Define 

𝜆𝑆 =
𝑆∗

𝑠
(29) 

and 

𝜆𝐿 =
𝐿(𝒅, 𝒚∗)

𝐿(𝒅, 𝒚)
(30) 

Substituting Eqs. (14), (29) and (30) into Eq. (18), we have 

𝜆𝑆𝑆𝐹 − 𝜆𝐿 > 0 (31) 

By solving the inequality equation, we have the range for design variables. Once we specify the 

design variables, the safety factor for the given design is  

𝑆𝐹 =
𝜆𝐿

𝜆𝑆

(32) 

As shown in Eq. (32), 𝜆𝐿 and 𝜆𝑆 indicate the contributions of the general strength and general 

stress to the overall safety faction 𝑆𝐹 , and they can be considered as partial safety factors.  

To design the component with the reliability target, we can then use the deterministic design 

function, which is rewritten here. 

𝑔(𝒅) =
1

𝑆𝐹
𝑠 − 𝐿(𝒅, 𝒚) > 0 (33) 
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The design margin function in Eq. (33) is the same function used in deterministic component 

design since only the nominal values 𝒚 of 𝒀 are involved. No random variables appear in the 

function. If the safety factor 𝑆𝐹  is given, we can solve for 𝒅.  To determine the safety factor 𝑆𝐹  

that satisfies the reliability requirement, we need to repeat the above process iteratively to find the 

MPP 𝒙∗. Unlike the reliability-based design optimization, the proposed approach performs the 

MPP search implicitly to update the safety factor. It does not require an explicit optimization model 

and is therefore easy to implement. The proposed approach depends totally on how the 

deterministic design is performed or in other words, how Eq. (33) is solved, either manually or 

numerically. 

3.2 The Procedure 

The design margin function 𝐺(𝒅, 𝑿) = 𝑆 − 𝐿(𝒅, 𝒀) and deterministic design margin function 

𝑔(𝒅) =
1

𝑆𝐹
𝑠 − 𝐿(𝒅, 𝒚) are usually nonlinear functions. As the safety factor 𝑆𝐹  depends on 𝒅 , 

directly solving for 𝒅  from 𝑔(𝒅) > 0  requires a numerical procedure, which diminishes the 

practicality of the design. We develop a straightforward procedure so that the design variables can 

be obtained iteratively by performing deterministic design a number of times. The procedure is 

discussed below. 

Initial design 

1) Perform the initial design by using 𝑆𝐹 = 1 or other value of 𝑆𝐹 > 1. From 𝑔(𝒅) =
1

𝑆𝐹
𝑠 −

𝐿(𝒅, 𝒚) > 0, initial design variables 𝒅 are obtained. If there are multiple design functions 

due to multiple design requirements or multiple failure modes, there are two ways to obtain 

𝒅. The first way involves the approach that can be found in a mechanical design textbook. 

It solves the design functions one by one and results in multiple designs. Then it selects the 
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design that satisfies all the design functions. The second way is to solve all the design 

functions simultaneously. Which way is used is the choice of designers, and the proposed 

approach can work for either way. If the preferred value of a design variable should be 

determined, designers can make a decision based on their experience. Or they can simply 

find whether a preferred value should be greater or smaller than the calculated value by 

verifying if the preferred value results in a positive design function. 

Since the safety factor used in the initial design may not satisfy the reliability requirement, 

it will be updated iteratively next. To prepare for the iterations, set 𝒅 to be the current 

design, and set the MPP 𝒙∗ to be the nominal values of all random input variables. 

Iterative design 

2) At the current design point 𝒅 and 𝒙∗, calculate the gradient of the design margin function 

𝐺(𝒅, 𝑿) and update the MPP following the procedure in Fig. 2. And the gradient can be 

calculated either analytically or numerically.   

3) Update 𝜆𝑆 and 𝜆𝐿 using Eqs. (29) and (30), and solve for the safety factor 𝑆𝐹  using Eq. 

(32).  

4) Solve for new design point 𝒅 by plugging the new 𝑆𝐹  into the deterministic design function 

𝑔(𝒅) =
1

𝑆𝐹
𝑠 − 𝐿(𝒅). If there are multiple design functions and preferred values of design 

variables need to be determined, follow the same guideline discussed for the initial design 

stage.  
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5) Check convergence. The criterion is that the difference of the safety factor (SF) of current 

iteration and previous iteration. It converges when the difference is sufficiently small, 

which is given by 

‖SF𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − SF𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠‖

SF𝑐𝑢𝑟𝑟𝑒𝑛𝑡
≤ 𝜀 (34) 

where 𝜀 is a small positive quantity. 𝜀 = 0.1%, 𝜀 = 0.01%, or other values could be used. 

If convergence is not achieved, go to step 2); otherwise, go to step 6). 

Final design 

6) Based on 𝒅 obtained, choose appropriate final design variables. 

The MPP is updated after a new design 𝒅 is identified. 𝒖∗ obtained during each iteration before 

convergence is not the true MPP for a given design 𝒅. Upon convergence of the entire design 

process, 𝒖∗ will be the true MPP for the final design. This will not only save design time but also 

guarantee the target reliability is achieved.  

The flowcharts of the proposed approach are provided in Figs. 2.  

------------------------------- 

Fig. 2 here 

------------------------------- 

Fig. 2 Flowchart of reliability-based component design 

4. Examples 

In this section, we provide three examples. Example 1 is the shaft design problem discussed 

previously in Sec. 2.2. Since the design is performed manually, all details of using the proposed 

approach are given so that an interested reader could easily repeat the process and reproduce the 
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result. Example 2 shows a case with more than one failure mode. Example 3 involves discrete 

design variables selected from a table, non-normally distributed random variables, more than one 

failure mode, and black-box design functions.  

4.1 A Shaft Design 

This example involves a design that is performed manually as discussed in Sec. 2.2 and is 

shown in Fig. 1. The design margin function is given in Eq. (10). The yield strength and the applied 

force follow normal distributions 𝑆𝑦~𝑁(530,202) MPa and 𝑃~𝑁(1200,1002) N, respectively. 

𝑆𝑦  and 𝑃 are independent. The random variables are therefore 𝑿 = (𝑆𝑦, 𝑃). Other parameters are 

𝑎 = 300 mm, 𝑏 = 50 mm, and 𝑒 = 350 mm. The design task is to determine the diameter of the 

shaft 𝑑 so that the reliability of the shaft is no less than [𝑅] = 0.9999. The design margin function 

is  

𝐺(𝒅, 𝑿) = 𝑆𝑦 − 𝐿(𝒅, 𝒀) = √[
32𝑃(𝑎 + 𝑏)

𝜋𝑑3
]

2

+ 3 (
16𝑃𝑒

𝜋𝑑3
)

2

(35) 

And the deterministic design function in Eq. (10) is rewritten as 

𝑔(𝒅) =
𝑠𝑦

𝑠𝐹
− 𝐿(𝒅) = √[

32𝑝(𝑎 + 𝑏)

𝜋𝑑3
]

2

+ 3 (
16𝑝𝑒

𝜋𝑑3
)

2

(36) 

where 𝑝 is the nominal value of 𝑃.  

Design process 

Determine the reliability index 

𝛽 = Φ−1([R]) = Φ−1([0.9999]) = 3.7190 
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Derive the gradient  

𝛻𝐺 = (𝑤𝑖

𝜕𝐺(𝒅, 𝑿)

𝜕𝑋𝑖
)

𝑖=1,…,𝑛

= (𝑤1

𝜕𝐺

𝜕𝑋1
, 𝑤2

𝜕𝐺

𝜕𝑋2
) 

𝜕𝐺

𝜕𝑋1
=

𝜕𝐺

𝜕𝑆𝑦
= 1 

𝜕𝐺

𝜕𝑋2
=

𝜕𝐺

𝜕𝑃
= −

16√4(𝑎 + 𝑏)2 + 3𝑒2

𝜋𝑑3
 

From Table A1, we have  

𝑤1 = 𝜎1 = 20 MPa, 𝑤2 = 𝜎2 = 1.2 kN 

Iteration 1 

Start from the deterministic design by setting 𝑆𝐹 = 1.0. Then plug the nominal values of 

𝑆𝑦  and 𝑃, which are 𝑠𝑦 = 530 MPa and 𝑝 = 1200 N, respectively, into  

𝑔(𝒅) =
𝑠𝑦

𝑆𝐹
− √[

32𝑝(𝑎 + 𝑏)

𝜋𝑑3
]

2

+ 3 (
16𝑝𝑒

𝜋𝑑3
)

2

> 0 

We have 

530(10)6 − √𝐴1
2 + 3𝐵1

2 > 0 

where  

𝐴1 =
32(1.2)(10)3(300 + 50)(10)−3

𝜋𝑑3
 

𝐵1 =
16(1.2)(10)3(350)(10)−3

𝜋𝑑3
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which yields the initial design 𝑑 > 22.02 mm. Substituting 𝑑  into 𝐴1 and 𝐵1, the general load 

(normal stress) at the design point 𝑑 = 22.02 mm is 

𝐿(𝒅, 𝒚) = √𝐴1
2 + 3𝐵1

2 = 530.0 MPa 

 

Iteration 2 

At 𝑑 = 22.02 mm, using Eq. (27) we obtain the gradient 

𝛻𝐺 = (𝑤1

𝜕𝐺

𝜕𝑥1
, 𝑤2

𝜕𝐺

𝜕𝑥2
) = (2.0 × 107, −4.4167 × 107) 

𝜶 = (𝛼1, 𝛼2) = (
𝑤1

𝜕𝐺
𝜕𝑥1

‖𝛻𝐺‖
,
𝑤2

𝜕𝐺
𝜕𝑥2

‖𝛻𝐺‖
) = (0.4125, −0.9110) 

𝒖∗ = (𝑢1
∗ , 𝑢2

∗ ) = (−𝛽𝛼1, −𝛽𝛼2) = (−1.5341, 3.3879) 

𝒙∗ = (𝑥1
∗, 𝑥2

∗) = (𝐹1
−1[Φ(𝑢1)],  𝐹2

−1[Φ(𝑢2)]) = (499.3176 MPa, 1.5388 kN) 

and the general strength 𝑆∗ = 𝑥1
∗ = 499.3176 MPa. 

𝜆𝑆 =
𝑆∗

𝑠
=

499.3176

530
= 0.9421 

The general load at 𝒚∗ = (𝑥2
∗) is 

𝐿(𝒅, 𝒚∗) = √𝐴2
2 + 3𝐵2

2 = 679.6302 MPa 

where  
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𝐴2 =
32(1.5388)(10)3(300 + 50)(10)−3

𝜋(22.02 × 10−3)3
 

𝐵2 =
16(1.5388)(10)3(350)(10)−3

𝜋(22.02 × 10−3)3
 

𝜆𝐿 =
𝐿(𝒅, 𝒚∗)

𝐿(𝒅, 𝒚)
=

679.6302

530.0
= 1.2823 

Then the updated safety factor is 

𝑆𝐹 =
𝜆𝐿

𝜆𝑆
=

1.2813

0.9421
= 1.3611 

Plugging the new 𝑆𝐹  into the deterministic design function in Eq. (33), we have  

530(10)6

1.3611
− √𝐶2

2 + 3𝐷2
2 > 0 

where 

𝐶2 =
32(1.2)(10)3(300 + 50)(10)−3

𝜋𝑑3
 

𝐷2 =
16(1.2)(10)3(350)(10)−3

𝜋𝑑3
 

which yields  

𝑑 > 24.40 mm 

At 𝑑 = 24.40 mm, 𝐿(𝒅, 𝒚) = 389.3857 MPa. Check the convergence using Eq. (34) and we 

obtain 

𝜀 =
|𝑆𝐹,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑆𝐹,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠|

𝑆𝐹,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠
=

|1.3611 − 1.0|

1.0
= 36.11% 
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It is greater than the tolerance 0.01%, and the process continues. 

Iteration 3 

At 𝑑 = 24.40 mm, we have 

𝛻𝐺 = (𝑤1

𝜕𝐺

𝜕𝑥1
∗ , 𝑤2

𝜕𝐺

𝜕𝑥2
∗) = (2.0 × 107, −3.2449 × 107) 

𝜶 = (𝛼1, 𝛼2) = (
𝑤1

𝜕𝐺
𝜕𝑥1

∗

‖𝛻𝐺‖
,
𝑤2

𝜕𝐺
𝜕𝑥2

∗

‖𝛻𝐺‖
) = (0.5247, −0.8513) 

𝒖∗ = (𝑢1
∗ , 𝑢2

∗ ) = (−𝛽𝛼1, −𝛽𝛼2) = (−1.9514, 3.1660) 

𝒙∗ = (𝑥1
∗, 𝑥2

∗) = (𝐹1
−1[Φ(𝑢1)],  𝐹2

−1[Φ(𝑢2)]) = (490.9729 MPa, 1.5166 kN) 

and the general strength 𝑆∗ = 𝑥1
∗ = 490.9729 MPa.  

𝜆𝑆 =
𝑆∗

𝑠
=

490.9729

530
= 0.9264 

The general load at 𝒚∗ = (𝑥2
∗) is 

𝐿(𝒅, 𝒚∗) = √𝐴3
2 + 3𝐵3

2 = 492.1173 MPa 

where  

𝐴3 =
32(1.5166)(10)3(300 + 50)(10)−3

𝜋(24.40 × 10−3)3
 

𝐵3 =
16(1.5166)(10)3(350)(10)−3

𝜋(24.40 × 10−3)3
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𝜆𝐿 =
𝐿(𝒅, 𝒚∗)

𝐿(𝒅, 𝒚)
=

492.1173

389.3857
= 1.2638 

Then the updated safety factor is 

𝑆𝐹 =
𝜆𝐿

𝜆𝑆
=

1.2638

0.9264
= 1.3643 

Plugging the new 𝑆𝐹  into the deterministic limit-state function in Eq. (33), we have  

530(10)6

1.3643
− √𝐶3

2 + 3𝐷3
2 > 0 

where 

𝐶3 =
32(1.2)(10)3(300 + 50)(10)−3

𝜋𝑑3
 

𝐷3 =
16(1.2)(10)3(350)(10)−3

𝜋𝑑3
 

which yields 

𝑑 > 24.42 mm 

Check the convergence using Eq. (34) and we obtain 

𝜀 =
|𝑆𝐹,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑆𝐹,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠|

𝑆𝐹,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠
=

|1.3643 − 1.3611|

1.3611
= 0.22% 

which is greater than the convergence tolerance 0.01%. After one more iteration, the process 

converges and the final design variable is 𝑑 > 24.42 mm. This design will meet the reliability 

target 0.9999, which is equivalent to a probability of failure 10−4. To verify this, Monte Carlo 

simulation (MCS) is performed with a large sample size of 108 . The probability of failure 
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produced by MCS is 1.01 × 10−4 , very close to the required probability of failure. For a 

manufacturability consideration, we can set the final design 𝑑 = 24.5 mm, which ensures higher 

reliability than the required one. The entire design process is summarized in Table 1. 

Table 1 Design process of the shaft 

------------------------------- 

Table 1 here 

------------------------------- 

 

To confirm that the safety factor RBD produces the same result as an optimization based RBD 

method, SORA is used to solve the same problem. Since no objective function exists, we set the 

deterministic design margin as the objective function and minimize it. The constraint function is 

the reliability constraint. The same design variable 𝑑 is obtained from SORA, and both approaches 

find the final design variable in four iterations.   

4.2 A Key Design 

The task is to design a key (Fig. 3) for a shaft with a diameter of 22 mm so that its hub can 

withstand compression and shearing stress induced by the transmission power 𝑃 . The target 

reliability is [𝑅] = 0.999999. The width and height are determined given by shaft diameter 

according ANSI Standard, which are 8 mm and 7 mm, respectively. The random variables are 𝒙 =

(𝑆𝑦, 𝑆𝑠𝑦 , 𝑃, 𝜔) , where 𝑆𝑦  is the compression (crushing) yield strength of the material, 𝑆𝑠𝑦 =

0.577𝑆𝑦 is the shearing strength of the material, 𝑃 is the transmission power, and 𝜔 is the angular 

velocity of the shaft. All the random variables are independent, and their distributions are given in 

Table 2. The design variable 𝐸 is the length of the key, namely, 𝒅 = (𝐸), which should be less 

than 30 mm because the diameter of the shaft is 22 mm. 

------------------------------- 
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Fig. 3 here 

------------------------------- 

Fig. 3 A key of shaft-hub gear  

Table 2 Distributions of the random variables in Example 2 

------------------------------- 

Table 2 here 

------------------------------- 

There are two failure modes existed because the key needs to withstand compression and 

shearing stress induced by the transmission power. Therefore, the design margin functions are 

defined by 

𝐺1(𝐸, 𝑿) = 𝑆𝑦 − 𝐿1(𝐸, 𝒀) =
𝑆𝑦

𝑆𝐹1

−
4𝑃

𝐷𝐻𝐸𝜔
> 0 (37) 

𝐺2(𝐸, 𝑿) = 𝑆𝑠𝑦 − 𝐿2(𝐸, 𝒀) =
𝑆𝑠𝑦

𝑆𝐹2

−
2𝑃

𝐷𝑊𝐸𝜔
> 0 (38) 

and the corresponding deterministic design functions are defined by 

𝑔1(𝐸) =
𝑠𝑦

𝑆𝐹
− 𝐿1(𝐸) =

𝑠𝑦

𝑆𝐹1

−
4𝑝

𝐷𝐻𝐸𝜔𝜇
> 0 (39) 

𝑔2(𝐸) =
𝑠𝑠𝑦

𝑆𝐹
− 𝐿2(𝐸) =

𝑠𝑠𝑦

𝑆𝐹2

−
2𝑝

𝐷𝑊𝐸𝜔𝑢
> 0 (40) 

where 𝑠𝑦, 𝑠𝑠𝑦 , 𝑝, 𝜔𝑢  are the means of 𝑆𝑦 , 𝑆𝑠𝑦, 𝑃, 𝜔, respectively. 

Following the procedures in Fig. 2, we have two designs that are 𝐸1 = 28.6 mm and 𝐸2 =

21.7 mm for the two design functions. To meet the reliability target 0.999999, which is equivalent 

to a probability of failure 10−6, the design is set to be 𝐸 = 28.6 mm. To verify this, Monte Carlo 

simulation (MCS) is performed with a large sample size of 108 . The probability of failure 

produced by MCS is 1.11 × 10−6, very close to the required probability of failure. By using the 
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same SORA strategy in Example 1, we have the final design 𝐸 = 28.6 mm which is the same as 

the proposed approach. The proposed method and SORA call the design margin functions 8 and 

10 times, respectively. For a manufacturability and safety consideration, we can set the final design 

𝐸 = 29 mm, which ensure higher reliability than the required one. The entire design process is 

summarized in Table 3. 

Table 3 Design process of the key 

------------------------------- 

Table 3 here 

------------------------------- 

4.3 A Cantilever Tube Design 

The design task is to select a tube (Fig. 4) so that it can withstand random forces 𝐹, 𝑃, and 𝑇, 

with the reliability greater than or equal to [𝑅] = 0.99998 . The random variables are 𝑋 =

(𝛿, 𝑆𝑦 , 𝑃, 𝐹, 𝑇, 𝐸), where 𝐸 is the young’s modulus of the tube, 𝛿 is the maximum displacement of 

the tube, 𝑆𝑦  is the yield strength of the material. All the random variables are independent, and 

their distributions are given in Table 4. The design variables are 𝒅 = (𝐻, 𝑊, 𝑑), which can be 

chosen only from the following list of preferred sizes for (𝐻, 𝑊, 𝑑) mm: (35, 20, 2.5), (40, 15, 

2.5), (40, 20, 2.5), (40, 25, 3), (40, 30, 3), (50, 25, 3), (50, 30, 3.2), (50, 30, 4), (50, 30, 5).  

------------------------------- 

Fig. 4 here 

-------------------------------  

Fig. 4 A cantilever tube 

Table 4 Distributions of the random variables in Example 3 

------------------------------- 

Table 4 here 

-------------------------------  
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This problem is more general than the first two examples because it involves three non-

normally distributed random variables and more than one design variable with multiple failure 

modes, and the design variables are discrete, also it is solved by finite element method (FEM) 

which proves that the proposed method is compatible with black-box simulation. MATLAB PDE 

toolbox which is a FEM package is used to solve this example.  

There are two failure modes for this example. Once the defection exceeds the allowed 

maximum defection or the tension exceeds the strength of the material, failure occurs. The design 

margin functions are defined with 

𝐺1(𝒅, 𝑿𝟏) = 𝛿 − 𝐿1(𝒅, 𝒀𝟏) = 𝛿 − 𝐿1(𝒅, 𝑃, 𝐹, 𝑇, 𝐸) (41) 

𝐺2(𝒅, 𝑿𝟐) = 𝑆𝑦 − 𝐿2(𝒅, 𝒀𝟐) = 𝑆𝑦 − 𝐿2(𝒅, 𝑃, 𝐹, 𝑇) (42) 

And the corresponding deterministic design functions are  

𝑔1(𝒅) =
𝛿0

𝑆𝐹
− 𝐿(𝒅, 𝑝, 𝑓, 𝑡, 𝐸0) (43) 

𝑔2(𝒅) =
𝑠𝑦

𝑆𝐹
− 𝐿(𝒅, 𝑝, 𝑓, 𝑡) (44) 

where 𝛿0, 𝑠𝑦, 𝑝, 𝑓, 𝑡, 𝑙, 𝐸0 are the means of 𝛿, 𝑆𝑦, 𝑃, 𝐹, 𝑇, 𝐿, 𝐸, respectively, 𝐿1(∙) and 𝐿2(∙) are the 

general load solved by FEM in this example.  

This design involves two requirements or two design functions. As discussed in Sec. 3.2, there 

are two ways to perform the design for multiple design functions. The first way is to use a 

decoupled approach that is commonly found in a mechanical element design book. This approach 

considers multiple requirements separately one by one so that different designs are produced, and 

the final design is selected among the designs generated, and it is the design that satisfies all the 
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requirements. In this example, we have two design functions, and we can obtain two designs from 

the two design functions. We then pick the one that satisfies the two design functions. The second 

way solves all the design functions simultaneously. For this example, the simultaneous functions 

Eqs. (43) and (44) are solved, producing a single design. If the design is performed manually or if 

the design involves a small number of design variables and design functions, the first way is easier; 

otherwise, the second way is preferred. Theoretically, if a unique solution exists, the solutions from 

the two ways should be identical. The details of the first way are given in Example 1, we just need 

to repeat the same process twice.   

Following the procedures in Fig. 2, the design process converges after 5 and 6 iterations and 

the final design variables are 𝒅𝟏 = (40, 30, 3) mm and 𝒅𝟐 = (50, 30, 5) mm for the two design 

margin functions. Since the reliability of final design should be greater than the requirement [𝑅] =

0.99998 for both failure modes, we choose the conservative one that is (50, 30, 5) mm for the 

design. The reliability is confirmed by FORM, which produces 4.2124 × 10−7 , less than 

2 × 10−5. The calculations are summarized in Table 5. By using the same SORA strategy in 

Example 1, we obtain the design 𝒅 = (50, 30, 5) mm which is the same as the proposed method. 

For this example, the proposed approach and SORA call the design margin functions 243 and 260 

times.  

Table 5 Design process of the cantilever tube 

------------------------------- 

Table 5 here 

-------------------------------  

We also use the second way, which produces the same design with the convergence history: 

The designs in the four iterations are (40, 30, 3), (50, 30, 5), (50, 30, 5), (50, 30, 5), (50, 30, 5), 

and (50, 30, 5) mm, and the final design is (50, 30, 5) mm. 
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This example involves a black-box FEM model. For design problems that need 

computationally expensive models, we can at first create cheaper surrogate models [45-48] to 

replace the original models, and then use the proposed approach based on the surrogate models.   

The three examples demonstrate that the deterministic design is performed several times with 

the additional computations for the derivatives of the design margin with respect to random 

variables. In the examples, the deterministic design is conducted manually, and so is the proposed 

reliability-based design method. 

5. Conclusion 

This work develops a modified approach to reliability-based component design for which 

optimization is not required. The approach is easy to implement because it is based on the 

traditional safety factor with which engineers are familiar. The safety factor is determined by the 

specified reliability of the component. FORM is used to link the safety factor and component 

reliability. Since the safety factor for the required reliability also depends on design variables, the 

design process is iterative, and the proposed efficient numerical procedure ensures that the design 

process can converge with a few iterations. 

The prerequisites of the modified reliability-based component design approach are as follows: 

the availability of derivatives of the design margin function with respect to basic input variables 

and the availability of distributions of the basic input variables. In addition to the derivative 

calculation, the traditional safety factor design method is performed repeatedly several times. The 

new approach can be therefore conducted in the same manner as the traditional safety factor design 

method, manually, numerically, or with the help of computer software such as a spreadsheet. No 

optimization is needed. 
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Note that the proposed approach doesn’t involve optimization and cannot make decisions (find 

design variables) automatically. It provides a safety factor for engineers to meet their reliability 

targets. How to get the design variables from the safety factor largely depends on how engineers 

perform their deterministic component design. If the deterministic component design can deal with 

black-box models, so can the proposed approach. 

The proposed approach is intended for routine mechanical component design without high 

dimensional complex models, for which regular reliability-based design approaches should be 

used. The proposed approach is based on the first order reliability method (FORM), and it performs 

a complete MPP search. It is possible, however, the proposed method does not converge, especially 

when the design margin function is highly nonlinear in the transformed normal space. The 

approach may produce a large error if multiple MPPs exist. Our future research will investigate 

possible ways to avoid divergence and to deal with multiple MPPs.  
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Appendix 

Table A1 𝑤 for distributions 

Distribution PDF w 

Normal 
𝑓(𝑥) =

1

√2𝜋𝜎2
exp (−

(𝑥 − 𝜇)2

2𝜎2
) 

𝜇: mean, 𝜎: standard deviation 

  

Lognormal 
𝑓(𝑥) =

1

𝑥√2𝜋𝜎2
exp (−

(ln 𝑥 − 𝜇)2

2𝜎2
) 

𝜇: mean of ln 𝑥, 𝜎: standard deviation of ln 𝑥 

𝜙 [Φ−1 (
1
2

(1 + erf (
ln 𝑥 − 𝜇

√2𝜎
)))]

1

𝑥√2𝜋𝜎2
exp (−

(ln 𝑥 − 𝜇)2

2𝜎2 )
 

Gumbel 
𝑓(𝑥) =

1

𝛽
exp (− (

𝑥 − 𝜇

𝛽
+ exp (−

𝑥 − 𝜇

𝛽
))) 

𝜇: location parameter, 𝛽: scale parameter 

𝜙 [Φ−1 (exp (− exp (−
𝑥 − 𝜇

𝛽
)))]

1
𝛽 exp (− (

𝑥 − 𝜇
𝛽 + exp (−

𝑥 − 𝜇
𝛽

)))

 

Exponential 
𝑓(𝑥) = {

1
𝛽 exp (−

1
𝛽 𝑥)      𝑥 ≥ 0,

0                              𝑥 < 0.
 

𝛽: mean, 𝛽2: variance 

𝜙 [Φ−1 (1 − exp (−
1
𝛽 𝑥))]

1
𝛽 exp (−

1
𝛽 𝑥)

 

Weibull 
𝑓(𝑥) = {

𝑘
𝜆

(
𝑥
𝜆

)
𝑘−1

exp (− (
𝑥
𝜆

)
𝑘

)      𝑥 ≥ 0,

0                                               𝑥 < 0.
 

𝜆: scale parameter, 𝑘: shape parameter 

𝜙[Φ−1(1 − exp(−(𝑥/𝜆)𝑘))]

𝑘
𝜆

(
𝑥
𝜆

)
𝑘−1

exp(−(𝑥/𝜆)𝑘) 
 

Uniform 
𝑓(𝑥) = {

1
𝑏 − 𝑎         𝑎 ≤ 𝑥 ≤ 𝑏,

0                 otherwise.
 

𝑎+𝑏

2
: mean, 

1

12
(𝑏 − 𝑎)2: variance 

𝜙 [Φ−1 (
𝑥 − 𝑎
𝑏 − 𝑎

)]

1
𝑏 − 𝑎 
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Table 1 Design process of the shaft 

Iteration 𝛻𝐺   𝑆𝐹  𝑑 (mm)   𝜀 (%)   

1 –  1.0 22.02 –  

2 (2.0 × 107 , −4.4167 × 107) 1.3611 24.40 36.11 

3 (2.0 × 107, −3.2449 × 107) 1.3643 24.42 0.22 

4 (2.0 × 107, −3.2373 × 107) 1.3643 24.42 0.00 

 

 

Table 2 Distributions of the random variables in Example 2 

Random Variable Distribution Mean  Standard Deviation 

Sy (MPa) Normal 450 30 

𝑆𝑠𝑦  (MPa) Normal 0.577 × 450 0.577 × 30 

P (Watt) Lognormal 20000 1200 

𝜔 (rpm) Normal 650 32.5 

 

Table 3 Design process of the key 

Iteration 𝛻𝐺1
, 𝛻𝐺2

  𝑆𝐹1
, 𝑆𝐹2

 𝐸1, 𝐸2 (mm) 𝜀1, 𝜀2 (%) 

1 
(3 × 107, −2.69 × 107, 2.25 × 107), 
(1.73 × 107, −1.55 × 107, 1.30 × 107) 

1.0,  

1.0 

17.0,  
12.9 

– 

2 
(3 × 107, −2.14 × 107, 2.02 × 107), 
(1.73 × 107, −1.24 × 107, 1.17 × 107) 

1.6788, 
 1.6788 

28.5,  
21.6 

67.88,  
66.11 

3 
(3 × 107, −2.09 × 107, 1.97 × 107), 
(1.73 × 107, −1.20 × 107, 1.13 × 107) 

1.6839, 
 1.6839 

28.6,  
21.7 

0.30,  

0.30 

4 
(3 × 107, −2.08 × 107, 1.97 × 107), 
(1.73 × 107, −1.20 × 107, 1.13 × 107) 

1.6840, 
 1.6840 

28,6, 
 21.7 

5.9 × 10−3, 
5.9 × 10−3 

 

Table 4 Distributions of the random variables in Example 3 

Random Variable Distribution Mean  Standard Deviation 

𝛿 (mm) Normal 10 1 

𝑆𝑦  (MPa) Normal 450 45 

P (N) Lognormal 80000 9000 

F (N) Lognormal 1500 100 

T (N) Lognormal 4000 500 

E (GPa) Normal 20 0.2 
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Table 5 Design process of the cantilever tube 

Iteration 𝛻𝐺1
, 𝛻𝐺2

 𝑆𝐹  𝒅1, 𝒅2 𝜀 (%) 

1 

(1.00 × 10−3, −2.29 × 10−5, −2.06 × 10−4, 
−8.02 × 10−4, −9.80 × 10−5), 

(45 × 108, −1.14 × 107, −5.53 × 106, 
             −2.86 × 107) 

1,  

1 

(35, 20, 2.5), 

(40, 30, 3) 
-  

2 

(1.00 × 10−3, −1.60 × 10−5, −1.46 × 10−4, 
−5.38 × 10−4, −6.67 × 10−5), 

(45 × 108, −7.10 × 106, −2.83 × 106, 
             −1.85 × 107) 

1.8365, 

1.7993 

(40, 30, 3), 
(50, 30, 5) 

83.65, 

79.93 

3 

(1.00 × 10−3, −1.58 × 10−5, −1.45 × 10−4, 
−4.98 × 10−4, −6.33 × 10−5), 

(45 × 108, −6.90 × 106, −2.80 × 106, 
             −1.71 × 107) 

1.8207, 

1.8054 

(40, 30, 3), 
(50, 30, 5) 

0.86, 

0.34 

4 

(1.00 × 10−3, −1.59 × 10−5, −1.45 × 10−4, 
−4.91 × 10−4, −6.27 × 10−5), 

(45 × 108, −6.89 × 106, −2.80 × 106, 
             −1.69 × 107) 

1.8211, 

1.8040 

(40, 30, 3), 
(50, 30, 5) 

0.03, 

0.08 

5 

(1.00 × 10−3, −1.59 × 10−5, −1.45 × 10−4, 
−4.90 × 10−4, −6.27 × 10−5), 

(45 × 108, −6.89 × 106, −2.80 × 106, 
             −1.69 × 107) 

1.8211, 

1.8037 

(40, 30, 3), 
(50, 30, 5) 

0.00, 

0.01 

6 

-, 

(45 × 108, −6.89 × 106, −2.80 × 106, 
 −1.69 × 107) 

-, 

1.8037 

-, 

(50, 30, 5) 

-, 

0.00 

 

 


