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Abstract

Reliability-based design (RBD) employs optimization to identify design variables that satisfy the
reliability requirement. For many routine component design jobs that do not need optimization,
however, RBD may not be applicable, especially for those design jobs which are performed
manually or with a spreadsheet. This work develops a modified RBD approach to component
design so that the reliability target can be achieved by conducting traditional component design
repeatedly using a deterministic safety factor. The new component design is based on the First
Order Reliability Method (FORM), which iteratively assigns the safety factor during the design
process until the reliability requirement is satisfied. In addition to several iterations of deterministic
component design, the other additional work is the calculation of the derivatives of the design
margin with respect to the random input variables. The proposed method can be used for a wide
range of component design applications. For example, if a deterministic component design is
performed manually or with a spreadsheet, so is the reliability-based component design. Three

examples are used to demonstrate the practicality of the new design method.

Keywords: Reliability in design, Design of machine elements, Design methodologies, Algorithms
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1. Introduction

Safety factors are routinely used in mechanical design to account for uncertainty [1-6]. They
are particularly useful when complete distributions of random variables are unknown. When such
distributions are available, the safety factor based design can be replaced by the RBD [7-16]. RBD
solves an optimization problem [17-21] by identifying optimal design variables that minimize a
cost-type objective function while satisfying reliability constraints. The reliability in RBD is the

probability that a design requirement is satisfied [22].

There are many RBD methodologies. The most common ones employ the First Order
Reliability Method (FORM) [23-25] to evaluate reliability constraints during the optimization
process. FORM can not only provide a good balance between accuracy and efficiency, but also
make it possible to decouple deterministic optimization from reliability analysis, thereby further
reducing the computational cost. RBD has been successfully used in many applications, for
example, design of composite over-wrapped tanks [26], B-pillar design for side impact [27],
crashworthiness of vehicle side impact [28], and engine piston design for reducing slap noise due

to the reducing secondary motion [29].

The concept of the safety factor, with which engineers are familiar, can also be incorporated in
RBD. The safety-factor based approach for RBD [2, 5] is such a method. This method employs
nonlinear optimization and FORM, calling deterministic optimization and FORM sequentially
until all the reliability constraints are satisfied. During this process, partial safety factors are

applied to all the input random variables.

RBD methodologies [30-34] that involve optimization are usually performed for system design

and design of key elements whose reliability is required. Optimization is a commonly used tool
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for system and component design. Many engineering analysis and design software tools have an
optimization module, and it is quite easy to use it. Some components, however, are not designed
by optimization, and they may be designed by a safety-factor approach or may be designed based
on physical experiments. It is therefore desirable to derive an RBD approach for components that

do not need optimization.

One approach, which satisfies this requirement is the mechanical design approach using the
First Order Second Moment (FOSM) method [35-40]. This method can find design variables for a
given reliability target with only the minimal extra work: the calculation of derivatives of a design
margin function with respect to input random variables. It is therefore practical and can be used
for routine component design. The accuracy of the reliability produced by the design variables,
however, may be poor. This means that the designed reliability may be far away from the required
reliability. The reason is that FOSM uses a first-order approximation around the means of input

random variables and that only the first two moments (means and standard deviations) are used.

This work develops a modified approach to reliability-based component design without
optimization and a cost-type objective. It uses FORM and produces higher accuracy than FOSM.
During the design process, the method iteratively updates a safety factor for the deterministic
component design until the reliability requirement is satisfied. In addition to a number of iterations
of'the deterministic component design, the only additional work is the calculation of the derivatives

of the design margin with respect to the random input variables. The major advantage of this
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approach is that engineers can use it in the same way as they perform their deterministic routine

component design, either manually or by other means.

Reliability-based design and the safety factor are reviewed in Section 2, and the new
component design approach is presented in Section 3, followed by three examples in Section 4.

Conclusions are given in Section 5.

2. Review of RBD and Safety Factor

RBD is a design methodology that minimizes a cost-type objective and maintains reliability
requirements when uncertainty (randomness) is present. Uncertainty can also be accommodated

by using a safety factor. Both the design methodologies are briefly reviewed here.

2.1 Reliability-Based Design

A typical RBD model is given by

Min f(d)
s.t. Pr{G;(d,X)>0}>[R],i=12,..,n (D
dl<d<d’

In the above model, d is the vector of design variables with their lower and upper bounds d*
and dY, respectively. X = (X1, X5, ..., X,,) is the vector of random variables. f(-) is a cost-type
objective function, and G;(d,X) = 0 is a limit-state function. The requirement is G;(d,X) > 0,

and the probability of satisfying the requirement is called reliability, denoted by R;; namely
R; = Pr{G;(d,X) > 0} (2)

The constraint associated with G;(d, X) is that R; should be greater than or equal to the desired

reliability [R;] or 1 — [py,], where [py,] is the allowable probability of failure.
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The reliability R; is obtained by

R, = Pr{G,(d,X) > 0} = f £.(x) dx 3)

Gi(d,X)>0

where f,(x) is the joint probability density function (PDF) of X. FORM is commonly used to
calculate R;. FORM first transforms X into independent standard normal variables U with X =
T(U) [41], where T(-) denotes the transformation operation. The limit-state function then

becomes
G(d,X)=6(d T)) (4)
Then R; is approximated by
R; = @(B) (5)

where f is the reliability index, which is the shortest distance from the origin of the U-space to the
limit-state contour G (d, T(U)) = 0, ®(+) is the cumulative density function (CDF) of a standard

normal variable. The distance is obtained by solving the following optimization model:

{Min [l ©)

st. G(d,T(w) =0

The solution u* is called the most probable point (MPP), whose norm is the reliability

index.

g = llul (7)
where ||*|| stands for the norm of a vector.

Directly solving the RBD model involves an expensive double-loop procedure if the MPP is

used for the reliability analysis. Many sequential single-loop methods [30-33] have been developed
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to reduce the computational time. One of them is the sequential optimization and reliability
analysis (SORA) method [42]. SORA solves the model in Eq. (1) with a sequence of cycles of
optimization and reliability analysis. In each cycle, the optimization is performed by fixing the
random variables X at fixed values determined by the reliability analysis from the last cycle. Then
the design variables d are passed to the reliability analysis that is then performed. This process

repeats till convergence.
2.2 Safety Factor and Traditional Deterministic Design

A safety factor is the ratio of the strength (capacity or resistance) divided by the maximum

stress (demand or load). It is given by

SF=

S
I (8)

where S and L are the general strength and general stress, respectively. The strength and load used
in this work are in a general sense. The strength could be anything that is related to the capacity of
a component, for example, a yield strength, permitted deflection, or required fatigue life; a load
could be anything that related to the demand of the component or the loading acting on or generated

in the component, such as normal stress, force, deflection, and fatigue damage accumulation.

The component design task is to identify design variables d so that the safety factor is greater

than 1, and this gives a design margin function

9(@) = >~ L(@) > 0 ©)

F

For example, a cantilever shaft is subjected to a force P as shown in Fig. 1. The design margin

function is given by
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9@ =20 (10)

F

where design variable d is the diameter, and o' is the von Mises stress calculated by

o' =02+ 312 (11)

in which

32P(a + b)
Ox =3 (12)
16Pe
sz = n_d3 (13)

Solving g(d) = 0 yield the design variable d.

Fig. 1 here

Fig. 1 A cantilever shaft

3. A Modified Approach to Reliability-Based Component Design

In this section, we discuss the modified approach to reliability-based component design. It is
for mechanical component designs that do not have a cost-type objective function and therefore
do not require optimization. The approach is practical because the design margin function is
exactly the same as the one used in the deterministic component design as shown in Eq. (9). It does
not dramatically alter the way that designers perform the component design. The only additional
work is to perform the deterministic component design multiple times with different safety factors

which are updated during the iterative design process.

3.1 The Proposed Approach
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The proposed approach is based on FORM. The random variables and their nominal values
(means) are X = (X;, Xy, ..., X,) and x = (x4, x5, ..., X,,), respectively. Let the CDF of X; be
Fi(X;),i = 1,2,...,n, and assume all the variables in X are independent. The general strength of
the component is S, which is the first element of X, namely, X; = S. S could be a yield strength,
permissible deflection, or capacity. Let the rest of X be Y = (X3, X3, ..., X;,). The general load L of
the component is determined by d and Y and is therefore given by L(d,Y), where d and Y are
vectors to represent multiple design variables and parameters, respectively. The general load could
be a force, moment, and stress. For the example in Sec. 2.2, the general strength is the yield
strength; namely, S = §,,; and the general load is the von Mises stress o', namely, L = ¢', which

is a function of the design variable or the diameter d.

If we use the nominal values of general strength and general load to calculate the safety factor,

we obtain a deterministic safety factor Sg.

G _S__S
F7U17 L(dy)

(14)

where s and [ are nominal values of the strength and load, respectively, and y is a vector of the
nominal values of ¥. Note that the nominal value of a random variable is the median of a random

variable or its mean value if its distribution is symmetric. The deterministic design margin function

is g(d) = i — L(d) > 0 as already been given in Eq. (9).

The actual design margin, or the difference between the general strength and general load, is

given by

Gd,X)=S—-L(dY)>0 (15)
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As we have discussed, the probability of satisfying the design margin R = Pr{G(d, X) > 0} is the

component reliability. If the required reliability is [R], the reliability index [43] is

p =@ *([RD (16)

Many studies [2, 5, 8, 16] have shown that the reliability requirement R = Pr{G(d, X) > 0} >

[R] is equivalent to
Gd,x)=S"—-L(d,y)>0 (17)

where x* = (57, y") is the MPP in the X-space, and it is transformed from the MPP u* = (u;);=1

in the standard normal space U-space. We rewrite Eq. (17) by

S* s L(d,y")

Sy L@y e
The X- to U-space transformation is given by
Fi(x) = o)) (19)
Then
x; = FHe@)] =T(;) (20)

where T () represents the transformation function for simplicity. Since the MPP u* is the shortest-

distance point to the surface G(-) = 0, u* is collinear with the gradient of G (-). This gives [44]
u; = —pa; 21

where the reliability index f is the magnitude of u*; ; is the element of the unit vector of the

gradient V; and is given by
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aG(d, T(u"))
ou;

Al (22)

a; =
V; is computed by

¢ =

<6G(d, T(u*))> (23)

*
ou;

More details about the above equations can be found in [44]. By the chain rule of partial

derivative, we have

0G(d,T(w’)) 0G(d,x"))dx;

24
ou; ox; du; @4
Define w; = Zzi, from Eq. (20), we have
dx: ¢ (P (R (xD))
P ( () (25)

Tdup T fGD

where ¢ () and f;(+) are the probability density function (PDF) of a standard normal variable and
X;, respectively, ®(+) is the CDF of a standard normal variable. For commonly used distributions,

w; is listed in the appendix. Therefore, we can rewrite Eq. (24) as

0G(d, T(w)) . aG(d, x*)

ou; boox; (26)
And Eq. (23) can be rewritten as
7o 0G(d, x*) B 0G(d, x*) 0G(d, x*) 0G(d, x*) 27
¢ =\ Wi ox; . -\ ox; W2 ox, ' »Wn ox;

From Egs. (22) and (26), at the MPP x* in X-space, we have
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0G(d, x*)
WiTox]

Al (28)

a; =

Plugging Eq. (28) into Eq. (21), we obtain the value of u;. Then, we can obtain x; by

substituting u; into Eq. (20). Define

As =~ (29)
and
L(dy")
A =—" 30
L= I@y G0
Substituting Egs. (14), (29) and (30) into Eq. (18), we have
AsSp— A, >0 (3D

By solving the inequality equation, we have the range for design variables. Once we specify the

design variables, the safety factor for the given design is

Ay

SF:A_S

(32)

As shown in Eq. (32), A, and A indicate the contributions of the general strength and general

stress to the overall safety faction Si, and they can be considered as partial safety factors.

To design the component with the reliability target, we can then use the deterministic design

function, which is rewritten here.

1
g(d)=cs—L{dy) >0 (33)

F
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The design margin function in Eq. (33) is the same function used in deterministic component
design since only the nominal values y of Y are involved. No random variables appear in the
function. If the safety factor Si is given, we can solve for d. To determine the safety factor Sg
that satisfies the reliability requirement, we need to repeat the above process iteratively to find the
MPP x*. Unlike the reliability-based design optimization, the proposed approach performs the
MPP search implicitly to update the safety factor. It does not require an explicit optimization model
and is therefore easy to implement. The proposed approach depends totally on how the
deterministic design is performed or in other words, how Eq. (33) is solved, either manually or

numerically.
3.2 The Procedure

The design margin function G(d,X) = S — L(d,Y) and deterministic design margin function
g(d) = és — L(d, y) are usually nonlinear functions. As the safety factor S depends on d,

directly solving for d from g(d) > 0 requires a numerical procedure, which diminishes the
practicality of the design. We develop a straightforward procedure so that the design variables can
be obtained iteratively by performing deterministic design a number of times. The procedure is

discussed below.

Initial design

1) Perform the initial design by using Sr = 1 or other value of Sy > 1. From g(d) = Sis -
F

L(d,y) > 0, initial design variables d are obtained. If there are multiple design functions
due to multiple design requirements or multiple failure modes, there are two ways to obtain
d. The first way involves the approach that can be found in a mechanical design textbook.

It solves the design functions one by one and results in multiple designs. Then it selects the
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design that satisfies all the design functions. The second way is to solve all the design
functions simultaneously. Which way is used is the choice of designers, and the proposed
approach can work for either way. If the preferred value of a design variable should be
determined, designers can make a decision based on their experience. Or they can simply
find whether a preferred value should be greater or smaller than the calculated value by

verifying if the preferred value results in a positive design function.

Since the safety factor used in the initial design may not satisfy the reliability requirement,
it will be updated iteratively next. To prepare for the iterations, set d to be the current

design, and set the MPP x* to be the nominal values of all random input variables.
Iterative design

2) At the current design point d and x*, calculate the gradient of the design margin function
G(d, X) and update the MPP following the procedure in Fig. 2. And the gradient can be

calculated either analytically or numerically.

3) Update Ag and A; using Egs. (29) and (30), and solve for the safety factor Sy using Eq.

(32).

4) Solve for new design point d by plugging the new Sy into the deterministic design function

g(d) = i s — L(d). If there are multiple design functions and preferred values of design

variables need to be determined, follow the same guideline discussed for the initial design

stage.
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5) Check convergence. The criterion is that the difference of the safety factor (SF) of current
iteration and previous iteration. It converges when the difference is sufficiently small,

which is given by

”SFcurrent — SFprevious” <e

(34)

SFcurrent

where ¢ is a small positive quantity. € = 0.1%, € = 0.01%, or other values could be used.

If convergence is not achieved, go to step 2); otherwise, go to step 6).

Final design

6) Based on d obtained, choose appropriate final design variables.

The MPP is updated after a new design d is identified. u* obtained during each iteration before
convergence is not the true MPP for a given design d. Upon convergence of the entire design
process, u* will be the true MPP for the final design. This will not only save design time but also

guarantee the target reliability is achieved.

The flowcharts of the proposed approach are provided in Figs. 2.

Fig. 2 here

Fig. 2 Flowchart of reliability-based component design
4. Examples

In this section, we provide three examples. Example 1 is the shaft design problem discussed
previously in Sec. 2.2. Since the design is performed manually, all details of using the proposed

approach are given so that an interested reader could easily repeat the process and reproduce the
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result. Example 2 shows a case with more than one failure mode. Example 3 involves discrete
design variables selected from a table, non-normally distributed random variables, more than one

failure mode, and black-box design functions.
4.1 A Shaft Design

This example involves a design that is performed manually as discussed in Sec. 2.2 and is
shown in Fig. 1. The design margin function is given in Eq. (10). The yield strength and the applied
force follow normal distributions S,~N(530,20%) MPa and P~N(1200,1002) N, respectively.
S, and P are independent. The random variables are therefore X = (S, P). Other parameters are
a = 300 mm, b = 50 mm, and e = 350 mm. The design task is to determine the diameter of the
shaft d so that the reliability of the shaft is no less than [R] = 0.9999. The design margin function

1S

32P(a+b)|°  _ /16Pey?
G(d,X)_Sy—L(d,Y)_ﬂTl +3(nd3) (35)
And the deterministic design function in Eq. (10) is rewritten as
2 2
sy _ |[32p(a + b) (16pe)
o) = L(d)—ﬂ | +3(p (36)

where p is the nominal value of P.
Design process
Determine the reliability index

B =@ ([R]) = ®71(]0.9999]) = 3.7190
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Derive the gradient

. 0G(d, X) _( 0G BG)
¢ =\"iT 5z, e "1ax," "2 ax,

oG 3G _
0X, 9S,

0G _9G _ 16y/4(a+b)? + 3e?
X, 0P wd3

From Table Al, we have
wy; =0, =20 MPa, w, =0, = 1.2 kN
Iteration 1

Start from the deterministic design by setting S = 1.0. Then plug the nominal values of

Sy and P, which are s, = 530 MPa and p = 1200 N, respectively, into

Sy 32p(a + b)]2 (16pe>2
g(d)_SF \/[ d3 3 md3 >0

We have

530(10)° — /Ai +3B% >0

where

32(1.2)(10)3(300 + 50)(10)_3
A, =
wd3

16(1.2)(10)3(350)(10) 3
B, =
d?3
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which yields the initial design d > 22.02 mm. Substituting d into A, and B,, the general load

(normal stress) at the design point d = 22.02 mm is

L(d,y) = /Af + 3B2 = 530.0 MPa

Iteration 2
Atd = 22.02 mm, using Eq. (27) we obtain the gradient

oG oG
Ve = (W1 a—xl,WZ a—xz> = (2.0 X 107,—4.4167 X 107)

w aG w aG

10x, "2?0x,
a=(a,a ) = , = (0.4125,—-0.9110
e I TATR AT Rl )

u* = (uj,ul) = (—Bay, —Pa,) = (—1.5341,3.3879)

x* = (x5,x3) = (F{H®(wy)], F5 @ (uy)]) = (499.3176 MPa, 1.5388 kN)

and the general strength $* = x; = 499.3176 MPa.

A _5*_499.3176_09421
ST s~ 53

The general load at y* = (x3) is

L(d,y*) = |A5+ 3BZ = 679.6302 MPa
2 2

where

18
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_32(1.5388)(10)3*(300 + 50)(10) 3
2 7(22.02 x 10-3)3

B 16(1.5388)(10)3(350)(10)3

2 m(22.02 X 1073)3
L(d,y*) 679.6302
A L(d,y) 530.0 823
Then the updated safety factor is
A, 1.2813
= = 1.3611

SF =3, = 0.9421

Plugging the new Sy into the deterministic design function in Eq. (33), we have

530(10)°
- /CZ 3D2 >0
1.3611 2+ 5D

where
32(1.2)(10)3(300 + 50)(10)73
CZ = 3
d
D. = 16(1.2)(10)3(350)(10)73
2= td3
which yields
d > 24.40 mm

Atd = 24.40 mm, L(d, y) = 389.3857 MPa. Check the convergence using Eq. (34) and we

obtain

SF,current - SF,previous' _ [1.3611 — 1.0|

SF,p‘revious 1.0

€= = 36.11%
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It is greater than the tolerance 0.01%, and the process continues.
Iteration 3

At d = 24.40 mm, we have

G G
v, = <W1%'W2 W) = (2.0 X 107, —-3.2449 x 107)
1 2

w aG w aG

1 9% W2 9x;
a= (a , ) = , = (0.5247,—-0.8513
v 92) =\ Jp Tl = ¢ )

u* = (uj,uy) = (—Pay,—pa,) = (—1.9514,3.1660)
x* = (x},x3) = (F{H®(uy)], F;[®(uy)]) = (490.9729 MPa, 1.5166 kN)
and the general strength $* = x; = 490.9729 MPa.

4 _5*_490.9729_09264
ST s 530

The general load at y* = (x3) is

L(d,y") = /A% + 3B% = 492.1173 MPa

where

_32(1.5166)(10)*(300 + 50)(10) 3
3 w(24.40 x 10-3)3

_ 16(1.5166)(10)3(350)(10) >
3 7 m(24.40 x 10-3)3
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_L(d,y") 492.1173
~ L(d,y) 389.3857

AL = 1.2638

Then the updated safety factor is

A, 12638

Sr =7 = 9026z = 13643

Plugging the new Sy into the deterministic limit-state function in Eq. (33), we have

530(10)° [, .,

where
32(1.2)(10)3(300 + 50)(10)73
C3 = d3
T
D. = 16(1.2)(10)3(350)(10)73
37 d3
which yields
d > 24.42 mm

Check the convergence using Eq. (34) and we obtain

_ ISecurrent = Srprevious| _ 113643 — 1.3611]
SF,previous 1.3611

&

= 0.22%

which is greater than the convergence tolerance 0.01%. After one more iteration, the process
converges and the final design variable is d > 24.42 mm. This design will meet the reliability
target 0.9999, which is equivalent to a probability of failure 10™*. To verify this, Monte Carlo

simulation (MCS) is performed with a large sample size of 108. The probability of failure

21 MD-20-1572 Du



produced by MCS is 1.01 X 10™*, very close to the required probability of failure. For a
manufacturability consideration, we can set the final design d = 24.5 mm, which ensures higher

reliability than the required one. The entire design process is summarized in Table 1.

Table 1 Design process of the shaft

Table 1 here

To confirm that the safety factor RBD produces the same result as an optimization based RBD
method, SORA is used to solve the same problem. Since no objective function exists, we set the
deterministic design margin as the objective function and minimize it. The constraint function is
the reliability constraint. The same design variable d is obtained from SORA, and both approaches

find the final design variable in four iterations.
4.2 A Key Design

The task is to design a key (Fig. 3) for a shaft with a diameter of 22 mm so that its hub can
withstand compression and shearing stress induced by the transmission power P. The target
reliability is [R] = 0.999999. The width and height are determined given by shaft diameter
according ANSI Standard, which are 8 mm and 7 mm, respectively. The random variables are x =
(Sy,Ssy, P,w), where S, is the compression (crushing) yield strength of the material, S, =
0.577S,, is the shearing strength of the material, P is the transmission power, and w is the angular
velocity of the shaft. All the random variables are independent, and their distributions are given in
Table 2. The design variable E is the length of the key, namely, d = (E’), which should be less

than 30 mm because the diameter of the shaft is 22 mm.
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Fig. 3 here

Fig. 3 A key of shaft-hub gear

Table 2 Distributions of the random variables in Example 2

Table 2 here

There are two failure modes existed because the key needs to withstand compression and

shearing stress induced by the transmission power. Therefore, the design margin functions are

defined by
S 4p
E,X)=S,—L(EY) =2 —
GEX) =y~ Li(BY) = 5= s> 0 (37)
Ssy 2P
G,(E,X) =S;y, —L,(E)Y) = —— >0 38
2(BX) = S5y = L(B,Y) = 22 = o (38)
and the corresponding deterministic design functions are defined by
(E) = 2 — L,(E) = 2 S (39)
g = T M T, T DHEw,
(E)=ﬂ—L(E)=ﬂ—2—p>0 (40)
g2 S, 2 Sr, DWEaw,

where s, S;,, p, W, are the means of S,, Sg,,, P, w, respectively.

Following the procedures in Fig. 2, we have two designs that are E; = 28.6 mm and E, =
21.7 mm for the two design functions. To meet the reliability target 0.999999, which is equivalent
to a probability of failure 107°, the design is set to be E = 28.6 mm. To verify this, Monte Carlo
simulation (MCS) is performed with a large sample size of 108. The probability of failure

produced by MCS is 1.11 x 107, very close to the required probability of failure. By using the
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same SORA strategy in Example 1, we have the final design E = 28.6 mm which is the same as
the proposed approach. The proposed method and SORA call the design margin functions 8 and
10 times, respectively. For a manufacturability and safety consideration, we can set the final design
E = 29 mm, which ensure higher reliability than the required one. The entire design process is

summarized in Table 3.

Table 3 Design process of the key

Table 3 here

4.3 A Cantilever Tube Design

The design task is to select a tube (Fig. 4) so that it can withstand random forces F, P, and T,
with the reliability greater than or equal to [R] = 0.99998. The random variables are X =
(4,S,,P,F,T,E), where E is the young’s modulus of the tube, § is the maximum displacement of
the tube, S, is the yield strength of the material. All the random variables are independent, and
their distributions are given in Table 4. The design variables are d = (H, W, d), which can be
chosen only from the following list of preferred sizes for (H,W,d) mm: (35, 20, 2.5), (40, 15,

2.5), (40, 20, 2.5), (40, 25, 3), (40, 30, 3), (50, 25, 3), (50, 30, 3.2), (50, 30, 4), (50, 30, 5).

Fig. 4 here

Fig. 4 A cantilever tube

Table 4 Distributions of the random variables in Example 3

Table 4 here
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This problem is more general than the first two examples because it involves three non-
normally distributed random variables and more than one design variable with multiple failure
modes, and the design variables are discrete, also it is solved by finite element method (FEM)
which proves that the proposed method is compatible with black-box simulation. MATLAB PDE

toolbox which is a FEM package is used to solve this example.

There are two failure modes for this example. Once the defection exceeds the allowed
maximum defection or the tension exceeds the strength of the material, failure occurs. The design

margin functions are defined with
G1(d,X1)=5—L1(d,Y1) =5—L1(d,P,F,T,E) (41)
GZ(diXZ) =Sy_L2(d1Y2) =Sy_L2(dJP1FJT) (42)

And the corresponding deterministic design functions are

)
gl(d) =S_0_L(d:p:f: t,Eo) (4‘3)
F
(@ = 2~ L{dp,f.0) (48)
F

where 8,5y, p, f,t,1, Ey are the means of 6,S,, P, F,T, L, E, respectively, L1 (*) and L, (-) are the

general load solved by FEM in this example.

This design involves two requirements or two design functions. As discussed in Sec. 3.2, there
are two ways to perform the design for multiple design functions. The first way is to use a
decoupled approach that is commonly found in a mechanical element design book. This approach
considers multiple requirements separately one by one so that different designs are produced, and

the final design is selected among the designs generated, and it is the design that satisfies all the
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requirements. In this example, we have two design functions, and we can obtain two designs from
the two design functions. We then pick the one that satisfies the two design functions. The second
way solves all the design functions simultaneously. For this example, the simultaneous functions
Egs. (43) and (44) are solved, producing a single design. If the design is performed manually or if
the design involves a small number of design variables and design functions, the first way is easier;
otherwise, the second way is preferred. Theoretically, if a unique solution exists, the solutions from
the two ways should be identical. The details of the first way are given in Example 1, we just need

to repeat the same process twice.

Following the procedures in Fig. 2, the design process converges after 5 and 6 iterations and
the final design variables are d; = (40,30,3) mm and d, = (50,30,5) mm for the two design
margin functions. Since the reliability of final design should be greater than the requirement [R] =
0.99998 for both failure modes, we choose the conservative one that is (50,30,5) mm for the
design. The reliability is confirmed by FORM, which produces 4.2124 x 10~7, less than
2 X 107>, The calculations are summarized in Table 5. By using the same SORA strategy in
Example 1, we obtain the design d = (50,30, 5) mm which is the same as the proposed method.
For this example, the proposed approach and SORA call the design margin functions 243 and 260

times.

Table 5 Design process of the cantilever tube

Table 5 here

We also use the second way, which produces the same design with the convergence history:
The designs in the four iterations are (40, 30, 3), (50, 30, 5), (50, 30, 5), (50, 30, 5), (50, 30, 5),

and (50, 30, 5) mm, and the final design is (50, 30, 5) mm.
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This example involves a black-box FEM model. For design problems that need
computationally expensive models, we can at first create cheaper surrogate models [45-48] to

replace the original models, and then use the proposed approach based on the surrogate models.

The three examples demonstrate that the deterministic design is performed several times with
the additional computations for the derivatives of the design margin with respect to random
variables. In the examples, the deterministic design is conducted manually, and so is the proposed

reliability-based design method.

5. Conclusion

This work develops a modified approach to reliability-based component design for which
optimization is not required. The approach is easy to implement because it is based on the
traditional safety factor with which engineers are familiar. The safety factor is determined by the
specified reliability of the component. FORM is used to link the safety factor and component
reliability. Since the safety factor for the required reliability also depends on design variables, the
design process is iterative, and the proposed efficient numerical procedure ensures that the design

process can converge with a few iterations.

The prerequisites of the modified reliability-based component design approach are as follows:
the availability of derivatives of the design margin function with respect to basic input variables
and the availability of distributions of the basic input variables. In addition to the derivative
calculation, the traditional safety factor design method is performed repeatedly several times. The
new approach can be therefore conducted in the same manner as the traditional safety factor design
method, manually, numerically, or with the help of computer software such as a spreadsheet. No

optimization is needed.

27 MD-20-1572 Du



Note that the proposed approach doesn’t involve optimization and cannot make decisions (find
design variables) automatically. It provides a safety factor for engineers to meet their reliability
targets. How to get the design variables from the safety factor largely depends on how engineers
perform their deterministic component design. If the deterministic component design can deal with

black-box models, so can the proposed approach.

The proposed approach is intended for routine mechanical component design without high
dimensional complex models, for which regular reliability-based design approaches should be
used. The proposed approach is based on the first order reliability method (FORM), and it performs
a complete MPP search. It is possible, however, the proposed method does not converge, especially
when the design margin function is highly nonlinear in the transformed normal space. The
approach may produce a large error if multiple MPPs exist. Our future research will investigate

possible ways to avoid divergence and to deal with multiple MPPs.
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Appendix

Table A1 w for distributions

Distribution PDF w
1 (x —p)?
Normal fe) = VonoZ P\ T 202 o
W: mean, o: standard deviation
1 (Inx — p)? o lo1 (%(1 + erf (ln\’/‘_ “)))
Lognormal fe) = 202 exp 202 g /]
p: mean of In x, o standard deviation of In x 1 exp (_ (Inx —p) )
2 202
xV2no )
_ X —
1 (e o)) ol (e (e (57)
Gumbel e =gee\ ~(Tp e <_ B > 1 <x —u x—p
. Sexp| — + exp (— )
w: location parameter, 3: scale parameter B B
1 1
R G e )
Exponential "o x < 0. < 1 )
exp|—%x
B: mean, B2: variance PR
k /x\k—1 0k
o 76 e (-F)) =20 P11~ exp(~(x/ D))
Weibull "o x <0 k /x\k-1
. k
7)) exp(=G/0)
A: scale parameter, k: shape parameter
bla a<x<bh, ¢[¢_1(x_a)]
Uniform @) = 0 otherwise. #
b—a

a+b 1 .
= mean, — (b — a)?: variance
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Table 1 Design process of the shaft

Iteration Ve Sg d (mm) £ (%)
1 — 1.0 22.02 —
2 (2.0 x 107, —-4.4167 x 107) 1.3611 24.40 36.11
3 (2.0 X 107, —3.2449 x 107) 1.3643 24.42 0.22
4 (2.0 x 107, -3.2373 x 107) 1.3643 24.42 0.00

Table 2 Distributions of the random variables in Example 2

Random Variable Distribution Mean Standard Deviation
Sy (MPa) Normal 450 30
Ssy (MPa) Normal 0.577 x 450 0.577 x 30
P (Watt) Lognormal 20000 1200
w (rpm) Normal 650 32.5

Table 3 Design process of the key

[teration Ve, Ve, Sk, Sp,  Ey, E; (mm) &1, & (%)
1 (3x107,-2.69 x 107,2.25 x 107), 1.0, 17.0, 3
(1.73 x 107,—-1.55 x 107,1.30 x 107) 1.0 12.9
(3x107,-2.14 x 107,2.02 x 107), 1.6788, 28.5, 67.88,
2
(1.73 x107,-1.24 x 107,1.17 x 107)  1.6788 21.6 66.11
(3x107,-2.09 x 107,1.97 x 107), 1.6839, 28.6, 0.30,
3
(1.73 x 107,-1.20 x 107,1.13 x 107)  1.6839 21.7 0.30
(3x107,-2.08 x 107,1.97 x 107), 1.6840, 28,6, 5.9 X 1073,
4
(1.73 x 107,-1.20 x 107,1.13 x 107)  1.6840 21.7 59 %1073

Table 4 Distributions of the random variables in Example 3

Random Variable Distribution Mean Standard Deviation
é (mm) Normal 10 1
S, (MPa) Normal 450 45
P (N) Lognormal 80000 9000
F(N) Lognormal 1500 100
T (N) Lognormal 4000 500
E (GPa) Normal 20 0.2
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Table 5 Design process of the cantilever tube

Iteration Ve, Ve, Sg d,d, € (%)
(1.00 X 1073,-2.29 X 1073, —2.06 x 107%,
! —8.02 x 107*,-9.80 x 1075), 1, (35,20,2.5), ]
(45 x 108%,—1.14 x 107, —5.53 x 10°, 1 (40,30,3)
—2.86 x 107)
(1.00 x 1073,—1.60 X 107%,—1.46 X 1074,
) —5.38x 107%,—6.67 X 1075), 1.8365,  (40,30,3), 83.65,
(45 x 108,—7.10 x 10°,—2.83 x 10°, 1.7993 (50,30,5)  79.93
—1.85 x 107)
(1.00 X 1073,-1.58 X 1075, —1.45 X 1074,
3 —4.98 x 107*,—-6.33 X 1075), 1.8207,  (40,30,3), 0.86,
(45 x 108,—-6.90 x 10°,—2.80 x 108, 1.8054 (50,30,5) 0.34
—1.71 x 107)
(1.00 X 1073, -1.59 X 1075, —1.45 X 1074,
4 —4.91 x 107%,-6.27 X 1075), 1.8211,  (40,30,3),  0.03,
(45 x 108, —6.89 x 10°,—2.80 x 10°, 1.8040 (50,30, 5) 0.08
—1.69 x 107)
(1.00 X 1073,-1.59 X 1075, —1.45 X 1074,
5 —4.90 x 107*,-6.27 X 1075), 1.8211,  (40,30,3),  0.00,
(45 x 108, —6.89 x 10°,—2.80 x 10°, 1.8037 (50,30, 5) 0.01
—1.69 x 107)
6 (45 x 10%,—6.89 x 10%,—2.80 x 10°, )

—1.69 X 107) 1.8037 (50,30,5) 0.00
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