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1. Introduction these, mesh-based methods such as particle-particle/particle-mesh
(P3M) [1] and particle-mesh Ewald (PME) [2]) project the particles

Long-range particle interactions are essential in many areas of onto a regular mesh where the fast Fourier transform or multi-

computational physics including the calculation of electrostatic and
gravitational potentials as well as discrete convolution sums in
boundary element methods. For a specific example consider the
potential due to a set of N charged particles,

N
¢xi) =) G, xj)qj, i=1:N, (1)

j=1

where X; is a target particle, X; is a source particle with charge
gj, and G(x,y) is the Coulomb kernel. In this work we assume the
particles reside in 3D space.

The cost of evaluating the potentials ¢ (x;) by direct summa-
tion scales like O(N2) and several methods have been developed
that reduce the cost and achieve sub-quadratic scaling. Among
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grid can be applied. Alternatively, tree-based methods such as the
treecode (TC) [3] and fast multipole method (FMM) [4] partition
the particles into a hierarchical tree of clusters so that the effect
of a cluster can be approximated. Other related approaches for fast
summation of particle interactions include panel clustering [5], hi-
erarchical matrices [6], and multilevel summation [7]. The present
work is concerned with tree-based methods and next we outline
their features.

1.1. Tree-based fast summation methods

Tree-based fast summation methods like the TC and FMM have
two phases, a precompute phase in which the particles are par-
titioned into a hierarchical tree of clusters, and a compute phase
in which the potentials are computed by approximating the effect
of well-separated particles and clusters. If the particle distribu-
tion is reasonably homogeneous, the precompute phase scales like
O(NlogN), but with a small prefactor so that in practice it ac-
counts for a small part of the total run time.

In the compute phase, the original TC used monopole approx-
imations [3], while the FMM used higher order multipole approx-
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imations [4]. Subsequent work employed higher order Cartesian
Taylor expansions in the TC [8], as well as plane wave expansions
in the FMM [9]. Aside from the type of approximation being used,
the scaling of the compute phase is determined by how the parti-
cles and clusters interact, and next we briefly review how this is
done in each method.

The TC compute phase loops through the target particles and
for each particle it traverses the tree from the root to the leaves,
where well-separated clusters are identified using a multipole
acceptance criterion (MAC) that depends on the cluster radius
and the particle-cluster distance. When a well-separated particle-
cluster pair is identified, the TC updates the target potential using
a particle-cluster approximation. The TC compute phase scales like
O (NlogN), where the factor N represents the loop over target par-
ticles and the factor log N represents the number of levels in the
tree.

The FMM compute phase has an upward pass to compute
cluster moments using multipole-to-multipole translations, and a
downward pass to compute potentials using multipole-to-local and
local-to-local translations. The interaction list of well-separated
cluster-cluster pairs is commonly defined in a uniform way at each
level of the tree using a 3 x 3 x 3 list of parent neighbors, al-
though the FMM has been extended to use a 5 x 5 x 5 list at the
leaf level [10], as well as a more optimal multipole-to-local sten-
cil [11]. The compute phase of the FMM scales like O(N) [4,9].

The dual tree traversal (DTT) is an alternative way of building
the interaction list in an FMM using a target tree and a source
tree, where the two trees are traversed concurrently from the
root to the leaves, and a MAC is used to identify well-separated
cluster-cluster pairs [12,13]. These methods are often called DTT-
FMMs and the compute phase also scales like O(N) [13,14]. While
the conventional FMM interaction list is favored for homogeneous
particle distributions, the more flexible DTT approach is expected
to be better suited for non-homogeneous distributions [13,15,16]
as arise in molecular dynamics [17,18] and astrophysical simula-
tions [19-22].

1.2. Kernel-independent methods

Many tree-based fast summation methods have employed ana-
lytic series approximations for specific kernels such as multipole
expansions [4,9,23] and Cartesian Taylor expansions [24-26] for
the Coulomb and Yukawa kernels. Alternative approximations for
the Coulomb kernel were also investigated utilizing the Poisson
integral formula [27] and multipole expansions at pseudoparti-
cles [28]. Subsequently, kernel-independent methods were devel-
oped that require only kernel evaluations and are suitable for a
large class of kernels. Among these, the kernel-independent FMM
(KIFMM) uses equivalent densities defined on proxy surfaces [29],
while several other methods use polynomial interpolation [30-34].
A number of related proxy point methods have recently been de-
veloped using skeletonized interpolation [35] and interpolative de-
composition [36], and several kernel-independent fast summation
methods have been parallelized on multicore CPU systems [37-43].

1.3. GPU implementations

A recent trend in parallel computing uses graphics process-
ing units (GPUs) for high-throughput arithmetic. The direct sum
in Eq. (1) is well suited for GPU computing because the kernel
evaluations G(x;,X;) are independent of each other and can be
computed concurrently without thread divergence, where the tar-
gets X; provide an outer level of parallelism and the sources X;
provide an inner level of parallelism. While GPU implementations
of the direct sum achieve substantial speedup over CPU implemen-
tations [44-46], they still scale like O(N2) and there is great inter-
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est in implementing the sub-quadratic scaling tree-based methods
on GPUs, although this is challenging due to their greater complex-
ity. Previous work in this direction includes GPU implementations
of the TC [47-52], FMM [11,53-57] and DTT-FMM [58,59].

1.4. Present work

Here we present a GPU-accelerated DTT-FMM called BLDTT,
which uses barycentric Lagrange interpolation for the near-field
and far-field approximations [60,34]. The approximations re-
quire only kernel evaluations, ensuring that the BLDTT is kernel-
independent. The BLDTT employs FMM-type upward and down-
ward passes [4], although here they are adapted to interlevel
polynomial interpolation. The clusters are rectangular boxes, and a
parent cluster is divided into eight, four, or two children depend-
ing the parent’s aspect ratio. Each cluster has a tensor product
grid of proxy particles located at Chebyshev interpolation points.
The MAC employed in the DTT checks the cluster radii and their
center-center distance, and it also compares the number of target
and source particles to the number of proxy particles, enabling an
adaptive choice between direct particle-particle interactions and
three types of approximations (particle-cluster, cluster-particle,
cluster-cluster). As with other DTT-FMMs, the precompute phase
scales like O(NlogN) with a small prefactor and the compute
phase scales like O(N). The BLDTT is an extension of previous
related work on treecodes [34,52,61,62].

As will be seen, the approximations used in the BLDTT re-
semble the direct sum in Eq. (1) and can be efficiently mapped
onto GPUs. Based on this observation, the BLDTT is implemented
using OpenACC directives for GPU acceleration and MPI remote
memory access for distributed memory parallelization. Computa-
tions are presented for different particle distributions, domains,
and kernels, and for unequal targets and sources, and the BLDTT
consistently outperforms our earlier barycentric Lagrange treecode
(BLTC [34,52]). On a single GPU for problem size ranging from
N=1E5 to 1E8, the BLTC scales like O (NlogN), while the BLDTT
scales like O (N). We also present MPI strong scaling results for the
BLDTT and BLTC using N=64E6 particles running on 1 to 32 GPUs.
The BLDTT code is available on GitHub in the BaryTree library for
fast summation of particle interactions [63].

The remainder of the paper is organized as follows. Section 2
describes the barycentric Lagrange dual tree traversal (BLDTT) fast
multipole method. Section 3 presents our implementation of the
BLDTT using OpenACC directives for GPU acceleration and MPI re-
mote memory access for distributed memory parallelization. Sec-
tion 4 describes the test cases, Section 5 presents numerical re-
sults, and Section 6 gives the conclusions. Appendices A and B
derive formulas used in the upward and downward passes.

2. Description of BLDTT fast multipole method
2.1. Barycentric Lagrange interpolation

We briefly review the barycentric Lagrange form of polynomial
interpolation in 1D [60]. Given a function f(x) and n+ 1 distinct
points si, k =0:n, the interpolating polynomial can be written as

P =) fls)Lk(), ()

k=0
where the barycentric form of the Lagrange polynomial Li(x) is
Wi

Lk(x)znx_isk, szn;’
Z Wy Hj:o,#k(sk —5j)
X — S

k'=0

k=0:n. (3)
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Table 1
Summary of notation, PP = particle-particle, PC = particle-cluster, CP = cluster-particle, CC = cluster-cluster.
Symbol Description Symbol Description
M, N number of target, source particles G(x,y) interaction kernel
Xi, Xj target particle in 3D, 1D ¢ (Xi) potential at target X;
Vi, Yj source particle in 3D, 1D ¢pp(Xi, Ct, Cs) PP potential at target x; in C;
q; source charge of y; due to sources in Cs
Ce, Cs target cluster, source cluster dpc(Xi, Ct, Es) PC potential at target x; in C;
te, ty target proxy particle in 3D, 1D due to proxy sources in Cs
Sk, Sk source proxy particle in 3D, 1D dcp (L, a. Cs) CP proxy potential at proxy target
Qe proxy charge of s te in a due to sources in Cs
C..Cs proxy particles in target cluster, dcc (te, C.,C) CC proxy potential at proxy target

source cluster

t¢ in C; due to proxy sources in C

This work employs Chebyshev points of the second kind,

Sk =cosb, Ox=mk/n, k=0:n, (4)

and in that case the interpolation weights are

wi= (=D&, k=0:n, (5)

where §, =1/2 if k=0 or n, and 8 =1 otherwise [60,64]. The
BLDTT uses barycentric Lagrange interpolation in 3D rectangular
boxes, where the interpolation points sy = (S, , Sk, Sk;) form a ten-
sor product grid of Chebyshev points adapted to the box. As will
be seen, the interpolation points play the role of proxy particles.

2.2. Algorithm overview

The BLDTT described below computes the potential at M target
particles x; due to N source particles and charges yj,q;; Eq. (1)
is a special case in which the targets and sources coincide. First,
two trees of particle clusters are built, one for the targets and
one for the sources, where each cluster is a rectangular box; clus-
ters in the target tree are denoted C; and clusters in the source
tree are denoted C;. The computed potential at a target particle
¢ (x;) has contributions from four types of interactions as deter-
mined by the dual tree traversal. The four types are direct particle-
particle (PP) interactions of nearby particles, and particle-cluster
(PC), cluster-particle (CP), and cluster-cluster (CC) approximations
of well-separated particles and clusters.

Algorithm 1 is a high-level overview of the BLDTT. Lines 1-4
describe the input consisting of target and source particle data, in-
terpolation degree n, MAC parameter 6, and the maximum number
of particles in the leaves of each tree, Mg, No. Line 5 describes the
output consisting of the computed potentials ¢ (X;). Line 6 builds
the target tree and source tree containing target clusters C; and
source clusters Cs. Line 7 is the upward pass to compute proxy
charges Gy at proxy particles sg. Line 8 is the dual tree traversal
to compute PP, PC, CP, and CC interactions. Line 9 is the downward
pass to interpolate proxy potentials from proxy particles t; to tar-
get particles x;. The steps will be described in detail below. The
notation used in presenting the BLDTT is summarized in Table 1.

Algorithm 1 Barycentric Lagrange Dual Tree Traversal (BLDTT).

: input target particles x;,i=1: M

: input source particles and charges y;,q;j, j=1:N

: input interpolation degree n, MAC parameter 6

: input max particles per target leaf Mo, max particles per source leaf Ng

: output potentials ¢(x;),i=1: M

: build target tree and source tree

: upward pass to compute proxy charges Gy at proxy particles sy in source clus-
ters

: dual tree traversal to compute PP, PC, CP, CC interactions

9: downward pass to interpolate proxy potentials from proxy particles t, to target

particles x;

N U WN =

2]

2.3. Tree building

The target and source trees are constructed by the same rou-
tines, described here for the target tree. The maximum number of
particles per leaf is a user-specified parameter My. The root clus-
ter is the minimal bounding box containing all target particles. The
root is recursively divided into child clusters, terminating when a
cluster contains fewer than Mg particles. Division occurs at the
midpoint of the cluster; in general the cluster is bisected in all
three coordinate directions, resulting in eight child clusters, with
two exceptions. First, a cluster is divided into only two or four
children in order to maintain a good aspect ratio, that is, a ratio
of longest to shortest side lengths no greater than /2. Second, a
cluster is divided into only two or four children to avoid creating
leaves with fewer than Mg/2 particles on average; in particular,
if a cluster contains between My and 2Mj particles, it is divided
into two children, and if it contains between 2M( and 4Mj parti-
cles, it is divided into four children. Upon creation, each cluster is
shrunk to the minimal bounding box containing its particles, and a
tensor product grid of Chebyshev points adapted to the box is cre-
ated; these are also referred to as proxy particles. After building
the trees, the BLDTT performs the upward pass, dual tree traversal,
and downward pass, but before discussing these steps, the next
subsection describes the four types of interactions used to com-
pute potentials.

2.4. Four types of interactions

Fig. 1 depicts the four types of interactions between a target
cluster C; (left, blue) and a source cluster Cs (right, red), where
dots are target/source particles X;,y;, and crosses are target/source
proxy particles tg, si. Also shown are the target/source cluster radii
1t,Ts, and the target-source cluster distance R. These diagrams de-
pict 2D versions of the interactions; in practice the particles reside
in 3D and the clusters are rectangular boxes. Fig. 1 shows the four
cases: (a) particles in C; and Cs (PP), (b) particles in C; and proxy
particles in Cs (PC), (c) proxy particles in C; and particles in Cs
(CP), (d) proxy particles in C; and Cs (CC). The interactions are
described in detail below, where to simplify notation they are pre-
sented in 1D instead of 3D, for example replacing the bold 3-vector
X; by the non-bold scalar x;; the extension to 3D is straightforward
using tensor products.

Particle-particle interaction (Fig. 1a). The PP potential at a tar-
get particle x; € C; due to direct interaction with the source parti-
cles yjeCs is

¢pp(xi,Ce,C) = Y G(xi,¥)qj, Xi€Cr. (6)
yj€Cs

Particle-cluster approximation (Fig. 1b). The kernel is approxi-
mated by holding x; fixed and interpolating with respect to y; at
the proxy particles s in Cs,
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Fig. 1. Four types of interactions between a target cluster C; (left) and a source cluster Cs (right), dots are target/source particles X;,y;, crosses are target/source proxy
particles tg, sk, (a) direct particle-particle interaction (PP), (b) particle-cluster approximation (PC), (c) cluster-particle approximation (CP), (d) cluster-cluster approximation
(CC), target/source cluster radii r¢, s, target-source cluster distance R. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

n
G, y) ~ Y G, sOL(y)), % €Cr, yjeCs. (7)
k=0
Substituting into the PP interaction Eq. (6) and rearranging terms
yields the PC potential,

n
¢pc(xi, Ct. C) =Y Gxi, )Gk, Xi € Cr, (8)
k=0

where the proxy charges Gy of the proxy particles s; are

Q= Z Ly(yj)gj, k=0:n. (9)
yj€Cs

Equation (8) uses Ct, Cs to indicate that the target particles x; in-
teract with the proxy source particles s.

Cluster-particle approximation (Fig. 1c). The kernel is approxi-
mated by interpolating with respect to x; at the proxy particles ty
in C¢ and holding y; fixed,

n
G, y) ~ Y Gte,ypLle(xi), X €Cr, yjeCs. (10)
£=0
Substituting into the PP interaction Eq. (6) and rearranging terms
yields the CP potential,

n
¢cp (i, Cr, Cs) =Y (te, Cr, C)Le(xi),  Xi € Cr, (11)
£=0

where the CP proxy potential q)(tg,a, Cs) is

¢(tr,Co.Cs)= Y G(te,yjaj. te€Ce. (12)
Yjecs

Equation (11) and Eq. (12) use Ct, Cs to indicate that the proxy
target particles t, interact with the source particles y;. Note that
Eq. (11) interpolates from the proxy target particles t, to the target
particles x;.

Cluster-cluster approximation (Fig. 1d). The kernel is interpo-
lated with respect to x; at the proxy particles t; in C; and with
respect to y; at the proxy particles s in Cs,

n n
GO, y) =YY Gt solex)Li(y)), xi€Cp, yjeCs.
k=0 ¢=0
(13)

Substituting into the PP interaction Eq. (6) and rearranging terms
yields the CC potential,

n

¢cc®i. Ct.Co) =Y ¢ (te. Cr. CoLe(xi),  xi €C, (14)
£=0

where the CC proxy potential ¢(tg,a,a) is

n
¢(te, Cr, Cs) =Y _ Gte, )Gk, te € Cr, (15)
k=0

and the proxy charges Gy were defined in Eq. (9). Equation (14)
and Eq. (15) use Cy, Cs to indicate that the proxy target particles t,
interact with the proxy source particles si. Note that Eq. (14) in-
terpolates from the proxy target particles t, to the target particles
Xj.

While the PP interaction in Eq. (6) is a direct sum involving ker-
nel evaluations of target and source particles, it should be noted
that the PC, CP, CC interactions in Egs. (8), (12), (15) also have a
direct sum form involving kernel evaluations of target and source
particles or proxy particles. This enables the efficient GPU imple-
mentation discussed below.

The following three subsections describe the rest of Algorithm 1
comprising the upward pass, dual tree traversal, and downward
pass. Before proceeding, note that in computing the potentials
¢ (x;), contributions from the ¢pp(x;, C, Cs) and ¢pc(x;, Ct,fs) po-
tentials in Eqs. (6) and (8) are included as soon as they are com-
puted in the DTT, while contributions from the ¢¢ p(x,-,a, Cs) and
¢cc(xi,ft,fs) potentials in Egs. (12) and Eq. (15) are computed in
the DTT and included in the downward pass.

2.5. Upward pass
The upward pass computes the proxy charges Qi in Eq. (9) for

the proxy particles s, in each source cluster Cs in the source tree;
these are required for the PC and CC approximations in Egs. (8)
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and (15). Each source particle y; contributes to the proxy charges
Qi of exactly one cluster at each level of the tree. Hence with
N source particles and tree depth O (logN), computing the proxy
charges directly by Eq. (9) requires O (N log N) operations.

Following the FMM [4], the BLDTT uses an alternative approach.
Let Cs denote a parent cluster and let Ci,i =1:2 denote the two
child clusters; recall that here we consider a 1D system for clarity
of presentation and the same considerations hold in 3D where the
clusters have eight, four, or two children. Appendix A derives the
relation

2

n
Q=Y Lis)q. k=0:n, (16)

i=1 k=0

where Li(x) are the Lagrange polynomials of the parent Cs, and
ski,ﬁki are the interpolation points and proxy charges of the chil-
dren Cﬁ. Equation (16) shows that the proxy charges of the parent
Gk can be computed from the proxy charges of the children Gy,. The
upward pass starts by computing the proxy charges of the leaves of
the source tree using Eq. (9) and it ascends to the root by Eq. (16).
This is analogous to the upward pass in the FMM [4] where the
multipole moments of a parent cluster are obtained from the mo-
ments of its children.

Computing the proxy charges this way requires O(N) opera-
tions, which can be seen as follows. We briefly revert to 3D. First,
computing the proxy charges for the leaves by Eq. (9) requires
0(n3N) operations because each of the N source particles con-
tributes to one leaf and each leaf contains O (n®) proxy particles.
Then each application of the child-to-parent relation Eq. (16) re-
quires O (n®) operations, and since there are O(N) parent clusters
in the tree, ascending the tree requires an additional O (n®N) op-
erations. Combining these it follows that the operation count for
the BLDTT upward pass is O(N).

2.6. Dual tree traversal

The DTT determines which pairs of clusters in the target and
source trees interact by one of the four options described above
(PP, PC, CP, CC). Before the traversal starts, two sets of potentials
are initialized to zero, potentials ¢ (x;) at the target particles and
proxy potentials ¢ (ty) at the proxy target particles in each target
cluster. During the traversal, the potentials ¢ (x;) are incremented
due to PP and PC interactions, and the proxy potentials ¢(t;) are
incremented due to CP and CC interactions. Following the DTT, the
proxy potentials ¢(t;) are interpolated to the target particles x;
and combined with the potentials ¢ (x;) in the downward pass.

The dual tree traversal uses the recursive procedure DTT(C;, Cs)
in Algorithm 2, which takes a target cluster C; and a source cluster
Cs as input. Initially the procedure is called for the root clusters
of the target and source trees. In what follows, the clusters are
defined to be well-separated if (r: +715)/R < 6, where r¢, 15 are the
target and source cluster radii and R is the center-center distance
between the clusters.

If C; and Cs are well-separated (line 2), then they interact in
one of four ways depending on the number of particles they con-
tain relative to the number of proxy particles in a cluster, which is
denoted by np = (n+1)3 in 3D. If C; and C; are both large (lines 3-
4), then the proxy potentials are incremented by CC, Eq. (15); else
if C; is large and Cs is small (lines 5-6), then the proxy potentials
are incremented by CP, Eq. (12); else if C; is small and C; is large
(lines 7-8), then the potentials are incremented PC, Eq. (8); else C;
and C; are both small (line 9) and the potentials are incremented
PP, Eq. (6).

If Ct and Cs are not well-separated, then the traversal continues
as follows. If C; and C are leaves (lines 11-12), then the potentials
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are incremented by PP, Eq. (6). Otherwise if Cs is a leaf, then it
interacts recursively with the children of C; (line 13), while if C; is
a leaf, then it interacts recursively with the children of C (line 14).
Finally if C; and C; are both not leaves, then the smaller cluster
interacts recursively with the children of the larger cluster (lines
15-17).

Algorithm 2 Dual Tree Traversal.

1: procedure DTT(target cluster C¢, source cluster Cs)
2: if (r; +715)/R <6 then
if |C¢| > np and |Cs| > n;, then
increment proxy potentials ¢ (t;) += q)(tg,a.fs) by CC, Eq. (15)
else if |C¢| > n, and |Cs| <n, then
increment proxy potentials ¢ (t;) += ¢(t1g,a, Cs) by CP, Eq. (12)
elseif |C¢| <np and |Cs| > np then
increment potentials ¢ (x;) += ¢ (x;, C(fs) by PC, Eq. (8)
9: else increment potentials ¢ (x;) += ¢ (x;, C¢, Cs) by PP, Eq. (6)
10: else
11: if C; and C; are leaves then
12: increment potentials ¢ (x;) += ¢ (x;, Ct, Cs) by PP, Eq. (6)
13:  elseif Cs is a leaf then for each child C; of C; do DTT(C;, C;)
14: elseif C; is a leaf then for each child C; of Cs do DTT(C, C})
15: else
16: if |C¢| > |Cs| then for each child C] of C; do DTT(C, C;)
17: else for each child C; of Cs do DTT(C;, Cy)

w

RPND YA

The DTT yields potentials ¢ (x;) due to PP and PC interactions
and proxy potentials ¢(ty) due to CP and CC interactions. In the
case of N homogeneously distributed source and target particles,
the operation count of the dual tree traversal is O (N) [13,14].

2.7. Downward pass

At this point each target cluster has proxy potentials ¢ (t;) that
were computed in the DTT by CP and CC interactions in Eqs. (12)
and (15). The downward pass interpolates these proxy potentials
to the target particles x; and increments the potentials ¢ (x;) that
were computed in the DTT by PP and PC interactions in Eqgs. (6)
and (8). This can be done in two ways as described below.

First note that each target particle x; is contained in a chain of
target clusters,

xieClcc?c...cct, (17)

where the superscript denotes the level in the target tree; level 1
contains the leaves and level L is the root. In the downward pass,
each target cluster C{" in the chain contributes its proxy potentials

BN ) to $(xi),

L n
P +=Y_ > P LE (xi), (18)

m=1ky,=0

where tlrcr,l,, are the proxy particles and Lkmm (x) are the Lagrange poly-
nomials of C{", and += indicates that the results are combined
with the potentials ¢(x;). In Eq. (18) the inner sum interpolates
proxy potentials from the proxy particles t,’j:n to the target par-
ticle x;, and the outer sum accumulates the results from each
level in the chain. Computing ¢ (x;) directly by Eq. (18) requires
0 (M log M) operations; the factor M is the number of target par-
ticles x;, the factor log M is the number of levels in the target tree,
and the operation count for the inner sum at each level is inde-
pendent of M (it is O(n) in 1D and O (n?) in 3D).

The procedure just described interpolates from the proxy parti-
cles t’,; at each level in the target tree directly to the target particle
x;. Again following the FMM [4], the BLDTT utilizes a recursive al-
ternative. In what follows, C{" is a parent cluster at level m and
C}“’] is a child cluster at level m—1 in the chain given by Eq. (17).
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The recursive procedure interpolates the parent proxy potentials
d)(tg:n) to the child proxy particles t,'z:l,

Pp 4= WL ), (19)

m
km=0

where += indicates that the results are combined with the child
proxy potentials ¢(t£’:ﬂ’_:) due to CP and CC interactions previously
computed in the DTT. The procedure starts at the root of the target
tree and descends to the leaves, where the proxy potentials q&(t,ll)
are interpolated to the target particles x; and combined with the
PP and PC potentials previously computed in the DTT,

P += Y pty g, (x0). (20)

k1=0

It is shown in Appendix B that Eq. (18) for ¢ (x;) is equivalent to
the combination of Egs. (19) and (20).

Note that the parent-to-child interpolation in Eq. (19) requires
0 (n%) operations in 3D for each parent cluster, and the tree con-
tains O (M) parent clusters, so interpolating from the root to the
leaves requires O (n®M) operations. Note also that the proxy-to-
particle interpolation in Eq. (20) requires O (n3) operations for each
target particle, so interpolating from leaf proxy particles to target
particles requires O (n®M) operations. Combining these it follows
that the operation count for the BLDTT downward pass is O (M).

2.8. Description of BLTC

We briefly describe our previous particle-cluster barycentric La-
grange treecode (BLTC) [34,52] which has an algorithmic structure
resembling the Barnes-Hut treecode [3]. Unlike the BLDTT which
builds a tree on both the source and target particles, the BLTC
builds a tree of clusters on the source particles and a set of batches
on the target particles, where the batches correspond to the leaves
of a target tree. Once the source tree is built, the BLTC com-
putes the proxy charges for each source cluster directly from the
source particles by Eq. (9). For each target batch the source tree
is traversed, starting at the root and checking whether the tar-
get batch and a given source cluster are well-separated. If they
are well-separated and the cluster contains more particles than in-
terpolation points, then the batch and cluster interact by the PC
approximation in Eq. (8). If they are not well-separated, then the
batch interacts with the children of the cluster. The PP interac-
tion in Eq. (6) is carried out in the remaining cases (leaves in the
source tree that are not well-separated from the target batch, and
source clusters that are well-separated from the target batch but
have fewer particles than interpolation points). For M target parti-
cles and N source particles, the BLTC operation count is O (N log N)
+ O(MlogN), where the first term is due to building the source
tree and computing the proxy charges, and the second term is due
to traversing the source tree for each target batch.

3. GPU implementation of BLDTT

The BLDTT implementation for multiple GPUs is similar to our
previous BLTC implementation [52] and is available in the BaryTree
library [63]. The code uses OpenACC directives for GPU acceleration
and MPI remote memory access for distributed memory paral-
lelization, where each GPU corresponds to one MPI rank. The DTT
creates four interaction lists for each target cluster, one list for each
type of interaction (PP, PC, CP, CC); this is done on the CPU, and
once the lists are available, the interactions are computed on the
GPU. This delegation of tasks enhances efficiency because the GPU
can cycle through the lists rapidly and the GPU compute kernels
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can be queued asynchronously as described below. Hence the CPU
is responsible for tree building, computing interaction lists by DTT,
and MPI communication of particles and clusters, while the GPU
is responsible for the upward pass, PP/PC/CP/CC computations, and
the downward pass. Next we describe further details of the imple-
mentation.

3.1. MPI distributed memory parallelization

We use locally essential trees (LET) to implement distributed
memory parallelization [65]. The particles are partitioned by re-
cursive coordinate bisection into compact domains on each MPI
rank using Trilinos Zoltan [66,67]. Each MPI rank builds the local
source tree and local target tree for its particles. The LET of a rank
is the union of the rank’s local source tree and all source clusters
from remote ranks that interact with its local target tree. Although
building the LETs requires an all-to-all communication, the amount
of data acquired by each rank grows only logarithmically with the
problem size [65]. The computing and communication required to
build the LETs is done using MPI passive target synchronization re-
mote memory access (RMA). RMA is a one-sided communication
model within MPI in which an origin process can put data onto a
target process or get data from a target process through specially
declared memory windows, with no active involvement from the
target process. This enables each rank to construct its LET asyn-
chronously from other ranks. We note that MPI remote memory
access has previously been used in a multicore CPU implementa-
tion of the FMM [68].

3.2. GPU compute kernels

The GPU implementation of the BLDTT employs eight compute
kernels, two for the upward pass, four for computing interac-
tions determined by the DTT, and two for the downward pass.
The compute kernels are generated by OpenACC directives and are
compiled with the PGI C compiler. The kernels are launched asyn-
chronously in multiple GPU streams to hide latency as much as
possible. The approach generalizes to multiple GPUs in a straight-
forward manner, in which each GPU corresponds to one MPI rank.

The first upward pass kernel computes the proxy charges for a
given leaf in the source tree. For each leaf, the kernel is launched
asynchronously and further computation is blocked until all of the
leaf's proxy charges are computed. The second upward pass ker-
nel computes the proxy charges of parent clusters using the proxy
charges of the children. For a given level of the source tree above
the leaves, this kernel is launched asynchronously for each clus-
ter at that level, and further computation is blocked until all proxy
charges at that level are computed.

The four DTT kernels compute the interaction of a target cluster
with a source cluster. Each PP, PC, CP, and CC interaction launches
one compute kernel. All such kernels are launched asynchronously
and further computation is blocked until they complete. The four
interaction kernels have a similar structure, with an outer loop
over the particles or proxy particles in the target cluster, and an in-
ner loop over the particles or proxy particles in the source cluster.
Due to the form of barycentric Lagrange interpolation, the inner
loop iterations are independent of each other and can be com-
puted concurrently, unlike alternative approximation methods that
are sequential. The outer loop is mapped to the gang construct in
OpenACC and the inner loop is mapped to the vector construct.
Conceptually, a member of a gang corresponds to a thread block
and a member of a vector corresponds to an individual thread.

The two downward pass compute kernels are similar in struc-
ture to the upward pass kernels. At each level of the target tree
above the leaves, beginning with the root, the first downward pass
compute kernel is launched asynchronously for each target cluster
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Fig. 2. Comparison of BLDTT and BLTC, run time (s) versus number of particles N=1E5, 1E6, 1E7, 1E8, random uniformly distributed particles in [—1, 1]? interacting by the
Coulomb kernel, MAC parameter § = 0.7, degree n = 8 yielding 7-8 digit accuracy, direct sum (green), BLTC (red), BLDTT (blue), (a) linear scale, (b) logarithmic scale, scaling
lines O (N?2) (dash-dotted), O (NlogN) (dotted), O(N) (dashed), computed on one NVIDIA P100 GPU.

at that level to interpolate the proxy potentials of the cluster to
its children. Further computation is blocked until all compute ker-
nels at a given level complete. Finally, the second downward pass
compute kernel is launched asynchronously for each target leaf to
interpolate the proxy potentials to the target particles.

4. Description of test cases

First we examine the scaling of the BLDTT and BLTC for prob-
lem size ranging from N=1E5 to 1E8, and then we demonstrate
the speedup of the GPU implementation of the BLDTT over a CPU
implementation. Next the BLDTT is applied to several test cases
comprising different random particle distributions (uniform, Gaus-
sian, Plummer [69,70]), domains (thin slab, square rod, spherical
surface), kernels (regularized Coulomb, Yukawa, oscillatory), and
for unequal targets and sources. The benefit of including CP and
PC interactions in the BLDTT is verified, and the peak memory us-
age of the BLDTT is reported in comparison with the BLTC and
direct summation. The results mentioned so far were obtained on
one GPU, and finally we demonstrate the MPI strong scaling of the
BLDTT on 1 to 32 GPUs.

All runs use maximum leaf and batch size Mg = Ny = 2000.
The target and source particles are identical except as indicated in
Section 5.5, and the source charges q; are random and uniformly
distributed on [—1, 1] except for the Plummer distribution where
the charges are set to 1/N. The Coulomb kernel is used in all runs
except as indicated in Section 5.6. The calculations are done in
double precision arithmetic and we report the relative ¢, error,

M M 172
E= (Z(q&?s —o{)? / Z(as:“)z) :
i=1 i=1

where q{)ids are the potentials computed by direct summation and

(21)

¢if $ are computed by fast summation (BLDTT, BLTC). The error was
sampled at a random subset of 0.1% of the target particles. To fa-
cilitate comparison of the BLDTT and BLTC across the test cases
presented, Figs. 4, 5, 8, 10 use the same axes to display the run
time versus error.

The computations were performed on the NVIDIA P100 GPU
nodes at the San Diego Supercomputer Center Comet machine,
where each node has four GPUs and each GPU has 16GB of mem-
ory. These resources were provided through the Extreme Science
and Engineering Discovery Environment (XSEDE) [71]. The ex-
amples directory of the BaryTree library contains the executable
(random_cube reproducible) used to run the BLDTT and
BLTC [63]. The code was written in C and compiled with the PGI C
compiler using the -03 optimization flag.

Table 2

Comparison of BLDTT and BLTC, number of particles N = 1E5, 1E6, 1E7, 1E8, ran-
dom uniformly distributed particles in [—1,1]> interacting by the Coulomb kernel,
MAC parameter 6 = 0.7, degree n =38, run time (s) from Fig. 2, relative ¢, error,
computed on one NVIDIA P100 GPU.

N BLTC BLDTT
Time (s) Error Time (s) Error
1E5 2.15E-1 1.75E—-8 2.19E-1 1.58E—8
1E6 4.71E+0 142E-7 3.56E+0 3.67E—-8
1E7 6.81E+1 4.68E—7 4.40E+1 412E-8
1E8 8.96E+2 9.23E-7 4.82E+2 417E-8
5. Results

5.1. Scaling with problem size

Fig. 2 shows the run time (s) for direct summation (green),
BLTC (red), and BLDTT (blue) with N=1E5, 1E6, 1E7, 1E8 random
uniformly distributed particles in the [—1, 1]° cube interacting by
the Coulomb kernel. The BLDTT and BLTC use MAC parameter
0 = 0.7 and interpolation degree n =8, yielding 7-8 digit accuracy.
Fig. 2(a) is a linear plot, showing that the BLDTT is about twice
as fast as the BLTC, and both are much faster than direct sum-
mation. Fig. 2(b) is a logarithmic plot with reference lines scaling
as O(N) (dashed), O(NlogN) (dotted), and O (N?) (dash-dotted),
showing that as the problem size increases, the BLTC has asymp-
totic O(NlogN) scaling, while the BLDTT has asymptotic O(N)
scaling as expected. Table 2 records the run time and error; the
asymptotic scaling of the run time can be quantitatively verified,
and although the error increases slightly with problem size, the
BLDTT error is consistently smaller than the BLTC error.

5.2. GPU acceleration of BLDTT

We compare the BLDTT running on one NVIDIA P100 GPU
and on 8 CPU cores (Intel Xeon E5-2680v3 processor, 2.50 GHz,
MPI parallelization). Table 3 gives the run times showing that the
BLDTT achieves 30-40x speedup on the GPU compared to 8 CPU
cores. The BLDTT errors are the same as in Table 2.

5.3. Different random particle distributions

We examine the BLDTT performance for three random parti-
cle distributions: (a) uniform in [—1, 1]?, (b) Gaussian with ra-
dial pdf ﬁexp (=r?/6), (c) Plummer [69,70] with radial pdf

= (1 —i—rz)_S/2 and cutoff at 100 in all three Cartesian coor-
dinates. The charges of the uniform and Gaussian particles are
uniformly distributed in [—1, 1], and the Plummer particle charges
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Fig. 3. Different random particle distributions, N=4E5, (a) uniform, (b) Gaussian, (c) Plummer.
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Fig. 4. Different random particle distributions, run time (s) versus relative ¢, error, N=2E7, (a) uniform, (b) Gaussian, (c) Plummer, BLTC (red, dashed), BLDTT (blue, solid),
connected curves represent constant MAC 6 (0.5 x; 0.7 o; 0.9 %), interpolation degree n =1, 2,4, 6, 8, 10 increases from right to left on each curve, computed on one NVIDIA

P100 GPU.

Table 3

Comparison of BLDTT running on one NVIDIA P100 GPU and on 8 CPU cores, num-
ber of particles N = 1E5, 1E6, 1E7, 1E8, random uniformly distributed particles in
[—1,1]® interacting by the Coulomb kernel, MAC parameter 6 = 0.7, degree n =8,
run time (s), speedup, same errors as in Table 2.

N CPU Time (s) GPU Time (s) Speedup
1E5 7.84E+0 219E—1 358
1E6 1.45E+2 3.56E+0 40.7
1E7 1.40E+3 4.40E+1 318
1E8 1.70E+4 4.82E+2 353

are set to 1/N, where N is the number of particles. Fig. 3 de-
picts the three distributions with N=4E5. Compared to the uniform
case (a), the Gaussian and Plummer distributions (b,c) are concen-
trated near the origin, with the Gaussian decaying more rapidly
away from the origin and the Plummer decaying more slowly.

Fig. 4 shows the run time (s) versus relative ¢, error for the
BLDTT (blue, solid) and BLTC (red, dashed) on these three distribu-
tions with N=2E7. Each connected curve represents constant MAC
with § =0.5 (x), 8 =0.7 (o), 6 = 0.9 (%), and the interpolation de-
gree n=1,2,4,6, 8,10 increases from right to left on each curve.
For these parameter choices the errors span the range from 1 digit
to 10 digit accuracy. Large 6 is more efficient for low accuracy and
small 6 is more efficient for high accuracy. The BLDTT has con-
sistently better performance than the BLTC and is less sensitive to
non-uniformity in the distribution.

To demonstrate the benefit of including PC and CP interactions,
Fig. 5 compares two versions of the BLDTT, the one presented in
this work using PP, PC, CP and CC interactions (blue, solid), and
one using only CC and PP interactions (red, dashed). The results
show that the first version has consistently better performance,
especially for the non-uniform Gaussian and Plummer distribu-
tions. When only CC and PP interactions are used, the interaction

between a target cluster and a source cluster is handled by PP
interaction if either cluster has fewer particles than interpolation
points, whereas the flexibility to use PC or CP interactions in those
cases yields better performance.

To further examine the effect of including PC and CP interac-
tions, next we compare the number of pointwise interactions used
by the two versions of the BLDTT, where a pointwise interaction
refers to one kernel evaluation G(X,y). Results are shown for MAC
© = 0.9 and interpolation degree n=1, 2, 4,6, 8, 10, for the same
three random distributions with N=2E7 as above. Fig. 6 displays
results for the four types of interactions in stacked bars, CC (blue),
PP (orange), PC (yellow), CP (purple), from bottom to top, where
the left bar in each pair is the BLDTT with CC and PP interactions
only, and the right bar is the BLDTT with PP, PC, CP, and CC in-
teractions. In this case a direct sum calculation would use 4E14
PP interactions, whereas the BLDTT calculations use less than 6E12
interactions. The results show that for high degree, including PC
and CP interactions in the BLDTT reduces the number of PP in-
teractions, replacing them with a smaller number of PC and CP
interactions, and this effect is stronger for the non-uniform distri-
butions.

5.4. Non-cubic domains

We demonstrate the BLDTT performance on three non-cubic
domains depicted in Fig. 7: (a) thin slab of dimensions 1 x 10 x 10,
(b) square rod of dimensions 1 x 1 x 10, and (c) spherical surface
of radius 1. In all cases the particles are random uniformly dis-
tributed.

Fig. 8 shows the run time (s) versus relative ¢, error for the
BLDTT (blue, solid) and BLTC (red, dashed) with N=2E7, using MAC
9 =0.5,0.7,0.9 and interpolation degree n=1,2,4,6,8,10. The
BLDTT has consistently better performance than the BLTC. Com-
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Fig. 5. Different random particle distributions, run time (s) versus relative ¢, error, N=2E7 particles, (a) uniform, (b) Gaussian, (¢) Plummer, BLDTT with only CC and PP
interactions (red, dashed), BLDTT with PP, PC, CP, and CC interactions (blue, solid), connected curves represent constant MAC 6 (0.5 x; 0.7 o; 0.9 x), interpolation degree
n=1,2,4,6,8, 10 increases from right to left on each curve, computed on one NVIDIA P100 GPU.
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Fig. 6. Different random particle distributions, number of pointwise interactions (kernel evaluations G(x,y)), N=2E7, (a) uniform, (b) Gaussian, (c¢) Plummer, MAC # = 0.9,
interpolation degree n=1,2,4,6,8, 10, each pair of bars shows BLDTT with CC and PP only (left) and BLDTT with PP, PC, CP, CC (right), direct sum calculation would use
4E14 PP interactions.
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Fig. 7. Non-cubic domains, N=4E5 random uniformly distributed particles, (a) thin slab of dimensions 1 x 10 x 10, (b) square rod of dimensions 1 x 1 x 10, (c) spherical
surface of radius 1.
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Fig. 9. Unequal targets and sources, (a) M=2E7 targets, N=2E6 sources, (b) M=2E6 targets, N=2E7 sources, random uniformly distributed particles, run time (s) versus relative
£ error, PC-BLTC (red, dashed), CP-BLTC (green, dash-dotted), BLDTT (blue, solid), connected curves represent constant MAC 6 (0.5 x; 0.7 o; 0.9 x), interpolation degree
n=1,2,4,6,8, 10 increases from right to left on each curve, computed on one NVIDIA P100 GPU.

pared to the cubic domain results in Fig. 4(a), the BLDTT achieves
similar error and runs somewhat faster for the non-cubic domains.
Recall that the tree building procedure checks the aspect ratio of
the particle clusters and divides them into eight, four or two chil-
dren. This yields an oct-tree for the cubic domain, and essentially a
quad-tree for the thin slab and spherical surface, and a binary tree
for the square rod. With fewer branches the tree is traversed faster.
Recall also that each cluster is shrunk to the minimal bounding box
containing its particles. These features enable the BLDTT to adapt
to non-cubic domains without explicit reprogramming.

5.5. Unequal targets and sources

Next the BLDTT is applied to systems with M targets and N
sources, where M # N. In addition to the particle-cluster BLTC de-
scribed in Section 2.8, referred to in this section as PC-BLTC, we
also consider a cluster-particle version (CP-BLTC) which builds a
tree of clusters on the M targets and a set of batches on the
N sources, and uses PP and CP interactions [62]. Instead of an
O(NlogN) upward pass to compute proxy charges, the CP-BLTC
has an O (M log M) downward pass to interpolate proxy potentials
to targets. While the compute phase of the PC-BLTC is O (M logN),
the compute phase of the CP-BLTC is O(NlogM), hence the PC-
BLTC is expected to perform better when N > M, and the CP-BLTC
is expected to perform better when M > N.

Fig. 9 shows the run time (s) versus relative ¢, error for the PC-
BLTC (red, dashed), CP-BLTC (green, dash-dotted), and BLDTT (blue,
solid) with (a) M=2E7 targets, N=2E6 sources, (b) M=2E6 targets,
N=2E7 sources, for MAC 6 and interpolation degree n as above.
For (a) M > N, the CP-BLTC outperforms the PC-BLTC, and for (b)

N > M, the PC-BLTC outperforms the CP-BLTC except at low degree
n, while the BLDTT outperforms both treecodes except in (b) for
MAC 6 = 0.9 and low degree n, where the CP-BLTC runs slightly
faster. Note that the CP-BLTC does not have an upward pass, and
in the current GPU implementation of the BLDTT and PC-BLTC, the
upward pass parallelizes less well than the downward pass, and
with low degree n, it contributes a substantial fraction of the PC-
BLTC and BLDTT run time. Nonetheless the results demonstrate the
ability of the BLDTT to adapt to systems of unequal targets and
sources.

5.6. Different kernels

Previous sections considered particles interacting through the
Coulomb kernel, and here we demonstrate the kernel-independent
nature of the BLDTT by applying it to three different kernels:
(@) regularized Coulomb, 1/(*> + 0.005%)!/2, (b) Yukawa,
exp(—0.5r)/r, (c) oscillatory, sin(srr)/r. Fig. 10 shows the run time
(s) versus relative ¢, error for the BLDTT (blue, solid) and BLTC
(red, dashed) with N=2E7 random uniformly distributed particles
in the cube [—1,1]3 for MAC 6 and interpolation degree n as
above. The BLDTT has consistently better performance than the
BLTC for all three kernels.

5.7. Memory usage

Next we consider the peak memory usage of the BLDTT and
BLTC for 2E7 random uniformly distributed particles in [—1,1]3
interacting through the Coulomb kernel, where the peak mem-
ory is the maximum resident set size (MaxRSS) reported by the
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Fig. 10. Different kernels, N=2E7 random uniformly distributed particles in [—1, 1]3, (a) regularized Coulomb, 1/(r> +0.0052)!/2, (b) Yukawa, exp(—0.5r)/r, (c) oscillatory,
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Fig. 11. Peak memory, N=2E7 random uniformly distributed particles in [—1,1]%,
peak memory (GB) versus interpolation degree n, BLDTT (blue, solid), BLTC (red,
dashed), direct summation (black, dashed-dotted), connected curves represent con-
stant MAC 6 (0.5 x; 0.7 o; 0.9 %), degree n=1, 2,4, 6, 8, 10 increases from right to
left on each curve.

SLURM job scheduler. Fig. 11 shows the peak memory (GB) versus
interpolation degree n for the BLDTT (blue, solid) and BLTC (red,
dashed) with MAC 6 and degree n as above. The peak memory
for direct summation (black, dash-dotted) in this case is 2.586 GB.
For a given MAC 6 and degree n, the BLDTT uses about 5% more
memory than the BLTC, which is due to storing the proxy particles
and potentials in the target clusters (the BLDTT interaction lists use
very little memory). For both the BLDTT and BLTC, smaller MAC
leads to a slight increase in memory, with values within roughly
1% of each other for a given degree. At the highest degree n = 10,
the BLDTT uses about 50% more memory than direct summation,
which is due to storing the proxy particles, charges, and potentials
in the target and source clusters.

5.8. MPI strong scaling

We examine the MPI strong scaling of the BLDTT running on 1
to 32 NVIDIA P100 GPUs with one MPI rank per GPU. The particles
are partitioned into compact domains by Trilinos Zoltan [66,67]
and each domain resides on one GPU. Fig. 12 depicts the domain
decomposition for N=1.6E6 random uniformly distributed particles
in the cube [—1, 1]° across (a) 8 ranks with 2E5 particles per rank,
(b) 16 ranks with 1E5 particles per rank. Colors represent particles
residing on different ranks.

Fig. 13 shows the run time versus the number of GPUs for
systems with N=64E6 random particles having (a) uniform, (b)
Gaussian, and (c) Plummer distributions as above. The computa-
tions use MAC 6 = 0.7 and interpolation degree n = 8 yielding
error ~ 1E-8. Results are shown for the BLDTT (blue) and BLTC
(red), where the boxed numbers give the parallel efficiency and the
dashed lines indicate ideal scaling. The BLDTT is 1.5-2.5x faster

than the BLTC up to 32 GPUs, and the speedup improves for the
non-uniform particle distributions. The BLDTT has slightly lower
parallel efficiency than the BLTC except for the Plummer distribu-
tion with 32 GPUs. The parallel efficiency of the BLDTT remains
65% or higher up to 32 GPUs for all three distributions.

The lower parallel efficiency of the BLDTT compared to the BLTC
can be explained by profiling the computations. Fig. 14 shows
the component breakdown as a percent of run time for the (a)
BLTC and (b) BLDTT uniform distribution results in Fig. 13(a). The
components are the upward pass (blue), computing due to local
sources and source clusters (orange), computing due to remote
sources and source clusters (yellow), downward pass (purple), LET
building and communication (green), and other (light blue) which
includes tree building and interaction list building. The breakdown
is based on timing results for the most expensive MPI rank in each
case. Note that LET building accounts for a larger fraction of the
run time as the number of ranks increases; this is due to the larger
communication cost as more particles reside on remote ranks, and
it is the primary factor that impedes ideal parallel scaling. The LET
building time is nearly identical for the BLTC and BLDTT, but since
the BLDTT runs faster, LET building accounts for a larger fraction of
the run time, and this explains the lower parallel efficiency of the
BLDTT compared to the BLTC in Fig. 13.

6. Conclusions

We presented a GPU-accelerated fast multipole method called
BLDTT, which uses barycentric Lagrange interpolation for the near-
field and far-field approximations [60,34] and dual tree traversal
to construct the interaction lists [12,13]. The BLDTT builds adap-
tive trees of clusters on the target particles and source particles,
where each cluster is the minimal bounding box of its particles,
and a parent cluster may have 8, 4, or 2 children. The scheme
replaces well-separated particle-particle interactions by adaptively
chosen particle-cluster, cluster-particle, and cluster-cluster approx-
imations given by barycentric Lagrange interpolation on a Cheby-
shev grid of proxy particles in each cluster. The BLDTT employs
FMM-type upward and downward passes [4], although here they
are adapted to interlevel polynomial interpolation. The BLDTT is
kernel-independent and the approximations have a direct sum
form that efficiently maps onto GPUs, where targets provide an
outer level of parallelism and sources provide an inner level of par-
allelism. The code uses OpenACC directives for GPU acceleration,
and the distributed memory parallelization builds locally essen-
tial trees on each rank [65], with MPI remote memory access for
communication and recursive coordinate bisection for domain de-
composition. The BLDTT code is available in the BaryTree library
for fast summation of particle interactions [63].
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Fig. 12. Examples of domain decomposition, N=1.6E6 random uniformly distributed particles in [—1,1]%, (a) 8 ranks with 2E5 particles per rank, (b) 16 ranks with 1E5
particles per rank, colors represent particles residing on different ranks, partitioning by Trilinos Zoltan [66,67].
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Fig. 13. MPI strong scaling, N=64E6 random particles in [—1, 1]3, (a) uniform, (b) Gaussian, (c) Plummer distributions, MAC 6 = 0.7, interpolation degree n =8 yielding 7-8
digit accuracy, run time (s) versus number of GPUs, BLTC (red), BLDTT (blue), ideal scaling (dashed lines), parallel efficiency (boxed numbers).
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Fig. 14. Component breakdown of run time across 1 to 32 GPUs, 64E6 random uniformly distributed particles in [—1,1]?, MAC 6 = 0.7, interpolation degree n = 8, error
~ 1E-8, (a) BLTC, (b) BLDTT, upward pass (blue), computing due to local sources and source clusters (orange), computing due to remote sources and source clusters (yellow),
downward pass (purple), LET building and communication (green), and other (light blue) including tree building and interaction list building, breakdown is based on timing
results for most expensive MPI rank in each case.
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The BLDTT was compared with the BLTC, an earlier particle-
cluster barycentric Lagrange treecode [34]. For systems with
N=1E5 to 1E8 particles running on one GPU, the BLTC scales like
O(NlogN) and the BLDTT scales like O(N). Computations were
presented for different random particle distributions (uniform,
Gaussian, Plummer), domains (thin slab, square rod, spherical sur-
face), and interaction kernels (singular and regularized Coulomb,
Yukawa, oscillatory) and for unequal target and source particles.
In terms of run time versus error, the BLDTT has consistently bet-
ter performance than the BLTC. The BLDTT uses about 5% more
memory than the BLTC, and with degree n = 10 it uses about 50%
more memory than direct summation. We demonstrated the MPI
strong scaling of the BLDTT and BLTC running on 1 to 32 GPUs
for N=64E6 particles with 7-8 digit accuracy, where the BLDTT is
1.5-2.5x faster than the BLTC, and the parallel efficiency of the
BLDTT is better than 65% up to 32 GPUs.

Future work to improve the efficiency of the BLDTT could in-
vestigate overlapping communication and computation, building
tree nodes that span multiple ranks, using mixed-precision arith-
metic, and employing barycentric Hermite interpolation [72]. We
anticipate applying the BLDTT to speed up integral equation based
implicit solvent computations [73] and density functional theory
calculations [74].
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Appendix A. Details of upward pass

First we note a property of polynomial interpolation. Recall that
given a function f(x) and n + 1 distinct points sg,k = 0:n, the
interpolating polynomial p(x) can be written as

n

P =Y fls)L(®),

k=0

(A1)

where Li(x) are the Lagrange polynomials. If f(x) itself is a poly-
nomial of degree n, then

FR =Y flsL®), (A2)

k=0

because the left and right sides are both polynomials of degree n
with the same values at the n+ 1 distinct points s.

Now we turn to the upward pass. Recall Eq. (9) for the defini-
tion of the proxy charges §j of a source cluster Cs,
Ge= > L(yjgj. k=0:n, (A3)
yj€Cs

where yj,q; are the particles and charges of the cluster, and L(y)
are the Lagrange polynomials associated with the cluster. Suppose
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the cluster Cs has two child clusters Cs;, i =1:2 with interpola-
tion points s, Lagrange polynomials Ly, (y), and proxy charges Gy,.
The parent proxy charge in Eq. (A.3) can be expressed in terms of
the child proxy charges as follows,

Q= Z Ly (¥j)q; (A4a)
yj€Cs
2
=>" > Ly, (A.4b)
i=1 ijCSTi
2 n
=33 D] sl vy | g (Adc)
i=1y;eCsi \ki=0
2 n
=Y > LGk) Y L (ypa; (A4d)
i=1k;j=0 yj€Cs,i
2 n
=Y > Lilsi)Gi;- (Ade)
i=1 k=0

Step a is the definition of the parent proxy charges, step b splits
this into the sum over the two child clusters, step c uses the re-
lation in Eq. (A.2), step d rearranges the sums, and step e applies
the definition of the child proxy charges. This result extends in a
straightforward way to 3D, where a parent cluster may have eight,
four, or two children. In summary, the upward pass computes the
proxy charges of the leaf clusters by Eq. (A.4a) and then it ascends
to the root of the source tree, computing the proxy charges of each
parent source cluster from the child proxy charges by Eq. (A.4e).
This is similar to the upward pass in the FMM, where the multi-
pole moments of a parent cluster are computed from the moments
of its children [4].

Appendix B. Details of downward pass

For simplicity we consider a target tree with two levels (L =2).
Recall Eq. (18),

2 n
) +=Y_ > P LT (xi), (B.1)

m=1kp=0

where the inner sum interpolates the proxy potentials ¢(t,’(':n) at
level m in the target tree directly to the target particle x;, and +=
indicates that the results are combined with the potentials ¢ (x;)
previously computed in the DTT. The right side of Eq. (B.1) can be
written as follows,

2 n
DO oL (%)

m=1kn=0
=Y oty Ly )+ Y ¢(tr LR () (B.2a)
k1=0 k2=0
=Y o)L )+ > ¢r) | D L, )L (xi)
k1=0 k2=0 k1=0
(B.2b)
=> (o) + D o)L ) | L 0. (B.2¢)

k] =0 k2=0
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Step a splits the sum over the two levels, step b uses the relation
in Eq. (A.2), and step c rearranges the sums. This yields an alter-
native version of Eq. (B.1),

) +=>_ o)+ D o)L &) | L, xo). (B.3)

k1=0 kp=0

where instead of interpolating from t; to x; and from tf to
X; (step a), one interpolates from t,%z to t,ll, combines with pre-
viously computed results at t,}l, and interpolates from t,ll to X;
(step c). In this expression, the first term in parentheses corre-
sponds to Eq. (20) and the second term corresponds to Eq. (19).
The procedure generalizes to trees of any depth. This is similar to
the downward pass in the FMM, which computes potentials us-
ing multipole-to-local and local-to-local translations of expansion
coefficients [4].
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