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We present a GPU-accelerated fast multipole method (FMM) called BLDTT, which uses barycentric La-
grange interpolation for the near-field and far-field approximations, and dual tree traversal to construct 
the interaction lists. The scheme replaces well-separated particle-particle interactions by adaptively cho-
sen particle-cluster, cluster-particle, and cluster-cluster approximations given by barycentric Lagrange 
interpolation on a Chebyshev grid of proxy particles in each cluster. The BLDTT employs FMM-type up-
ward and downward passes, although here they are adapted to interlevel polynomial interpolation. The 
BLDTT is kernel-independent, and the approximations have a direct sum form that efficiently maps onto 
GPUs, where targets provide an outer level of parallelism and sources provide an inner level of par-
allelism. The code uses OpenACC directives for GPU acceleration and MPI remote memory access for 
distributed memory parallelization. Computations are presented for different particle distributions, do-
mains, and interaction kernels, and for unequal targets and sources. The BLDTT consistently outperforms 
our earlier particle-cluster barycentric Lagrange treecode (BLTC). On a single GPU for problem size rang-
ing from N=1E5 to 1E8, the BLTC scales like O (N logN) and the BLDTT scales like O (N). We also present 
MPI strong scaling results for the BLDTT and BLTC with N=64E6 particles running on 1 to 32 GPUs.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Long-range particle interactions are essential in many areas of 
computational physics including the calculation of electrostatic and 
gravitational potentials as well as discrete convolution sums in 
boundary element methods. For a specific example consider the 
potential due to a set of N charged particles,

φ(xi)=
N∑

j=1

G(xi,x j)q j, i = 1 : N, (1)

where xi is a target particle, x j is a source particle with charge 
q j , and G(x, y) is the Coulomb kernel. In this work we assume the 
particles reside in 3D space.

The cost of evaluating the potentials φ(xi) by direct summa-
tion scales like O (N2) and several methods have been developed 
that reduce the cost and achieve sub-quadratic scaling. Among 
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these, mesh-based methods such as particle-particle/particle-mesh 
(P3M) [1] and particle-mesh Ewald (PME) [2]) project the particles 
onto a regular mesh where the fast Fourier transform or multi-
grid can be applied. Alternatively, tree-based methods such as the 
treecode (TC) [3] and fast multipole method (FMM) [4] partition 
the particles into a hierarchical tree of clusters so that the effect 
of a cluster can be approximated. Other related approaches for fast 
summation of particle interactions include panel clustering [5], hi-
erarchical matrices [6], and multilevel summation [7]. The present 
work is concerned with tree-based methods and next we outline 
their features.

1.1. Tree-based fast summation methods

Tree-based fast summation methods like the TC and FMM have 
two phases, a precompute phase in which the particles are par-
titioned into a hierarchical tree of clusters, and a compute phase 
in which the potentials are computed by approximating the effect 
of well-separated particles and clusters. If the particle distribu-
tion is reasonably homogeneous, the precompute phase scales like 
O (N logN), but with a small prefactor so that in practice it ac-
counts for a small part of the total run time.

In the compute phase, the original TC used monopole approx-
imations [3], while the FMM used higher order multipole approx-
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imations [4]. Subsequent work employed higher order Cartesian 
Taylor expansions in the TC [8], as well as plane wave expansions 
in the FMM [9]. Aside from the type of approximation being used, 
the scaling of the compute phase is determined by how the parti-
cles and clusters interact, and next we briefly review how this is 
done in each method.

The TC compute phase loops through the target particles and 
for each particle it traverses the tree from the root to the leaves, 
where well-separated clusters are identified using a multipole 
acceptance criterion (MAC) that depends on the cluster radius 
and the particle-cluster distance. When a well-separated particle-
cluster pair is identified, the TC updates the target potential using 
a particle-cluster approximation. The TC compute phase scales like 
O (N logN), where the factor N represents the loop over target par-
ticles and the factor logN represents the number of levels in the 
tree.

The FMM compute phase has an upward pass to compute 
cluster moments using multipole-to-multipole translations, and a 
downward pass to compute potentials using multipole-to-local and 
local-to-local translations. The interaction list of well-separated 
cluster-cluster pairs is commonly defined in a uniform way at each 
level of the tree using a 3 × 3 × 3 list of parent neighbors, al-
though the FMM has been extended to use a 5 × 5 × 5 list at the 
leaf level [10], as well as a more optimal multipole-to-local sten-
cil [11]. The compute phase of the FMM scales like O (N) [4,9].

The dual tree traversal (DTT) is an alternative way of building 
the interaction list in an FMM using a target tree and a source 
tree, where the two trees are traversed concurrently from the 
root to the leaves, and a MAC is used to identify well-separated 
cluster-cluster pairs [12,13]. These methods are often called DTT-
FMMs and the compute phase also scales like O (N) [13,14]. While 
the conventional FMM interaction list is favored for homogeneous 
particle distributions, the more flexible DTT approach is expected 
to be better suited for non-homogeneous distributions [13,15,16]
as arise in molecular dynamics [17,18] and astrophysical simula-
tions [19–22].

1.2. Kernel-independent methods

Many tree-based fast summation methods have employed ana-
lytic series approximations for specific kernels such as multipole 
expansions [4,9,23] and Cartesian Taylor expansions [24–26] for 
the Coulomb and Yukawa kernels. Alternative approximations for 
the Coulomb kernel were also investigated utilizing the Poisson 
integral formula [27] and multipole expansions at pseudoparti-
cles [28]. Subsequently, kernel-independent methods were devel-
oped that require only kernel evaluations and are suitable for a 
large class of kernels. Among these, the kernel-independent FMM 
(KIFMM) uses equivalent densities defined on proxy surfaces [29], 
while several other methods use polynomial interpolation [30–34]. 
A number of related proxy point methods have recently been de-
veloped using skeletonized interpolation [35] and interpolative de-
composition [36], and several kernel-independent fast summation 
methods have been parallelized on multicore CPU systems [37–43].

1.3. GPU implementations

A recent trend in parallel computing uses graphics process-
ing units (GPUs) for high-throughput arithmetic. The direct sum 
in Eq. (1) is well suited for GPU computing because the kernel 
evaluations G(xi, x j) are independent of each other and can be 
computed concurrently without thread divergence, where the tar-
gets xi provide an outer level of parallelism and the sources x j
provide an inner level of parallelism. While GPU implementations 
of the direct sum achieve substantial speedup over CPU implemen-
tations [44–46], they still scale like O (N2) and there is great inter-

est in implementing the sub-quadratic scaling tree-based methods 
on GPUs, although this is challenging due to their greater complex-
ity. Previous work in this direction includes GPU implementations 
of the TC [47–52], FMM [11,53–57] and DTT-FMM [58,59].

1.4. Present work

Here we present a GPU-accelerated DTT-FMM called BLDTT, 
which uses barycentric Lagrange interpolation for the near-field 
and far-field approximations [60,34]. The approximations re-
quire only kernel evaluations, ensuring that the BLDTT is kernel-
independent. The BLDTT employs FMM-type upward and down-
ward passes [4], although here they are adapted to interlevel 
polynomial interpolation. The clusters are rectangular boxes, and a 
parent cluster is divided into eight, four, or two children depend-
ing the parent’s aspect ratio. Each cluster has a tensor product 
grid of proxy particles located at Chebyshev interpolation points. 
The MAC employed in the DTT checks the cluster radii and their 
center-center distance, and it also compares the number of target 
and source particles to the number of proxy particles, enabling an 
adaptive choice between direct particle-particle interactions and 
three types of approximations (particle-cluster, cluster-particle, 
cluster-cluster). As with other DTT-FMMs, the precompute phase 
scales like O (N logN) with a small prefactor and the compute 
phase scales like O (N). The BLDTT is an extension of previous 
related work on treecodes [34,52,61,62].

As will be seen, the approximations used in the BLDTT re-
semble the direct sum in Eq. (1) and can be efficiently mapped 
onto GPUs. Based on this observation, the BLDTT is implemented 
using OpenACC directives for GPU acceleration and MPI remote 
memory access for distributed memory parallelization. Computa-
tions are presented for different particle distributions, domains, 
and kernels, and for unequal targets and sources, and the BLDTT 
consistently outperforms our earlier barycentric Lagrange treecode 
(BLTC [34,52]). On a single GPU for problem size ranging from 
N=1E5 to 1E8, the BLTC scales like O (N logN), while the BLDTT 
scales like O (N). We also present MPI strong scaling results for the 
BLDTT and BLTC using N=64E6 particles running on 1 to 32 GPUs. 
The BLDTT code is available on GitHub in the BaryTree library for 
fast summation of particle interactions [63].

The remainder of the paper is organized as follows. Section 2
describes the barycentric Lagrange dual tree traversal (BLDTT) fast 
multipole method. Section 3 presents our implementation of the 
BLDTT using OpenACC directives for GPU acceleration and MPI re-
mote memory access for distributed memory parallelization. Sec-
tion 4 describes the test cases, Section 5 presents numerical re-
sults, and Section 6 gives the conclusions. Appendices A and B
derive formulas used in the upward and downward passes.

2. Description of BLDTT fast multipole method

2.1. Barycentric Lagrange interpolation

We briefly review the barycentric Lagrange form of polynomial 
interpolation in 1D [60]. Given a function f (x) and n + 1 distinct 
points sk, k = 0 : n, the interpolating polynomial can be written as

p(x)=
n∑

k=0

f (sk)Lk(x), (2)

where the barycentric form of the Lagrange polynomial Lk(x) is

Lk(x)=
wk

x− sk
n∑

k′=0

wk′

x− sk′

, wk =
1

∏n
j=0, j≠k(sk − s j)

, k= 0 : n. (3)

2
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Table 1
Summary of notation, PP = particle-particle, PC = particle-cluster, CP = cluster-particle, CC = cluster-cluster.
Symbol Description Symbol Description

M,N number of target, source particles G(x,y) interaction kernel
xi , xi target particle in 3D, 1D φ(xi) potential at target xi
y j , y j source particle in 3D, 1D φP P (xi ,Ct ,Cs) PP potential at target xi in Ct
q j source charge of y j due to sources in Cs
Ct ,Cs target cluster, source cluster φPC (xi ,Ct , Ĉs) PC potential at target xi in Ct
tℓ, tℓ target proxy particle in 3D, 1D due to proxy sources in Ĉs
sk, sk source proxy particle in 3D, 1D φC P (tℓ, Ĉt ,Cs) CP proxy potential at proxy target
q̂k proxy charge of sk tℓ in Ĉt due to sources in Cs
Ĉt , Ĉs proxy particles in target cluster, φCC (tℓ, Ĉt , Ĉs) CC proxy potential at proxy target

source cluster tℓ in Ĉt due to proxy sources in Ĉs

This work employs Chebyshev points of the second kind,

sk = cos θk, θk = πk/n, k= 0 : n, (4)

and in that case the interpolation weights are

wk = (−1)kδk, k= 0 : n, (5)

where δk = 1/2 if k = 0 or n, and δk = 1 otherwise [60,64]. The 
BLDTT uses barycentric Lagrange interpolation in 3D rectangular 
boxes, where the interpolation points sk = (sk1 , sk2 , sk3 ) form a ten-
sor product grid of Chebyshev points adapted to the box. As will 
be seen, the interpolation points play the role of proxy particles.

2.2. Algorithm overview

The BLDTT described below computes the potential at M target 
particles xi due to N source particles and charges y j, q j ; Eq. (1)
is a special case in which the targets and sources coincide. First, 
two trees of particle clusters are built, one for the targets and 
one for the sources, where each cluster is a rectangular box; clus-
ters in the target tree are denoted Ct and clusters in the source 
tree are denoted Cs . The computed potential at a target particle 
φ(xi) has contributions from four types of interactions as deter-
mined by the dual tree traversal. The four types are direct particle-
particle (PP) interactions of nearby particles, and particle-cluster 
(PC), cluster-particle (CP), and cluster-cluster (CC) approximations 
of well-separated particles and clusters.

Algorithm 1 is a high-level overview of the BLDTT. Lines 1-4 
describe the input consisting of target and source particle data, in-
terpolation degree n, MAC parameter θ , and the maximum number 
of particles in the leaves of each tree, M0, N0. Line 5 describes the 
output consisting of the computed potentials φ(xi). Line 6 builds 
the target tree and source tree containing target clusters Ct and 
source clusters Cs . Line 7 is the upward pass to compute proxy 
charges q̂k at proxy particles sk . Line 8 is the dual tree traversal 
to compute PP, PC, CP, and CC interactions. Line 9 is the downward 
pass to interpolate proxy potentials from proxy particles tℓ to tar-
get particles xi . The steps will be described in detail below. The 
notation used in presenting the BLDTT is summarized in Table 1.

Algorithm 1 Barycentric Lagrange Dual Tree Traversal (BLDTT).
1: input target particles xi , i = 1 : M
2: input source particles and charges y j , q j , j = 1 : N
3: input interpolation degree n, MAC parameter θ
4: input max particles per target leaf M0, max particles per source leaf N0
5: output potentials φ(xi), i = 1 : M
6: build target tree and source tree
7: upward pass to compute proxy charges ̂qk at proxy particles sk in source clus-

ters
8: dual tree traversal to compute PP, PC, CP, CC interactions
9: downward pass to interpolate proxy potentials from proxy particles tℓ to target 

particles xi

2.3. Tree building

The target and source trees are constructed by the same rou-
tines, described here for the target tree. The maximum number of 
particles per leaf is a user-specified parameter M0. The root clus-
ter is the minimal bounding box containing all target particles. The 
root is recursively divided into child clusters, terminating when a 
cluster contains fewer than M0 particles. Division occurs at the 
midpoint of the cluster; in general the cluster is bisected in all 
three coordinate directions, resulting in eight child clusters, with 
two exceptions. First, a cluster is divided into only two or four 
children in order to maintain a good aspect ratio, that is, a ratio 
of longest to shortest side lengths no greater than 

√
2. Second, a 

cluster is divided into only two or four children to avoid creating 
leaves with fewer than M0/2 particles on average; in particular, 
if a cluster contains between M0 and 2M0 particles, it is divided 
into two children, and if it contains between 2M0 and 4M0 parti-
cles, it is divided into four children. Upon creation, each cluster is 
shrunk to the minimal bounding box containing its particles, and a 
tensor product grid of Chebyshev points adapted to the box is cre-
ated; these are also referred to as proxy particles. After building 
the trees, the BLDTT performs the upward pass, dual tree traversal, 
and downward pass, but before discussing these steps, the next 
subsection describes the four types of interactions used to com-
pute potentials.

2.4. Four types of interactions

Fig. 1 depicts the four types of interactions between a target 
cluster Ct (left, blue) and a source cluster Cs (right, red), where 
dots are target/source particles xi, y j , and crosses are target/source 
proxy particles tℓ, sk . Also shown are the target/source cluster radii 
rt , rs , and the target-source cluster distance R . These diagrams de-
pict 2D versions of the interactions; in practice the particles reside 
in 3D and the clusters are rectangular boxes. Fig. 1 shows the four 
cases: (a) particles in Ct and Cs (PP), (b) particles in Ct and proxy 
particles in Cs (PC), (c) proxy particles in Ct and particles in Cs
(CP), (d) proxy particles in Ct and Cs (CC). The interactions are 
described in detail below, where to simplify notation they are pre-
sented in 1D instead of 3D, for example replacing the bold 3-vector 
xi by the non-bold scalar xi ; the extension to 3D is straightforward 
using tensor products.

Particle-particle interaction (Fig. 1a). The PP potential at a tar-
get particle xi ∈ Ct due to direct interaction with the source parti-
cles y j ∈ Cs is

φP P (xi,Ct,Cs)=
∑

y j∈Cs

G(xi, y j)q j, xi ∈ Ct . (6)

Particle-cluster approximation (Fig. 1b). The kernel is approxi-
mated by holding xi fixed and interpolating with respect to y j at 
the proxy particles sk in Cs ,

3



L. Wilson, N. Vaughn and R. Krasny Computer Physics Communications 265 (2021) 108017

Fig. 1. Four types of interactions between a target cluster Ct (left) and a source cluster Cs (right), dots are target/source particles xi, y j , crosses are target/source proxy 
particles tℓ, sk , (a) direct particle-particle interaction (PP), (b) particle-cluster approximation (PC), (c) cluster-particle approximation (CP), (d) cluster-cluster approximation 
(CC), target/source cluster radii rt , rs , target-source cluster distance R . (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

G(xi, y j) ≈
n∑

k=0

G(xi, sk)Lk(y j), xi ∈ Ct, y j ∈ Cs. (7)

Substituting into the PP interaction Eq. (6) and rearranging terms 
yields the PC potential,

φPC (xi,Ct, Ĉs)=
n∑

k=0

G(xi, sk )̂qk, xi ∈ Ct, (8)

where the proxy charges ̂qk of the proxy particles sk are

q̂k =
∑

y j∈Cs

Lk(y j)q j, k= 0 : n. (9)

Equation (8) uses Ct , ̂Cs to indicate that the target particles xi in-
teract with the proxy source particles sk .

Cluster-particle approximation (Fig. 1c). The kernel is approxi-
mated by interpolating with respect to xi at the proxy particles tℓ
in Ct and holding y j fixed,

G(xi, y j) ≈
n∑

ℓ=0

G(tℓ, y j)Lℓ(xi), xi ∈ Ct, y j ∈ Cs. (10)

Substituting into the PP interaction Eq. (6) and rearranging terms 
yields the CP potential,

φC P (xi, Ĉt,Cs)=
n∑

ℓ=0

φ(tℓ, Ĉt,Cs)Lℓ(xi), xi ∈ Ct, (11)

where the CP proxy potential φ(tℓ, ̂Ct , Cs) is

φ(tℓ, Ĉt,Cs)=
∑

y j∈Cs

G(tℓ, y j)q j, tℓ ∈ Ĉt . (12)

Equation (11) and Eq. (12) use Ĉt , Cs to indicate that the proxy 
target particles tℓ interact with the source particles y j . Note that 
Eq. (11) interpolates from the proxy target particles tℓ to the target 
particles xi .

Cluster-cluster approximation (Fig. 1d). The kernel is interpo-
lated with respect to xi at the proxy particles tℓ in Ct and with 
respect to y j at the proxy particles sk in Cs ,

G(xi, y j) ≈
n∑

k=0

n∑

ℓ=0

G(tℓ, sk)Lℓ(xi)Lk(y j), xi ∈ Ct, y j ∈ Cs.

(13)

Substituting into the PP interaction Eq. (6) and rearranging terms 
yields the CC potential,

φCC (xi, Ĉt, Ĉs)=
n∑

ℓ=0

φ(tℓ, Ĉt, Ĉs)Lℓ(xi), xi ∈ Ct, (14)

where the CC proxy potential φ(tℓ, ̂Ct , ̂Cs) is

φ(tℓ, Ĉt, Ĉs)=
n∑

k=0

G(tℓ, sk )̂qk, tℓ ∈ Ĉt, (15)

and the proxy charges q̂k were defined in Eq. (9). Equation (14)
and Eq. (15) use Ĉt , ̂Cs to indicate that the proxy target particles tℓ
interact with the proxy source particles sk . Note that Eq. (14) in-
terpolates from the proxy target particles tℓ to the target particles 
xi .

While the PP interaction in Eq. (6) is a direct sum involving ker-
nel evaluations of target and source particles, it should be noted 
that the PC, CP, CC interactions in Eqs. (8), (12), (15) also have a 
direct sum form involving kernel evaluations of target and source 
particles or proxy particles. This enables the efficient GPU imple-
mentation discussed below.

The following three subsections describe the rest of Algorithm 1
comprising the upward pass, dual tree traversal, and downward 
pass. Before proceeding, note that in computing the potentials 
φ(xi), contributions from the φP P (xi, Ct , Cs) and φPC (xi, Ct , ̂Cs) po-
tentials in Eqs. (6) and (8) are included as soon as they are com-
puted in the DTT, while contributions from the φC P (xi, ̂Ct , Cs) and 
φCC (xi, ̂Ct , ̂Cs) potentials in Eqs. (12) and Eq. (15) are computed in 
the DTT and included in the downward pass.

2.5. Upward pass

The upward pass computes the proxy charges q̂k in Eq. (9) for 
the proxy particles sk in each source cluster Ĉs in the source tree; 
these are required for the PC and CC approximations in Eqs. (8)

4



L. Wilson, N. Vaughn and R. Krasny Computer Physics Communications 265 (2021) 108017

and (15). Each source particle y j contributes to the proxy charges 
q̂k of exactly one cluster at each level of the tree. Hence with 
N source particles and tree depth O (logN), computing the proxy 
charges directly by Eq. (9) requires O (N logN) operations.

Following the FMM [4], the BLDTT uses an alternative approach. 
Let Cs denote a parent cluster and let Ci

s, i = 1 : 2 denote the two 
child clusters; recall that here we consider a 1D system for clarity 
of presentation and the same considerations hold in 3D where the 
clusters have eight, four, or two children. Appendix A derives the 
relation

q̂k =
2∑

i=1

n∑

ki=0

Lk(ski )̂qki , k= 0 : n, (16)

where Lk(x) are the Lagrange polynomials of the parent Cs , and 
ski , ̂qki are the interpolation points and proxy charges of the chil-
dren Ci

s . Equation (16) shows that the proxy charges of the parent 
q̂k can be computed from the proxy charges of the children ̂qki . The 
upward pass starts by computing the proxy charges of the leaves of 
the source tree using Eq. (9) and it ascends to the root by Eq. (16). 
This is analogous to the upward pass in the FMM [4] where the 
multipole moments of a parent cluster are obtained from the mo-
ments of its children.

Computing the proxy charges this way requires O (N) opera-
tions, which can be seen as follows. We briefly revert to 3D. First, 
computing the proxy charges for the leaves by Eq. (9) requires 
O (n3N) operations because each of the N source particles con-
tributes to one leaf and each leaf contains O (n3) proxy particles. 
Then each application of the child-to-parent relation Eq. (16) re-
quires O (n6) operations, and since there are O (N) parent clusters 
in the tree, ascending the tree requires an additional O (n6N) op-
erations. Combining these it follows that the operation count for 
the BLDTT upward pass is O (N).

2.6. Dual tree traversal

The DTT determines which pairs of clusters in the target and 
source trees interact by one of the four options described above 
(PP, PC, CP, CC). Before the traversal starts, two sets of potentials 
are initialized to zero, potentials φ(xi) at the target particles and 
proxy potentials φ(tℓ) at the proxy target particles in each target 
cluster. During the traversal, the potentials φ(xi) are incremented 
due to PP and PC interactions, and the proxy potentials φ(tℓ) are 
incremented due to CP and CC interactions. Following the DTT, the 
proxy potentials φ(tℓ) are interpolated to the target particles xi
and combined with the potentials φ(xi) in the downward pass.

The dual tree traversal uses the recursive procedure DTT(Ct , Cs) 
in Algorithm 2, which takes a target cluster Ct and a source cluster 
Cs as input. Initially the procedure is called for the root clusters 
of the target and source trees. In what follows, the clusters are 
defined to be well-separated if (rt + rs)/R < θ , where rt, rs are the 
target and source cluster radii and R is the center-center distance 
between the clusters.

If Ct and Cs are well-separated (line 2), then they interact in 
one of four ways depending on the number of particles they con-
tain relative to the number of proxy particles in a cluster, which is 
denoted by np = (n +1)3 in 3D. If Ct and Cs are both large (lines 3-
4), then the proxy potentials are incremented by CC, Eq. (15); else 
if Ct is large and Cs is small (lines 5-6), then the proxy potentials 
are incremented by CP, Eq. (12); else if Ct is small and Cs is large 
(lines 7-8), then the potentials are incremented PC, Eq. (8); else Ct
and Cs are both small (line 9) and the potentials are incremented 
PP, Eq. (6).

If Ct and Cs are not well-separated, then the traversal continues 
as follows. If Ct and Cs are leaves (lines 11-12), then the potentials 

are incremented by PP, Eq. (6). Otherwise if Cs is a leaf, then it 
interacts recursively with the children of Ct (line 13), while if Ct is 
a leaf, then it interacts recursively with the children of Cs (line 14). 
Finally if Ct and Cs are both not leaves, then the smaller cluster 
interacts recursively with the children of the larger cluster (lines 
15-17).

Algorithm 2 Dual Tree Traversal.
1: procedure DTT(target cluster Ct , source cluster Cs)
2: if (rt + rs)/R < θ then
3: if |Ct | > np and |Cs| > np then
4: increment proxy potentials φ(tℓ) += φ(tℓ, ̂Ct , ̂Cs) by CC, Eq. (15)
5: else if |Ct | > np and |Cs| ≤ np then
6: increment proxy potentials φ(tℓ) += φ(tℓ, ̂Ct , Cs) by CP, Eq. (12)
7: else if |Ct | ≤ np and |Cs| > np then
8: increment potentials φ(xi) += φ(xi , Ct , ̂Cs) by PC, Eq. (8)
9: else increment potentials φ(xi) += φ(xi , Ct , Cs) by PP, Eq. (6)

10: else
11: if Ct and Cs are leaves then
12: increment potentials φ(xi) += φ(xi , Ct , Cs) by PP, Eq. (6)
13: else if Cs is a leaf then for each child C ′

t of Ct do DTT(C ′
t , Cs)

14: else if Ct is a leaf then for each child C ′
s of Cs do DTT(Ct , C ′

s)
15: else
16: if |Ct | > |Cs| then for each child C ′

t of Ct do DTT(C ′
t , Cs)

17: else for each child C ′
s of Cs do DTT(Ct , C ′

s)

The DTT yields potentials φ(xi) due to PP and PC interactions 
and proxy potentials φ(tℓ) due to CP and CC interactions. In the 
case of N homogeneously distributed source and target particles, 
the operation count of the dual tree traversal is O (N) [13,14].

2.7. Downward pass

At this point each target cluster has proxy potentials φ(tℓ) that 
were computed in the DTT by CP and CC interactions in Eqs. (12)
and (15). The downward pass interpolates these proxy potentials 
to the target particles xi and increments the potentials φ(xi) that 
were computed in the DTT by PP and PC interactions in Eqs. (6)
and (8). This can be done in two ways as described below.

First note that each target particle xi is contained in a chain of 
target clusters,

xi ∈ C1
t ⊂ C2

t ⊂ · · · ⊂ C L
t , (17)

where the superscript denotes the level in the target tree; level 1 
contains the leaves and level L is the root. In the downward pass, 
each target cluster Cm

t in the chain contributes its proxy potentials 
φ(tmkm ) to φ(xi),

φ(xi)+=
L∑

m=1

n∑

km=0

φ(tmkm )L
m
km (xi), (18)

where tmkm are the proxy particles and Lmkm (x) are the Lagrange poly-
nomials of Cm

t , and += indicates that the results are combined 
with the potentials φ(xi). In Eq. (18) the inner sum interpolates 
proxy potentials from the proxy particles tmkm to the target par-
ticle xi , and the outer sum accumulates the results from each 
level in the chain. Computing φ(xi) directly by Eq. (18) requires 
O (M logM) operations; the factor M is the number of target par-
ticles xi , the factor logM is the number of levels in the target tree, 
and the operation count for the inner sum at each level is inde-
pendent of M (it is O (n) in 1D and O (n3) in 3D).

The procedure just described interpolates from the proxy parti-
cles tkm at each level in the target tree directly to the target particle 
xi . Again following the FMM [4], the BLDTT utilizes a recursive al-
ternative. In what follows, Cm

t is a parent cluster at level m and 
Cm−1
t is a child cluster at level m −1 in the chain given by Eq. (17). 
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The recursive procedure interpolates the parent proxy potentials 
φ(tmkm ) to the child proxy particles tm−1

km−1
,

φ(tm−1
km−1

)+=
n∑

km=0

φ(tmkm )L
m
km (t

m−1
km−1

), (19)

where += indicates that the results are combined with the child 
proxy potentials φ(tm−1

km−1
) due to CP and CC interactions previously 

computed in the DTT. The procedure starts at the root of the target 
tree and descends to the leaves, where the proxy potentials φ(t1k1 )
are interpolated to the target particles xi and combined with the 
PP and PC potentials previously computed in the DTT,

φ(xi)+=
n∑

k1=0

φ(t1k1)L
1
k1(xi). (20)

It is shown in Appendix B that Eq. (18) for φ(xi) is equivalent to 
the combination of Eqs. (19) and (20).

Note that the parent-to-child interpolation in Eq. (19) requires 
O (n6) operations in 3D for each parent cluster, and the tree con-
tains O (M) parent clusters, so interpolating from the root to the 
leaves requires O (n6M) operations. Note also that the proxy-to-
particle interpolation in Eq. (20) requires O (n3) operations for each 
target particle, so interpolating from leaf proxy particles to target 
particles requires O (n3M) operations. Combining these it follows 
that the operation count for the BLDTT downward pass is O (M).

2.8. Description of BLTC

We briefly describe our previous particle-cluster barycentric La-
grange treecode (BLTC) [34,52] which has an algorithmic structure 
resembling the Barnes-Hut treecode [3]. Unlike the BLDTT which 
builds a tree on both the source and target particles, the BLTC 
builds a tree of clusters on the source particles and a set of batches 
on the target particles, where the batches correspond to the leaves 
of a target tree. Once the source tree is built, the BLTC com-
putes the proxy charges for each source cluster directly from the 
source particles by Eq. (9). For each target batch the source tree 
is traversed, starting at the root and checking whether the tar-
get batch and a given source cluster are well-separated. If they 
are well-separated and the cluster contains more particles than in-
terpolation points, then the batch and cluster interact by the PC 
approximation in Eq. (8). If they are not well-separated, then the 
batch interacts with the children of the cluster. The PP interac-
tion in Eq. (6) is carried out in the remaining cases (leaves in the 
source tree that are not well-separated from the target batch, and 
source clusters that are well-separated from the target batch but 
have fewer particles than interpolation points). For M target parti-
cles and N source particles, the BLTC operation count is O (N logN)
+ O (M logN), where the first term is due to building the source 
tree and computing the proxy charges, and the second term is due 
to traversing the source tree for each target batch.

3. GPU implementation of BLDTT

The BLDTT implementation for multiple GPUs is similar to our 
previous BLTC implementation [52] and is available in the BaryTree 
library [63]. The code uses OpenACC directives for GPU acceleration 
and MPI remote memory access for distributed memory paral-
lelization, where each GPU corresponds to one MPI rank. The DTT 
creates four interaction lists for each target cluster, one list for each 
type of interaction (PP, PC, CP, CC); this is done on the CPU, and 
once the lists are available, the interactions are computed on the 
GPU. This delegation of tasks enhances efficiency because the GPU 
can cycle through the lists rapidly and the GPU compute kernels 

can be queued asynchronously as described below. Hence the CPU 
is responsible for tree building, computing interaction lists by DTT, 
and MPI communication of particles and clusters, while the GPU 
is responsible for the upward pass, PP/PC/CP/CC computations, and 
the downward pass. Next we describe further details of the imple-
mentation.

3.1. MPI distributed memory parallelization

We use locally essential trees (LET) to implement distributed 
memory parallelization [65]. The particles are partitioned by re-
cursive coordinate bisection into compact domains on each MPI 
rank using Trilinos Zoltan [66,67]. Each MPI rank builds the local 
source tree and local target tree for its particles. The LET of a rank 
is the union of the rank’s local source tree and all source clusters 
from remote ranks that interact with its local target tree. Although 
building the LETs requires an all-to-all communication, the amount 
of data acquired by each rank grows only logarithmically with the 
problem size [65]. The computing and communication required to 
build the LETs is done using MPI passive target synchronization re-
mote memory access (RMA). RMA is a one-sided communication 
model within MPI in which an origin process can put data onto a 
target process or get data from a target process through specially 
declared memory windows, with no active involvement from the 
target process. This enables each rank to construct its LET asyn-
chronously from other ranks. We note that MPI remote memory 
access has previously been used in a multicore CPU implementa-
tion of the FMM [68].

3.2. GPU compute kernels

The GPU implementation of the BLDTT employs eight compute 
kernels, two for the upward pass, four for computing interac-
tions determined by the DTT, and two for the downward pass. 
The compute kernels are generated by OpenACC directives and are 
compiled with the PGI C compiler. The kernels are launched asyn-
chronously in multiple GPU streams to hide latency as much as 
possible. The approach generalizes to multiple GPUs in a straight-
forward manner, in which each GPU corresponds to one MPI rank.

The first upward pass kernel computes the proxy charges for a 
given leaf in the source tree. For each leaf, the kernel is launched 
asynchronously and further computation is blocked until all of the 
leaf’s proxy charges are computed. The second upward pass ker-
nel computes the proxy charges of parent clusters using the proxy 
charges of the children. For a given level of the source tree above 
the leaves, this kernel is launched asynchronously for each clus-
ter at that level, and further computation is blocked until all proxy 
charges at that level are computed.

The four DTT kernels compute the interaction of a target cluster 
with a source cluster. Each PP, PC, CP, and CC interaction launches 
one compute kernel. All such kernels are launched asynchronously 
and further computation is blocked until they complete. The four 
interaction kernels have a similar structure, with an outer loop 
over the particles or proxy particles in the target cluster, and an in-
ner loop over the particles or proxy particles in the source cluster. 
Due to the form of barycentric Lagrange interpolation, the inner 
loop iterations are independent of each other and can be com-
puted concurrently, unlike alternative approximation methods that 
are sequential. The outer loop is mapped to the gang construct in 
OpenACC and the inner loop is mapped to the vector construct. 
Conceptually, a member of a gang corresponds to a thread block 
and a member of a vector corresponds to an individual thread.

The two downward pass compute kernels are similar in struc-
ture to the upward pass kernels. At each level of the target tree 
above the leaves, beginning with the root, the first downward pass 
compute kernel is launched asynchronously for each target cluster 
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Fig. 2. Comparison of BLDTT and BLTC, run time (s) versus number of particles N=1E5, 1E6, 1E7, 1E8, random uniformly distributed particles in [−1, 1]3 interacting by the 
Coulomb kernel, MAC parameter θ = 0.7, degree n = 8 yielding 7-8 digit accuracy, direct sum (green), BLTC (red), BLDTT (blue), (a) linear scale, (b) logarithmic scale, scaling 
lines O (N2) (dash-dotted), O (N logN) (dotted), O (N) (dashed), computed on one NVIDIA P100 GPU.

at that level to interpolate the proxy potentials of the cluster to 
its children. Further computation is blocked until all compute ker-
nels at a given level complete. Finally, the second downward pass 
compute kernel is launched asynchronously for each target leaf to 
interpolate the proxy potentials to the target particles.

4. Description of test cases

First we examine the scaling of the BLDTT and BLTC for prob-
lem size ranging from N=1E5 to 1E8, and then we demonstrate 
the speedup of the GPU implementation of the BLDTT over a CPU 
implementation. Next the BLDTT is applied to several test cases 
comprising different random particle distributions (uniform, Gaus-
sian, Plummer [69,70]), domains (thin slab, square rod, spherical 
surface), kernels (regularized Coulomb, Yukawa, oscillatory), and 
for unequal targets and sources. The benefit of including CP and 
PC interactions in the BLDTT is verified, and the peak memory us-
age of the BLDTT is reported in comparison with the BLTC and 
direct summation. The results mentioned so far were obtained on 
one GPU, and finally we demonstrate the MPI strong scaling of the 
BLDTT on 1 to 32 GPUs.

All runs use maximum leaf and batch size M0 = N0 = 2000. 
The target and source particles are identical except as indicated in 
Section 5.5, and the source charges q j are random and uniformly 
distributed on [−1, 1] except for the Plummer distribution where 
the charges are set to 1/N . The Coulomb kernel is used in all runs 
except as indicated in Section 5.6. The calculations are done in 
double precision arithmetic and we report the relative ℓ2 error,

E =
(

M∑

i=1

(φds
i − φ

f s
i )2

/ M∑

i=1

(φds
i )2

)1/2

, (21)

where φds
i are the potentials computed by direct summation and 

φ
f s
i are computed by fast summation (BLDTT, BLTC). The error was 

sampled at a random subset of 0.1% of the target particles. To fa-
cilitate comparison of the BLDTT and BLTC across the test cases 
presented, Figs. 4, 5, 8, 10 use the same axes to display the run 
time versus error.

The computations were performed on the NVIDIA P100 GPU 
nodes at the San Diego Supercomputer Center Comet machine, 
where each node has four GPUs and each GPU has 16GB of mem-
ory. These resources were provided through the Extreme Science 
and Engineering Discovery Environment (XSEDE) [71]. The ex-
amples directory of the BaryTree library contains the executable 
(random_cube_reproducible) used to run the BLDTT and 
BLTC [63]. The code was written in C and compiled with the PGI C 
compiler using the -O3 optimization flag.

Table 2
Comparison of BLDTT and BLTC, number of particles N = 1E5, 1E6, 1E7, 1E8, ran-
dom uniformly distributed particles in [−1, 1]3 interacting by the Coulomb kernel, 
MAC parameter θ = 0.7, degree n = 8, run time (s) from Fig. 2, relative ℓ2 error, 
computed on one NVIDIA P100 GPU.
N BLTC BLDTT

Time (s) Error Time (s) Error

1E5 2.15E−1 1.75E−8 2.19E−1 1.58E−8
1E6 4.71E+0 1.42E−7 3.56E+0 3.67E−8
1E7 6.81E+1 4.68E−7 4.40E+1 4.12E−8
1E8 8.96E+2 9.23E−7 4.82E+2 4.17E−8

5. Results

5.1. Scaling with problem size

Fig. 2 shows the run time (s) for direct summation (green), 
BLTC (red), and BLDTT (blue) with N=1E5, 1E6, 1E7, 1E8 random 
uniformly distributed particles in the [−1, 1]3 cube interacting by 
the Coulomb kernel. The BLDTT and BLTC use MAC parameter 
θ = 0.7 and interpolation degree n = 8, yielding 7-8 digit accuracy. 
Fig. 2(a) is a linear plot, showing that the BLDTT is about twice 
as fast as the BLTC, and both are much faster than direct sum-
mation. Fig. 2(b) is a logarithmic plot with reference lines scaling 
as O (N) (dashed), O (N logN) (dotted), and O (N2) (dash-dotted), 
showing that as the problem size increases, the BLTC has asymp-
totic O (N logN) scaling, while the BLDTT has asymptotic O (N)
scaling as expected. Table 2 records the run time and error; the 
asymptotic scaling of the run time can be quantitatively verified, 
and although the error increases slightly with problem size, the 
BLDTT error is consistently smaller than the BLTC error.

5.2. GPU acceleration of BLDTT

We compare the BLDTT running on one NVIDIA P100 GPU 
and on 8 CPU cores (Intel Xeon E5-2680v3 processor, 2.50 GHz, 
MPI parallelization). Table 3 gives the run times showing that the 
BLDTT achieves 30–40× speedup on the GPU compared to 8 CPU 
cores. The BLDTT errors are the same as in Table 2.

5.3. Different random particle distributions

We examine the BLDTT performance for three random parti-
cle distributions: (a) uniform in [−1, 1]3, (b) Gaussian with ra-
dial pdf 1√

6π
exp

(
−r2/6

)
, (c) Plummer [69,70] with radial pdf 

3
4π

(
1+ r2

)−5/2 and cutoff at ±100 in all three Cartesian coor-
dinates. The charges of the uniform and Gaussian particles are 
uniformly distributed in [−1, 1], and the Plummer particle charges 
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Fig. 3. Different random particle distributions, N=4E5, (a) uniform, (b) Gaussian, (c) Plummer.

Fig. 4. Different random particle distributions, run time (s) versus relative ℓ2 error, N=2E7, (a) uniform, (b) Gaussian, (c) Plummer, BLTC (red, dashed), BLDTT (blue, solid), 
connected curves represent constant MAC θ (0.5 ×; 0.7 ◦; 0.9 ∗), interpolation degree n = 1, 2, 4, 6, 8, 10 increases from right to left on each curve, computed on one NVIDIA 
P100 GPU.

Table 3
Comparison of BLDTT running on one NVIDIA P100 GPU and on 8 CPU cores, num-
ber of particles N = 1E5, 1E6, 1E7, 1E8, random uniformly distributed particles in 
[−1, 1]3 interacting by the Coulomb kernel, MAC parameter θ = 0.7, degree n = 8, 
run time (s), speedup, same errors as in Table 2.

N CPU Time (s) GPU Time (s) Speedup

1E5 7.84E+0 2.19E−1 35.8
1E6 1.45E+2 3.56E+0 40.7
1E7 1.40E+3 4.40E+1 31.8
1E8 1.70E+4 4.82E+2 35.3

are set to 1/N , where N is the number of particles. Fig. 3 de-
picts the three distributions with N=4E5. Compared to the uniform 
case (a), the Gaussian and Plummer distributions (b,c) are concen-
trated near the origin, with the Gaussian decaying more rapidly 
away from the origin and the Plummer decaying more slowly.

Fig. 4 shows the run time (s) versus relative ℓ2 error for the 
BLDTT (blue, solid) and BLTC (red, dashed) on these three distribu-
tions with N=2E7. Each connected curve represents constant MAC 
with θ = 0.5 (×), θ = 0.7 (◦), θ = 0.9 (∗), and the interpolation de-
gree n = 1, 2, 4, 6, 8, 10 increases from right to left on each curve. 
For these parameter choices the errors span the range from 1 digit 
to 10 digit accuracy. Large θ is more efficient for low accuracy and 
small θ is more efficient for high accuracy. The BLDTT has con-
sistently better performance than the BLTC and is less sensitive to 
non-uniformity in the distribution.

To demonstrate the benefit of including PC and CP interactions, 
Fig. 5 compares two versions of the BLDTT, the one presented in 
this work using PP, PC, CP and CC interactions (blue, solid), and 
one using only CC and PP interactions (red, dashed). The results 
show that the first version has consistently better performance, 
especially for the non-uniform Gaussian and Plummer distribu-
tions. When only CC and PP interactions are used, the interaction 

between a target cluster and a source cluster is handled by PP 
interaction if either cluster has fewer particles than interpolation 
points, whereas the flexibility to use PC or CP interactions in those 
cases yields better performance.

To further examine the effect of including PC and CP interac-
tions, next we compare the number of pointwise interactions used 
by the two versions of the BLDTT, where a pointwise interaction 
refers to one kernel evaluation G(x, y). Results are shown for MAC 
θ = 0.9 and interpolation degree n = 1, 2, 4, 6, 8, 10, for the same 
three random distributions with N=2E7 as above. Fig. 6 displays 
results for the four types of interactions in stacked bars, CC (blue), 
PP (orange), PC (yellow), CP (purple), from bottom to top, where 
the left bar in each pair is the BLDTT with CC and PP interactions 
only, and the right bar is the BLDTT with PP, PC, CP, and CC in-
teractions. In this case a direct sum calculation would use 4E14 
PP interactions, whereas the BLDTT calculations use less than 6E12 
interactions. The results show that for high degree, including PC 
and CP interactions in the BLDTT reduces the number of PP in-
teractions, replacing them with a smaller number of PC and CP 
interactions, and this effect is stronger for the non-uniform distri-
butions.

5.4. Non-cubic domains

We demonstrate the BLDTT performance on three non-cubic 
domains depicted in Fig. 7: (a) thin slab of dimensions 1 ×10 ×10, 
(b) square rod of dimensions 1 × 1 × 10, and (c) spherical surface 
of radius 1. In all cases the particles are random uniformly dis-
tributed.

Fig. 8 shows the run time (s) versus relative ℓ2 error for the 
BLDTT (blue, solid) and BLTC (red, dashed) with N=2E7, using MAC 
θ = 0.5, 0.7, 0.9 and interpolation degree n = 1, 2, 4, 6, 8, 10. The 
BLDTT has consistently better performance than the BLTC. Com-
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Fig. 5. Different random particle distributions, run time (s) versus relative ℓ2 error, N=2E7 particles, (a) uniform, (b) Gaussian, (c) Plummer, BLDTT with only CC and PP 
interactions (red, dashed), BLDTT with PP, PC, CP, and CC interactions (blue, solid), connected curves represent constant MAC θ (0.5 ×; 0.7 ◦; 0.9 ∗), interpolation degree 
n = 1, 2, 4, 6, 8, 10 increases from right to left on each curve, computed on one NVIDIA P100 GPU.

Fig. 6. Different random particle distributions, number of pointwise interactions (kernel evaluations G(x, y)), N=2E7, (a) uniform, (b) Gaussian, (c) Plummer, MAC θ = 0.9, 
interpolation degree n = 1, 2, 4, 6, 8, 10, each pair of bars shows BLDTT with CC and PP only (left) and BLDTT with PP, PC, CP, CC (right), direct sum calculation would use 
4E14 PP interactions.

Fig. 7. Non-cubic domains, N=4E5 random uniformly distributed particles, (a) thin slab of dimensions 1 × 10 × 10, (b) square rod of dimensions 1 × 1 × 10, (c) spherical 
surface of radius 1.

9
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Fig. 8. Non-cubic domains, N=2E7 random uniformly distributed particles, (a) thin slab, (b) square rod, (c) spherical surface, run time (s) versus relative ℓ2 error, BLTC (red, 
dashed), BLDTT (blue, solid), connected curves represent constant MAC θ (0.5 ×; 0.7 ◦; 0.9 ∗), interpolation degree n = 1, 2, 4, 6, 8, 10 increases from right to left on each 
curve, computed on one NVIDIA P100 GPU.

Fig. 9. Unequal targets and sources, (a) M=2E7 targets, N=2E6 sources, (b) M=2E6 targets, N=2E7 sources, random uniformly distributed particles, run time (s) versus relative 
ℓ2 error, PC-BLTC (red, dashed), CP-BLTC (green, dash-dotted), BLDTT (blue, solid), connected curves represent constant MAC θ (0.5 ×; 0.7 ◦; 0.9 ∗), interpolation degree 
n = 1, 2, 4, 6, 8, 10 increases from right to left on each curve, computed on one NVIDIA P100 GPU.

pared to the cubic domain results in Fig. 4(a), the BLDTT achieves 
similar error and runs somewhat faster for the non-cubic domains. 
Recall that the tree building procedure checks the aspect ratio of 
the particle clusters and divides them into eight, four or two chil-
dren. This yields an oct-tree for the cubic domain, and essentially a 
quad-tree for the thin slab and spherical surface, and a binary tree 
for the square rod. With fewer branches the tree is traversed faster. 
Recall also that each cluster is shrunk to the minimal bounding box 
containing its particles. These features enable the BLDTT to adapt 
to non-cubic domains without explicit reprogramming.

5.5. Unequal targets and sources

Next the BLDTT is applied to systems with M targets and N
sources, where M ≠ N . In addition to the particle-cluster BLTC de-
scribed in Section 2.8, referred to in this section as PC-BLTC, we 
also consider a cluster-particle version (CP-BLTC) which builds a 
tree of clusters on the M targets and a set of batches on the 
N sources, and uses PP and CP interactions [62]. Instead of an 
O (N logN) upward pass to compute proxy charges, the CP-BLTC 
has an O (M logM) downward pass to interpolate proxy potentials 
to targets. While the compute phase of the PC-BLTC is O (M logN), 
the compute phase of the CP-BLTC is O (N logM), hence the PC-
BLTC is expected to perform better when N > M , and the CP-BLTC 
is expected to perform better when M > N .

Fig. 9 shows the run time (s) versus relative ℓ2 error for the PC-
BLTC (red, dashed), CP-BLTC (green, dash-dotted), and BLDTT (blue, 
solid) with (a) M=2E7 targets, N=2E6 sources, (b) M=2E6 targets, 
N=2E7 sources, for MAC θ and interpolation degree n as above. 
For (a) M > N , the CP-BLTC outperforms the PC-BLTC, and for (b) 

N > M , the PC-BLTC outperforms the CP-BLTC except at low degree 
n, while the BLDTT outperforms both treecodes except in (b) for 
MAC θ = 0.9 and low degree n, where the CP-BLTC runs slightly 
faster. Note that the CP-BLTC does not have an upward pass, and 
in the current GPU implementation of the BLDTT and PC-BLTC, the 
upward pass parallelizes less well than the downward pass, and 
with low degree n, it contributes a substantial fraction of the PC-
BLTC and BLDTT run time. Nonetheless the results demonstrate the 
ability of the BLDTT to adapt to systems of unequal targets and 
sources.

5.6. Different kernels

Previous sections considered particles interacting through the 
Coulomb kernel, and here we demonstrate the kernel-independent 
nature of the BLDTT by applying it to three different kernels: 
(a) regularized Coulomb, 1/(r2 + 0.0052)1/2, (b) Yukawa,
exp(−0.5r)/r, (c) oscillatory, sin(πr)/r. Fig. 10 shows the run time 
(s) versus relative ℓ2 error for the BLDTT (blue, solid) and BLTC 
(red, dashed) with N=2E7 random uniformly distributed particles 
in the cube [−1, 1]3 for MAC θ and interpolation degree n as 
above. The BLDTT has consistently better performance than the 
BLTC for all three kernels.

5.7. Memory usage

Next we consider the peak memory usage of the BLDTT and 
BLTC for 2E7 random uniformly distributed particles in [−1, 1]3
interacting through the Coulomb kernel, where the peak mem-
ory is the maximum resident set size (MaxRSS) reported by the 
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Fig. 10. Different kernels, N=2E7 random uniformly distributed particles in [−1, 1]3, (a) regularized Coulomb, 1/(r2 + 0.0052)1/2, (b) Yukawa, exp(−0.5r)/r, (c) oscillatory, 
sin(πr)/r, run time (s) versus relative ℓ2 error, BLTC (red, dashed), BLDTT (blue, solid), connected curves represent constant MAC θ (0.5 ×; 0.7 ◦; 0.9 ∗), interpolation degree 
n = 1, 2, 4, 6, 8, 10 increases from right to left on each curve, computed on one NVIDIA P100 GPU.

Fig. 11. Peak memory, N=2E7 random uniformly distributed particles in [−1, 1]3, 
peak memory (GB) versus interpolation degree n, BLDTT (blue, solid), BLTC (red, 
dashed), direct summation (black, dashed-dotted), connected curves represent con-
stant MAC θ (0.5 ×; 0.7 ◦; 0.9 ∗), degree n = 1, 2, 4, 6, 8, 10 increases from right to 
left on each curve.

SLURM job scheduler. Fig. 11 shows the peak memory (GB) versus 
interpolation degree n for the BLDTT (blue, solid) and BLTC (red, 
dashed) with MAC θ and degree n as above. The peak memory 
for direct summation (black, dash-dotted) in this case is 2.586 GB. 
For a given MAC θ and degree n, the BLDTT uses about 5% more 
memory than the BLTC, which is due to storing the proxy particles 
and potentials in the target clusters (the BLDTT interaction lists use 
very little memory). For both the BLDTT and BLTC, smaller MAC 
leads to a slight increase in memory, with values within roughly 
1% of each other for a given degree. At the highest degree n = 10, 
the BLDTT uses about 50% more memory than direct summation, 
which is due to storing the proxy particles, charges, and potentials 
in the target and source clusters.

5.8. MPI strong scaling

We examine the MPI strong scaling of the BLDTT running on 1 
to 32 NVIDIA P100 GPUs with one MPI rank per GPU. The particles 
are partitioned into compact domains by Trilinos Zoltan [66,67]
and each domain resides on one GPU. Fig. 12 depicts the domain 
decomposition for N=1.6E6 random uniformly distributed particles 
in the cube [−1, 1]3 across (a) 8 ranks with 2E5 particles per rank, 
(b) 16 ranks with 1E5 particles per rank. Colors represent particles 
residing on different ranks.

Fig. 13 shows the run time versus the number of GPUs for 
systems with N=64E6 random particles having (a) uniform, (b) 
Gaussian, and (c) Plummer distributions as above. The computa-
tions use MAC θ = 0.7 and interpolation degree n = 8 yielding 
error ≈ 1E–8. Results are shown for the BLDTT (blue) and BLTC 
(red), where the boxed numbers give the parallel efficiency and the 
dashed lines indicate ideal scaling. The BLDTT is 1.5–2.5× faster 

than the BLTC up to 32 GPUs, and the speedup improves for the 
non-uniform particle distributions. The BLDTT has slightly lower 
parallel efficiency than the BLTC except for the Plummer distribu-
tion with 32 GPUs. The parallel efficiency of the BLDTT remains 
65% or higher up to 32 GPUs for all three distributions.

The lower parallel efficiency of the BLDTT compared to the BLTC 
can be explained by profiling the computations. Fig. 14 shows 
the component breakdown as a percent of run time for the (a) 
BLTC and (b) BLDTT uniform distribution results in Fig. 13(a). The 
components are the upward pass (blue), computing due to local 
sources and source clusters (orange), computing due to remote 
sources and source clusters (yellow), downward pass (purple), LET 
building and communication (green), and other (light blue) which 
includes tree building and interaction list building. The breakdown 
is based on timing results for the most expensive MPI rank in each 
case. Note that LET building accounts for a larger fraction of the 
run time as the number of ranks increases; this is due to the larger 
communication cost as more particles reside on remote ranks, and 
it is the primary factor that impedes ideal parallel scaling. The LET 
building time is nearly identical for the BLTC and BLDTT, but since 
the BLDTT runs faster, LET building accounts for a larger fraction of 
the run time, and this explains the lower parallel efficiency of the 
BLDTT compared to the BLTC in Fig. 13.

6. Conclusions

We presented a GPU-accelerated fast multipole method called 
BLDTT, which uses barycentric Lagrange interpolation for the near-
field and far-field approximations [60,34] and dual tree traversal 
to construct the interaction lists [12,13]. The BLDTT builds adap-
tive trees of clusters on the target particles and source particles, 
where each cluster is the minimal bounding box of its particles, 
and a parent cluster may have 8, 4, or 2 children. The scheme 
replaces well-separated particle-particle interactions by adaptively 
chosen particle-cluster, cluster-particle, and cluster-cluster approx-
imations given by barycentric Lagrange interpolation on a Cheby-
shev grid of proxy particles in each cluster. The BLDTT employs 
FMM-type upward and downward passes [4], although here they 
are adapted to interlevel polynomial interpolation. The BLDTT is 
kernel-independent and the approximations have a direct sum 
form that efficiently maps onto GPUs, where targets provide an 
outer level of parallelism and sources provide an inner level of par-
allelism. The code uses OpenACC directives for GPU acceleration, 
and the distributed memory parallelization builds locally essen-
tial trees on each rank [65], with MPI remote memory access for 
communication and recursive coordinate bisection for domain de-
composition. The BLDTT code is available in the BaryTree library 
for fast summation of particle interactions [63].
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Fig. 12. Examples of domain decomposition, N=1.6E6 random uniformly distributed particles in [−1, 1]3, (a) 8 ranks with 2E5 particles per rank, (b) 16 ranks with 1E5 
particles per rank, colors represent particles residing on different ranks, partitioning by Trilinos Zoltan [66,67].

Fig. 13. MPI strong scaling, N=64E6 random particles in [−1, 1]3, (a) uniform, (b) Gaussian, (c) Plummer distributions, MAC θ = 0.7, interpolation degree n = 8 yielding 7-8 
digit accuracy, run time (s) versus number of GPUs, BLTC (red), BLDTT (blue), ideal scaling (dashed lines), parallel efficiency (boxed numbers).

Fig. 14. Component breakdown of run time across 1 to 32 GPUs, 64E6 random uniformly distributed particles in [−1, 1]3, MAC θ = 0.7, interpolation degree n = 8, error 
≈ 1E-8, (a) BLTC, (b) BLDTT, upward pass (blue), computing due to local sources and source clusters (orange), computing due to remote sources and source clusters (yellow), 
downward pass (purple), LET building and communication (green), and other (light blue) including tree building and interaction list building, breakdown is based on timing 
results for most expensive MPI rank in each case.
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The BLDTT was compared with the BLTC, an earlier particle-
cluster barycentric Lagrange treecode [34]. For systems with 
N=1E5 to 1E8 particles running on one GPU, the BLTC scales like 
O (N logN) and the BLDTT scales like O (N). Computations were 
presented for different random particle distributions (uniform, 
Gaussian, Plummer), domains (thin slab, square rod, spherical sur-
face), and interaction kernels (singular and regularized Coulomb, 
Yukawa, oscillatory) and for unequal target and source particles. 
In terms of run time versus error, the BLDTT has consistently bet-
ter performance than the BLTC. The BLDTT uses about 5% more 
memory than the BLTC, and with degree n = 10 it uses about 50% 
more memory than direct summation. We demonstrated the MPI 
strong scaling of the BLDTT and BLTC running on 1 to 32 GPUs 
for N=64E6 particles with 7–8 digit accuracy, where the BLDTT is 
1.5–2.5× faster than the BLTC, and the parallel efficiency of the 
BLDTT is better than 65% up to 32 GPUs.

Future work to improve the efficiency of the BLDTT could in-
vestigate overlapping communication and computation, building 
tree nodes that span multiple ranks, using mixed-precision arith-
metic, and employing barycentric Hermite interpolation [72]. We 
anticipate applying the BLDTT to speed up integral equation based 
implicit solvent computations [73] and density functional theory 
calculations [74].
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Appendix A. Details of upward pass

First we note a property of polynomial interpolation. Recall that 
given a function f (x) and n + 1 distinct points sk, k = 0 : n, the 
interpolating polynomial p(x) can be written as

p(x)=
n∑

k=0

f (sk)Lk(x), (A.1)

where Lk(x) are the Lagrange polynomials. If f (x) itself is a poly-
nomial of degree n, then

f (x)=
n∑

k=0

f (sk)Lk(x), (A.2)

because the left and right sides are both polynomials of degree n
with the same values at the n + 1 distinct points sk .

Now we turn to the upward pass. Recall Eq. (9) for the defini-
tion of the proxy charges ̂qk of a source cluster Cs ,

q̂k =
∑

y j∈Cs

Lk(y j)q j, k= 0 : n, (A.3)

where y j, q j are the particles and charges of the cluster, and Lk(y)
are the Lagrange polynomials associated with the cluster. Suppose 

the cluster Cs has two child clusters Cs,i , i = 1 : 2 with interpola-
tion points ski , Lagrange polynomials Lki (y), and proxy charges ̂qki . 
The parent proxy charge in Eq. (A.3) can be expressed in terms of 
the child proxy charges as follows,

q̂k =
∑

y j∈Cs

Lk(y j)q j (A.4a)

=
2∑

i=1

∑

y j∈Cs,i

Lk(y j)q j (A.4b)

=
2∑

i=1

∑

y j∈Cs,i

⎛

⎝
n∑

ki=0

Lk(ski )Lki (y j)

⎞

⎠q j (A.4c)

=
2∑

i=1

n∑

ki=0

Lk(ski )
∑

y j∈Cs,i

Lki (y j)q j (A.4d)

=
2∑

i=1

n∑

ki=0

Lk(ski )̂qki . (A.4e)

Step a is the definition of the parent proxy charges, step b splits 
this into the sum over the two child clusters, step c uses the re-
lation in Eq. (A.2), step d rearranges the sums, and step e applies 
the definition of the child proxy charges. This result extends in a 
straightforward way to 3D, where a parent cluster may have eight, 
four, or two children. In summary, the upward pass computes the 
proxy charges of the leaf clusters by Eq. (A.4a) and then it ascends 
to the root of the source tree, computing the proxy charges of each 
parent source cluster from the child proxy charges by Eq. (A.4e). 
This is similar to the upward pass in the FMM, where the multi-
pole moments of a parent cluster are computed from the moments 
of its children [4].

Appendix B. Details of downward pass

For simplicity we consider a target tree with two levels (L = 2). 
Recall Eq. (18),

φ(xi)+=
2∑

m=1

n∑

km=0

φ(tmkm )L
m
km (xi), (B.1)

where the inner sum interpolates the proxy potentials φ(tmkm ) at 
level m in the target tree directly to the target particle xi , and +=
indicates that the results are combined with the potentials φ(xi)
previously computed in the DTT. The right side of Eq. (B.1) can be 
written as follows,

2∑

m=1

n∑

km=0

φ(tmkm )L
m
km (xi)

=
n∑

k1=0

φ(t1k1)L
1
k1(xi)+

n∑

k2=0

φ(t2k2)L
2
k2
(xi) (B.2a)

=
n∑

k1=0

φ(t1k1)L
1
k1(xi)+

n∑

k2=0

φ(t2k2)

⎛

⎝
n∑

k1=0

L2k2(t
1
k1)L

1
k1(xi)

⎞

⎠

(B.2b)

=
n∑

k1=0

⎛

⎝φ(t1k1)+
n∑

k2=0

φ(t2k2)L
2
k2
(t1k1)

⎞

⎠ L1k1(xi). (B.2c)
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Step a splits the sum over the two levels, step b uses the relation 
in Eq. (A.2), and step c rearranges the sums. This yields an alter-
native version of Eq. (B.1),

φ(xi)+=
n∑

k1=0

⎛

⎝φ(t1k1)+
n∑

k2=0

φ(t2k2)L
2
k2
(t1k1)

⎞

⎠ L1k1(xi), (B.3)

where instead of interpolating from t1k1 to xi and from t2k2 to 
xi (step a), one interpolates from t2k2 to t1k1 , combines with pre-
viously computed results at t1k1 , and interpolates from t1k1 to xi
(step c). In this expression, the first term in parentheses corre-
sponds to Eq. (20) and the second term corresponds to Eq. (19). 
The procedure generalizes to trees of any depth. This is similar to 
the downward pass in the FMM, which computes potentials us-
ing multipole-to-local and local-to-local translations of expansion 
coefficients [4].
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