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We study isovector unpolarized and helicity parton distribution functions (PDF) of the proton within the

framework of large-momentum effective theory. We use a gauge ensemble, generated by the MILC

Collaboration, with a superfine lattice spacing of 0.042 fm and a pion mass of 310 MeV, enabling us to

simultaneously reach sub-Fermi spatial separations and larger nucleon momenta. We compare the spatial

dependence of quasi-PDF matrix elements in different renormalization schemes with the corresponding

results of the global fits, obtained using one-loop perturbative matching. We present determinations of the

first four moments of the unpolarized and helicity PDFs of proton from the Ioffe-time dependence of the

isovector matrix elements, obtained by employing a ratio-based renormalization scheme.
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I. INTRODUCTION

Decades of deep inelastic scattering (DIS) and semi-

inclusive DIS (SIDIS) data over wide kinematic ranges

have provided us insight into the structure of nucleons.

Significant progress also has been made in recent years—

for example, the determination of the polarized gluon

distribution at small x [1] based on the inclusive jet and

pion production data from polarized p-p collisions at the

Relativistic Heavy-Ion Collider (RHIC) [2–4], double spin

asymmetries from open-charm muon production at

COMPASS [5], and the constraints on the polarization

of sea quarks and antiquarks with longitudinal single-spin

asymmetries in W�-boson production [6,7]. In the future,

the kinematic coverage of nucleon parton distribution

functions (PDFs) will be greatly extended by the data

from the Jefferson Lab 12-GeV program [8] and the

Electron-Ion Collider (EIC) [9]. On the energy frontier,

nucleon PDFs not only were a critical input for the

discovery of the Higgs boson at the Large Hadron

Collider (LHC) [10,11], but also are expected to play

critical roles in determining the Standard Model back-

grounds during LHC’s search for physics beyond the

Standard Model in future Runs 3–5.
Despite great progress on the experimental and phenom-

enological sides, nonperturbative determinations of the

PDFs starting from the microscopic theory of quantum

chromodynamics (QCD) remains a challenge. To obtain the

quark PDF, one has to calculate the matrix element with the

quark fields separated along the light cone between the

hadronic states. Due to the light cone separation, straight-

forward calculation of the PDF is not possible using lattice

QCD, a technique based on Euclidean-time formulation.

One can bypass this obstacle by calculating a similar matrix

element with spatially separated quark fields at equal time

within highly boosted hadron states, which defines the so-

called quasi-PDF (qPDF) [12,13]. For large hadron

momenta, this matrix element can be related to the PDF

[12,13]. The large-momentum effective theory (LaMET)

provides a systematic way to relate the qPDF at large, but

finite, hadron momentum to the PDF order by order in

perturbation theory [13]. Related approaches to connect

PDF to matrix elements of boosted hadrons calculable in

the Euclidean-time lattice computations, such as “the good

lattice cross section” [14,15] and the pseudo-PDF [16,17],

have also been proposed. Renormalization of the under-

lying boosted hadron matrix elements, usually referred to
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as the Ioffe-time distributions (ITDs), involves the Wilson
line. The multiplicative renormalizability of the ITDs to all
orders of perturbation theory has been proven [18,19].
Practical ways to implement renormalization on the lattice,
such as the use of the regularization-invariant momentum-
subtraction scheme (RI-MOM) [20–24] and reduced Ioffe-
time distributions [17], have been established. The relations
between different theoretical approaches are also now
understood [25]. Based on these theoretical developments,
unpolarized and polarized nucleon PDFs have been calcu-
lated on the lattice [24,26–33]. Furthermore, lattice calcu-
lations of the valence pion PDF have also appeared [34–38].
The status of this field is well summarized in recent review
papers [39–42]. All of these calculations for the nucleon, so
far, have been carried out with lattice spacing a > 0.08 fm.
Having small lattice spacing plays a crucial role in

calculation of the PDF within the LaMET framework. To

suppress the target mass and higher twist corrections, the

hadronmomentumPz should be large. But to avoid large dis-

cretization effects, one must ensure aPz ≪ 1. Furthermore,

to obtain the light cone PDF from a qPDF, one needs

perturbative matching, which presently is known only up

to one-loop order. Applicability of one-loop perturbative

matching can be guaranteed only for spatial separations

zΛQCD ≪ 1, and therefore demands the use of fine lattices.

The main goal of the present work is to study systematic

effects of the PDFcalculationswithin theLaMET framework

by going to the extreme limit with the use of a superfine

lattice having a ¼ 0.042 fm. The lattice spacing used in this

study is at least twice smaller than that used in any previous

lattice calculations of the nucleon PDF. The unpolarized and

helicity PDFs of the nucleon are well constrained through

global fits to experimental results. Thus, we study the

systematic effects of our calculations by comparing the Pz

and z dependence of renormalized qPDF matrix elements

with the same reconstructed from the well-known phenom-

enological PDFs using the LaMET framework.

The rest of the paper is organized as follows: In Sec. II,

we discuss the general features of LaMET and our lattice

setup. In Sec. III, we discuss the nucleon two-point

functions for large values of Pz and the determination of

the energy levels of a fast-moving nucleon. Section IV is

dedicated to the analysis of the nucleon three-point func-

tions and the calculations of bare qPDF. Section V

describes the nonperturbative RI-MOM renormalization.

Comparisons of the lattice results on qPDF with the results

of global analysis of unpolarized and helicity PDFs are

discussed in Secs. VI and VII, respectively. Different from

RI-MOM renormalization, we discuss the analysis of ratios

of nucleon matrix elements in Sec. VIII. Finally, Sec. IX

contains our conclusions.

II. LATTICE SETUP AND LaMET

In this paper, we report the results of a lattice QCD

calculation using clover valence fermions on an ensemble

of Nf ¼ 2þ 1þ 1 gauge configurations with lattice spac-

ing a ¼ 0.042 fm, with space-time dimensions of 643 ×

192 and pion massMπ ≈ 310 MeV in the continuum limit.

The gauge configurations have been generated using highly

improved staggered quarks (HISQ) [43] by the MILC

Collaboration [44]. The gauge links entering the clover

Wilson-Dirac operator have been smeared using hyper-

cubic (HYP) smearing [45]. We used the tree-level tadpole

improved result for the coefficient of the clover term, and

the bare quark mass has been tuned to recover the lowest

pion mass of the staggered quarks in the sea [46–49]. We

use only one step of HYP smearing to improve the

discretization effects, since it is possible that multiple

applications of smearing could alter the ultraviolet results

for the PDF. We use a multigrid algorithm [50,51] in the

Chroma software package [52] to perform the inversion of

the clover fermion matrix, allowing us to collect a relatively

high statistics sample. We collected a total of 3258

measurements using six sources per configuration and

543 gauge configurations. In the following, we elaborate

on the steps of our computation.

A. Nucleon two-point correlators

The two crucial components of the lattice computation

are the two-point function and the three-point function

involving the boosted nucleon and the qPDF operator. The

two-point function for the nucleon boosted to spatial

momentum P is the standard operator

C2 ptðtsÞ ¼ hN̂s0ðP; tsÞN̂†
sðP; 0Þi;

N̂sðP; tÞ ¼
X

x

ϵabcu
ðsÞ
a ðx̃ÞðuðsÞb ðx̃ÞTCγ5dðsÞc ðx̃ÞÞe−iP·x; ð1Þ

where x̃ ¼ ðx; tÞ and ts is the source-sink separation along

the Euclidean-time direction. The index s refers to the kind
of quark smearing that is applied to improve the signal-to-

noise ratio of the boosted nucleon states. We either use

point quark operators ψðxÞ, or we use the Gaussian

momentum smeared [53] for the quark fields ψ ðsÞðxÞ that
enters N̂s:

ψ ðsÞðx̃Þ¼Smomψðx̃Þ

¼ 1

1þ6α

�

ψðx̃Þþα
X

j

Ujðx̃Þeik·ĵψðx̃þ ĵÞ
�

; ð2Þ

where k is the momentum of the quark field, Ujðx̃Þ are the
gauge links in the ĵ direction, and α is a tunable parameter

as in traditional Gaussian smearing. The quark momentum

should be chosen such that the signal-to-noise ratio is

optimal for the given nucleon momentum. Naively, one

would expect that jkj should be one third of the nucleon

momenta [53]. For this particular study, we use j ¼ z and

kz ¼ 4π=L, and a large Gaussian-smearing parameter
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α ¼ 10. Such a momentum source is designed to align the

overlap with nucleons of the desired boost momentum, and

we are able to reach higher boost momentum for the

nucleon states with reasonable signals. In the nucleon two-

point correlators, we can study multiple values of the

nucleon momentum, P ¼ f0; 0; Pzg, with

Pz ¼ nz
2π

L
; nz ∈ ½0; 6�; ð3Þ

without a significant increase in computational needs.

These values of nz from 1 to 6 correspond to Pz ¼ 0.46,

0.92, 1.38, 1.84, 2.31, and 2.77 GeV in physical units,

respectively. We either use smeared fields for both the

source and sink, which we refer to as SS, or we use smeared

fields only for the source and point fields for the sink,

which we refer to as SP in the rest of the paper.

B. Nucleon three-point function

The three-point function we compute is of the form

C3 ptðts; τÞ ¼ PhN̂sðP; tsÞOΓðz; τÞN̂†
sðP; 0Þi; ð4Þ

where OΓðz; τÞ is the u-d isovector qPDF operator

OΓðz; τÞ ¼
X

x

ūðx̃þ zÞΓWzðx̃þ z; x̃Þuðx̃Þ

−
X

x

d̄ðx̃þ zÞΓWzðx̃þ z; x̃Þdðx̃Þ; ð5Þ

where x̃ ¼ ðx; τÞ, and Wz is the straight Wilson line along

the spatial z direction, connecting lattice sites x̃ and x̃þ z.
The Dirac Γ used will determine the quantum numbers of

the PDF: Γ ¼ γt for the unpolarized case, and Γ ¼ γzγ5 for

the longitudinally polarized case. The projector operator,P,

is given by P ¼ 1þγt
2

for the unpolarized case and P ¼
iγzγ5

1þγt
2

for the longitudinally polarized case. We only use

smeared quark sources for the computation of C3pt. In order

to reduce the computational cost, we only compute the C3pt

for two large values, Pz ¼ 1.84 and 2.31 GeV, and for

source-sink separations ts ¼ 16a; 18a; 20a.

C. Extraction of nucleon matrix element and

perturbative matching to PDF

Using the three-point and two-point functions whose

calculations are described above, we can extract the bare

matrix element

hðz; Pz;ΓÞ ¼ hPzjOΓðzÞjPzi ð6Þ

formally in the infinite source-sink separation ts limit of

their ratio,

Rðz; Pz;Γ; τ; tsÞ ¼
C3ptðτ; tsÞ
C2ptðtsÞ

: ð7Þ

To obtain the matrix element hðz; PzÞ from the above ratio,

we calculate the nucleon three-point function with the

insertion of the OΓðzÞ operator at three nucleon three-point
source-sink separations, approximately ts ¼ 0.67, 0.76, and

0.84 fm, and we describe its ts and τ dependence through

two- and three-state Ansätze. In Sec. IV, we describe our

extraction of the bare matrix element from various extrap-

olations in detail.

The next step of the computation is the renormalization

of the bare matrix element h. One possible choice for OΓ is

Oγz
. However, for this case of Γ ¼ γz, there is a mixing with

the quark bilinear operator containing the unit matrix,

Γ ¼ 1, if Wilson fermions are used [20,21,54]. This mixing

is absent if we use Γ ¼ γt, and we will use this choice for

the unpolarized PDF in this study. One way to perform

the renormalization procedure on the lattice is to use the

RI-MOM scheme [20,22], where the renormalized matrix

element is defined as

hRðz; Pz; μR; p
R
z Þ ¼ Zðz; μR; pR

z Þhðz; Pz;ΓÞ. ð8Þ

The non-perturbatively determined RI-MOM renormaliza-

tion constant Zðz; μR; pR
z Þ depends on the separation z, the

norm of the renormalization point μR ¼ ðpRÞ2 and the z

component of renormalization point pR
z . The dependence

on pR
z arises because the z component of the momentum

now plays a special role. We will discuss the details of the

RI-MOM renormalization in Sec. V. We will also consider

an alternate ratio scheme that has a well-

defined continuum limit in Sec. VIII. Here, the multipli-

cative renormalization factor ZratioðzÞ can be taken as the

hadron matrix element at a different fixed momentum P0
z—

i.e., ZratioðzÞ ¼ ðhðz; P0
z;ΓÞÞ−1.

After the RI-MOM renormalization, one obtains the

renormalized matrix element hRðz; Pz; μR; p
R
z Þ, from which

we can define the qPDF as a function of Bjorken-x:

q̃ðx; Pz; μR; p
R
z Þ≡

Z

∞

−∞

dz

4π
eixPzzhRðz; Pz; μR; p

R
z Þ: ð9Þ

From this formula, it is clear that hRðz; Pz; μR; p
R
z Þ

can be considered as the coordinate space qPDF. For

finite momentum Pz, q̃ðx; Pz; μR; p
R
z Þ has support in

−∞ < x < ∞. Unlike the physical PDF, which is frame

independent, the qPDF has a nontrivial dependence on the

nucleon momentum Pz. When the nucleon momentum

Pz ≫ fM;ΛQCDg, with M being the nucleon mass, the

qPDF in the RI-MOM scheme can be matched to the PDF

defined in the MS scheme, qðx; μÞ, through the factoriza-

tion theorem [12,13,25]
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q̃ðx; Pz; p
R
z ; μRÞ ¼

Z

1

−1

dy

jyjC
�

x

y
; r;

yPz

μ
;
yPz

pR
z

�

qðy; μÞ

þO

�

M2

P2
z

�

þO

�

Λ
2
QCD

P2
z

�

; ð10Þ

where r ¼ ðμR=pR
z Þ2, C is the perturbative matching

coefficient, OðM2=P2
zÞ is the target-mass correction due

to the nonzero nucleon mass, and OðΛ2
QCD=P

2
zÞ stands for

higher-twist contributions. The flavor indices of q, q̃, and C
are implied. In what follows, we will discuss the nonsinglet

case, and therefore, mixing with gluon and sea-quark PDFs

is absent in the above formula. We use the one-loop

expression of the kernel C. (The one-loop matching,

including for the singlet case, has also been worked out

in Refs. [55,56]).

The matching kernel Cðx; r; Pz=μ; Pz=p
R
z Þ for Γ ¼ γt

was derived in Ref. [24] and depends on details of the

RI-MOM scheme. It can be written in the following form:

C

�

x;r;
Pz

μ
;
Pz

pR
z

�

¼δð1−xÞþ
�

f1;Γ

�

x;
Pz

μ

�

−

�

�

�

�

Pz

pR
z

�

�

�

�

f2;Γ;P

�

1þPz

pR
z

ðx−1Þ;r
��

þ
:

ð11Þ

The subscript “+” stands for the plus-prescription. Both the

functions, f1;Γ and f2;Γ;P , depend on the choice of the Γ in

the operator insertion [24]. On the other hand, f1;Γ is

independent of the projection operator (P) used in defining

the RI-MOM renormalization condition, but f2;Γ;P is

different for different choices of the RI-MOM renormal-

ization condition [24]. We also note that it is also possible

to convert hRðz; Pz; μR; p
R
z Þ to the MS scheme and define

the corresponding qPDF q̃ðx; Pz; μÞ, that then can be

directly matched to the MS PDF [22].

To study the longitudinally polarized quark PDF, one can

use Γ ¼ γzγ5 or Γ ¼ γtγ5. In the case Γ ¼ γzγ5, there is no

mixing with quark bilinear operators with Γ ¼ 1 [22].

Therefore, we will use this choice to study the longitudi-

nally polarized quark PDF and qPDF. The bare matrix

element of Oγzγ5
can be renormalized using the RI-MOM

scheme and then match to PDF in the same manner as was

done for the unpolarized case. The RI-MOM renormaliza-

tion for the longitudinally polarized case will be discussed

in Sec. V, while details of the matching procedure,

including the formulas for f1 and f2 functions, will be

given in Sec. VII.

III. ANALYSIS OF THE NUCLEON TWO-POINT

FUNCTION

For the extraction of the qPDF matrix element of the

nucleon at large momenta, it is important to understand the

contribution of different energy states to the nucleon two-

point correlation function. We calculated the nucleon two-

point function using a smeared source and smeared sink

(SS correlator), as well as a smeared source and point sink

(SP correlator), for seven values of the momenta

aPz ¼ 2π=L · nz, nz ¼ 0, 1, 2, 3, 4, 5, and 6. From the

two-point correlators, Ci
2ptðts; PzÞ, i ¼ SS or SP, we define

the effective mass

aEeffðts; PzÞ ¼ ln

�

Ci
2ptðts=a; PzÞ

Ci
2ptðts=aþ 1; PzÞ

�

: ð12Þ

Our results for the effective masses are shown in Fig. 1 for

the SP and SS correlators.

The effective mass should approach a constant corre-

sponding to the ground-state energy E0ðPzÞ at sufficiently
large ts. The momentum dependence of the ground-state

FIG. 1. The effective masses obtained from SP (left) and SS (right) correlators for different momenta shown in Eq. (3). The bands

come from the results of two-state (Nstate ¼ 2) and three-state (Nstate ¼ 3) fits. For Nstate ¼ 2, “pseudo” indicates that the effective

pseudoplateau in the range 5a < tmin < 10a for the first excited state E1 has been used, and “true” indicates that the true plateau value of

E1 in the range tmin > 11a has been used (see text for details).
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energy is expected to be described by the dispersion

relation E0ðPzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
z þM2

p

, with M being the nucleon

mass. Therefore, in Fig. 1, we show the expected ground-

state energy at different Pz values obtained from the

dispersion relation as horizontal lines at the right for

comparison. Along with the expected asymptotic values

at large ts, we also show the ts dependence of the effective
mass based on an effective two-state fit to the two-point

function, as we will explain shortly. Indeed, we see that the

effective masses approach the corresponding values. The

effective masses corresponding to the SP correlator reach a

plateau at a slightly larger ts than the SS correlators. On the

other hand, at small ts, the effective masses for the SP

correlators are smaller than those for SS correlators. This

implies that the contribution of the excited states is smaller

for the SP correlator, for which a plausible reason could be

that the different excited states contribute with different

signs to the correlator. Thus, even though the ground and

the excited-state energies are the same in the SP and SS

correlators, the two are affected differently by the higher

excited states, which we can take advantage of to obtain the

excited state spectrum reliably.

In order to determine the energy levels, we fit the spectral

decomposition of C2ptðtsÞ,

C2ptðtsÞ ¼
X

Nstate−1

n¼0

Ane
−Ents ; ð13Þ

truncated at Nstate, to the two-point function data over a

range of values of ts in the range ½tmin; 32a�. Since the

lattice extent in the time direction is 192, we do not find any

effect of lattice periodicity in this range of ts to be

important. We perform this fitting with the one-state

(Nstate ¼ 1), two-state (Nstate ¼ 2), and three-state

(Nstate ¼ 3) Ansätze. The ground-state energies E0 from

the fits of SS correlators for nz ¼ 3 and 4 are shown in the

left panels of Fig. 2 as functions of tmin, where tmin indicates

that only C2ptðts > tminÞ has been fitted. Similar results

were obtained at the other values of the momenta. The

horizontal lines in the figures correspond to the results from

the dispersion relation for E0. The single exponential fits

give a good description of the SS correlator for tmin > 11a,
while two exponential fits give stable results for the

ground-state energy already for tmin > 5a.
We find the determination of the excited-state energies

from the SS correlators to be more problematic than that

from SP correlators. The excited-state energy for SS is not

well constrained by simple two-exponential fits, and it is

also not very stable with respect to the variation of tmin.

Since the SP and SS correlators receive different contri-

butions from excited states, we perform a combined

analysis of them to obtain more reliable results for the

excited-state energies. Since we are able to obtain the

ground-state energy E0 reliably from one or two exponen-

tial fits to both the SS and SP correlators, and they agree

with the expectation from the dispersion relation well, we

use E0 as a prior to perform more stable two-exponential

fits. The results from the two-state exponential fits, with E0

as prior, for nz ¼ 3 and nz ¼ 4 are shown in the middle and

right panels of Fig. 2 for the SP and SS correlators,

respectively. For the SP correlators, the excited-state energy

E1 seems to approach a plateau smoothly for tmin > 13a.

FIG. 2. Fit results for nz ¼ 3 (upper panels) and nz ¼ 4 (lower panels) for the nucleon two-point function. The left panels are for the

ground state (E0) from one-state and two-state fits. The middle and right panels are for the first (E1) and second (E2) excited states,

determined by two-state and three-state prior-based fits (see text for details). The horizontal lines are the values calculated from the

dispersion relation.
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It is interesting to note that, empirically, we observe that the

values of the plateaus agree with the dispersion relation

E1ðPzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
z þ E1ðPz ¼ 0Þ2

p

, which is shown with the

horizontal lines. While being an interesting observation,

such a stringent identification of this state is not important

to our analysis and requires further studies to rigorously

establish this. For the SS correlator, E1 develops a

pseudoplateau for 5a < tmin < 10a, and it relaxes to the

true plateau (i.e., as identified from the SP case) for

tmin > 11a. For nz ¼ 4, it is actually difficult to identify

the true plateau. To model the excited-state contributions to

Rðτ; tsÞ in the range 0 < τ < ts=2, with ts ¼ 16a; 18a; 20a,
one might consider using the well-determined values of E0

and E1 from the SP correlator at large ts. However, as we
will demonstrate now, such choices provide a less accurate

description of the SS two-point function in the range

5a < ts < 10a. A better description of the excited-state

contributions to the C2ptð5a < ts < 10aÞ can be obtained

by using the effective pseudoplateau value of E1 in the

range 5a < tmin < 10a.
Since we observe E1 to be well described by a particle-

like dispersion relation for sufficiently large ts, we perform
three-state fits for both SP and SS correlators by imposing a

prior on E1 as well, using its best estimate from a two-state

fit of SP correlators with the corresponding jackknife errors

[35]. The results are shown in the middle and right panels in

Fig. 2. We see that with the prior-based three-state

exponential fits, we can obtain stable results for the first

excited-state energy E1ðPzÞ already for relatively small

tmin, which agrees with the dispersion relation value that we

input via the prior. The value of the second excited state is

also shown in Fig. 2, and it roughly agrees with the values

of E1 from the two-exponential fit (with a prior only on E0)

at smaller tmin. Since the value of E2 is quite large, the third

exponential probably corresponds to a combination of

several excited states. In Fig. 1, we show the 1σ bands

for the effective mass corresponding to (1) a two-state fit

that uses values of E0 and the true value of E1; (2) a two-

state fit obtained by setting E1 to be the effective value in

the range 5a < tmin < 10a; and (3) the three-state fit that

we described above. We find that the curves (2) and

(3) agree quite well with each other in the range of

5a < ts < 10a, and they extrapolate in a similar fashion

to the asymptotic value E0. However, the curve (1) fails in

capturing the data in the range 5a < ts < 10a. Since for our
three-point calculations the source-sink separations were

chosen to be ts ¼ 16a; 18a; 20a, we must model the

effective excited-state contributions to the three-point

functions in the range 0 < τ < ts=2. Thus, through this

analysis on SP and SS correlators, we numerically dem-

onstrate that the usage of an effective value of E1 in the

range 5a < ts < 10a that is higher than the true value of E1

is justified, and that it is the best extrapolation one could

perform for the extraction of bare matrix elements in the

absence of enough data to perform a three-state fit.

Let us now summarize the analysis of the nucleon two-

point function. Using boosted Gaussian sources, we were

able to extract ground-state energy levels up to momenta

2.7 GeV from SP and SS correlators. The ground-state

energy dependence on Pz seem to follow the continuum

dispersion relation. Using this fact, we performed prior-

based fits using the energy from the dispersion relation as a

prior and extracted the excited-state energies as functions of

Pz. For SP correlators, the extracted value of E1 agrees well

with the one from the dispersion relation. We show this in

the left panel of Fig. 3. Furthermore, we were able to extract

an effective third energy level. These results are shown as

FIG. 3. The energies of different states as functions of Pz. In the left panel, the Pz dependence of E0, E1, and E2 for SP correlators are

shown. The values of E1 were obtained from a two-state fit with a prior only on E0, and those of E2 from a three-state fit with priors on

both E0 and E1. In the right panel, the Pz dependence of true values (blue points) and effective values of E1 (purple points) for SS

correlators are both shown (see text for details). The lines indicate the corresponding continuum dispersion relations.
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blue points (E1) and orange points (E2) in the left panel of

Fig. 3. Our results for the energy levels obtained from SS as

functions of Pz are summarized in the right panel of Fig. 3.

Here, the effective values of E1 from the pseudoplateau and

the true values are both shown. The main point of the

elaborate analysis is that even though a third excited state

contributes in the relatively shorter range of ts we use in the
paper, it possible to describe the SS correlator very well by

a two-state form with an effective value of E1, which is

larger than the energy of the physical excited state. Further

details on the analysis of the two-point functions are

provided in Appendix A.

IV. NUCLEON THREE-POINT CORRELATORS

In order to obtain the nucleon qPDF matrix element, we

consider the ratio of the three-point function to the two-

point function, Rðz; Pz; ts; τÞ, at different source sink

separations, ts, and operator insertion, τ. At fixed

ðz; PzÞ, we are interested in fitting the ðts; τÞ dependence

as expected from the spectral decomposition of R. If only
two states contribute to the correlation functions, the

dependence of this ratio on τ and ts is given by the

following form:

Rfit
3 ðts; τÞ ¼

B0 þ e−ΔEts=2ðB1e
−ΔEðts=2−τÞ þ B2e

ΔEðts=2−τÞÞ þ B3e
−ΔEts

1þ A1

A0
e−ΔEts

: ð14Þ

Here B0 is the desired matrix element h, and

ΔE ¼ E1 − E0. Generically, B1 and B2 are independent

fit parameters, except at z ¼ 0, where B1 ¼ B2. If we

assume that the terms proportional to A1 are small, the

denominator can be expanded to leading order to obtain a

simpler form:

Rfit
2 ðts; τÞ ¼ B0 þ e−ΔEts=2ðB1e

−ΔEðts=2−τÞ

þ B2e
ΔEðts=2−τÞÞ þ B3e

−ΔEts : ð15Þ

Finally, if the term proportional to B3 is also small

compared to other terms, we get an even simpler expression

that depends only on three parameters, B0, B1, and B2:

Rfit
1 ðts; τÞ ¼ B0 þ e−ΔEts=2ðB1e

−ΔEðts=2−τÞ þ B2e
ΔEðts=2−τÞÞ:

ð16Þ

For each ðz; PzÞ, we fit the ðts; τÞ dependence of

Rðz; Pz; ts; τÞ to Eqs. (14), (15), and (16) and determine

B0 in each case. In all these fits, we use a fixed value of

ΔEðPzÞ ¼ E1ðPzÞ − E0ðPzÞ, with the pseudoplateau val-

ues of E1ðPzÞ and the ground-state energies E0ðPzÞ
determined from the two-point SS correlation function,

as shown in the right panel of Fig. 3.

In the following, we discuss the ratio of the three-point

function to the two-point function, Rðz; Pz; ts; τÞ, and the

corresponding fits for Γ ¼ γt and nz ¼ 4. In Fig. 4, we

show the lattice data on this ratio, together with the fit

results for two representative values of z, namely z ¼ 0 and

z ¼ 8a. The ts dependence of the lattice results is small

compared to the statistical errors. In particular, the differ-

ence between ts ¼ 12a and ts ¼ 16a data is quite small.

This means that the contribution of the excited states is not

large even though the source-sink separation is below 1 fm.

Given that the ts dependence of the ratio is small, it is

natural to set B3 ¼ 0, since the term is suppressed by

e−tsΔE, and to perform fits using Rfit
3 ðts; τÞ. We perform fits

of the lattice results using the three different fit forms

FIG. 4. The real-part ratio of the three-point function to the two-point function at z ¼ 0 (left) and z ¼ 8a (right) as a function of τ and

for different ts values. The red, orange, and gray bands correspond to the bare matrix elements B0 extracted from fits to Rfit
1 , R

fit
2 , and R

fit
3 ,

respectively.
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above, and the value of ΔE obtained from two-state fits of

the two-point functions with tmin ¼ 6a. We use the operator

insertion time τ ≥ τmin ¼ 2a in the fits. The matrix ele-

ments, B0, obtained using the three fit functions agree

within errors. The real and imaginary parts of the ratio R
should be symmetric and antisymmetric with respect to

z ¼ 0 at any fixed ts and τ. In general, our lattice data are

compatible with this expectation. Hence, we symmetrize

and antisymmetrize the real and imaginary parts of the ratio

with respect to z ¼ 0. The z dependence of the bare matrix

elements is shown in Fig. 5 for all three types of fits. We see

again that all three fits give consistent results within errors.

Since B0 obtained from Rfit
3 and Rfit

2 is consistent with that

obtained from Rfit
1 , but with larger errors, in the following

we will focus on the results obtained from Rfit
1 . We also

carry out additional checks for any systematic effects, as

discussed below.

We perform several checks to understand the systematic

effects in Rfit
1 . First, we study the dependence of the

extracted matrix element on τmin and find no significant

dependence on it. Second, we perform the fits using only a

single source-sink separation ts and compare the corre-

sponding results from the three values of ts. Interestingly,
the matrix elements calculated for source-sink separations

ts ¼ 16a, 18a, and 20a agree within errors, though the ts ¼
20a results have very large errors. We also study the

variation of the extracting matrix element on ΔE by using

E1 obtained using different values of tmin. We find no

significant variation. Finally, we use the summation method

to obtain the matrix element. This determination has very

large statistical errors, but it is still compatible with all other

determinations. The above checks of systematic effects are

discussed further in Appendix B. We perform a similar

analysis for the three-point functions corresponding to the

helicity qPDF—i.e., for Γ ¼ γzγ5. Details of those analyses

are also discussed in Appendix B.

V. NONPERTURBATIVE RENORMALIZATION

We calculate the nonperturbative renormalization of the

qPDF operator in the RI-MOM scheme using off-shell

quark states in the Landau gauge [20,22]. The matrix

element of OΓðzÞ in an off-shell quark state jpi is

Λðp; z;ΓÞ ¼ hSðpÞi−1
�

X

w

γ5S
†ðp; wþ znÞγ5ΓWzðw

þ zn; wÞSðp;wÞ
	

hSðpÞi−1; ð17Þ

where nμ ¼ ð0; 0; 0; 1Þ is the unit vector along the z
direction, and the summation is over all lattice sites w.
The quark propagators are defined as

Sðp;xÞ ¼
X

y

eipyhψ̄ðxÞψðyÞi; SðpÞ ¼
X

x

e−ipxSðp;xÞ;

ð18Þ

and γ5 is inserted on both sides of S
†ðp; wþ znÞ in Eq. (17)

to get the necessary propagator
P

y e
−ipyhψ̄ðyÞψðwþ znÞi.

For the unpolarized qPDF, we use the RI-MOM renorm-

alization constant defined via

Zmpðz;pR
z ;a

−1;μRÞ¼
Tr½PΛtreeðp;z;γtÞ�
Tr½PΛðp;z;γtÞ�

�

�

�

�

p2¼μ2
R
;pz¼pR

z

; ð19Þ

where Λtreeðp; z; γtÞ ¼ γte
−izpz is the tree-level matrix

element in the momentum space. Furthermore, P ¼ γt −

ðpt=pxÞγx is the projection operator corresponding to the

so-called minimal projection, where only the term with the

Dirac structure proportional to γt is kept [23,24]. Hence, we

use the subscript “mp” for the renormalization constant.

The renormalization constant Zmpðz; pR
z ; a

−1; μRÞ depends

FIG. 5. The z dependence of the bare matrix element for nz ¼ 4. The left panel corresponds to the real part, and the right panel

corresponds to the imaginary part. The different colors are the matrix elements obtained by various extrapolation methods (denoted by

Rfit
1 , R

fit
2 , and R

fit
3 ), depending on the number of operator insertion points skipped near the source and sink (denoted by τmin), and the tmin

value in the two-point function fit from which the excited state E1 was obtained.
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on the lattice spacing a, as well as the other two scales pR
z

and μR.

We follow a similar procedure for the longitudinally

polarized case, where the RI-MOM renormalization con-

stant is defined as

Zγzγ5
ðz; pR

z ; a
−1; μRÞ ¼

Tr½PΛtreeðp; z; γzγ5Þ�
Tr½PΛðp; z; γzγ5Þ�

�

�

�

�

p2¼μ2
R
;pz¼pR

z

;

ð20Þ

withΛtreeðz; pz; γzγ5Þ ¼ γzγ5e
−ipzz. The projection operator

P in this case is chosen to be P ¼ γ5γz=4.
We calculate the nonperturbative RI-MOM renormaliza-

tion constants in the Landau gauge. The calculations are

performed using 14 gauge configurations. The relative

uncertainties of the renormalization constants for z ¼ 0,

16, and 32 are 0.02%, 1%, and 10%, respectively. Such

precision is much better than that of our nucleon matrix

elements with the same z, so it is enough at the present

stage. We use the following values of the momenta for the

off-shell quark state: ap ¼ 2π
L
ð5; 5; 5; 0Þ, 2π

L
ð6; 2; 1; 17=3Þ,

and 2π
L
ð7; 4; 3; 1=3Þ, with L ¼ 64 being the spatial size of

the lattice. These momenta correspond to μR ¼ jpj ¼
3.99 GeV, 3.94 GeV, and 3.97 GeV—i.e., to μR ∼

4 GeV within 1.5%. Since all the spatial directions are

equivalent, each of them could be considered as the z
direction, and therefore, with the above choice of the three

momenta we have pR
z ¼ 0.46 × f0; 1; 2;…; 7g GeV.

The renormalization constant is plotted in Fig. 6. Due to

the linear divergence, the renormalization constant can be

far from 1 at a large z ≈ 0.67 fm, making the nonperturba-

tive renormalization unavoidable. Figure 6 also shows that

the renormalization constant will be sensitive to the value of

pR
z , while such a dependence should be canceled by the

matching in the continuum if we have the matching formula

up to all orders, because the PDFs or the Mellin moments in

the MS scheme have no dependence on pR
z . We will

consider the residual pR
z dependence in the final PDF

prediction as a systematic uncertainty.

Having determined the renormalization constants Zmp

and Zγzγ5
we obtain the renormalized matrix elements—i.e.,

coordinate space qPDF. For the unpolarized case,

hRðz; Pz; μR; p
R
z Þ ¼ ZqZmpðz; pR

z ; a
−1; μRÞhðz; Pz; γtÞ;

ð21Þ

and for the longitudinally polarized case,

ΔhRðz; Pz; μR; p
R
z Þ ¼ ZqZγzγ5

ðz; pR
z ; a

−1; μRÞhðz; Pz; γzγ5Þ:
ð22Þ

In the above equations, Zq is the quark wave function

renormalization factor.

In Fig. 7, we show the renormalized matrix elements,

modulo the factor Zq, in the RI-MOM scheme at pR
z ¼ 0,

μR ¼ 4 GeV. We find that the errors are large. We can

achieve substantial error reductions at z ≠ 0 by redefining

the renormalized matrix elements as

hRðz; Pz; μR; p
R
z Þ≡

hRðz; Pz; μR; p
R
z Þ

hRðz ¼ 0; Pz; μR; p
R
z Þ

and

ΔhRðz; Pz; μR; p
R
z Þ≡

ΔhRðz; Pz; μR; p
R
z Þ

ΔhRðz ¼ 0; Pz; μR; p
R
z Þ

: ð23Þ

The errors of the matrix elements for z ≠ 0 are reduced due

to the strong correlations between z ≠ 0 (particularly for

FIG. 6. The renormalization constant Zmp and Zγzγ5
at μR ¼ 4 GeV. The upper panels show Zmp and Zγzγ5

as functions of pR
z at

z ¼ 16a ≈ 0.67 fm. The lower panels show the z=a dependence with pR
z ¼ 0.93 GeV and 2.3 GeV.
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small z close to z ¼ 0) and z ¼ 0 matrix elements for each

gauge configuration. The effectiveness of this procedure in

can be seen from Figs. 12 and 16. As one can see, the error

reduction due to this division is very significant. In fact,

with this method, the errors are reduced enough that the z
dependence of the matrix element is well constrained also

for nz ¼ 5. Since for the extraction of the qPDF we are only

interested in the z dependence of the matrix element, and

we know that the unpolarized isovector nucleon matrix

element at z ¼ 0 is the isospin of the nucleon, which is

unity [in our convention, cf. Eq. (5)] after renormalization,

we can consider the above improved ratio of renormalized

matrix elements. However, the effect of taking this ratio is

not trivial in the case of the matrix element of the helicity

qPDF—the value of the renormalized matrix element at

z ¼ 0 should be gA ≈ 1.3; this procedure is equivalent to

studying a helicity PDF with the first moment normalized

to unity, i.e., in a normalization where gA ¼ 1.

VI. UNPOLARIZED PDF: PERTURBATIVE

MATCHING AND COMPARISONS WITH hRðz;PzÞ
In this section, we will discuss how the renormalized

coordinate space qPDF, hRðz; Pz; μR; p
R
z Þ, can be related

and compared with phenomenological unpolarized nucleon

PDFs, such as the CT18 [57] and NNPDF3.1 [58],

extracted from the global analysis of experimental data.

The unpolarized quark PDF in the valence region is well

constrained through global analysis. Therefore, it is natural

to start from these phenomenological PDFs as a function of

Bjorken-x, use the perturbative matching to reconstruct the

corresponding coordinate space qPDF as a function of z for

different Pz values, and compare with our results for

hRðz; Pz; μR; p
R
z Þ. The reason for comparing in the z-space,

rather than constructing the x-dependent PDF from our

hRðz; Pz; μR; p
R
z Þ and then comparing with the phenom-

enological PDFs, is the following: As can seen from

Figs. 12 and 16, hRðz; Pz; μR; p
R
z Þ is quite noisy for

z ≥ 0.5 fm. Thus, the Fourier transformation which is

needed to calculate the qPDF in x space is difficult to

perform. A similar approach had also been used for the pion

PDF [35].

Even at the leading α0s order, the qPDF and the PDF

differ due to the trace term in the small-z expansion [12,25].
This difference was explicitly calculated in Ref. [59]. In the

context of DIS, such corrections have been studied long

ago [60], and are known as target-mass corrections.

Following Ref. [59], we introduce the target-mass-

corrected PDF

FIG. 7. Top panels: the z dependence of the real and imaginary parts of the RI-MOM renormalized (modulo the wave function

renormalization, Zq), unpolarized qPDF matrix element for Pz ¼ 1.84 GeV (left) and 2.31 GeV (right). Bottom panels: similar results

for the real and imaginary parts of the helicity matrix element.
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q0ðx; PzÞ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4c
p

�

fþ
2
q

�

2x

fþ

�

−
f−

2
q

�

−2x

f−

��

; ð24Þ

where c ¼ M2=ð4PzÞ2, f� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4c
p

� 1, and qðxÞ is the
usual PDF that corresponds to Pz → ∞. In our analysis, we

use two sets of NNLO PDF for the u and d quark and

antiquark distributions, the CT18 [57] and NNPDF3.1 [58],

evaluated at the scale μ ¼ 3.2 GeV. If the matching were

known to all orders of perturbation theory, the prediction

for real-space qPDF should be independent of the value of

μ at which the PDF was evaluated. Since the matching is

only known to one-loop order, we choose a scale μ ¼
3.2 GeV that is of the same order as the other momentum

scales used in our computations, and thereby avoided

corrections due to large logarithms. The light-cone quark

PDF for u quarks is calculated as quðxÞ ¼ uðxÞ, x > 0 and

quðxÞ ¼ −ūð−xÞ, x < 0. The isovector nucleon PDF,

q0uðxÞ − q0dðxÞ is shown in Fig. 8.

In Fig. 8,we also show the target-mass-corrected isovector

nucleon PDF for the twomomenta used in our study, namely

1.84 GeVand 2.31 GeV. We see from the figure that target-

mass correction is small for thevalues ofPz used in this study.

Using the target-mass-corrected NNPDF3.1 isovector

nucleon PDF obtained from Eq. (24) and the one-loop

matching to RI-MOM, we obtain the corresponding qPDF

for Pz ¼ 1.84 GeV and Pz ¼ 2.31 GeV, μR ¼ 4 GeV, and

pR
z ¼ 0, 0.93, 1.9 GeV. The functions f1;γt and f2;γt;mp in

Eq. (11) for the one-loop matching to the RI-MOM scheme

with minimal projection were taken from Eqs. (28) and (31)

of Ref. [24]. Figure 9 shows comparisons of the NNPDF3.1

with the corresponding qPDFs. In these comparisons, αs is

evaluated at the scale μ ¼ 3.2 GeV, which results in the

value αs ¼ 0.25. We see significant differences between the

PDF and qPDF. For large positive x, the qPDF is larger than

the PDF, while for negative x the qPDF can turn negative for

some PR
z . The qPDF strongly depends on the choice of the

RI-MOM scales. It is possible to choose the RI-MOM scale

such that the qPDF is negative for x < −0.2, even though the

PDF is positive.

By Fourier-transforming the CT18 and NNPDF3.1 target-

mass-corrected qPDFs with respect to x, we obtain the

corresponding distributions as a function of the so-called

Ioffe time, zPz—i.e., the corresponding ITDs [61]. Since the

matching is only up to one-loop order, the scale entering αs is

not fixed. We consider three choices of the scale for αs,

namely μ=2, μ, and 2μ. The corresponding variations in the

ITDs can be considered as estimates of the perturbative

uncertainties, and are shown as bands in Fig. 10. In the same

figure,we also comparewith the lattice results for the ITDs in

RI-MOM renormalization, at the renormalization scales of

μR ¼ 4 GeV and pR
z ¼ 0 GeV. Notwithstanding the large

errors, for both values of Pz the real parts of the ITDs

compare well at least up to zPz ≲ 5. However, lattice results

FIG. 8. The NNLO isovector nucleon PDFs CT18 [57] and

NNPDF3.1 [58] (solid lines), and the corresponding target-mass-

corrected ones (dashed lines), at a scale μ ¼ 3.2 GeV. See text for

details.

FIG. 9. qPDF corresponding to NNPDF3.1 for Pz ¼ 1.84 GeV (left) and Pz ¼ 2.3 GeV (right) with αs ¼ 0.25 and three different

RI-MOM renormalization conditions.
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for the imaginary parts of ITDs undershoot the phenomeno-

logical ITDs even for zPz ≳ 2.

Although there is a significant difference between the

CT18 and NNPDF3.1 PDFs in the small-x region, Fig. 10

does not show any visible difference in their corresponding

ITDs. To understand this better, in Fig. 11 we explore these

ITDs in an extended range of Ioffe time. The difference

between the PDFs in the negative-x region is only reflected
in a < 10% difference in the imaginary part of the ITDs for

zPz > 25, essentially showing no difference in the real-part

ITDs even up to zPz ¼ 50.

To explore the dependence of the lattice results on the

choice of RI-MOM scale pR
z and the range of validity of the

one-loop matching, in Fig. 12 we show comparisons

between the qPDFs as a function of z obtained in the

lattice calculations and from the global analysis of the PDF

for two different choices of renormalization scale, namely

pR
z ¼ 0 and 0.93 GeV. Very little dependence on pR

z was

observed. While the real part of the qPDF obtained from the

global analysis agrees with the lattice results up to z ∼ 1 fm

within relative large errors, the agreement is limited only for

z≲ 0.2 fm. For Pz ¼ 2.31 GeV, the agreements seem to

extend to larger values of z, partly because of larger errors.

However, it is encouraging that the central value seems to

shift towards the global analysis results as Pz is increased

from 1.84 to 2.31 GeV. In any case, at large z, we see clear
tension between the imaginary part of the lattice qPDF and

the results of global analysis. This suggests that the range of

applicability of one-loop matching is perhaps limited to z≲
0.2 fm in the case of the nucleon. It remains to be seen if this

agreement gets better with the addition of higher-loop

corrections, or if this observed discrepancy arises because

of contamination of higher-twist effects at larger z. This
observation has an important implication for our ability to

describe the x dependence of PDF within the LaMET

framework. For example, if the one-loop perturbative match-

ing works only for z ≃ 0.2 fm, reliable calculations of

nucleon PDF down to x ≃ 0.1 will need Pz ≳ 10 GeV.

FIG. 11. Real (left) and imaginary (right) parts of the ITDs corresponding to target-mass-corrected CT18 and NNPDF3.1 PDFs, for

pR
z ¼ 0, in an extended range of the Ioffe time.

FIG. 10. Comparisons of the real (left panel) and imaginary (right panel) parts of the ITDs, in the RI-MOM renormalization at the

scales pR
z ¼ 0 and μR ¼ 4 GeV, with that obtained from the CT18 and NNPDF3.1 unpolarized isovector nucleon PDFs.
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VII. HELICITY PDF: PERTURBATIVEMATCHING

AND COMPARISONS WITH ΔhRðz;PzÞ
Our analysis of helicity qPDF closely follows the

analysis performed in the unpolarized case; namely, we

start from the helicity PDF obtained in global analyses,

reconstruct the corresponding target-mass-corrected qPDF,

and then compare with the lattice results. The helicity PDFs

have been extracted from the global analysis by the

NNPDF Collaboration using DIS, inclusive W� and jet

production data from RHIC, as well as the open charm data

from COMPAS, resulting in NNPDFpol1.1 [62]. The JAM

Collaboration used the DIS and SIDIS data in their global

analysis, combined with eþe− data to constrain the frag-

mentation functions at NLO [63]. The resulting PDF

parametrization is called JAM17. In Fig. 13, we show

the isovector helicity PDF Δqu − Δqd. The positive-x
region corresponds to the quark contribution, while the

negative-x region corresponds to the antiquark region. The

target-mass-corrected helicity PDF, Δq0ðx; PzÞ, is obtained
from helicity PDF, ΔqðxÞ, following Ref. [59]:

Δq0ðx; PzÞ ¼
1

1þ 4c

�

fþ
2
Δq

�

2x

fþ

�

þ f−

2
Δq

�

−2x

f−

��

−

Z

x

�∞

2c

ð1þ 4cÞ3=2
�

Δq

�

2y

fþ

�

þ Δq

�

−2y

f−

��

; ð25Þ

where c ¼ M2=4P2
z , f� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4c
p

� 1, and for the in-

tegration limits þ∞ (−∞) corresponds to x > 0 (x < 0).

Although the matching for helicity qPDF has not been

explicitly presented in the literature before, it is straight-

forwardly deduced from the results presented in Ref. [24].

The key observation here is the fact that, owing to the chiral

symmetry, for massless quarks in one-loop perturbation

theory, Tr½γ5γzΛðp; z; γzγ5Þ� ¼ Tr½γzΛðp; z; γzÞ�. Thus, the
one-loop matching of the helicity qPDF in the RI-MOM

scheme with minimal projection is same as that for the

unpolarized qPDF with Γ ¼ γz (instead of the Γ ¼ γt used

before), and with the RI-MOM renormalization condition

corresponding to the projection operator P ¼ γz (instead of

the minimal projection). The one-loop matching for the

FIG. 12. Comparisons of the qPDF with those obtained from the global analysis for two values of the RI-MOM renormalization scale,

pR
z ¼ 0 GeV (left row) and pR

z ¼ 0.93 GeV (right row), and for two values of the nucleon boost momenta, Pz ¼ 1.84 GeV (upper

column) and Pz ¼ 2.31 GeV (lower column).
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Γ ¼ γz operator is known for two different RI-MOM

projections, the minimal projection and the p projection,

corresponding to P ¼ γz − ðpz=pxÞγx and P ¼ p=ð4pzÞ,
respectively [24]. The function that depends on the RI-

MOM projection operator—i.e., f2;γz;γz—entering the

matching coefficient in Eq. (11) was simply deduced from

these known results. The Lorentz structure of Λðp; z; γαÞ
for a general γα, α ¼ x, y, z, t is given by

Λ
ð1Þðp; x; γαÞ ¼ γα½f̃tðx; ρÞ�þ

þ γz
pα

pz

½f̃zðx; ρÞ�þ þ ppα

p2
½f̃pðx; ρÞ�þ;

ð26Þ

and f2;γz;mp ¼ f̃t þ f̃z and f2;γz;p ¼ f̃t þ f̃z þ f̃p [24].

Here, the subscript “+” refers to the standard plus-pre-

scription and ρ ¼ −p2=p2
z . The functions f̃t, f̃z, and f̃p

have been calculated in Ref. [24], and we use the same

notations here. Therefore, for the case of P ¼ γz the

RI-MOM projection-dependent function is given by

f2;γz;γz ¼ f̃t þ f̃z þ ðp2
z=p

2Þf̃p
¼ f2;γz;mp þ ðf2;γz;p − f2;mpÞ=r: ð27Þ

Thus, for the helicity qPDF, the one-loopmatchingRI-MOM

function in the minimal projection scheme is the same as in

Eq. (11), but with f2;γz;mp given by Eq. (27), and with f1;γz ,

f2;γz;mp, and f2;γz;p given by Eqs. (A6-A8) of Ref. [24].

Using the matching discussed above, we can obtain the

isovector helicity qPDF from the target-mass-corrected

NNPDFpol1.1 and JAM17. As before, for the one-loop

matching we use αs evaluated at the scale μ ¼ 3.0 GeV,

and the scale is varied between μ=2 and 2μ to estimate the

scale uncertainty. We find a noticeable difference between

the isovector helicity PDFs and the corresponding qPDFs

in Fig. 14. By Fourier-transforming the qPDFs, we obtain

the isovector helicity ITDs and compare them with our

lattice results in Fig. 15. Since we normalized our lattice

results by the value of matrix element at z ¼ 0, we

normalize the phenomenological ITDs by dividing with

gA ¼ 1.25. Within the large statistical errors, we do not find

a significant Pz dependence of the lattice results. While the

real parts of the lattice results agree with those obtained

from the phenomenological PDFs up to zPz ≲ 3, the

imaginary parts do not agree quantitatively but also have

larger errors. We also explore the dependence of our result

on the choice of RI-MOM scales. In Fig. 16, we compare

the qPDFs for μR ¼ 4 GeV, and for pR
z ¼ 0 GeV and

pR
z ¼ 0.93 GeV. From the figure, we see that the com-

parison between the results of lattice calculation, as well as

the fact that the global analyses are not sensitive to the

choice of the renormalization scales. For both values of Pz,

the agreement between the lattice and the global analyses

extends to values of jzj of about 0.3 fm for the real parts, but

not for the imaginary parts. In the next section, we will

discuss how these disagreements show up in the moments

of the PDFs.

FIG. 14. qPDF corresponding to NNPDF1.1pol for Pz ¼ 1.84 GeV (left) and Pz ¼ 2.3 GeV (right) with αs ¼ 0.25 and three different

RI-MOM renormalization conditions.

FIG. 13. NNPDFpol1.1 and JAM17 isovector helicity PDFs at

a scale μ ¼ 3 GeV. Also shown are the corresponding target-

mass-corrected isovector helicity PDFs (dashed lines) for Pz ¼
1.84 GeV and Pz ¼ 2.31 GeV.
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VIII. MOMENTS OF PDF FROM RATIO OF IOFFE-

TIME DISTRIBUTIONS

In the previous sections, we analyzed the boosted

nucleon matrix elements renormalized in the RI-MOM

scheme and matched them to the PDFs in the MS scheme.

Due to the multiplicative renormalizability of hðz; Pz; γtÞ

and hðz; Pz; γzγ5Þ, we can form well-defined renormalized

quantities by taking the ratios of matrix elements at two

different momenta Pz and P0
z as

Mðz; Pz; P
0
z;ΓÞ ¼

hðz; Pz;ΓÞ
hðz; P0

z;ΓÞ
hð0; P0

z;ΓÞ
hð0; Pz;ΓÞ

: ð28Þ

FIG. 16. Comparisons of the isovector helicity qPDF with those obtained from the global analysis for two values of the RI-MOM

renormalization scale, pR
z ¼ 0 GeV (left row) and pR

z ¼ 0.93 GeV (right row), and for two values of the nucleon boost momenta,

Pz ¼ 1.84 GeV (upper column) and Pz ¼ 2.31 GeV (lower column).

FIG. 15. Comparisons of the real (left panel) and imaginary (right panel) parts of the isovector helicity ITDs, in the RI-MOM

renormalization at the scales pR
z ¼ 0 and μR ¼ 4 GeV, with that obtained from NNPDF1.1pol and JAM17.
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The second factor on the right-hand side of the above

definition normalizes the z ¼ 0 matrix element to unity, as

we did in the case of the RI-MOM scheme. The choice

P0
z ¼ 0 in the ratio is usually referred to as the reduced

Ioffe-time distribution [16], and one should think of P0
z ≠ 0

as a generalization of this choice. Here, we take Pz ¼
2.31 GeV and P0

z ¼ 1.84 GeV, respectively. Since both

Pz; P
0
z > ΛQCD and the nucleon mass, we expect this ratio

to be simply described by the leading twist expression [25],

Mðz; Pz; P
0
z;ΓÞ ¼

P

n¼0

cnðμzÞ
c0ðμzÞ

ð−izPzÞn
n!

hxniPz
ðμÞ

P

n¼0

cnðμzÞ
c0ðμzÞ

ð−izP0
zÞn

n!
hxniP0

z
ðμÞ

: ð29Þ

Following Ref. [59], the target-mass-corrected unpolarized

PDF moments hxni can be obtained by relation:

hxniPz

hxni ¼
X

bðnþ1Þ=2c

i¼0

Ci
n−iþ1c

i; ð30Þ

and for the helicity case,

hxniPz

hxni ¼
X

bn=2c

i¼0

�

n − iþ 1

nþ 1

�

Ci
n−ic

i; ð31Þ

where Ci
n is the binomial function, c ¼ M2=4P2

z . In

Eq. (29), cnðμzÞ is the one-loop-order Wilson coefficient

in the MS scheme. The Wilson coefficient describes the z
dependence of the twist-2 local operator associated with the

nth moment of the PDF, hxniðμÞ, in the MS scheme and at a

factorization scale μ. As in our RI-MOM analysis, we will

use μ ¼ 3.2 GeV for the unpolarized case and μ ¼ 3 GeV

for the helicity case in the following analysis.

Now, we can perform an independent analysis that

avoids the usage of RI-MOM procedure completely and

compare the outcome to the prediction for Mðz; Pz; P
0
z;ΓÞ

from the knowledge of NNPDF and CTEQ PDF moments.

Weperform such a comparison inFig. 17. For this,we use the

values of hxniðμÞ up to an order n ¼ nmax for NNPDF31 in

Eq. (29) and the complete result for CT18 to obtain the

phenomenological expectation for the ratioMðz; Pz; P
0
z; γtÞ.

The results obtained by using the truncation order nmax ¼ 2,

3, 4, 20 using the NNPDF31 values for hxni are shown as

different colored bands in Fig. 17. It is clear that inclusion of

up to nmax ¼ 20moments is sufficient for convergence to the

correct PDF within z ≤ 0.5 fm. For z < 0.3 fm, which is

where the lattice data has a good signal-to-noise ratio,we find

that N ¼ 4 is sufficient to describe the lattice results. This

gives us an idea of which moments are being probed by our

lattice data at different z. We observe some discernible

differences between the phenomenological expectations

and our lattice Mðz; Pz; P
0
z; γtÞ for z > 0.2 fm, as we also

observed in the case of RI-MOM scheme in Fig. 10. To

understand this, we estimate the values of the moments hxni
that best describe our lattice data. To avoid overfitting the

data, we truncate the expansion in Eq. (29) at most by n ¼ 4.

In order to avoid lattice artifacts that might be present for z of
the order of lattice spacing, we fit the data only from z ¼ 2a
to a value zmax. The variation of the best-fit values of hxni
with zmax is a source of systematic error. In Fig. 18, we show

the zmax dependence of our estimates for hx1i; hx2i; hx3i, and
hx4i. From Fig. 17, we note the noisy determination of the

imaginary part of M. As a consequence, we find our

estimates of hx1i and hx3i to be noisy as well. On the

contrary, we are able to determine hx2i and hx4i reasonably
well. In addition to zmax dependence, we also study whether

our determination of the moments is affected by the order of

truncation used in Eq. (29). We observe no significant

variations with truncation. For comparison, the NNPDF

and CT18 values of these moments are shown by the

horizontal lines. Further, when we fix the values of hx1i

FIG. 17. The real (left) and imaginary (right) parts of Mðz; Pz; P
0
z; γtÞ are shown for Pz ¼ 2.31 GeV and P0

z ¼ 1.84 GeV. The data

points are from our lattice calculations, whereas the various colored bands are the corresponding results from the isovector unpolarized

PDFs from NNPDF3.1 and CT18. The bands in these phenomenological expectations arise due to variations of αsðμÞ within the scale

μ=2 to 2μ. For NNPDF3.1, we also show results by truncating the expansion in Eq. (29) at various orders, n ¼ nmax, in the PDF

moments; these results are denoted by Onmax.
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and hx3i from NNPDF to reduce the number of fit param-

eters, we find the estimates for hx2i to be slightly elevated in
value and in the direction away from the NNPDF or CT18

value. To a small extent, this is seen in hx4i as well. Thus, the
observed difference between our lattice result and the

NNPDFandCT18 results could be attributed to this tendency

FIG. 19. The real (left) and imaginary (right) parts ofMðz; Pz; P
0
z; γ5γzÞ are shown for Pz ¼ 2.31 GeV and P0

z ¼ 1.84 GeV. The data

points are from our lattice calculations, whereas the various colored bands are the corresponding results from the isovector helicity PDFs

from NNPDF1.1pol and JAM17. For NNPDF1.1pol, we also show results by truncating the expansion in Eq. (29) at various orders,

n ¼ nmax, in the PDF moments; these results are denoted by “Onmax”.

FIG. 18. The moments of the isovector unpolarized PDF, hx1i (top left), hx2i (top right), hx3i (bottom left), and hx4i (bottom right) that

best describe the ratio Mðz; Pz; P
0
z; γtÞ with Pz ¼ 2.31 GeV and P0

z ¼ 1.84 GeV. In each of the panels, the moment hxni is shown as a

function of zmax of the fit using the functional form in Eq. (29) over a range ½2a; zmax� of the data. The results from fits using only

moments up to n ¼ 2 as free parameters in Eq. (29) are labeled “O2,” and those up to n ¼ 4 are labeled “O4.” The results from fits that

fix the moment hx1i, or hx1i and hx3i, to their global fit values are also shown. For comparisons, results from CT18 and NNPDF3.1 are

shown as horizontal lines.
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for our lattice values of hx2i; hx4i to be slightly higher than

the corresponding phenomenological values.

We repeat a similar analysis for the helicity matrix

element, Γ ¼ γ5γz. In this case, the Wilson coefficients

cnðμzÞ are the same as in the case of the unpolarized case

with Γ ¼ γz. Since we are setting the value of the matrix

elements at z ¼ 0 to be 1 through the ratio, we only obtain

the values of hxni=hx0i in the expansion in Eq. (29), with

hx0i ¼ gA. In Fig. 19, we compare the results correspond-

ing to the NNPDF11pol and JAM17 values with the lattice

result for the ratio. As in the case of the unpolarized matrix

element, we also test the dependence of this comparison

on the truncation order nmax. The sensitivity to higher

moments is a bit more than that for the unpolarized case,

and we find convergence at only nmax ¼ 6 at z < 0.3 fm.

Surprisingly, the global fit expectation agrees quite well

with our lattice result even though there is a little tension in

the imaginary parts. As explained above, we also obtain the

best-fit values of hx1i=gA, hx2i=gA, hx3i=gA, and hx4i=gA
that describe our lattice data via Eq. (29) truncated at most

by the fourth order. In Fig. 20, we show the results as a

function of the largest z used in the fits, zmax. Like the

unpolarized PDF case, hx1i=gA is noisy, but it seems to

agree with the global fit results. The more precisely

determined value of hx2i=gA is quite robust to various

ways of fitting the data and agrees nicely with the global fit

values. To compare with other lattice caculations, we

truncate the expansion in Eq. (29) at n ¼ 2, and estimate

hx1i=gA at μ ¼ 2 GeV with the z in the range [2a, 0.3 fm].

Our result hxi=gA ¼ 0.219ð56Þ is compatible with the

ETMC result [64] 0.229(30)/1.242(57) within the error.

IX. SUMMARY AND CONCLUSIONS

In this paper, we studied isovector unpolarized and

helicity PDFs of the proton using the LaMET approach.

The lattice calculations have been performed for an

unphysically large pion mass of 310 MeV. On the other

hand, our lattice study was carried out using lattice spacing

a ¼ 0.042 fm, which is the smallest lattice spacing used in

such studies. We argued that such small lattice spacing is

essential for the validity of one-loop perturbative matching

FIG. 20. The moments of the helicity PDF, hx1i (top left), hx2i (top right), hx3i (bottom left), and hx4i (bottom right), that best describe

the ratioMðz; Pz; P
0
z; γ5γzÞ with Pz ¼ 2.31 GeV and P0

z ¼ 1.84 GeV. In each of the panels, the moment hxni is shown as a function of
zmax of the fit using the functional form in Eq. (29) over a range ½2a; zmax� of the data. The results from fits using only moments up to

n ¼ 2 as free parameters in Eq. (29) are labeled “O2,” and those up to n ¼ 4 are labeled “O4.” The results from fits that fix the moment

hx1i, or hx1i and hx3i, to their global fit values are also shown. For comparisons, results from JAM17 and NNPDF1.1pol are shown as

horizontal lines.
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between the PDF and qPDF, which is a key ingredient

of LaMET.

Extracting the nucleon matrix elements for such large

momenta and small lattice spacing is challenging because of

poor signal-to-noise ratio. To deal with this problem, we

performed a detailed study of the nucleon two-point function

with amomentum-smeared source and sink, as well as with a

momentum-smeared source and point sink to better control

the excited-state contributions. We demonstrated that the

ground state can be reliably isolated up to the highest

momenta used in this study. Furthermore, for the

Euclidean-time separations used that are relevant for our

lattice analysis, the two-point function is very well described

by the ground state and an “effective” excited-state contri-

bution,with an energy that is larger than the true excited-state

energy. Therefore, we argued that the two-state Ansätze are

sufficient to describe the dependence of the three-point

function on the source-sink separation and on the operator

insertion time.We showed that theqPDFmatrix elements can

be extracted in this way, and the results do no depend on the

choices of the fit interval used in our study, demonstrating the

robustness of our analysis procedure.

After nonperturbative RI-MOM renormalizations, we

compared the lattice calculations of the spatial z depend-

ence of qPDFs with those from the phenomenological

PDFs, obtained from the global pQCD-based analyses of

pertinent experimental data performed by different collab-

orations. Working in z-space allowed us to test the LaMET

approach. The comparisons showed that there is a rough

agreement between the lattice results and the results of

global analysis, but only at quite small distances. Even for

the very small lattice spacing used in this study, there was

not enough data points to constrain the x dependence of the
PDFs. Instead, to translate our z-space comparisons to x
dependence, we introduced a new ratio-based renormali-

zation scheme for the Ioffe-time distributions. Using our

lattice calculations for Ioffe-time distributions, renormal-

ized via this new ratio-based scheme, we determined the

first moments of the isovector unpolarized and helicity

PDFs of the proton, and compared these moments with

those from the corresponding phenomenological PDFs.
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APPENDIX A: ANALYSIS OF THE NUCLEON

TWO-POINT FUNCTION

In this appendix, we discuss some details of the analysis

of the SP and SS two-point correlators. In Fig. 21, we show

FIG. 21. Ground-state energy from unconstrained one-state and two-state fits of the SP correlators.
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the ground-state energy from one- and two-exponential fits

of SP correlators as a function of tmin. Contrary to the fits of

the SS correlators’ stable result for the ground-state energy,

E0 is only obtained for tmin ≥ 20.

As discussed in the main text, we performed prior-based

fits of SP and SS correlators for all values of pz. In Fig. 22,

we show the results on E1ðpzÞ for nz ¼ 1, 2, and 5 for prior-

based fits of the SP correlator.

We see clearly that E1 approaches the value expected

from the dispersion relation for tmin > 11 if the two-

exponential fit is used. For constrained three-exponential

fits, the same value is approached for tmin ¼ 2. In Fig. 23,

we show the amplitudes, Ai, i ¼ 1; 2; 3.:., of different states
normalized by the value of the two-point correlator at t ¼ 0,

which by definition is equal to
P

i Ai. We see that A1 is

slightly higher than A0, while A2 is significantly larger than

either A0 or A1.

A similar analysis was performed for SS correlators, and

the results for the excited state energies and amplitudes are

shown in Figs. 24 and 25, respectively. From these figures,

FIG. 23. The amplitudes of different states obtained from the constrained three-state fit of the SP correlator and normalized by

CSP
2ptðt ¼ 0Þ as a function of temperature.

FIG. 24. The energies of the first (E1) and second (E2) excited states from constrained two-state and three-state fits of the SS correlator

for nz ¼ 1 (left), nz ¼ 2 (middle), and nz ¼ 5 (right). The horizontal lines denote the values calculated from the dispersion relation.

FIG. 22. The energies of the first (E1) and second (E2) excited states from constrained two-state and three-state fits of the SP correlator

for nz ¼ 1 (left), nz ¼ 2 (middle), and nz ¼ 5 (right). The horizontal lines denote the values calculated from the dispersion relation.
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we see that a pseudoplateau develops for the first excited

states for 5 < tmin < 10 of the two-state fit. We see that A0

and A1 are similar in this case, and A2 decreases as tmin

increases.

APPENDIX B: ANALYSIS OF THE THREE-POINT

FUNCTION

In this appendix, we discuss further details of the

extraction of the bare matrix element of the qPDF operator.

First, we show our results for the ratio of the three-point

function to the two-point function for different source-sink

separation and different values of z as a function of the

operator insertion time τ in Fig. 26 for nz ¼ 4. In this

figure, we also show the results for Rfit
1 . As one can see from

the figure, Rfit
1 can describe the data well for all values of t.

In Fig. 27, we show the same analysis but for nz ¼ 5.

As discussed in the main text, we perform Rfit
1 using a

single value of source-sink separation. The results are

shown in Fig. 28 for the real part of the matrix element.

As one can see from the figure, the results obtained from

this fit for t ¼ 16, 18 and 20 agree within errors. We

performed fits using the form fit1 with τ > τmin and taking

the value of E1 from the two-point function fit with

t > tmin. The results are shown in Fig. 29. We see no

significant dependence on τmin and tmin.

Another way to obtain the matrix element is to use the

summation method. The summation method is illustrated in

Fig. 30 for nz ¼ 4. The results obtained from the summa-

tion method agree with those from Rfit
1 but have much larger

FIG. 25. The amplitudes of different states obtained from the constrained three-state fit of the SS correlator and normalized by

CSS
2ptðt ¼ 0Þ as a function of temperature.

FIG. 26. The ratio of the three-point function to the two-point function for z ¼ 4, 8, 12 and nz ¼ 4. The upper panels show the real

part, while the imaginary part is shown in the lower panels. The results of Rfit
1 are shown as lines.
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errors. The statistical errors of the nz ¼ 5 data are too

large to use the summation method. Furthermore, we

could also reduce the error in the summation method by

dividing by the matrix element at z ¼ 0, as can be seen

in Fig. 31.

Similar analysis of the ratio of the three-point function to

the two-point function is carried out for longitudinally

polarized qPDF operator. The results are summarized in

Figs. 32, 33, and 34.

To take advantage of correlation between different z’s
and cancel the field renormalization factor, we divided the

bare matrix elements by the matrix element at z ¼ 0. The

errors are much smaller after this division, as discussed in

the main text.

FIG. 28. The z dependence of the qPDF matrix element obtained using Rfit
1 with a single value of the source-sink separation for

nz ¼ 4, 5.

FIG. 27. The ratio of the three-point function to the two-point function for z ¼ 4, 8, 12 and nz ¼ 5. The upper panels show the real

part, while the imaginary part is shown in the lower panels. The results of Rfit
1 are shown as lines.
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FIG. 30. The t dependence of the sum of the ratio of the three-point function to the two-point function (left) and the z dependence of
the matrix element extracted from the summation method (right). SUM(n) means the summation fit with n skipped time insertion.

FIG. 29. Real (left) and imaginary (right) parts of the bare matrix as a function of z. The top panel shows the results for nz ¼ 4, and the

bottom panel shows the results for nz ¼ 5. The results for different choices of τmin and tmin in the two-point function fits are shown.
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FIG. 32. The ratio of the three-point function to the two-point function corresponding to the helicity qPDF for z ¼ 4, 8, 12 and nz ¼ 4.

The upper panels show the real part, while the imaginary part is shown in the lower panels. The results of Rfit
1 are shown as lines.

FIG. 31. The z dependence of the real part of the bare qPDF matrix element obtained by the summation method after division by the

matrix element for z ¼ 0 at nz ¼ 4. SUM(n) means the summation fit with n skipped time insertion.

FIG. 33. The ratio of the three-point function to the two-point function corresponding to the helicity qPDF for z ¼ 4, 8, 12 and nz ¼ 5.

The upper panels show the real part, while the imaginary part is shown in the lower panels. The results of Rfit
1 are shown as lines.
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