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We study isovector unpolarized and helicity parton distribution functions (PDF) of the proton within the
framework of large-momentum effective theory. We use a gauge ensemble, generated by the MILC
Collaboration, with a superfine lattice spacing of 0.042 fm and a pion mass of 310 MeV, enabling us to
simultaneously reach sub-Fermi spatial separations and larger nucleon momenta. We compare the spatial
dependence of quasi-PDF matrix elements in different renormalization schemes with the corresponding
results of the global fits, obtained using one-loop perturbative matching. We present determinations of the
first four moments of the unpolarized and helicity PDFs of proton from the Ioffe-time dependence of the

isovector matrix elements, obtained by employing a ratio-based renormalization scheme.
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I. INTRODUCTION

Decades of deep inelastic scattering (DIS) and semi-
inclusive DIS (SIDIS) data over wide kinematic ranges
have provided us insight into the structure of nucleons.
Significant progress also has been made in recent years—
for example, the determination of the polarized gluon
distribution at small x [1] based on the inclusive jet and
pion production data from polarized p-p collisions at the
Relativistic Heavy-Ion Collider (RHIC) [2-4], double spin
asymmetries from open-charm muon production at
COMPASS [5], and the constraints on the polarization
of sea quarks and antiquarks with longitudinal single-spin
asymmetries in W*-boson production [6,7]. In the future,
the kinematic coverage of nucleon parton distribution
functions (PDFs) will be greatly extended by the data
from the Jefferson Lab 12-GeV program [8] and the
Electron-lIon Collider (EIC) [9]. On the energy frontier,
nucleon PDFs not only were a critical input for the
discovery of the Higgs boson at the Large Hadron
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Collider (LHC) [10,11], but also are expected to play
critical roles in determining the Standard Model back-
grounds during LHC’s search for physics beyond the
Standard Model in future Runs 3-5.

Despite great progress on the experimental and phenom-
enological sides, nonperturbative determinations of the
PDFs starting from the microscopic theory of quantum
chromodynamics (QCD) remains a challenge. To obtain the
quark PDF, one has to calculate the matrix element with the
quark fields separated along the light cone between the
hadronic states. Due to the light cone separation, straight-
forward calculation of the PDF is not possible using lattice
QCD, a technique based on Euclidean-time formulation.
One can bypass this obstacle by calculating a similar matrix
element with spatially separated quark fields at equal time
within highly boosted hadron states, which defines the so-
called quasi-PDF (qPDF) [12,13]. For large hadron
momenta, this matrix element can be related to the PDF
[12,13]. The large-momentum effective theory (LaMET)
provides a systematic way to relate the qPDF at large, but
finite, hadron momentum to the PDF order by order in
perturbation theory [13]. Related approaches to connect
PDF to matrix elements of boosted hadrons calculable in
the Euclidean-time lattice computations, such as “the good
lattice cross section” [14,15] and the pseudo-PDF [16,17],
have also been proposed. Renormalization of the under-
lying boosted hadron matrix elements, usually referred to
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as the Ioffe-time distributions (ITDs), involves the Wilson
line. The multiplicative renormalizability of the ITDs to all
orders of perturbation theory has been proven [18,19].
Practical ways to implement renormalization on the lattice,
such as the use of the regularization-invariant momentum-
subtraction scheme (RI-MOM) [20-24] and reduced Ioffe-
time distributions [17], have been established. The relations
between different theoretical approaches are also now
understood [25]. Based on these theoretical developments,
unpolarized and polarized nucleon PDFs have been calcu-
lated on the lattice [24,26-33]. Furthermore, lattice calcu-
lations of the valence pion PDF have also appeared [34—38].
The status of this field is well summarized in recent review
papers [39—42]. All of these calculations for the nucleon, so
far, have been carried out with lattice spacing a > 0.08 fm.

Having small lattice spacing plays a crucial role in
calculation of the PDF within the LaMET framework. To
suppress the target mass and higher twist corrections, the
hadron momentum P, should be large. But to avoid large dis-
cretization effects, one must ensure aP, < 1. Furthermore,
to obtain the light cone PDF from a qPDF, one needs
perturbative matching, which presently is known only up
to one-loop order. Applicability of one-loop perturbative
matching can be guaranteed only for spatial separations
7ZAqcp < 1, and therefore demands the use of fine lattices.
The main goal of the present work is to study systematic
effects of the PDF calculations within the LaMET framework
by going to the extreme limit with the use of a superfine
lattice having a = 0.042 fm. The lattice spacing used in this
study is at least twice smaller than that used in any previous
lattice calculations of the nucleon PDF. The unpolarized and
helicity PDFs of the nucleon are well constrained through
global fits to experimental results. Thus, we study the
systematic effects of our calculations by comparing the P,
and z dependence of renormalized qPDF matrix elements
with the same reconstructed from the well-known phenom-
enological PDFs using the LaMET framework.

The rest of the paper is organized as follows: In Sec. II,
we discuss the general features of LaMET and our lattice
setup. In Sec. III, we discuss the nucleon two-point
functions for large values of P, and the determination of
the energy levels of a fast-moving nucleon. Section IV is
dedicated to the analysis of the nucleon three-point func-
tions and the calculations of bare qPDF. Section V
describes the nonperturbative RI-MOM renormalization.
Comparisons of the lattice results on qPDF with the results
of global analysis of unpolarized and helicity PDFs are
discussed in Secs. VI and VII, respectively. Different from
RI-MOM renormalization, we discuss the analysis of ratios
of nucleon matrix elements in Sec. VIII. Finally, Sec. IX
contains our conclusions.

II. LATTICE SETUP AND LaMET

In this paper, we report the results of a lattice QCD
calculation using clover valence fermions on an ensemble

of Ny =2+ 1+ 1 gauge configurations with lattice spac-
ing a = 0.042 fm, with space-time dimensions of 643 x
192 and pion mass M, =~ 310 MeV in the continuum limit.
The gauge configurations have been generated using highly
improved staggered quarks (HISQ) [43] by the MILC
Collaboration [44]. The gauge links entering the clover
Wilson-Dirac operator have been smeared using hyper-
cubic (HYP) smearing [45]. We used the tree-level tadpole
improved result for the coefficient of the clover term, and
the bare quark mass has been tuned to recover the lowest
pion mass of the staggered quarks in the sea [46—49]. We
use only one step of HYP smearing to improve the
discretization effects, since it is possible that multiple
applications of smearing could alter the ultraviolet results
for the PDF. We use a multigrid algorithm [50,51] in the
Chroma software package [52] to perform the inversion of
the clover fermion matrix, allowing us to collect a relatively
high statistics sample. We collected a total of 3258
measurements using six sources per configuration and
543 gauge configurations. In the following, we elaborate
on the steps of our computation.

A. Nucleon two-point correlators

The two crucial components of the lattice computation
are the two-point function and the three-point function
involving the boosted nucleon and the qPDF operator. The
two-point function for the nucleon boosted to spatial
momentum P is the standard operator

(N (Pt )N*

E €abcua

where X = (x, 7) and ¢, is the source-sink separation along
the Euclidean-time direction. The index s refers to the kind
of quark smearing that is applied to improve the signal-to-
noise ratio of the boosted nucleon states. We either use
point quark operators w(x), or we use the Gaussian
momentum smeared [53] for the quark fields w*)(x) that
enters N:

<P 0)).
() (%) Cysds (x))e=®>, (1)

C2pt(t ) =

) (SC) = Smoml//(jc)
1+16< +“ZU ’k’WX+J)> (2)

where k is the momentum of the quark field, U,(%) are the

gauge links in the J direction, and « is a tunable parameter
as in traditional Gaussian smearing. The quark momentum
should be chosen such that the signal-to-noise ratio is
optimal for the given nucleon momentum. Naively, one
would expect that |k| should be one third of the nucleon
momenta [53]. For this particular study, we use j = z and
k,=4x/L, and a large Gaussian-smearing parameter
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a = 10. Such a momentum source is designed to align the
overlap with nucleons of the desired boost momentum, and
we are able to reach higher boost momentum for the
nucleon states with reasonable signals. In the nucleon two-
point correlators, we can study multiple values of the
nucleon momentum, P = {0,0, P}, with

P=nt nel0s) )
without a significant increase in computational needs.
These values of n, from 1 to 6 correspond to P, = 0.46,
0.92, 1.38, 1.84, 2.31, and 2.77 GeV in physical units,
respectively. We either use smeared fields for both the
source and sink, which we refer to as SS, or we use smeared
fields only for the source and point fields for the sink,
which we refer to as SP in the rest of the paper.

B. Nucleon three-point function

The three-point function we compute is of the form
Caplty.7) = P(N,(P.1,)Or(z: 1) N[ (P.0)).  (4)
where Or(z;7) is the u-d isovector gPDF operator

Or(z7) = Y (¥ + 2)TW, (% + 2, ¥)u(X)

X

= d(E+ )TW, (% + 2.X)d(%).  (5)

where X = (x, 7), and W, is the straight Wilson line along
the spatial z direction, connecting lattice sites ¥ and X + z.
The Dirac I used will determine the quantum numbers of
the PDF: I = y, for the unpolarized case, and I = y_y5 for
the longitudinally polarized case. The projector operator, [P,
is given by P = %
iy.ys ”2”’ for the longitudinally polarized case. We only use
smeared quark sources for the computation of Cs,. In order
to reduce the computational cost, we only compute the Cs,
for two large values, P, = 1.84 and 2.31 GeV, and for
source-sink separations ¢, = 16a, 18a, 20a.

for the unpolarized case and P =

C. Extraction of nucleon matrix element and
perturbative matching to PDF

Using the three-point and two-point functions whose
calculations are described above, we can extract the bare
matrix element

h(Z’PZ’F) = <PZ|0F(Z)‘PZ> (6)

formally in the infinite source-sink separation 7, limit of
their ratio,

o CSpt(T9 ts)

R(z, P, Tz, 1) = Cont) (7)
pt\ts

To obtain the matrix element /(z, P,) from the above ratio,
we calculate the nucleon three-point function with the
insertion of the Or(z) operator at three nucleon three-point
source-sink separations, approximately z, = 0.67, 0.76, and
0.84 fm, and we describe its 7, and 7 dependence through
two- and three-state Ansdtze. In Sec. IV, we describe our
extraction of the bare matrix element from various extrap-
olations in detail.

The next step of the computation is the renormalization
of the bare matrix element /. One possible choice for Or is
OYZ. However, for this case of I' = y_, there is a mixing with
the quark bilinear operator containing the unit matrix,
I' = 1, if Wilson fermions are used [20,21,54]. This mixing
is absent if we use I' = y,, and we will use this choice for
the unpolarized PDF in this study. One way to perform
the renormalization procedure on the lattice is to use the
RI-MOM scheme [20,22], where the renormalized matrix
element is defined as

hR(z, P, pg. pR) = Z(z. uR, p®)n(z, P..T).  (8)

The non-perturbatively determined RI-MOM renormaliza-
tion constant Z(z, uR, p®) depends on the separation z, the
norm of the renormalization point x® = (p¥)? and the z
component of renormalization point pX. The dependence
on pk arises because the z component of the momentum
now plays a special role. We will discuss the details of the
RI-MOM renormalization in Sec. V. We will also consider
an alternate ratio scheme that has a well-
defined continuum limit in Sec. VIII. Here, the multipli-
cative renormalization factor Z ,;,(z) can be taken as the
hadron matrix element at a different fixed momentum P,—
i.e.. Zpio(2) = (h(z. PL.T)) ™

After the RI-MOM renormalization, one obtains the
renormalized matrix element hg(z, P, pg, pX), from which
we can define the qPDF as a function of Bjorken-x:

~ oodz ix
q(x,Pz,ﬂR,p§>E/ art Php(z, Pyopg. pR). (9)

From this formula, it is clear that hg(z, P, ug, p¥)
can be considered as the coordinate space qPDF. For
finite momentum P, §(x,P.,ug, pX) has support in
—oo0 < x < oo. Unlike the physical PDF, which is frame
independent, the qPDF has a nontrivial dependence on the
nucleon momentum P,. When the nucleon momentum
P.> {M,Aqcp}, with M being the nucleon mass, the
gPDF in the RI-MOM scheme can be matched to the PDF
defined in the MS scheme, g(x, ), through the factoriza-
tion theorem [12,13,25]
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_ Ldy (x yP, yP
d%Pppﬂuw—:/ C< rr—?—%>ﬂ%u)

[y] Ko pt
M? A%}CD
o) o). 0o

where 7= (ug/pR)?, C is the perturbative matching
coefficient, O(M?/P?) is the target-mass correction due
to the nonzero nucleon mass, and O(Agcp/P?) stands for
higher-twist contributions. The flavor indices of ¢, g, and C
are implied. In what follows, we will discuss the nonsinglet
case, and therefore, mixing with gluon and sea-quark PDFs
is absent in the above formula. We use the one-loop
expression of the kernel C. (The one-loop matching,
including for the singlet case, has also been worked out
in Refs. [55,56]).

The matching kernel C(x,r,P,/u, P./pR) for T =y,
was derived in Ref. [24] and depends on details of the
RI-MOM scheme. It can be written in the following form:

C<x =)
w0 ()5

The subscript “+” stands for the plus-prescription. Both the
functions, f; r and f, p, depend on the choice of the I" in
the operator insertion [24]. On the other hand, f| is
independent of the projection operator (P) used in defining
the RI-MOM renormalization condition, but f,rp is
different for different choices of the RI-MOM renormal-
ization condition [24]. We also note that it is also possible
to convert hg(z, P, ug, p¥) to the MS scheme and define

1.0
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08 pae 1R Nstate = 3
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FIG. 1.

the corresponding qPDF g(x, P,,u), that then can be
directly matched to the MS PDF [22].

To study the longitudinally polarized quark PDF, one can
use I' = y,y5 or I' = y,y5. In the case I' = y,ys, there is no
mixing with quark bilinear operators with I'=1 [22].
Therefore, we will use this choice to study the longitudi-
nally polarized quark PDF and qPDF. The bare matrix
element of O, ,, can be renormalized using the RI-MOM
scheme and then match to PDF in the same manner as was
done for the unpolarized case. The RI-MOM renormaliza-
tion for the longitudinally polarized case will be discussed
in Sec. V, while details of the matching procedure,
including the formulas for f; and f, functions, will be
given in Sec. VIIL.

III. ANALYSIS OF THE NUCLEON TWO-POINT
FUNCTION

For the extraction of the qPDF matrix element of the
nucleon at large momenta, it is important to understand the
contribution of different energy states to the nucleon two-
point correlation function. We calculated the nucleon two-
point function using a smeared source and smeared sink
(SS correlator), as well as a smeared source and point sink
(SP correlator), for seven values of the momenta
aP,=2n/L-n, n,=0,1, 2,3, 4,5, and 6. From the
two-point correlators Ch (s, P.), i =SS or SP, we define
the effective mass

2pt

2pt(t/a P) )
(12)

E (t;,P.) =1n
aeff(s z) <2pt(t/a+1P)

Our results for the effective masses are shown in Fig. 1 for
the SP and SS correlators.

The effective mass should approach a constant corre-
sponding to the ground-state energy E,(P,) at sufficiently

large t,. The momentum dependence of the ground-state
1.0
ool Nstate = 2, pseudo
' . £ Nggate = 2, true
081, e IENENstare =3
R oY
N o e, —
Q Lo Ceoe
- I T SR } -
WOSET.TT ey _
0.4 F \: '-.-.'.0 ++++*l |
03 At ..
QQYyyyeuéu '“4“*H+H s
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ts/a

The effective masses obtained from SP (left) and SS (right) correlators for different momenta shown in Eq. (3). The bands

come from the results of two-state (Ny,. = 2) and three-state (N, = 3) fits. For Ny, = 2, “pseudo” indicates that the effective
pseudoplateau in the range Sa < t,;, < 10a for the first excited state £ has been used, and “true” indicates that the true plateau value of

E, in the range t,;, > 11a has been used (see text for details).
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energy is expected to be described by the dispersion

relation Ey(P.) = \/P? + M?, with M being the nucleon
mass. Therefore, in Fig. 1, we show the expected ground-
state energy at different P, values obtained from the
dispersion relation as horizontal lines at the right for
comparison. Along with the expected asymptotic values
at large 7, we also show the 7, dependence of the effective
mass based on an effective two-state fit to the two-point
function, as we will explain shortly. Indeed, we see that the
effective masses approach the corresponding values. The
effective masses corresponding to the SP correlator reach a
plateau at a slightly larger ¢, than the SS correlators. On the
other hand, at small z,, the effective masses for the SP
correlators are smaller than those for SS correlators. This
implies that the contribution of the excited states is smaller
for the SP correlator, for which a plausible reason could be
that the different excited states contribute with different
signs to the correlator. Thus, even though the ground and
the excited-state energies are the same in the SP and SS
correlators, the two are affected differently by the higher
excited states, which we can take advantage of to obtain the
excited state spectrum reliably.

In order to determine the energy levels, we fit the spectral
decomposition of Cyy(ty),

Nstale -1

C2pt (ts) =
n=0

AneEits,

(13)

truncated at Ny, to the two-point function data over a
range of values of 7, in the range [f.;,,32a]. Since the
lattice extent in the time direction is 192, we do not find any

effect of lattice periodicity in this range of ¢, to be
important. We perform this fitting with the one-state
(Ngare = 1), two-state  (Ngue = 2), and three-state
(Ngae = 3) Ansdtze. The ground-state energies E, from
the fits of SS correlators for n, = 3 and 4 are shown in the
left panels of Fig. 2 as functions of ¢,;,, where ,,;,, indicates
that only Cypy(#, > tyin) has been fitted. Similar results
were obtained at the other values of the momenta. The
horizontal lines in the figures correspond to the results from
the dispersion relation for E,. The single exponential fits
give a good description of the SS correlator for #,,,;, > 11a,
while two exponential fits give stable results for the
ground-state energy already for #,,;, > Sa.

We find the determination of the excited-state energies
from the SS correlators to be more problematic than that
from SP correlators. The excited-state energy for SS is not
well constrained by simple two-exponential fits, and it is
also not very stable with respect to the variation of #,,.
Since the SP and SS correlators receive different contri-
butions from excited states, we perform a combined
analysis of them to obtain more reliable results for the
excited-state energies. Since we are able to obtain the
ground-state energy E|, reliably from one or two exponen-
tial fits to both the SS and SP correlators, and they agree
with the expectation from the dispersion relation well, we
use E as a prior to perform more stable two-exponential
fits. The results from the two-state exponential fits, with E|,
as prior, for n, = 3 and n, = 4 are shown in the middle and
right panels of Fig. 2 for the SP and SS correlators,
respectively. For the SP correlators, the excited-state energy
E,| seems to approach a plateau smoothly for 7, > 13a.

@ Eo, Nstate =1 @ Ex, Nstate =2 @ E1, Nstate =2
ar ® Eo, Nstate =2 ® E1, Nstate =3 ® E1, Nstate=3
= = E2, Nstate =3 = E3, Nstate =3
v 3 (] () L
S e S e b
= =38 &8gg ; % = g 3
%2 %YYTTTEL%%gmmﬁ;LT; %TTTT%Emmmﬁ
A PEEEEEEEEE Fl PRI
L 1l
SS, P, = 1.38 GeV SP, P, = 1.38 GeV SS, P, = 1.38 GeV
0 é 1‘0 1‘5 2‘0 2‘5 é 21 6 é 1‘0 1‘2 14 1‘6 é 4;» é é 1‘0 1‘2
tmin/a tmin/a tmin/a
5
@ Eo, Nstate=1 @ E1, Nstate =2 @ E1, Notate =2
4r ® Eo, Nstate =2 ® E1, Nstate =3 ® E1, Nstate =3
N N E2, Nstate =3 N E2, Nstate =3
v 3 (] () L
o Q 0] =
= :N?j:‘iaa -] @% = %??mmmﬁﬁ%
<o 5 1 38%om & T S
w w gl ITITTTI I T @ I T T |
1l
1r 1r
SS, P, = 1.84 GeV SP, P, = 1.84 GeV SS, P, = 1.84 GeV

25 5.0
tmin/a

L L n L L n n
7.5 10.0 12,5 15.0 17.5 20.0 22.5

2 4 6 8
tmin/a

L
10

L s
12 14

. . .
2 4 6 8 10 12
tmin/a

FIG. 2. Fitresults for n, = 3 (upper panels) and n, = 4 (lower panels) for the nucleon two-point function. The left panels are for the
ground state (E) from one-state and two-state fits. The middle and right panels are for the first (£;) and second (E,) excited states,
determined by two-state and three-state prior-based fits (see text for details). The horizontal lines are the values calculated from the

dispersion relation.
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It is interesting to note that, empirically, we observe that the
values of the plateaus agree with the dispersion relation
E\(P.) = \/P? + E,(P. = 0)?, which is shown with the
horizontal lines. While being an interesting observation,
such a stringent identification of this state is not important
to our analysis and requires further studies to rigorously
establish this. For the SS correlator, E; develops a
pseudoplateau for Sa < t,;, < 10a, and it relaxes to the
true plateau (i.e., as identified from the SP case) for
tmin > 1la. For n, =4, it is actually difficult to identify
the true plateau. To model the excited-state contributions to
R(z,t,)inthe range 0 < 7 < t,/2, with ¢, = 164, 18a, 204,
one might consider using the well-determined values of E|,
and E; from the SP correlator at large ¢,. However, as we
will demonstrate now, such choices provide a less accurate
description of the SS two-point function in the range
Sa < t; < 10a. A better description of the excited-state
contributions to the Czpt(Sa < t; < 10a) can be obtained
by using the effective pseudoplateau value of E; in the
range Sa < ty, < 10a.

Since we observe E; to be well described by a particle-
like dispersion relation for sufficiently large ¢,, we perform
three-state fits for both SP and SS correlators by imposing a
prior on E; as well, using its best estimate from a two-state
fit of SP correlators with the corresponding jackknife errors
[35]. The results are shown in the middle and right panels in
Fig. 2. We see that with the prior-based three-state
exponential fits, we can obtain stable results for the first
excited-state energy E;(P.) already for relatively small
fmin» Which agrees with the dispersion relation value that we
input via the prior. The value of the second excited state is
also shown in Fig. 2, and it roughly agrees with the values
of E| from the two-exponential fit (with a prior only on E)

fi Eq, SP
T @ Elr SP, pr(EO)
E3, SP, pr(Eo, E1)

E(P,) (GeV)
S

° 0.0 0.5 1.0 15 2.0 2.5 3.0

P, (GeV)

FIG. 3.

at smaller 7,;,. Since the value of E, is quite large, the third
exponential probably corresponds to a combination of
several excited states. In Fig. 1, we show the 1o bands
for the effective mass corresponding to (1) a two-state fit
that uses values of E, and the true value of E|; (2) a two-
state fit obtained by setting E; to be the effective value in
the range Sa < t,;, < 10a; and (3) the three-state fit that
we described above. We find that the curves (2) and
(3) agree quite well with each other in the range of
S5a < t; < 10a, and they extrapolate in a similar fashion
to the asymptotic value E,. However, the curve (1) fails in
capturing the data in the range Sa < t; < 10a. Since for our
three-point calculations the source-sink separations were
chosen to be t, = 16a,18a,20a, we must model the
effective excited-state contributions to the three-point
functions in the range 0 < 7 < t,/2. Thus, through this
analysis on SP and SS correlators, we numerically dem-
onstrate that the usage of an effective value of E; in the
range Sa < t; < 10a that is higher than the true value of £
is justified, and that it is the best extrapolation one could
perform for the extraction of bare matrix elements in the
absence of enough data to perform a three-state fit.

Let us now summarize the analysis of the nucleon two-
point function. Using boosted Gaussian sources, we were
able to extract ground-state energy levels up to momenta
2.7 GeV from SP and SS correlators. The ground-state
energy dependence on P, seem to follow the continuum
dispersion relation. Using this fact, we performed prior-
based fits using the energy from the dispersion relation as a
prior and extracted the excited-state energies as functions of
P.. For SP correlators, the extracted value of E; agrees well
with the one from the dispersion relation. We show this in
the left panel of Fig. 3. Furthermore, we were able to extract
an effective third energy level. These results are shown as

fi Eg, SS
T & E1,SS, pr(Eo, E1)
Ez, SS, pr(Eo, El)
X E1, SS, pr(Eo), pseudo

E(P;) (GeV)

0.0 0.5 1.0 15 2.0 25 3.0
P, (GeV)

The energies of different states as functions of P,. In the left panel, the P, dependence of E,, E|, and E, for SP correlators are

shown. The values of E; were obtained from a two-state fit with a prior only on E, and those of E, from a three-state fit with priors on
both E and E;. In the right panel, the P, dependence of true values (blue points) and effective values of E; (purple points) for SS
correlators are both shown (see text for details). The lines indicate the corresponding continuum dispersion relations.
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blue points (£;) and orange points (E,) in the left panel of
Fig. 3. Our results for the energy levels obtained from SS as
functions of P, are summarized in the right panel of Fig. 3.
Here, the effective values of E| from the pseudoplateau and
the true values are both shown. The main point of the
elaborate analysis is that even though a third excited state
contributes in the relatively shorter range of ¢, we use in the
paper, it possible to describe the SS correlator very well by
a two-state form with an effective value of E;, which is
larger than the energy of the physical excited state. Further
details on the analysis of the two-point functions are
provided in Appendix A.

|

BO + €_AE[“/2(B16_AE

IV. NUCLEON THREE-POINT CORRELATORS

In order to obtain the nucleon qPDF matrix element, we
consider the ratio of the three-point function to the two-
point function, R(z,P.;f,,7), at different source sink
separations, f,, and operator insertion, 7. At fixed
(z,P,), we are interested in fitting the (7,,7) dependence
as expected from the spectral decomposition of R. If only
two states contribute to the correlation functions, the
dependence of this ratio on 7 and ¢, is given by the
following form:

Rl;it(tsv T) =

Here B, is the desired matrix element A, and
AE = E| — E,. Generically, B; and B, are independent
fit parameters, except at z =0, where B; = B,. If we
assume that the terms proportional to A; are small, the
denominator can be expanded to leading order to obtain a
simpler form:
Rgt([w’[) BO Le —AEf, /2<B —AE(1;/2-7)
—|—B eAEt/Z T ) —I—B e~ AEL (15)

Finally, if the term proportional to B; is also small
compared to other terms, we get an even simpler expression
that depends only on three parameters, B, By, and B,:

R(1,.7)

= By + e EL/2(B e RE(L/277) | B oAE(1/2-1))

(16)

For each (z,P.), we fit the (#,,7) dependence of
R(z,P.;tg,7) to Egs. (14), (15), and (16) and determine

1.5
Lal P, =1.84 GeV, z/a=0 B ts=16a
' ® t,=18a
T L3 t=20a
a 1.2
-
~ 1.1
S0l eumnmbnmssEssAEEe
I T1 1T T 1T 1T 1T ITITITT1TITTTT
091
I

—75 -50 -25 00 25 50 7.5
(t—t/2)a™t

(t,/2-7) 4 BzeAE(t“/z_T>) + B3€_AEI“'

1+%6_AE[“
0

(14)

[

B, in each case. In all these fits, we use a fixed value of
AE(P,) = E|(P,) — Ey(P,), with the pseudoplateau val-
ues of E;(P,) and the ground-state energies Ey(P,)
determined from the two-point SS correlation function,
as shown in the right panel of Fig. 3.

In the following, we discuss the ratio of the three-point
function to the two-point function, R(z, P,;t,,7), and the
corresponding fits for I' =y, and n, = 4. In Fig. 4, we
show the lattice data on this ratio, together with the fit
results for two representative values of z, namely z = 0 and
z = 8a. The t, dependence of the lattice results is small
compared to the statistical errors. In particular, the differ-
ence between 7, = 12a and ¢, = 16a data is quite small.
This means that the contribution of the excited states is not
large even though the source-sink separation is below 1 fm.
Given that the ¢, dependence of the ratio is small, it is
natural to set By = 0, since the term is suppressed by
e AEand to perform fits using RY(#,, 7). We perform fits
of the lattice results using the three different fit forms

0.40
P,=1.84 GeV, z/a=8 B t,=16a

0.35F ¢ t;=18a

S s=20a

Q§ 0.30F

B o025t T DE Pt T e

= ] = 3

= [ ] LK I

= E!!i‘ :ig!!!'iv—
0.20F =< Zn
015 . . . . . . .

—75 -50 -25 00 25 50 7.5
(t—t/2)at

FIG. 4. The real-part ratio of the three-point function to the two-point function at z = 0 (left) and z = 8a (right) as a function of = and
for different 7, values. The red, orange, and gray bands correspond to the bare matrix elements B, extracted from fits to R, RIt, and R,

respectively.
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FIG. 5.

0.2
P, = 1.84 GeV
0.1F
;7:'_ 0.0 fe= ‘***'*.“',,...........
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§ O g Al emzas oo
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The z dependence of the bare matrix element for n, = 4. The left panel corresponds to the real part, and the right panel

corresponds to the imaginary part. The different colors are the matrix elements obtained by various extrapolation methods (denoted by
R, REt and R), depending on the number of operator insertion points skipped near the source and sink (denoted by 7,,,), and the #,,;,
value in the two-point function fit from which the excited state E; was obtained.

above, and the value of AE obtained from two-state fits of
the two-point functions with 7,;, = 6a. We use the operator
insertion time 7 > 7,,;, = 2a in the fits. The matrix ele-
ments, B, obtained using the three fit functions agree
within errors. The real and imaginary parts of the ratio R
should be symmetric and antisymmetric with respect to
z = 0 at any fixed 7, and 7. In general, our lattice data are
compatible with this expectation. Hence, we symmetrize
and antisymmetrize the real and imaginary parts of the ratio
with respect to z = 0. The z dependence of the bare matrix
elements is shown in Fig. 5 for all three types of fits. We see
again that all three fits give consistent results within errors.
Since B obtained from R and RI is consistent with that
obtained from Ri, but with larger errors, in the following
we will focus on the results obtained from Rit. We also
carry out additional checks for any systematic effects, as
discussed below.

We perform several checks to understand the systematic
effects in R, First, we study the dependence of the
extracted matrix element on 7., and find no significant
dependence on it. Second, we perform the fits using only a
single source-sink separation f, and compare the corre-
sponding results from the three values of ¢,. Interestingly,
the matrix elements calculated for source-sink separations
t, = 16a, 18a, and 20a agree within errors, though the #;, =
20a results have very large errors. We also study the
variation of the extracting matrix element on AE by using
E, obtained using different values of 7,;,. We find no
significant variation. Finally, we use the summation method
to obtain the matrix element. This determination has very
large statistical errors, but it is still compatible with all other
determinations. The above checks of systematic effects are
discussed further in Appendix B. We perform a similar
analysis for the three-point functions corresponding to the
helicity gPDF—i.e., for I' = y,ys. Details of those analyses
are also discussed in Appendix B.

V. NONPERTURBATIVE RENORMALIZATION

We calculate the nonperturbative renormalization of the
gPDF operator in the RI-MOM scheme using off-shell
quark states in the Landau gauge [20,22]. The matrix
element of Or(z) in an off-shell quark state |p) is

Ap2.D) = (S (S8 (o + T Wl

+zn,w>s<p,w>><s<p>>-‘, (17)

where n# = (0,0,0,1) is the unit vector along the z
direction, and the summation is over all lattice sites w.
The quark propagators are defined as

S(p.x) =Y e @),  S(p)=) e S(p.x),
| (18)

and y5 is inserted on both sides of S*(p, w + zn) in Eq. (17)
to get the necessary propagator ., e~ "PY (i (y)y (w + zn)).

For the unpolarized qPDF, we use the RI-MOM renorm-
alization constant defined via

_TI[P/\tree(P,ZJ’r)]

Z ) Rva_lv - ’
mp(2, P 0™ pg) TePAD. 270 |y p—pt

(19)

where Agee(p,2,7,) = y,67P is the tree-level matrix
element in the momentum space. Furthermore, P =y, —
(p:/ py)7» is the projection operator corresponding to the
so-called minimal projection, where only the term with the
Dirac structure proportional to y, is kept [23,24]. Hence, we
use the subscript “mp” for the renormalization constant.
The renormalization constant Z,,,(z, p¥,a™", ug) depends
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FIG. 6. The renormalization constant Z,,, and Z, . at uz = 4 GeV. The upper panels show Z,, and Z, ,
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. as functions of p7 at

7z = 16a =~ 0.67 fm. The lower panels show the z/a dependence with p® = 0.93 GeV and 2.3 GeV.

on the lattice spacing a, as well as the other two scales pf
and pp.

We follow a similar procedure for the longitudinally
polarized case, where the RI-MOM renormalization con-
stant is defined as

1) = Tr[PAuee(P 2.7:75)]
’ Tr[PA(p, z, 717/5)] pr=p%.p.=pk

(20)

1

R —
Z,,(z.p%.a

’

with Ayee (2, P2, ¥27s) = v-yse~'P=*. The projection operator
P in this case is chosen to be P = ysy,/4.

We calculate the nonperturbative RI-MOM renormaliza-
tion constants in the Landau gauge. The calculations are
performed using 14 gauge configurations. The relative
uncertainties of the renormalization constants for z = 0,
16, and 32 are 0.02%, 1%, and 10%, respectively. Such
precision is much better than that of our nucleon matrix
elements with the same z, so it is enough at the present
stage. We use the following values of the momenta for the
off-shell quark state: ap = ZL—” (5,5,5,0), 2T”(6, 2,1,17/3),
and 2L—” (7,4,3,1/3), with L = 64 being the spatial size of
the lattice. These momenta correspond to up = |p| =
3.99 GeV, 394 GeV, and 397 GeV—i.e., to pp~
4 GeV within 1.5%. Since all the spatial directions are
equivalent, each of them could be considered as the z
direction, and therefore, with the above choice of the three
momenta we have p¥ =0.46 x {0,1,2,...,7} GeV.

The renormalization constant is plotted in Fig. 6. Due to
the linear divergence, the renormalization constant can be
far from 1 at a large z ~ 0.67 fm, making the nonperturba-
tive renormalization unavoidable. Figure 6 also shows that
the renormalization constant will be sensitive to the value of

pR, while such a dependence should be canceled by the
matching in the continuum if we have the matching formula
up to all orders, because the PDFs or the Mellin moments in
the MS scheme have no dependence on pR. We will
consider the residual p® dependence in the final PDF
prediction as a systematic uncertainty.

Having determined the renormalization constants Z,,
and Z, ,. we obtain the renormalized matrix elements—i.e.,

coordinate space qPDF. For the unpolarized case,

h (2. P pig, PR) = Z,Zp (2, p5. a7 ug) (2, P y,),
(21)

and for the longitudinally polarized case,

Ahg(z. Popg. pR) = 2,2, , (2. p¥.a™" ug)h(z, P, 7.75).
(22)

In the above equations, Z, is the quark wave function
renormalization factor.

In Fig. 7, we show the renormalized matrix elements,
modulo the factor Z,, in the RI-MOM scheme at pf =0,
ur =4 GeV. We find that the errors are large. We can
achieve substantial error reductions at z # 0 by redefining
the renormalized matrix elements as

hR(ZvavaPf)
hg(z =0, Pz?:“R?l?f)

Ahg(z, P pig. PY)
Ahg(z =0, P, pg, p¥)’

and

hR(Z’PmﬂR?pf)

AhR(Z9PZ7,uR7 pf) (23)

The errors of the matrix elements for z # 0 are reduced due
to the strong correlations between z # 0 (particularly for
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FIG. 7. Top panels: the z dependence of the real and imaginary parts of the RI-MOM renormalized (modulo the wave function
renormalization, Z,), unpolarized qPDF matrix element for P, = 1.84 GeV (left) and 2.31 GeV (right). Bottom panels: similar results

for the real and imaginary parts of the helicity matrix element.

small z close to z = 0) and z = 0 matrix elements for each
gauge configuration. The effectiveness of this procedure in
can be seen from Figs. 12 and 16. As one can see, the error
reduction due to this division is very significant. In fact,
with this method, the errors are reduced enough that the z
dependence of the matrix element is well constrained also
for n, = 5. Since for the extraction of the qPDF we are only
interested in the z dependence of the matrix element, and
we know that the unpolarized isovector nucleon matrix
element at z = 0 is the isospin of the nucleon, which is
unity [in our convention, cf. Eq. (5)] after renormalization,
we can consider the above improved ratio of renormalized
matrix elements. However, the effect of taking this ratio is
not trivial in the case of the matrix element of the helicity
gqPDF—the value of the renormalized matrix element at
z = 0 should be g4 =~ 1.3; this procedure is equivalent to
studying a helicity PDF with the first moment normalized
to unity, i.e., in a normalization where g, = 1.

VI. UNPOLARIZED PDF: PERTURBATIVE
MATCHING AND COMPARISONS WITH hg(z.P,)

In this section, we will discuss how the renormalized
coordinate space qPDF, hg(z, P, ug, pX), can be related
and compared with phenomenological unpolarized nucleon

PDFs, such as the CT18 [57] and NNPDF3.1 [58],
extracted from the global analysis of experimental data.
The unpolarized quark PDF in the valence region is well
constrained through global analysis. Therefore, it is natural
to start from these phenomenological PDFs as a function of
Bjorken-x, use the perturbative matching to reconstruct the
corresponding coordinate space PDF as a function of z for
different P, values, and compare with our results for
hg(z. P, pg, pf ). The reason for comparing in the z-space,
rather than constructing the x-dependent PDF from our
hg(z, P., pg, p¥) and then comparing with the phenom-
enological PDFs, is the following: As can seen from
Figs. 12 and 16, hg(z, P, ug, p¥) is quite noisy for
z > 0.5 fm. Thus, the Fourier transformation which is
needed to calculate the qPDF in x space is difficult to
perform. A similar approach had also been used for the pion
PDF [35].

Even at the leading @’ order, the gPDF and the PDF
differ due to the trace term in the small-z expansion [12,25].
This difference was explicitly calculated in Ref. [59]. In the
context of DIS, such corrections have been studied long
ago [60], and are known as target-mass corrections.
Following Ref. [59], we introduce the target-mass-
corrected PDF
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FIG. 8. The NNLO isovector nucleon PDFs CT18 [57] and

NNPDF3.1 [58] (solid lines), and the corresponding target-mass-
corrected ones (dashed lines), at a scale y = 3.2 GeV. See text for
details.

q/(xv Pz) =

sz o) -5 (5)] e

where ¢ = M?/(4P,)%, f+ = /1 +4c £ 1, and g(x) is the
usual PDF that corresponds to P, — co. In our analysis, we
use two sets of NNLO PDF for the u and d quark and
antiquark distributions, the CT18 [57] and NNPDF3.1 [58],
evaluated at the scale u = 3.2 GeV. If the matching were
known to all orders of perturbation theory, the prediction
for real-space qPDF should be independent of the value of
u at which the PDF was evaluated. Since the matching is
only known to one-loop order, we choose a scale y =
3.2 GeV that is of the same order as the other momentum
scales used in our computations, and thereby avoided
corrections due to large logarithms. The light-cone quark
PDF for u quarks is calculated as ¢, (x) = u(x), x > 0 and

4
——NNPDF31

----gPDF, pf =0
qPDF, pf =0.93 GeV
----qPDF, p; = 1.9 GeV

ug =4 GeV |
jLu=32Gev |
P, =1.84 GeV |\

q.(x) = —u(=x), x <0. The isovector nucleon PDF,
4, (x) — ¢,(x) is shown in Fig. 8.

In Fig. 8, we also show the target-mass-corrected isovector
nucleon PDF for the two momenta used in our study, namely
1.84 GeVand 2.31 GeV. We see from the figure that target-
mass correction is small for the values of P used in this study.
Using the target-mass-corrected NNPDF3.1 isovector
nucleon PDF obtained from Eq. (24) and the one-loop
matching to RI-MOM, we obtain the corresponding qPDF
for P, = 1.84 GeV and P, = 2.31 GeV, up = 4 GeV, and
p¥ =0, 0.93, 1.9 GeV. The functions f, and f5, , in
Eq. (11) for the one-loop matching to the RI-MOM scheme
with minimal projection were taken from Eqs. (28) and (31)
of Ref. [24]. Figure 9 shows comparisons of the NNPDF3.1
with the corresponding qPDFs. In these comparisons, a; is
evaluated at the scale 4 = 3.2 GeV, which results in the
value a; = 0.25. We see significant differences between the
PDF and qPDF. For large positive x, the qPDF is larger than
the PDF, while for negative x the qPDF can turn negative for
some PR. The qPDF strongly depends on the choice of the
RI-MOM scales. It is possible to choose the RI-MOM scale
such that the qPDF is negative for x < —0.2, even though the
PDF is positive.

By Fourier-transforming the CT18 and NNPDF3.1 target-
mass-corrected qPDFs with respect to x, we obtain the
corresponding distributions as a function of the so-called
Ioffe time, zP,—i.e., the corresponding ITDs [61]. Since the
matching is only up to one-loop order, the scale entering « is
not fixed. We consider three choices of the scale for «aj,
namely p/2, u, and 2u. The corresponding variations in the
ITDs can be considered as estimates of the perturbative
uncertainties, and are shown as bands in Fig. 10. In the same
figure, we also compare with the lattice results for the ITDs in
RI-MOM renormalization, at the renormalization scales of
ug =4 GeV and p® = 0 GeV. Notwithstanding the large
errors, for both values of P, the real parts of the ITDs
compare well at least up to zP, < 5. However, lattice results

4
Un=4Gev ——NNPDF31
Jlu=3206ev |: aren o
i qPDF, pf =0.93 GeV
P, =2.31 GeV R\ % ----gPDF, pf =1.9 GeV

FIG. 9. gPDF corresponding to NNPDF3.1 for P, = 1.84 GeV (left) and P, = 2.3 GeV (right) with a; = 0.25 and three different

RI-MOM renormalization conditions.
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p¥ =0, in an extended range of the Ioffe time.

for the imaginary parts of ITDs undershoot the phenomeno-
logical ITDs even for zP, = 2.

Although there is a significant difference between the
CT18 and NNPDF3.1 PDFs in the small-x region, Fig. 10
does not show any visible difference in their corresponding
ITDs. To understand this better, in Fig. 11 we explore these
ITDs in an extended range of loffe time. The difference
between the PDFs in the negative-x region is only reflected
in a < 10% difference in the imaginary part of the ITDs for
zP, > 25, essentially showing no difference in the real-part
ITDs even up to zP, = 50.

To explore the dependence of the lattice results on the
choice of RI-MOM scale pX and the range of validity of the
one-loop matching, in Fig. 12 we show comparisons
between the qPDFs as a function of z obtained in the
lattice calculations and from the global analysis of the PDF
for two different choices of renormalization scale, namely
pR =0 and 0.93 GeV. Very little dependence on p® was
observed. While the real part of the gPDF obtained from the

0.1
Ur =4 GeV, p; =
0.0 r
& ‘.
e -01n
< |
\N: -0.2 \
« ‘\
£ -03} | ¢ NNPDF31, P, = 1.84 GeV
E v NNPDF31, P, = 2.31 GeV
-04F \ ) A/ CT18, P, = 1.84 GeV
& CT18, P, =2.31 GeV
=035 10 20 30 40 50
zP,

Real (left) and imaginary (right) parts of the ITDs corresponding to target-mass-corrected CT18 and NNPDF3.1 PDFs, for

global analysis agrees with the lattice results up to z ~ 1 fm
within relative large errors, the agreement is limited only for
2 <0.2 fm. For P, = 2.31 GeV, the agreements seem to
extend to larger values of z, partly because of larger errors.
However, it is encouraging that the central value seems to
shift towards the global analysis results as P, is increased
from 1.84 to 2.31 GeV. In any case, at large z, we see clear
tension between the imaginary part of the lattice PDF and
the results of global analysis. This suggests that the range of
applicability of one-loop matching is perhaps limited to z <
0.2 fm in the case of the nucleon. It remains to be seen if this
agreement gets better with the addition of higher-loop
corrections, or if this observed discrepancy arises because
of contamination of higher-twist effects at larger z. This
observation has an important implication for our ability to
describe the x dependence of PDF within the LaMET
framework. For example, if the one-loop perturbative match-
ing works only for z=~0.2 fm, reliable calculations of
nucleon PDF down to x ~ 0.1 will need P, = 10 GeV.
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FIG. 12. Comparisons of the gPDF with those obtained from the global analysis for two values of the RI-MOM renormalization scale,
=0 GeV (left row) and p® = 0.93 GeV (right row), and for two values of the nucleon boost momenta, P, = 1.84 GeV (upper

column) and P, = 2.31 GeV (lower column).

VIL. HELICITY PDF: PERTURBATIVE MATCHING
AND COMPARISONS WITH Al (z.P,)

Our analysis of helicity qPDF closely follows the
analysis performed in the unpolarized case; namely, we
start from the helicity PDF obtained in global analyses,
reconstruct the corresponding target-mass-corrected qPDF,
and then compare with the lattice results. The helicity PDFs
have been extracted from the global analysis by the
NNPDF Collaboration using DIS, inclusive W* and jet
production data from RHIC, as well as the open charm data

|

|
Ad(xP) =177 [2+

where ¢ = M?/4P2, f, = /1 +4c £ 1, and for the in-
tegration limits +oo (—o0) corresponds to x > 0 (x < 0).

Although the matching for helicity qPDF has not been
explicitly presented in the literature before, it is straight-
forwardly deduced from the results presented in Ref. [24].
The key observation here is the fact that, owing to the chiral
symmetry, for massless quarks in one-loop perturbation

<f+) e q(f-

from COMPAS, resulting in NNPDFpoll.1 [62]. The JAM
Collaboration used the DIS and SIDIS data in their global
analysis, combined with e"e™ data to constrain the frag-
mentation functions at NLO [63]. The resulting PDF
parametrization is called JAM17. In Fig. 13, we show
the isovector helicity PDF Ag, — Ag, The positive-x
region corresponds to the quark contribution, while the
negative-x region corresponds to the antiquark region. The
target-mass-corrected helicity PDF, A¢'(x, P,), is obtained
from helicity PDF, Ag(x), following Ref. [59]:

)= L) ()] e

|

theory, Tr(ysy. A(p.z,v.vs)] = Tr[y.A(p.z.7.)]. Thus, the
one-loop matching of the helicity qPDF in the RI-MOM
scheme with minimal projection is same as that for the
unpolarized qPDF with I' = y, (instead of the I' = y, used
before), and with the RI-MOM renormalization condition
corresponding to the projection operator P = y, (instead of
the minimal projection). The one-loop matching for the
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FIG. 13. NNPDFpoll.l and JAM17 isovector helicity PDFs at
a scale u =3 GeV. Also shown are the corresponding target-
mass-corrected isovector helicity PDFs (dashed lines) for P, =
1.84 GeV and P, = 2.31 GeV.

I' =y, operator is known for two different RI-MOM
projections, the minimal projection and the p projection,
corresponding to P =y, — (p./p.)r, and P = p/(4p.),
respectively [24]. The function that depends on the RI-
MOM projection operator—i.e., f, , —entering the
matching coefficient in Eq. (11) was simply deduced from
these known results. The Lorentz structure of A(p, z, %)
for a general y,, a = x, y, z, t is given by

A (p.x,74) = valfi(x, )],

p(l

T ppa 7
+r:— [fz(x’p)]+ +
P

p fp(x.p)] s

(26)

and f2,;/z.mp :ft+fz and fZ,y,.gf:ft_‘_fz +fp [24].
Here, the subscript “+” refers to the standard plus-pre-
scription and p = —p?/p2. The functions f,, f., and f,
have been calculated in Ref. [24], and we use the same

5
Hr = 4 GeV ——NNPDF11pol
4r u=3.0GevV ----qPDF, pf=0
n PDF, p?=0.93GeV
P, =1.84 GeV |} aPDF, p;=0.93Ge
3r N ----qPDF, pf=1.9GeV
geo! RN
g !
1 2F |
> !
< |
1 - 1
I:
o I
0 ST !

notations here. Therefore, for the case of P =y, the
RI-MOM projection-dependent function is given by

fQ,J/Z.}/Z = }‘t +J~[z + (p%/pz)fp
= f2,yz,mp + (fZ,yz,p/_ f2,mp)/r' (27)

Thus, for the helicity qPDF, the one-loop matching RI-MOM
function in the minimal projection scheme is the same as in
Eq. (11), but with f5,_n, given by Eq. (27), and with f,,,_,
S2y.mp> and f2, - given by Egs. (A6-A8) of Ref. [24].

Using the matching discussed above, we can obtain the
isovector helicity qPDF from the target-mass-corrected
NNPDFpoll.1 and JAM17. As before, for the one-loop
matching we use a, evaluated at the scale y = 3.0 GeV,
and the scale is varied between /2 and 2y to estimate the
scale uncertainty. We find a noticeable difference between
the isovector helicity PDFs and the corresponding qPDFs
in Fig. 14. By Fourier-transforming the gPDFs, we obtain
the isovector helicity ITDs and compare them with our
lattice results in Fig. 15. Since we normalized our lattice
results by the value of matrix element at 7z =0, we
normalize the phenomenological ITDs by dividing with
g4 = 1.25. Within the large statistical errors, we do not find
a significant P, dependence of the lattice results. While the
real parts of the lattice results agree with those obtained
from the phenomenological PDFs up to zP, <3, the
imaginary parts do not agree quantitatively but also have
larger errors. We also explore the dependence of our result
on the choice of RI-MOM scales. In Fig. 16, we compare
the qPDFs for uz =4 GeV, and for p® =0 GeV and
pR =0.93 GeV. From the figure, we see that the com-
parison between the results of lattice calculation, as well as
the fact that the global analyses are not sensitive to the
choice of the renormalization scales. For both values of P,
the agreement between the lattice and the global analyses
extends to values of |z| of about 0.3 fm for the real parts, but
not for the imaginary parts. In the next section, we will
discuss how these disagreements show up in the moments
of the PDFs.

5
He = 4 GeV — NNPDF11pol
4F u=3.0Gev @ ----qPDF, p?=0
|
PDF, pf=0.93GeV
P, = 2.31 GeV |\ qPDF, pR=0.93Ge
4 RN ----qPDF, pf=1.9GeV

Au-Ad

FIG. 14. ¢PDF corresponding to NNPDF1.1pol for P, = 1.84 GeV (left) and P, = 2.3 GeV (right) with a; = 0.25 and three different

RI-MOM renormalization conditions.
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FIG. 16. Comparisons of the isovector helicity qPDF with those obtained from the global analysis for two values of the RI-MOM

renormalization scale, pf =

P, =1.84 GeV (upper column) and P, = 2.31 GeV (lower column).

VIII. MOMENTS OF PDF FROM RATIO OF IOFFE-

TIME DISTRIBUTIONS

In the previous sections,

we analyzed the boosted

0 GeV (left row) and p® = 0.93 GeV (right row), and for two values of the nucleon boost momenta,

and h(z, P_,7.ys), we can form well-defined renormalized

quantities by taking the ratios of matrix elements at two

nucleon matrix elements renormalized in the RI-MOM

scheme and matched them to the PDFs in the MS scheme.

Due to the multiplicative renormalizability of &(z, P_,y,)

074504-15
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FIG. 17. The real (left) and imaginary (right) parts of M(z, P, P.,y,) are shown for P, = 2.31 GeV and P, = 1.84 GeV. The data
points are from our lattice calculations, whereas the various colored bands are the corresponding results from the isovector unpolarized
PDFs from NNPDF3.1 and CT18. The bands in these phenomenological expectations arise due to variations of a(u) within the scale
u/2 to 2u. For NNPDF3.1, we also show results by truncating the expansion in Eq. (29) at various orders, n = n,,,, in the PDF

moments; these results are denoted by On,,,.

The second factor on the right-hand side of the above
definition normalizes the z = 0 matrix element to unity, as
we did in the case of the RI-MOM scheme. The choice
P, =0 in the ratio is usually referred to as the reduced
Toffe-time distribution [16], and one should think of P, # 0
as a generalization of this choice. Here, we take P, =
2.31 GeV and P, = 1.84 GeV, respectively. Since both
P, P, > Aqcp and the nucleon mass, we expect this ratio
to be simply described by the leading twist expression [25],

M(z,P,,P..T) = (29)

Following Ref. [59], the target-mass-corrected unpolarized
PDF moments (x") can be obtained by relation:

<xn>P [(n+1)/2] _ ‘
(x™) = Z Coisi€'s (30)
i=0

and for the helicity case,

e Wity L
L = ———|Ci_c, 31
<xn> Z( I’l—|—1 ) n—zc ( )

i=0

where Ci is the binomial function, ¢ = M?/4P%. In
Eq. (29), ¢, (uz) is the one-loop-order Wilson coefficient
in the MS scheme. The Wilson coefficient describes the z
dependence of the twist-2 local operator associated with the
nth moment of the PDF, (x") (), in the MS scheme and at a
factorization scale u. As in our RI-MOM analysis, we will
use 4 = 3.2 GeV for the unpolarized case and ¢ = 3 GeV
for the helicity case in the following analysis.

Now, we can perform an independent analysis that
avoids the usage of RI-MOM procedure completely and

compare the outcome to the prediction for M(z, P_, P,,T’)
from the knowledge of NNPDF and CTEQ PDF moments.
We perform such a comparison in Fig. 17. For this, we use the
values of (x")(u) up to an order n = n,,, for NNPDF31 in
Eq. (29) and the complete result for CT18 to obtain the
phenomenological expectation for the ratio M(z, P, P.,7,).
The results obtained by using the truncation order n,,, = 2,
3, 4, 20 using the NNPDF31 values for (x") are shown as
different colored bands in Fig. 17. It is clear that inclusion of
up to np,,, = 20 moments is sufficient for convergence to the
correct PDF within z < 0.5 fm. For z < 0.3 fm, which is
where the lattice data has a good signal-to-noise ratio, we find
that N = 4 is sufficient to describe the lattice results. This
gives us an idea of which moments are being probed by our
lattice data at different z. We observe some discernible
differences between the phenomenological expectations
and our lattice M(z, P_, P.,y,) for z > 0.2 fm, as we also
observed in the case of RI-MOM scheme in Fig. 10. To
understand this, we estimate the values of the moments (x")
that best describe our lattice data. To avoid overfitting the
data, we truncate the expansion in Eq. (29) at most by n = 4.
In order to avoid lattice artifacts that might be present for z of
the order of lattice spacing, we fit the data only from z = 2a
to a value z,,,,. The variation of the best-fit values of (x")
with z,,,« 1 a source of systematic error. In Fig. 18, we show
the zax dependence of our estimates for (x'), (x?), (x*), and
(x*). From Fig. 17, we note the noisy determination of the
imaginary part of M. As a consequence, we find our
estimates of (x') and (x*) to be noisy as well. On the
contrary, we are able to determine (x?) and (x*) reasonably
well. In addition to z,,,« dependence, we also study whether
our determination of the moments is affected by the order of
truncation used in Eq. (29). We observe no significant
variations with truncation. For comparison, the NNPDF
and CTI8 values of these moments are shown by the
horizontal lines. Further, when we fix the values of (x')
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and (x*) from NNPDF to reduce the number of fit param-
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FIG. 19. The real (left) and imaginary (right) parts of M(z, P, P.,ysy.) are shown for P, = 2.31 GeV and P, = 1.84 GeV. The data
points are from our lattice calculations, whereas the various colored bands are the corresponding results from the isovector helicity PDFs
from NNPDFI1.1pol and JAM17. For NNPDF1.1pol, we also show results by truncating the expansion in Eq. (29) at various orders,
1 = N,y in the PDF moments; these results are denoted by “On,,”.
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for our lattice values of (x?), (x*) to be slightly higher than
the corresponding phenomenological values.

We repeat a similar analysis for the helicity matrix
element, I' = ysy,. In this case, the Wilson coefficients
¢, (uz) are the same as in the case of the unpolarized case
with I' = y,. Since we are setting the value of the matrix
elements at z = 0 to be 1 through the ratio, we only obtain
the values of (x")/(x°) in the expansion in Eq. (29), with
(x%) = g4. In Fig. 19, we compare the results correspond-
ing to the NNPDF1 1pol and JAM17 values with the lattice
result for the ratio. As in the case of the unpolarized matrix
element, we also test the dependence of this comparison
on the truncation order n,,.. The sensitivity to higher
moments is a bit more than that for the unpolarized case,
and we find convergence at only n,, = 6 at z < 0.3 fm.
Surprisingly, the global fit expectation agrees quite well
with our lattice result even though there is a little tension in
the imaginary parts. As explained above, we also obtain the
best-fit values of (x'}/gu, (x*)/ga, (x*)/g4, and (x*)/ g,
that describe our lattice data via Eq. (29) truncated at most
by the fourth order. In Fig. 20, we show the results as a

function of the largest z used in the fits, z,,,. Like the
unpolarized PDF case, (x!)/g4 is noisy, but it seems to
agree with the global fit results. The more precisely
determined value of (x?)/g, is quite robust to various
ways of fitting the data and agrees nicely with the global fit
values. To compare with other lattice caculations, we
truncate the expansion in Eq. (29) at n = 2, and estimate
(x')/ g4 at u = 2 GeV with the z in the range [2a, 0.3 fm].
Our result (x)/g4 = 0.219(56) is compatible with the
ETMC result [64] 0.229(30)/1.242(57) within the error.

IX. SUMMARY AND CONCLUSIONS

In this paper, we studied isovector unpolarized and
helicity PDFs of the proton using the LaMET approach.
The lattice calculations have been performed for an
unphysically large pion mass of 310 MeV. On the other
hand, our lattice study was carried out using lattice spacing
a = 0.042 fm, which is the smallest lattice spacing used in
such studies. We argued that such small lattice spacing is
essential for the validity of one-loop perturbative matching
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between the PDF and qPDF, which is a key ingredient
of LaMET.

Extracting the nucleon matrix elements for such large
momenta and small lattice spacing is challenging because of
poor signal-to-noise ratio. To deal with this problem, we
performed a detailed study of the nucleon two-point function
with a momentum-smeared source and sink, as well as with a
momentum-smeared source and point sink to better control
the excited-state contributions. We demonstrated that the
ground state can be reliably isolated up to the highest
momenta used in this study. Furthermore, for the
Euclidean-time separations used that are relevant for our
lattice analysis, the two-point function is very well described
by the ground state and an “‘effective” excited-state contri-
bution, with an energy that is larger than the true excited-state
energy. Therefore, we argued that the two-state Ansdtze are
sufficient to describe the dependence of the three-point
function on the source-sink separation and on the operator
insertion time. We showed that the qPDF matrix elements can
be extracted in this way, and the results do no depend on the
choices of the fit interval used in our study, demonstrating the
robustness of our analysis procedure.

After nonperturbative RI-MOM renormalizations, we
compared the lattice calculations of the spatial z depend-
ence of qPDFs with those from the phenomenological
PDFs, obtained from the global pQCD-based analyses of
pertinent experimental data performed by different collab-
orations. Working in z-space allowed us to test the LaMET
approach. The comparisons showed that there is a rough
agreement between the lattice results and the results of
global analysis, but only at quite small distances. Even for
the very small lattice spacing used in this study, there was
not enough data points to constrain the x dependence of the
PDFs. Instead, to translate our z-space comparisons to x
dependence, we introduced a new ratio-based renormali-
zation scheme for the loffe-time distributions. Using our

lattice calculations for Ioffe-time distributions, renormal-
ized via this new ratio-based scheme, we determined the
first moments of the isovector unpolarized and helicity
PDFs of the proton, and compared these moments with
those from the corresponding phenomenological PDFs.
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APPENDIX A: ANALYSIS OF THE NUCLEON
TWO-POINT FUNCTION

In this appendix, we discuss some details of the analysis
of the SP and SS two-point correlators. In Fig. 21, we show
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Ground-state energy from unconstrained one-state and two-state fits of the SP correlators.
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FIG. 22. The energies of the first (E) and second (E,) excited states from constrained two-state and three-state fits of the SP correlator
for n, =1 (left), n, = 2 (middle), and n, = 5 (right). The horizontal lines denote the values calculated from the dispersion relation.

the ground-state energy from one- and two-exponential fits
of SP correlators as a function of ¢,,;,. Contrary to the fits of
the SS correlators’ stable result for the ground-state energy,
E, is only obtained for 7,,;, > 20.

As discussed in the main text, we performed prior-based
fits of SP and SS correlators for all values of p.. In Fig. 22,
we show the results on E; (p,) for n, = 1,2, and 5 for prior-
based fits of the SP correlator.

We see clearly that E; approaches the value expected
from the dispersion relation for ., > 11 if the two-

exponential fit is used. For constrained three-exponential
fits, the same value is approached for 7,,;, = 2. In Fig. 23,
we show the amplitudes, A;, i = 1,2, 3..., of different states
normalized by the value of the two-point correlator at t = 0,
which by definition is equal to ), A;. We see that A; is
slightly higher than A, while A, is significantly larger than
either Ag or A;.

A similar analysis was performed for SS correlators, and
the results for the excited state energies and amplitudes are
shown in Figs. 24 and 25, respectively. From these figures,
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we see that a pseudoplateau develops for the first excited
states for 5 < t,;, < 10 of the two-state fit. We see that A,
and A, are similar in this case, and A, decreases as 7,
increases.

APPENDIX B: ANALYSIS OF THE THREE-POINT
FUNCTION

In this appendix, we discuss further details of the
extraction of the bare matrix element of the qPDF operator.
First, we show our results for the ratio of the three-point
function to the two-point function for different source-sink
separation and different values of z as a function of the
operator insertion time 7 in Fig. 26 for n, = 4. In this
figure, we also show the results for Rit. As one can see from

the figure, Rf can describe the data well for all values of .
In Fig. 27, we show the same analysis but for n, = 5.

As discussed in the main text, we perform R using a
single value of source-sink separation. The results are
shown in Fig. 28 for the real part of the matrix element.
As one can see from the figure, the results obtained from
this fit for r = 16, 18 and 20 agree within errors. We
performed fits using the form fiz; with ¢ > 7;, and taking
the value of E; from the two-point function fit with
t > tyin- The results are shown in Fig. 29. We see no
significant dependence on 7., and ;.

Another way to obtain the matrix element is to use the
summation method. The summation method is illustrated in
Fig. 30 for n, = 4. The results obtained from the summa-
tion method agree with those from R but have much larger
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FIG. 26. The ratio of the three-point function to the two-point function for z = 4, 8, 12 and n, = 4. The upper panels show the real
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FIG. 28. The z dependence of the qPDF matrix element obtained using Ri' with a single value of the source-sink separation for
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errors. The statistical errors of the n, =5 data are too  polarized qPDF operator. The results are summarized in
large to use the summation method. Furthermore, we Figs. 32, 33, and 34.

could also reduce the error in the summation method by To take advantage of correlation between different z’s
dividing by the matrix element at z =0, as can be seen  and cancel the field renormalization factor, we divided the
in Fig. 31. bare matrix elements by the matrix element at z = 0. The

Similar analysis of the ratio of the three-point function to  errors are much smaller after this division, as discussed in
the two-point function is carried out for longitudinally  the main text.

074504-22



ISOVECTOR PARTON DISTRIBUTION FUNCTIONS OF THE ... PHYS. REV. D 102, 074504 (2020)

1.2 0.2
fit - -
Loli P,=1.84 Gevy ! RiTmn=23 tmn=4da P,=1.84 GeV
: II “* t R, =24, tmin=5a 0.1r
= L Rft, Tin=2a, tmin=6a =
S‘. 0.8 H :it ‘min min Sl- 0.0 k= R il
N “* t RIY Tmin=3a, tnin=6a N “ "
Q 06f a | - a®
N #t N —-0.1 # #
E 0.4 o g ” ﬂ M t Rgit- Tmin=2a, tmin=4a
] ] -0.2 *I fit L L
o o £ i b R, Tmin=2a, tmin=5a
0.2 ) " o3} R, Tmin=2a, tmin=6a
0.0+ B b RIY Thin=3a, tmin=6a
, , , , , , _oabs , , , , ,
0 5 10 15 20 25 0 5 10 15 20 25
z/a z/a
1.2 0.2
fit - -
P,=2.31Gev ! Rl Tmn=23 tmn=4da P,=2.31 GeV
1.0 ﬂ || b RIt, Tmin=2a, tmin=5a 0.1r
2; 0.8 “’ Riitr Tmin=24, tmin=6a :S: 0.0 -
y 0= # -y oy
8 || b R Toin=3a, tnin=6a S {# AHETERIHIND
a’ o6} i < il f
B T
g 0.4F L '* g 0.2 * \ ‘ “’ ' b RIY Thin=2a, tmin=4a
& o, d f E " | ﬂ || | b R Trin=2a, tmin=52
. " A4 -0.3f R{", Tmin=2a, tmin=6a
0.0F ¥ ‘d i* Addasdaan o+t o e ws t R;it, Tmin=34a, tmin=6a
. . . , , . _o.als . . , , .
0 5 10 15 20 25 0 5 10 15 20 25
z/a z/a

FIG.29. Real (left) and imaginary (right) parts of the bare matrix as a function of z. The top panel shows the results for n, = 4, and the
bottom panel shows the results for n, = 5. The results for different choices of 7, and #,,, in the two-point function fits are shown.

30.0
75l 2=0, P, = 1.84 GeV # SsUM(1) var P, = 1.84 GeV } suMm(1)
1.2}
25.0F =
=~ 1.0r
225¢ -
= o ool m
a 20.0 Nl— 0.6}
175} < o4l |+
15.0f & o2f “+++
12.5¢ 0.0k bttt unannnnnnnnnnns
100960 165 170 175 180 185 19.0 195 200 —0245 5 10 15 20 25 30
ts/a z/a

FIG. 30. The t dependence of the sum of the ratio of the three-point function to the two-point function (left) and the z dependence of
the matrix element extracted from the summation method (right). SUM(#n) means the summation fit with n skipped time insertion.

074504-23



ZHOUYOU FAN et al. PHYS. REV. D 102, 074504 (2020)

1.2
Lol P, =1.84 GeV } SUM(1)
0.8 "

0.6 '

Re(h(z, P, v))

++++++¢t¢----.......

0 5 10 15 20 25 30
z/a

FIG. 31. The z dependence of the real part of the bare qPDF matrix element obtained by the summation method after division by the
matrix element for z = 0 at n, = 4. SUM(n) means the summation fit with n skipped time insertion.

1.4 0.6 0.20
13} P,=184GeV,z/a=4 ¥ t;=16a ¥ t;=16a ¥ t;=16a
3T 12t ¢ ts=18a T 05 $ ts=18a T oy $ ts=18a
L ogaf ¢ ts=20a v i 3 t,=20a
Qf‘ 1of . . Qf‘ 0.4 i:‘ 0.10
N osof 4 +e ) N N
5 L P 0.3 P 0.05
o 08T TyyrITILE ~ o -
x o7 x 02 X 000
0.6¢ P, = 1.84 GeV, z/a = 8 P, =1.84GeV, z/a = 12
05 -75 =50 =25 0.0 25 5.0 7.5 01 -75 =50 =25 0.0 25 5.0 7.5 -0.05 -75 =50 =25 0.0 25 5.0 7.5
(t—ts2)a™?! (t—ts/2)a™?! (T—ts2)a"?t
-01 -01 -0.05
P, =1.84GeV, z/a = 4 # t;=16a P, = 1.84 GeV, z/a = 8 i t,=16a P, =1.84 GeV, z/a = 12 i t=16a
3 -0.2f § t.=18a 3 02f ¢ t;=18a 3 -oof ¢ ts=18a
L o3 ¢ t=20a q 4 t;=20a Q 3 t,=20a
N 5= 5 03 - 5 -0.15
&, N N
N N o N ool
F _os B .
€ x -o05 & -0.25
0755 50 —25 00 25 50 75 0655 50 —25 00 25 50 75 005550 25 00 25 50 75
(T—tf2)a?! (t—ts2)a" ! (t—ts2)a"?t

FIG. 32. Theratio of the three-point function to the two-point function corresponding to the helicity qPDF for z = 4,8, 12 and n, = 4.
The upper panels show the real part, while the imaginary part is shown in the lower panels. The results of R are shown as lines.

1.8 0.3
16 | P,[=231GeV,z/a=4 § t;=16a 06} ¥ t=16a ¥ t;=16a
T 14} § t,=18a 3 § t,=18a 3 o2 3 t,=18a
T 0 > | ¢ t;=20a o 04r } M 4 ts=20a © ool e % t;=20a
3 1ol R % 4 } l l
?\‘1;'2 b4 Jli ':‘: oz L g iljli 11 i‘: 00f jj i; I
.81 b = ,
L $digiil o ﬁ EEE¥3 = T 15
E ooel = F_oaf
£ { { £ 0 £
@ 04r « & o2}
0.2r 0.2t P,=2.31GeV,z/a=8 P, =2.31GeV, z/a =12
0.0 —7‘,5 —5,0 —é,S DtD 2t5 5‘0 7:5 —7‘,5 —.‘:,0 —é,S DtO 2t5 5t0 7:5 -03 —7‘.5 —5:,0 —ﬁ,S DtO 2t5 StD 7?5
(T—t/2)a?! (t—ts2)a™?t (T—ts2)a™?t
00 p,=231GeV,za=4 ! t:=16a ool P.=231GeV.za=8 i t;=16a 01 p,=231GeV,za=12 % t=16a
N ¢ ts=18a ~ ¢ t=18a N ¢ t;=18a
> > _ > L _
i
< | b G|l
N N -04f TT’HT ﬁT 7 S N {
P B © T1 ’] J =¥
= 2 _osl = —02r s
x x x .
Zost
. . . . . . . -0.8 . . . . . . . . . . . . . .
-75 =50 =25 0.0 25 5.0 7.5 -75 =50 =25 0.0 2.5 5.0 7.5 -75 -=5.0 =25 0.0 2.5 5.0 7.5
(t—ts2)a?t (t—ts2)a?t (t—ts2)a™?t

FIG. 33. The ratio of the three-point function to the two-point function corresponding to the helicity qPDF forz = 4, 8, 12 and n, = 5.
The upper panels show the real part, while the imaginary part is shown in the lower panels. The results of R are shown as lines.

074504-24



ISOVECTOR PARTON DISTRIBUTION FUNCTIONS OF THE ...

PHYS. REV. D 102, 074504 (2020)

1.4
12 M P, =1.84Gev ! R Tnn=2a tmn=da
= m t R{Itr Tmin=24, tmin=>5a
% Lor m t Riitl Tmin=24, tmin=06a
> f
0.8
Q t
- 0.6 i
N
< 04f #
T #
g ¢
o 0.2 "
«
0.0 ¢ o e e e e e ...
0 > 10 15 20 25
z/a
1.4
1.2 H P, = 2.31 GeV t R?t' Tmin=24a, tmin=4a
= t R?tr Tmin=2a, tmin=>5a
% Lof m t R?tl Tmin=2a, tmin=06a
>
0.8
N M
- 0.6
N
< 04f *
9 i
o 0.2 * y
001 **#*ﬁ#d»n -------
0 5 10 15 20 25

z/a

0.1
P, = 1.84 GeV
—~ 0.0 fmmeme
% 0.1 R .
—01lk .
> X
Q —o2f ¥ M
N iy
S 03T w # w # { R{itr Tmin=2a, tmin=4a
g —-0.4+ { Rlitr Tmin=24a, tmin=5a
{ R{it’ Tmin=2a, tmin=6a
—02% 5 10 15 20 25
z/a
0.1
P, = 2.31 GeV
0.0 “« "
: w %"
N * L] % L
= o1} gt
ST m {
' -o0.2f N ﬂ
5 N
= 031 ﬂ t RIt Tmin=2a, tmin=4a
g —-0.4+ { R{itr Tmin=24a, tmin=5a
{ R{it’ Tmin=2a, tmin=6a
—05% 5 10 15 20 25
z/a

FIG. 34. The real (left) and the imaginary (right) parts of the bare matrix corresponding to the helicity gPDF. The upper panels
correspond to n, = 4, while the lower panels correspond to n, = 5. See text for further details.

[1] D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang,
Phys. Rev. Lett. 113, 012001 (2014).
[2] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett.
115, 092002 (2015).
[3] A. Adare et al. (PHENIX Collaboration), Phys. Rev. D 90,
012007 (2014).
[4] A. Adare et al. (PHENIX Collaboration), Phys. Rev. D 93,
011501 (2016).
[5] C. Adolph et al. (COMPASS Collaboration), Phys. Rev. D
87, 052018 (2013).
[6] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett.
113, 072301 (2014).
[7]1 A. Adare et al. (PHENIX Collaboration), Phys. Rev. D 93,
051103 (2016).
[8] J. Dudek et al., Eur. Phys. J. A 48, 187 (2012).
[9] A. Accardi et al., Eur. Phys. J. A 52, 268 (2016).
[10] S. Chatrchyan et al. (CMS Collaboration), Science 338,
1569 (2012).
[11] G. Aad et al. (ATLAS Collaboration), Science 338, 1576
(2012).
[12] X. Ji, Phys. Rev. Lett. 110, 262002 (2013).
[13] X. Ji, Sci. China Phys. Mech. Astron. 57, 1407 (2014).
[14] Y.-Q. Ma and J.-W. Qiu, Phys. Rev. D 98, 074021 (2018).

[15] Y.-Q. Ma and J.-W. Qiu, Phys. Rev. Lett. 120, 022003
(2018).

[16] A.V. Radyushkin, Phys. Rev. D 96, 034025 (2017).

[17] K. Orginos, A. Radyushkin, J. Karpie, and S. Zafeiropoulos,
Phys. Rev. D 96, 094503 (2017).

[18] X. Ji, J.-H. Zhang, and Y. Zhao, Phys. Rev. Lett. 120,
112001 (2018).

[19] T. Ishikawa, Y.-Q. Ma, J.-W. Qiu, and S. Yoshida, Phys.
Rev. D 96, 094019 (2017).

[20] J.-W. Chen, T. Ishikawa, L. Jin, H.-W. Lin, Y.-B. Yang, J.-H.
Zhang, and Y. Zhao, Phys. Rev. D 97, 014505 (2018).

[21] M. Constantinou and H. Panagopoulos, Phys. Rev. D 96,
054506 (2017).

[22] C. Alexandrou, K. Cichy, M. Constantinou, K.
Hadjiyiannakou, K. Jansen, H. Panagopoulos, and F.
Steffens, Nucl. Phys. B923, 394 (2017).

[23] I. W. Stewart and Y. Zhao, Phys. Rev. D 97, 054512 (2018).

[24] Y.-S. Liu et al. (Lattice Parton Collaboration), Phys. Rev. D
101, 034020 (2020).

[25] T. Izubuchi, X. Ji, L. Jin, I. W. Stewart, and Y. Zhao, Phys.
Rev. D 98, 056004 (2018).

[26] Y.-S. Liu, J.-W. Chen, L. Jin, R. Li, H.-W. Lin, Y.-B. Yang,
J.-H. Zhang, and Y. Zhao, arXiv:1810.05043.

074504-25



ZHOUYOU FAN et al.

PHYS. REV. D 102, 074504 (2020)

[27] H.-W. Lin, J.-W. Chen, X. Ji, L. Jin, R. Li, Y.-S. Liu, Y.-B.
Yang, J.-H. Zhang, and Y. Zhao, Phys. Rev. Lett. 121,
242003 (2018).

[28] J.-W. Chen, L. Jin, H.-W. Lin, Y.-S. Liu, Y.-B. Yang, J.-H.
Zhang, and Y. Zhao, arXiv:1803.04393.

[29] C. Alexandrou, K. Cichy, M. Constantinou, K.
Hadjiyiannakou, K. Jansen, A. Scapellato, and F. Steffens,
Phys. Rev. D 99, 114504 (2019).

[30] C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A.
Scapellato, and F. Steffens, Phys. Rev. D 98, 091503 (2018).

[31] C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A.
Scapellato, and F. Steffens, Phys. Rev. Lett. 121, 112001
(2018).

[32] B. Jod, J. Karpie, K. Orginos, A. Radyushkin, D. Richards,
and S. Zafeiropoulos, J. High Energy Phys. 12 (2019) 081.

[33] B. Jo, J. Karpie, K. Orginos, A.V. Radyushkin, D.G.
Richards, and S. Zafeiropoulos, arXiv:2004.01687.

[34] J.-H. Zhang, J.-W. Chen, L. Jin, H.-W. Lin, A. Schr, and Y.
Zhao, Phys. Rev. D 100, 034505 (2019).

[35] T. Izubuchi, L. Jin, C. Kallidonis, N. Karthik, S. Mukherjee,
P. Petreczky, C. Shugert, and S. Syritsyn, Phys. Rev. D 100,
034516 (2019).

[36] R. S. Sufian, J. Karpie, C. Egerer, K. Orginos, J.-W. Qiu,
and D. G. Richards, Phys. Rev. D 99, 074507 (2019).

[37] B. Jo6, J. Karpie, K. Orginos, A.V. Radyushkin, D.G.
Richards, R. S. Sufian, and S. Zafeiropoulos, Phys. Rev. D
100, 114512 (2019).

[38] R. S. Sufian, C. Egerer, J. Karpie, R. G. Edwards, B. Jo6,
Y.-Q. Ma, K. Orginos, J.-W. Qiu, and D. G. Richards, Phys.
Rev. D 102, 054508 (2020).

[39] Y. Zhao, Int. J. Mod. Phys. A 33, 1830033 (2018).

[40] K. Cichy and M. Constantinou, Adv. High Energy Phys.
2019, 3036904 (2019).

[41] C. Monahan, Proc. Sci., LATTICE2018 (2018) 018 [arXiv:
1811.00678].

[42] X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang, and Y. Zhao,
arXiv:2004.03543.

[43] E. Follana, Q. Mason, C. Davies, K. Hornbostel, G.P.
Lepage, J. Shigemitsu, H. Trottier, and K. Wong (HPQCD,
UKQCD Collaborations), Phys. Rev. D 75, 054502 (2007).

[44] A. Bazavov et al. (MILC Collaboration), Phys. Rev. D 87,
054505 (2013).

[45] A. Hasenfratz and F. Knechtli, Phys. Rev. D 64, 034504
(2001).

[46] R. Gupta, Y.-C. Jang, H.-W. Lin, B. Yoon, and T.
Bhattacharya, Phys. Rev. D 96, 114503 (2017).

[47] T. Bhattacharya, V. Cirigliano, S. Cohen, R. Gupta, A.
Joseph, H.-W. Lin, and B. Yoon (PNDME Collaboration),
Phys. Rev. D 92, 094511 (2015).

[48] T. Bhattacharya, V. Cirigliano, R. Gupta, H.-W. Lin, and B.
Yoon, Phys. Rev. Lett. 115, 212002 (2015).

[49] T. Bhattacharya, S.D. Cohen, R. Gupta, A. Joseph, H.-W.
Lin, and B. Yoon, Phys. Rev. D 89, 094502 (2014).

[50] R. Babich, J. Brannick, R. C. Brower, M. A. Clark, T. A.
Manteuffel, S. F. McCormick, J. C. Osborn, and C. Rebbi,
Phys. Rev. Lett. 105, 201602 (2010).

[51] J.C. Osborn, R. Babich, J. Brannick, R.C. Brower,
M. A. Clark, S.D. Cohen, and C. Rebbi, Proc. Sci.,
LATTICE2010 (2010) 037 [arXiv:1011.2775].

[52] R.G. Edwards and B. Joo (SciDAC LHPC, UKQCD
Collaborations), Nucl. Phys. B, Proc. Suppl. 140, 832
(2005).

[53] G.S. Bali, B. Lang, B. U. Musch, and A. Schaefer, Phys.
Rev. D 93, 094515 (2016).

[54] J.-W. Chen, T. Ishikawa, L. Jin, H.-W. Lin, Y.-B. Yang, J.-H.
Zhang, and Y. Zhao, Chin. Phys. C 43, 103101 (2019).

[55] W. Wang, J.-H. Zhang, S. Zhao, and R. Zhu, Phys. Rev. D
100, 074509 (2019).

[56] J.-H. Zhang, X. Ji, A. Schr, W. Wang, and S. Zhao, Phys.
Rev. Lett. 122, 142001 (2019).

[57] T.-J. Hou et al., arXiv:1912.10053.

[58] R. D. Ball et al. (NNPDF Collaboration), Eur. Phys. J. C 77,
663 (2017).

[59] J.-W. Chen, S. D. Cohen, X. Ji, H.-W. Lin, and J.-H. Zhang,
Nucl. Phys. B911, 246 (2016).

[60] O. Nachtmann, Nucl. Phys. B63, 237 (1973).

[61] B. L. Ioffe, Phys. Lett. 30B, 123 (1969).

[62] E.R. Nocera, R. D. Ball, S. Forte, G. Ridolfi, and J. Rojo
(NNPDF Collaboration), Nucl. Phys. B887, 276 (2014).

[63] J.J. Ethier, N. Sato, and W. Melnitchouk, Phys. Rev. Lett.
119, 132001 (2017).

[64] A. Abdel-Rehim et al., Phys. Rev. D 92, 114513 (2015); 93,
039904(E) (2016).

074504-26



