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Abstract. Motivated by observations in physics, mirror symmetry is the concept that
certain manifolds come in pairs X and Y such that the complex geometry on X mirrors
the symplectic geometry on Y . It allows one to deduce symplectic information about Y
from known complex properties of X. Strominger-Yau-Zaslow [SYZ96] described how such
pairs arise geometrically as torus fibrations with the same base and related fibers, known
as SYZ mirror symmetry. Kontsevich [Kon95] conjectured that a complex invariant on X
(the bounded derived category of coherent sheaves) should be equivalent to a symplectic
invariant of Y (the Fukaya category, see [Aur14], [FOOO09a], [MTFJ19], [cfFc]). This is
known as homological mirror symmetry. In this project, we first use the construction of
“generalized SYZ mirrors” for hypersurfaces in toric varieties following Abouzaid-Auroux-
Katzarkov [AAK16], in order to obtain X and Y as manifolds. The complex manifold is
the genus 2 curve Σ2 (so of general type c1 < 0) as a hypersurface in its Jacobian torus. Its
generalized SYZ mirror is a Landau-Ginzburg model (Y, v0) equipped with a holomorphic
function v0 : Y → C which we put the structure of a symplectic fibration on. We then
describe an embedding of a full subcategory of DbCoh(Σ2) into a cohomological Fukaya-
Seidel category of Y as a symplectic fibration. While our fibration is one of the first nonexact,
non-Lefschetz fibrations to be equipped with a Fukaya category, the main geometric idea in
defining it is the same as in Seidel’s construction for Fukaya categories of Lefschetz fibrations
in [Sei08] and in Abouzaid-Seidel [AS].

Declarations of interest: none. Highlights:

• Homological mirror symmetry result for the genus 2 curve
• Proved fully faithful embedding on the cohomological level from complex side to
sympectic side

Date: August 28, 2020.
Key words and phrases. Differential geometry, Symplectic geometry, Symplectic aspects of mirror sym-

metry, homological mirror symmetry, derived categories, and Fukaya category.
1

ar
X

iv
:1

9
0
8
.0

4
2
2
7
v
3
  
[m

at
h
.S

G
] 

 2
6
 A

u
g
 2

0
2
0



Contents

List of Figures 1
1. Context and main result 2
1.1. Context 2
1.2. Main result 2
1.3. Structure of the paper 4
1.4. Acknowledgements 5
2. Left arrow of main theorem: fully-faithful embedding Db

LCoh(V ) →֒H0FS(V ∨) 5
2.1. The symplectic side 5
2.2. The complex side 12
2.3. The fully faithful functor 15
3. Construction of symplectic fibration on (Y, v0) 17
3.1. Finding a Lagrangian torus fibration 18
3.2. Background needed to define the generalized SYZ mirror 22
3.3. The definition of (Y, v0) 25
3.4. Definition of complex coordinates on Ỹ /ΓB 27
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2 CATHERINE CANNIZZO

1. Context and main result

1.1. Context. Progress in mirror symmetry began with compact Calabi-Yau manifolds
(c1 = 0). In particular, the geometric mirror for those of complex dimension three can be
constructed from T-duality three times [SYZ96] by inverting the radius of each S1 in a torus
fiber to go from the A-model → B-model → A-model → B-model.

For Fano manifolds with c1 > 0, [HKK+03] describe a physical reason why a mirror should
be a Landau-Ginzburg model, which for mathematicians is a non-compact complex manifold
M equipped with a holomorphic function W : M → C called a superpotential. In [CO06],
they explicitly compute the superpotential in the case of Fano toric varieties to be a weighted
sum of discs according to their intersections with the toric divisors.
Homological mirror symmetry (HMS) [Kon95] has been proven in the Calabi-Yau case

[She15], [Sei15], [Fuk02]. Proven examples in the Fano case include [Abo09], [Ued06],
[AKO08], [She16]. In the case of general type (c1 < 0), Landau-Ginzburg models are also nat-
ural candidates to satisfy HMS. The example of general type in this paper is a hypersurface
of an abelian variety, based on work of [AAK16] for hypersurfaces of toric varieties.
In this paper we consider homological mirror symmetry for a genus 2 curve as a hyper-

surface in an abelian variety based on [AAK16], which was speculated in [Sei12]. Its mirror
Landau-Ginzburg model is one of the first non-exact (symplectic fibers are compact), non-
monotone, non-Lefschetz symplectic fibrations to be equipped with a Fukaya category. The
method follows that of [Sei08] (for Lefschetz fibrations), [AS19] (introduction of U-shaped
curves for non-compact Lagrangians), and [AS] (using categorical localization to define the
morphism groups).

We consider the B-model on the genus 2 curve. Seidel [Sei11] proves HMS when the genus
2 curve is on the A-model. One connection between his mirror and our mirror is that their
superpotentials have the same critical locus given by three P1’s identifying their north poles
to a point and their south poles to a point. This is known as the “banana manifold.”

1.2. Main result.

Definition 1.1. A symplectic fibration is a symplectic manifold (Y, ω) with a fibration such
that fibers of the fibration are symplectic with respect to ω.

Theorem 1.2 ([Can19]). Let V be the abelian variety (C∗)2/ΓB where ΓB := Z 〈γ′, γ′′〉 for

(1.1) γ′ :=

(

2
1

)

, γ′′ :=

(

1
2

)

acts on (C∗)2 by

(1.2) Z2 × (C∗)2 ∋ (γ1, γ2) · (x1, x2) 7→ (τ−γ1x1, τ
−γ2x2) ∈ (C∗)2.

for τ ∈ R+
≪1. Let L → V be the ample line bundle (C∗)2 × C/ΓB where

(1.3) γ · (x1, x2, v) := (γ · (x1, x2), x
(

2 1
1 2

)−1

γ
τ
− 1

2
γt

(

2 1
1 2

)−1

γ
v)

and with nonzero section s : V → L. Then H := s−1(0) is a complex genus 2 curve and the
following diagram commutes, with fully-faithful vertical embeddings corresponding to HMS
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on cohomological categories.

Db
LCoh(V )

ι∗
✲ Db

LCoh(H)

H0Fuk(V ∨)

HMS on V

❄

∩

∪
✲ H0FS(Y, v0)

HMS on H = Σ2

❄

∩

• where V ∨ is the SYZ dual abelian variety to V ,
• (Y, v0) is the ΓB-quotient of a toric variety of infinite type and v0 = xyz is a ΓB-invariant
product of the local toric coordinates,

• (Y, v0) is a Landau-Ginzburg model which is equipped with the structure of a symplectic
fibration via symplectic form ω defined in Definition 3.28,

• (Y, v0) has generic fiber V ∨ degenerating to the singular fiber CP2(3)/ΓB,
• Db

LCoh denotes the full subcategory generated by {Li[n]}i,n∈Z,
• ι∗ denotes the restriction functor of line bundles to the hypersurface H,
• ∪ denotes the functor that parallel transports Lagrangians in fiber V ∨ around U-shapes in
the base of v0 using the symplectic horizontal distribution (TV ∨)ω, and

• FS stands for Fukaya-Seidel category and denotes the Fukaya category of the Landau-
Ginzburg model (Y, v0).

Remark 1.3 (Relevance). This cohomology-level result already gives a lot of information.
The product structure in Floer theory can be computed by counting triangles, and is mirror
to the ring structure on Db

L|H
Coh(H). Then since L|H is the canonical bundle of the genus

2 curve, this determines the product structure on the canonical ring
⊕

i≥0H
0(Σ2,Li) of

functions on H = Σ2. Once we know this ring structure, we can describe embeddings of the
genus 2 curve into projective space CPN−1 where N = h0(Σ2,Lk) for a very ample power
of L, using its sections. As a subvariety in projective space, functions on the genus 2 curve
become polynomials, i.e. restrictions of homogeneous polynomials on the ambient CPN−1.
That is, degree m homogeneous polynomials are sections of O(m) for positive integers m,
which in turn are identified with sections of L|mk

Σ2
via this embedding.

Remark 1.4 (Previous related work). HMS for abelian varieties of arbitrary dimension
and quotient lattice was proven in [Fuk02] using more advanced machinery. We present
a different argument for this particular case in the left vertical arrow of the Theorem 1.2.
Seidel proved HMS with the A-model of the genus 2 surface [Sei11], i.e. the symplectic
side. Seidel’s complex mirror is a crepant resolution of C3/Z5, quotienting by rotation and
resolving the orbifold singularity without changing the first Chern class. The critical locus
of the superpotential in his paper and of the mirror here are the same. He also speculated
in [Sei12] HMS for the genus 2 curve on the complex side.

Remark 1.5 (Future directions). One future direction is to relate Seidel’s genus 2 mirror to
ours. Another is enhancing the theorem to A∞-functors, namely proving that higher order
composition maps match in addition to objects, morphisms and composition. Powers of L
split-generate the derived category so an A∞-enhancement of the result would allow us to
extend the functors to iterated mapping cones and hence would give a HMS statement for
the whole derived category.
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1.3. Structure of the paper. In Section 2 we describe the fully-faithful embedding on
abelian varieties, that is, the left vertical arrow of Theorem 1.2. This is Lemma 2.20.
In Section 3 we construct (Y, v0) and a symplectic form defined in Equation 3.32 on Y .

The construction generalizes that in [AAK16] for mirrors of hypersurfaces of toric varieties,
to the case of a hypersurface of an abelian variety. The idea is that a hypersurface may not
admit a special Lagrangian torus fibration, as needed to use the SYZ mirror construction;
however we may be able to consider it as sitting inside of something that does. A hypersurface
H = s−1(0) of a toric variety V has complex codimension 1, so blowing up V along H doesn’t
produce anything new. However, X := BlH×{0}V ×C works; with the holomorphic map and
fibration given by projection to the last C-coordinate, y : BlH×{0}V × C → C, we find that
y−1(0) ⊃ Crit(y) ∼= H. See Theorem 3.4.
Via the log-norm map on V and the moment map under the S1-action on C, [AAK16]

construct a Lagrangian torus fibration on this blow-up by cut-and-paste operations on the
moment polytope of V ×C, for a suitably defined symplectic form. Morever, the hypersurface
H ⊂ V gives a degenerating family s−1

τ (0) of tropical hypersurfaces under the logτ -norm
map, see Definition 3.6; the tropical limit curve is the dual cell complex of some polyhedral
decomposition P . Using [SYZ96] one can then construct a dual Lagrangian torus fibration
from a polytope whose charts encode wall-crossing behavior, as well as a toric degeneration
via P (similar to the Gross-Siebert program, e.g. [Gro13] and [Gro01]) which will ultimately
be the superpotential on the mirror. See Equation 3.10. The difference in our setting is that
we consider an abelian variety, or the quotient of a toric variety by a lattice, so we must keep
track of that lattice in the constructions. The mirror is hence a quotient of a toric variety
of infinite type.

The symplectic form is defined in pieces on the moment polytope in terms of the norms of
the toric coordinates, and then glued together by analyzing the bump function derivatives
to ensure the 2-form from the constructed Kähler potential remains non-degenerate.

In Section 4 we equip the symplectic fibration (Y, v0) with a Fukaya-Seidel category, see
Definition 4.6. The moduli spaces are defined using regular and generic choices. In the future,
it may be possible to extend our definition to include non-regular choices, using e.g. theory
developed in [FOOO09a], [FOOO09b], [Fuk20], and [FOOO20]. Resources for doing this
using polyfolds (which may be equivalent) include [WL] and [cfFc]; for using neck-stretching
there are the references [CO18, §2.3] and [FW18]. Resources for self-gluing a curve to itself
via “connectors” to put a smooth structure on a moduli space near a multiply-covered curve
include Gluing a flow line to itself, which is also discussed in Obstruction Bundle Gluing.

In Section 5 we compute the differential in this Fukaya-Seidel category. This uses several
techniques. The rule that enables us to do so is the Leibniz rule stated in Lemma 5.13; we
can find the differential on all Lagrangians in the category by calculating it for only a subset
of Lagrangians. One Lagrangian in this subset is the preimage of a moment map value,
and discs bounded by this Lagrangian can be counted by existing theory. Since we defined
the differential in Section 4 using generic choices, and we want to compute the differential
using this specific Lagrangian and J given by multiplication by i (which is not regular), we
prove Lemma 5.1 which builds a cobordism between the generic- and specific-choice moduli
spaces. In particular, in the cobordism we vary both the almost complex structure and the
Lagrangian boundary conditions.

At this point, we have now reduced the calculation of the differential to an open Gromov-
Witten invariant of curves bounded by the one Lagrangian which is the preimage of a moment
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map value, and one marked point; the almost complex structure is multiplication by i. The
disk-only configurations can be counted using [CO06], and the disk-and-sphere configurations
can be counted using [Cha11] and [KL19]. These are the only possible configurations by
Corollary 4.53, where we exclude all other configurations. As we sum over all possible relative
homology classes, we see that these moduli spaces are all isomorphic via the lattice group
action coming from the abelian variety and can hence compute the intermediary differential
with the moment map Lagrangian in Lemma 5.12. From here we can at last compute the
differential more generally in Lemma 5.14.

In Section 6 we prove the fully-faithful embedding result for the genus 2 curve on the co-
homological level, which is the right vertical arrow in Theorem 1.2, using that the differential
is proportional to the theta function.

1.4. Acknowledgements. I would first like to thank my thesis advisor Denis Auroux
for the immensely helpful mathematical advice, discussions, and support on this project.
This project had a lot of moving parts and I benefited from the expertise of many in dis-
cussions during conferences and research talks. I thank Mohammed Abouzaid, Melissa Liu,
Katrin Wehrheim, Kenji Fukaya, Mark McLean, Charles Doran, Alexander Polishchuk, Sheel
Ganatra, Heather Lee, Sara Venkatesh, Haniya Azam, Zack Sylvan, Jingyu Zhao, Roberta
Guadagni, Weiwei Wu, Wolfgang Schmaltz, Zhengyi Zhou, Benjamin Filippenko, Hiro Lee
Tanaka, Andrew Hanlon, and Rodrigo Barbosa for fruitful mathematical discussions. I
thank the referee for helpful and thorough comments. I also thank the Fields Institute for
hosting me as a Long Term Visitor during their thematic program on Homological Mir-
ror Symmetry in Fall 2019, which resulted in several potential collaborations. This work
was partially supported by NSF grants DMS-1264662, DMS-1406274, and DMS-1702049,
and by a Simons Foundation grant (#385573, Simons Collaboration on Homological Mirror
Symmetry). Lastly, P. Taylor’s commutative diagrams package was used in this paper.

2. Left arrow of main theorem: fully-faithful embedding

Db
LCoh(V ) →֒H0FS(V ∨)

2.1. The symplectic side. We define the action-angle coordinates corresponding to a
T 2-action on the abelian surface. All Lagrangians will be expressed in these coordinates. We
will find that the image of the moment map is the same as the toric polytope, an instance of
Delzant’s theorem e.g. see [MS17]. Note that a usual moment map would land in Rn where
n is the dimension of the torus, but here the moment map will land in R2/ΓB instead. This
is known as a quasi-Hamiltonian action.

Claim 2.1 (Symplectic coordinates). Let V be the abelian variety (C∗)2/ΓB as above and
V ∨ the SYZ mirror abelian variety with complex coordinates x and y. Consider the stan-
dard positive rotation T 2-action i.e. (e2πiα1x, e2πiα2y) for (α1, α2) ∈ T 2 acting on (x, y). Let
(ξ1, ξ2, θ1, θ2) denote the action-angle coordinates, so ξ1, ξ2 are the quasi-moment map coor-
dinates for the above quasi-Hamiltonian T 2-action with respect to a symplectic form (which
will be the restriction to a fiber of a symplectic form on Y , defined below). Then ξi = logτ |xi|
for (x1, x2) ∈ V = (C∗)2/ΓB, hence γ ∈ ΓB acts on (ξ1, ξ2) by translating in the negative
direction −γ. Lastly θ1 := arg(x) and θ2 := arg(y).

Proof. Since the Lagrangian torus fibration on X is special with respect to the n-form Ω =
d log x1 ∧ d log x2 ∧ dy for n = 3, we have integral affine structures on the bases of both
fibrations, for X and for Y . The complex affine structure on the B-model corresponds to the
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symplectic affine structure on the A-model. In the construction of SYZ mirror symmetry,
e.g. cf [Aur07], the complex affine structure on one side (the log |·| of the complex coordinates)
is mirror to the symplectic affine structure on the other side (the moment map). Hence
ξi = logτ |xi|. Since we rotate the complex coordinates x and y, their angles are the remainder
of the action-angle coordinates. So the symplectic form on V ∨ in these coordinates is dξ∧dθ.
The statement about the ΓB-action follows from the ΓB-action on V , namely γ · (x1, x2) =
(τ−γ1x1, τ

−γ2x2). Thus taking the logarithm base τ implies γ acts additively in the negative
direction. �

Definition 2.2 (Setting up notation). Let TB := R2/ΓB where γ acts by negative translation
−γ, and TF := R2/Z2. Thus V ∨ = TB ×TF ∋ (ξ1, ξ2, θ1, θ2) with symplectic form dξ1∧dθ1+
dξ2 ∧ dθ2. Furthermore, let λ denote the linear map on R2 in standard bases given by
(

2 1
1 2

)−1

=

(

2
3

−1
3

−1
3

2
3

)

. In particular, λ(γ′) = (1, 0) and λ(γ′′) = (0, 1). For ease of

notation to follow we also define κ(γ) := −1
2
〈γ, λ(γ)〉.

Remark 2.3 (Intuition for choice of Lagrangians). HMS for abelian varieties was previously
known in more generality by Fukaya [Fuk02]. In his paper, he uses Family Floer theory to
define a line bundle E by requiring Ep = Ext(E ,Op) to be defined as the corresponding
hom set on the mirror side, i.e. C × (Lp ∩ L) where L is a linear Lagrangian on the torus,
Lp is vertical (infinite slope), and this intersection has one point. He then constructs a
holomorphic structure on this line bundle.

Here we will write explicit linear Lagrangians first, which will be two-dimensional ana-
logues of those considered in [PZ98]. In [PZ98] they consider a square depicting (T 2,

∫

T 2 ω =
a) as mirror to elliptic curve with complex structure C/Z + iaZ, on which lines of slope k
on the square are mirror to Lk powers of a degree 1 line bundle on the mirror elliptic curve.
Similarly our linear Lagrangians denoted ℓi will be mirror to Li for the L defined in (1.3).

Remark 2.4 (Intuition for choice of line bundles). We will see how we arrived at the
definition of the holomorphic line bundle L → V in Theorem 1.2. Its transition functions on
different γ translates are given by:

(γ, x) 7→ xλ(γ)τκ(γ)

where λ ∈ hom(ΓB,Z2) = hom(ΓB,Γ
∗
F ) corresponds to the first Chern class and is

(

2 1
1 2

)−1

in Theorem 1.2. This is because the first Chern class arises as follows:

H2(V ;Z) = H2(TB × TF ) ∼= ⊕iH
i(TB)⊗H2−i(TF )

∴ c1(L) ∈ H2(V ;Z) ∩H1,1(V ) =⇒ c1(L) ∈ H1(TB;Z)⊗H1(TF ;Z)

= hom(ΓB,Z)⊗ hom(ΓF ,Z)

= Γ∗
B ⊗ Γ∗

F(2.1)

= hom(ΓB,Γ
∗
F
∼= Z2))

=⇒ c1(L) ∈ hom(ΓB,Z
2)

by Corollary 2.14 (which holds for our particular choice of complex structure on V deter-
mined by ΓB) and Claim 2.11.
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Lemma 2.5. The following defines a full subcategory of Fuk(V ∨). The objects are

(2.2) ℓk := {(ξ1, ξ2, θ1, θ2) ∈ V ∨ | (θ1, θ2) ≡ −k
(

2 1
1 2

)−1(
ξ1
ξ2

)

mod Z2}

The morphisms HF (ℓi, ℓj) have rank (i − j)2 for i 6= j and HF (ℓi, ℓi) ∼= H(T 2). The
multiplicative structure for CF (ℓj, ℓk)⊗ CF (ℓi, ℓj) → CF (ℓi, ℓk) is

〈

µ2(p1, p2), q
〉

=
∑

γA∈ΓB

τ
− l

l′l′′
·κ
(

l′′

l
γe,l+γA

)

summing over possible intersection points of ℓi∩ℓj, where l′ = j− i, l′′ = k−j, and l = k− i.
Proof.

Objects

The definition of ℓk is well-defined because the minus sign ensures that it’s well-defined as
a graph modulo group action; ΓB acts negatively on (ξ1, ξ2), so in the theta coordinates it
becomes the standard positive additive Z2 action in the angular coordinates.

Secondly, the ℓk are Lagrangian. Given a path

p(t) := (ξ1(t), ξ2(t),−kλ(ξ(t))1,−kλ(ξ(t))2) : (−ǫ, ǫ) → V ∨

consider the vector d
dt
|t=0p(t) tangent to ℓk. It’s of the form

(c1, c2,−kλ(c)1,−kλ(c)2) ≡ c1∂ξ1 + c2∂ξ2 − kλ(c)1∂θ1 − kλ(c)2∂θ2

Hence the tangent bundle Tℓk is spanned by the vectors with c = (1, 0) and c = (0, 1):

Tℓk = R

〈

∂ξ1 −
2k

3
∂θ1 +

k

3
∂θ2 , ∂ξ2 +

k

3
∂θ1 −

2k

3
∂θ2

〉

=: R 〈X1,0, X0,1〉

The symmetry of the matrix representing λ implies that dξ ∧ dθ of these two vectors is
zero.

(2.3)

ω (X1,0, X0,1) =
∑

i=1,2

dξi(X1,0)dθi(X0,1)− dθi(X1,0)dξi(X0,1)

=

(

1 · k
3
− −2k

3
· 0
)

+

(

0 · −2k

3
− k

3
· 1
)

= (k/3)− (k/3) = 0

and ω(X1,0, X1,0) = 0 = ω(X0,1, X0,1) by skew-symmetry of ω. Thus

ω|ℓk ≡ 0

and the ℓk are Lagrangian. Note that an alternative proof would be to show ℓk is Hamiltonian
isotopic to ℓ0.

Morphisms: geometric set-up

A 4-torus is aspherical and there are no bigons between two of these linear Lagrangians
on a 4-torus, which prohibits sphere bubbling and strip-breaking respectively. The latter
statement follows because two planes in R4 which intersect in a finite number of points can
only intersect in one point, and strip-breaking occurs on strips between two Lagrangians.
These linear Lagrangians also do not bound discs, which excludes the remaining limiting
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behavior in Gromov compactness for discs with Lagrangian boundary condition, namely
disc bubbling.

Transversely intersecting Lagrangians

Thus HF (ℓi, ℓj) = CF (ℓi, ℓj) since the differential is zero. So Floer cohomology is freely
generated by intersection points of ℓi and ℓj.

(2.4)

ℓi ∩ ℓj = {(ξ1, ξ2, θ1, θ2) ∈ TB × TF | (θ1, θ2) ≡ −iλ(ξ) ≡ −jλ(ξ) mod Z2}
⇐⇒ ξ ∈ (j − i)−1ΓB/ΓB

∴ |ℓi ∩ ℓj | = (j − i)2

Notation to be used throughout

Notationally, we write a generic intersection point as
(

γi∩j
j − i

,−iλ
(

γi∩j
j − i

))

∈ ℓi ∩ ℓj

where γi∩j = e1γ
′ + e2γ

′′ for 0 ≤ e1, e2 < (j − i)2 (since the lattice ΓB has index (j − i)2 in
(j − i)−1ΓB). Letting l := j − i and 1 ≤ e ≤ l2 index the possible choices of (e1, e2) in γi∩j,
we write the collection of all the intersection points as

{(γe,l
l
,−iλ

(γe,l
l

))}

0≤e<(j−i)2

(Note that we could’ve taken j instead of i as the coefficient on the λ, and otherwise use the
same notation.)

Non-transversely intersecting Lagrangians

The above holds when i 6= j. Since Lagrangians are half-dimensional, if they intersect
transversely then their intersection is 0-dimensional and we have a discrete set of points. In
the case i = j, we perturb ℓi by a Hamiltonian as in standard Floer theory. That is, we
introduce a Hamiltonian function H and flow one Lagrangian along the symplectically dual
vector field XH to dH, until the two Lagrangians intersect transversely, c.f. the introductory
paper to Fukaya categories [Aur14]. Furthermore, we want to take care how we perturb
around the intersection points that are already transverse. We pick a 1-form φ defined to
be zero near boundary punctures on the domain curve D where there is no problem and
the intersection is transverse, and nonzero near punctures where the Lagrangians do not
intersect transversally. Since we have moved one Lagrangian, we keep track of how this
affects the Cauchy-Riemann equation. Holomorphic maps u should satisfy the modified
Cauchy-Riemann equation

(2.5) (du−XH ◦ φ)0,1 = 0

with a modified asymptotic condition: at a puncture (the preimage in D of a perturbed
intersection point) the map u converges to a trajectory of XH from ℓi to ℓj. So that the
elements of hom sets are again intersection points, we can instead flow the image of u
along XH to obtain a Cauchy-Riemann equation (duH)

0,1 with modified almost complex
structure and boundary conditions. If we take the Hamiltonian to be a Morse function,
then intersection points of the 0-section of T ∗ℓi and the graph of df are critical points of
f : T 2 → T 2. By Morse theory, HF (ℓi, ℓi) ∼= H(T 2).



HMS ON COORDINATE RINGS FOR A COMPLEX GENUS 2 CURVE 9

Existence of regularity, moduli spaces, independence of choices

The standard complex structure J0 = i is regular. This is because the linearized ∂J0
operator at a holomorphic map u ∈ π2(V

∨,∪i∈Iℓi =: L) for some index set I is ∂ on
∧(0,1)((D, ∂D), (u∗TV ∨, u∗TL)) ⊂ Ω(0,1)(D) where smoothness follows from considering smooth
maps u, by elliptic regularity. However, a Riemann surface has trivial H2,0 since there are no
(2, 0) forms (so no (0, 2) forms either). Thus 0 = H(1,0)(D) = ker(∂)/ Im(∂) =

∧1,0(D)/ Im(∂)
hence the image of the ∂-operator is surjective.

In particular, moduli spaces of k-pointed i-holomorphic discs are smooth orbifolds, which
we can take the 0-dimensional part of and count. The structure map µk which inputs k
intersection points and outputs one intersection point, counts holomorphic polygons with
vertices mapping to those intersection points with boundary on the corresponding intersect-
ing Lagrangians. Furthermore:

Lemma 2.6. There exists a dense set Jreg ⊂ J (V ∨, ω) of ω-compatible almost complex
structures J such that, for all J-holomorphic maps u : D → V ∨ with suitable Lagrangian
boundary condition, the linearized ∂-operator Du is surjective.

We postpone the proof to our discussion of regularity below in more generality in Section
4.6 for quasi-invariance of the Fukaya category on regular choices. However here we can
make the stronger statement that the two µ2 counts are equal on the nose.

Lemma 2.7. The µ2 for two regular almost-complex structures J1 and J2 on V ∨ are equal.

Outline. The proof will rely on arguments from the proof of the previous Lemma 2.6. The
argument will be similar, but the Fredholm problem will have an additional [0, 1] factor in
the Banach bundle setup. So we will obtain a 1-dimensional manifold. There is no other
boundary expected because 1) sphere bubbling cannot happen as π2(T

4) = 0, furthermore 2)
strip breaking would break off a bigon but there are no bigons between two linear Lagrangians
on a torus (all intersection points have the same index since the Lagrangians have constant
slope, whereas a broken strip would have intersection points with indices differing by two) and
3) disc bubbling doesn’t occur because Lagrangians don’t bound discs on a torus (since π2 is
preserved upon taking the universal cover of the torus which is R4 so has no π2). Since the
signed boundary of a 1-dimensional manifold is zero, we find that #M(p1, p2, p3, [u], J1) =
#M(p1, p2, p3, [u], J2) for regular J1 and J2. (These moduli spaces will be defined in Section
4.5.) The existence of a dense set of regular paths is similar to the proof for the existence of
regular J . �

Since we consider H0Fuk(V ∨) only here, it remains to compute the multiplication µ2.

Counting triangles

We compute µ2 : CF (ℓj, ℓk) ⊗ CF (ℓi, ℓj) → CF (ℓi, ℓk). This will count J-holomorphic
triangles between points p1, p2, q as in Figure 24, weighted by area. We can compute their
area as they wrap around the abelian variety, by lifting to the universal cover.

Use subscript ξ and θ to denote the (ξ1, ξ2) coordinates and (θ1, θ2) coordinates respectively
of a point in the universal cover R4 of V ∨. Choose k > j > i. Fix q =

〈

γk∩i

k−i
,− k

k−i
λ(γk∩i)

〉

to

be one of the (k− i)2 intersection points in the fundamental domain. In particular, the sum
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q p1

p2

ℓ̃i

ℓ̃j

ℓ̃k

Figure 1. A triangle in V ∨ contributing to µ2, viewed in ξ1, ξ2 plane in the
universal cover R4

of the three vectors around the triangle must be zero. Let the ξ coordinates of these vectors
be ξ, ξ′, ξ′′ respectively. Then setting their sum, and the sum of θ-coordinates equal to zero:

(2.6)

ξ + ξ′ + ξ′′ = 0

iξ + jξ′ − k(ξ + ξ′) = 0

∴ ξ′ = − l

l′′
ξ

ξ′′ = − l′

l′′
ξ

Now we apply the constraint that p1 ∈ ℓi ∩ ℓj and p2 ∈ ℓj ∩ ℓk. The first constraint
is equivalent to −jλ(p1ξ) ≡ p1θ (mod Z2) = p1θ + λ(γA) for some γA ∈ ΓB, where the A
indicates we are on the symplectic side.

p1 = (p1ξ, p1θ) =
(γe,l
l

+ ξ,−λ
(

k
γe,l
l

+ iξ
))

∴ −jλ(p1ξ) ≡ p1θ

=⇒ j
γe,l
l

+ jξ = k
γe,l
l

+ iξ + γA(2.7)

=⇒ ξ =
l′′

ll′
γe,l +

γA
l′

Let ξ0 := l′′

ll′
γe,l +

γA
l′
. To compute the area of the triangle, recall that the symplectic

form in action-angle coordinates ξ, θ is ω = dξ ∧ dθ. In particular, in the plane spanned
by ~u := 〈ξ0, 0〉 and ~v := 〈0, λ(ξ0)〉, with respect to these vectors we can write ~qp1 = ~u − i~v
and ~qp2 = l′

l′′
~u − k · l′

l′′
~v so under the parametrization Ψ : (a, b) 7→ a~u + b~v we find that

parallelogram ~qp1 × ~qp2 is Ψ((1,−i)× ( l′

l′′
,−k l′

l′′
)) hence

area(∆p1p2q) =
1

2

∫

~qp1× ~qp2

dξ ∧ dθ

=
1

2

∣

∣

∣

∣

(1,−i)× (
l′

l′′
,−k

l′

l′′
)

∣

∣

∣

∣

∫

[0,1]2
Ψ∗(dξ ∧ dθ)

=
1

2
[−kl′/l′′ + il′/l′′]

∫

[0,1]2
d(a~u+ b~v)ξ ∧ d(a~u+ b~v)θ

= −1

2

(

ll′

l′′

)

ξ0 · λ(ξ0)
∫

[0,1]2
da ∧ db(2.8)

ξ · λ(ξ) =
〈

l′′

ll′
γe,l +

γA
l′
, λ

(

l′′

ll′
γe,l +

γA
l′

)〉

= − 2

l′2
κ

(

l′′

l
γe,l + γA

)
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∴ area(∆p1p2q) =
l

l′l′′
· κ
(

l′′

l
γe,l + γA

)

=⇒
〈

µ2(p1, p2), q
〉

=
∑

γA∈ΓB

τ
− l

l′l′′
·κ
(

l′′

l
γe,l+γA

)

=
〈

µ2(pe′′,l′′ , pe′,l′), pe,l
〉

Count of triangles computes µ2

This concludes the triangle count computation. It remains to prove that these triangles
are holomorphic for some regular J . In the basis ~u,~v above, we can construct the standard
J .

Claim 2.8. Let

J :=

ξ θ












ξ 0 −
(

2 1
1 2

)

θ

(

2 1
1 2

)−1

0

Then (i) J is a compatible almost complex structure, (ii) the triangles described above
bounded by ℓi, ℓj, ℓk are J-holomorphic, and (iii) J is regular.

Proof of Claim 2.8. (i) Let Mλ :=

(

2 1
1 2

)

. Then

J2 =

(

0 −Mλ

M−1
λ 0

)(

0 −Mλ

M−1
λ 0

)

=

(

−I 0
0 −I

)

ω(·, J ·) = (dξ ∧ dθ)(·, J ·)(2.9)

=

(

0 I
−I 0

)









0 −
(

2 1
1 2

)

(

2 1
1 2

)−1

0









=









(

2 1
1 2

)−1

0

0

(

2 1
1 2

)−1









> 0

Thus J2 = −1 and J is compatible with ω, namely ω(·, J ·) is a metric since the matrix
above is positive definite.

(ii) Recall the discussion before Equation (2.8). Taking the universal cover of V ∨, we split
up the resulting linear space into a product of two 2-planes. Let P be the plane spanned
by ~u = 〈ξ0, 0〉 and ~v = 〈0, λ(ξ0)〉 for the choice of ξ0 right below Equation (2.7). Let P ω be
the symplectic orthogonal complement. In particular, P and P ω are J-holomorphic planes

since λ =

(

2 1
1 2

)−1

. We can view the universal cover as P ×P ω ∼= R4 with respect to basis

vectors ~u,~v for P and ~uω, ~vω for P ω. In this basis, we have a J-holomorphic disc in P where
J is a complex structure (as every almost complex structure is integrable in two dimensions)
with the specified Lagrangian boundary condition.

(iii) All the triangles described above are regular, and they are the only discs that appear

in the µ2 count as follows. The Lagrangians ℓ̃i, ℓ̃j, ℓ̃k decompose as products of a straight
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line of slope −i (respectively −j,−k) in P , and a straight line of the same slope in P ω. In
P we obtain the triangles previously considered and projected to P ω the straight lines all
meet in a single point. Therefore the maps in the moduli spaces for µ2, u : D2 → V ∨, have
a triangle image in P and are constant maps in P ω at the triple intersection point of the
three Lagrangians. (Namely, the boundary condition of the projection of the 3-punctured
disc to the latter plane must be constant.) By the Riemann mapping theorem the discs we
considered are unique. The discs are regular by the same argument on page 9 that J0 is
regular. �

This concludes the proof of Lemma 2.5 that the linear Lagrangians and their morphisms
define a full subcategory of the cohomological Fukaya category, and that the multiplicative
structure is as stated in the lemma. �

2.2. The complex side. We now set up the notation describing the abelian variety and
its bounded derived category of coherent sheaves, needed to show that the map in the main
Theorem 1.2, Db

LCoh(V ) →֒H0Fuk(V ∨) given by Li 7→ ℓi defines a fully-faithful functor.
It will be easier to compute cohomology of V if we take log so the lattice acts additively.

Taking the natural logarithm of (x1, x2) ∈ V , which is a locally holomorphic map, where we
set |xi| = τ ξi , we obtain coordinates

(2.10) (ξ1 log τ + 2πi arg(x1), ξ2 log τ + 2πi arg(x2)) ∈ C2/(log τ)ΓB + 2πiZ2

Define ΓF = Z2 then V+ := C2/ log τΓB + 2πiΓF . Then the lattice ΓB now acts by
subtraction on ξ and ΓF acts by addition on 1

2πi
arg(x). Let Γ := (log τ)ΓB + 2πiZ2. Note

that topologically we can express V+ as a product of tori:

V+ ∼= R2
ξ1,ξ2

/ΓB × R2
θx1 ,θx2

/ΓF = TB × TF

where θxi
:= 1

2π
arg(xi). (However, as an abelian variety, V ∼= V+ are not product elliptic

curves.) Namely, we can identify V and V+ ∼= TB × TF by taking log to go from V to V+
and then ( 1

log τ
ℜ(·), 1

2π
ℑ(·)) to get from V+ to TB × TF , see Equation (2.11) below. So V is

diffeomorphic to TB × TF , allowing us to compute its cohomology and choice for c1(L) in
terms of TB × TF , however they are not the same as complex manifolds.
(2.11)

(x1, x2) = (τ ξ1e2πiθx1 , x1 = τ ξ2e2πiθx2 ) 7→ (ξj, θxj
) =

(

1

log τ
log |xj|,

1

2πi
(log xj − log |xj|)

)

The following collection of facts and definitions allows us to prove fully-faithfulness of the
functor on a chosen basis of hom groups on the A- and B-sides.

Claim 2.9 ([Pol03, §1]). Since Hn(V ;Z) ∼= ∧n Hom(Γ,Z), complex line bundles on V are
topologically classified by their first Chern class, which is equivalent to a skew-symmetric
bilinear form E : Γ× Γ → Z.

Claim 2.10 ([BL04, Appendix B]). Holomorphic line bundles on V+ are classified by

(2.12) H1(π1(V+);H
0(O∗

Ṽ+
)) ∼= H1(V+,O∗)

where Ṽ+ = C2.

Claim 2.11 ([Huy05, Lemma 1.2.5], [BL04, Theorem 1.4.1]).

H1,1(V+) ∼= HomC(C
2,C)⊗ HomC(C

2,C)
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Claim 2.12 (C.f [BL04, Proposition 2.1.6]). A complex line bundle L with first Chern class
c1(L) = E admits a holomorphic structure if and only if H(·, ·) := E(i(·), ·) + iE(·, ·) is
Hermitian.

Theorem 2.13 ([Pol03, Theorem 1.3] and [BL04, Appell-Humbert Theorem 2.2.3]). The
Picard group of V+ can be classified by the following set of pairs.

(2.13)
Pic(V+) ∼={(H,α) | H : C2 × C2 → C Hermitian, E(Γ,Γ) ⊆ Z, α : Γ → U(1)

α(γ + γ̃) = exp(πiE(γ, γ̃))α(γ)α(γ̃),where E = ImH}
Corollary 2.14. Holomorphic line bundles on V are in one-to-one correspondence with
pairs (H,α) ∈ Pic(V+) (see Theorem 2.13) where H can be represented as a real integral
symmetric 2× 2 matrix, under the pullback by exp.

Proof. Recall E := ImH for some hermitian form H =

(

a b
b a

)

so a ∈ R.

(2.14) (γ1 + iw1 γ2 + iw2)

(

a b+ ic
b− ic d

)(

γ̃1 + iv1
γ̃2 + iv2

)

We require that E is trivial in the TF directions, because under exp the TF directions are
already quotiented by in (C∗)2. These are the purely imaginary vectors in C2 by Equation
2.10, so we want E(iw, iv) = 0. We find that

E(iw, iv) = ImH(iw, iv) = Im(aw1v1 + bw1v2 + icw1v2 + bw2v1 + dw2v2 − icv1w2)

= c(w1v2 − v1w2) = 0 ∀w, v ∈ Z2
∴ c = 0

so H is real hence symmetric. We can express H on R4 as H =

ΓB ΓF
( )

ΓB 0 A
ΓF A 0

where A is

real symmetric. Note that the information of H is that of a homomorphism ΓB → ΓF . �

Hom groups on the B-side have bases represented by sections of powers of L.
Claim 2.15. s : (γξ, x) 7→ xλ(γξ)τκ(γξ) is a factor of automorphy for L where recall λ and κ
are defined in Definition 2.2.

Proof. We show its pullback to V+ is a factor of automorphy which is trivial in the ΓF

directions.

L

V

exp∗ L

V+

exp∗ s s

We work in holomorphic coordinates on V and V+. Let v := (log τ)ξ+2πiθ be the coordinate
on V+, using the notation above. Let γ = γξ + iγθ. Then

(2.15)
exp∗ s : (γ, v) 7→ exp((λ(γξ) log τ)ξ + 2πiλ(γξ)θ + κ(γξ) log τ)

= exp(λ(ℜγ) · v + κ(ℜγ) log τ)
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for a linear term in γ and a quadratic term in γ, which matches Theorem 2.13 with α ≡ 1
(else α would contribute a linear term to κ.) This is because recall from Theorem 2.13 that
a pair (H,α) gives rise to a factor of automorphy on V+ by

(2.16) (γ, v) 7→ α(γ) exp(πH(v, γ) +
π

2
H(γ, γ))

By the proof of Corollary 2.14, we found H = iE where E is a real 2 by 2 symmetric
matrix. Thus we may define H in terms of the map λ : ΓB → ΓF so that:

(2.17)

(γ, v) 7→ α(γ) exp(πH(v, γ) +
π

2
H(γ, γ))

= exp(〈v, λ(γξ)〉+ κ(γξ) log τ)

= exp(〈(log τ)ξ + 2πiθ, λ(γξ)〉+ κ(γξ) log τ)

= xλ(γξ)τκ(γξ)

So the condition that the line bundle on V+ passes to one on V is the condition that H = iE,
since under exponentiation the ΓF action becomes multiplication by e2πin = 1 for some n ∈ Z.

�

We now use γ instead of γξ to denote group elements of ΓB.

Claim 2.16. Sections of holomorphic lines bundles on V are functions on (C∗)2 with the
periodicity property

s(γ · x) = τκ(γ)xλ(γ)s(x)

so have a Fourier expansion.

Proof. A section s : V → L must have the same transition functions as the line bundle, by
considering the Cartier data.

s(γ · x)/s(x) = τκ(γ)xλ(γ)

�

Corollary 2.17. Let L be the line bundle defined above in Claim 2.15. Then using the
notation from the proof of Lemma 2.5, H0(V,L⊗l) has the following basis of sections:

(2.18) se,l :=
∑

γ

τ−lκ(γ+
γe,l
l

)x−lλ(γ)−λ(γe,l)

where γe,l = e1γ
′ + e2γ

′′, 0 ≤ e1, e2 < l. So h0(Ll) = l2, e.g. L is a degree 1 line bundle.

Proof. Tensoring the line bundle l times means we multiply the transition function of L by
l times. In particular, the exponents now add in λ and κ. So equivalently, we could scale
the lattice ΓB to lΓB and note that the quotient has l2 lattice points. If we think of the
parallelogram in ΓB of length l in the γ′ and γ′′ directions, then unique lattice points index
the sections. So the functions in the statement of this Corollary are l2 linearly independent
sections with the same transition functions as L⊗l. �
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2.3. The fully faithful functor. Now we show thatDb
LCoh(V ) ∋ L⊗k 7→ ℓk ∈ H∗Fuk(V ∨)

is a functor, by showing it respects composition on elements of a basis.

Basis on complex side

Recall that Db
LCoh(V ) is defined in Theorem 1.2 to be generated by powers of L, and

for j > i Hom(Li,Lj) ∼= H0(O,Lj−i) (see [PZ98] for the case of line bundles on an elliptic

curve). Set l̃ := j − i, ˜̃l := k − j, and l := l̃ + ˜̃l = k − i. Recall that Corollary 2.17 gives a
basis of sections of H0(V,L⊗l):

se,l :=
∑

γ

τ−lκ(γ+
γe,l
l

)x−lλ(γ)−λ(γe,l)

where γe,l = e1γ
′ + e2γ

′′, 0 ≤ e1, e2 < l.

Basis on symplectic side

On the symplectic side, we consider a basis of HomV ∨(ℓi, ℓj) =
⊕

p∈ℓi∩ℓj
C · p given by the

(j − i)2 = l2 intersection points of Equation 2.4:

(2.19) pe,l :=
(γe,l
l
,−kλ

(γe,l
l

))

where again γe,l = e1γ
′ + e2γ

′′, 0 ≤ e1, e2 < l. These morphism groups have the same
dimension as vector spaces. It remains to show there is a functor.

Remark 2.18. This section is a bit notationally heavy so we collect the notations in this
remark:
• γ′ and γ′′ form a basis for ΓB

• e indexes the intersection points of two Lagrangians

• One tilde corresponds to j − i = l̃, two tildes corresponds to k− j = ˜̃l, and no tilde corre-
sponds to the indexing lattice element once we’ve multiplied together and are considering
l = k − i.

• s denotes sections and p denotes intersection points

Example 2.19. E.g. for i = 0, j = 1, and k = 2 we have O,L,L2 and ℓ0, ℓ1, ℓ2 with maps
between objects and between homs as follows:

hom(O,L) = H0(V,L) ∋ s1,1 7→ p1,1 ∈ hom(ℓ0, ℓ1) =
⊕

p∈ℓ0∩ℓ1

C · p = C · p1,1

hom(O,L2) = H0(V,L2) ∋ (s1,2, s2,2, s3,2, s4,2) 7→ (p1,2, p2,2, p3,2, p4,2) ∈
⊕

p∈ℓ0∩ℓ2

C · p, |ℓ0 ∩ ℓ2| = 4

hom(L,L2) ∼= hom(O,L∗ ⊗ L2) ∼= hom(O,L) = H0(V,L) ∋ s1,1 7→ p1,1 ∈ hom(ℓ1, ℓ2) = C · p1,1

In particular we define the map to send units to units. The statement that this map
respects composition is the following.
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Lemma 2.20. The left vertical map of Theorem 1.2, Db
LCoh(V ) ∋ L⊗k 7→ ℓk ∈ H∗Fuk(V ∨),

respects composition so is a functor. Namely, for se,l and pe,l bases defined as above:

(2.20)

HMS(se,l) = pe,l

HMS(s˜̃e,˜̃l · sẽ,l̃) = HMS(s˜̃e,˜̃l) ·HMS(sẽ,l̃) = p˜̃e,˜̃l · pẽ,l̃
⇐⇒ s˜̃e,˜̃l · sẽ,l̃ =

∑

e∈Z2/lZ2

Ce · se,l

p˜̃e,˜̃l · pẽ,l̃ =
∑

e∈Z2/lZ2

Ce · pe,l

for the same Ce.

Proof. First note that Ce was computed above in the count of triangles in Equation (2.8).
On the other hand, multiplying the theta functions gives

(2.21) s˜̃e,˜̃l · sẽ,l̃ =
∑

γ̃,˜̃γ

τ
−l̃κ(γ̃+

γ
ẽ,l̃

l̃
)−

˜̃
lκ(˜̃γ+

γ
˜̃e,
˜̃
l

˜̃
l

)
x
−λ(l̃γ̃+γẽ,l̃+

˜̃
l˜̃γ+γ˜̃e,˜̃l

)

We want to find new variables (γ, γA) to sum over so that we can factor out the bases se,l.
In particular, −λ(lγ + γe,l) must be the exponent on x. So we want this product to equal
∑

eCe

∑

γ τ
−lκ(γ+

γe,l
l

)x−λ(lγ+γe,l) =
∑

eCese,l. The other factor that sums over γA will arise
from counting triangles on the A-side, hence the subscript A. Define

(2.22) lγ + γe,l := l̃γ̃ + γẽ,l̃ +
˜̃l˜̃γ + γ˜̃e,˜̃l

If we sum over γ and 1 ≤ e ≤ l2, we will obtain some of the lattice ΓB × ΓB ∋ (γ̃, ˜̃γ). Given
γ and e, there are multiple corresponding solutions in (γ̃, ˜̃γ). We need another variable. We
do a weighted version of the change of coordinates (u, v) 7→ ((u + v)/2, (u− v)/2). Namely

let u := γ +
γe,l
l

= 1
l
(l̃γ̃ + γẽ,l̃ +

˜̃l˜̃γ + γ˜̃e,˜̃l). We want to find v such that

(2.23)

u+ c1v = γ̃ +
γẽ,l̃

l̃

u− c2v = ˜̃γ +
γ˜̃e,˜̃l
˜̃l

for some constant c1 and c2 such that the v terms cancel when we multiply the first equation

by l̃ and add it to the second equation multiplied by ˜̃l. In other words, c1l̃− c2
˜̃l = 0. So take

c1 =
˜̃l and c2 = l̃. Then we can simplify the exponent on τ in Equation 2.21:

(2.24) l̃κ(u+ ˜̃lv) + ˜̃lκ(u− l̃v) = lκ(u) + l̃˜̃l · lκ(v)

since lv = γ̃+
γẽ,l̃

l̃
− ˜̃γ− γ˜̃e,˜̃l

˜̃
l
. Thus we now can factor out lκ(u) as needed to obtain se,l when

summing over γ. On the other hand, recall from Equation (2.8) that

pẽ,l̃ · p˜̃e,˜̃l =
∑

e

∑

γA∈ΓB

τ
− l

l̃
˜̃
l
·κ

(

˜̃
l
l
γe,l+γA

)

· pe,l
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That is Ce =
∑

γA∈ΓB
τ
− l

l̃
˜̃
l
·κ

(

˜̃
l
l
γe,l+γA

)

. So in order for the functor to respect composition, we
would like this to be the coefficient on the se,l as well. Comparing exponents on τ implies:

(2.25)
l

l̃˜̃l
· κ
(

˜̃l

l
γe,l + γA

)

= l̃˜̃l · lκ(v)

In other words, multiplying by l̃˜̃l and equating the arguments of lκ:

(2.26)
˜̃l

l
γe,l+γA = l̃˜̃l · 1

l

(

γ̃ +
γẽ,l̃

l̃
− ˜̃γ −

γ˜̃e,˜̃l
˜̃l

)

⇐⇒ γA = l̃˜̃l · 1
l

(

γ̃ +
γẽ,l̃

l̃
− ˜̃γ −

γ˜̃e,˜̃l
˜̃l

)

−
˜̃l

l
γe,l

Recall that lγ + γe,l = l̃γ̃ + γẽ,l̃ +
˜̃l˜̃γ + γ˜̃e,˜̃l. Thus simplifying we find that:

(2.27)

γA =
l̃˜̃l

l

(

γ̃ +
γẽ,l̃

l̃
− 1

˜̃l

(

lγ + γe,l − l̃γ̃ − γẽ,l̃

)

)

−
˜̃l

l
γe,l

=
l̃˜̃l

l

(

γ̃(1 + l̃/˜̃l) + γẽ,l̃(1/l̃ + 1/˜̃l)− (l/˜̃l)γ
)

− γe,l(l̃ +
˜̃l)/l

= l̃(γ̃ − γ) + γẽ,l̃ − γe,l ∈ ΓB

so γA ∈ ΓB as we would like. Hence using Equation (2.25):

(2.28)

sẽ,l̃ · s˜̃e,˜̃l =
∑

γ̃,˜̃γ

τ
−l̃κ(γ̃+

γ
ẽ,l̃

l̃
)−

˜̃
lκ(˜̃γ+

γ
˜̃e,
˜̃
l

˜̃
l

)
x
−λ(l̃γ̃+γẽ,l̃+

˜̃
l˜̃γ+γ˜̃e,˜̃l

)

=
∑

e

∑

γA

τ
− l

l̃
˜̃
l
κ

(

˜̃
l
l
γe,l+γA

)

∑

γ

τ−lκ(γ+
γe,l
l

)x−λ(lγ+γe,l)

=
∑

e

(

∑

γA∈ΓB

τ
− l

l̃
˜̃
l
κ

(

˜̃
l
l
γe,l+γA

))

se,l

So we see that the two coefficients on the basis elements agree between multiplication of
sections and of intersection points, hence composition is respected, and we do indeed have a
functor. �

This completes the proof of the left vertical arrow in the main Theorem 1.2. We proceed
to the proof that the right vertical arrow is a fully-faithful embedding. First we need to
define the symplectic fibration (Y, v0).

3. Construction of symplectic fibration on (Y, v0)

The definition of the symplectic form on the genus 2 SYZ mirror (Y, v0) arises from stan-
dard algebro-geometric results on toric varieties. The subsection [FLTZ11, §3.1] provides
a concise summary (M encodes the algebra and N encodes the geometry). Other refer-
ences include [CLS11, p 59, p128], [Ful93, Chapter 1], and [Gui94]. We have elements of
M := HomZ(N,Z) called weight vectors which exponentiate to functions on the toric variety,
called toric monomials or characters. Given a polytope ∆, we can construct a dual fan which
prescribes the charts and transition functions defining the toric variety ([CLS11, p 76]). We
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What one can do, as in Abouzaid-Auroux-Katzarkov [AAK16], is embed Σ2 in an abelian
variety. We then take the trivial fibration over C with the abelian variety as a fiber, and
blow-up the copy of H over 0. The resulting fibration has H as a critical locus in the central
fiber. It also admits another fibration which is a Lagrangian torus fibration, by taking the
moment map before the blow-up (a toric Lagrangian torus fibration), and then keeping track
of the blow-up in the base as in [Sym03] to obtain a non-toric Lagrangian torus fibration.
Note that [AAK16] did this process for hypersurfaces of toric varieties, and Seidel speculated
that this could be done on hypersurfaces of abelian varieties [Sei12], which we do here.

The SYZ construction [SYZ96] produces a candidate mirror complex manifold by prescrib-
ing dual fibers over the same base. The points of a dual fiber are parametrized by unitary
flat connections on the trivial line bundle on the original fiber. This process is also discussed
in [Aur07]. The SYZ construction inverts the radius of each S1 on a torus fiber, known as
T-duality, and passes between the A- and B-models. In particular on a Calabi-Yau 3-fold as
in [SYZ96], SYZ mirror symmetry is T -duality three times.

Toric Lagrangian torus fibration. A toric variety with its corresponding symplectic
form as in Corollary 3.1, has a natural Hamiltonian T n action given by rotation on the dense
(C∗)n, which extends to the full toric variety. Here is an example with CP2.

Example 3.3 (Symplectic CP2). Consider the complex projective plane with the Fubini-
Study form: (CP2, ωFS = i

2π
∂∂ log(

∑2
i=0 |zi|2)) where points are denoted [z0 : z1 : z2].

There is a well-defined Hamiltonian T 2-action where (θ1, θ2) ∈ R2/Z2 = T 2 acts on CP2

by rotation: ρ(α1, α2)[z0 : z1 : z2] = [z0 : e2πiα1z1 : e2πiα2z2]. This is Hamiltonian with
Hamiltonian functions defining the moment map coordinates µi. For local CP

2 coordinates
(x1, x2) we can define θi := arg(xi) and the infinitesimal rotation action is:

(3.1)

Xj := dρ

(

∂

∂αj

)

= 2πizj
∂

∂zj

=⇒ ιXi
ωFS = dµi where µi := − |zi|2

|z0|2 + |z1|2 + |z2|2
=⇒ ωFS = dµ1 ∧ dθ1 + dµ2 ∧ dθ2

The last line is true more generally, that in action-angle coordinates ω = dµ ∧ dθ, e.g. see
[CdS, Theorem 1.3.4] and set fi = µi. The contraction with the vector field rotating coor-
dinates gives dµi more generally. Thus the moment map here µ := (µ1, µ2) : CP

2 → R2 ∼=
(Lie(T 2), [, ] = 0) is given by

µ =

(

− |z1|2
|z0|2 + |z1|2 + |z2|2

,− |z2|2
|z0|2 + |z1|2 + |z2|2

)

Its image can be seen in Figure 3, where the diagonal edge follows from adding µ1 + µ2 and
allowing the coordinates to vary:

The moment map gives a Lagrangian torus fibration because the moment map is a function
of the norms, as is the Kähler potential. Thus ωFS|µ−1(pt) = 0. We can read off the geometry
of the fibration from Figure 3. When both local complex coordinates are non-zero, the
preimage is T 2 by rotating under the T 2-action. When one coordinate goes to zero, we only
have the other coordinate to rotate, so the fiber is an S1. And when both coordinates are
zero in each of the three local C2 charts we obtain a point.
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where the angle brackets denote semi-orthogonal decomposition.

An example of this, and a non-toric Lagrangian torus fibration, is when H = (1, 0) ⊂ CP1

defined by s(x) = x − 1. This gives mirror symmetry for the point H, and the mirror is a
Lefschetz fibration generated by one thimble. Namely if dimC V = 1, then the zero fiber of
y : X → C involves a normal crossings divisor of the form yz = 0, which for dimensional
reasons is a Lefschetz singularity. Hence Seidel’s Fukaya category for Lefschetz fibrations
[Sei08] can be used, where H = a point and Fuk(X) is generated by a thimble.

Claim 3.5. H = Crit(y) is the critical locus of the Bott-Morse fibration y : X → C.

Proof. The zero fiber is the union of the proper transform of V , namely Ṽ := p−1(V \H × {0})
and the exceptional divisor. The normal bundle NV×C/H×0 = L ⊕ O. Then H = Σ2 in the
blow-up in P(L⊕O) is the intersection of two divisors in a normal crossing singularity. This
intersection forms the critical locus of a Morse-Bott fibration given by y : (x, y, (u : v)) 7→ y.
Let p be the blow-up map:

p : X → V × C, (x, y, (u : v)) 7→ (x, y)

Geometrically Ṽ is a copy of V , i.e. the closure of the part of V away from H in the blow-up
which fills in the rest of the V copy. Note that the closure adds in only a point for dimension
reasons as we approach each point in H, so the closure adds back in a copy of H. The
exceptional divisor is a P1-bundle over H if we consider projection to V × C and then take
the “zero-th” level at V × {0}. Let sp be a section of this P1-bundle.

E := {(x, 0, (u : v)) | x ∈ H} = p−1(H × {0})
p|E : E → H × {0}
sp : H → E, sp(x) := (x, 0, (1 : 0))

Now we can see H as the critical locus of the y fibration, as the fixed point set of the
S1-action that rotates y, namely (x, eiθy, (e−iθu : v)).

y−1(0) = {(x, 0, (u : v)) | s(x)v = 0 · u}
= {(x, 0, (1 : 0))} ∪ {(x, 0, (u : v)) | s(x) = 0}
= Ṽ ∪ E

Thus
Ṽ ∩ E = sp(H) ∼= H = Crit(y)

since x ∈ E implies s(x) = 0 and x ∈ Ṽ =⇒ (u : v) = (1 : 0). �

Proof overview of Theorem 3.4 from [AAK16]. Let x = (x1, x2) ∈ V, y ∈ C and s : V → L
define the hypersurface which here is the theta divisor. Then, the blow-up projectivizes the
normal bundle to H × {0} namely L ⊕O by the adjunction formula.

(3.3)

X = BlH×{0}V × C

= graph[s(x) : y]

= {(x, y, [s(x) : y]) ∈ (P(L ⊕O) → V × C)}
= {(x, y, [u : v]) | s(x)v = yu} ⊂ P(L ⊕O)

a subset of the P1-bundle P(L⊕O) on V ×C. The torus fibration on V ×C is (logτ | · |, µS1)
where µS1 is the moment map from the Hamiltonian S1-action that rotates the y complex
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coordinate. The base of this fibration is B = T 2
B × R+ because of quotienting by the ΓB-

action in the first two coordinates, which scales |xi|. We keep track of the blow-up in the
base, as above in the case of interior blow-up, to obtain a Lagrangian torus fibration on
X for a suitable symplectic form ω constructed in [AAK16]. It is symplectomorphic to the
pullback of the canonical toric Kähler form p∗ωV×C away from E and controls symplectic
area near the exceptional divisor.

For the relations between invariants, [AAK16, Corollary 7.8] states that Fuk(H) is equiv-
alent to a Fukaya category Fs(X, y), because Lagrangians in H can be parallel transported
from the central fiber to obtain non-compact Lagrangians in X admissible with respect to
the superpotential y. On the complex side, [Orlov, [APS]] implies there is a semi-orthogonal
decomposition of DbCoh(X) into Db(V × C) and DbCoh(H). �

3.2. Background needed to define the generalized SYZ mirror. We have local
charts for the mirror over open sets in the base B, as described in [Aur07], which are glued
across walls in the base B. A wall occurs in the base over which the Lagrangian fibers are
singular. The gluing information can be encoded in a polytope by [AAK16]:

∆Ỹ := {(ξ1, ξ2, η) ∈ R3 | η ≥ Trop(s)(ξ1, ξ2)}
where the tropicalization of a function describes how it tends to infinity as its variables tend
to infinity, as a function of the direction ξ we let the variable norms |xi| := τ ξi go to infinity.
Mathematically:

Definition 3.6 (Tropicalization). Let f(x) =
∑

a∈A⊂Zn cax
aτ ρ(a). Let |xi| = τ ξi . Then

f(x/|x|, ξ) =
∑

a

ca

(

x

|x|

)a

τ ρ(a)+〈a,ξ〉

The tropicalization of f is:

Trop(f)(ξ) := −min
a∈A

〈a, ξ〉+ ρ(a)

As τ → 0, the leading order term in f has exponent −Trop(f)(ξ). The vanishing of f
limits to a tropical curve given by those ξ ∈ Rn where two terms can cancel in f , namely
where two different a ∈ A give the same minimum for ξ.

Example 3.7 ([AAK16][§9.1]). SupposeH ⊂ V is the pair of pants f(x1, x2) := 1+x1+x2 =
0 in V = (C∗)2. This is a pair of pants because x1 ∈ C∗\{−1} and a cylinder minus a point
is a pair of pants. Then ρ ≡ 0 and A = {(0, 0), (1, 0), (0, 1)} hence Trop(f)(ξ1, ξ2) =
max{0, ξ1, ξ2}. If ξ1, ξ2 < 0 then 0 is the maximum, if ξ1 > ξ2 > 0 then ξ1 is the maximum
and if ξ2 > ξ1 > 0 then ξ2 is the maximum. So the vanishing of Trop(f) is the left diagram
in Figure 5, and the moment polytope is ∆ := {(ξ, η) | η ≥ Trop(f)(ξ)} ⊂ Rn+1 depicted in
the right diagram of Figure 5 projected to (ξ1, ξ2) coordinates with the η-coordinate coming
out of the page.

The corresponding toric variety is SpecC[x, y, z] = C3 where x, y and z are the three
toric coordinates arising from the toric monomials with weight vectors given by primitive
generators of the three edges. The superpotential is v0 = xyz, giving the expected pair of
pants mirror (C3, xyz).
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η ≥ ξ1

η ≥ ξ2

η ≥ 0

Figure 5. L) Trop(1 + x1 + x2) = 0 R) Moment polytope in R3

Tropicalizing the infinite series given by the theta function at first sight seems hard. In fact,
it satisfies a periodicity property which allows us to see the tropicalization as a honeycomb
shape when projected to (ξ1, ξ2) coordinates.

Claim 3.8. The tropicalization of the theta function ϕ := Trop s satisfies the following
periodicity property

(3.4) ϕ(ξ + γ̃) = ϕ(ξ)− κ(γ̃) + 〈ξ, λ(γ̃)〉
Proof. Recall from the definition in Claim 2.15

s(x) =
∑

γ∈ΓB

τ−κ(γ)x−λ(γ) =
∑

γ∈ΓB

τ
1
2
〈γ,λ(γ)〉x−λ(γ)

Since |xi| = τ ξi , and letting τ → 0 we see that the leading term is the minimum exponent
or the maximum of the negated exponent, namely

(3.5) ϕ(ξ) := Trop(s)(ξ) = max
γ

κ(γ) + 〈ξ, λ(γ)〉

Since κ is a negative definite quadratic form of degree 2 and λ is positive of degree 1, this
should have a maximum. For example, ϕ(0) = 0. We have the following periodicity property.

(3.6)

ϕ(ξ + γ̃) = max
γ

κ(γ) + 〈ξ + γ̃, λ(γ)〉 = max
γ

κ(γ) + 〈ξ, λ(γ)〉+ 〈γ̃, λ(γ)〉

κ(γ − γ̃) = κ(γ) + κ(γ̃) + 〈γ, λ(γ̃)〉
=⇒ ϕ(ξ + γ̃) = max

γ
〈ξ, λ(γ)〉+ [κ(γ − γ̃)− κ(γ̃)]

=

(

max
γ

κ(γ − γ̃) + 〈ξ, λ(γ − γ̃)〉
)

− κ(γ̃) + 〈ξ, λ(γ̃)〉

=⇒ ϕ(ξ + γ̃) = ϕ(ξ)− κ(γ̃) + 〈ξ, λ(γ̃)〉
�

Claim 3.9. The vanishing set V (Trop s) ⊂ R2
ξ1,ξ2

is a honeycomb shape that is a tiling by
hexagons.

Proof. Let ξ = 0. Then

Trop(s)(0) = max
γ∈ΓB

κ(γ) ≤ 0 =⇒ Trop(s)(0) = 0
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since κ is negative definite so its maximum is achieved when γ = 0. We know that
Trop(s)(ξ1, ξ2) is a piecewise linear function, so let F0,0 denote the piece that is identically
zero.

In order to prove that the projection of ∆Ỹ to the first two coordinates is a tiling of
hexagons (equivalent to the statement of the claim), we will proceed as follows. We determine
where adjacent hyperplanes intersect, by finding the equations of their lines of intersection.
This will produce the hexagonal shape.

Fix (ξ1, ξ2, η) ∈ F0,0. Add i1γ
′ + i2γ

′′ for (i1, i2) ∈ {(±1, 0), (0,±1),±(1,−1)}. These six
choices will give rise to the hexagonal shape. Recall γ′ and γ′′ are the generators for ΓB. By
Equation (3.6) and that ϕ(ξ) = 0:

(3.7)

η = ϕ(ξ + i1γ
′ + i2γ

′′ + 0) = ϕ(ξ) + 〈ξ, λ(i1γ′ + i2γ
′′)〉 − κ(i1γ

′ + i2γ
′′)

= i1ξ1 + i2ξ2 + i21 + i22 + i1i2

= i1ξ1 + i2ξ2 + 1

On the other hand, the equation of the plane when (ξ, η) ∈ Fi1,i2 is the set of ξ and
η = ϕ(ξ) such that

η = i1(ξ1 − 2i1 − i2) + i2(ξ2 − i1 − 2i2) + 1 = i1ξ1 + i2ξ2 − 1

(We relabeled ξ from Equation (3.7) so it lies in Fi1,i2 and not F0,0.) So points (ξ1, ξ2, η) on
the intersection of the two planes must satisfy both, hence:

i1ξ1 + i2ξ2 = 1

We get the shape enclosed by the lines ξi = ±1 for i = 1, 2, a box, and ξ1− ξ2 = ±1 which is
the line ξ1 = ξ2 shifted up and down by 1. This means F0,0 is a hexagon in the η = 0 plane.

(0, 0)

ξ2 = −1

ξ2 = ξ1 − 1

ξ1 = 1

Figure 6. The (0,0) tile delimited by the tropical curve

Now pick any (ξ1, ξ2) ∈ R2. Choose γ such that (ξ1 − γ1, ξ2 − γ2) ∈ F0,0, which we
can do since the hexagon is the same size as the fundamental domain for the ΓB-action
by subtraction. Let λ(γ) =: (m1,m2)

t. Then again by Equation (3.6) and using that
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ϕ(ξ − γ) = 0:

(3.8)

η = ϕ(ξ) = ϕ(ξ − γ) + 〈ξ − γ, λ(γ)〉 − κ(γ)

= 0 + ξ1m1 + ξ2m2 − (m2
1 +m1m2 +m2

2)

⇐⇒ 0 =

〈





m1

m2

−1



 ,





ξ1
ξ2
η





〉

− (m2
1 +m1m

2 +m2
2)

⇐⇒ 0 =

〈(

λ(γ)
−1

)

,

(

ξ
η

)〉

+ κ(γ)

Then using Equation (3.8), we find the intersection of the (m1,m2) plane with the (m1 +
i1,m2 + i2) plane, i.e. those (ξ, η) satisfying both plane equations.

∆η = 0 = ϕ(ξ + (i1, i2) · (γ′, γ′′))− ϕ(ξ)

= 〈λ(γ) + (i1, i2), ξ〉+ κ(γ + (i1, i2) · (γ′, γ′′))− [〈λ(γ), ξ〉+ κ(γ)]

= i1ξ1 + i2ξ2 − 〈γ, (i1, i2)〉 −
1

2
〈i1γ′ + i2γ

′′, (i1, i2)〉(3.9)

= i1ξ1 + i2ξ2 − 〈(2m1 +m2,m1 + 2m2), (i1, i2)〉 −
1

2
〈(2i1 + i2, i1 + 2i2), (i1, i2)〉

= i1ξ1 + i2ξ2 − i1(2m1 +m2)− i2(m1 + 2m2)− 1

=⇒ ξ1 = 2m1 +m2 ± 1

ξ2 = m1 + 2m2 ± 1

ξ1 − ξ2 = ±1 +m1 −m2

m1γ
′ +m2γ

′′

ξ2 = m1 + 2m2 − 1

ξ2 = ξ1 − 1−m1 +m2

ξ1 = 2m1 +m2 + 1

Figure 7. The (m1,m2) tile delimited by the tropical curve

�

3.3. The definition of (Y, v0). The smooth manifold Y is constructed as a portion of
a toric variety Ỹ quotiented by ΓB acting properly discontinuously via holomorphic maps.
The defining polytope is

∆Ỹ := {(ξ1, ξ2, η) ∈ R3 | η ≥ Trop(s)(ξ)}
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∆Y := (∆Ỹ )|η≤T l/ΓB where

Trop(s)(ξ) := max
γ

κ(γ) + 〈ξ, λ(γ)〉(3.10)

γ · (ξ1, ξ2, η) := (ξ1 + γ1, ξ2 + γ2, η − κ(γ) + 〈ξ, λ(γ)〉)
∵ Trop(s)(ξ + γ) = Trop(s)(ξ)− κ(γ) + 〈ξ, λ(γ)〉

where the last line is Equation 3.4. The parameter T ≪ 1 is the Novikov parameter on
the genus 2 curve, hence the complex parameter on Y . The polytope ∆Ỹ is illustrated in
Figure 10, where η is bounded below by the expression in the center of the tile, and comes
out of the page. The superpotential v0 is the toric degeneration given by the monomial
v0 = xyz in toric coordinates which vanishes to order 1 on each toric strata, hence the T 4

fibers degenerate over 0 to the toric strata. The three toric coordinates (x, y, z) correspond
to the three edges on the polytope ∆Ỹ from the lower left vertex of the (0, 0) hexagon. So
η is the weight vector (0, 0, 1) which gives the toric monomial v0 = xyz. The fact that v0
is well-defined under the ΓB-quotient will be proven below. In particular, the action on
complex coordinates only gives a nontrivial action if we restrict v0 = xyz to be very small.
This is why the condition η ≤ T l is imposed.
More specifically, recall that vertices of ∆Ỹ correspond to C3 charts. For example, consider

the (x, y, z) coordinates and the green vertices to the right in Figure 10, call them (x′, y′, z′).
The way in which we glue these two charts is encoded by the edge they are connected by, as
follows. Recall that the normal νn to the (n1, n2) tile is

(3.11) νn :=





−n1

−n2

1





The two vertices, taking the normals to the three facets at the vertex, gives us two cones
spanned by the convex hull of the following rays:

σ1 =

〈





0
0
1



 ,





1
0
1



 ,





0
1
1





〉

=⇒ Uσ1 = SpecC[x, y, z]

σ2 =

〈





0
0
1



 ,





−1
1
1



 ,





0
1
1





〉

=⇒ Uσ2 = SpecC[x−1, xy, zy−1](3.12)

τ := σ1 ∩ σ2 =
〈





0
0
1



 ,





0
1
1





〉

=⇒ Uτ = SpecC[Z3 ∩ τ∨] = SpecC[x±, y, zy−1]

Thus in coordinates on C∗ × C∗ × C, which is the overlap of the two charts

(3.13)
φ1 = 1 : C3 ∋ (x, y, z) 7→ (x, y, z)

φ2 : C
3 ∋ (x, y, z) 7→ (x−1, xy, zy−1)

we find that identifying the Uτ ⊂ Uσi
for each i, we obtain the transition map:

(3.14)
φ12 : C

∗ × C∗ × C y

(x, y, z) 7→ (x−1, xy, zy−1)
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Thus this gluing gives P1 in the first component. In particular, gluing all the toric charts
will contain the dense (C∗)3 but infinitely many toric divisors coming from the CP2(3) glued
along P1’s. In the fibration v0 = xyz, we have this infinite Z2-chain of toric divisors over
0, and since the coordinates in each chart preserve v0, a generic fiber is (C∗)2. So we have
non-compact fibers and a non-compact base for the fibration v0. When we take the quotient,
the base stays the same but the fibers become compact.

Definition 3.10 ([AAK16][Definition 1.2]). (Y, v0) is the generalized SYZ mirror of H = Σ2.

Remark 3.11. Note that one can apply SYZ in the reverse direction by starting with a
Lagrangian torus fibration on Y minus a divisor to recover X as its complex mirror, see
[AAK16, §8] or [CLL12].

We now discuss the complex coordinates on Y .

3.4. Definition of complex coordinates on Ỹ /ΓB.

Reason for 1-parameter family

We can strengthen our result to be not just between two manifolds, but between two
families of manifolds. Namely a family of genus 2 curves parametrized by τ and a family of
symplectic manifolds parametrized by τ . Symmetrically, we can also allow T to parametrize a
symplectic structure on the genus 2 curve which is mirror to a complex structure parametrized
by T on Y , which is what we define in this subsection.

More specifically, we view τ or T parametrizing the complex structure via scaling the
lattice we quotient by, so multiplication by i gets scaled in a 1-parameter family. The way in
which they parametrize the symplectic structure as Novikov parameters is by symplectically
weighting counts of discs in homology class β by τ−ω(β) = e−(log τ)ω(β), i.e. the symplectic
form is scaled to (log τ)ω as τ → 0.

So the upshot is that in this paper we consider mirror symmetry between 1-parameter
families; τ is the complex parameter on the genus 2 curve/Novikov parameter on Y , and T
will be the complex parameter on Y /Novikov parameter on the genus 2 curve. Although the
complex structure on Y won’t affect its symplectic geometry, the Kähler potential will be
defined in terms of the complex coordinates, necessarily in a way invariant under T . This
is why we need to define the complex structure on Y . (So adding in the T doesn’t extend
our results to more manifolds in the direction we are considering, because we consider Y
as a symplectic manifold and T varies the complex manifold. But if we ever wanted to
consider mirror symmetry in the other direction, swapping the A- and B-models, we would
have 1-parameter families in that direction too. So it’s a bit stronger result to include the
T here.)

Properties defining the symplectic form

We would like ω to have some nice properties that allow us to compute parallel transport
and monodromy later on. (However, there are other symplectic forms one can equip (Y, v0)
with.) These properties will enforce the way in which the ΓB-lattice acts on the complex
coordinates in terms of T . We will define a Kähler potential for ω as a function of the
norms of the complex coordinates. That way it is a function of the moment map coordinates
as well by Legendre transform. In order to adapt Seidel’s Fukaya category for Lefschetz
fibrations, we also would like v0 : Y → C to be a symplectic fibration. That is, ωV ∨ is a
symplectic form on the fiber. Over zero we have a singular fiber, so we only require ω to
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Figure 9. In one dimension lower, the boundary of ∆Ỹ is the moment map
image of a string of P1’s. In the polytope, |v0| increases in the (0, 1) direction.
In the fibration v0, |v0| is the radius of the circle in the base.

and the toric Kähler form for CP2(3 points), the blow-up at three points, induced by the
hexagon in Figure 10. Recall from Corollary 3.1 that such a potential is the logarithm of
the sum of squares of sections corresponding to lattice points.
Toric geometry determines the complex coordinates up to scaling. We don’t want to

change the symplectic form so we scale the Kähler potential as well to cancel out the scaling
of the complex coordinates. This reflects the phenomenon that under mirror symmetry,
varying the complex structure on Y doesn’t change the symplectic structure. In particular,
recall that introducing T allows us to make a statement about mirror symmetry that is
between families if we were to flip the A and B sides (analogous to the role of τ in the
current direction). Since we are free to scale the sections by a scalar multiple, we may scale
in a way that allows us to factor their sum and write the Kähler potential as:

(3.15) gxy := log(1 + |T ax|2)(1 + |T by|2)(1 + |T cxy|2)
from a to-be-determined choice of (a, b, c). The three dimensional moment polytope ∆Ỹ in
Figure 10 has a Z/3 symmetry if the P1 along each axis is defined to have the same symplectic
area under ω, say equal to 1. This symmetry will enforce how ΓB acts on the local complex
coordinates.

Above properties define a choice of complex structure on Y

Definition 3.13 (Complex coordinates on Ỹ ). We define the following coordinate charts on
the polytope ∆Ỹ . Let g

k index the chart obtained by rotating k vertices clockwise from the
lower-left vertex of the (0,0) hexagon. Then the coordinate charts are:

• U0,g0 : (x, y, z)
• U0,g : (Tv0x

−1, T−2y−1, T v0z
−1) =: (x′′, y′′, z′′)

• U0,g2 : (x, T
3v0y, T

−3v−1
0 z)

• U0,g3 : (T
−2x−1, T−2y−1, T 4v20z

−1)
• U0,g4 : (T

3v0x, y, T
−3v−1

0 z)
• U0,g5 : (T

−2x−1, T v0y
−1, T v0z

−1) =: (x′, y′, z′)
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x
z =

v0
xy

y

T−3v−1
0 z

y

T 3v0x

T−3v−1
0 z

T 3v0y

x

T−2y−1

Tv0z
−1 = TxyTv0x

−1 = Tyz

T−2y−1

T 4v20z
−1

T−2x−1

Tv0y
−1

Tv0z
−1 = Txy

T−2x−1

T−2z−1
Tv0x

−1

Tv0y
−1

−ξ2 − 1

−ξ1 − 1

0

Figure 10. Depiction of 3D ∆Ỹ . Coordinates respect ΓB-action, see be-
low; magenta parallelogram = fundamental domain. Vertices = C3 charts.
Coordinate transitions, see Lemma 3.16. Expressions in the center of tiles
indicate e.g. η ≥ ϕ(ξ) = −ξ1 − 1 over that tile, so tile(0,0) is given by
(ξ1, ξ2) ∈ {(ξ1, ξ2) | −1 ≤ ξ1, ξ2,−ξ1 + ξ2 ≤ 1}.

Furthermore, we extend this definition to all the coordinate charts on Ỹ by symmetry.
E.g. note that going along the z axis we get to the g−1 vertex in the (−1, 0) tile and may
define U(−1,0),g−1 : (Tv0x

−1, T v0y
−1, T−2z−1) =: (x′′′, y′′′, z′′′). In the new coordinate system

denoted (x′′, y′′, z′′) in Figure 10, they will have the same small values as (x, y, z) in the
original chart. It is the same idea to obtain the coordinate charts at all the other vertices.

Definition 3.14 (Definition of complex structure on Y by ΓB-action). The complex struc-
ture on Ỹ defines a complex structure on Y as follows. We define the group action to be

(3.16)
(−γ′) · (x, y, z) := (T 3v0x, y, T

−3v−1
0 z)

(−γ′′) · (x, y, z) := (x, T 3v0y, T
−3v−1

0 z)

The convention is that moving up and right in Figure 10 is negative since the powers of
T << 1 are positive, hence decreasing values in the coordinates corresponds with moving
in the negative direction of the group action. That is, the actions of γ′ and γ′′ map the



HMS ON COORDINATE RINGS FOR A COMPLEX GENUS 2 CURVE 31

coordinates (x, y, z) to the charts centered at (−2,−1) and (−1,−2) respectively in Figure
10. Then ΓB acts properly discontinuously on the restriction of Ỹ to small |v0| and Y is a
well-defined complex manifold. In particular we obtain a product complex structure.

The reason we choose this group action is explained in the proof of Claim 3.15.

Claim 3.15. The symplectic forms for CP2(3) (i.e. ω on a fiber) and C3 (i.e. ω in a neigh-
borhood of the origin in C3) are invariant under the ΓB action so descend to forms on the
corresponding neighborhoods in Y , (shaded in Figure 9 in the one dimension lower case.)

Proof. The interior of each nth hexagonal tile in ∆Ỹ is identified under the ΓB-action on the
polytope, so on the Kähler potential for CP2(3) we would like γ∗gxy and gxy to differ by an

element in the kernel of ∂∂ e.g. a harmonic function such as |x|2 = xx. One way to guarantee
these conditions is if γ′, γ′′ arise from a Z/6-action on the hexagon. Let G denote the Z/6
rotation action in the first two moment map coordinates on the hexagons in the honeycomb
tiling in ∆Ỹ . Suppose that g acts by

(3.17) (x, y) 7→ (T αy−1, T βxy)

for some α and β, so that the action on the z coordinate is g · z = T−α−βyz, determined by
v0 = xyz gluing to a global function so must be preserved under G. Thus:

(3.18)

g∗ log(1 + |T ax|2)(1 + |T by|2)(1 + |T cxy|2)
= log(1 + |T a+αy−1|2)(1 + |T b+βxy|2)(1 + |T c+α+βx|2)

gxy = log(1 + |T ax|2)(1 + |T by|2)(1 + |T cxy|2)

Comparing coefficients on x, y and xy, in order for the gxy and g
∗gxy to differ by a harmonic

function we want a = c + α + β, b = −a − α and c = b + β. Since we have five unknowns
and only three equations, there are multiple solutions. We make a choice so we will be able
to define a symplectic form, and fix a = b = 1. Then the rest is determined: α = −2 and
c = 3− β = 1 + β hence β = 1 and c = 2. We find that

(3.19)
gxy := log(1 + |Tx|2)(1 + |Ty|2)(1 + |T 2xy|2)

g · (x, y) = (T−2y−1, Txy)

and we see that g2 and g−2 do indeed give the group action defined in Definition 3.14. �

Now we can see where the choice of complex coordinates on Ỹ arose from.

Lemma 3.16. The action of G defines the complex coordinate charts given above in Lemma
3.19.

Proof. The gk allows us to index the charts, but the coordinates are a permutation of the
coordinates gk · (x, y, z) so the subscript is mainly for indexing. Namely, we re-label the
coordinates in each C3 chart to match with the (x, y, z). Since g · (x, y) = (T−2y−1, Txy),
applying the group action twice we find

(x, y) ∼ (T−2y−1, Txy) ∼ (T−2(T−1x−1y−1), T (T−2T−1)(Txy)) = (T−3x−1y−1, x)
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Since ΓB fixes v0 = xyz so we may rewrite the transformed y-coordinate as T 3v0y to obtain
the γ′′ action, after suitable permutation σg2 :

(3.20)
σg2 · g2 · (x, y, z) = (x, T 3v0y, T

−3v−1
0 z)

=⇒ −γ′′ · (x, y, z) := (x, T 3v0y, T
−3v−1

0 z)

(Note that γ′ and γ′′ increase the coordinate norms, analogous to the ΓB-action increas-
ing norms by τ−γ on the mirror side.) The γ′ calculation is similar; since g−1 · (x, y) =
(Txy, T−2x−1) we obtain g−1 · (x, y, z) = (Tv0z

−1, T−2x−1, T v0y
−1). Then:

(3.21)

−γ′ · (x, y, z) = σg−2 ◦ g−2 · (x, y, z)
= σg−2 ◦ g−1 · (Tv0z−1, T−2x−1, T v0y

−1)

= (T−3v−1
0 x, y, T 3v0z)

For example, to find the coordinate system (x′′′, y′′′, z′′′), we first move down and left by γ′

action to be in the (0,−1) tile, then rotate by g−1 and finally apply a suitable permutation.
�

Corollary 3.17. ωCP2(3) defines a symplectic form in each v0 fiber on a neighborhood given
by the preimage of an open set in the interior of the hexagon at fixed |v0|, (corresponding
to the yellow shading of Figure 9.) This open set is defined in Figure 13 in terms of the
coordinates introduced beginning with Equation 3.27.

Proof. We are justified in defining it just on a fiber, and taking the compactification as
v0 → 0 we’ll obtain the fiber over 0. Fix v0 6= 0. A fiber has two complex coordinates (x, y),
and in particular |v0| is also fixed so in the moment map this corresponds to fixing a certain
height above the base of the infinite bowl. Note that all ξ1, ξ2, η will vary, but η is a function
of (ξ1, ξ2) since all points lie on a surface. We restrict |v0| < T l for some large power of l,
where T << 1. (In other words, up to rescaling, this A-side is either non-compact from the
base, or compact from boundary on the base of v0.) Namely, for |v0| = T l with T << 1 and
l sufficiently small, ΓB acts properly discontinuously and holomorphically so the quotient is
a well-defined complex manifold Y . �

Claim 3.18 (ΓB-action on symplectic coordinates). γ ∈ ΓB acts by γ · (ξ, η) = (ξ − γ, η −
κ(γ) + 〈ξ, λ(γ)〉).
Proof. Recall that the ΓB-action on V was given by x 7→ τ−γx. Since τ ξ = |x|, we find that
ΓB acts on ξ by negative addition. For the statement about η, recall that η takes values
η ≥ ϕ(ξ), so since ϕ(ξ + γ) = ϕ(ξ)− κ(γ) + 〈ξ, λ(γ)〉

γ · η = η − κ(γ) + 〈ξ, λ(γ)〉
when γ ∈ ΓB. �

The additional piece of information we need to check when taking an SYZ mirror in this
setting of a ΓB-action, is that the group action respects the Lagrangian torus fibration.

Lemma 3.19. The ΓB-action commutes with the moment map, i.e. ∀γ ∈ ΓB,

(ξ1, ξ2)(γ · (x, y, z)) = γ · (ξ1, ξ2)(x, y, z)
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Proof. The right-hand side is ξ − γ. In order to determine the left-hand side, we need to
compute how the moment map changes as a function of the complex coordinates. To do this,
we let F denote the local Kähler potential for the symplectic form. So F is interpolating
between the three toric CP2(3) potentials around a vertex. The change in moment map
value can be calculated by integrating the symplectic form to compute the area of a disc, as
follows.

Claim 3.20. Consider a disc D ⊂ Y , whose lift D̃ ⊂ Ỹ is invariant under the action of an S1

subgroup of T 3. Denote the corresponding moment map by µ. In particular the boundary of
D̃ is an S1-orbit S1.(x, y, z), while its center is a fixed point (x0, y0, z0). Then the symplectic
area of the disc D is equal to µ(x, y, z)− µ(x0, y0, z0).

Proof. We claim µ(x, y, z)− µ(x0, y0, z0) =
∫

D̃
ω. The CP1 moment map image is a segment

over which we can draw an elongated sphere and map a value in the segment to the area of
the part traced out in the sphere. The lift D̃ has boundary component given by an orbit,
which we can think of as the integral flow of the vector field generated by the infinitesimal
action, call it X#. Then the integral over D̃ involves integrating over this X# and the line
from (x, y, z) to (x0, y0, z0). Call this line C. Then we can write the integral as

∫

C

ιX#ω =

∫

C

dµ = µ(x, y, z)− µ(x0, y0, z0)

�

So in order to compute the change in moment map coordinates, we go ahead and compute
area as follows.

Claim 3.21. The symplectic area of the P1 along each of the x, y and z axes is 1.

Proof. In the simplified case of P1, if the gluing is normally x ∼ x−1, the analogue here
would be to define a gluing x ∼ Kx−1 for some constant K (so a Z-action). We do the
computation along the y-axis, and the others will be the same because we will impose
x ↔ y ↔ z symmetry on the symplectic form. Recall P1 has an open covering U0, U∞ and
charts φ0 and φ1 sending [z0 : z1] to z1/z0 and z0/z1 respectively. We want to split up the
integration over P1 into these two charts, but only the portion of the chart up to where they
intersect (else we integrate over too much). So we have y is the coordinate on φ0(U0) ∼= C
then it is T αy−1 on φ∞(U∞) and |y| = |T αy−1| =⇒ |y| = T α/2. Let CTα/2 denote this circle

of complex radius T α/2. Then let D0 be the disc in φ0(U0) and D∞ the corresponding disc
in the other one.

Let F denote the local Kähler potential for ω and F0, F∞ be the Kähler potential in the
two charts U0 and U∞ on the y-axis P1. Then for Kähler potential F given above from the
toric Kähler form on CP2(3):

∫

P1

i

2π
∂∂F =

i

2π

[

∫

φ−1
0 (D0)

d(∂F ) +

∫

−φ−1
∞ (D∞)

d(∂F )

]

=
i

2π

[∫

∂D0

∂(φ−1
0 )∗F −

∫

∂D∞

∂(φ−1
∞ )∗F

]

=
i

2π

∫

C
Tα/2

∂(F0 − F∞)
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=
i

2π

∫

C
Tα/2

∂ log(|T α/2y|2) = i

2π

∫

C
Tα/2

T α/2ydy

|T α/2y|2

=
i

2π

∫ 2π

0

eiθ(−i)e−iθdθ = 1

�

Commutes in ξ1, ξ2. Thus when gluing across the z-axis the coordinate chart U(−1,0),g−1

with coordinates (x′′′, y′′′, z′′′) to the main coordinate chart U0,g0 with coordinates (x, y, z),
the Kähler potential transforms by F ′′′

V = FV − log(|Tz|2). Thus this discrepancy between
the local Kähler potentials implies that the value of ξ1 is modified by adding the constant
−1, and similarly for ξ2. Similarly, when gluing across the x-axis the main chart to the chart
U0,g5 with coordinates (x′, y′, z′) the local Kähler potentials differ by − log(|Tx|2), which
modifies (ξ1, ξ2) by (1, 0). Combining the two transformations amounts to the action of γ′,
namely changing coordinates from (x′′′, y′′′, z′′′) to (x′, y′, z′). This action modifies (ξ1, ξ2)
by adding (2, 1), which is exactly γ′. Similarly for γ′′. This completes the proof that the
T 2-moment map is ΓB-equivariant. �

We will need the following claim later when we define the full symplectic form.

Claim 3.22. The moment map coordinates (ξ1, ξ2) are monotonic increasing functions of rx
and ry in a v0 = xyz fiber.

Proof. Recall the action-angle coordinates (ξ, θ) of Claim 2.1 from the fiber-wise action ρ:

ρ : T 2 × V ∨ ∋ (α1, α2) · (x, y, z) 7→ (e2iπα1x, e2iπα2y, e2iπ(−α1−α2)z) ∈ V ∨

Let Xi := dρ(∂αi
). If ιXi

ω|V ∨ were exact, say dHi for some function Hi (known as the
Hamiltonian), then the torus action would be called a Hamiltonian group action and (H1, H2)
would be the moment map. This leads us to the caveat at the start of Section 2.1. In the
setting here, ω is complicated so computing ιXi

ω|V ∨ is involved. However, the 1-forms ιXi
ω

are closed, and hence locally exact, so there exist locally defined functions ξ1, ξ2 so that
ιXi
ω = dξi. Notationally we are assuming ξη ≡ η. Globally, as seen above, the first two ξi

are ΓB-periodic and their differentials pass to 1-forms on a torus fiber R4/Γ. The infinitesimal
action is expressed by the pushforwards dρ(∂αi

) for i ∈ {1, 2}. These vector fields are

(3.22) X1 =
∂

∂θ1
= (ix, 0,−iz), X2 =

∂

∂θ2
= (0, iy,−iz)

Then the action coordinates can be expressed locally in terms of the Kähler potential:

ιXi
ω|V ∨ = dξi =⇒ ω|V ∨ = dξ ∧ dθ

=⇒ ιXi

(

i

2π
∂∂F

)

=
i

2π
dιXi

∂F = dξi

∴ ξ1 := i/2π∂F (2πix∂x − 2πiz∂z) + const

∴ ξ1 = −1

2

(

∂F

∂ log |x| −
∂F

∂ log |z|

)

+ const

∴ ξ2 = −1

2

(

∂F

∂ log |y| −
∂F

∂ log |z|

)

+ const
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using ∂∂ = −∂∂ = −d∂, the conversion to polar coordinates from §3.6 and that F is
preserved by rotating x, y, z as it is a function of their norms, hence the Lie derivative
LXi

∂F = 0 and also ∂θxF = 0. The calculation for ξ2 is similar. This calculation of ξi
is up to additive constants. The upshot is that the moment map (ξ1, ξ2) provides periodic
action-coordinates which are monotonic increasing in |x| and |y| for fixed v0 because of how
we defined F . (But recall the caveat, we are calling it a moment map but it takes values in
a torus instead of affine space, so we are expanding the definition of moment map here to
allow the ξi to be periodic multivalued functions for a quasi-Hamiltonian action.) We see
that V ∨ is symplectomorphic to (TB × TF , ωstd). �

Note that an orbit is precisely the kernel of (dξ1, dξ2) so that a preimage of a moment map
value is a T 2-orbit. Said another way, the torus action preserves the moment map. Or said
yet another way, the tangent space to a fiber of the moment map is ∂θ1 , ∂θ2 .

How to view η as a moment map coordinate. Let θη = arg(v0) = arg(xyz). We can’t
extend the above to a T 3-action. If we were to rotate v0 too, then x and y would change in the
process as well, due to monodromy. Because T 3 has trivial bracket on its Lie group, we should
rotate one variable while fixing the others. When v0 6∈ R+ the angle variables θ1 and θ2 on V

∨

are only well-defined up to additive constants, as they jump by arg(v0) = θη under the action
of the generators of ΓB due to the transformation rules for the complex coordinates x and
y, see Corollary 3.14. Thus we can only define an infinitesimal T 3 action generated locally
by sufficiently small rotations αi, P (α1, α2, αη) · (x, y, z) = (e2iπα1x, e2iπα2y, e2iπ(αη−α1−α2)z).
The infinitesimal action on v0 is expressed by the pushforward dP (∂αη):

(3.23)
∂

∂θη
= (0, 0, iz)

This isn’t global as it transforms non-trivially under ΓB. (Note that, notationally, ξη is
the same thing as η.) The upshot is that upon integrating we find that

η =
1

2
· ∂F

∂ log |z| + const

Though the action coordinates (ξ1, ξ2, η) are globally well-defined on the universal cover
Ỹ , on which the T 3-action discussed above is well-defined and Hamiltonian, η is only defined
locally on Y . This coordinate corresponds to complex coordinates on X via the S1-action
rotating the coordinate y ∈ C in BlH×{0}V × C. That action has moment map µX(x, y)
given in [AAK16, Equation (4.1)], and then |y| is determined by the choice of η since X
and Y have the same base as Lagrangian torus fibrations, with base coordinates given by
(ξ1, ξ2, η).

Definition 3.23 (Superpotential). The superpotential v0 is the holomorphic function Y → C

(3.24) v0(x, y, z) := xyz

which is well-defined as a global function on Y because γ∗v0 = v0 for all γ ∈ ΓB.

Example 3.24. To see why the fibers are complex tori with complex coordinates x and
y, e.g. consider just x ∼ 2x on C∗: if we identify the unit circle with the circle of twice
the radius, we’ve just formed an elliptic curve or 2-torus. Now we compactify: if we have
x ∼ T nx for all n then taking n → ±∞, we see that 0 and ∞ are identified to give the
pinched torus.
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Remark 3.25 (Mirror to non-standard symplectic form on mirror). Note that the symmetry
properties required for ω told us what complex structure was needed (it produces a product
complex structure), which by mirror symmetry will correspond to a specific symplectic form
on A-model of X. The complex structure is a product here on x and y. In particular, the
ΓB-action on complex coordinates here is different than that described in [AAK16, §10.2].
The complex structure there is mirror to the standard Kähler form and is defined by:

(3.25) v
m ∼ v

〈λ(γ),m〉
0 T 〈γ,m〉

v
m

where they use complex coordinates v = (v1, v2). Thus setting (x, y, z) = (v−1
1 , v−1

2 , v0v1v2),
their complex structure arises from the following ΓB-action:

γ′ · (x, y, z) = (T−2v−1
0 x, T−1y, T 3v0z)

γ′′ · (x, y, z) = (T−1x, T−2v−1
0 y, T 3v0z)

So our complex structure is mirror to a non-standard Kähler form on the genus 2 curve.

Remark 3.26 (Terminology). The toric variety Ỹ is referred to as a toric variety of infinite-
type by [KL19], because of the infinitely many facets, where the neighborhood of the toric
divisor there is the same as our restriction to |v0| small, i.e. η small.

3.5. The symplectic form. Now we define the symplectic form, first on a fiber, as a
function of the norms rx, ry, rz viewed in the moment polytope. See Figure 11. We are
starting with a polytope, which we want to be the moment map image with respect to some
symplectic form that we construct. In particular, we have found a symplectic form so that
the boundary P1’s of the hexagon have length 1 i.e. symplectic area 1. This follows from the
change in Kähler potential under gluing across coordinate axes, see Claim 3.18.

The three tiles adjacent to the main corner define toric coordinates x, y and x, z and y, z
respectively. Recall the three CP2(3 points) potentials are denoted gxy, gxz, gyz by Equations
(3.15) and (3.19). In between we interpolate between the two potentials on either side. In
the Roman-numbered regions, all three potentials are at play and all of rx, ry, rz are very
small. They are small because in a fiber we fix v0 and we’ve restricted to small v0 in the
definition of ∆Y in Equation (3.10). So if |v0| = T l, then Tr∗ are each of the form T l∗ where
lx+ ly+ lz = l. Furthermore in the Roman-numbered sections around the vertex, because all
three toric coordinates go to zero at the vertex, near the vertex their norms are still small
by continuity. Geometrically, the toric coordinates are small in the corresponding region of
a torus fiber close to the zero fiber.

Definition of new radial and angular coordinates d and θ, definition of ω

We introduce local real radial and angular coordinates d and θ to define delineations on
the moment polytope around the vertex. Their subscripts indicate which region of Figure
11 they are defined in. This will allow us to interpolate between the three Kähler potentials
gxy, gxz, gyz as functions of these local coordinates. We fix |v0|(= |xyz|) = T l for T << 1 and
l a large positive constant, so that in the red regions denoted by Roman numerals of Figure
11 we have rx, ry, rz << 1 and can use approximations to simplify the radial and angular
coordinates. We start with

(3.26) F = α1gxy + α2gxz + (1− α1 − α2)gyz; 1/3 ≤ α1, α2; α1 + α2 ≤ 1
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Figure 11. L) Regions near a vertex, R) Number of regions interpolated between

where Region VII is where α1 = α2 = 1/3 and F = 1
3
(gxy + gxz + gyz) ≈ 2

3
((Trx)

2 + (Try)
2 +

(Trz)
2) via the log approximation and in the other regions α1, α2 interpolate between the

three Kähler potentials.
We want d and θ to locally around a vertex be approximated by Figure 12 where we can

read off how rx, ry and rz compare to each other. It is hard to define them as functions of
the moment map coordinates, but we use that the moment map coordinates are monotonic
increasing functions in the norm coordinates. This is proven in Claim 3.22. In other words,
rx increases in the (1, 0, 0) direction, ry increases in the (0, 1, 0) direction on the polytope
and rz increases in the (−1,−1, 1) direction. These motivate the radial variable definition.
Hence, as shown in Figure 12 we see that e.g. T 2(r2y − r2z) increases in the upward vertical
direction. This motivates the angular variable definition. Namely our choices for d and θ
approximate to the expressions in Figure 12.

rz ≪ rx, ry
rx ≪ ry, rz

ry ≪ rx, rz

rx

ry

rz

r2y − r2z increases

r2z − r2x increases

r2x − r2y increases

Figure 12. How the three angular directions vary for rxryrz constant on a fiber

We define functions φx, φy, φz for expressions we will use often in the coming definitions.
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φx(x, y, z) := logT
1 + |Tx|2
1 + |T 2yz|2

φy(x, y, z) := logT
1 + |Ty|2
1 + |T 2xz|2(3.27)

φz(x, y, z) := logT
1 + |Tz|2
1 + |T 2xy|2

Definition 3.27 (d and θ coordinates and their approximations for rx, ry, rz << 1).

dI :=φx −
1

2
(φy + φz) = logT

(

1 + |Tx|2
1 + |T 2v0x−1|2/

√

1 + |Ty|2
1 + |T 2v0y−1|2 · 1 + |Tz|2

1 + |T 2v0z−1|2

)

≈(Trx)
2 − 1

2

(

(Try)
2 + (Trz)

2
)

(3.28)

θI := φy − φz = logT

(

1 + |Ty|2
1 + |Tz|2 · 1 + |T 2xy|2

1 + |T 2xz|2
)

≈ (Try)
2 − (Trz)

2

dIIA := φx −
1

2
(φy + φz) +

3

2
α6(θII) · φy ≈ T 2[r2x −

1

2
(r2y + r2z) +

3

2
α6(θII) · r2y](3.29)

dIIB := φx + φy −
1

2
φz

dIIC := φy −
1

2
(φx + φz) +

3

2
α6(−θII) · φx

θII := logT ry − logT rx

where α6 will be a cut-off function of the angular direction. By symmetry, we define

dIII := φy −
1

2
(φx + φz)(3.30)

θIII := φz − φx

dV := φz −
1

2
(φx + φy)

θV := φx − φy

In Figure 13, we define regions I and IIA of the polytope in terms of (dI , θI) and (dII , θII)
coordinates (indicated as (, )I or (, )II respectively) using the approximations for d and θ.
This defines the rest of the regions by symmetry and completes the definition of the d and
θ coordinates.

Figure 13 will allow us to estimate how much rx, ry and rz vary in each of the regions
and show there is enough space to bound the second derivatives of the bump functions used.
Namely, in order to go from the values of the bump functions at either end of a region, the
function has space to grow sufficiently gradually that the slope and rate of change of slope can
be made small and taking second order derivatives in the definition of the symplectic form
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Figure 13. Delineating regions in coordinates (dI , θI) and (dII , θII)

will not have contributions from the αi making it degenerate. This is proven in Appendix
A. Now we define the symplectic form in terms of rx, ry, rz in these regions.

Definition 3.28 (Definition of symplectic form on Y ). We set ω|V ∨ = i
2π
F where F is

defined locally as follows in terms of the coordinates in Equation 3.29 and

(3.31)

gyz = log(1 + |Ty|2)(1 + |Tz|2)(1 + |T 2yz|2)
gxz = log(1 + |Tx|2)(1 + |Tz|2)(1 + |T 2xz|2)
gxy = log(1 + |Tx|2)(1 + |Ty|2)(1 + |T 2xy|2)

We introduce new bump functions α3, α4, α5, α6 of the new variables (d, θ) as follows:

2

3
≤ α3(dI) = α1 + α2 ≤ 1, −1

2
≤ α4(θI) ≤

1

2
, 0 ≤ α5(dI) ≤ 1, 0 ≤ α6(θII) ≤ 1

α4(θI) · α5(dI) =
1

2
(α1 − α2)

These bump functions are smooth, increasing as functions of the specified variable, and near
the ends of their domain of definition they are constant at the bounds given. We also require
that α4 is an odd function. See the subsection below entitled Motivation for new bump
functions defined in ω for an explanation of the properties of these bump functions. Now
the definition is as follows, noting that gxz − gyz = φx −φy and similarly permuting (x, y, z):

Regions g∗• in Fig 11: F = gxy, F = gyz, F = gxz respectively

Region I: F = gyz + α3(dI)dI + α4(θI)α5(dI)θI

Region IIA: F = gyz − α6(θII)φy + α3(dIIA)dIIA +
1

2
α5(dIIA)(φy − φz − α6(θII)φy)

Region IIB: F = (gyz − φy) + α3(dIIB)dIIB − 1

2
α5(dIIB)φz(3.32)
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Region IIC: F = gxz − α6(−θII)φx + α3(dIIC)dIIC +
1

2
α5(dIIC)(φx − φz − α6(−θII)φx)

Region VII: F =
1

3
(gxy + gxz + gyz)

These formulas match at the boundaries, which allows us to define the rest of the regions
III – VI similarly to I and II by symmetry, via permuting the coordinates (x, y, z). For
example, one can check that the formula for region IIA agrees with that for region VII when
α3 = 2

3
and α5 = 0; with that for region I when α6 = 0 and α4 = 1

2
; with that for region

IIB when α6 = 1; and with gxy when α3 = α5 = 1. The calculation is similar for the other
regions.

Along the coordinate axes (namely the regions shaded red, blue, and black) we interpolate
between the relevant g∗•’s using the same formulas as in regions I, III, and V, with α3 ≡ 1.
E.g. along the rx-axis (blue region) the formula is F = 1

2
(gxy + gxz) + α4(θI)(gxy − gxz) and

similarly for the other edges.
Finally by adding a term proportional to |xyz|2 on the base, with sufficiently large constant

of proportionality, we obtain a non-degenerate form ω on Y . This completes the definition
of the symplectic form.

Motivation for new bump functions in ω

Note that the set {α1, α2, 1 − α1 − α2} is asymmetric but all three should be treated
symmetrically. In other words, if we rotate (α1, α2) thought of as a vector, by π/4, we get
something proportional to

(

1 −1
1 1

)(

α1

α2

)

=

(

α1 − α2

α1 + α2

)

We accordingly rearrange terms of the initial expression of F in terms of α1−α2 and α1+α2.

F = α1gxy + α2gxz + (1− α1 − α2)gyz

= α1 log(1 + |Tx|2)(1 + |Ty|2)(1 + |T 2xy|2)
+ α2 log(1 + |Tz|2)(1 + |Tx|2)(1 + |T 2xz|2)
+ (1− α1 − α2) log(1 + |Tz|2)(1 + |Ty|2)(1 + |T 2yz|2)(3.33)

= gyz + (α1 + α2)φx −
(

α1 + α2

2
− α1 − α2

2

)

· φy −
(

α1 + α2

2
+
α1 − α2

2

)

· φz

= gyz + (α1 + α2)(φx −
1

2
(φy + φz)) +

1

2
(α1 − α2)(φy − φz)

We want bump functions to be multiplied by the variable they are a function of because
dα

d(logT µ)
= α′(µ) · µ ≈ ∆α

∆ logT µ
, so we can find estimates on terms containing α′(µ) · µ when µ

is the argument of α. In particular, when µ is d ≈ (Tr∗)
2 or θ ≈ (Tr∗)

2 we can estimate the

LogT -derivative of α(µ) as O(1)
l
. Recall from Equation (3.29) that dI := φx − 1

2
(φy + φz) ≈

(Try)
2 − (Trz)

2 is a radial direction in region I and θI := φy − φz ≈ (Try)
2 − (Trz)

2 an
angular direction in region I. So define

(3.34) α3 = α1 + α2, 2/3 ≤ α3 ≤ 1

to be a bump function of dI going from 2/3 to 1 in region I, by Equation (3.26).
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We use 1
2
(α1 − α2) to define a bump function α4 that varies in the angular direction θI .

The range of α1 − α2 depends on dI . At the start of region I we have α1 = α2 = 1/3 so
α1 − α2 goes from 0 to 0 as we trace out the angle θI . However at the end of region I we go
from (α1, α2) = (0, 1) at the bottom to (α1, α2) = (1, 0) at the top, so that 1

2
(α1 − α2) goes

between −1/2 and 1/2. Thus we multiply α4(θI) by another bump function α5(dI) of the
radial direction that goes from 0 to 1, so we scale the interval that α4 varies in. We define
α4 to be an odd function for symmetry reasons. Let

(3.35) α4(θI)α5(dI) =
1

2
(α1 − α2), −1/2 ≤ α4 ≤ 1/2, 0 ≤ α5 ≤ 1

Now we can rewrite Equation (3.33) for F as:

(3.36) F = gyz + α3(dI) · dI + α4(θI) · α5(dI) · θI
We can similarly define F in regions III and IV, and then region II will interpolate between
regions I and III. This is where the defining equations for ω|V ∨ in Definition 3.28 came from.

3.6. Leading order terms in ω. We convert ∂∂F to polar coordinates where calculations
are easier, using the real transformation (rx, θx) ↔ (x1, x2), where x = x1 + ix2 = rxe

iθx and
similarly for y. Recall (e.g. [Huy05])

(3.37) ∂x =
1

2
(∂x1 − i∂x2), ∂x =

1

2
(∂x1 + i∂x2)

By the Chain Rule, since r2x = x21 + x22, θx = tan−1(x2/x1), and arctan(t)′ = 1/(1 + t2):

(3.38) ∂xi
= ∂xi

(rx)∂rx + ∂xi
(θx)∂θx =

xi
rx
∂rx +

∂xi
(x2/x1)

1 + (x2/x1)2
∂θx =

xi
rx
∂rx ∓

xi+1

x21 + x22
∂θx

Hence plugging in for ∂xi
and ∂xi

:

(3.39)

∂

∂x
=

1

2

(

∂

∂x1
− i

∂

∂x2

)

=
1

2

(

x1 − ix2
rx

∂

∂rx
+

−x2 − ix1
r2x

∂

∂θx

)

=
1

2

(

e−iθx∂rx −
ie−iθx

rx

)

∂

∂x
=

1

2

(

eiθx∂rx +
ieiθx

rx

)

We also need to rewrite the differentials dx = dx1 + idx2 and dx in terms of polar coordi-
nates. Since d is complex linear, and using Euler’s formula eiθ = cos θ + i sin θ:

(3.40)
dx = d(rx cos θx) + id(rx sin θx) = eiθxdrx + irxe

iθxdθx

dx = e−iθxdrx − irxe
−iθxdθx

Similarly for y. Now we can convert ∂∂F into polar coordinates.

i∂∂F =

3
∑

i,j=1

∂2F

∂zi∂zj
dzi ∧ dzj

= i
∑

i,j

(
1

2
e−iθzi

[

∂rzi − i/rzi∂θzi

]

)(
1

2
eiθzj

[

∂rzj + i/rzj∂θzj

]

)(F )(eiθi(dri + iridθi))

∧ (e−iθj (drj − irjdθj))
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= i
1

4

∑

i,j

e−iθi

[

eiθj∂2
rirjF − i

ri
∂rjFδijie

iθj

]

(eiθi(dri + iridθi)) ∧ (e−iθj (drj − irjdθj))

=
i

4

[

∑

i

(∂2
riF +

1

ri
∂riF )(dri + iridθi) ∧ (dri − iridθi)

]

+
i

4





∑

i 6=j

(∂2
rirjF )(dri + iridθi) ∧ (drj − irjdθj)





A Kähler form is compatible with its complex structure by definition (e.g. [Huy05, Defini-
tion 1.2.13]), so J := i given by multiplication by i in the toric coordinates, is ω-compatible.
That is, ω(·, J ·) is a metric, which we want to express in polar coordinates to facilitate cal-
culations below. This is a 6 by 6 block diagonal matrix with the r-derivatives block and the
θ-derivatives block. Recall the complex structure acts on real tangent vectors by ∂x1 7→ ∂x2

and ∂x2 7→ −∂x1 . Again by the Chain rule:

(3.41)

∂r1 =
∂x1
∂r1

∂x1 +
∂x2
∂r1

∂x2 = cos θ1∂x1 + sin θ1∂x2

∂θ1 = −r1 sin θ1∂x1 + r1 cos θ1∂x2

J(∂x1) = ∂x2 , J(∂x2) = −∂x1 =⇒ J(∂r1) =
1

r1
∂θ1 , J(∂θ1) = −r1∂r1

Hence the entries along the diagonal in the r block will be

gii = ω(∂ri , J∂ri) = ω(∂ri ,
1

ri
∂θi) =

1

ri
ω(∂ri , ∂θi) =

1

2
(∂2riF +

1

ri
∂riF )

because we pick up the dri∧dθi term, i.e. 2
4
ridri∧dθi times the F derivative term. Similarly

gij = ω(∂ri , J∂rj) =
1

rj
ω(∂ri , ∂θj) =

1

2
(∂2rirjF )

Dominant terms for metric Region I. The metric in polar coordinates is:







∂2
rxF + 1

rx
∂rxF ∂2

rxryF ∂2
rxrzF

∂2
rxryF ∂2

ryF + 1
ry
∂ryF ∂2

ryrzF

∂2
rxrzF ∂2

ryrzF ∂2
rzF + 1

rz
∂rzF







F = f + α3d+ α4 · α5θ

d ≈ T 2[r2x −
1

2

(

r2y + r2z
)

]

θ ≈ T 2[r2y − r2z ]

f ≈ T 2[r2y + r2z ]

Note that because everywhere rx appears is as r2x, applying ∂
2
rxrx is the same as applying

∂rx/rx. Here are the terms that do not involve derivatives of the αi, where for ease of notation
subscript x means ∂rx :





2(fxx + α3dxx + α4α5θxx) fxy + α3dxy + α4α5θxy fxz + α3dxz + α4α5θxz
“ 2(fyy + α3dyy + α4α5θyy) fyz + α3dyz + α4α5θyz
“ “ 2(fzz + α3dzz + α4α5θzz)





≈ T 2





4α3 0 0
0 4− 2α3 + 4α4α5 0
0 0 4− 2α3 − 4α4α5




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The approximation follows from the estimates on bump function derivatives in Appendix
B. One of the coordinates does go to zero as the bump functions reach their bounds. However,
the one that goes to zero in the xy-plane is the z term and similarly in the xz-plane it’s the
y term. Since we add a term |xyz|2 for the base, this will ensure positive definiteness away
from the zero fiber.

Dominant terms in Regions III and V. In region I, rx was the dominating coordinate.
In region III, ry will dominate and in region V, rz will dominate. So we take the analogous
data for half regions of III and V, by modeling I.

Dominant terms in Region II. The expressions for the Kähler potentials in regions III
and V thus differ from that in region I by a permutation of the coordinates x, y, z and all
the estimates above carry through under this permutation. Thus we patch together the d
coordinate across regions II, IV and VI. This uses another bump function α6 going from 0
to 1 as we increase a suitable θII-coordinate. In particular, functions of d become functions
of d ◦ α6. We have

F ≈ T 2[(r2y + r2z − α6(θII) · r2y) + α3(dIIA) · (r2x −
1

2
(r2y + r2z) +

3

2
α6(θII) · r2y)

+
1

2
α5(dIIA) · (r2y − r2z − α6(θII) · r2y)]

since

gyz ≈ T 2[r2y + r2z ]

dIIA ≈ T 2[r2x −
1

2
(r2y + r2z)] +

3

2
α6(log ry − log rx) · (Try)2

θII = log(ry/rx)

The terms not involving derivatives of the bump functions will form the nondegenerate part
of the metric on region II. Off-diagonal terms ∂2r•r⋆ for ⋆ 6= • are zero because derivatives
of non-bump functions means differentiating r2∗ for some ∗. On the diagonal terms we get
1
r∗
∂r∗ + ∂2r∗r∗ = 2∂2r∗r∗ which, applied to (Tr∗)

2 is 4T 2. So in the (∗, ∗) entry of the matrix,

the leading terms are 4T 2 times the coefficients on r2∗.

x : T 2(4α3) ≥ T 28/3

y : T 2(4− 4α6 − 2α3 + 6α3α6 + 2α5 − 2α5α6) = T 2[4 + (2− 2α6)(α5 − α3) + 4α6(α3 − 1)]

≥ T 2[4 + 2(0− 2/3) + 4(−1/3)] = T 2 · 4
3

z : T 2(4− 2α3 − 2α5)

Note that when α3 = α5 = 1 the z term goes to zero. However, it is bounded below in
a region where α3, α5 are bounded away from 1. In the region where it goes to 1, we add
a term to F from the base, i.e. |xyz|2, to maintain nondegeneracy. Again because xyz is
bounded below in the region where we add it, we can take its partial derivatives and the
result will be positive definite. Region IIC, IVA, IVC and VIA, VIC are the same after
permuting x ↔ y ↔ z. For example, swap rx ↔ ry to get to IIC, and the subscripts I are
replaced with subscripts III.

The characteristics in region IIB which we did not have in regions IIA and C are 1) rx and
ry go from rx >> ry to ry >> rx, passing through rx = ry and 2) α6 ≡ 1. All of rx, ry, rz
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record how Lagrangians intersect upon perturbations, and is the reason we exclude the
infinite-sloped linear Lagrangian parallel transported around a circle in the base in our
subcategory. (Such a Lagrangian bounds i-holomorphic discs.) Seidel adapted the definition
of a Fukaya category to the case of symplectic Lefschetz fibrations, which we adapt to the
symplectic fibration (Y, v0). Note we’ve constructed (Y, ω) so that v0 : Y → C is a symplectic
fibration because we started by constructing ω in a fiber in Chapter 3.5.
The notation “Donaldson-Fukaya-Seidel (DFS)- type category of linear Lagrangians in

(Y, v0)” means that we only consider a subset of possible objects, and their collection forms
a category that will be a subcategory of the full Fukaya-Seidel category of (Y, v0) once such
a category is defined. In particular, it is expected this subcategory would split-generate
the full category. The definition of linear Lagrangians in a fiber V ∨ of Y was inspired by
the rational slope Lagrangians considered in [PZ98] on categorical mirror symmetry for the
elliptic curve. Because of the linearity of Lagrangians considered, they have a lift that allows
for Maslov grading given by their slope, and they have a Spin structure as well. We obtain
Lagrangians in the total space by parallel transporting these Lagrangians in the fiber over
an arc in the base with respect to the horizontal distribution induced from the symplectic
form.

Definition 4.1. The symplectic horizontal distribution of a symplectic fibration π : Y → C
to a base manifold C is H ⊂ TY such that if F is a generic fiber of π then H = TF ω is the
ω-complement, i.e.

ω(H,TF ) = 0

Given two points p0, p1 ∈ C and a path γ : I → C between them (i.e. γ(0) = p0 and
γ(1) = p1), the parallel transport map is a symplectomorphism

Φ : Fp0 → Fp1

defined as follows: given x ∈ Fp0 , we set Φ(x) to be γ̃(1) where γ̃ : I → Y such that π◦ γ̃ = γ,
dπ(γ̃′) = γ′ and γ̃′ is in the horizontal distribution.

Claim 4.2. By standard theory, this last condition implies Φ is a symplectomorphism.

Proof. There is a unique horizontal vector field XH on π−1(γ(I)) with flow φH by existence
and uniqueness of differential equation solutions and that horizontal implies there is no
component of the vector field in the fiber direction. Then since dΦ is the identity on vectors
in H we have ω(dΦ(XH), dΦ(v)) = ω(XH , v) for v ∈ H. Also, H is ω-perpendicular to TF ,
which is a condition also preserved under parallel transport: when v ∈ TF is transported
infinitesimally in the parallel direction, it must still be in TF , otherwise any component in
H could be reverse parallel-transported to a vector component in H at the original fiber,
contradiction. So ω(XH , v) = 0 = ω(dΦ(Xh), dΦ(v)) and Φ∗ω = ω since TY = TF ⊕H in
regions where we parallel transport. �

Corollary 4.3. Φ(ℓi) is Lagrangian in V ∨ with respect to ω|V ∨.

Claim 4.4. Φ fixes ξ1, ξ2.

Proof. Let ρ be the quasi-Hamiltonian T 2-action rotating coordinates (x, y) ∈ V ∨ by angles
(α1, α2). Let XH be the horizontal vector field with flow φt

H . Then

d

dt
(ξi ◦ φt

H)|t=0 = dξi(XH)
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= ιdρ(∂αi )
ω(XH)

= ω(∂θi , XH) = 0 ∵ XH ⊥ω ∂θi ∈ TV ∨

∴ ξ ◦ φt
H = ξ

�

Corollary 4.5. Parallel transport Φ is of the form

(ξ1, ξ2, θ1, θ2) 7→ (ξ1, ξ2, θ1 + f1(ξ), θ2 + f2(ξ))

for some functions f, g depending on ξ but not the angular coordinates.

Proof. Let π = v0. We know by the previous result that parallel transport does not affect
ξ1, ξ2. We are stating further that f and g are independent of the angles, so we can express
monodromy as a graph of a function TB → TF . So again let ρ be the T 2-action on a
fiber, namely addition on the θ coordinates. Since ω is a function of the norms only, ρ is a
symplectomorphism and preserves that TV ∨ ⊥ω H and acts fiber-wise. Hence

0 = ρ∗ω(TV ∨, H) = ω(ρ∗TV
∨, ρ∗H) = ω(TV ∨, ρ∗H) ∴ ρ∗H = H

Furthermore since π = v0 and ρ preserves fibers, we have π ◦ ρ = π and

dπ(ρ∗Xhor) = d(π ◦ ρ)(Xhor) = dπ(Xhor) ∴ ρ∗(Xhor) ◦ ρ−1 = Xhor

because ρ∗Xhor ∈ H and has the same horizontal component as Xhor ∈ H. Integrating both
sides of the last equality we obtain

dρ

(

d

dt
φt
H

)

◦ ρ−1 =
d

dt

(

ρ ◦ φt
H

)

◦ ρ−1 =
d

dt
(φt

H) ∴ ρ ◦ φt
H = φt

H ◦ ρ

In other words, we get the same answer whether we rotate the coordinates θ 7→ θ + α
and then transport by adding f(θ + α), or transport and then rotate. So parallel transport
doesn’t depend on the angular coordinates. Namely

θi + αi + tfi(ξ, θ + α) = θi + αi + tfi(ξ, θ) ∴ fi(ξ, θ + α) = fi(ξ, θ)∀α
Thus f1, f2 are independent of θ1, θ2. �

Now we can define the DFS-type category we consider in this paper. Objects are U-
shaped Lagrangians as in the appendix of [AS10] and morphisms are defined via categorical
localization as in [AS], [Gan16, Chapter 4].

Definition 4.6 (Definition of category on A-side).

Objects

Recall the definition of ℓk = {(ξ1, ξ2,−k
(

2 1
1 2

)−1(
ξ1
ξ2

)

}(ξ1,ξ2)∈TB
in Lemma 2.5 for La-

grangians in V ∨. Also define

tx := {(logτ |x|, θ)}θ∈[0,1)2 ⊆ V ∨.

In Y , define these Lagrangians to exist in the v0-fiber over −1. Let
⋃

γ denote parallel

transport with respect to (TV ∨)ω over a curve γ ⊂ C in the base of v0. Let γ : R → C be
a smooth curve so that γ(0) = −1 and γ(R) traces out a U-shape in the base given outside
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of Lemma 2.5. Not in the total space, because we would need to find a Hamiltonian vector
field tangent to the fibers of v0, so the projection of a Hamiltonian-perturbed holomorphic
curve (i.e. one that satisfies the perturbed Cauchy-Riemann equation (2.5)) under v0 is still
a holomorphic polygon. Since the symplectic form is not a product of one on the base and
fiber, we instead use the categorical localization method of [AS], see also [Gan16]. For each
Lagrangian in the fiber, there are many different objects of FS obtained by parallel transport
along U-shapes that go to infinity in slightly different directions, but these will be isomorphic
to each other after localizing.

Moduli spaces

This concludes the definition of the DFS-type category used on the A-side (Y, v0), modulo
the definition of the moduli spaces, which is the remainder of this chapter after we compute
monodromy.

Remark 4.7. If we include tx parallel transported in a circle around the base of v0 : Y →
C as a Lagrangian in the subcategory we are considering, then this Lagrangian bounds
nonconstant holomorphic discs. A future direction is to incorporate and define M0 for
the category containing this Lagrangian. Note that M0 is a degree 2 operation, and the
Lagrangian is only Z/2-graded. In this paper, we do not include it in the subcategory being
considered. We do still want to count the discs and J0-spheres, but they will show up only
in the c in M2(c,−) considered as a map on Floer groups in Section 5.1.

Lemma 4.8. For Lagrangians in correct position, morphisms and compositions in the local-
ized Fukaya-Seidel category coincide with those in the directed category. Namely, if K > L,
then homFS(K,L) ≃ CF ∗(K,L), and if L0 > ... > Lk, then µ

k in FS(Y, v0) is the same as
in the directed category. Namely it is given by counting J-holomorphic discs.

Proof references. This is unpublished work of Abouzaid-Seidel, e.g. see [Gan16, Proposition
119, 120], and Abouzaid-Auroux. �

Lemma 4.9. The composition of roofs is a roof.

Proof references. This is a consequence of the naturality of quasi-units with respect to con-
tinuation maps, see Abouzaid-Seidel and Abouzaid-Auroux. �

Definition 4.10. The Donaldson-Fukaya category is obtained by passing to cohomology on
the morphism chain complexes.

Remark 4.11 (Not exact). One difference of our fibration v0 : Y → C to those in [Sei08] is
that we are in the non-exact case, because fibers are compact tori. In particular, we will have
sphere bubbles which would have been excluded. Furthermore, we do not have a horizontal
boundary since fibers are tori, but we do have a vertical boundary by taking the preimage of
the boundary of the base. (Recall that the polytope locally describing Y has the restriction
η ≤ T ℓ for T ≪ 1, so equivalently |v0| ≪ 1 in the base.)

Remark 4.12 (Not Lefschetz). In [Sei08] the Fukaya category of a Lefschetz fibration has
Lagrangians given by thimbles obtained by parallel transporting a sphere to the singular
point in the Morse singular fiber where it gets pinched to a point. In our situation, the
degenerate fiber over 0 is not a Lefschetz singularity (i.e. modeled on

∑

i z
2
i ) but instead

the fiber T 4 degenerates by collapsing a family of S1’s, and also collapsing a T 2 in two
points. This produces singular Lagrangians. So instead, we go around this singular fiber in
a U-shape as in [AS19].
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Remark 4.13 (Not monotone). Lastly, a compact symplectic manifold (P, ω) is monotone
if
∫

c1(P ) = α
∫

ω : π2(P ) → R for some α > 0. Our setting is not monotone: taking
P := Y , which is Calabi-Yau, we have c1(Y ) = 0 however [ω] 6= 0 so α would have to be
zero, contradiction. Furthermore, the Lagrangians are not monotone, which we now define.

Definition 4.14 (Maslov index of a map). Given u : (D, ∂D) → (M,L) we first trivialize
u∗TM over the contractible disc. Then the Maslov index counts the rotation of u∗TL around
the boundary in this trivialized pullback.

Definition 4.15. A monotone Lagrangian L in symplectic manifold (M,ω) is such that
[ω] = k · [µ(u)] for all u ∈ π2(M,L), for some constant k. Namely, the areas of discs are
proportional to the Maslov indices of those discs.

Example 4.16. An example can be found in Oh [Oh93], who shows the Clifford torus in
(CPn, ωFS) is a monotone Lagrangian submanifold. In this thesis, all discs considered have
Maslov index 2, but the areas vary as prescribed by a formula of [CO06] which we will
elaborate on later.

Now that we’ve indicated how this set-up differs from those currently in the literature,
we give an outline of the subsections of this chapter. In Section 4.2 we discuss monodromy
around the central fiber in v0 : Y → C because it is used to find intersections of the
Lagrangians Lk we defined in the total space. Then Section 4.3 sets up the background
needed to define the structure maps and proves the moduli spaces involved have the required
conditions to be put into the definition. Finally we show the definition of the DFS-type
category is independent of choices, in Section 4.5.

4.2. Monodromy.

Definition 4.17. Monodromy is the parallel transport map Φ of Definition 4.1 around a
loop which goes once around a singularity in the base.

Claim 4.18. If ψ(t)(v0) = e2πitv0 then the symplectic horizontal lift of dψ(d/dt) is of the
form

Xhor = ∂/∂θη + f1(ξ, η)∂/∂θ1 + f2(ξ, η)∂/∂θ2
where fi are now functions of ξ1, ξ2, and η.

Proof of Claim 4.18. We saw above in Corollary 4.5 that Xhor does not involve ∂/∂ξi. We
now show it also preserves η because we are considering parallel transport around a circle
with fixed |v0|. Let w be the coordinate on the base C of π = v0. In particular, Xhor is
defined by the property

(4.3) dπ(Xhor) = ∂/∂θw

With respect to the action-angle coordinates π : (ξ1, ξ2, η, θ1, θ2, θη) → (|w|, θw) := (|v0|, θη)
and noting that |v0| is a function of (ξ1, ξ2, η) only, Equation (4.3) can be expressed as:

(

∂|v0|/∂ξ1 ∂|v0|/∂ξ2 ∂|v0|/∂η 0 0 0
0 0 0 0 0 1

)















0
0
a
f1
f2
b















=

(

a∂|v0|/∂η
b

)

=

(

0
1

)
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(0,1)

(1,0)

(0,0)

(1,1)
ξ1

ξ2

Figure 16. Monodromy in fiber, thought of as a section over the parallelo-
gram (ξ1, ξ2) 7→ (f1(ξ1, ξ2), f2(ξ1, ξ2)).

thus b = 1 and a must be zero as η depends on |v0|. So the horizontal lift is of the form:

Xhor = ∂/∂θη + f1∂/∂θ1 + f2∂/∂θ2

Also we saw above in Claim 4.5 that for a fixed fiber, the fi do not depend on θ1 and
θ2. A similar argument shows they are independent of θη, i.e. ρλ ◦ φt

H = φt
H ◦ ρλ for λ ∈ S1

defining the rotation action on the v0 coordinate. This can be seen by replacing ρ with ρλ
in the proof of Claim 4.5. �

Example 4.19 (One dimension down, 2D local case). The case of C2 with symplectic
fibration (x, y) 7→ xy is the setting of a Lefschetz fibration, with singular fiber given by two
copies of C from x = 0 or y = 0. The monodromy is a Dehn twist about the S1 given by
the belt of the cylindrical fibers. In that case f(x, y) = xy and S1-action is (eiθx, e−iθy).
The holomorphic vector field corresponding to this is iz1∂z1 − iz2∂z2 , whose contraction with
ω = i

2
(dz1 ∧ dz1 + dz2 ∧ dz2) gives Hamiltonian vector field −1

2
(|z1|2 − |z2|2). We have a

new set of coordinates on the two dimensional fiber: the moment map coordinate µ and the
angle coordinate of the action θ. As we approach xy = 0, the orbit at µ-height 0, namely
|x| = |y|, goes to zero. That’s one way to see how we get the picture of a cylinder with the
belt pinching to zero.

Recall from Claim 4.18 that we can describe parallel transport by the graph of a function
TB → TF by adding (f1(ξ, η), f2(ξ, η), 1) to the angular coordinates (θ1, θ2, θη). The main
result of this section is the following Lemma.

Lemma 4.20 (Monodromy, see Figure 16). Over the parallelogram-shaped fundamental do-
main of the torus TB, the monodromy for a loop around the base is given by (f1(ξ), f2(ξ)) as
follows. They equal (0, 0) for ξ in the upper right corner where r−1

z >> r−1
x , r−1

y , then (0, 1)

on the right where r−1
y is the largest, (1, 0) on the left where r−1

x largest and thus (1, 1) in the
bottom left corner.

Proof of Lemma 4.20. First we show the result holds for ξ in the C3 patch. Then we show
it holds in the middle region of the hexagon where the Kähler potential is that of CP2(3).
Then we conclude the result by showing the contributions in between are negligible.
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Parallel transport in C3-patch with standard metric

We want to find a horizontal lift of the angular vector field ∂/∂θw, or with respect to
complex coordinates ∂/∂w this would be the vector field on the complex plane whose value
at w is iw. Namely dπ(Xhor) = iw. We can explicitly compute real vectors in the horizontal
distribution H in the C3-patch. Then we can find a vector parallel to iw∂/∂w and scale it
suitably so it projects to iw∂/∂w and is not just parallel to it.

Claim 4.21 (Finding the horizontal subspace). Xℜ(v0), Xℑ(v0) generate the horizontal dis-
tribution H.

Proof. The kernel of dpv0 when v0 = v0 is also the tangent space of a v0-fiber. This allows
us to conclude the following. Let p ∈ v−1

0 (c) for some c ∈ C and |c| ≪ T l by Definition 3.10.
Then ker(dpv0) = Tp(v

−1
0 (c)). On the other hand ker(dv0) = ker(dℜ(v0))∩ ker(dℑ(v0)). This

now allows us to find generators for H.

H = ker(dv0)
ω = [ker(dℜ(v0)) ∩ ker(dℑ(v0))]ω

= ker(dℜ(v0))ω + ker(dℑ(v0))ω
⊇ R ·Xℜ(v0) + R ·Xℑ(v0)

where the last line follows from the general notation of Xf as ω-dual to df and that
ω(Xf , Xf ) = 0 for alternating form ω. Thus since H is rank two, we have equality in
the last line. �

Claim 4.22. The horizontal distribution H is a complex subspace, i.e. invariant under
multiplication by i.

Proof. Note v0 = ℜ(v0) + iℑ(v0). If we consider v0 as a coordinate (rather than a function)
then since J = i on vector fields sends ∂ℜ(v0) 7→ ∂ℑ(v0) and ∂ℑ(v0) 7→ −∂ℜ(v0), it does the
transpose on the dual differential forms: J ◦dℜ(v0) = −dℑ(v0). Thus using the duality from
the metric and that the gradient is related to the Hamiltonian vector field (thinking of v0
now as a function) by −J :

(4.4)

J ∇(ℜ(v0)) = −∇(ℑ(v0))
∴ −JXℜ(v0) = ∇(ℜ(v0)) = J ∇(ℑ(v0)) = −Xℑ(v0)

∴ JXℜ(v0) = Xℑ(v0)

This concludes the proof by Claim 4.21. �

Corollary 4.23. Xhor =
i
g
∇g0 |v0|2 up to some scalar function g to be determined.

Proof. First, ∇|v0|2 = ∇(ℜ(v0)2 + ℑ(v0)2) ∈ H by Claim 4.22. In particular, from calculus
we know that the gradient of a real function in two variables is perpendicular to its level
sets in the plane. Here, that means that dπ(∇|v0|2) ⊥ ψ(t)(|v0|) (in the notation of Claim
4.18) for 0 ≤ t < 2π. Multiplication by i turns a vector perpendicular to a circle to a
vector tangent to the circle. Mathematically, since π = v0 (now thought of as a function) is
holomorphic, its derivative commutes with J and we obtain the following statement of two
vectors being parallel:

(4.5) Jdπ(∇|v0|2) = dπ(J∇|v0|2) ‖ dψ(d/dt)
while Xhor has the property that dπ(Xhor) = dψ(d/dt). Hence since both Xhor and J∇|v0|2
are in H, they must be proportional to each other by some scalar function g. �
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Now we can compute the monodromy in the C3-patch.

dv0 = yzdx+ xzdy + xydz

∴ ∇g0 |v0|2 = 2
〈

x|yz|2, y|xz|2, z|xy|2
〉

∴ XH =
2i

g

〈

x|yz|2, y|xz|2, z|xy|2
〉

s.t. dv0(XH) = iv0∂η

This last condition allows us to solve for the scalar function g.

∴
2i

g
xyz(|yz|2 + |xz|2 + |xy|2) = i(xyz) =⇒ g = 2(|yz|2 + |xz|2 + |xy|2)

∴ XH =
i

|yz|2 + |xz|2 + |xy|2
〈

x|yz|2, y|xz|2, z|xy|2
〉

So integrating, we obtain the following parallel transport map over the |v0| circle in the
base.

∴ φH
θ (x, y, z, θ) = (e

iθ
|y|2|z|2

|y|2|z|2+|x|2|z|2+|x|2|y|2 x, e
iθ

|x|2|z|2

|y|2|z|2+|x|2|z|2+|x|2|y|2 y, e
iθ

|x|2|y|2

|y|2|z|2+|x|2|z|2+|x|2|y|2 z)

= (e
iθ

|x|−2

|x|−2+|y|−2+|z|−2 x, e
iθ

|y|−2

|x|−2+|y|−2+|z|−2 y, e
iθ

|z|−2

|x|−2+|y|−2+|z|−2 z)(4.6)

In the last step we divide by |v0|2 to more easily see the Dehn twisting behavior. This gives
the monodromy result, Lemma 4.20 at the start of this section, in the local model near the
origin of C3. Namely, as we move counterclockwise across the x axis of the hexagon then
|y| ≪ |z| becomes |z| ≪ |y| and we see that θ1 stays fixed at a small angle but θ2 rotates
from large to small, by 1. Hence (θ1, θ2) changes from (0, 0) to (0, 1) as we move from the
(0, 0) tile then down to the (0,−1) tile. The other regions are similar.
Note that at first glance, there is more dependence on x once we divide by g, which

may make a harder ODE to solve for finding the flow. However, recall that symplectic
parallel transport preserves the moment map coordinates ξ1, ξ2, and η. Thus, since these
are monotonic increasing functions in rx, ry, rxryrz, we find that norms must also remain
constant along the circle. So since we have that g = |v0|2/|∇|v0|2|2 is a function of the
norms, we find that this is constant and doesn’t contribute to the flow when we integrate.

Away from the C3- and CP2(3)-patches

Elsewhere in Y , we may not be able to directly compute ∇g|v0|2. All we know from
Appendix B is that g = g1+ gǫ where g1 is diagonal in polar coordinates and gǫ can be made
to have arbitrarily small entries. Let V1 be d|v0|2 with respect to polar coordinates, so it
will be zero in the last three angular coordinates, let G1 +Gǫ denote the metric, and V2 the
vector ∇g|v0|2, all of them with respect to polar coordinates as in Section 3.6. Then if O(·)
denotes a matrix with entries on the order given in parentheses:

(4.7)

d|v0|2 = (g1 + gǫ)(∇g|v0|2, ·)
=⇒ V t

1 = V t
2 (G1 +Gǫ)

=⇒ V2 = (Gt
1 +Gt

ǫ)
−1V1

= (O(1) +O(1/l))−1V1

∴ V2 ≈ (Gt
1)

−1V1



HMS ON COORDINATE RINGS FOR A COMPLEX GENUS 2 CURVE 53

where (Gt
1)

−1 is the leading order terms of the metric defined in Definition 3.28. It is diagonal
by Section 3.6 and consists of constants because all bump functions are functions of the norms
rx, ry, rz which are fixed for (ξ1, ξ2, η) fixed. Thus the parallel transport map will be similar
to that in Equation 4.6, but |x|−2, |y|−2, |z|−2 will be scaled by certain constants.

In the CP2(3) hexagons

Recall that in the upper right corner of the fundamental domain parallelogram of Figure 10
where rz ≪ rx, ry, the Kähler potential is a sum of the CP2(3) toric potential gxy, which only
involves the complex coordinates x and y and does not involve z, and a term proportional
to |xyz|2. The latter is constant on the v0-circle. Hence horizontal vectors are those whose
x and y components vanish, namely

H = span

(

∂

∂ℜz ,
∂

∂ℑz

)

Thus in this upper right corner region, parallel transport varies z while fixing x and y. It
follows that the monodromy preserves θ1 = arg(x) and θ2 = arg(y), so (f1(ξ, η), f2(ξ, η)) =
(0, 0) for (ξ, η) in the upper right corner, remain the same as near the C3-patch.

By the same argument, in the region where the fiberwise potential is gyz, the horizontal
distribution is parallel to the x coordinate axis, so parallel transport varies x while keeping
y and z constant. In particular the angular parallel transport vector field is (ix, 0, 0) so
the monodromy increases θ1 at unit rate while keeping θ2 constant, and (f1, f2) = (1, 0).
Similarly where we have gxz, angular parallel transport is (0, iy, 0), monodromy increases θ2
while keeping θ1 constant, and (f1, f2) = (0, 1).

Finally, in the remaining fourth hexagonal tile of Figure 16, the values of (f1, f2) are again
integer constants, determined by using the change of coordinate transformations described
in Definition 3.13. In particular at the lower-left corner of the parallelogram, in terms of
the coordinates (x′′′, y′′′, z′′′) the parallel transport only varies z′′′ while keeping arg(x′′′) and
arg(y′′′) constant. However, because x′′′ = Tv0x

−1, fixing arg(x′′′) implies arg(v0) − arg(x)
remains constant. Thus varying arg(v0) around the unit circle also varies arg(x) and so θ1
increases by 1. Similarly for y, and we find (f1, f2) = (1, 1). This concludes the calculation
of monodromy, by ΓB-invariance of ω as proven in Claim 3.15. �

We need the following main result in order to compute the differential of the Fukaya cate-
gory. Now that we know the monodromy we can prove it. The place where the monodromy
is used is bold-faced in the proof below.

Lemma 4.24. The parallel transported φH
2π(ℓi) is Hamiltonian isotopic to ℓi+1.

Proof. We construct an isotopy ht : V
∨ → V ∨ in the fiber in coordinates (ξ1, ξ2, θ1, θ2). On

a fiber, η is a function of ξ1, ξ2 so doesn’t show up in the notation until the end of the proof,
when we consider maps on the total space Y . We want ht to map ℓ1 to φ2π

H (ℓ0) where φ
2π
H

is the monodromy. To prove ht is a Hamiltonian isotopy, i.e. ι d
dt
ht
ω = dHt for some smooth

function Ht, a classical result of Banyaga (cf [MS17, Theorem 3.3.2] or [Pas14, Equation (6)])
implies that it suffices to show that the flux of ω through cylinders traced out by generators
of H1(V

∨) under ht, is zero. That is:
〈∫

t

ιXtω, [γ]

〉

=: 〈Flux(ht), [γ]〉 =
∫

ht(γ)

ω = 0
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where Xt := d
dt
ht and the second equality follows by an argument similar to the proof of

Claim 3.20, where area corresponds to integrating over the height direction Xt and angular
direction γ′(t) on the cylinder. The isotopy ht interpolates linearly between φ2π

H (ℓ0) and ℓ1.
Recall that the angular coordinates on ℓ1 are given by −λ(ξ) which we denote in components
as −(λ1(ξ), λ2(ξ)). Then define the isotopy on the fiber as:

ht(ξ1, ξ2, θ1, θ2) := (ξ1, ξ2, θ1 + t(f1(ξ) + λ1(ξ)), θ2 + t(f2(ξ) + λ2(ξ))) : V
∨ → V ∨

This is well-defined modulo ΓB in the first two coordinates. The isotopy is also well-
defined modulo Z2 in the second two coordinates by our monodromy computation. Lemma
4.20 implies that

(f1, f2)(ξ + γ) = (f1, f2)(ξ)− λ(γ)

therefore

(f1, f2)(ξ + γ) + λ(ξ + γ) = (f1, f2)(ξ)− λ(γ) + λ(ξ + γ) = (f1, f2)(ξ) + λ(ξ)

for ∀γ ∈ ΓB so ht indeed descends to an isotopy on V ∨.
Note that H1(V

∨) has rank four since V ∨ ∼= TB × TF . If we let γ be the loop generated
by one of the two angular directions (0, 0, 1, 0), then e.g. γ(s) = (0, 0, s, 0) and ht(γ(s)) =
(0, 0, s, 0) for all t because ξ = 0 and fi(0) = 0 as illustrated in Figure 16. So the integral of
ω over this cylinder of height zero is zero. Now we let

γ(s) = (2s, s, 0, 0), −1

2
≤ s ≤ 1

2

The case of γ(s) = (s, 2s, 0, 0) will be similar.

(4.8)

∫

ht(γ)

ω =

∫

γ

ιXtω =

∫

γ

(dξ1 ∧ dθ1 + dξ2 ∧ dθ2)((f1 − λ1)∂θ1 + (f2 − λ2)∂θ2 ,−)

=

∫

γ

(f1 − λ1)dξ1 + (f2 − λ2)dξ2

=

∫ 1/2

s=−1/2

2f(2s, s)ds+ g(2s, s)ds

where we used that λ being a linear map implies anti-symmetry across zero, so the integral
from 0 to 1/2 cancels the integral from −1/2 to 0. It remains to show that what remains is
zero, namely that we have anti-symmetry across zero in f1 and f2. It suffices to show that
fi(−ξ) = −fi(ξ). We do this as follows. Consider the map on Y given by:

φ− : (ξ, η, θ, θη) 7→ (−ξ, η,−θ, θη)
It is a symplectomorphism because dξ ∧ dθ + dη ∧ dθη 7→ d(−ξ) ∧ d(−θ) + dη ∧ dθη =
dξ∧dθ+dη∧dθη. It remains to prove that it is fiber-preserving. By monotonicity of ξ1, ξ2, η
on the coordinate norms, the map φ− on complex coordinates is

(x, y, z) → (T−2x−1, T−2y−1, T 4v20z
−1)

because arg(x−1) = − arg(x) and log |x| becomes− log |x| up to a constant in T , and similarly
for |y| and |z|. That this gives the map φ− up to additive constants then follows by Claim
3.22. It preserves the polytope ∆Ỹ as seen from the coordinates in Figure 10. Since Claim
3.22 describes ξ1, ξ2, η only up to additive constants we have a bit more work to do to show
φ− preserves a fiber. Suppose φ− is defined by:

(ξ1, ξ2, η) 7→ (−ξ1 + c1,−ξ2 + c2, η + c)
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Since the polytope ∆Ỹ is preserved, this must map the origin to itself. Hence the constants
are zero. Recall from Claim 4.18 that Xhor = ∂

∂θη
+ f1(ξ, η)

∂
∂θ1

+ f2(ξ, η)
∂

∂θ2
. Also Xhor is

preserved by any fiber-preserving symplectomorphism of Y as in the proof of Corollary 4.5.
Since φ− is one such, we have:

Xhor = (φ−)∗(Xhor) = Xhor ◦ φ−

=⇒ (φ−)∗

(

∂

∂θη
+ f1(ξ, η)

∂

∂θ1
+ f2(ξ, η)

∂

∂θ2

)

=
∂

∂θη
− f1 ◦ φ−(ξ, η)

∂

∂θ1
− f2 ◦ φ−(ξ, η)

∂

∂θ2

=⇒ ∂

∂θη
+ f1(ξ, η)

∂

∂θ1
+ f2(ξ, η)

∂

∂θ2
=

∂

∂θη
− f1(−ξ, η)

∂

∂θ1
− f2(−ξ, η)

∂

∂θ2

∴ fi(−ξ, η) = −fi(ξ, η)
for i = 1, 2. So the flux of ω through ht(γ) is zero on generators of H1(V

∨). By running
this argument repeatedly, we can see that (φ2π

H )k(ℓ0) is Hamiltonian isotopic to ℓk+1 for any
k. Hence φ2π

H (ℓi) is Hamiltonian isotopic to (φ2π
H )i+1(ℓ0) which is Hamiltonian isotopic to

ℓi+1. �

4.3. Setup for defining moduli spaces. Now that we have computed the monodromy,
the next step will be computing the differential between two intersection points in the base.
This will involve moduli space considerations. More generally, the Fukaya category is an
A∞-category meaning in addition to objects and morphisms, there are structure maps on
k morphisms for any natural number k that satisfy A∞-relations. These can be thought of
as higher order associativity relations on the morphisms, hence the A in A∞, and in the
case of symplectic fibrations they involve counting pseudo-holomorphic discs which project
to polygons in the base. The remainder of this chapter will set up the theory to define these
counts. The word “moduli” indicates we look at a set of objects “modulo” an equivalence
relation, and the “space” refers to equipping this set with a topology. We start by defining
the structure on the domains of the pseudo-holomorphic curves we will want to count. These
are the source curves. The following terminology was learned from [Sei08].

Definition 4.25 (Domains). A punctured boundary Riemann surface S is the data of a
compact, connected, Riemann surface with boundary and with punctures on its boundary,
as well as the assignment of a Lagrangian Li to the ith component of ∂S. We further
“rigidify” by adding extra structure to S; denote punctures as “positive” or “negative” and
define strip-like ends via embeddings ǫ : (−∞, 0]s× [0, 1]t → D or ǫ : [0,∞)s× [0, 1]t → D for
the negative and positive punctures ζ± respectively, such that lims→±∞ ǫ(s, t) = ζ±. This is
called a Riemann surface with strip-like ends.

Remark 4.26. This “rigidifies” because any operation on S must preserve the additional
data of strip-like ends, thus placing further restrictions. The strips provide a nice set of
coordinates near the punctures (namely s and t) and give a straightforward way to pre-glue
two sections by identifying linearly in the (s, t) coordinates. See [Sei08, §(8i) and §(9k)].
Example 4.27. In this thesis, S will be one of the unit disc D, two discs glued together at a
point on their boundary with two punctures on one disc, or a disc with a marked boundary
point identified at one point to a configuration of spheres in the central fiber. An example
of a strip-like end we use later on to glue two discs is (−∞, 0] × [0, 1] ∋ (s, t) 7→ ǫ−(s, t) :=
e−π(s+it)+i
e−π(s+it)−i

= z+i
z−i

◦ e−z ◦π · (s+ it) ∈ D\{1}. Note that −∞ is the puncture which would map

to ζ− := 1 in the disc. See Figure 17.
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where (∗∗) =









0 0 0
0 0 0
0 0 0
0 0 1









and (∗ ∗ ∗) =









0 0 0
0 0 0
0 1 0
0 0 1









. Note that the final term is consistent

with Y being the quotient of its universal cover Ỹ by ΓB = Z2, where π1(Y ) = π1(CP
2(3)/ ∼)

should be Z2. So ultimately we look at the projection of the 6 P1’s mapping to the three
glued P1’s. Again we find that the homology is Z4. �

Now that we know what the second homology class of Y is, we are better equipped to
classify the possible choices for β = [u] for pseudo-holomorphic maps u. We proceed to
define the class of almost complex structures. Then we can define J-holomorphic curves.
The almost complex structures we consider are compatible with the ω defined above and
equal the standard J0 induced from the complex toric coordinates near the boundary. Say
J = J0 outside of the open set

(4.10) U := v−1
0

(

B

(

1

2

))

,

the preimage of a disc radius 1/2 about the origin. In particular, U-shaped Lagrangians lie
outside of U . We will denote this set as Jω(Y, U). It is non-empty because it contains J0,
and contractible by the same argument as for the set of all ω-compatible almost complex
structures.

Definition 4.29 (Maps). Let J ∈ Jω(Y, U). A pseudo-holomorphic map is a J-holomorphic
map u : (S, ∂S) → (Y,⊔i∈π0(∂S)Li). A J/pseudo-holomorphic curve is the image of such a
map. We require

lim
s→±∞

u(ǫij(s, t)) ∈ Li ∩ Lj

where ǫij is a strip-like end attached at an intersection point Li ∩ Lj on the boundary.

4.4. Moduli spaces for a fibration.

Definition 4.30 (Section-like maps of a symplectic fibration). We can think of the previous
setup as a section of a trivial fibration with fixed Lagrangian boundary condition. For non-
trivial fibrations, the Lagrangian boundary condition now consists of fibered Lagrangians.
These are the ones described above obtained from parallel transporting a linear Lagrangian
in a fiber over a U-shaped arc.

Let J0 be multiplication by i in the toric coordinates. Given a J0-holomorphic map to the
total space u : S → Y , we can compose with the holomorphic projection v0 ◦ u : S → C to
obtain a biholomorphism onto its image by the Riemann mapping theorem. In particular, if
we identify S with v0 ◦ u(S), then v0 ◦ u = 1S and u is actually a holomorphic section of v0
which projects to an embedded holomorphic polygon in the base.

On the other hand for generic J close to J0, whose existence we prove in the next section,
pseudo-holomorphic maps u are sections only outside U , where J = J0. They still have
algebraic intersection number 1 with fibers of v0 in the region where J0 has been perturbed
to J . We will refer to these as section-like maps.

Example 4.31. Let tx be the preimage of a moment map value (c1, c2) ∈ TB, intersected
with a fiber. So tx = {c1, c2, θ1, θ2}θi∈[0,2π) which in particular is invariant under parallel
transport because that map rotates the angles. Since ℓi ∩ tx is the one point of ℓi with
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(ξ1, ξ2) = (c1, c2), any pseudo-holomorphic section u must limit to that one point over the
corresponding puncture in the base.

Count curves, not parametrizations: stable maps quotient by reparametrization

We have now discussed the Lagrangian boundary condition, the homology class, and the
almost complex structure. So we next quotient by automorphisms of the domain. In this
thesis, we will be concerned with stable maps to Y where the domain is a disc with one
boundary marked point, or a disc union sphere with one boundary marked point on the disc
and one interior marked point on the disc and sphere each where they meet. These are stable
maps (in particular they have finite reparametrization action) but not stable domains. So
stabilization plays the role of quotienting by the automorphism group. One reference for the
topology of the moduli space of pseudo-holomorphic maps is [Fuk20].

Definition 4.32 (Stable map, see [Sei08, §9]). A stable map is given by a tree of pseudo-
holomorphic maps, where each vertex α is a sphere bubble, except for the vertex correspond-
ing to original disc curve. The stable refers to the absence of continuous families of nontrivial
automorphisms; in particular if we fix three points on every constant component there are
no nontrivial automorphisms. A tree encodes information for how to glue, where interior
edges are assigned a gluing length, and semi-infinite edges at either end give the resulting
marked points of the final glued disc. We have a family of discs, parametrized in the base
by possible cyclic configurations of these points. We also have a gluing parameter for each
interior edge where a sphere bubble is glued. More interior edges increases the codimension
of the moduli space of that configuration in the moduli space of a disc. We can encode the
possible degenerations in the Stasheff associahedron.

Topology and compactification on set of curves

Stable maps are defined in Chapter 5 of [MS12] in the case of spheres, where they also
prove compactification. The compactification of the moduli space of unparametrized curves
(i.e. equivalence classes) is a union over possible bubble trees of unparametrized curves,
c.f. [MS12, Equation (5.1.5)]. The reason is that these are the possible limit configurations.
Following [MS12, Chapter 5], if the derivatives in a fixed homology class are bounded inW 1,p

for some p > 2, then we have a Bolzano-Weierstrass type result that any sequence has a
convergent subsequence. However, in the borderline p = 2 case, as is the case here, the limit
may not be in original class of curves. The moduli space of stable maps exhibits Gromov
convergence; a limit of a sequence of J-holomorphic curves is either in the original moduli
space or not. If it is not, then in the limit we could have sphere bubbling.

Gromov convergence to a stable map means: for each vertex α of the tree we have a family
of reparametrizations φν

α such that if we remove the bubbling points, then the sequence of
curves converges uniformly on compact subsets to the main component. To obtain C∞

loc

convergence to the main component we use the Bolzano-Weierstrass theorem on the energy.
And the reason the main component is fully defined on domain S (even though we removed
the bubble points) is because of the removable singularity property of pseudo-holomorphic
maps. To find the other bubbled-off components, reparametrize the source curve by z/Rn,
where Rn → ∞, and include a sequence of points tending to the bubble point. Energies
of the main component plus that of the bubbles should add up to the original energy since
energy remains the same in the limit.
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Example 4.33 (A sphere bubble). For example CP1 → CP2 given by [x : y] 7→ [x2 : ǫy2 : xy]
parametrizes the holomorphic curve in CP2 given by ab = ǫc2. As ǫ → 0, we only see the
curve [x : 0 : y]. However we can reparametrize and obtain a different limit; the image is
actually two spheres, ab = 0 and not just b = 0, because of rescaling in CP2. In ab = ǫc2, let
ǫ→ 0 to obtain ab = 0.

Conversely, any such configuration can be viewed as a limit of J-holomorphic curves by
pregluing the maps, i.e. pasting them together (which may not give something J-holomorphic,
hence it is called pregluing). However it is suitable as a compactification of a topological
space.

Here we are in the case of stable discs. The paper [Fra08] proves compactness for pseudo-
holomorphic discs in the sense of Chapter 4 of [MS12] (i.e. not involving marked points).
Lectures 5–7 of [Fuk20] discuss the topology, Hausdorffness, and that sequential compactness
implies compactness when the limit configurations are included. Limits of disc curves include
two additional possible configurations to sphere bubbling: disc bubbling and strip-breaking.

Example 4.34 (Gromov compactness in our setting). For fixed β and Lagrangian boundary
condition, there is no disc bubbling or strip breaking under reparametrization. Only sphere
bubbling cannot be excluded. Also, there are no multiply covered discs.

Proof of example. The projection of a hypothetical disc bubble under v0, if non-constant,
would satisfy the open mapping principle outside of U because it is a J0-holomorphic section
there. A disc bubble would have boundary in a single Lagrangian. However, all Lagrangians
considered project to a U-shaped curve which does not enclose any bounded region of the
complex plane. So any such disc would have to lie entirely in a fiber. However, linear
Lagrangians in tori have zero relative π2 i.e. they don’t bound discs. So there can be no disc
bubbling in a fiber and hence no disc bubbling in general.

Similarly if a strip breaks, any component that breaks off must either lie entirely within a
fiber of v0, or the degeneration must be visible in the projection to v0. Namely, the polygonal
region of the complex plane over which the section-like map projects also decomposes into a
union of polygons with boundary on the given arcs. Since Maslov indices add, and all discs
have intersection 1 with the central fiber, there is no room for a Maslov zero disc since it
would have to be a bigon in a fiber (as it can’t pass through the central fiber) and linear
Lagrangian in tori cannot bound bigons.

If we did have multiple covers, we may require that J depend on z ∈ S, in which case we
replace J with Jz. The text [MS12] lays this foundation for Lagrangian boundary conditions
case which is described in [Aur14] and will involve an R-family of J ’s on a strip. We don’t
need to do that here since we are considering section-like discs, which are injective near their
boundary. They are somewhere injective and only wrap once around the boundary. �

So in summary we define the resulting moduli space by taking a collection of maps, quo-
tienting by reparametrization, and then compactifying. For Hausdorffness and compactness
of this space, see [Liu02, §5.3].

Dimension and Maslov class

Definition 4.35. The virtual dimension of the moduli space of section-like maps is given
by the Maslov index of the chosen β homology class, minus twice the number of edges in
the stable tree. That is, each bubbled off sphere reduces dimension by 2. Thus we expect
to have a pseudocycle, i.e. the image of the boundary of the moduli space has codimension
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at least two in the total space. This can be achieved in the semipositive case, which means
there are no J-holomorphic spheres of negative Chern number for generic J – this is our
setting because Y is Calabi-Yau.

Remark 4.36 (Analogue of dimension in Morse theory). With Morse-Smale data we know
the dimension of the moduli space by counting eigenvalues. We require transverse intersection
of the unstable manifold of x− with the stable manifold of x+. We have a projection map from
the unstable manifold to directions perpendicular to the stable manifold. On the other hand,
the index of a Fredholm section is computed from the spectral flow of a loop of symmetric
matrices, see [Wen16, §3.2].

Given a Fredholm section, we can compute the expected dimension of the manifold of
parametrized curves, and then the moduli space of unparametrized curves will be three less
from quotienting by Aut(D). A Spin structure on the Lagrangian determines an orientation
on the moduli space of parametrized curves, so quotienting by Aut(D) induces an orientation
on the moduli space of unparametrized curves.

Example 4.37 (Deligne-Mumford moduli space of domains,see [MS12, §5, §6] and [Fuk20,
Lectures1–4]). A stable disc is a stable map to a point. The Deligne-Mumford space M0,d+1

arises from considering degenerations of stable discs with the additional data of d+1 bound-
ary marked points, e.g. possible limits under reparametrization in Gromov compactness, see
[MS12, §5.5]. The real dimension for genus g curves with l marked points is 6g − 6 + 2l.

In general we can compute dimension by considering the Maslov class of the disc, which
in our setting can be computed as an intersection number with toric divisors. The following
is based on [Aur07] and [CO06].

Definition 4.38 (Maslov class of a Lagrangian and of a disc). Suppose 2c1(M) = 0, so the
square of the anticanonical bundle is trivializable by some section s. We have a map from
LGr to the unit bundle of K−2 by taking det2 of a basis for each Lagrangian. We can identify
that unit bundle with S1 using the trivializing section s mentioned above. The upshot is that
we get a map from LGr → S1. The “Maslov class” of the Lagrangian is the pullback of [S1],
i.e. a homology class in LGr. If it is zero (meaning we can lift to R), then we can define µ(β)
as the evaluation of this homology class on β. This measures the obstruction to extending
the square of this normalized section on L to one on a disc representing 2-homology class β.

Definition 4.39. A special Lagrangian L is defined to be one such that if Ω trivializes KX\D

on the complement of an anticanonical divisor D, then Ω|L = e−iφdvolL for some constant
phase φ.

Lemma 4.40 ([Aur07, §3.1]). Let (X,ω, J) be a smooth, compact and Kähler manifold. Let

Ω ∈ M0(X, (T ∗(1,0)X)n) be a global meromorphic n-form, with poles along an anti-canonical
divisor D, e.g. using log coordinates. In other words, Ω−1 is a nonzero holomorphic section
of the anti-canonical bundle on X\D. Let L be a special Lagrangian submanifold in X\D.
Let β ∈ π2(X,L) be nonzero. Then µ(β) is twice the algebraic intersection number β · [D],
where µ(β) denotes the Maslov class.

Proof from [Aur07, §3.1]. The tangent space to L is real since being Lagrangian is defined by
(TL)⊥ = JTL with respect to ω(−, J−). Taking a real basis gives a nonvanishing section of
K−1

X |L which we can scale to unit length. Since we’ve normalized, this section is independent
of choice of basis. In particular, its square also trivializes the square of the anticanonical
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bundle over L. Since L is special Lagrangian, Ω−1 which defines the divisor of D is equal to
this volume form on L, up to a constant phase factor, by Definition 4.39. The Maslov class
of β is then deg(Ω−2|β) = 2D · β. �

Claim 4.41 ([CO06], [Aur07]). Consider the moduli space of J0-holomorphic discs with
boundary in L =

⋃

circle tx for a circle around the origin in the base of v0. This is a product
torus in a toric variety, and β is a class of Maslov index 2, i.e. by Lemma 4.40 the class of a
disc intersecting the central fiber once. Then we claim that there is only one J0-holomorphic
disc in each β class.

Proof. Using Lemma 4.40, we can interpret the dimension geometrically from intersection
numbers. Since we’re considering J0-sections u, they pass once through the central fiber
at 0, which is also the divisor D in our setting. D is the union of toric divisors in v−1

0 (0).
They intersect D transversely once, hence they have Maslov index 2 by the above result.
There are no nontrivial Maslov zero discs by the fact that linear Lagrangians in the fiber do
not bound discs. If we require one boundary marked point to map to a given point of L,
this cuts down the dimension of the moduli space of holomorphic curves by n, but we add
one dimension from the choice of marked point. (The collection of discs with boundary on
⋃

circle tx and a point constraint on the boundary is a zero dimensional family, otherwise we
could rotate the disc by the T 3 action and obtain a family of discs.) Since the real dimension
of the Lagrangian n = 3, µ(β) = 2, we subtract three dimensions from fixing three complex-
valued boundary points (only the identity automorphism on a disc fixes 3 boundary points
so this quotients by the automorphism group), and then including a marked point on the
Lagrangian boundary, we find that the virtual dimension of the moduli space of holomorphic
curves in class β intersecting the toric divisor D once is

Ind(Du)− 3 + 1 = nχ(D2) + µ(β)− 2 = 3 + 2(β ∩ [D])− 2 = 3

by the index theorem in Fredholm theory, where χ denotes the Euler characteristic and n is
the real dimension of the Lagrangian, see [MS12, Theorem C.1.10(ii)]. Thus, if we constrain
the evaluation map at the marked point to lie at a particular point in the 3-dimensional
Lagrangian, this will cut down the dimension to 0. This results in an expected dimension of
zero. We now show that there is only one disc in each homology class.
The linear fiber Lagrangian tx can be thought of as corresponding to the skyscraper sheaf

under mirror symmetry. Recall that the definition of ℓk involved rotating an amount 2πk
along the two angle directions as we traverse one loop in each of the base ξi moment map
directions. Rotating only the angle directions and not in the base defines tx, namely, we fix
the moment map coordinates and let the angles vary. This gives the preimage of a moment
map coordinate A := (a1, a2, a3) = (ξ1, ξ2, η) and we let |z| := τA denote the exponentiated
coordinates. The reason for choosing the letter A is that the formula for counting such discs
is discussed in a paper of [CLL12] and that notation follows theirs.
Because each disc considered intersects the central fiber only once, its lift to the universal

cover Ỹ can intersect only one of the toric divisors of Ỹ . Which divisor it intersects is
determined by the class β. The image of the disc is contained in the union of the open
stratum of Ỹ and the open stratum of the component of D that the disc intersects, which
by standard toric geometry is the image of a toric chart C∗ × C∗ × C inside Ỹ .

Thus we think of the disc as mapping to the chart C∗×C∗×C. Then a disc with boundary
in S1(r1)×S1(r2)×S1(r3) implies it is constant in the first two components (by the maximum
principle) and we obtain a disc in the last v0 coordinate. And this is the only disc by the
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Riemann mapping theorem. It cannot be multiply covered because it must be Maslov index
2 by the previous paragraph.

So the discs we count correspond to selecting a point A in the moment polytope and
drawing a line to a facet in that polytope. Geometrically, fixing A implies each disc has the
same T 3 ∼= S1(r1) × S1(r2) × S1(r3) Lagrangian boundary condition, namely the moment
map preimage of A. As we allow |v0| → 0, we find that r1, r2 remain constant and the third
coordinate goes to zero along the disc. (In the moment polytope this corresponds to a path,
depending on β, from A to a facet. And ξ1, ξ2, η may vary along the path.) We count each
disc over the possible β, weighted by area, in Theorem 5.4.
This concludes the proof that there is only one J0-holomorphic disc in each β class. �

4.5. Existence of regular choices to define compact moduli spaces. The existence
of regular choices is theory that is known in numerous cases; for completion we include
the proofs because they are in the setting of Lagrangian boundary condition, versus the
case of no Lagrangian boundary condition used in references cited here. Also, the proof of
compactification is specific to the geometry of our set-up, so details are provided there as
well.

Definition 4.42. We say that an almost complex structure J ∈ End(TY ) is regular if, for
all J-holomorphic maps u : (Σ, j) → (Y, J) on the complex curve Σ, the linearization (or
derivative) of the Cauchy-Riemann operator ∂J is surjective.

Remark 4.43. “Regularization” refers to perturbing the ∂J operator to be equivariantly
transverse to the zero section of a Fredholm bundle which we can build so that the operator
is a section of the bundle. “Geometric regularization” means the perturbations are obtained
by perturbing the almost complex structure J , so are geometric in nature. Namely the
perturbations of ∂J are ∂J ′ − ∂J as J ′ varies. In this setting equivariance will be automatic,
as described below. Note that later on, we will need to use a non-regular J for computations
and in that case we will use “abstract regularization” by adding abstract perturbations p
which are sections of an “obstruction” bundle built from the non-surjectivity of Du. They
are not necessarily of the form ∂J ′ − ∂J . As intuition one can recall that the preimage of a
regular value of the function f(x) = x21 + x22 + x23 is a manifold, namely a 2-sphere. Here we
consider an infinite-dimensional analogue.

Finite rank geometric regularization intro from [Weh14, Lecture 1A]

For a section of a finite rank bundle over a finite dimensional manifold, its zero set is
automatically compact. However, we don’t necessarily have that over an infinite-dimensional
manifold. In the finite dimensional case, there exists a space of perturbations P so that s+p
is transverse to the zero section for all p ∈ P , i.e. the derivative Du(s + p) is surjective for
all u ∈ (s + p)−1(0). We can guarantee that P is non-empty, the perturbed s is transverse
to the zero section, (s+ p)−1(0) is compact, and we can construct cobordisms between zero
sets for different choices of p.

These properties allow us to define a fundamental class forM := s−1(0), denoted [M], even
if it is singular from lack of transversality to the zero section (which would have ensured it is a
manifold). We view the fundamental class of the singular moduli space as the intersection of
nested open sets Wk, which are subsets of points in the base of the bundle that are 1/k away
from s−1(0). In particular, by non-triviality of P , we can take a sequence of perturbations
so (s + pk)

−1(0) ⊂ Wk stays the same. A fundamental class is necessary to count the zero
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set of s, i.e. compute an intersection of s with the zero section. We build a fundamental
class using that Čech homology of the singular manifold is isomorphic to an inverse limit of
rational Čech homology of the nested open sets. Each Wk has a fundamental class in the
top degree of Čech homology, which will limit to the fundamental class we are looking for.

Fortunately, Banach spaces still come equipped with all the necessary tools to obtain
smooth structures analogous to the finite-dimensional case. We follow the arguments of
[MS12, Chapters 3–10], adapting their S = CP1 setting to our S = D setting with Lagrangian
boundary conditions; this is also discussed in [Sei08] and [Gan16].

Example 4.44. An example of the geometric regularization theory is implemented in [Weh13]
for Gromov non-squeezing, which involves illustrating how to show a family of moduli spaces
varying Jt is 1 dimensional (Fredholm), a manifold (transversality/regularity), compact (Gro-
mov compactness) and has boundary.

Remark 4.45. J-curves have some analogous properties as complex curves, such as the
Carlemann similarity principle and unique continuation (if two J-holomorphic maps agree
on an open set, or all derivatives agree at a point, then the maps are equal). Other properties
include that there are only finitely many points in the preimage of a point and only finitely
many critical points. Furthermore simple curves (or their analogue in the Lagrangian bound-
ary condition case, somewhere injective curves) have an open dense set of injective points.

Existence of regular J in 4 steps

Let U be the open neighborhood of the singular fiber of v0 defined in the paragraph before
Definition 4.29. Recall

(4.11) Jω(Y, U) := {J ∈ Ω0(Y,End(TY )) | J2 = −1, ω(·, J ·)is a metric, J |Y \U≡ J0}
In particular, this set is non-empty because it contains J0, and is contractible by the same
argument as in the case of no boundary. This set of J is what’s needed to prove geometric
regularization in the boundary case, see [MS12, Remark 3.2.3]. Furthermore, let γi denote
curves in the base of v0 and

⋃

γi
ℓi for parallel transport of ℓi over γi. Recall from Definition

4.6 that Li is the Lagrangian given by parallel transporting ℓi from the −1-fiber in a U-shape.
Then define the notation

(4.12) L|γ :=
⋃

i∈I⊂Z

⋃

γi

ℓi

Since all maps to Y we consider are polygons when projected to the base of v0, all discs pass
through the zero fiber.

Remark 4.46 (Notation). The notation J̇ does not mean we can only vary J in one direction
as is usually the case with the dot notation. We use the notation as a symbolic way to denote
tangent vectors to the space of complex structures; it’s denoted Y in [MS12].

Lemma 4.47 (Geometric regularization). There exists a dense set J ∈ J 1
reg ⊂ Jω(Y, U)

such that, for all J-holomorphic maps u : (D, ∂D)\{z1, . . . , z|I|} → (Y, L|γ) as in Definition

4.6, the linearized ∂-operator Du is surjective.

Remark 4.48. We use the superscript 1 because later we will want existence of the slightly
smaller set J 2

reg of J regular for a disc attached to a sphere with similar Lagrangian bound-
ary conditions. These will require not only surjectivity of the linearized operator but also
compatible behavior when evaluating at the intersection point.
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Roadmap adapting the 2nd edition book [MS12, pg 55, proof of Theorem 3.1.6 (ii)]. We adapt
McDuff-Salamon to the setting with Lagrangian boundary conditions. Note Theorem C.1.10
in [MS12] already proves we have a Fredholm problem for the case of boundary. The back-
ground for this was also learned from [Weh14, Lecture 9].

Take a homology class β ∈ π2(Y, L|γ). We make the following definitions

(4.13)

B1,p
β := {u ∈ W 1,p((D, ∂D), (Y, L|γ)) | [u] = β, lim

z→zi
u(z) = pi}

J ℓ
ω(Y, U) := {J ∈ Cℓ(Y,End(TY )) | J2 = −1, ω(·, J ·) is a metric, J |Y \U≡ J0}

ˆ̊MJ := {(u, J) | J ∈ J ℓ
ω(Y, U), u ∈ B1,p

β , ∂J(u) = 0}
where the hat indicates we haven’t yet quotiented by automorphisms of the source curve and
the ring indicates we haven’t compactified yet. Then we claim that

(4.14) B1,p
β × J ℓ

ω(Y, U) ∋ (u, J) 7→ ∂J(u) ∈ Lp(D,Λ0,1 ⊗ u∗TY )

is a Fredholm section s of a Banach bundle, with surjective derivative, hence it also has a

right inverse and we can invoke the Inverse Function Theorem to deduce that
ˆ̊MJ = s−1(0)

is a Cℓ−1 Banach submanifold of the base. We will now justify this. We use L to denote L|γ
for ease of notation.

Regular J step 1 of 4: Banach manifold structure on B1,p

A map u ∈ B1,p has a local Banach chart from exponentiating TΓ(u∗TY, u∗TL) ∋ ξ via
u 7→ expu ξ. The map expu ξ still has the correct boundary condition; there exists a metric
so that one Lagrangian is totally geodesic [MS12, Lemma 4.3.4] which can be adapted to the
argument for two transversely-intersecting Lagrangians as is done in [Mil65, Lemma 6.8],
[Fra10] for submanifolds of complementary dimensions. Namely, take a convex combination
of the two metrics defined for each Lagrangian separately, and by uniqueness of geodesics
given a starting point and direction, as well as the definition of totally geodesic, we see that
the result still holds in a neighborhood of an intersection point. And at any point considered
there are at most two Lagrangians intersecting, so this suffices. Once we have the metric for
which both Lagrangians are totally geodesic, then for p ∈ ∂D we see that expu(p) ξ is a point
on the geodesic which starts in L and travels in the direction of a vector tangent to L, so it
must remain in L.

Regular J step 2 of 4: Banach manifold structure on J ℓ
ω(Y, U)

The second factor on the base of the Banach bundle we are constructing, J ℓ
ω(Y, U), has

Banach charts around elements J as described in [MS12, §3.2]. We linearize the conditions
on J to obtain the conditions for vectors J̇ in the tangent space, and local charts can then
be recovered from the tangent space by exponentiating. Three conditions on J become
linearized: 1) J |Y \U ≡ J0 implies J̇ |Y \U ≡ 0, 2) J2 = −1 implies J̇J + JJ̇ = 0, and

3) ω(J̇ ·, ·) + ω(·, J̇ ·) = 0 arises from ω-compatibility. Equivalently, the second and third
conditions impose that J̇ = JJ̇J and J̇ is self-adjoint with respect to metric ω(·, J ·). So a
chart centered at J is constructed via J̇ 7→ J exp(−J̇J).

A fiber of the bundle will not have boundary conditions because it is given by the space
where (du)0,1 = 1

2
(du + J ◦ du ◦ j) lands in, namely Lp(D,Λ0,1 ⊗ u∗TY ), and that doesn’t

concern the boundary. Note that J ◦ du ◦ j does not a priori have the same behavior as du
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in the direction tangent to the boundary, so (du)0,1 does not satisfy any particular boundary
condition. Hence the structure of the Banach bundle over open sets in the base will mimic
the case of [MS12, Proof of Proposition 3.2.1] of no Lagrangian boundary conditions. We
again use the exponential map to trivialize the bundle over a neighborhood N (u) in the first
factor of B1,p × J ℓ

ω(Y, U), and we use parallel transport to trivialize over a neighborhood
N (J). This trivializes the bundle over a neighborhood in the base, and a composition of
these gives transition maps that satisfy conditions for a Banach bundle, [MS12, Proof of
Proposition 3.2.1] and [Sei08, §(9k)].

Regular J step 3 of 4: Key regularity argument

We have that s(u, J) := ∂J(u) is a Fredholm section of this Banach bundle by [MS12,
Theorem C.1.10]. Furthermore, its derivative at any (u, J) such that s(u, J) = 0 and u is
somewhere injective (guaranteed by u being J0-holomorphic outside of U , so a section of v0),
is surjective, as follows. See [MS12, Proof of Proposition 3.2.1].
(4.15)

(d(u,J)s)(ξ, J̇) = Duξ+
1

2
J̇duj : W 1,p(D, u∗TY )×Cℓ(Y,End(TY, J, ω)) → Lp(D,Λ0,1⊗ju

∗TY )

where

(4.16)

Du := dFu(0) : W
1,p(D, ∂D; u∗TY, u∗TL) → Lp(D,Λ1,0 ⊗j u

∗TY )

Fu : W 1,p(D, ∂D; u∗TY, u∗TL) → Lp(D,Λ1,0 ⊗j u
∗TY )

ξ 7→ ∂J(expu ξ)

see [MS12, Proposition 3.1.1]. In words, Du is defined by, for a nearby u′ in the exp neigh-
borhood of u, parallel transport back to the origin of the chart at u, take ∂J , then map
forward again on the fiber under parallel transport; the linearized operator Duξ will be the
derivative of this operation at the point 0. This is well-defined because of the totally geodesic
condition above. The Du term is only from varying u. Varying J as well we get (e.g. see
[Weh14, Lecture 9]):

(4.17) (d(u,J)s)(ξ, J̇) = Duξ +
1

2
J̇duj

Given that a J-holomorphic map u must be a section of v0 outside of U (since J is J0
there), we see that u cannot wrap more than once around the boundary. Hence the curve
is somewhere injective. We claim that the operator ds is surjective with continuous right
inverse, so is regular. Suppose by contradiction the image is not dense. Then we can
construct a nonzero linear functional that is orthogonal to im(ds) and locally lies in a fiber
of the Banach bundle, namely a non-zero Lq form η that annihilates Duξ +

1
2
J̇duj over all

W 1,p tangent vectors ξ and J̇ , in particular J̇ = 0. So Duξ = 0 for all ξ by Equation 4.17.
This implies that η hasW 1,p

loc regularity by the elliptic bootstrapping result of [MS12], proven
for Lagrangian boundary conditions.

Once we have regularity, we can integrate and prove D∗
uη = 0. Via integration by parts

(with evaluation on the 1-form and inner product on the bundles) we have D∗η = 0, because
taking the adjoint leaves a boundary term d 〈η, Jξ〉ω. Then using Stokes’ theorem and that
the test vectors ξ are tangent to the Lagrangian at the boundary, this equals zero.

However since η 6= 0, using bump functions we may construct a perturbation J̇ as in [MS12,
page 65] so η integrated on J̇ is nonzero, contradicting that D∗

uη = 0. The construction in



66 CATHERINE CANNIZZO

[MS12, page 65] still works in the Lagrangian boundary setting because the constructed J̇
is supported in a small neighborhood around a somewhere injective point, so will be zero
near the boundary as required. It is as follows. We’ve assumed η 6= 0 so pick point p so that
η|p 6= 0. Somewhere injective points are dense so find a neighborhood of them around p.

Use bump functions to construct a J̇ so that
∫

D η(J̇duj) > 0. This is a contradiction. So η
vanishes on the open set of injective points, hence vanishes identically by unique continuation
[MS12, Theorem 2.3.2]. This is again a contradiction since η 6= 0. So the annihilator of ds is
zero and the Hahn-Banach theorem implies that the image of ds is dense. So combining that
property with the image being closed from the Fredholm property of the operator, we find
that the operator surjects onto Lp. This will allow us enough freedom to find the vectors J̇ .

Regular J step 4 of 4: Implicit and inverse function theorem find dense set of regular J

Since Du is Fredholm by [MS12, Theorem C.1.10] and ds = Du ⊕ B for bounded linear
operator B = 1

2
J̇duj, is surjective, [MS12, Lemma A.3.6] implies that ds has a right inverse.

Thus 0 is a regular value of s(u, J) = ∂J(u) and by the Implicit Function Theorem [MS12,

Theorem A.3.3] s−1(0) =
ˆ̊MJ is a Cℓ−1-Banach submanifold of B1,p

β ×J ℓ
ω(Y, U). Separability

of
ˆ̊MJ is inherited.

Now consider the projection π :
ˆ̊MJ → J ℓ given by (u, J) 7→ J . This is Fredholm because

it has the same kernel and cokernel as Du from [MS12, Lemma A.3.6]. Also its linearization
is surjective since it’s a projection. So we have regularity of π at (u, J) whenever J is
regular. Hence we have the hypothesis of [MS12, Theorem A.5.1 (Sard-Smale Theorem)]
(which relies on the infinite-dimensional inverse function theorem, [MS12, Theorem A.3.1
(Inverse Function Theorem)]). The result of Sard-Smale implies that these regular J values
are dense, i.e. J 1

reg is dense in Jω(Y, U) as we wanted. So in particular we have existence of
regular J .

This concludes the proof of existence of regular J . �

This type of problem shows up often so it has a name.

Definition 4.49. A Fredholm problem concerns the zero set of a Fredholm section of a
Banach bundle. I.e. a section whose linearization is a Fredholm operator, namely dim ker -
dim coker is finite and whose image is closed. It’s the set-up for the moduli spaces in question
(the main part or fiber products of moduli spaces that show up when Gromov compactifying)
as the zero sets of Fredholm sections. Regular values of a Fredholm problem put additional
structure on the moduli spaces, enabling us to count them.

Lemma 4.50. The set of parametrized (i.e. before quotienting) J-holomorphic discs u :
(D, ∂D) → (Y, L|γ) for J ∈ J 1

reg is a manifold of finite dimension given by index(Du).

Proof from [MS12, Theorem 3.1.6 (i)]. Charts are given by

Fu : W 1,p(D, ∂D; u∗TY, u∗TL) → Lp(D,Λ1,0 ⊗j u
∗TY )

ξ 7→ ∂J(expu ξ)

using the exponential map to obtain a diffeomorphism of an open set around 0 in F−1
u (0)

to a neighborhood of u in the space of parametrized J-holomorphic discs. Regularity of J
implies dFu(0) = Du is surjective. The implicit function theorem [MS12, Theorem A.3.3]
implies these are smooth manifold charts after restricting to potentially smaller open sets.
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This does not depend on p because J-holomorphic maps u are smooth by elliptic regularity
[MS12, Proposition 3.1.10], when J is smooth. Note that [MS12, Appendix B (Elliptic
Regularity)] covers the necessary background with totally real boundary conditions e.g. the
Lagrangian boundary condition case here. See also [Weh13, Lectures 4–6]. The dimension
statement follows from the tangent space of the moduli space being given by ker(Du), and
also that coker(Du) = 0, so their difference i.e. the Fredholm index, is also the dimension of
the moduli space. �

Remark 4.51. Even for non-regular J , we can still construct a Fredholm problem by [MS12,
Theorem C.1.10 (Riemann-Roch)], which is proven in the case of Lagrangian boundary
condition. How we get the smooth structure will be a different matter though, because J is
not regular. This is where abstract perturbations of the ∂J -operator are used.

Compactification

We will show that the moduli space, which now has a smooth manifold structure, is
already compact. Then we take the zero dimensional part, which as a compact 0-manifold
is now something we can count. The more general case of compactifying and putting on a
smooth structure is by gluing, e.g. [MS12, §3.4, Proposition 6.2.8], [Weh13], and [Fuk20]. In
particular, we have compactness up to sphere bubbling in the setting of moduli spaces in
this paper by Example 4.34.
The intuition for why there are no sphere bubbles is as follows: the union of all points in

a zero-dimensional family of spheres is two, and that of discs in a one-dimensional family is
three, so generically these two don’t intersect in a six dimensional manifold. Here by ‘generic
J ’ we mean that transversality should hold for evaluation maps at marked points on discs
and spheres.

So we excluded disc bubbling and strip breaking. We now show that, for regular J , the
moduli space of a somewhere injective disc union a simple sphere is a manifold of negative
dimension, meaning it is empty and can be excluded.

Lemma 4.52 (Excluding bubbling in our setting). There exists a dense set J 2
reg(Y, ∂Y ;D∪

P1) of J regular for the moduli space of maps with domain a simple sphere attached to a
somewhere injective disc with one boundary marked point. The maps are section-like hence
somewhere injective.

Corollary 4.53. The moduli space of stable configurations consisting of a disc with one
marked boundary point identified at its center to one or more sphere bubbles for regular J
has negative dimension, which is empty. In particular, the moduli space of any somewhere
injective disc passing through the open set U union any configuration of multiply-covered and
simple spheres can be excluded.

Proof of Corollary 4.53. The Riemann-Roch theorem [MS12, Appendix] implies the dimen-
sion of the manifold cut out by the regular J is of negative dimension, specifically dimension
−2. Lazzarini’s result [Laz11] implies any disc can be decomposed into simple discs and
his paper [Laz00] shows that any J-holomorphic disc contains a simple J-holomorphic disc.
Thus if we had a nonempty configuration as in the statement of the corollary, we would
have a non-constant map in the case of a simple disc union a simple sphere, by factoring
through the multiple covers and taking one simple disc that goes through the sphere. But
this is a contradiction, so there couldn’t have been any such nonempty moduli spaces to
begin with. �
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Proof of Lemma 4.52. The proof is similar to the previous proof of existence of regular J ,
however we have an additional constraint which is the point of attachment between the disc
and the sphere. We have dense sets of J regular for each component (the disc and the
sphere); the disc was described earlier and the sphere situation is done in [MS12, Chapter
3]. This proof will involve checking that there is still a dense set of J in the intersection of
these two dense sets which interact well at the point where the disc and sphere intersect.

Intersect the dense sets of regular J for the sphere and disc separately. Consider U ⊂
⋃

J∈
ˆ̊

M(Y,∂Y )
M(AD; J) × ˆ̊M(AP1 ; J) where A denotes the respective homology classes and

uD(D) * uP1(P1) (in contrast with the case of just spheres where we require that the images
not be equal). Namely, U is the subset of pairs of maps where the disc image isn’t contained
in the CP1 image. We have the pointwise constraint that the sphere and disc are attached
at a point. So we need transversality of the evaluation map U → Y × Y . More specifically,
the disc and sphere must intersect at a marked point which we place at 0 in the domain. We
also fix a point on the boundary of the disc so there are no nontrivial automorphisms.
Using Sard-Smale we can deduce that U is a manifold after an additional check at the

intersection point. This is from [MS12, Chapter 6]. In order to show the evaluation map
at 0 is transverse, we want the linearized evaluation map to be surjective. So we select any
two tangent vectors in the codomain at (0D, 0P1), and then construct two J̇ supported in
two disjoint small balls, one on each component, to ensure surjectivity. Each ball should not
intersect the other component. This is possible because the Lagrangian boundary condition
implies J̇ is zero near the boundary and so if it’s only supported on a small ball in the
interior it is of this form; then we can extend each J̇ by zero and simply add them.

We now construct the J̇ . We follow [MS12, §3.4], then add the additional information
from [MS12, §6] for transversality of the evaluation map. Note that the reference considers
the case of a sphere, and the argument works for the case of a disc because we have less to
test due to more geometric constraints. Recall the construction of η on page 65 in Step 3:
Key Regularity argument. We can construct such an η in both cases of sphere or disc, and
also require that ξ now vanish on the point of intersection of the sphere and disc. We are
still working on a single component, P1 or D. This surjection tells us that we can find a
ξ pointing in a specified direction at a specified point and tangent to its respective disc or
sphere moduli space. Moreover one can do this in a small neighborhood around a specified
point that is not the intersection point. Hence we can add vectors that work on different
components using bump functions to extend each one by zero.

The implicit function theorem puts the structure of a Banach submanifold on
⋃

J∈J (Y,∂Y )

ˆ̊M(AD; J)× ˆ̊M(AP1 ; J)

We want to prove that U (the preimage under the evaluation map at 0 of the diagonal)
is a submanifold. Elliptic bootstrapping and the implicit function theorem in Appendices
of [MS12] apply because they are proven for totally real boundary conditions, such as La-
grangian boundary conditions. Since the linearized evaluation map is surjective on vectors
as shown in the previous paragraphs, by Sard-Smale the subset of the universal space where
maps respect the pointwise constraint is a manifold and we have existence of a dense set of
regular J for the disc and sphere so that the evaluation map at their intersection is trans-
verse. Note also that we have omitted discussion of the asymptotic behavior at strip-like
ends in our sketch of the functional analysis setup; the function spaces we consider and their
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topology need to be appropriately modified in the strip-like ends to enforce the asymptotic
conditions, see [Sei08]. This concludes the proof of Lemma 4.52. �

Now that we have a regular J for the disc union sphere configuration, we have that the
moduli space of such configurations is a manifold. In particular, the manifold has dimen-
sion given by the Fredholm index, which is < 0 (a sphere bubble is codimension 2 and
a disc with one marked boundary point is in a zero dimensional space). So the moduli
space is empty. We have now excluded all types of bubbling behavior. So the moduli space
ˆ̊MJ((D, ∂D), (Y, L); J, β, pt) of discs with one marked boundary point is already rigid i.e. di-
mension zero by the point constraint so we don’t need to quotient by automorphisms, and
it is also already compact as we’ve excluded limit behavior lying outside this moduli space.

Hence we can write
ˆ̊MJ((D, ∂D), (Y, L); J, β, pt) as MJ((D, ∂D), (Y, L); J, β, pt).

4.6. Quasi-invariance of the Fukaya category on regular choices. We pre-face
descriptions with “quasi” when the descriptions hold on the cohomology level.

Lemma 4.54. Let J1 and J2 be two regular almost complex structures. Then they define
quasi-equivalent Fukaya A∞-categories, i.e. isomorphic Donaldson-Fukaya categories.

References for proof. We need to show that the Donaldson-Fukaya categories have isomor-
phic object and morphism spaces. We also need to show that there exists a functor between
them, namely that it respects composition. The Lagrangians depend only on the symplectic
form, so remain unchanged upon changing the almost complex structure. Likewise for the
Floer complexes, which are generated by their intersection points. Note that Seidel in [Sei08,
§(10c)] discusses upgrading this equivalence to the A∞-category, in particular for the product
or composition map. See [Sei08, §8, §(10c)].
To show the morphism groups are isomorphic, we show that the differential ∂ is the same

for each J1 and J2. This will follow from the use of a continuation map. (In general this
argument only shows that the Floer complexes with the Floer differentials for J1 and J2
are quasi-isomorphic, hence have isomorphic cohomology.) This is the moduli space from
solutions of a single PDE that is the usual Cauchy-Riemann equation however instead of J
we use Jt where Jt at time 0 is J1 and Jt at time 1 is J2. This defines what the functor does
on morphisms. In particular, this will require the existence of a path of regular J in the
space of all almost complex structures. This is discussed in Lectures on Floer Homology by
D. Salamon.

That existence of Jt holds follows from a Sard-Smale argument, as in [MS12, Theorem
3.1.8] in their second edition book. The difference here is that our Riemann surface has
boundary (a disc with k punctures on the boundary corresponding to the moduli space in
defining the structure map µk−1). So the base and fiber of the Banach bundle will be the
same as in [MS12, pg 55] however the spaces of almost complex structures will restrict to
ones that are identically J0 outside of the open set U from Equation (4.10) around the origin
and moduli spaces will consist of maps on discs instead of spheres. The Sard-Smale theorem
and elliptic regularity proven in the Appendices of [MS12] already incorporate Lagrangian
boundary conditions since they assume totally real boundary conditions. �

5. Computing the differential on (Y, v0)

The main result of this section is the computation of the differential. We will use capital
Mk to denote structure maps on the total space of Y and lowercase µk to denote structure
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Figure 18. The homotopy between ∂ (left) and the count of discs we compute (right)

maps on the torus fiber. We take two steps to reduce the calculation ofM1 to something that
is computable: first in Lemma 5.1 we construct a cobordism between M1 : CF (ℓi+1, tx) →
CF (ℓi, tx) and another disc count, then Corollary 5.3 allows us to calculate that differential
in Lemma 5.12, and lastly in Lemma 5.13 we will prove that M1 : CF (ℓi+1, ℓj) → CF (ℓi, ℓj)
can be computed from the data of M1 : CF (ℓi+1, tx) → CF (ℓi, tx) over all x ∈ V . This will
finally allow us to prove the main theorem.

5.1. Cobordism between generic choice and specific choice for computation.
In this section we will discuss obstruction bundles, whose definition can be found in [MS12,
§7.2]. Consider the homotopy of Lagrangians in the total space, given by an isotopy of curves
in the base of v0, depicted in Figure 18. The left side, with a generic regular J , indicates
the M1(p′∞,i+1) we want to calculate. The right side with the standard J0 = i indicates
something we can compute. Note that since the set of J regular for all configurations (discs
and discs union spheres) is nonempty and dense, and the maps are J0 sections away from a
neighborhood of zero we can claim that J0 is a limit of such J by the denseness of the regular
J . I.e. we have a path of J ’s limiting to J0, so these J ’s perturb J0 near the zero fiber. Then
with the construction of a cobordism, we can compute the left by computing the right.
There is existing theory for computing open Gromov-Witten invariants of J0-holomorphic

discs with boundary on a moment map fiber, one marked point, and passing through the
singular fiber of Y once (as is the case here because they are 1-1 in general and v0-sections
with J0). This is the setting with

⋃

circle tx that we see on the right side of Figure 18 when we
allow J to vary to J0 at the right end. However, M

1 as is counts bigons through the singular
fiber with boundary over a bigon as in the left of Figure 18, instead of a circle. So following
[Sei08, §17g] we deform M1 to M2(cp, ·) where c counts J0-holomorphic discs with boundary
on
⋃

circle tx and marked point p. This deformation constructs the homotopy. Note that in
the book, he deforms the fibrations. However in this setting, the fibration stays the same,
while the Lagrangian boundary conditions are deformed via an automorphism of Y relative
to the boundary. So we will need a gluing argument.

See Figure 19 for a pictorial depiction of the analytic and algebraic steps involved. In
particular, we must abstractly perturb ∂J0 in order to see the configurations we want to
count on the right hand side as sitting in a moduli space. At the moment, the moduli space
with J0 has too many elements, a two-dimensional family of elements for each configuration
that we only want to count once. Let

⋃

γr
ℓ denote the Lagrangian boundary condition at

time r depicted in Figure 18.
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a Fredholm problem E → B describing the r = 1 moduli space, we can pull back:

(φr ◦ pr1)∗E ✲ E

B̃k,p

❄
φr ◦ pr1

✲ B
❄

The bundle of the right vertical arrow admits a regular J by Lemma 4.47. We can choose
a path of perturbations given by sections of the obstruction bundle, since at J0 the cokernel
of Du is greater than zero but has constant dimension, see Claim 5.5. See [MS12, §7.2]. In
particular, we choose the path so at r = 1 the perturbation is 0 and at r = 0 the perturbation
p0 is such that (∂J0 + p0)

−1(0) counts the limiting curves on the right in Figure 19. This
path gives us a section of the Fredholm problem in the left downward arrow. We then
also abstractly perturb this section, with a perturbation which vanishes on the boundary of
B̃k,p, analogous to [HWZ17, Theorem 5.8] for the polyfold setting. Continuous families of
perturbations (CF-perturbation) are discussed in [FOOO20, §7]. Now we look at the zero
set of this perturbed operator. Since there is no disc bubbling for each r, the boundary of
the zero-set is just the r = 0 end (and r = 1 end once we compactify). So we obtain a

1-manifold structure on
⋃

r∈(0,1] M̂((Y,
⋃

γr
ℓ); βr; Jr)/Aut. Now we equip the r = 1 end with

a topology.
Topological 1-manifold structure. The next step will be to Gromov compactify at the

r = 0 end. Note that φr does not have a limit at r = 0, as it becomes very degenerate and
is not a diffeomorphism. So instead we consider elements as u in this moduli space instead
of φ−1

r ◦ u. In order to preglue, which gives the topology at the r = 0 end, we trivialize the
normal bundle in a neighborhood of where we want to glue, and then interpolate linearly
between the two maps. See [Weh14, lec 3, 1 hr]. Note that we take the gluing parameter to be
e−l which goes to zero as the gluing length l goes to infinity, where we have the configuration
of two discs in the right side of Figure 18. (Note that even without trivializing, there are
scaling functions on the normal bundle. E.g. the gluing parameter for the two discs in the
base could be a cross ratio of four points around the belt that is getting pinched to a point.)

Preglue the domains. We remove a neighborhood of the puncture first. In the (s, t)
coordinates on strip-like ends, we glue (s − l, t) to (s, t). That is, we place an amount l in
the R direction on one strip overlapping onto the other strip. The two parts separately give
the r = 0 case and the two parts glued together is the r = ǫ > 0 case. The embedding that
gives the strip-like end embedding is as follows: 1) map (−∞, 0] × [0, 1] → (−∞, 0] × [0, π]
by ·π. Then map to the lower half of an annulus by e−z, and then lastly to the right half
of a disc with a puncture at 1 by z+i

z−i
. See Figure 17. The reason why the preglued map is

close to the Jr-holomorphic glued map one would obtain by Newton iteration is because by
continuity ∂Jr of the glued map is still small; if it were constant on the glued part then it
would actually be holomorphic. We interpolate slowly so it is still close to constant.

Preglue the maps. We define a new preglued map u0#Ru∞ on the preglued domain
defined above, where u0 and u∞ denote the two maps on discs at the r = 0 end. We know
how to interpolate in the base v0 ∈ C coordinate using (1− ρ)u0 + ρu∞ − i. Then we apply
this same linear interpolation in the moment map coordinates (ξ1, ξ2, η, θ1, θ2, θη) to preglue
maps u to the total space. This choice of interpolation for the pregluing ensures that, when
pregluing the disc bounded by

⋃

circle tx and a strip with boundary on
⋃

γ0
tx and

⋃

γ0
ℓi, the
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resulting preglued map has boundary on
⋃

γr
ℓi∪tx as in Figure 18. For in the fiber direction,

the values of (ξ1, ξ2) on the two components agree along the boundary and the interpolation
preserves them. In the base direction, we can choose the family of paths γr to be the family of
paths obtained from γ0 and the circle centered at the origin by our interpolation procedure.
Gromov compactness, maps limit to preglued maps. With J0 and no α spheres in

the homology class β1, we know the moduli space has one disc, by Claim 4.41. All discs by
themselves are regular for J0. Then we look at a limit of Jr-holomorphic discs ur as r goes
to 0, namely they solve the Cauchy-Riemann equation with Jr. After possibly passing to a
subsequence, then limr→0 ur =: u0#Ru∞ because of the exclusion of disc bubbling and strip
breaking for a fixed Lagrangian by the geometry of (Y, v0). This is also discussed in [CLL12,
Proposition 4.30]. Note that there are more pseudo-holomorphic discs with J1 than J0. The
latter only has one in each homology class. This is because with J1 some of the discs must
converge to a disc union bubbles as r → 0 for a path from J1 to J0. See Figure 19.

Deducing result. We have constructed a cobordism between ∂
−1

J1
(0) and (∂J0 + p0)

−1(0)
for an admissible perturbation p0 given by e.g. a section of the obstruction bundle (equiva-
lently, a Kuranishi structure with one chart since the cokernel has constant dimension). So
their counts are equal, by taking the signed boundary of this topological 1-manifold, which
will be zero, and also the difference of these two counts. This completes the proof. �

Definition 5.2. Let c denote this open Gromov-Witten invariant of J0-holomorphic curves
with boundary on

⋃

circle tx and marked point p, for the Kähler parameters q1 = q2 = q3 = τ
of this paper.

Corollary 5.3. Taking the boundary of the topological 1-manifold constructed in Lemma
5.1, we may calculate M1 : CF (ℓi+1, tx) → CF (ℓi, tx) by calculating M2(cp, ·) instead, where
c is as defined in Definition 5.2.

Proof. This is a corollary of Lemma 5.1, from which we deduced that #∂
−1

J1
(0) = #(∂J0 +

p0)
−1(0). In particular, one can count the moduli space (∂J0 + p0)

−1(0) by taking the Euler
number of a section of its obstruction bundle. This is done in [KL19] where they use the
result of [Cha11], who shows that one can add an additional ray to the fan ΣỸ to compactify
a configuration of disc union sphere to a configuration of only spheres, and the Kuranishi
chart on this closed Gromov-Witten invariant is isomorphic to that on the original open
Gromov-Witten invariant. This now-closed curve count, given by the Euler number, can
be counted by the Picard-Fuchs equation from algebraic geometry. This, in turn, can be
done using the mirror theorem of Givental. See Figure 20 for an outline of these steps with
references. �

5.2. Count of discs regular for J0. In this section we take J = J0 and consider moduli
spaces of discs only, for which J0 is regular. In other words, we only consider homology
classes β that arise from discs. The homology classes in π2(Y, L) that we consider cover a
disc in the base of v0 around 0, and pass through the central fiber in one point. Equivalently,
taking their real part, they can be depicted in ∆Ỹ as a line from a fixed point on the interior
of the polytope to a facet. Varying the facet allows one to enumerate all the homology
classes, done in [CO06]. This will finish the disc-only count since recall there is only one
disk in each homology class by Claim 4.41.
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Theorem 5.4. Assume the set-up in the previous paragraph. Then the disc count equals the
defining theta function

s(x) =
∑

n∈Z2

x−n1
1 x−n2

2 τ

1
2
nt





2 1
1 2



n

up to a coordinate change.

Proof. The count in this setting of discs in a toric variety is given in [CO06]. Recall that
we weight by τ−

∫

ω in the count. (Note that τ corresponds to the complex structure on the
genus 2 curve, so it corresponds to the symplectic structure on the mirror. The complex
structure on the mirror was in terms of T , see Figure 10.) If xi are coordinates on the
complex side on V and |xi| := τ ξi where the point in the polytope we measure from is
(a1, a2, a3) = (ξ1, ξ2, η), then from [CO06] the area of the disc intersecting the (m1,m2) facet
is 2π (〈a, ν(Fm1,m2〉+ α(Fm1,m2)).
The facet equations are determined from Equation (3.10). In particular, (ξ1, ξ2, η) =

(0, 0, 0) is a point on the facet in the η = 0 plane. Denote the facets by Fm1,m2 and let
ν(Fm1,m2) and α(Fm1,m2) denote the normal and constant defining the plane the facet lies in.
Recall that η ≥ ϕ(ξ) where ϕ(ξ + γ) = ϕ(ξ)− κ(γ) + 〈λ(γ), ξ〉. Suppose (ξ1, ξ2, η) ∈ Fm1,m2 .
We know from Claim (3.18) that ΓB acts on the moment map coordinates in the following
way:

(5.1)

(−m1γ
′ −m2γ

′′) · (ξ1, ξ2, η)
= (ξ1 − 2m1 −m2, ξ2 −m1 − 2m2, η − κ(m1γ

′ +m2γ
′′)−m · ξ)

= (ξ1 − 2m1 −m2, ξ2 −m1 − 2m2, η +m2
1 +m1m2 +m2

2 −m1ξ1 −m2ξ2)

In particular, this point must be in F0,0. We also know (ξ1, ξ2, η) ∈ Fm1,m2 . Plugging each
point into the equation of the corresponding facet, we find that:

〈

ν(Fm1,m2),





ξ1
ξ2
η





〉

+ α(Fm1,m2) = 0

=⇒
〈

ν(F0,0),





ξ1 − 2m1 −m2

ξ2 −m1 − 2m2

η +m2
1 +m1m2 +m2

2 −m1ξ1 −m2ξ2





〉

+ α(F0,0)(5.2)

= η +m2
1 +m1m2 +m2

2 −m1ξ1 −m2ξ2 = 0

=⇒ ν(Fm1,m2) = (−m1,−m2, 1)
t, α(Fm1,m2) = m2

1 +m1m2 +m2
2

So comparing the series from counting discs weighted by area for the differential, and that
of the theta function, we find that

θ-function =
∑

n∈Z2

x−n1
1 x−n2

2 τ

1
2
nt





2 1
1 2



n

(5.3)

disc count by area = τ η
∑

n∈Z2

|x1|n1 |x2|n2τ

1
2
nt





2 1
1 2



n
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which agree up to a change of coordinates when we include local systems on the Lagrangians,
(which removes the absolute value signs in the disc count). �

5.3. Count of spheres not regular for J0.

Claim 5.5. J0 is not a regular almost complex structure for disc + sphere configurations.

Proof. The standard J0 is multiplication by i in the toric coordinates. Recall thatH2(v
−1
0 (0)) 6=

0 and v0 is holomorphic with respect to J0, so submanifolds representing classes in H2 of the
central fiber are holomorphic. Then nonzero Dolbeault cohomology implies the spheres are
not regular; this follows by the Riemann-Roch theorem and the fact that the cokernel of the
∂J0 operator is Dolbeault cohomology. Since the cokernel is nonzero we find that Du is not
surjective for maps u arising from these holomorphic spheres. �

Remark 5.6. Closed Gromov-Witten theory counts spheres, for which we can use the alge-
braic geometry of stacks. Chapter 10 of [CK99] gives the stack definition of moduli spaces.
A reference for an introduction to stacks is [Fan01]. Open Gromov-Witten theory involves
counting discs with a Lagrangian boundary condition, and this boundary condition is why
we introduce analysis into definitions and use Fredholm problems to count the moduli spaces.

Definition 5.7. We will denote sphere classes in the central v0-fiber by α and the class of
the disc passing through the divisor Dij corresponding to the I := (i, j) facet by βij. Let
nβI+α denote the count of the following moduli space:

MβI+α(J0) := {(u, v) : (D, (S2)k) → Y | k ∈ N ∪ {0}, u(∂D) ⊂ ∪circtx,

[u#v] = βI + α, (u, v) ∈ C∞, ev0(u) = ev0(v1), µ([DI ]) = 2, ∂J0(u, v) = 0} × {p}/Aut(Y, p)
Theorem 5.8 (Open mirror theorem proved in [KL19, Theorem 3.10]). Ỹ is a toric Calabi-
Yau manifold of infinite-type. Then

∑

α

nβI+αq
α(q̌) = exp(gI(q̌))

where q denotes the Kähler parameters, q̌ the complex parameters, q(q̌) the mirror map and

gI(q̌) :=
∑

d

(−1)(DI ·d)(−(DI · d)− 1)!
∏

I′ 6=I(DI′ · d)!
q̌d

where the summation over d is taken over all d ∈ H
eff
2 (Ỹ ,Z) such that −KỸ ·d = 0, DI ·d < 0,

and DI′ · d ≥ 0 for all I ′ 6= I.

Remark 5.9. Note that here we consider only a one-parameter family of values of Kähler
parameters, because we’ve fixed the symplectic form so that the three toric divisors x = 0,
y = 0, and z = 0 have symplectic area 1 (these form the “banana manifold”). Namely,
q = τ ∈ R and qα, in our notation, is τω(α).

Flow chart details

Figure 20 is a flow chart indicating the necessary background for understanding the sphere
count in Kanazawa-Lau [KL19]. Note that they use J = J0 as we are using here.
Givental: [Giv98]. The Picard-Fuchs differential equation describes the behavior of pe-

riods arising from Hodge structures on the complex side. Givental introduced the I and
J functions, where I computes solutions of the Picard-Fuchs equation and J computes the



76 CATHERINE CANNIZZO

[KL19]: infinite toric open mirror thm

limit argument [CCLT16]: open mirror thm

[Cha11]: oGW = cGW [CCIT15]: closed mirror thm

[Giv98]: I, J fns

Figure 20. Gromov-Witten theory background for mirror symmetry of toric varieties

Gromov-Witten invariants. He proved a relation between these two functions, i.e. a mirror
theorem.

Closed mirror theorem: [CCIT15]. The closed mirror theorem relates the I and J
function (defined in e.g. [CK99, §2.6.2]) and builds on Givental’s paper. Varying the complex
moduli gives a variation of the Hodge structure on the complex manifold. The J function
on the symplectic manifold corresponds to the I function on the complex manifold. These
are functions of the Kähler and complex moduli, which are isomorphic. The mirror map
goes between neighborhoods of a Kähler large limit point and a complex large limit point
(maximally unipotent monodromy), see [CK99, §6.3, p 151]. Chapter 7 of [CK99] defines
GW invariants and Proposition 10.3.4 gives the relation between the J-function and the GW
potential.

In particular, [CK99, Equation (10.4)] gives the relation between differentials, intersection
theory, and Gromov-Witten theory. The Picard-Fuchs equation [CK99, §5.1.2] is for complex
moduli q̌ near maximally unipotent monodromy (denoted yk in [CK99]). The Kähler moduli
q is denoted qk in the same reference.
Givental’s mirror theorem for toric complete intersections is described in [CK99, §11.2.5].

Specific to the toric setting is the GKZ system, see [CK99, §5.5]. An example of the mirror
theorem is [CK99, 11.2.1.3]. In the case of toric varieties, we have an equivariance under the
toric action of the moduli spaces, discussed in [CCIT15].
The result of [Cha11]. In the Fukaya category one would like to compute open GW

invariants, i.e. discs with Lagrangian boundary conditions, so we would like to be able to
count these as well. There is a notion of “capping off” introduced in [Cha11] where, for a
toric variety XΣ, one adds an additional ray to the fan Σ to define a partial compactification
XΣ. This is done so the discs in the open GW count are “capped off” to become spheres. See
[CCLT16, §6.1] for a construction in the toric CY setting. The result in [Cha11] implying
that these open and closed GW invariants are equal is that they have isomorphic Kuranishi
structures.
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Definition 5.10 (Kuranishi chart). A Kuranishi neighborhood of p on moduli space X is
the following data:

• Vp smooth finite-dimensional manifold, possibly with corners
• Vp×Ep → Vp is the obstruction bundle, where Ep is a finite-dimensional real vector space.
• Γp is a finite group which acts smoothly and effectively (no non-trivial element acts triv-
ially) on Vp, and Ep linearly represents the group.

• Kuranishi map sp is a smooth section of Vp × Ep (smooth map Vp → Γp), and is Γp

equivariant.
• ψp is a topological chart which is a homeomorphism from the local model s−1

p (0)/Γp to a
neighborhood of p in X.

• Vp/Γp or Vp may also be referred to as a Kuranishi neighborhood (rather than the collection
of all these pieces of data).

• op is a point which the Kuranishi map sends to zero and the chart maps to p.
• For references in the literature on gluing such charts, see [MTFJ19, Fukaya, Tehrani].

Kanazawa-Lau apply [CCLT16] to the infinite toric setting. In [KL19] there is a
notion of taking a limit to arrive at the infinite toric case, which is our setting as well before
we quotient by the ΓB-action. They build on the open mirror theorem of [CCLT16] and
compute the sphere count as the coefficient of 1/z in the mirror map. This concludes the
outline for the flow chart.

Definition 5.11. Define the sphere count

(5.4) C(x) :=
∑

α

nβ0+ατ
ω(α)

where the nβ0+α are defined in Definition 5.7 and computed by Theorem 5.8, and β0 denotes
the disk class which projects to the moment polytope in the first two coordinates as a curve
from the point

A = (logτ |x1|, logτ |x2|, µX(x, y))

(where µX is defined at the end of the paragraph in How to view η as a moment map
coordinate on page 35) to the (0, 0)-th facet.

5.4. Computation of intermediary differential with tx.

Lemma 5.12. We have the following set-up:
• Fix A ∈ ∆Ỹ and select a point (x1, x2, y) ∈ X such that A = (logτ |x1|, logτ |x2|, µX(x, y))
(for µX defined in [AAK16, Equation (4.1)]).

• Let the Lagrangian boundary condition be
⋃

circle tx, lying over circle of fixed radius around
the origin in the base of v0.

• Fix a point ptconstraint on this Lagrangian.
Then the c from Corollary 5.3, (which states that M1 : CF (ℓi+1, tx) → CF (ℓi, tx) equals

M2(cp, ·)), is given by

(5.5) c = C(x) ·
(

∑

γ

τω(γ∗β0)

)

where C(x) is the sphere count from Definition 5.11.
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Proof. Define a ΓB × (C∗)3-action on Ỹ where (γ, cγ) acts by cγ ◦ γ and cγ is complex
multiplication. Specifically, γ ∈ ΓB sends Dij to some Di′j′ , and cγ is defined by requiring
the point γ∗(A) in the moment polytope to map back to A via the (C∗)3 toric action (while
fixing the divisors). Thus ΓB×(C∗)3 acts on moduli spaces of curves with a fixed Lagrangian
boundary condition, varying homology classes, and a marked point pt, by post-composition.
Fix a disc homology class βij = [Dij] in H2(Ỹ ,∪circtx). Then we have an isomorphism of
moduli spaces:
(5.6)

{(u, pt), u : D → Y, pt ∈ ∂D|u(∂D) ⊂
⋃

circ

tx, u(pt) = ptconstraint, [u] = βij , ∂Jreg
(u) = 0} ∼=

{(u, pt), u : D → Y, pt ∈ ∂D|u(∂D) ⊂
⋃

circ

tx, u(pt) = cγ ◦ γ(ptconstraint), [u] = (cγ ◦ γ)∗βij , ∂(cγ◦γ)∗Jreg
(u) = 0}

In particular, for a regular Jreg as exists by Lemma 4.47, (so moduli spaces are manifolds)
and introducing the point constraint (so they are zero dimensional), counting points in these
moduli spaces produces an infinite series of discs and no sphere bubbles (because we excluded
them). By denseness, we can choose Jreg sufficiently close to J0 so a limit of regular J ’s limits
to J0. The disc will either converge to a disc or to a disc with a sphere bubble configuration
as we saw in Figure 19. This count of discs for Jreg is hence proportional to the differential
in the Fukaya category.

By [CLL12, Proposition 4.30], we know that the only homology clases that can appear
in the compactification are stable trees of the form βij +

∑

i niαi for some integers ni and
spheres αi. Note that (cγ ◦ γ)∗J0 = J0 since multiplication by scalars is a holomorphic map.
The claim we want to prove is that the defined moduli spaces are isomorphic as we vary the
homology classes. Applying these group actions should produce isomorphic moduli spaces,
and we know then that the curve count for a particular homology class Dij + α will be the
same for all others and the counts will be the same so we can factor out the common factor.
Namely the counts nβ+α do not depend on the disc class β since there is a 1-1 bijection
between moduli spaces of sphere configurations showing up with Dij and with any other
Di′j′ , via the map cγ ◦ γ. That is because it has an inverse (cγ ◦ γ)−1 given by multiplication
by the inverse scalars.
Suppose we write for an arbitrary disc and sphere configuration β + α′ =: γ∗(β0 + α) for

fixed β0 with a suitable γ which then determines α. Then we can denote all nβ+α′ independent
of β and only depending on γ, α as nβ+α′ = nγ∗(β0+α) = nβ0+α. The last equality is true as
follows. We streamline notation below and use γ to incorporate both actions of γ and cγ.
We choose Jreg to also be regular for the homology class γ∗(βI + α) so γ∗Jreg is regular for
the class β + α. Invariance on regular J by a continuation map argument (see Section 4.6)
then implies

M(βI + α, Jreg) ∼= M(γ(βI + α), γ∗Jreg) ∼= M(γ(βI + α), Jreg)

(5.7)

c =
∑

β,α

nβ+α′τω(β)+ω(α′) =
∑

α,γ∈ΓB

nγ∗(β0+α)τ
ω(γ∗β0)+ω(α)

=
∑

γ∈ΓB

(

∑

α

nβ0+ατ
ω(α)

)

· τω(γ∗β0) =

(

∑

α

nβ0+ατ
ω(α)

)

·
(

∑

γ∈ΓB

τω(γ∗β0)

)
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The first factor is C(x) which we can put in front, and the second is the multi-theta function
described above in the computation of J0-discs. Note that nβ0 = 1 by Claim 4.41, hence
C(x) = 1+ (higher order terms) and is invertible. �

5.5. Computation of the differential in general, using the Leibniz rule. Now we put
everything together. Figure 21 serves as a pictorial depiction of how we use the Leibniz rule to
compute the differential M1. As illustrated in Figure 21, homY (Li, Lj) decomposes into two
hom groups on the fiber, homright(ℓi+1, ℓj)[−1]⊕homleft(ℓi, ℓj) = CF (ℓi+1, ℓj)[−1]⊕CF (ℓi, ℓj).
In particular, M1 will map from homright to homleft in the Floer differential.

Figure 21. Leibniz rule

The reason we use the Leibniz rule is because we would like to use
⋃

circle tx as the La-
grangian boundary condition and not

⋃

circle ℓj, as this will allow us to count discs with
boundary in the preimage of a moment map, as in [CO06]. Note that

M1 : CF (ℓi, tx) → CF (φH
2π(ℓi), tx)

CF ((φH
2π)

−1)−−−−−−−→ CF (ℓi, (φ
H
2π)

−1(tx)) = CF (ℓi, tx) ∼= C

where φH
2π is the monodromy from Section 4.2. We’ve used that applying the diffeomorphism

(φH
2π)

−1 gives a bijection between intersection points, and tx = {(ξ1, ξ2, θ1, θ2)})θ1,θ2∈[0,2π) is
invariant under parallel transport as it only rotates angles. So we land in CF (ℓi, tx), which
has only one intersection point.

Lemma 5.13 (Leibniz rule). M1 : CF (ℓi+1, ℓj) → CF (ℓi, ℓj) can be computed from the data
of M1 : CF (ℓi+1, tx) → CF (ℓi, tx) over all x ∈ V .
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Proof. First note that although M1 is an automorphism of CF (Li, Lj) = CF (ℓi+1, ℓj)[−1]⊕
CF (ℓi, ℓj), for degree reasons and geometric considerations the only nonzero contribution is
from the the first summand to the second summand.

Let p∞,j denote the intersection point of ℓj and tx, and let pki,j denote the kth intersection

point of ℓi ∩ ℓj, where 0 ≤ k < (i − j)2 as described in the definition of the Fukaya-Seidel
category above. We now use the diagram in Equation (5.8). The crux of this argument
relies on the Leibniz rule, one of the associativity relations in an A∞-category. The homs in
the first diagram, Equation (5.8) are in the total space Y . We can reduce some calculations
to the fiber, because each hom on the total space is a direct sum of Floer groups over two
fibers, namely over the points of intersection of the curves given by their projection to the
base. This is illustrated in Figure 21.
Thus we can simplify the diagram of Equation (5.8) to involve homs only in the fiber,

as done in the diagram of Equation (5.9). Though the domains for M1 and M2 have more
terms, we can just list the ones not mapping to zero. The rest map to zero because there
are no bigons on two Lagrangians in the fiber, hence the only bigons must be over one in
the base. Also note tx is invariant under the monodromy, since the latter affects only the
angles and tx consists of all angles (θ1, θ2) for a fixed (ξ1, ξ2). Note that the subscripts in
the simplified diagram indicate which fiber the hom intersection points lie in. We refer to
them in Figure 21 as left, middle, and right respectively, going from left to right. Lastly,
p∞,j refers to intersection points in the left fiber and p′∞,j refers to intersection points in the
middle fiber.

(5.8)

homY (Lj, Tx)⊗ homY (Li, Lj)
M2
✲ homY (Li, Tx)

homY (Lj, Tx)⊗ homY (Li, Lj)

M1 ⊗ 1+ 1⊗M1

❄ M2
✲ homY (Li, Tx)

M1

❄

Figure 22. Diagram illustrating Leibniz rule

(5.9)

homleft(ℓj, tx)⊗ homright(ℓi+1, ℓj) ∋ p∞,j ⊗ pki+1,j

M2
✲ hommiddle(ℓi+1, tx)

homleft(ℓj, tx)⊗ homleft(ℓi, ℓj)

M1 ⊗ 1+ 1⊗M1

❄ M2 = µ2
left ✲ homleft(ℓi, tx)

M1

❄

Figure 23. Simplified diagram on fibers

Differentiating the productM2, the Leibniz rule implies (where l = j−i and so pki,j indexed
over k can instead be written as pe,l indexed over e)
(5.10)
M1(M2(p∞,j, pe,l−1)) =M2(M1(p∞,j), pe,l−1) +M2(p∞,j,M

1(pe,l−1)) = µ2
left(p∞,j,M

1(pe,l−1))
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where the last step follows because M1(p∞,j) = 0 as p∞,j is of degree 0 and there is nothing
in degree 1 at the other intersection points of the two Lagrangians. Note that p∞,i is of
degree −1.

Here are the steps which allow us to arrive at the conclusion of the lemma.

(i) RHS of Equation (5.10): M1(pe,l−1) :=
∑

ẽ αẽ(e, l)pẽ,l where αẽ(e, l) is the count of
bigons between pe,l−1 and pẽ,l weighted by their area. (In particular, since τ was the
complex parameter on the B-side, it is the Novikov parameter here on the symplectic
side.) This is the differential we are looking for. It goes from the right fiber to the left
fiber.

(ii) Then: µ2
left(p∞,j,M

1(pe,l−1)) =
∑

ẽ αẽ(e, l)µ
2
left(p∞,j, pẽ,l) = (

∑

ẽ αẽ(e, l)nẽ(l)) p∞,i where
nẽ(l) is the weighted count of triangles (in the left fiber, for degree reasons) with vertices
at p∞,i, pẽ,l, and p∞,j. Since it’s in the fiber, we can compute nẽ(l) directly as in Lemma
2.20, as follows.

pẽ,l p∞,i

p∞,j

ℓi

tx

ℓj

Figure 24. A triangle in V ∨ contributing to µ2, viewed in ξ1, ξ2 plane in the
universal cover R4

The three vertices of the triangle are on lifts of ℓi ∩ tx ∋ p∞,i, ℓj ∩ tx ∋ p∞,j, and
ℓi ∩ ℓj ∋ pẽ,l. Translate pẽ,l so that it lies in the fundamental domain for the ΓB-action.

pẽ,l =

(

γi∩j
j − i

,−iλ
(

γi∩j
j − i

))

Along tx, the ξ stay constant at some translate of a, say a+ γ. Thus the sum of the ξ
going around the triangle equaling zero implies the amount we add to the ξ coordinate,
moving along the ℓi and ℓj directions from pẽ,l, are equal. Thus:

(5.11)

a+ γ =
γj∩i
j − i

+ ξ

p∞,i =

(

γi∩j
j − i

,−iλ
(

γi∩j
j − i

))

+ (ξ,−iλ(ξ))

p∞,j =

(

γi∩j
j − i

,−iλ
(

γi∩j
j − i

))

+ (ξ,−jλ(ξ))

Thus the triangle is half of the parallelogram spanned by:

(5.12)

〈

a+ γ − γi∩j
j − i

=: ξ,−iλ(ξ)
〉

and 〈ξ,−jλ(ξ)〉

This is in the 2-plane spanned by 〈ξ, 0〉 and 〈0, λ(ξ)〉. As before, the area of the triangle
is half of 〈ξ, λ(ξ)〉 times

det

(

1 −i
1 −j

)

= (j − i).
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That is

(5.13) nẽ(l) ≡ nẽ(l, x) =
∑

γ∈ΓB

τ−(j−i)κ(logτ |x|+γ−
γi∩j
j−i ) = sẽ,l[logτ |x|](1)

where [logτ |x|] denotes a shift in the ΓB-lattice by ξ = logτ |x|.
(iii) LHS of Equation (5.10): M2(p∞,j, pe,l−1) = ne(l − 1) · p′∞,i+1, noting that the fibration

is trivializable in the beige region of Figure 21. So this M2 inputs points in the left
and right fibers, and outputs points in the middle fiber.

(iv) Then going from the middle fiber to the left fiber counts bigons over the region we
deformed using Seidel’s homotopy. Namely, recall M1(p′∞,i+1) = C(x)s(x) · p∞,i by
Corollary 5.3 (deforming the differential by a cobordism to a disk count) and Lemma
5.12 (the disk count).

Thus Equation (5.10) becomes

C(x)s(x) · ne(l − 1) · p∞,i =M2(M1(pe,l−1, p∞,j)) =

(

∑

ẽ

αẽ(e, l)nẽ(l)

)

p∞,i

so comparing the coefficients on p∞,i we find that

(5.14) C(x)s(x) · ne(l − 1) =

(

∑

ẽ

αẽ(e, l)nẽ(l)

)

In conclusion, we see that the differential is given by

(5.15)

M1 : CF (ℓi+1, ℓj) → CF (ℓi, ℓj)

M1(pe,l−1) =
∑

ẽ

αẽpẽ,l

where αẽ is calculated by Equation (5.14), which also indicates how it depends on x. This
proves the lemma. �

Now finally we can compute the differential explicitly, which was the goal of this chapter.

Lemma 5.14. Consider the following two maps:

(5.16)
HomV (Li+1,Lj)

s⊗−→ HomV (Li,Lj)

HomV ∨(ℓi+1, ℓj)
∂−→ HomV ∨(ℓi, ℓj)

Then ∂ = C(x)τκ(logτ x) · s⊗ as linear maps on vector spaces, where recall

s(x) =
∑

n∈Z2

x−n1
1 x−n2

2 τ

1
2
nt





2 1
1 2



n

is the theta function defining the genus 2 curve in the abelian variety V , and C(x) was
defined in Definition 5.11.

Proof. Let B denote the basis se,l and pe,l from §2.3, for some choice of (i, j). We know from
Equations (5.13) and (5.14) is that nẽ(l, x) = sẽ,l[logτ |x|](1) and for all x ∈ (C∗)2/ΓB,

(5.17) C(x)s(x) · sl−1,e[logτ |x|](1) =
(

∑

ẽ

αẽ(e, l)sẽ,l[logτ |x|](1)
)

.
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We can re-arrange some terms as follows:

se,l[logτ |x|](1) =
∑

γ∈ΓB

τ−lκ(γ+logτ |x|−γe,l/l)

=
∑

γ∈ΓB

τ−lκ(γ−γe,l/l)−lκ(logτ |x|)+l〈logτ |x|,λ(γ−γe,l/l)〉

= τ−lκ(logτ |x|)
∑

−γ∈ΓB

τ−lκ(−γ+γe,l/l)|x|−lλ(−γ+γe,l/l)(5.18)

= τ−lκ(logτ |x|)
∑

γ∈ΓB

τ−lκ(γ+γe,l/l)|x|−lλ(γ+γe,l/l)

= τ−lκ(logτ |x|)se,l(|x|)
Hence from Equation (2.28) for x positive real we obtain (again we remove this restriction
by adding local systems on the Lagrangians):

(5.19)

s(x) · sl−1,e[logτ x](1) = s1,1(x) · τ−(l−1)κ(logτ x)sl−1,e(x)

= τ−(l−1)κ(logτ x)
∑

ẽ

(

∑

η

τ
−(1+ 1

l−1)κ
(

η−
(l−1)γẽ

l

)

)

sẽ,l.

Then multiplying by C(x) and using Equation (5.17) the LHS also equals

(5.20)
∑

ẽ

αẽ(e, l)sẽ,l[logτ x](1) = τ−lκ(logτ x)
∑

ẽ

αẽ(e, l)sẽ,l.

Thus

(5.21) C(x)τ−(l−1)κ(logτ x)
∑

ẽ

(

∑

η

τ
−(1+ 1

l−1)κ
(

η−
(l−1)γẽ

l

)

)

sẽ,l = τ−lκ(logτ x)
∑

ẽ

αẽ(e, l)sẽ,l

and equating coefficients on the B-side basis gives

(5.22) C(x)τ−(l−1)κ(logτ x)

(

∑

η

τ
−(1+ 1

l−1)κ
(

η−
(l−1)γẽ

l

)

)

= τ−lκ(logτ x)αẽ(e, l).

This implies what we originally wanted:

∂(pe,l) =
∑

ẽ

αẽ(e, l)pẽ,l = C(x)τκ(logτ x)
∑

ẽ

(

∑

η

τ
−(1+ 1

l−1)κ
(

η−
(l−1)γẽ

l

)

)

pẽ,l(5.23)

s⊗ se,l =
∑

ẽ

(

∑

η

τ
−(1+ 1

l−1)κ
(

η−
(l−1)γẽ

l

)

)

sẽ,l

which completes the proof that ∂ = C(x)τκ(logτ x) · s(x)⊗. �

6. Right arrow of main theorem: fully-faithful embedding

Db
LCoh(H) →֒H0FS(Y, v0)

In this section we prove that the right vertical arrow of Theorem 1.2 is a fully faithful
embedding, namely that the arrow is indeed a functor and that the morphism groups between
objects and images of those objects are isomorphic.
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On objects we map L|⊗i
H 7→ Li. If φH

2π is the monodromy of the symplectic fibration
v0 : Y → C around the origin, then the symmetry of our definition of ω ensures that φH

2π(ℓi)
is Hamiltonian isotopic to ℓi+1 by Lemma 4.24. Since Floer cohomology is invariant under
Hamiltonian isotopy, we can consider linear Lagrangians in the fibers. This allows us to
obtain the bottom row of the following diagram, whenever j ≥ i+ 2. When j < i+ 2 there
are also Ext groups to consider and we get a long exact sequence instead, namely the last
horizontal map is not surjective anymore.

Hom(Li+1,Lj)
⊗s−→Hom(Li,Lj)→Hom(Li,Lj ⊗ ι∗OH)→ 0

CF (ℓi+1, ℓj)

·
(

τκ(logτ x)C(x)
)−1 ∼=

❄
∂−→ CF (ℓi, ℓj)

∼=
❄

→ HF (Li, Lj)
❄

→ 0

Figure 25. Proof of Main Theorem

Ext groups here are computed from injective resolutions:

(0 ✲ L−1 ✲ OV
✲ OH

✲ 0)⊗ Lj−i

0 ✲ Lj−i−1 ✲ Lj−i ✲ Lj−i
H

✲ 0

so taking the cohomology long exact sequence we obtain:

(6.1)
0 → H0(Lj−i−1) → H0(Lj−i) → H0(Lj−i |H) → H1(Lj−i−1) → H1(Lj−i)

→ H1(Lj−i |H) → H2(Lj−i−1) → H2(Lj−i) → H2(Lj−i |H)

The crux of the argument is that the left-side square in the diagram in Figure 25 commutes,
which then implies that the rightmost vertical arrow is an isomorphism as well. This follows
from Lemma 5.14.

More precisely, we’ve shown in Lemma 5.14 that under the chosen isomorphisms of Lemma
2.20, the Floer differential ∂ agrees with multiplication by s ∈ H0(V,L) up to the multi-
plicative factor τκ(logτ x)C(x), where C(x) was the open Gromov-Witten invariant in [KL19]
for the particular choice of Kähler parameter in Remark 5.9. So scaling the first arrow on

morphisms by
(

τκ(logτ x)C
)−1

gives a commutative diagram on the left, which we can do since
C(x) = 1 + . . ..
Furthermore, this map on objects induces a functor because it respects composition. This

is because the product structures on the groups in the right-hand vertical arrow of the
diagram in Figure 25 are those naturally induced on the quotients, and the left two vertical
maps are functorial by Lemma 2.20. So the induced isomorphisms on the cokernels of the
horizontal maps are also functorial, and composition on the complex side versus the Floer
product on HF match under the constructed isomorphisms.

Hence this provides the desired isomorphism between the morphisms groups for the functor
Db

LCoh(H) → H0(FS(Y, v0)) and completes the proof of the main Theorem 1.2.
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7. Appendix A: Enough space to bound derivatives

Lemma 7.1 (Estimates on bump function derivatives). The definition corresponding to
Figure 13 provides enough space to make logT -derivatives as small as needed.

Proof. Region VII contains the point in its center where rx = ry = rz = T l/3 and its
boundary circle is d = T l/4 for whichever region d we are using. So ∆ logT rx = O(l) is of
order l.

Region I is delineated by a rectangle in (dI , θI) coordinates of length 2T−l/p by T−l/p for
a variable p which we constrain below. Namely,

(7.1) Region I := {(dI , θI) | (dI , θI) ∈ [T l/4, T l/4−l/p]× [−T l/p, T l/p]}
Thus ∆ logT dI = O(l/p). The angular coordinate requires a bit more to analyze since it
goes to zero when ry = rz.
The curves delineating region II are θII constant for the radially outward lines, and dIIA

or dIIB constant along angular curves. Note that dIIA constant here is approximately rx
constant.

Label the points of Figure 13 as follows.
Region II Radial lines are dIIx constant, for x ∈ {A,B,C}. Two curves around the origin

through P1, Q1 and P2, Q2 respectively are θII constant.

• P1 = B ≈ (l/4, 3l/8− l/p, 3l/8 + l/p)
• P2 ≈ (l/4− l/p, 3l/8− 2l/p, 3l/8 + 3l/p). This follows because the sliver from P1 to
P2 is θII = logT ry − logT rx constant, while P2 is obtained by moving E up along
constant dI ≈ (Trx)

2 so rx(P2) ≈ T l/4−l/p. Then constant θII implies:

θII(P1) ≈ 3l/8− l/p− l/4 = l/8− l/p

= θII(P2) ≈ logT ry − (l/4− l/p)

=⇒ logT ry ≈ 3l/8− 2l/p

• Q1 ≈ (l/4, 3l/8− 2l/p, 3l/8 + 2l/p) From P1 to Q1 along dIIA constant we increase
ry by a factor of T−l/p keeping rx approximately constant.

• Q2 ≈ (l/4− l/p, 3l/8− 3l/p, 3l/8 + 4l/p) From Q1 to Q2 we have θII is constant and
at Q1 we have θII(Q1) ≈ 3l/8− 2l/p− l/4 = l/8− 2l/p. From P2 to Q2 we have rx
approximately constant hence logT rx at Q2 is approximately l/4− l/p so

logT ry ≈ (l/8− 2l/p) + (l/4− l/p) = 3l/8− 3l/p

The rz coordinate is determined by rxryrz = T l.

Now finally we get a condition on p. We want rx >> ry everywhere in region IIA so that
contour lines for dIIA look roughly as they are drawn and approximations for dIIA are valid.
Looking at Q1 this means T l/4 >> T 3l/8−2l/p and Q2 gives the same constraint. Hence we
need 1/8− 2/p > 0 or p > 16. E.g. take p = 17.
Recall Figure 13 and that from A to B ry moves through l/p orders of T magnitude while

from D to E it moves through 3l/2p which is a lot more for small T .
Region I: α3, α5. Since α3 is a function of dI ≈ T 2[r2x − 1

2
(r2y + r2z)] ≈ (Trx)

2 in region
I because rx is many orders of magnitude bigger than ry and rz get in that region. We
need to see how logT (Trx)

2 changes. Recall that rx changed by l/p orders of magnitude, so
logT (Trx)

2 changes by approximately 2l/p. Thus the log derivative can be made as small as
possible, as explained above.
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For α
′′ log
3 we want to know the change in slope over log d time. The derivative goes from 0

to 1
3l
in approximately l log time. Think of a bump function from 2/3 to 1. Hence all terms

involving a derivative of α3 are bounded by a constant times T 2/l.
Region I: α4. However, in the calculation for α4, we end up dividing by θ. So α4 will need

to be constant for a short while in the middle, so we don’t divide by zero. In the calculations
above, we have cut out a region where T < (ry/rz)

2 < T−1. In this region α4 ≡ 0. To do
this, we need to make sure that we have at least one order of magnitude difference between
ry and rz. This is fine in region I because we have ry and rz many orders of magnitude apart
at B and C, with even more discrepancy as we move out to E and F . (Note however, the
reverse would have happened in region II. In other words, rz gets smaller as we move out,
so rx and ry get bigger, and constant r2y − r2x means they will get closer and closer together
as we move out.)

This one is a function of θI ≈ T 2[r2y − r2z ] or its negative. Furthermore, we’re taking out a

sliver around the axis where T < (ry/rz)
2 < 1/T . So we need to check there’s enough space

left. At the bottom where C and F are, θI ≈ −(Trz)
2 which is on the order of −T 2( 3l

8
− l

p
+1)

as seen above. Then we stop when rz/ry = 1/
√
T . At this point rz and ry are basically

equal, since they are only about one T -order of magnitude apart and both really small. At
some fixed dI , we have rx ≈ T l/4−tl/p where t is fixed at some number between 0 and 1. So
rz =

√
T−1ry and:

rxryrz = T l =⇒ T l/4−tl/p · ry ·
√
T−1ry = T l =⇒ r2y =

√
T · T 3l/4+tl/p.

Hence

θI ≈ T 2[r2y − r2z ] = T 2r2y

(

1−
(

rz
ry

)2
)

≈ T 2
√
T · T 3l/4+tl/p(1− T−1)

≈ −T 3l/4+tl/p+3/2
∵ T << 1

We are checking how θI changes when we cut out this sliver to make sure α4 has enough
space for the log derivatives. We find θI decreases from order of magnitude 3l/4− 2l/p+ 2
to order of magnitude 3l/4 + tl/p+ 3/2. This means a net change of

(3l/4− 2l/p+ 2)− (3l/4 + tl/p+ 3/2) = −l
(

2

p
+
t

p

)

+ 1/2

with a multiple of l, so we’re still okay for the log derivative of α4 because this is the
denominator of the log derivative which can be made very large because of the l. Note that
we only care about α4 in region I since it’s constant at 1/2 when we exit the region and move
into region II.

Region II. Also, there is enough space in θII and log dIIA for α6 and α3, α5 respectively.
Recall

dIIA ≈ T 2[r2x −
1

2
(r2y + r2z) +

3

2
α6 · r2y]

Since everywhere in region IIA we have rx >> ry, the leading order term in dII is (Trx)
2.

Likewise since θII is linear in logT ry−logT rx, for it to stay constant we find that both logT ry
and logT rx increase the same amount along contour lines. At P1 and P2, θII ≈ logT (T

l/8−l/p).
At Q1 and Q2, θII ≈ logT (T

l/8−2l/p). Thus the change is l/p and α
′

6 ≈ ∆α6/∆θII ≈ p/l.
This can be made small by taking l large.
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Now we check dIIA for α3 and α5. At the smaller value we have dIIA ≈ (Trx)
2 at P1 where

r2x has exponent l/2. At the larger value we get l/2 − 2l/p. So the change is 2l/p and the
derivatives in α3 and α5 are approximately p/2l times whatever the full range of αi is. Again
this can be made small.

Second-order derivatives also have enough space. In the bump functions α3, . . . , α6 the
variable we’re taking the derivative with respect to has space k · l for some k > 0 to move
while each of the bump functions moves through an amount 1/3 or 1. By making l really big,
we can ensure that while this is happening, the second derivative doesn’t get too big. The
graph of the bump functions won’t be linear because they have to level off at the endpoints
of their support. But with enough space, we can make sure they don’t turn too quickly from
horizontal to linear.

Other regions covered by symmetry. The argument that there is enough space
in IIC follows from IIA by swapping rx and ry in the calculations. The only variable in
region IIB is dIIB and we take the two radial curves to be where dIIB is constant, with the
same amount of change in the variable as in dIIA. Note that when rx >> ry we see that
dIIB ≈ T 2[r2x + r2y − 1

2
r2z ] ≈ (Trx)

2. So initially, constant dIIB is approximately the same
thing as constant rx. At some point we increase ry enough to equal rx. Likewise, coming
from region IIC we have that constant dIIB means, initially, approximately the same thing
as constant ry. So in the middle the curve interpolates between vertical (constant rx) and
horizontal (constant ry). The derivatives for functions of dIIB have enough space because
dIIB goes through the same amount as dIIA and dIIC .

Outside C3 patch. Note that we will have enough space for log derivatives because
θ ≈ (1 + |Tz|2)T 2(r2x − r2y) for rx, ry very small and this was already checked earlier when

θ ≈ T 2(r2x − r2y). �

8. Appendix B: Negligible terms in defining the symplectic form

8.1. Region I. Negligible terms. The terms that produce derivatives of the bump
functions are α3(dI)dI and α4(θI)α5(dI)θI . Note that d in region I close to where rx = ry = rz
is approximately linear in (Trx)

2, (Try)
2, and (Trz)

2.
Some notation: Let d ≡ dI in this section. We want to allow the variable we’re taking

the derivative with respect to to vary among {rx, ry, rz}. So we denote those variables to be
{r⋆, r•} ∈ {rx, ry, rz}. Furthermore, ′ log means we take the log derivative dα3/d(log(dI)) =
α′
3 · d. The following calculation for the second derivative applies to α5 as well, and α4 if we

replace d with θ.

d2α3

d(log d)2
= (α′

3 · d)′ · d = (α′′
3 · d+ α′

3)d

=⇒ α′′
3 · d+ α′

3 =
1

d
· d2α3

d(log d)2

=⇒ α′′
3 =

1

d2
·
(

d2α3

d(log d)2
− dα3

d(log d)

)

Diagonal terms for α3(d) · d:

d ≈ T 2[r2x −
1

2

(

r2y + r2z
)

] =⇒ dr∗ ≈ λT 2r∗, dr∗r∗ ≈ λT 2, λ ∈ {2,−1}
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(

1

r∗
∂r∗ + ∂2

r∗r∗

)

(α3(d) · d) =
1

r∗
(α′

3dr∗d+ α3(d) · dr∗)

+ (α′′
3d

2
r∗d+ α′

3dr∗r∗d+ 2α′
3(d)d

2
r∗ + α3(d) · dr∗r∗)

≈ 1

r∗
(α′

3λT
2r∗d+ α3(d) · λT 2r∗)

+ (α′′
3(λT

2r∗)
2d+ α′

3λT
2d+ 2α′

3(d)(λT
2r∗)

2 + α3(d) · λT 2)

= λT 2[α′
3d+ α3 + λT 2α′′

3r
2
∗ · d+ α′

3d+ 2λT 2α′
3r

2
∗ + α3(d)]

= λT 2[α′
3(2d+ λT 2r2∗) + λT 2r2∗(α

′′
3d+ α′

3)] + 2λT 2α3

= λT 2[α
′ log
3 (2 +

λT 2r2∗
d

) + λ
T 2r2∗
d

α
′′ log
3 ] + 2λT 2α3

α
′ log
3 ≈ ∆α3

∆ log d
≈∝ 1

l

T 2r2∗
d

≈ T 2r2∗
T 2[r2x − 1

2

(

r2y + r2z
)

]
=

r2∗
r2x − 1

2

(

r2y + r2z
) =

r2∗/r
2
x

1− 1
2

(

r2y
r2x

+ r2z
r2x

) ≈ 1 or 0 ∵ rx >> ry, rz

α
′′ log
3 ≈∝ 1

l2

Thus all terms involving bump function derivatives can be made much smaller than 2λT 2α3

for l sufficiently large.
Off-diagonal terms for α3(d) · d where ∗ 6= ⋆:

dr∗r⋆ = 0

∂2r∗r⋆(α3 · d) = ∂r∗(α
′
3dr⋆d+ α3(d) · dr⋆)

= α′′
3dr∗dr⋆d+ α′

3dr⋆r∗d+ 2α′
3dr⋆dr∗ + α3 · dr⋆r∗

≈ T 4λµr∗r⋆α
′′
3d+ 0 + 2T 4λµr∗r⋆α

′
3 + 0, λ, µ ∈ {2,−1}

= T 4λµ
r∗r⋆
d
d(α′′

3d+ α′
3 + α′

3)

= T 4λµ
r∗r⋆
d

(α
′′ log
3 + α

′ log
3 )

T 2r∗r⋆
d

≈ r∗r⋆/r
2
x

1− 1
2
((ry/rx)2 + (rz/rx)2)

≈ 0 or 1

Again we see that all the derivatives of the bump functions are log derivatives and all the
terms are bounded by a constant times T 2/l.

Diagonal terms 1
r•
∂r• + ∂2r•r• and off-diagonal terms ∂2r•r⋆ for α4α5θI .

θ ≈ T 2(r2y − r2z) =⇒ θr• ≈ λ•T
2r•, λ• ∈ {0,±2}

d ≈ T 2(r2x −
1

2
(r2y + r2z)) =⇒ dr• ≈ µ•T

2r•, µ• ∈ {2,−1}

∴
1

r•
∂r•(α4α5θ) =

1

r•
(α′

4θr•α5θ + α4α
′
5dr•θ + α4α5θr•) ≈ T 2(λ•α

′ log
4 α5 + µ•α4α

′ log
5

θ

d
+ λ•α4α5)
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∂
2
r⋆r•(α4α5θ) ≈ T

2
∂r⋆ [r•λ•α

′
4θα5 + r•µ•α4α

′
5θ + r•λ•α4α5]

= T
2[∂r⋆(r•)λ•α

′
4θα5 + r•λ•α

′′
4θr⋆θα5 + r•λ•α

′
4θr⋆α5 + r•λ•α

′
4θα

′
5dr⋆

+ ∂r⋆(r•)α4α
′
5θ + r•µ•α

′
4θr⋆α

′
5θ + r•µ•α4α

′′
5dr⋆θ + r•µ•α4α

′
5θr⋆

+ ∂r⋆(r•)λ•α4α5 + r•λ•α
′
4θr⋆α5 + r•λ•α4α

′
5dr⋆ ]

≈ T
2[δ•⋆λ•α

′ log
4 α5 + T

2[λ•λ⋆
r•r⋆

θ
(α

′′ log
4 − α

′ log
4 )α5 + λ•λ⋆

r•r⋆

θ
α

′ log
4 α5 + λ•µ⋆

r•r⋆

d
α

′ log
4 α

′ log
5 ]

+ δ⋆•
θ

d
α4α

′ log
5 + µ•λ⋆

T 2r•r⋆

d
α

′ log
4 α

′ log
5 + µ•µ∗

T 2r•r⋆θ

d2
α4(α

′′ log
5 − α

′ log
5 ) + µ•λ⋆

T 2r•r⋆

d
α

′ log
5 α4

+ δ⋆•λ•α4α5 + λ•λ⋆
T 2r•r⋆

θ
α

′ log
4 α5 + λ•µ⋆

T 2r•r⋆

d
α4α

′ log
5 ]

We’ve already seen above that T 2 r⋆r•
d

and hence
θ

d
are bounded. So it remains to check

that T 2 r⋆r•
θ

is bounded. Also, we only need to consider the cases where the numerator

does not involve rx by the comment above that we get zero otherwise and that second-order
partial derivatives are symmetric. So we have to bound the following expressions:

r2y
r2y − r2z

,
r2z

r2y − r2z
,
ryrz
r2y − r2z

.

We are considering the top half of region I, where ry > rz. We declare that α4 is constant in

the region 1 <
(

ry
rz

)2

< 1
T
. So the support of α4 is where

(

ry
rz

)2

> 1
T
. In particular, we see

that

(8.1)
1

(

ry
rz

)2

− 1
<

1

T−1 − 1
=

T

1− T
≈ T.

So these terms are bounded, which can be seen dividing top and bottom by r2z . So we’ve seen

λ•λ∗
T 2r•r∗

θ
, T

2r•r⋆
d

, θ
d
are bounded, and multiply log derivatives which can be made sufficiently

small for l large.

8.2. Region IIA. Negligible terms. Bump function terms in F are: α6 · (Try)2, α3 ·
dIIA, {α5(Tr∗)

2}∗=y,z, α5α6 · (Try)2

1st term for region IIA: α6(log(ry/rx)) · (Try)2
First derivative divided by r⋆:

1

rx
∂rx [α6(log ry − log rx))(Try)

2] = − 1

r2x
α′
6 · (Try)2 = −T 2 · r

2
y

r2x
α′
6,

∣

∣

∣

∣

r2y
r2x

∣

∣

∣

∣

< 1

1

ry
∂ry [α6(log ry − log rx))(Try)

2] =
1

r2y
α′
6 · (Try)2 + α6 · (2T 2) = T 2α′

6 + 2T 2α6

1

rz
∂rz [α6(log ry − log rx)(Try)

2] = 0

α′
6 ≈∝ 1

l
So all bump function derivative terms from first order derivatives of this term can be made
small.
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Second derivative ∂2⋆•:

∂2
rxrx

(α6(Try)
2) = ∂rx(−

(Try)
2

rx
α′

6) =
(Try)

2

r2x
(α′

6 + α′′

6 ) < T 2(α′

6 + α′′

6 ) ≈∝ T 2(
1

l
+

1

l2
), small

∂2
rxry

(α6(Try)
2) = ∂ry (−

(Try)
2

rx
α′

6) =
−T 2ry
rx

(2α′

6 + α′′

6 ), norm < T 2(2α′

6 + α′′

6 )

∂2
ryry

(α6(Try)
2) = ∂ry (T

2α′

6ry + 2T 2α6ry) = T 2(3α′

6 + α′′

6 + 2α6)

Note the first derivative α′
6 goes from 0 to a maximum of 1/l + ǫ at the half way point

of l/2 so the change in slope is roughly 1/l2, still small. (Strictly speaking, (1/l + ǫ)(2/l).)
Thus the derivatives of α6r

2
y can be made small by taking l sufficiently large.

2nd term for region IIA: α3(dIIA)dIIA

First derivative. 1
r⋆
∂r⋆(α3dIIA) = (α′

3dIIA + α3) · dIIA⋆

r⋆
. Here are the partial derivatives

of dIIA.

(8.2)

dIIA ≈ T 2[r2x −
1

2
(r2y + r2z)] +

3

2
α6(log ry − log rx) · (Try)2

(dIIA)x
rx

=
T 2

rx
[2rx +

3

2
(α′

6 ·
−1

rx
· r2y)] = T 2[2 +

3

2
(α′

6 ·
−r2y
r2x

)]

(dIIA)y
ry

=
T 2

ry
[−ry +

3

2
(α′

6 ·
1

ry
· r2y + 2ryα6)] = T 2[−1 +

3

2
(α′

6 + 2α6)]

(dIIA)z
rz

=
T 2

rz
[−rz] = −T 2

Thus derivative terms are either α
′ log
3 = α′

3dIIA or a regular derivative of α6, which may
be multiplied by (ry/rx)

2 but rx > ry in region IIA. So derivative terms of α3(dIIA)dIIA can
be made small for l sufficiently large.

Second derivative terms. We differentiate each of the first derivative terms. Let’s say
P is a term in Equation 8.2 above. Then we want to differentiate r⋆P because above we
divided by r⋆. Thus using the product rule with a differential operator D = ∂r• we get
D(r⋆)P + r⋆D(P ). The first term gives 0 or 1 times P , which we already know is small. So
we’ll only need to consider r⋆D(P ) for 8 choices of P .

(1) P = α′
3dIIA :

r⋆∂r•(α
′

3dIIA) = r⋆α
′′

3 · (dIIA)• · dIIA + r⋆α
′

3(dIIA)• =
r⋆(dIIA)•

dIIA
α

′′ log
3

(dIIA)• terms : {T 2r•, T
2α6ry, T

2α′

6ry, T
2α′

6

r2y
rx

} < T 2r•,∵ α6 ≤ 1, α′

6 ≈∝ 1

l
,
ry
rx

< 1

T 2r⋆r•
dIIA

≈ r⋆r•

r2x − 1
2 (r

2
y + r2z) +

3
2α6r2y

=
r⋆r•/r

2
x

1− 1
2 ((ry/rx)

2 + (rz/rx)2) +
3
2α6(ry/rx)2

(8.3)

≈ r⋆r•
r2x

≈∈ {0, 1} ∵ rx >> ry, rz in region IIA

∴ r⋆∂r•(P ) =
r⋆(dIIA)•

dIIA
α

′′ log
3 ≈ (bounded) · 1

l2
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(2) P = α′
3dIIAα6 term from differentiating F first wrt y, i.e. ∂ry(F ) (same calculation

works replacing α6 with α′
6)

ry∂r•(α
′
3dIIAα6) = ry∂r•(α

′
3dIIA) · α6 + ry(α

′
3dIIA) · ∂r•(α6)

= (above case) · α6 ± α
′ log
3 α′

6 · cry, c ∈ { 1

rx
,
1

ry
, 0}

= small + small

(3) P = α′
3dIIα

′
6 ·
(

ry
rx

)2

from differentiating first wrt x (same argument for α3α
′
6(ry/rx)

2

replacing α′
3dIIα

′
6 with α3α

′
6)

rx∂r•(α
′

3dIIα
′

6 ·
(

ry
rx

)2

) = rx∂r•(α
′

3dIIα
′

6) ·
(

ry
rx

)2

+ rx(α
′

3dIIα
′

6) · ∂r•
(

ry
rx

)2

=
ry
rx

· ry∂r•(α′

3dIIα
′

6)± (α
′ log
3 α′

6) · crx, c ∈ {2r2y/r3x, 2ry/r2x, 0}

= (small)(previous case) + (small)(ry/rx)
i, i ∈ {1, 2}

= small ∵ rx >> ry

(4) P = α3: shows up in first derivative of F wrt any variable, r⋆∂r•α3 = r⋆α
′
3(dIIA)• =

α
′ log
3 · (r⋆(dIIA)•)/dIIA, and (r⋆(dIIA)•)/dIIA bounded by Equation (8.3).

(5) P = α3α6 (same argument for α3α
′
6: shows up in first derivatives of F wrt y,

ry∂r•(α3α6) = ry((α3)•α6 + α3(α6)•). First term with α3 derivatives ok by previ-
ous item, second term gives α3α

′
6 times one or zero, since ry/rx ≪ 1 or 1. So that

term is a bounded term times a small term hence also small.

This concludes our check of the first and second order derivatives of α3(dIIA)dIIA.

3rd term for region IIA: α5 · (Tr∗)2 for ∗ ∈ {y, z}
We run through the same argument as with α3 · dIIA above, replacing dIIA with (Tr∗)

2 in
the second term.

First derivative. 1
r⋆
∂r⋆(α5(Tr∗)

2) = 1
r⋆
α′
5(dIIA)⋆(Tr∗)

2 + α5 · ((Tr∗)2)⋆
r⋆

. The bump func-

tion derivative term is 1
r⋆
α′
5(dIIA)⋆(Tr∗)

2 = α
′ log
5

T 2r2∗(dIIA)⋆
dIIAr⋆

. Note that T 2r2∗
dIIA

and (dIIA)⋆
r⋆

are

bounded, the latter by Equation (8.2) and the former since:

(8.4)
r2
∗

r2x − 1
2 (r

2
y + r2z) +

3
2α6r2y

=
r2
∗
/r2x

1− 1
2 ((ry/rx)

2 + (rz/rx)2) +
3
2α6(ry/rx)2

≪ 1 ∵ rx >> ry, rz

Note that ∗ ∈ {y, z}. So first derivatives are bounded for sufficiently large l in α5 · (Tr∗)2
since they are either non-bump function derivatives or a bounded quantity multiplied by a
small log derivative.

Second derivatives. Differentiating first derivatives α′
5(dIIA)⋆(Tr∗)

2 and 2T 2r⋆α5:
1) r⋆∂r•(α

′
5(Tr∗)

2) = r⋆α
′′
5 · (dIIA)• · (Tr∗)2 + r⋆α

′
5((Tr∗)

2)•

= (α
′′ log
5 − α

′ log
5 )

r⋆ · (dIIA)• · (Tr∗)2
d2IIA

+ α
′ log
5

2T 2r•r⋆
dIIA

Already checked bounded:
r⋆(dIIA)•
dIIA

∵ (8.3),
(Tr∗)

2

dIIA
∵ (8.4),

T 2r•r⋆
dIIA

∵ (8.3)

∴ r⋆∂r•(α
′
5(Tr∗)

2) = (small)(bounded) + (small)(bounded)
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2) α′
5(Tr∗)

2α6 (same for α′
5(Tr∗)

2α′
6): term from differentiating F first wrt y, i.e. ∂ry(F )

ry∂r•(α
′
5(Tr∗)

2α6) = ry∂r•(α
′
5(Tr∗)

2) · α6 + ry(α
′
5(Tr∗)

2) · ∂r•(α6)

= (above case) · α6 ± α
′ log
5

(Tr∗)
2

dIIA
α′
6 · cry, c ∈ { 1

rx
,
1

ry
, 0}

= (small)(bounded) + (small)(bounded)

3) α′
5(Tr∗)

2α′
6 ·
(

ry
rx

)2

: from differentiating first wrt x

rx∂r•(α
′

5(Tr∗)
2α′

6

(

ry
rx

)2

) = rx∂r•(α
′

5(Tr∗)
2α′

6) ·
(

ry
rx

)2

+ rx(α
′

5(Tr∗)
2α′

6) · ∂r•
(

ry
rx

)2

=
ry
rx

· ry∂r•(α′

5(Tr∗)
2α′

6)± (α
′ log
5

(Tr∗)
2

dIIA
α′

6) · crx, c ∈ {2r
2
y

r3x
,
2ry
r2x

, 0}

= (small)(previous case) + (small)(ry/rx)
i, i ∈ {1, 2}

= small ∵ rx >> ry

4) 2T 2α5: shows up in first derivative of F wrt any variable. Taking another derivative gives

r⋆∂r•2T
2α5 = r⋆2T

2α′
5(dIIA)• = 2T 2α

′ log
5 · (r⋆(dIIA)•)/dIIA. So we want (r⋆(dIIA)•)/dIIA to

be bounded. This was checked in Equation (8.3).
This concludes our check of the first and second order derivatives of α5(dIIA)(Tr∗)

2 for
∗ ∈ {y, z}. We have one more remaining type of term showing up in F to check.

4th term for region IIA: α5α6 · (Try)2

1

r⋆
∂r⋆(α5(Try)

2) · α6 + α5(Try)
2 · 1

r⋆
∂r⋆α6 = (previous) · α6 ± α5(Try)

2 · c
r2⋆
α′
6

2nd term: ⋆ = z =⇒ c = 0, ⋆ = x =⇒ ≈ 0 ∵ rx >> ry, ⋆ = y =⇒ r2y
r2⋆

= 1

So again first derivatives may be made small by taking l sufficiently large. Finally, we
check second order derivatives.

∂r• [∂r⋆(α5(Try)
2) · α6 + α5(Try)

2 · ∂r⋆(α6)] = ∂2r•r⋆(α5(Try)
2) · α6 + ∂r⋆(α5(Try)

2)∂r•α6

+ ∂r•(α5(Try)
2)∂r⋆α6 + α5(Try)

2 · ∂r•∂r⋆(α6)

1st term ok by previous check on α5(Try)
2.

Terms 2 & 3: ∂r⋆(α5(Try)
2) · ∂r•α6 = (α

′ log
5

(dIIA)⋆
dIIA

(Try)
2 + 2α5T

2δy⋆ry) ·
±1

rx or ry
· α′

6

= ±[T 2α
′ log
5

(dIIA)⋆ry
dIIA

· ry
rx or ry

· α′

6 + 2α5T
2 ry
rx or ry

· α′

6]

4th term: α5(Try)
2∂r•(

α′
6

rx or ry
) = α5(Try)

2

[

α′′
6 ·

±1

rx or ry
· 1

rx or ry
− α′

6

1

r2x or r2y

]

= T 2α5α
′′
6

±r2y
r2x, rxry, or r

2
y

− T 2α5α
′
6

r2y
r2x or r2y

= small, ∵ rx >> ry

=⇒ ∂r•∂r⋆(α5α6 · (Try)2) = (small)
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where the final line follows from the calculations for the 1st term of region IIA, which was
α6(Try)

2, and the third term of region IIA, which was α5(Try)
2. So the upshot is: all

terms involving derivatives of bump functions can be made arbitrarily small because they
are multiplied by expressions which are bounded (taking either log derivatives of α3, α5 or
regular derivatives of α6.) So we get a positive-definite form for l sufficiently large, because
the terms not involving derivatives of bump functions are O(1) so they dominate, and we
already showed they give something positive-definite.

8.3. Region IIB. The characteristics in region IIB which we did not have in regions IIA
and C are 1) rx and ry go from rx >> ry to ry >> rx, passing through rx = ry and 2) α6 ≡ 1.
All of rx, ry, rz are still small so we still have an approximation for the Kähler potential:

F ≈ T 2r2z + α3(dIIB)dIIB +
1

2
α5(dIIB) · (−(Trz)

2)

dIIB ≈ T 2[r2x + r2y −
1

2
r2z ]

Let’s repeat the calculations above for α3(dIIA) · dIIA and α5 · (Trz)2 with region IIB, and
see if they relied on rx >> ry. What we know in region IIB is that rx, ry >> rz.

1st term for region IIB: α3(dIIB)dIIB

First derivative. 1
r⋆
∂r⋆(α3dIIB) = (α′

3dIIB + α3) · dIIB⋆

r⋆
. Here are the partial derivatives

of dIIB.

dIIB ≈ T 2[r2x + r2y −
1

2
r2z ] =⇒ (dIIB)x

rx
≈ T 2

rx
(2rx) =

T 2

2
,

(dIIB)y
ry

≈ T 2

2
,

(dIIB)z
rz

≈ −T
2

4

Hence the terms in 1
r⋆
∂r⋆(α3dIIB) = (α′

3dIIB + α3) · dIIB⋆

r⋆
are proportional to α′

3dIIB (a log

derivative, so small) and α3 (not a derivative). So first derivatives of α3(dIIB)dIIB may be
made small for l sufficiently large.

Second derivative terms. We differentiate each of the first derivative terms. Let’s say
P is a term in the list above. Then we want to differentiate r⋆P because above we divided by
r⋆. Thus using the product rule with a differential operator D = ∂r• we get D(r⋆)P+r⋆D(P ).
The first term gives 0 or 1 times P , which we already know is small by the above item for
each P on the list. So we’ll only need to consider r⋆D(P ) for the 2 choices of P listed above.

(1) P = α′
3dIIB. Then this term contributes to ∂2r⋆r•(F ) via r⋆∂r•(P ) i.e.

r⋆∂r•(α
′
3dIIB) = r⋆α

′′
3 · (dIIB)• · dIIB + r⋆α

′
3(dIIB)• =

r⋆(dIIB)•
dIIB

α
′′ log
3

(dIIB)• terms : T 2r•

T 2r⋆r•
dIIB

≈ r⋆r•
r2x + r2y − 1

2
r2z

=
r⋆r•/r

2
x

1 + (ry/rx)2 − 1
2
(rz/rx)2

≈ r⋆r•/r
2
x

1 + (ry/rx)2

(⋆, •) ∈ {(rx, rx), (rx, rz), (rz, rz)} =⇒ r⋆r•
r2x

∈ {1, small} ∵ rx >> rz

(⋆, •) = (ry, rz) =⇒ ryrz
r2x

<
ry
rx
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(⋆, •) ∈ {(rx, ry), (ry, ry)} suffices to bound:
a

1 + a2
,

a2

1 + a2
, a = ry/rx

a2

1 + a2
≤ 1, a < 1 =⇒ a

1 + a2
< 1, a ≥ 1 =⇒ a

1 + a2
≤ a2

1 + a2
≤ 1

∴ r⋆∂r•(α
′
3dIIB) = (bounded)(small)

(2) P = α3. Taking another derivative gives r⋆∂r•α3 = r⋆α
′
3(dIIB)• = α

′ log
3 ·(r⋆(dIIB)•)/dIIB.

So we want (r⋆(dIIB)•)/dIIB to be bounded. This was just checked above.

2nd term for region IIB: α5 · (Trz)2

We run through the same argument as with α3 · dIIB above, replacing dIIB with (Trz)
2 in

the second term.
First derivative. 1

r⋆
∂r⋆(α5(Trz)

2) = 1
r⋆
α′
5(dIIB)⋆(Trz)

2 + α5 · ((Trz)2)⋆
r⋆

.

1

r⋆
α′
5(dIIB)⋆(Trz)

2 = α
′ log
5

T 2r2z(dIIB)⋆
dIIB · r⋆

Note that T 2r2z
dIIB

and (dIIB)⋆
r⋆

are bounded. The latter is approximately constant because dIIB
is approximately linear in r2x, r

2
y and r2z . For the former:

r2z
r2x + r2y − 1

2
r2z

=
r2z/r

2
x

1 +
r2y
r2x

− 1
2
((rz/rx)2)

≈ r2z/r
2
x

1 +
r2y
r2x

≈ 0 ∵ rx >> rz

So first derivatives of α5 · (Trz)2 may be made small by taking l sufficiently large.
Second derivative terms. We differentiate each of the first derivative terms. They are

α′
5(dIIB)⋆(Trz)

2 and 2T 2r⋆α5. P is defined as in the second derivative calculation on page
93.

(1) P = α′
5(Trz)

2 (dIIB)⋆
r⋆

. It suffices to consider α′
5(Trz)

2 because (dIIB)⋆
r⋆

is a constant.

r⋆∂r•(α
′
5(Trz)

2) = r⋆α
′′
5 · (dIIB)• · (Trz)2 + r⋆α

′
5((Trz)

2)•

= (α
′′ log
5 − α

′ log
5 )

r⋆ · (dIIB)• · (Trz)2
d2IIB

+ α
′ log
5

2T 2rzr⋆
dIIB

Already checked bounded:
r⋆(dIIB)•
dIIB

,
(Trz)

2

dIIB
∵ (above)

T 2rzr⋆
dIIB

≈ rzr⋆/r
2
x

1 + (ry/rx)2 − 1
2
(rz/rx)2

≈ rzr⋆/r
2
x

1 + (ry/rx)2
<

r⋆/rx
1 + (ry/rx)2

⋆ = x =⇒ bounded

⋆ = y =⇒ a/(1 + a2) bounded as above

⋆ = z =⇒ small

∴ r⋆∂r•(α
′
5(Trz)

2) = (small)(bounded) + (small)(bounded)

(2) P = 2T 2α5: shows up in first derivative of F wrt any variable. Taking another

derivative gives r⋆∂r•2T
2α5 = r⋆2T

2α′
5(dIIB)• = 2T 2α

′ log
5 · (r⋆(dIIB)•)/dIIB. So we want

(r⋆(dIIB)•)/dIIB to be bounded, which was already checked above.

This completes the calculation of positive definiteness in region IIB.
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8.4. The remainder of the C3 patch. Recall from the construction of coordinate charts
on Y (Definition 3.13 and Lemma 3.16) that the charts U0,g0 with coordinates (x, y, z)
and U(−1,0),g−1 with coordinates (x′′′, y′′′, z′′′) are glued to each other via (x′′′, y′′′, z′′′) =
(Tv0x

−1, T v0y
−1, T−2z−1). Also recall from Equation 3.32 that along the z-axis, where

α3 = α5 = 1, ω is defined by the Kähler potentials

F =
1

2
(gxz + gyz) + α4(θV )θV ,

where θV = φx − φy, and

F ′′′ =
1

2
(g′′′xz + g′′′yz) + α4(θ

′′′
V )θ

′′′
V ,

which differs from F by a harmonic term (see proof of Claim 3.21).
By symmetry it suffices to check that ω is positive definite on just half of the z-axis.

Namely, we can assume that |z| ≤ T−1, since otherwise |z′′′| = |T−2z−1| ≤ T−1. Although
|z| ≤ T−1, we may assume that |x| and |y| are very small. They are at most of the order of
T 3l/8−l/p, see Figure 13; otherwise α4 is constant and equal to ±1/2, so F agrees with either
gxz or gyz. Thus |T 2xz| ≤ |Tx| and |T 2yz| ≤ |Ty| hence these quantities are very small and
we have again small scale approximations for their logarithms. Differentiating α4(θ)θ once
and twice:

θ = φx − φy = logT (1 + |Tx|2)− logT (1 + |T 2yz|2)− logT (1 + |Ty|2) + logT (1 + |T 2xz|2)
≈ (1 + |Tz|2)(|Tx|2 − |Ty|2)

1

r∗

∂

∂r∗
(α4θ) = (α′

4θ + α4)
θ∗
r∗

∂

∂r•
(α′

4θθ∗) = α′′
4θ•θθ∗ + α′

4θ•θ∗ + α′
4θθ∗• = (α′′

4θ
2 + α′

4θ) ·
θ•θ∗
θ

+ α
′ log
4 θ∗•

∂

∂r•
(α4θ∗) = α′

4θ•θ∗ + α4θ∗• = α
′ log
4

θ•θ∗
θ

+ α4θ∗•.

We see we’ll need to bound terms as follows:
• θ∗

r∗
has estimates 2(1 + |Tz|2)T 2 for ∗ ∈ {x, y} and for ∗ = z we have the estimate θz

rz
≈

T 4(r2x − r2y) ≈ 0 (using the fact that rx, ry ≪ rz).

• θ•θ∗
θ

implies we’ll need to consider r•r⋆
r2x−r2y

, which is approximately zero unless both ∗ and •
are not z, because θ is approximately (1+T 2r2z)T

2(r2x−r2y) and rx, ry ≪ rz. Otherwise recall

from Equation 8.1 that we make α4 constant equal to zero on a sliver T < (rx/ry)
2 < 1/T .

We divide top and bottom by r2x or r2y depending on which variable is larger, and then
the numerator is at most 1 while the denominator is bounded below from the constraint
T < (rx/ry)

2 < 1/T .
• θ∗• is approximately zero unless ∗ = • in which case it’s a constant, so bounded.

This concludes the proof that the bump function derivatives can be made sufficiently small
so that the defined ω is non-degenerate.
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9. Notation

Chapter 1: Context and main result

• (γ1, γ2) = coordinates of γ with respect to the standard {(1, 0), (0, 1)} basis

• γ′ :=
(

2
1

)

, γ′′ :=

(

1
2

)

• ΓB = Z 〈γ′, γ′′〉
• (n1, n2) = coordinates of γ with respect to {γ′, γ′′} basis
• V = (C∗)2/ΓB

• V ∨ generic fiber of (Y, v0) and SYZ mirror abelian variety of V
• τ ∈ R parametrizes family of complex structures on the complex genus 2 curve
• Σ2 = genus 2 curve
• L → V is holomorphic line bundle defined in Chapter 2
• H is hypersurface defined by section s : V → L, a theta function
• Db

LCoh is generated by powers and shifts of L
Chapter 2: HMS for abelian variety

• x1, x2 are complex coordinates on V
• TB := R2/ΓB

• λ(n1γ
′ + n2γ

′′) :=

(

n1

n2

)

=

(

2 1
1 2

)−1

(γ)

• κ(γ) := −1
2
λ(γ)t

(

2 1
1 2

)

λ(γ) = −1
2
λ(γ)tγ

• ℓk := {
(

ξ1, ξ2,−k
(

2 1
1 2

)−1
)

}(ξ1,ξ2)∈TB
are linear T 2-Lagrangians in V ∨ of slope k

• tx := {(logτ |x|, θ)}θ∈[0,1)2 ⊆ V ∨

• se,l denotes a basis of sections for H0(Ll) of size l2 (see page 14)
• pe,l denotes a basis of intersection points for HFV ∨(ℓi, ℓj) where j − i = l, and there
are l2 such points (see page 15)

• γi∩j denotes the remainder modulo ΓB for a given intersection point of ℓ̃i ∩ ℓ̃j (see
page 15)

• (ξ1, ξ2, η) are the moment map coordinates where |xi| = τ ξi and η = µX(x, y) from
[AAK16], see page 35

• θi = arg(xi) for i = 1, 2

Chapter 3: Construction of symplectic fibration (Y, v0) and ω

• T is the complex parameter on Y /Novikov parameter on genus 2 curve
• τ is the Novikov parameter on Y /complex parameter on the genus 2 curve
• (x1, x2, y) ∈ C∗2/ΓB × C
• ∆Ỹ defines the universal cover of Y and a toric variety of infinite type
• x, y, z are the complex toric coordinates on Y (different y from X = BlH×{0}V ×Cy)
• rx, ry, rz denotes their norms
• v0 = xyz is the superpotential
• F denotes the Kähler potential
• (dI , θI) denotes coordinates on delineated region I
• U0,gk in Definition 3.13 denotes the complex charts around each hexagon vertex in
∆Ỹ , indexed by Z6 = 〈g〉
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Chapter 4: Definition of the DFS-type category

• DFS - Donaldson-Fukaya-Seidel
• H is the symplectic horizontal distribution
• F briefly at the start denotes a fiber V ∨

• Φ is the parallel transport map
• Xhor denotes the horizontal vector field over a given curve in the base of v0
• φt

H is the flow of Xhor

• ⋃γ ℓk or
⋃

γ tx denotes parallel transport of the fiber Lagrangian over γ in (Y, v0)

• Lk is
⋃

γ ℓk over U-shaped γ

• (f1, f2) denote amount we add to (θ1, θ2) from monodromy
• π denotes v0 when we think of it as a fibration in Section 4.2 (versus as a function)
• φH

2π denotes monodromy
• Jω(Y, U) denotes the class of compatible almost complex structures which are iden-
tically J0 outside open set U (defined in Equation (4.10)) about the origin in v0
base

• D denotes the anti-canonical divisor
• A = (a1, a2, a3) is fixed value for (ξ1, ξ2, η) in the polytope ∆Ỹ

• p is either an abstract perturbation or a fixed point in a Lagrangian
• J 1

reg is the set of J regular for disc configurations
• In Key Regularity argument: η used briefly as annihilator to image of linearized
operator on universal Fredholm problem, ξ for tangent vectors on space of maps, and
J̇ for tangent vectors on space of almost complex structures

• J 2
reg denotes set of J regular for disc attached to sphere configuration

• B is base of a Fredholm problem

Chapter 5: Computing the differential

• Mk are structure maps on Y
• µk are structure maps on fiber V ∨, ∂ = µ1

• pki,j, pe,l both denote intersection points in ℓi ∩ ℓj where l = j − i, indexed by k and e
respectively

• p∞,i ∈ ℓi ∩ tx
• αẽ(e, l) is weighted count of bigons between pe,l−1 and pẽ,l
• nẽ(l) is weighted count of triangles between p∞,i, pẽ,l and p∞,j where l = j − i
• C(x) is the sphere bubble count
• c is the disc count times the sphere bubble count
• βi,j + α denotes (i, j)-th disc class plus a sphere configuration class α
• nβ+α denote curve counts
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