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We present results on the isovector momentum fraction, hxiu−d, helicity moment, hxi
Δu−Δd, and

the transversity moment, hxiδu−δd, of the nucleon obtained using nine ensembles of gauge

configurations generated by the MILC Collaboration using 2þ 1þ 1-flavors of dynamical highly

improved staggered quarks. The correlation functions are calculated using the Wilson-Clover

action, and the renormalization of the three operators is carried out nonperturbatively on the lattice

in the RI0-MOM scheme. The data have been collected at lattice spacings a ≈ 0.15, 0.12, 0.09, and

0.06 fm and Mπ ≈ 310, 220, and 135 MeV, which are used to obtain the physical values using a

simultaneous chiral-continuum-finite-volume fit. The final results, in the MS scheme at 2 GeV, are

hxiu−d ¼ 0.173ð14Þð07Þ, hxi
Δu−Δd ¼ 0.213ð15Þð22Þ, and hxiδu−δd ¼ 0.208ð19Þð24Þ, where the first

error is the overall analysis uncertainty and the second is an additional systematic uncertainty due to

possible residual excited-state contributions. These results are consistent with other recent lattice

calculations and phenomenological global fit values.

DOI: 10.1103/PhysRevD.102.054512

I. INTRODUCTION

The elucidation of the hadron structure in terms of

quarks and gluons is evolving from determining the charges

and form factors of nucleons to including more complex

quantities such as parton distribution functions (PDFs) [1],

transverse momentum dependent PDFs (TMDs) [2], and

generalized parton distributions (GPDs) [3] as experiments

become more precise [4,5]. These distributions are not

measured directly in experiments, and phenomenological

analyses including different theoretical inputs are needed to

extract them from experimental data. Input from lattice

QCD is beginning to play an increasingly larger role in

such analyses [6]. In cases where both lattice results and

phenomenological analyses of experimental data (global

fits) exist, one can compare them to validate the control

over systematics in the lattice calculations and, on the other

hand, provide a check on the phenomenological process

used to extract these observables from experimental data. In

other cases, lattice results are predictions. The list of

quantities for which good agreement between lattice

calculations and experimental results, and their precision,

has grown very significantly as discussed in the recent

Flavour Lattice Averaging Group (FLAG) 2019 report [7].

While steady progress has been made in developing the

framework for calculating distribution functions using

lattice QCD [8,9], even calculations of their moments have

had large statistical and/or systematic uncertainties prior to

2018. This was the case even for the best studied quantity,

the isovector momentum fraction hxiu−d [6]. In this work,

we show that the lattice data for the momentum fraction,

helicity, and transversity moments are now of quality

comparable to that for nucleon charges (zeroth moments).
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Together with much more precise data from the planned

electron-ion collider [4] and the Large Hadron Collider,

which will significantly improve the phenomenological

global fits, we anticipate steady progress toward a detailed

description of the hadron structure.

In this paper we present results on the three moments

from high statistics calculations done on nine ensembles

generated using 2þ 1þ 1-flavors of highly improved

staggered quarks (HISQ) [10] by the MILC collaboration

[11]. The data at four values of lattice spacings a,
three values of the pion mass, Mπ , including two ensem-

bles at the physical pion mass, and on a range of large

physical volumes, characterized byMπL, allow us to carry

out a simultaneous fit in these three variables to address

the associated systematics uncertainties. We also inves-

tigate the dependence of the results on the spectra of

possible excited states included in the fits to remove

excited-state contamination (ESC), and assign a

second error to account for the associated systematic

uncertainty. Our final results are hxiu−d ¼ 0.173ð14Þð07Þ,
hxi

Δu−Δd ¼ 0.213ð15Þð22Þ, and hxiδu−δd ¼ 0.208ð19Þð24Þ
in the MS scheme at 2 GeV. On comparing these

with other lattice and phenomenological global fit results

in Sec. VI, we find a consistent picture emerging.
The paper is organized as follows: In Sec. II, we briefly

summarize the lattice parameters and methodology. The

definitions of moments and operators investigated are

given in Sec. III. The two- and three-point functions

calculated, and their connection to the moments, are

specified in Sec. IV, and the analysis of excited state

contributions to extract ground state matrix elements is

presented in Sec. V. Results for the moments after the

chiral-continuum-finite-volume (CCFV) extrapolation are

given in Sec. VI and compared with other lattice calcu-

lations and global fits. We end with conclusions in

Sec. VII. The data and fits used to remove excited-state

contamination are shown in the Appendix A and the

results for renormalization factors, ZVD;AD;TD, for the three

operators in Appendix B.

II. LATTICE METHODOLOGY

The parameters of the nine HISQ ensembles are sum-

marized in Table I. They cover a range of lattice spacings

(0.057 ≤ a ≤ 0.15 fm), pion masses (135 ≤ Mπ ≤ 310)

MeV, and lattice sizes (3.7 ≤ MπL ≤ 5.5). Most of the

details of the lattice methodology, the strategies for the

calculations, and the analyses are already given in

Refs. [12–14]. We construct the correlation functions

needed to calculate the matrix elements using Wilson-

clover fermions on these HISQ ensembles. This mixed-

action, clover-on-HISQ, formulation is nonunitary and

can suffer from the problem of exceptional configura-

tions at small, but a priori unknown, quark masses. We

have not found evidence for such exceptional configu-

rations on any of the nine ensembles analyzed in

this work.

For the parameters used in the construction of the two-

and three-point functions with Wilson-clover fermion

see Table II of Ref. [14]. The Sheikholeslami-Wohlert

coefficient [15] used in the clover action is fixed to its

tree-level value with tadpole improvement, csw ¼ 1=u0,
where u0 is the fourth root of the plaquette expectation

value calculated on the hypercubic (HYP) smeared [16]

HISQ lattices.

The masses of light clover quarks were tuned so that

the clover-on-HISQ pion masses, Mval
π , match the HISQ-

on-HISQ Goldstone ones, Msea
π . Mval

π values are given in

Table I. Msea
π values are available in Ref. [14]. All fits in

M2
π to study the chiral behavior are made using the

clover-on-HISQ Mval
π since the correlation functions, and

thus the chiral behavior of the moments, have a greater

sensitivity to it. Henceforth, for brevity, we drop the

superscript and denote the clover-on-HISQ pion mass as

Mπ . The number of high precision (HP) and low

precision (LP) measurements made on each configura-

tion in the truncated solver bias corrected method

[17,18] for a cost-effective increase in statistics are

specified in Table I.

TABLE I. Lattice parameters, nucleon massMN , number of configurations analyzed, and the total number of high precision (HP) and

low precision (LP) measurements made. For the a06m310W ensemble, HP data were not collected; however, we note that the bias

correction factor on all other eight ensembles was negligible.

Ensemble ID a [fm] Mval
π [MeV] L3 × T Mval

π L τ=a aMN Nconf NHP NLP

a15m310 0.1510(20) 320.6(4.3) 163 × 48 3.93 f5; 6; 7; 8; 9g 0.8287(24) 1917 7, 668 122, 688

a12m310 0.1207(11) 310.2(2.8) 243 × 64 4.55 f8; 10; 12; 14g 0.6660(27) 1013 8, 104 64, 832

a12m220 0.1184(09) 227.9(1.9) 323 × 64 4.38 f8; 10; 12; 14g 0.6289(26) 1156 4, 624 73, 984

a12m220L 0.1189(09) 227.6(1.7) 403 × 64 5.49 f8; 10; 12; 14g 0.6125(21) 1000 4, 000 128, 000

a09m310 0.0888(08) 313.0(2.8) 323 × 96 4.51 f10; 12; 14; 16g 0.4951(13) 2263 9, 052 144, 832

a09m220 0.0872(07) 225.9(1.8) 483 × 96 4.79 f10; 12; 14; 16g 0.4496(18) 960 7, 668 122, 688

a09m130 0.0871(06) 138.1(1.0) 643 × 96 3.90 f10; 12; 14; 16g 0.4204(23) 1041 8, 328 99, 936

a06m310W 0.0582(04) 319.6(2.2) 483 × 144 4.52 f18; 20; 22; 24g 0.3304(23) 500 � � � 66, 000

a06m135 0.0570(01) 135.6(1.4) 963 × 192 3.7 f16; 18; 20; 22g 0.2704(32) 751 6, 008 48, 064
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III. MOMENTS AND MATRIX ELEMENTS

In this work, we calculate the first moments of spin

independent (or unpolarized), q ¼ q↑ þ q↓, helicity (or

polarized), Δq ¼ q↑ − q↓, and transversity, δq ¼ q⊤ þ q⊥
distributions, defined as

hxiq ¼
Z

1

0

x½qðxÞ þ q̄ðxÞ�dx; ð1Þ

hxi
Δq ¼

Z

1

0

x½ΔqðxÞ þ Δq̄ðxÞ�dx; ð2Þ

hxiδq ¼
Z

1

0

x½δqðxÞ þ δq̄ðxÞ�dx; ð3Þ

where q↑ð↓Þ corresponds to quarks with helicity aligned

(antialigned) with that of a longitudinally polarized target,

and q⊤ð⊥Þ corresponds to quarks with spin aligned (anti-

aligned) with that of a transversely polarized target.

These moments, at leading twist, can be extracted from

the hadron matrix elements of one-derivative vector, axial-

vector, and tensor operators at zero momentum transfer.

The unpolarized and polarized moments hxiq and hxi
Δq of

the nucleon are also obtained from phenomenological

global fits while a computation of the nucleon transversity

hxiδq using lattice QCD is still a prediction due to the lack

of sufficient experimental data [6].

We are interested in extracting the forward nucleon

matrix elements hNðpÞjOjNðpÞi, with the nucleon initial

and final 3-momenta, p⃗, taken to be zero in this work. The

complete set of one-derivative vector, axial-vector, and

tensor operators is the following:

O
μν
Va ¼ q̄γfμD

↔νgτaq;

O
μν
Aa ¼ q̄γfμD

↔νgγ5τaq;

O
μνρ
Ta ¼ q̄σ½μfν�D

↔ρgτaq; ð4Þ

where q ¼ fu; dg is the isodoublet of light quarks and

σμν ¼ ðγμγν − γνγμÞ=2. The derivative D
↔

ν ≡
1
2
ðD⃗ν − D⃖νÞ

consists of four terms:

ψ̄ðΓD⃗ν − ΓD⃖νÞψðxÞ≡
1

2
½ψ̄ðxÞΓUνðxÞψðxþ νÞ

− ψ̄ðxÞΓU†
νðx − νÞψðx − νÞ

þ ψ̄ðx − νÞΓUνðx − νÞψðxÞ
− ψ̄ðxþ νÞΓU†

νðxÞψðxÞ�: ð5Þ

Lorentz indices within fg in Eq. (4) are symmetrized and

within ½� are antisymmetrized. It is also implicit that, where

relevant, the traceless part of the above operators is taken.

Their renormalization is carried out nonperturbatively in

the regularization independent RI0-MOM scheme as dis-

cussed in Appendix B. A more detailed discussion of these

twist-2 operators and their renormalization can be found in

Refs. [19,20].

In this work, we consider only isovector quantities.

These are obtained from Eq. (4) by choosing τa ¼ τ3 for

the Pauli matrix. The decomposition of the matrix elements

of these operators in terms of the generalized form factors at

zero momentum transfer is as follows:

hNðp; s0ÞjOμν
Va jNðp; sÞi ¼ ū

p
Nðs0ÞA20ð0ÞγfμpνgupNðsÞ; ð6Þ

hNðp;s0ÞjOμν
Aa jNðp;sÞi¼ iū

p
Nðs0ÞÃ20ð0Þγfμpνgγ5upNðsÞ;

ð7Þ

hNðp; s0ÞjOμνρ
Ta jNðp; sÞi ¼ iū

p
Nðs0ÞAT20ð0Þσ½μfν�pρgupNðsÞ:

ð8Þ

The relation between the momentum fraction, the helicity

moment, and the transversity moment and the generalized

form factors is hxiq ¼ A20ð0Þ, hxiΔq ¼ Ã20ð0Þ, and hxiδq ¼
AT20ð0Þ, respectively.
We end this discussion by mentioning that other

approaches have been proposed to calculate the moments

of PDFs from lattice QCD in recent years [21–23].

IV. CORRELATION FUNCTIONS

AND MOMENTS

We use the following interpolating operator N to create/

annihilate the nucleon state

N ¼ ϵabc
�

qaT1 ðxÞCγ5 ð1� γ4Þ
2

qb2ðxÞ
�

qc1ðxÞ; ð9Þ

where fa; b; cg are color indices, q1; q2 ∈ fu; dg, and C ¼
γ0γ2 is the charge conjugation matrix. The nonrelativistic

projection ð1� γ4Þ=2 is inserted to improve the signal, with

the plus and minus signs applied to the forward and

backward propagation in Euclidean time, respectively

[19]. At zero momentum, this operator couples only to

the spin 1
2
state. The zero momentum two-point and three-

point nucleon correlation functions are defined as

C
2pt
αβ ðτÞ ¼

X

x

h0jN αðτ; xÞN βð0; 0Þj0i; ð10Þ

C
3pt

O;αβðτ; tÞ ¼
X

x0;x

h0jN αðτ; xÞOðt; x0ÞN βð0; 0Þj0i; ð11Þ

where α and β are spin indices. The source is placed at time

slice 0, the sink is at τ, and the one-derivative operators,

defined in Sec. III, are inserted at time slice t. Data have

been accumulated for the values of τ specified in Table I

and in each case for all intermediate times 0 ≤ t ≤ τ.
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To isolate the various operators, projected two- and

three-point functions are constructed as

C2pt ¼ TrðP2ptC
2ptÞ; ð12Þ

C
3pt

O
¼ TrðP3ptC

3pt

O
Þ: ð13Þ

The projector P2pt ¼ 1
2
ð1þ γ4Þ in the nucleon correlator

gives the positive parity contribution for the nucleon

propagating in the forward direction. For the connected

three-point contributions P3pt ¼ 1
2
ð1þ γ4Þð1þ iγ5γ3Þ is

used. With these spin projections, the explicit operators

used to calculate the forward matrix elements are as

follows:

hxiu−d∶ O44

V3 ¼ q̄

�

γ4D
↔

4 −
1

3
γ ·D

↔
�

τ3q; ð14Þ

hxi
Δu−Δd∶ O34

A3 ¼ q̄γf3D
↔

4gγ5τ3q; ð15Þ

hxiδu−δd∶ O124

T3 ¼ q̄σ½1f2�D
↔

4gτ3q: ð16Þ

Our goal is to obtain the matrix elements (ME), of these
operators within the ground state of the nucleon. TheseME
are related to the moments as follows:

h0jO44

V3 j0i ¼ −MNhxiu−d; ð17Þ

h0jO34

A3 j0i ¼ −
iMN

2
hxi

Δu−Δd; ð18Þ

h0jO124

T3 j0i ¼ −
iMN

2
hxiδu−δd; ð19Þ

where MN is the nucleon mass. The three moments are

dimensionless, and their extraction on a given ensemble

does not require knowing the value of the lattice scale a. It
enters only when performing the chiral-continuum extrapo-

lation to the physical point as discussed in Sec. VI.

V. CONTROLLING EXCITED STATE

CONTAMINATION

To calculate the matrix elements of the operators defined

in Sec. III between ground-state nucleons, contributions of

all possible excited states need to be removed. The lattice

nucleon interpolating operatorN given in Eq. (9), however,

couples to the nucleon, all its excitations, and multiparticle

states with the same quantum numbers. Previous lattice

calculations have shown that the ESC can be large [24–26].

In our earlier works [12–14,27], we have shown that this

can be controlled to within a few percent. We use the same

strategy here. In particular, we use HYP smearing of the

gauge links before calculating Wilson-clover quark propa-

gators with optimized Gaussian smeared sources using the

multigrid algorithm [28,29]. Correlation functions con-

structed from these smeared source propagators have

smaller excited state contamination [27]. To extract the

ground state matrix elements from these, we fit the three-

point data at several τ values (listed in Table I) simulta-

neously using the spectral decomposition given in Eq. (21).

Fits to the zero-momentum two-point functions, C2pt,

were carried out keeping up to four states in the spectral

decomposition:

C2ptðτÞ ¼
X

3

i¼0

jAij2e−Miτ: ð20Þ

Fits are made over a range fτmin − τmaxg to extract Mi and

Ai, the masses and the amplitudes for the creation/

annihilation of these states by the interpolating operator

N . In fits with more than two states, estimates of the

amplitudesAi and massesMi for i ≥ 2were sensitive to the

choice of the starting time slice τmin. We used the largest

time interval allowed by statistics, i.e., by the stability of the

covariance matrix. We perform two types of 4-state fits. In

the fit denoted f4g, we use the empirical Bayesian

technique described in Ref. [30] to stabilize the three

excited-state parameters. In the second fit, denoted

f4Nπg, we use as prior for M1 either the noninteracting

energy of Nð−1Þπð1Þ or the Nð0Þπð0Þπð0Þ state, which are
both lower than the M1 obtained from the f4g fit, and

roughly equal for the nine ensembles. The lower energy

Nð−1Þπð1Þ state has been shown to contribute in the axial

channel [31], whereas for the vector channel the

Nð0Þπð0Þπð0Þ state is expected to be the relevant one.

We find that these two fits to the two-point function cannot

be distinguished on the basis of the χ2=dof; in fact, the full

range ofM1 between the two estimates from f4g and f4Nπg
are viable first-excited-state masses on the basis of χ2=dof
alone. The same is true of the values for M2. We therefore,

investigate the dependence of the results for moments on

the excited-state spectra by doing the full analysis with

multiple strategies as discussed below. The ground-state

nucleon mass obtained from the various fits is denoted by

the common symbol MN ≡M0 and the mass gaps

by ΔMi ≡Mi −Mi−1.

The analysis of the zero-momentum three-point func-

tions, C
3pt

O
, is performed retaining up to three states jii in

the spectral decomposition:

C
3pt

O
ðτ; tÞ ¼

X

2

i;j¼0

jAijjAjjhijOjjie−Mit−Mjðτ−tÞ: ð21Þ

The operators, O, are defined in Eqs. (14), (15), and (16).

By fixing the momentum at the sink to zero and inserting

the operator at zero momentum transfer we get the forward

matrix element. The practical challenge discussed above is

determining the relevantM1 andM2 to use and, failing that,
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to investigate the sensitivity of h0jOj0i to possible values of
M1 and M2 and including that variation as a systematic

uncertainty.
For all the strategies used to determine M1 and M2, we

extract the desired ground state matrix element h0jOj0i by
fitting the three-point correlators C

3pt

O
ðt; τÞ for a subset of

values of t and τ simultaneously. This subset is chosen to
reduceESC—we select the largest values of τ and discard tskip
number of points next to the source and sink for each τ. These
values of τ and of tskip are given in Table II.

The data for the ratio C
3pt

O
ðτ; tÞ=C2ptðτÞ are shown in

Figs. 5 and 6 in Appendix A for all nine ensembles. The

signal in the three-point correlators decreases somewhat

from momentum fraction to helicity moment to transversity

moment. Nevertheless, we are able to make 3�state
(3-state with h2jOj2i ¼ 0) fits in all cases. The spectral

decomposition predicts that the data for all three quantities

is symmetric about t ¼ τ=2; however, on some of the

ensembles, and for some of the larger values of τ, the data

show some asymmetry, which is indicative of the size of

statistical fluctuations that are present.

The fits to C2ptðτÞ and C
3pt

O
ðτ; tÞ are carried out within a

single-elimination jackknife process, which is used to get

both the central values and the errors.

We have investigated five fit types, f4; 2g, f4Nπ; 2g,
f4; 3�g, f4Nπ; 3�g, and f4; 2freeg, based on the spectral

TABLE II. Our best estimates of the unrenormalized moments from the two fit strategies, f4; 3�g and f4; 2freeg, used to analyze the

two- and three-point functions. The second column gives the values of τ used in the fits, and the third column lists tskip ¼ fi; jg, the
number of time slices from the source and sink omitted for each τ for the two fit types to the three-point functions. For each fit-type we

give the result for the ground state matrix element,ME, the moment hxi obtained from it using Eqs. (17)–(19), and the χ2=dof of the fit
to the three-point function. In two cases, the values of τ=a included are different: the � in the second column denotes τ=a ¼ f22; 20; 18g
and † denotes τ=a ¼ f9; 8g were used for the f4; 2freeg fits.

f4; 3�g f4; 2freeg
Ensemble τ=a tskip Observable ME hxi χ2=dof ME hxi χ2=dof

a06m135 f22; 20; 18g f4; 5g hxiu−d −0.042ð4Þ 0.155(14) 0.87 −0.045ð5Þ 0.167(18) 0.99

a06m135 f22; 20; 18g f4; 5g hxi
Δu−Δd −0.026ð2Þ 0.191(12) 1.00 −0.027ð3Þ 0.198(22) 1.13

a06m135 f22; 20; 18g f4; 5g hxiδu−δd −0.025ð2Þ 0.185(16) 1.32 −0.027ð3Þ 0.202(23) 1.31

a06m310W f24; 22; 20g* f6; 6g hxiu−d −0.056ð4Þ 0.170(13) 1.02 −0.063ð3Þ 0.193(8) 1.10

a06m310W f24; 22; 20g f6; 6g hxi
Δu−Δd −0.037ð2Þ 0.223(15) 1.00 −0.038ð1Þ 0.231(7) 1.33

a06m310W f24; 22; 20g f6; 6g hxiδu−δd −0.035ð3Þ 0.213(18) 0.80 −0.037ð1Þ 0.227(8) 0.83

a09m130 f16; 14; 12g f3; 3g hxiu−d −0.074ð3Þ 0.177(8) 0.93 −0.077ð4Þ 0.184(9) 0.88

a09m130 f16; 14; 12g f3; 3g hxi
Δu−Δd −0.046ð2Þ 0.218(7) 1.30 −0.048ð1Þ 0.228(5) 1.33

a09m130 f16; 14; 12g f3; 3g hxiδu−δd −0.045ð2Þ 0.212(11) 1.30 −0.047ð3Þ 0.225(14) 1.41

a09m220 f16; 14; 12g f3; 3g hxiu−d −0.082ð3Þ 0.184(5) 0.89 −0.086ð2Þ 0.191(4) 0.78

a09m220 f16; 14; 12g f3; 3g hxi
Δu−Δd −0.051ð1Þ 0.227(4) 0.92 −0.053ð1Þ 0.235(3) 0.60

a09m220 f16; 14; 12g f3; 3g hxiδu−δd −0.053ð1Þ 0.234(6) 1.29 −0.055ð1Þ 0.243(4) 1.26

a09m310 f16; 14; 12g f3; 3g hxiu−d −0.097ð2Þ 0.196(4) 1.25 −0.094ð2Þ 0.190(5) 1.16

a09m310 f16; 14; 12g f3; 3g hxi
Δu−Δd −0.058ð1Þ 0.233(3) 1.24 −0.059ð1Þ 0.238(3) 1.25

a09m310 f16; 14; 12g f3; 3g hxiδu−δd −0.059ð1Þ 0.239(4) 0.78 −0.060ð1Þ 0.241(4) 0.79

a12m220 f14; 12; 10g f3; 3g hxiu−d −0.125ð5Þ 0.199(8) 1.32 −0.130ð5Þ 0.207(8) 1.24

a12m220 f14; 12; 10g f3; 3g hxi
Δu−Δd −0.074ð3Þ 0.234(9) 0.92 −0.077ð2Þ 0.245(6) 0.87

a12m220 f14; 12; 10g f3; 3g hxiδu−δd −0.077ð4Þ 0.246(11) 1.24 −0.080ð6Þ 0.254(17) 1.20

a12m220L f14; 12; 10g f3; 2g hxiu−d −0.117ð6Þ 0.191(9) 1.44 −0.120ð4Þ 0.196(7) 1.35

a12m220L f14; 12; 10g f3; 3g hxi
Δu−Δd −0.073ð2Þ 0.240(7) 1.33 −0.074ð4Þ 0.241(14) 1.43

a12m220L f14; 12; 10g f3; 3g hxiδu−δd −0.073ð3Þ 0.237(10) 1.25 −0.075ð4Þ 0.244(14) 1.28

a12m310 f14; 12; 10g f3; 3g hxiu−d −0.130ð8Þ 0.195(11) 1.66 −0.137ð5Þ 0.206(8) 1.54

a12m310 f14; 12; 10g f3; 3g hxi
Δu−Δd −0.079ð5Þ 0.238(16) 0.76 −0.083ð4Þ 0.250(13) 0.77

a12m310 f14; 12; 10g f3; 3g hxiδu−δd −0.084ð6Þ 0.251(16) 0.69 −0.087ð3Þ 0.261(9) 0.66

a15m310 f9; 8; 7g† f2; 3g hxiu−d −0.177ð5Þ 0.214(6) 1.94 −0.191ð3Þ 0.231(3) 1.90

a15m310 f9; 8; 7g f2; 2g hxi
Δu−Δd −0.110ð3Þ 0.266(7) 0.76 −0.111ð3Þ 0.267(7) 0.69

a15m310 f9; 8g f2; 2g hxiδu−δd −0.122ð5Þ 0.293(12) 0.66 −0.119ð4Þ 0.286(9) 0.98
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decomposition to understand and control ESC. The labels

fm; ng denote an m-state fit to the two-point function and

an n-state fit to the three-point function. In the 2free-fit to the
three-point function, M1 is left as a free parameter, while a

3�-fit is a 3-state fit with h2jOj2i ¼ 0. The results from the

five strategies for the momentum fraction, hxiu−d, in

Table III, for the helicity moment, hxi
Δu−Δd, in Table IV,

and for the transversity moment, hxiδu−δd, in Table V

illustrate the observed behavior for the a09m310 ensemble,

which has the highest statistics, and the physical mass

ensemble a06m135 at the smallest value of a.
For all three observables, the five results in Tables II–VI

for the ground state matrix element, h0jOj0i, are consistent
within 2σ on the a09m310 ensemble. On the a06m135

ensemble, the difference in ΔM1 ≡M1 −M0 between f4g
and f4Nπg analyses becomes roughly a factor of 2, and

ΔM1 from the f2freeg fit is larger than even the f4g value;

i.e., the f2freeg fit does not prefer the small ΔM1 given by

f4Nπg. On the other hand, the ΔM1 from a two-state fit is

expected to be larger since it is an effective combination of
the mass gaps of the full tower of excited states. Due to a

small ΔM1, fits with the spectrum from f4Nπg fail on
a06m135, whereas, on both ensembles, the f4; 3�g and

f4; 2freeg fits give results consistent within 2σ. The esti-
mates from these two fit-types are given in Table II. To
summarize, our overall strategy is to keep as many excited
states as possible without overparametrization of the fits.
We, therefore, choose, for the central values, the f4; 3�g
results, and to take into account the spread due to the fit-
type, we add a second, systematic, uncertainty to the final
results in Table VII. This is taken to be the difference
between the results obtained by doing the full analysis with

the f4; 3�g and f4; 2freeg strategies.

The renormalization of the matrix elements is carried out

using estimates of ZVD; ZAD, and ZTD calculated on the

lattice in the RI0-MOM scheme and then converted to the

MS scheme at 2 GeVas described in Appendix B. The final

values of ZVD; ZAD, and ZTD used in the analysis are given

in Table IX.

TABLE III. Comparison of fits using five strategies, f4; 2g, f4Nπ; 2g, f4; 3�g, f4Nπ ; 3�g, and f4; 2freeg, for the momentum fraction

hxiu−d on two ensembles a09m310 (highest statistics andMπ ∼ 310 MeV) and a06m135 (physicalMπ ∼ 135 MeV). In the f4; 2freeg fit,
the excited state mass gap, ΔM1, is left as a free parameter that is determined from the fit to the three-point function. The values of τ=a

and tskip used are the same as listed in Table II. We could not find a f4Nπ; 2g fit to the a06m135 data that gave reasonable values.

hxiu−d

Ensemble Fit-type aΔM1 aΔM2 h0jOj0i h1jOj1i
h0jOj0i

h1jOj0i
h0jOj0i

h2jOj0i
h0jOj0i

h2jOj1i
h0jOj0i χ2=dof

a09m310 f4; 2g 0.434(58) 0.0982(26) 4.90(3.34) 0.73(7) 1.31

a09m310 f4Nπ; 2g 0.343(44) 0.0928(35) 1.45(1.81) 0.91(14) 1.12

a09m310 f4; 3�g 0.434(58) 0.697(132) 0.0971(21) 4.50(3.66) 0.83(7) −0.27ð31Þ −4.5ð14Þ 1.25

a09m310 f4Nπ; 3�g 0.343(44) 0.555(69) 0.0933(25) 1.1(2.0) 0.89(10) −0.01ð17Þ 2.3(4.2) 1.20

a09m310 f4; 2freeg 0.358(33) 0.0941(24) 0.78(1.44) 0.76(8) 1.16

a06m135 f4; 2g 0.197(37) 0.0402(56) 2.6(1.5) 1.12(0.31) 0.95

a06m135 f4Nπ; 2g 0.0846(84) � � � � � � � � � � � �
a06m135 f4; 3�g 0.197(37) 0.287(49) 0.0418(40) 3.2(1.9) 0.89(24) 0.44(32) −2ð5Þ 0.87

a06m135 f4Nπ; 3�g 0.0846(84) 0.201(23) 0.038(15) 3.4(2.8) 0.11(1) 1.2(4) −0.3ð2.2Þ 0.90

a06m135 f4; 2freeg 0.241(49) 0.0452(47) 6(6) 0.99(16) 0.99

TABLE IV. Comparison of fits using five strategies, f4; 2g, f4Nπ; 2g, f4; 3�g, f4Nπ ; 3�g, and f4; 2freeg, for the helicity moment

hxi
Δu−Δd. The rest is the same as in Table III.

hxi
Δu−Δd

Ensemble Fit-type aΔM1 aΔM2 h0jOj0i h1jOj1i
h0jOj0i

h1jOj0i
h0jOj0i

h2jOj0i
h0jOj0i

h2jOj1i
h0jOj0i χ2=dof

a09m310 f4; 2g 0.434(58) 0.115(26) 2.6(2.6) 0.72(5) 1.15

a09m310 f4Nπ; 2g 0.343(44) 0.110(33) 0.33(1.5) 0.85(11) 1.43

a09m310 f4; 3�g 0.434(58) 0.697(132) 0.115(19) 3.46(2.6) 0.63(7) 0.50(20) −3ð12Þ 1.24

a09m310 f4Nπ; 3�g 0.343(44) 0.555(69) 0.113(24) 1.0(2.3) 0.54(15) 0.49(46) 7(10) 1.16

a09m310 f4; 2freeg 0.539(40) 0.118(15) 14(10) 0.83(9) 1.25

a06m135 f4; 2g 0.197(37) 0.0468(61) 1.07(1.09) 1.07(29) 1.29

a06m135 f4Nπ; 2g 0.0846(84) 0.004(14) −23ð110Þ 28(115) 0.93

a06m135 f4; 3�g 0.197(37) 0.287(49) 0.0517(36) 4.01(1.84) 0.45(21) 1.28(26) −7ð6Þ 1.00

a06m135 f4Nπ; 3�g 0.0846(84) 0.201(23) 0.075(21) 6(3) −1.3ð7Þ 1.6(3) −3.4ð1.5Þ 1.06

a06m135 f4; 2freeg 0.260(67) 0.0535(60) 5(7) 0.98(14) 1.18
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VI. CHIRAL, CONTINUUM, AND INFINITE

VOLUME EXTRAPOLATION

To obtain the final, physical results at Mπ ¼ 135 MeV,

MπL → ∞, and a ¼ 0, we make a simultaneous CCFV fit

keeping only the leading correction term in each variable:

hxiðMπ; a;LÞ ¼ c1 þ c2aþ c3M
2
π þ c4

M2
πe

−MπL

ffiffiffiffiffiffiffiffiffiffi

MπL
p : ð22Þ

Note that, since the operators are not OðaÞ improved and

we used the Clover-on-HISQ formulation, we take the

discretization errors to start with a term linear in a. The fits
to the f4; 3�g data from the nine ensembles are shown in

Figs. 1, 2, and 3. The fit parameters are summarized in

Table VI.

The results of the CCFV fits show that the finite volume

correction term, c4, is not constrained. We, therefore, also

present results from a CC fit, i.e., with c4 ¼ 0 in Eq. (22).

Results for c1 from the two fit ansatz overlap, and there is a

small positive slope in both a and M2
π for all three

quantities. The data for both f4; 3�g and f4; 2freeg, given
in Table II, are very similar, but with a systematic shift of

about 0.01–0.02 in all three cases. This difference arises

because ΔM1 for f4; 2freeg is larger (except in a09m310)

and because the convergence with respect to τ is from

above as shown in Figs. 5 and 6; i.e., a largerΔM1 implies a

smaller extrapolation and a larger τ → ∞ value.

For our final results we quote the CC fit values as the

coefficient c4 of the finite-volume corrections in the CCFV

fits is undetermined. The CC results with the two strategies,

f4; 3�g and f4; 2freeg, are summarized in Table VII. For our

best estimates, we take the f4; 3�g results and add a second,
systematic, error that is the difference between these two

strategies and represents the uncertainty in controlling the

excited-state contamination.

FIG. 1. Data for hxiu−d, renormalized in the MS scheme at μ ¼ 2 GeV, for all nine ensembles. The blue band in the left panel shows

the CC fit result evaluated at Mπ ¼ 135 MeV and plotted versus a, while in the right panel it shows the result versus M2
π evaluated

at a ¼ 0.

TABLE V. Comparison of fits using five strategies, f4; 2g, f4Nπ ; 2g, f4; 3�g, f4Nπ; 3�g, and f4; 2freeg, for the transversity moment

hxiδu−δd. The rest is the same as in Table III.

hxiδu−δd
Ensemble Fit-type aΔM1 aΔM2 h0jOj0i h1jOj1i

h0jOj0i
h1jOj0i
h0jOj0i

h2jOj0i
h0jOj0i

h2jOj1i
h0jOj0i

χ2=dof

a09m310 f4; 2g 0.434(58) 0.117(36) 2.4(3.1) 0.92(10) 0.84

a09m310 f4Nπ; 2g 0.343(44) 0.109(49) −0.83ð1.9Þ 1.17(19) 1.45

a09m310 f4; 3�g 0.434(58) 0.697(132) 0.118(24) 1.3(3.0) 0.84(8) 0.04(33) 18(15) 0.78

a09m310 f4Nπ; 3�g 0.343(44) 0.555(69) 0.115(27) −0.8ð1.8Þ 0.82(10) 0.28(19) 10(6) 0.77

a09m310 f4; 2freeg 0.486(37) 0.120(19) 8(6) 0.93(10) 0.79

a06m135 f4; 2g 0.197(37) 0.0385(97) 0.69(1.75) 2.00(81) 1.70

a06m135 f4Nπ; 2g 0.0846(84) � � � � � � � � � � � �
a06m135 f4; 3�g 0.197(37) 0.287(49) 0.0500(44) 3.6(2.2) 0.61(35) 1.30(43) −1ð6Þ 1.32

a06m135 f4Nπ; 3�g 0.0846(84) 0.201(23) 0.082(30) 6(3) −1.3ð8Þ 1.5(3) −1.8ð1.7Þ 1.34

a06m135 f4; 2freeg 0.306(81) 0.0545(62) 17(26) 1.29(14) 1.31
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FIG. 3. Data for hxiδu−δd, renormalized in the MS scheme at μ ¼ 2 GeV, for all nine ensembles plotted as a function of a (left panel)

and M2
π (right panel). The rest is the same as in Fig. 1.

TABLE VI. Results for the fit parameters in the CCFVansatz given in Eq. (22) and used for the chiral, continuum, and finite volume

(CCFV) extrapolation of the f4; 3�g data. The CC and CCFV fit-types correspond to fits with c4 ¼ 0 or c4 ≠ 0.

Fit-type Observable c1 c2 c3 c4 χ2=dof

CC hxiu−d 0.170(14) 0.09(14) 0.19(11) 0.74

CC hxi
Δu−Δd 0.209(16) 0.15(16) 0.24(13) 0.56

CC hxiδu−δd 0.201(20) 0.26(20) 0.35(16) 0.88

CCFV hxiu−d 0.167(16) 0.12(16) 0.24(17) −9ð23Þ 0.85

CCFV hxi
Δu−Δd 0.206(16) 0.18(17) 0.32(19) −15ð25Þ 0.59

CCFV hxiδu−δd 0.202(21) 0.25(20) 0.34(24) 3(31) 1.06

FIG. 2. Data for hxi
Δu−Δd, renormalized in the MS scheme at μ ¼ 2 GeV, for all nine ensembles plotted as a function of a (left panel)

and M2
π (right panel). The rest is the same as in Fig. 1.

TABLE VII. Results for the threemoments from the twostrategiesf4; 3�g andf4; 2freeg. For ourbest estimates,we take thef4; 3�gvalues
and assign a second, systematic, error that is the difference between the two results. The results are in the MS scheme at scale 2 GeV.

Observable f4; 3�g f4; 2freeg Best estimate

hxiMS
u−d

0.173(14) 0.180(14) 0.173(14)(07)

hxiMS
Δu−Δd

0.213(15) 0.235(15) 0.213(15)(22)

hxiMS
δu−δd

0.208(19) 0.236(18) 0.208(19)(24)
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A comparison of these results with other lattice QCD

calculations on ensembles with dynamical fermions is

presented in the top half of Table VIII and shown in

Fig. 4. Our results agree with those from the Mainz

group [20] that have also been obtained using data on a

comparable number of ensembles, but all with

Mπ > 200 MeV, which are used to perform a chiral

and continuum extrapolation. The one difference is the

slope c3 of the chiral correction. For our clover-on-

HISQ formulation, we find a small positive value while

the Mainz data show a small negative value [20]. Our

results are also consistent within 1σ with the ETMC 20

[32] and ETMC 19 [33] values that are from a single

physical mass ensemble. The central value from χQCD

[34], using partially quenched analysis, is smaller but

consistent within 1σ. Results for the momentum

fraction and the helicity moment from RQCD 18 [35]

are taken from their Set A with the difference between

Set A and B values quoted as a second systematic

uncertainty. Their result for the transversity moment is

from a single 150 MeV ensemble. These values are

larger, especially for the helicity and transversity

moment. Other earlier lattice results show a spread;

however, in each of these calculations, the systematics

listed in the last column of Table VIII have not been

addressed or controlled and could, therefore, account for

the differences.

Estimates from phenomenological global fits, most of

which have also been reviewed in Ref. [6], are summarized

in the bottom of Table VIII and shown in Fig. 4. We find

that results for the momentum fraction from global fits are,

in most cases, 1 − 2σ smaller and have much smaller errors.

Results for the helicity moment are consistent and the size

of the errors comparable. Lattice estimates of the trans-

versity moment are a prediction.

VII. CONCLUSIONS

In this paper, we have presented results for the isovector

quark momentum fraction, hxiMS
u−d, helicity moment,

hxiMS
Δu−Δd, and transversity moment, hxiMS

δu−δd, from a high

statistics lattice QCD calculation. Attention has been paid

to the systematic uncertainty associated with excited-state

contamination. We have carried out the full analysis with

different estimates of the mass gaps of possible excited

states, and we use the difference in results between the two

strategies that give stable fits on all ensembles as an

additional systematic uncertainty to account for possible

residual excited-state contamination.

The behavior versus Mπ , the lattice spacing a, and

finite volume parameter MπL have been investigated

using a simultaneous fit that includes the leading

correction in all three variables as given in Eq. (22). The

nine data points cover the range 0.057 < a < 0.15 fm,

135 < Mπ < 320 MeV, and 3.7 < MπL < 5.5. Over this

range, all three moments, hxiMS
u−d, hxiMS

Δu−Δd, and hxiMS
δu−δd, do

not show a large dependence on a orMπ orMπL. As shown
in Table VI, possible dependence on the lattice size,

characterized by MπL, is not resolved by the data; i.e.,

the coefficient c4 is unconstrained. We, therefore, take for

our final results those obtained from just the chiral-

continuum fit.
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FIG. 4. A comparison of results from lattice QCD calculations with dynamical fermions and global fits (below the black line)

summarized in Table VIII. The left panel compares results for the momentum fraction, the middle for the helicity moment, and the right

for the transversity moment. The PNDME 20 result is also shown as the blue band to facilitate comparison.
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The small increase with a and M2
π , evident in Figs. 1–3,

is well fit by the leading correction terms that are linear in

these variables. Also, for all three observables, the chirally

extrapolated value is consistent with the data from the two

physical mass ensembles. In short, the observed small

dependence in all three variables, and having two data

points at Mπ ∼ 135 MeV to anchor the chiral fit, allows a

controlled extrapolation to the physical point, Mπ ¼
135 MeV and a ¼ 0.

Our final results, given in Table VII, are compared

with other lattice calculations and phenomenological global

fit estimates in Table VIII and shown in Fig. 4. Estimates of

all three quantities are in good agreement with those from

the Mainz Collaboration [20], also obtained using a chiral-

continuum extrapolation, from the ETMC Collaboration

[32,33] that are from a single physical mass ensemble, and

from the χQCD Collaboration [34]. On the other hand,

most global fit estimates for the momentum fraction are

about 10% smaller and have much smaller errors, while

those for the helicity moment are consistent within 1σ.

Lattice estimates for the transversity moment are a pre-

diction. The overall consistency of results suggests that

lattice QCD calculations of these isovector moments are

now mature and future calculations will steadily reduce the

statistical and systematic uncertainties in them.
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TABLE VIII. Our lattice QCD results are compared with other lattice calculations with Nf flavors of dynamical fermions in rows 2–

12, and with results from phenomenological global fits in the remainder of the table. In both cases, the results are arranged in reverse

chronological order. All results are in the MS scheme at scale 2 GeV. For a discussion and comparison of lattice and global fit results up

to 2017 see Ref. [6]; and for a more recent comparison of hxiu−d see Ref. [41]. The JAM17† estimate for hxi
Δu−Δd is obtained from [6],

where, as part of the review, an analysis was carried out using the data in [37]. The following abbreviations are used in the remarks

column for various sources of systematic uncertainties in lattice calculations—DIS: discretization effects; CE: chiral extrapolation; FV:

finite volume effects; NR: nonperturbative renormalization; ES: excited state contaminations. A prefix “N-” means that the systematic

uncertainty was not adequately controlled or not estimated.

Collaboration Ref. hxiu−d hxi
Δu−Δd hxiδu−δd Remarks

PNDME 20

(this work)

0.173(14)(07) 0.213(15)(22) 0.208(19)(24) Nf ¼ 2þ 1þ 1 clover-on-HISQ

ETMC 20 [32] 0.171(18) Nf ¼ 2þ 1þ 1 twisted mass N-DIS, N-FV

ETMC 19 [33] 0.178(16) 0.193(18) 0.204(23) Nf ¼ 2þ 1þ 1 twisted mass N-DIS, N-FV

Mainz 19 [20] 0.180ð25Þstat 0.221ð25Þstat 0.212ð32Þstat Nf ¼ 2þ 1 clover

ðþ14;−6Þsys ðþ10;−0Þsys ðþ16;−10Þsys
χQCD 18 [34] 0.151(28)(29) Nf ¼ 2þ 1 overlap on domain wall

RQCD 18 [35] 0.195(07)(15) 0.271(14)(16) 0.266(08)(04) Nf ¼ 2 clover

ETMC 17 [38] 0.194(9)(11) Nf ¼ 2 twisted mass N-DIS, N-FV

ETMC 15 [39] 0.208(24) 0.229(30) 0.306(29) Nf ¼ 2 twisted mass N-DIS, N-FV

RQCD 14 [25] 0.217(9) Nf ¼ 2 clover N-DIS, N-CE, N-FV

LHPC 14 [40] 0.140(21) Nf ¼ 2þ 1 clover N-DIS (a ∼ 0.12 fm)

RBC/UKQCD 10 [41] 0.124–0.237 0.146–0.279 Nf ¼ 2þ 1 domain wall N-DIS, N-CE, N-ES

LHPC 10 [42] 0.1758(20) 0.1972(55) Nf ¼ 2þ 1 domain wall-on-asqtad

N-DIS, N-CE, N-NR, N-ES

CT18 [36] 0.156(7)

JAM17† [6,37] 0.241(26)

NNPDF3.1 [43] 0.152(3)

ABMP2016 [44] 0.167(4)

CJ15 [45] 0.152(2)

HERAPDF2.0 [46] 0.188(3)

CT14 [47] 0.158(4)

MMHT2014 [48] 0.151(4)

NNPDFpol1.1 [49] 0.195(14)

DSSV08 [50,51] 0.203(9)
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FIG. 5. Data and fits for a06m135 (top row), a06m310W (second row), a09m130 (third row), and a09m220 (last row). In each row,

the three panels show the ratio C
3pt

O
ðτ; tÞ=C2ptðτÞ scaled according to Eq. (17)–(19) to give hxiu−d (left), hxiΔu−Δd (middle), and hxiδu−δd

(right). For each τ, the line in the same color as the data points is the result of the f4; 3�g fit (see Sec. V) used to obtain the ground

state matrix element. The ensemble ID, the final result hxi (also shown by the blue band and summarized in Table II), the values of τ, and

χ2=dof of the fit are also given in the legends. The interval of the y axis is selected to be the same for all the panels to facilitate

comparison.
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FIG. 6. Data and fits for a09m310 (top row), a12m220 (second row), a12m220L (third row), a12m310 (fourth row), and a15m310

(bottom row) ensembles. The rest is the same as in Fig. 5.
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APPENDIX A: PLOTS OF THE RATIO

C
3pt

O
ðτ; tÞ=C2ptðτÞ

In this Appendix, we show in Figs. 5 and 6, plots of the

unrenormalized isovector momentum fraction, hxiu−d, the
helicity moment, hxi

Δu−Δd, and the transversity moment,

hxiδu−δd, for the nine ensembles. The data show the ratio

C
3pt

O
ðτ; tÞ=C2ptðτÞmultiplied by the appropriate factor given

in Eqs. (17)–(19) to get hxi. The lines with the same color

as the data are the result of the fit to C
3pt
O
ðτ; tÞ using

Eq. (21). In all cases, to extract the ground state matrix

element, the fits to C2ptðτÞ and C
3pt

O
ðτ; tÞ are done within a

single jackknife loop.

APPENDIX B: RENORMALIZATION

In this Appendix, we describe the calculation of the

renormalization factors, ZVD;AD;TD, for the three one-

derivative operators. These are determined nonperturba-

tively on the lattice in the RI0-MOM scheme [53,54] as a

function of the lattice scale p2 ¼ pμpμ, and then converted

to the MS scheme using 3-loop perturbative factors

calculated in the continuum in Ref. [55]. For data at each

p, we perform horizontal matching by choosing the MS

scale μ ¼ jpj. These numbers are then run in the continuum

FIG. 7. Nonperturbative renormalization factors for hxiu−d, (ZVD), hxiΔu−Δd, (ZAD), and hxiδu−δd, (ZTD), at the four lattice spacings in

the MS scheme at μ ¼ 2 GeV. The shaded bands mark the region in
ffiffiffiffiffi

p2
p

that is averaged and the error in the estimate.
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MS scheme from scale μ to 2 GeV using three-loop

anomalous dimensions [55]. Note that the decomposition

of the three operators into irreducible representations given

in Refs. [19,20] shows that they can only mix with higher

dimensional operators. Such OðaÞ effects would also be

taken into account in our CCFV fits, and removed by the

continuum extrapolation.

We calculate ZVD;AD;TD for one value of Mπ at each a.
Based on our experience with local operators [13], where

we found insignificant dependence of results on Mπ, we

assume that these results, within the conservative error

estimates we assign, give the mass-independent renormali-

zation factors at each a. Evidence that the dependence on

M2
π is tiny for these 1-link operators also comes from

explicit calculations in Refs. [20,32], albeit with different

lattice actions. In each case, the dependence onM2
π is found

to be much smaller than 1%. The dominant uncertainty

comes from the dependence on p2, which is discussed next.

In Fig. 7, we show the behavior of the renormalization

factors ZVD;AD;TD in the MS scheme at μ ¼ 2 GeV for the

four ensembles as a function of jpj—the scale of the

RI0-MOM scheme on the lattice. In Fig. 8 we compare ZVD,

used to renormalize hxiu−d, calculated on four ensembles,

one at each lattice spacing.

For all three operators, the data do not show a window in

jpj where the results are independent of jpj. The variation
in the data is due to a combination of the breaking of full

rotational invariance on the lattice and other p2 dependent

artifacts. This is the dominant uncertainty and many

methods have been proposed to control it; see for example

Refs. [13,20,32]. In Ref. [13], we explored three methods

that gave consistent results, and of these we have selected

the strategy labeled “Method B” there as it is the most

straightforward. In this approach, we take an average over

the data points in an interval of 2 GeV2 about p2 ¼ Λ=a,
where the scale Λ ¼ 3 GeV is chosen to be large enough to

avoid nonperturbative effects and at which perturbation

theory is expected to be reasonably well behaved. Also, this

choice satisfies both pa → 0 and Λ=p→ 0 in the con-

tinuum limit as desired. The window over which the data

are averaged and the error (half the height of the band) are

shown by shaded bands in Figs. 7 and 8. Noting the large

variation with p2, we take twice this error, i.e., full height of

the band, for a very conservative error estimate for all

three Z0s.
These final estimates of ZVD, ZAD, and ZTD used to

renormalize the momentum fraction, the helicity moment,

and the transversity moment, respectively, are given in
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