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Abstract

We prove that every spherical object in the derived Fukaya category of a closed surface of genus
at least two whose Chern character represents a non-zero Hochschild homology class is quasi-
isomorphic to a simple closed curve equipped with a rank one local system. (The homological
hypothesis is necessary.) This largely answers a question of Haiden, Katzarkov and Kontsevich.
It follows that there is a natural surjection from the autoequivalence group of the Fukaya category
to the mapping class group. The proofs appeal to and illustrate numerous recent developments:
quiver algebra models for wrapped categories, sheafifying the Fukaya category, equivariant Floer
theory for finite and continuous group actions, and homological mirror symmetry. An application
to high-dimensional symplectic mapping class groups is included.

2010 Mathematics Subject Classification: 53D37 (primary); 57K20 (secondary)

1. Introduction

The mapping class group I', of a closed surface X, arises naturally in different
contexts: in algebra as the outer automorphism group Out(r; Z,), in topology
as the component group moDiff*(%,), in algebraic geometry as the orbifold
fundamental group ﬂf’b(Mg) of the moduli space of curves. In Floer theory,
and mirror symmetry, a symplectic manifold Z appears through the Fukaya
category F(Z) and its derived category D"F(Z), a formal algebraic enlargement
of F(Z) introduced to have better homological-algebraic properties. The natural
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symmetry group of a surface in that context is the group of autoequivalences
Auteq(D"F(Z,)). This comes with a map I', — Auteq(D"F(Z,)) (which depends
on additional choices), which has no obvious instrinsic categorical or Floer-
theoretic description; in many cases, we know of autoequivalences of Fukaya
categories which are not geometric [8]. This paper shows that the mapping class
group arises naturally from the Fukaya category.

Let (X4, w) denote a closed surface of genus g > 2, equipped with an area
form of area 1. Let FJ(X,) denote the Fukaya category of X,, which is a Z/2-
graded A-category, linear over the one-variable Novikov field A = C(g®).
Objects of the category are immersed unobstructed closed curves, equipped with
a finite rank local system and auxiliary brane data (including a choice of spin
structure on the underlying curve). We will denote by (¢, y) the object associated
to an immersed closed curve y : S' — %, and local system & — S! on the
domain of vy.

We denote by D"F(Z,) = F(Z,)P" the category of perfect modules over
JF(%,), equivalently the split-closure of twisted complexes, which is triangulated
in the classical sense; write ~ for quasi-isomorphism in this category. The
composite of the Chern character and the open-closed map defines a class

ch(A) € HHy(D"F(Z,), D"F(Z,)) = H{(Zg; A)
for any object A € D"J(Z,). Recall that an object A € D" F(X,) is spherical if
H* (homprs,)(A, A)) = H'(S'; A).

Lemma 2.19 shows that ch(X) is an integral class when X is spherical. Our
main result is the following geometricity theorem for spherical objects.

Tueorem 1.1. If X € D"F(X,) is spherical and ch(X) is non-zero, then there is a
simple closed curve y C X, and a rank one local system & — y with X = (£,).

En route, we prove the corresponding result for surfaces with non-empty
boundary (Corollary 4.14). When g = 1, Theorem 1.1 is a consequence of
homological mirror symmetry for elliptic curves and Atiyah’s classification of
bundles on such curves. When g > 1, there are spherical objects with vanishing
Chern character which are not quasi-isomorphic to any simple closed curve with
local system, so the result is in some sense sharp; see Lemma 2.23. Theorem 1.1
largely answers [20, Problem 2].

Let I'(X;) denote the symplectic mapping class group of X,. There is a
homomorphism I'(X;) — Auteq(D"F(Z,)) (this depends on choices, cf. Section
2.6).
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CoroLLARY 1.2. There is a natural surjective homomorphism Auteq(D"F(Z,)) —
I'(%,), which is split by the homomorphism I'(X,) — Auteq(D"JF(Z,)).

The same conclusion also holds for surfaces of genus > 1 with boundary, by
combining Corollary 4.14 with the argument of Proposition 7.7.

The fact that the homomorphism I'(Z,) — Auteq(D"J(Z,)) splits has co-
homological implications; for instance, the autoequivalence group has infinite-
dimensional second bounded cohomology, and admits families of unbounded
quasimorphisms.

We conjecture that, for g > 2 (so the flux group is trivial), the kernel of the
natural map from autoequivalences to the mapping class group is generated by
tensoring by flat unitary line bundles and the actions of symplectomorphisms of
non-trivial flux, i.e. that

Auteq(D"F(E,)) = H'(S4: A*) x T(Z,),

where the map I'(Z,) — Auteq(D"JF(X,)) is only well-defined up to the action of
H 1(Eg; R). In Section 7.2 we outline an argument suggesting that the subgroup
H 1(Zlg; A*) is normal, which is consistent with the speculation.

The proof of Theorem 1.1 is surprisingly involved, and breaks into the
following steps (the main text treats these in somewhat different order). Let
X € D"J(Z,) be a spherical object.

1. The open-closed image ch(X) € HHy(F (X)) = Hi(Z;;A) defines an
integral class, i.e. lies in the image of H{(Z4; Z). Assume henceforth this
class is non-zero.

2. A non-zero integral class a € H 1(Eg; Z) defines a G,,-action on J(Z,).

3. If {a,ch(X)) = 0, then X defines a G,,-equivariant object, hence a Z/N-
equivariant object for any finite Z/N < G,,. The Z/N-equivariant Fukaya
category of I, is the Fukaya category of an N-fold cover £ of Z,.

4. A choice of equivariant structure on X defines a lift X of X to 3, and
for large enough N, there are disjoint homologically independent simple
closed curves y;,y, €  with H *(homrﬂi)(f(, v:) = 0.

5. There are annular neighbourhoods y; ¢ A; ¢ £ for which X lifts to define
a spherical object (which we still call) X in the wrapped category W(C)?¢"
of C = Z\(A; UA)).

6. X is represented by a strictly unobstructed immersed closed curve o ¢ C
equipped with a unitary local system.
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7. If it is not embedded, the immersed curve o supporting X bounds an
embedded bigon.

8. Bigons on o may be “emptied” and then “cancelled”, so X is quasi-
isomorphic to a simple closed curve with rank one local system in F(C).

9. X is quasi-isomorphic to a simple closed curve with rank one local system
in F(Z,).

Steps (2)-(4) rely on work of Seidel on equivariant Floer theory [31, 33],
and ideas of family Floer theory a la Abouzaid and Fukaya. Step (5) relies
on H. Lee’s restriction technology [25] for sheafifying wrapped categories of
surfaces. Step (6) appeals to the work of Haiden, Katzarkov and Kontsevich [20]
on quiver algebra models for wrapped categories of punctured surfaces, and to a
split-closure result for such wrapped categories which we infer from homological
mirror symmetry and a K-theoretic characterisation of split-closure for derived
categories of singularities due to Abouzaid, Auroux, Efimov, Katzarkov and
Orlov [5]. Step (7) invokes delicate classical results of Steinitz [40, 15] and
Hass and Scott [22] in surface topology. The ‘“cancelling” move for bigons in
Step (8) uses the homological hypothesis from Step (1). Corollary 1.2 follows
by considering the action of autoequivalences of J(X,) on a Floer-theoretic
“Schmutz graph” of non-separating curves [28].

As an application of Corollary 1.2, in Section 8 we prove:

TueOREM 1.3. There is a smooth manifold Z with symplectic forms ws, 6 € (0, 1],
for which moSymp(Z, ws) surjects to a free group of rank N(5) where N(§) — oo
as o — 0.

Explicitly, Z is the product of X, with the blow-up of the four-torus at a point,
but equipped with an irrational perturbation (of size ¢) of the standard Kéhler
form. The free group quotients arise from subgroups of the genus two Torelli
group. Gromov [19], Abreu-McDuff [9] and others showed that the topology
of the symplectomorphism group can vary rather wildly as one continuously
deforms the symplectic form, but this seems to be the first example in which a
fixed degree homotopy group is known to have unbounded rank.

Notation: Throughout the paper, surfaces are connected, and (immersed) curves
are assumed to be homotopically non-trivial unless explicitly stated otherwise.

2. The Fukaya category of a surface

This section collects background on Floer theory and the Fukaya category for
a two-dimensional surface. A reader wanting a more comprehensive treatment
might consult [29, 30] for A.-algebra and the general construction of the Fukaya
category, and [1, 5, 25] for related discussions of Fukaya categories of surfaces
(note some of the latter references do not take the split-closure).
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2.1. Background. Fix a coefficient field k. Let K = A; denote the single-
variable Novikov field, with formal variable ¢, of formal series }; a;¢" with
a; € k, t; € R and lim #; = 4+co. The valuation map

val : A > RU {0}, val(0) = +0

associates to a non-zero element of A its smallest g-power. The subring A>( =
val™'[0, co] comprises series with #; > 0 for every i, and there is a homomor-
phism

n: A>0 — k

which extracts the constant coefficient. The kernel of this homomorphism is
denoted A.¢. The unitary subgroup U, = val~'(0) is the subgroup of elements
a+ Y,-0a:q" where a € k* is non-zero. The field Ac is algebraically closed of
characteristic zero.

A non-unital A-category A over the field K comprises: a set of objects
Ob A; for each Xy, X; € Ob A a Z/2-graded K-vector space hom 4(Xo, X1); and
K-linear composition maps, for k > 1,

(5 homa (X1, Xi) @ - - @ hom 4 (Xo, X1) — hom 4 (Xo, X)[2 — k]

(here [j] denotes downward shift by j € Z/2, and all degrees are mod 2 degrees;
we write 2 — k rather than —k since Z-graded categories may be more familiar).
The maps {1*} satisfy a hierarchy of quadratic equations

X, k—m+1
D EDE T G it A @i - Gnit)s @) = 0
mn

with X, = 37, la;| — n and where the sum runs over all possible compositions:
1 <m <k, 0< n < k—m. If the characteristic of K is not equal to 2, the signs
in the A,-associativity equations depend on the mod 2 degrees of generators,
and the existence of a Z/2-grading on A is essential.

We denote by Tw"(A) = AP the idempotent completion of the category
of twisted complexes Tw(A) [29]. If the smallest split-closed triangulated A.-
category containing a subcategory A’ c A is AP, then we will say that A’
split-generates A.

In a curved A,-category each object A comes with a curvature u° € hom®] (A, A),
where hom®] denotes the subgroup of morphisms of even degree; the quadratic
associativity relations are modified to take account of 1. In general the resulting
sums could a priori be infinite, so some geometric conditions are required to en-
sure convergence. The following result controls the curvature of mapping cones
on non-closed morphisms.
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Lemma 2.1. If A is a curved A-category and X, L X, is a mapping cone in
Tw(A) between objects X; with u°(X;) = 0, then

f
1 (X1 = Xo) = ().
Proor. Standard.

The Hochschild cohomology HH*(A,A) = Hom(a—mod—a)(ida,idg) of
an (uncurved) A,-category is the endomorphisms of the diagonal bimodule.
Hochschild cohomology of an As-category is invariant under passing to the
derived category, so we will not distinguish notationally between HH*(A, A)
and HH* (D" A, D™ A).

We say that an A.-category A is homologically smooth if the diagonal
bimodule is perfect (split-generated by Yoneda bimodules), and proper! if it is
cohomologically finite.

2.2. Immersed curves. LetX be a closed oriented surface of genus g(X) = g >
2 equipped with an area form w of unit total area, fz w=1.

The Fukaya category F(Z) has objects which are called Lagrangian branes,
and which comprise an immersed curve ¢ : S — X with the following properties
and additional data. First note that if y = «(S') is immersed, it may bound
“teardrop discs”, i.e. images of holomorphic discs with a unique boundary
puncture where the puncture is mapped to a self-intersection point of y. Let
u’(y) € CF°(y,7) be the algebraic sum of all such discs, which is the obstruction
term in the self-Floer complex. We insist:

«(S") = y is unobstructed?, meaning that x°(y) € CF°(y, y) vanishes;

all self-intersections of 7y are transverse;

the domain S! is equipped with a flat unitary local system of A-vector
spaces;

v is equipped with a spin structure.

'Some authors call this ‘locally proper’, and say A is proper if it also admits a compact generator.
2 An ‘unobstructed’ Lagrangian is usually defined to be a pair (L, b) where b € CF*(L, L; Asg)
solves the A-Maurer Cartan equation Y~ wk(b,...,b) = 0. Unobstructedness for us is the
special case in which b = 0 is a Maurer-Cartan solution, which is all that we will require.
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Unitarity of the local system means that the monodromy takes values in the
subgroup of valuation-preserving elements of GL(n, A), i.e., square matrices
with entries in A>o and such that, after discarding positive powers of g, the
constant terms form an invertible matrix.

Note that the first condition is that 4°(y) vanishes identically (i.e. at each
self-intersection point). We could equally well insist that objects of F(X) are
tautologically unobstructed in the sense of bounding no teardrop discs; in fact
the two conditions are equivalent:

Lemma 2.2. Ify is a homotopically non-trivial immersed curve, then the follow-
ing are equivalent: (1) i°(y) = 0; (2) y does not bound any teardrop discs; (3) y
lifts to a properly embedded arc in the universal cover of Z.

Proor. Since y is homotopically non-trivial, it lifts to a properly immersed arc
in the universal cover . Teardrop discs bounded by 1 lift to teardrop discs in &
with boundary on ¥; thus (3) implies (2), and (2) implies (1).

Conversely, assume that ¥ is not embedded, and let a € s be any self-
intersection of ¥. If the arc ¥, consisting of the portion of ¥ which connects
a to itself is not embedded, then there exists another “nested” self-intersection
b such that the arc ¥, connecting b to itself is a strict subset of ¥,. Considering
b instead of a, and repeating the process if needed, we can assume that ¥, is
embedded in £; the portion D, of X enclosed by 7, is then an embedded teardrop
disc with a corner at a.

The teardrop D, may be either locally convex or locally concave near its
corner, meaning it occupies either 1 or 3 of the quadrants delimited by the
two branches of ¥ intersecting at a. Recall that only locally convex teardrops
contribute to x°(y). We claim that, if D, has a locally concave corner at a, then
there are smaller embedded teardrop discs contained inside it. Indeed, in the
locally concave case, the portions of ¥ just before and after the arc ¥, lie inside
D,. Continuing along ¥ until it exits D, (which must eventually happen since ¥
is properly immersed), we find another self-intersection b lying on the boundary
of D,, such that the arc ¥, connecting b to itself is entirely contained in D, (and
is not the entire boundary of D,). If ¥, is not embedded, then we replace b by a
nested self-intersection as above; this allows us to assume that ¥, is embedded,
while still ensuring that ¥, is entirely contained in D,. The region of £ bounded
by ¥, then gives a new embedded teardrop disc D, which is strictly contained in
D,.

Repeating the process, we conclude that if ¥ is not embedded then it must
bound an embedded teardrop disc with a locally convex corner. The generator
of CF%(y,y) corresponding to this self-intersection must then have a non-zero
coefficient in u(y), since there are no other teardrops with the same corner.
Thus, if u°(y) = 0 then ¥ must be embedded.
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ReMARK 2.3. Regular homotopies of immersed curves do not preserve the ab-
sence of teardrops or the vanishing of u°. For instance, pushing an embedded
arc sideways then back through itself to create a pair of self-intersections gives
rise to a teardrop (and a bigon). Thus, in the arguments below we will take care
to only consider regular homotopies which preserve unobstructedness.

ReMARK 2.4. On a two-dimensional surface, rigid J-holomorphic discs with pair-
wise distinct boundary conditions are immersed polygons with convex corners,
which are purely combinatorial. One can set up the Fukaya category either via
moving Lagrangian boundary conditions and honest J-holomorphic curves or
via (the more usual approach with) Hamiltonian perturbation terms in the Floer
equation. See [30] for an implementation.

REMARK 2.5. The results of this section apply, mutatis mutandis, fo the case
of a surface S with non-empty boundary. The main difference is that it is
sometimes necessary to consider immersed curves which live in the (infinite area)
completion of S, rather than in S itself. We will pay careful attention to this issue
when it arises in the sequel.

2.3. Isotopies and twists. For each a € H'(Z;R) there is a symplectomor-
phism ¢, with flux a, and one can move Lagrangian submanifolds by such sym-
plectomorphisms. This obviously preserves unobstructedness, since it preserves
all teardrop discs and their areas. There is a more general statement for isotopies
not induced by global symplectomorphisms.

Two curves on a surface meet minimally if they meet transversely in their
geometric intersection number of points.

LEmMMA 2.6. Let y C X be an immersed curve and o a simple closed curve. One
can isotope 'y by a regular homotopy so as to meet o minimally. Moreover, the
regular homotopy can be chosen to preserve the unobstructedness of vy.

Proor. Suppose the intersection is not minimal, so there is a not necessarily
embedded bigon bound by o U y. Pull back o to the domain of such a bigon;
changing the choice of bigon to one that is “innermost” if necessary, we can
assume that there is a bigon H which does not meet ¢ in its interior. The
boundary of this bigon therefore contains a proper subset of y, since the boundary
arc of the bigon lying along y connects two intersections in y N o which are
consecutive as read along y. (Note that the o-edge of this bigon might loop fully
around o even with the bigon being innermost; see Figure 1.) Now push the arc
of y lying along H across H, to decrease the total intersection number of y and
o. This can be iterated to reduce to a minimal situation.
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Figure 1. o and y bound four bigons in 7?2; the boundaries of the innermost bigons (those not
meeting o in their interior: above p — p’ and below g — ¢’) loop slightly more than once around o

By Lemma 2.2, y is unobstructed if and only if its lift ¥ to the universal
cover of ¥ is embedded. Lifting to £ the bigon H along which we slide v in
the above argument, we obtain a bigon H with boundary on ¥ and on a lift & of
o, whose interior is moreover disjoint from all lifts of o. If the interior of H is
disjoint from ¥ then sliding y across H preserves unobstructedness. Otherwise,
by pulling back ¥ to the domain of the bigon A (which yields a disjoint collection
of embedded arcs, since ¥ is embedded) and changing the choice of bigon to one
that is innermost, we obtain a bigon with boundary on ¥ U & whose interior is
disjoint from ¥ and from all lifts of 0. Projecting back to X and sliding across
this bigon decreases the intersection number without affecting unobstructedness.

ReMaRk 2.7. This argument also gives the following generalization of Lemma
2.6: let S be a compact surface with boundary, o a simple closed curve, and
v either an immersed curve or an immersed arc with ends in 0S. Then one
can isotope vy by a regular homotopy so as to meet o minimally, in a way that
preserves the absence of teardrops with boundary on vy.

Lemma 2.8. For any immersed curve y C X with °(y) = 0, and a € R, there
is a regular isotopy y; of y through (generically) immersed unobstructed curves
which sweeps area a.

Proor. Pick a non-separating simple closed curve o which meets y minimally
and with non-zero geometric intersection number. Such a curve can be obtained
from Lemma 2.6. (The construction of ¢ in that Lemma involves an isotopy
of v which might now have non-trivial flux, but the conclusion of the current
Lemma for the modified curve would then yield the same result for the initial one,
just with a different base-point to the one-parameter family). One obtains y; by
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sliding a portion of y along o, introducing a cancelling pair of self-intersections
each time y is being pushed across itself. The resulting curves bound no
teardrops other than those bound by . Indeed, in the universal cover, we can
choose lifts of y and o which meet exactly once, by the minimal intersection
assumption; and then the family y, which slides along o bounds no new teardrops
since its lift to the universal cover acquires no new self-intersections.

ReMARK 2.9. Lety be an unobstructed immersed curve in a compact surface with
boundary S. Ify is not boundary-parallel (i.e., it cannot be homotoped to a curve
contained in a collar neighborhood of dS ), then there exists a simple closed
curve which has non-zero geometric intersection number with 'y, and the above
argument shows that there are unobstructed regular isotopies of y in S which
sweep arbitrary area a € R. On the other hand, if y is boundary-parallel then
the total area between y and 0S is finite, and any regular homotopy sweeping
more than this amount of area must introduce a teardrop.

Lemwma 2.10. Let v C X be an embedded simple closed curve. If vy is non-
separating, then there are embedded simple closed curves y, smoothly isotopic
to y and obtained by an isotopy of flux t, for every t € R.

Proor. Fix a simple closed curve o with non-zero algebraic intersection number
with y, and fix a small embedded cylinder centred on o. Let o* be disjoint
embedded curves in this cylinder which bound a subcylinder of area £ > 0. The
curve

(o 0 T,1)(y)

is then smoothly isotopic to y but differs from it by a flux of area ¢ times the
algebraic intersection number. Since it is the image of y under a diffeomorphism,
it is obviously embedded. By varying £ and iterating the map 7, o 7, or its
inverse, one obtains embedded curves differing from y by arbitrary real values
of flux.

The analogue of Lemma 2.10 does not hold for separating simple closed
curves; in that case, if one tries to move y by an isotopy sweeping a flux larger
than the area of a subsurface bound by y, one may have to introduce self-
intersections, cf. Figure 4 below.

For embedded curves, isotopies that sweep zero area are induced by Hamilto-
nian diffeomorphisms, and the invariance of Floer theory is classical. We record
the following consequence (and note that the result also holds for surfaces with
boundary):
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CoroLLARY 2.11. Lety;,ys be two embedded simple closed curves with non-zero
algebraic intersection number, and let X, X, be the objects of F(X) obtained
by equipping 1,7y, with rank one local systems. Then the rank of the Floer
cohomology group HF* (X1, X5) is equal to the geometric intersection number of
Y1 and .

Proor. Move y; by an isotopy in order to obtain a simple closed curve y} which
intersects y; minimally, so that there are no bigons bound by y; Uy}. The isotopy
from y; to y, may sweep a non-zero amount of flux, but this can be remedied
by sliding ¥} along y1: applying the construction in the proof of Lemma 2.10 to
Y5, taking o = 1, yields ¥} which is Hamiltonian isotopic to y, and intersects
¥1 minimally. Replacing X> by the quasi-isomorphic object X7’ given by ¥4 with
the appropriate local system, we find that the Floer complex CF*(X;, X)) has
rank equal to the geometric intersection number and vanishing Floer differential.

Invariance of Floer cohomology under isotopies that sweep zero area holds
more generally for immersed curves, even when we allow the areas of the regions
bounded by the curve to vary, or if we allow isotopies through a curve that does
not self-intersect transversely, creating or cancelling self-intersections. We note
that such regular homotopies are still induced by a (time-dependent) Hamiltonian
on the domain of the immersion, and thus we will abusively refer to them as
Hamiltonian isotopies. The following is closely related to [1, Proposition 4.1].

LemmMma 2.12. If unobstructed immersed curves yo and y| are regular homotopic
through (generically self-transverse) unobstructed immersed curves by an iso-
topy that sweeps zero area (and which identifies their S pin structures and local
systems), then yy and 7y, define quasi-isomorphic objects of F(Z).

Proor. By concatenation, this follows from the result for C!-small isotopies
sweeping zero area. When 7y, and y; are C'-close to each other, there exists
a small time-independent Morse function H on the domain of the immersion
whose Hamiltonian vector field generates the isotopy. Each critical point of H
gives rise to an intersection of ¥y and y,; considering separately the maxima and
minima, we let

p= D, ¢"pieCFGoy) and p= Y g Pp;e CFy,y0).
pi€min(H) pj€max(H)

When vy and y; are embedded, a classical argument considering the bigons
that connect the consecutive minima and maxima of H shows that u'(p) = 0,
u'(p’) =0, i.e. pand p’ are Floer cocycles, and 1%(p’, p) = id,/O,,uz(p, p)=id,,
i.e. p and p’ provide an explicit isomorphism between yy and y;. When y and y;
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are immersed, there are additional generators of CF(yy,y;) and CF(yy,yo) near
the self-intersections. However, by considering lifts of yy and 7y, to the universal
cover (which are embedded by our assumption of unobstructedness), we find that
the lifts of holomorphic polygons which contribute to u'(p), u' (p’), u*>(p’, p) and
u*(p, p’) cannot involve the generators coming from the self-intersections, and
the outcome of the calculation is exactly the same as in the embedded case.

Any simple closed curve o C X has an associated Dehn twist 7. The identity
id and 7, both define A.-equivalences of F(X), and viewed as functors, there is
a distinguished morphism @, : id — 7, in Hom,,,,_ s,,(id, 7,) obtained from the
count of sections of a Lefschetz fibration over a disc with one interior critical
point and vanishing cycle o.

Lemma 2.13. If o is non-separating, then T, determines o up to Hamiltonian
isotopy. If o is separating, then the pair (15, ®,) determines o up to Hamiltonian
isotopy.

Proor. It is straightforward to see that 7, determines the smooth isotopy class
of 0. Deforming a simple closed curve o by an isotopy that sweeps area «, the
Dehn twist 7, changes by a non-Hamiltonian isotopy whose flux is a - PD([c]).
If [o] # O the result follows.

If [o] = 0, then o separates X into two subsurfaces. Pick a simple closed
curve Yy whose geometric intersection number with o is two, and let y’ be a
simple closed curve which is Hamiltonian isotopic to 7(y) and intersects y and
o minimally, as in Figure 2.

Figure 2. Dehn twisting about a separating curve
By the work of Seidel [29], there is an exact triangle in F(X) taking the form

CF(0',7)®0';>y—f>y’
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where e is a tautological evaluation map, which can be written in terms of the
generators p,r of CF(o,y) ase = (p,r) : c ® o[1] = v, and f € CF(y, 7,(y))
is given by the natural transformation ®@,. Since o @ o[1] is not isomorphic to
v @ y'[1], the morphism f is a non-zero linear combination of the generators
a,b of CF°(y,y’), and determined uniquely up to scaling by the property that
1 (f, p) = @2 (f,r) = 0.

Denoting by A and B the symplectic areas of the two shaded triangles on
Figure 2, we find that y*(a, p) = +¢*p’ and u?(b, p) = Fq®p’, so the vanishing
of (£, p) implies that f is proportional to g?a+g*b. (As expected, u(f, r) then
vanishes as well: since ¥’ is Hamiltonian isotopic to 7,(y), the areas of the two
triangles contributing to u(f, r) differ by the same amount B — A).

Keeping y and y’ fixed, when o moves by an isotopy of flux a (without
creating new intersections) the quantity B — A changes by «, so that the class
[f] = ®,(y) € HF(y, 7,(y)) must change as well. This implies that @, detects
the Hamiltonian isotopy class of 0.

An object Y € F(Z)P¢" is spherical if H*(homgwr(Y,Y)) = H*(S'; A). A
spherical object Y has an associated twist functor 7T'y.

Lemma 2.14. Let Y, Y’ be spherical objects on a surface S. Suppose the twist
functors Ty and Ty are quasi-isomorphic. If Y is a homologically non-trivial
simple closed curve, then Y and Y’ are quasi-isomorphic in Tw™ F(S).

Proor. Write T for Ty =~ Ty.. Let ¢ be a simple closed curve with geometric
intersection number 1 with Y. The group HF (9, T(6)) has rank one, so up to
quasi-isomorphism there are only two distinct mapping cones

Y~ {6 -5 T@) and 6@ T©)[1] = {6 — T(S)).

Since the functor T = Ty is a cone over an evaluation functor which has image
in the subcategory with objects V ® Y’ for graded vector spaces V, one of these
mapping cones is isomorphic to direct sums of copies of Y’. The sum 6@ T(6)[1]
is a sum of two non-isomorphic indecomposables, so by the Krull-Schmidt
property cannot be a sum of copies of a single indecomposable Y’. Therefore
Y is isomorphic to a direct sum of copies of Y’, and indecomposability of Y
implies Y =~ Y’ as required.

2.4. Generation. Consider an Aj,-chain of 2g curves {{;}i<i<2, on X, as de-
picted in Figure 3 when g = 2.

Provposition 2.15. The curves {; split-generate F(X).



Denis Auroux and Ivan Smith 14

Figure 3. Split-generating curves for F(X,)

Proor. This is a consequence of [38, Proposition 3.8], a variant of [30, Lemma
6.4]. Briefly, ifu = Hl.zfl 7;, the Dehn twists 7; in the curves ¢; satisfy the positive
relation u**? =1 € I'y. The square of this relation defines a Lefschetz fibration
X — P! with fibre X, with 2g(8g + 4) critical fibres, and for which every section
of the fibration has square < 2.

Let 6 € F(Z) be an arbitrary curve (equipped with a local system, which we
suppress from the notation). There are exact triangles associated to the Dehn
twists 7;, on the cohomological category H(F(X)) taking the form

HF (5, $(5)) —— HF(6,7; 0 $(6)) —— HF(5,4) ® HF (¢, $(6))

for a subword ¢ = [];.; 7; of the monodromy. This triangle is induced from
an exact triangle in F(X) of the form

$(6) —— 71 0 $(8) —— V&

where V. = HF({,¢(0)) is a Z/2-graded vector space and the arrow p is
multiplication by the section count @,,. Concatenating such triangles for all the
twists in u%** yields

§ -2 sty = 6 (1)

The morphism p counts sections of X — P!, and there are no holomorphic such
for generic almost complex structure, since all sections have square < -2 and
live in moduli spaces of virtual dimension < 0. Therefore the arrow p vanishes,
and ¢ is exhibited as a summand in a triangle whose third entry is a twisted
complex on the vanishing cycles ¢;.

COROLLARY 2.16. The closed-open map H*(X;A) — HH*'(F(X),F X)) is an
isomorphism; similarly for the open-closed map HH.(F(X), F (X)) — H.(Z; A).

Proor. This is a special case of [38, Corollary 3.11], where the required hypothe-
ses are obtained from Proposition 2.15.
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CoroLLARY 2.17. Given a simple closed curve o C X, there are curves {1, . . ., &}
which are split-generators for F(X) and which meet o minimally.

Proor. Up to automorphism, there are only finitely many possibilities for o, so
the result follows by inspection of the pattern of curves in Figure 3.

The same methods that underlie Corollary 2.16 also show:

Lemma 2.18. If X is a closed surface, then F(X)P¢" is homologically smooth and
proper.

Proor (Sketch). Properness is immediate since the objects are closed Lagrangians.
Smoothness follows from the fact that one can resolve the diagonal on £ X X
by product Lagrangians, which follows for instance from the argument of [38,
Section 3.4]. (An alternative is to use that F(X)P*" is equivalent to a category of
matrix factorizations of an isolated hypersurface singularity, and such categories
are always smooth and proper>.)

2.5. Mukai pairing. Let A be a proper (i.e. cohomologically finite) Ac-
category, linear over K. The Chern character is a map

ch: Ko(ﬂ) Ed HH()(.A),
whilst the Mukai pairing is a graded bilinear pairing
(e,0): HH.(A)® HH.(A) — K.

These were introduced by Shklyarov in the case of dg-categories [37]; since
any A, category is quasi-equivalent to a dg-category, their definitions and basic
properties extend to the A -setting. Shklyarov proved that

(ch(X), ch(Y)) = —x(X. Y). (2)

In the case of F(X), these notions are quite explicit, using the open-closed
map to identify HHy(F (X)) with H(X; A). If vy is an unobstructed immersed
curve (equipped with a rank one local system), the absence of non-constant
holomorphic discs with boundary on y implies that the image of ch(y) = [id,] €
HHy(F(X)) under the open-closed map is exactly [y] € H (Z;Z) C H{(Z; A).
Comparing (2) with the classical identity y HF(y,y") = —[y] - [y'], we find that
the Mukai pairing is simply the intersection pairing on H;(Z; A).

3 Also in the stronger sense of admitting a compact generator.
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Lemma 2.19. Let X € F(X)P¢". Then ch(X) € Hi(XZ; A) represents an integral
class, i.e. ch(X) € image{H(Z;7Z) — H{(Z; N)}.

Proor. By (2), {ch(X),ch(y)) = —x HF(X,vy) € Z for any simple closed curve
v C Z. As noted above, under the open-closed map ch(y) maps to [y] € H|(Z; Z).
It follows that ch(X) has integral pairing with all of H(X;Z), which is only
possible if the class is integral.

CoroOLLARY 2.20. Let X € F(X)P*" be spherical. There is a non-zero class
a € H'(Z; Z) with {a, ch(X)) = 0.

Proor. Evident from Lemma 2.19.

2.6. Balancing. There is a natural map
Symp(X) — nu-fun(F(X), F(X))

which takes any Hamiltonian symplectomorphism to an equivalence which is
quasi-isomorphic to the identity*. This yields a map Symp(Z)/Ham(X) —
Auteq(D"F(X)), where the domain is viewed as a discrete group. For a surface
of genus > 2,

Symp(Z)/Ham(X) = H 1= R) x [(T)

by Moser’s theorem and the vanishing of the flux group. To build a homomor-
phism I', — Auteq(D"F(%,)) requires some additional choice. Suppose g > 2,
and fix a primitive 6 for the pullback of wy to the unit tangent bundle S (7). For
any simple closed curve o C Z, a choice of orientation of o~ defines a canonical
lift o € S(TX), and we then have a real number 7, = L 6. Say o is balanced if
t, = 0, and define a balanced symplectomorphism f : ¥ — X to be one which
takes balanced curves to balanced curves, i.e. for which #4) = t, for every
oriented simple closed curve o C X.

Lemma 2.21. {Balanced symplectomorphisms}/Ham(X) =~ I',.
Proor. See [30].

It follows that the choice of 6 defines a map
I, = Auteq(D"F(Z,)). 3)
Given two primitives 6, 8’ for p*ws, with p : S(TX) — Z, one obtains a class
[0 - 0] € H'(S(TZ);R). Note that, since y(X) # 0, the pullback p* induces
an isomorphism on first cohomology, so we can think of [# — '] as an element
of H'(Z;R). Changing 6 to & conjugates the image of (3) by the action of this
element of H'(Z; R).

4 The notation nu-fun follows [29]; the Fukaya category admits cohomological but not strict units,
and the functors are therefore not strictly unital; they are however cohomologically unital.
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ReMARKk 2.22. The analogous construction for punctured surfaces may be more
Sfamiliar to the reader: the choice of an exact symplectic structure on a punctured
surface S (i.e. a primitive 0 for the symplectic form itself, rather than its lift to
the unit tangent bundle) determines a homomorphism from the mapping class
group of S to Auteq(D"F(S)) by considering exact symplectomorphisms of S,
i.e. those which take exact curves to exact curves, up to Hamiltonian isotopy.

2.7. Cautionary examples. Despite its generally elementary character, there
are some surprises in Floer theory for curves on surfaces.

Figure 4. An exotic spherical object when C > A

Lemwma 2.23. There are spherical objects in F(X) which are not quasi-isomorphic
to any simple closed curve with local system.

Proor (Sketch). See Figure 4, which shows an immersed curve obtained by
pushing a separating simple closed curve through itself to create a single bigon.
The region labelled C contributes to a non-trivial Floer differential, so this
immersed curve is spherical. However, the hypothesis that the area C > A
implies that one cannot deform the curve to be embedded through an isotopy
which has trivial flux: the end result would have to separate X into two regions,
one of area A — C < 0. It is not hard to see that, if this immersed curve was
quasi-isomorphic to a simple closed curve, that curve would have to be in the
same homotopy class, and then consideration of Lemma 2.13 would show that
the natural transformation from the identity to the associated twist functor would
involve a different linear combination of Floer generators.

LemMa 2.24. There is an immersed curve S' — X with rank one local system
which admits non-trivial idempotents.
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Proor. Take an immersed curve y which is homotopic to the double cover of a
simple closed curve o. Then a rank one local system on y defines an object quasi-
isomorphic to a rank two local system & on o, and rank one sub-local-systems of
& define idempotents.

LemMma 2.25. Let p be a transverse intersection point of curves y,y’ such that p
is a Floer cocycle in CF*(y,y"). The immersed curve resulting from surgery at

p need not be quasi-isomorphic to the mapping cone y N v

r P r r r

Figure 5. The mapping cone is not the surgery

Proor. Consider Figure 5, where in the first image the Floer complex CF*(y,y")
has

drl — qal - p, dr2 - _qa/Z -p
with a1, @, the areas of the bigons; we assume there are no holomorphic strips
other than those in the picture. Then p is an exact Floer cocycle, so

Cone(p) = y[l] @Y.

In this case, the Lagrange surgery o at p is quasi-isomorphic to the cone on
q®'r; viewed as a (closed) morphism in the reverse direction, from y’ to y (or
equivalently, g*2r,, which is cohomologous). However, there are also examples
where the Lagrange surgery at an exact Floer cocycle between a pair of simple
closed curves vy,y’ yields an immersed curve o which lies outside of their
triangulated envelope (Figure 6). In all these examples, the surgered curve o
remains cobordant to y U 7', but the Lagrangian cobordism between them is
obstructed, and the cobordism only yields an exact triangle after deforming o
by a suitable bounding cochain (which amounts geometrically to smoothing
a self-intersection of o, to obtain a curve in a different homotopy class — in
fact, homotopic to y U 9’ rather than o). This is a purely one-dimensional
phenomenon — for instance, in higher dimensions, there would be no rigid strip
passing through the neck region after surgery, in contrast to the visible strip in
the right image of Figure 5.

ReMARK 2.26. In the situation of Lemma 2.25, if vy U y" bounds no (immersed)
bigons, then the mapping cone and the surgery do agree, cf. [1, Section 5].
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P

Figure 6. The mapping cone differs from the surgery by a bounding cochain

3. Immersed curves and bigons

3.1. Bigons. In this section, S denotes a compact surface which may have
empty or non-empty boundary. Let y C S be an unobstructed immersed curve,
which we always assume has only transversal self-intersections. An embedded
bigon with boundary on y isamap u : D — S from the closed disc to S which
takes +1 € dD to self-intersection points of y, which takes the boundary 0D\ {1}
to vy, and which is an embedding D — S. Note that there will in general be
arcs of y which meet the interior of the bigon. If there are no such arcs, so
v N u(D) = u(dD), then we say the bigon is empty.

LemMma 3.1. An immersed curve y C S bounds at most finitely many embedded
bigons.

Proor. For a given pair of intersection points, there are only finitely many
possible boundary arcs in y between them. A pair of arcs which cuts out a disc
in S defines a unique bigon.

Lemma 3.2 (Hass, Scott). Let ¥y C X be an immersed closed curve which does
not bound any teardrops. If vy is homotopic to a simple closed curve, but is not
embedded, then y bounds an embedded bigon.

Proor. This is proved in [22].

Hass and Scott show by examples that one can not in general assume that
v bounds an empty bigon. We introduce a combinatorial move on immersed
curves:

e The triple-point move changes a configuration of three intersecting arcs
which cut out a small downwards-pointing triangle to one defining a small
upwards-pointing triangle, cf. Figure 7.
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Figure 7. The triple-point move

Lemma 3.3. The triple-point move preserves the total number of self-intersections
of v, and does not increase the total number of embedded bigons on .

Proor. Evident.

Lemma 3.4 (Steinitz). If v bounds an embedded bigon, then after a finite se-
quence of triple-point moves, y bounds an empty bigon.

Proor. This is proved in [39, 40], see also [15].

3.2. Removing bigons. Let v : v — § be an immersion with [v(y)] €
H{(S; Z) a non-zero class.

LemmMma 3.5. If v(y) bounds an empty embedded polygon, then there is a Hamil-
tonian isotopy of v(y) which decreases the area of this polygon to be arbitrar-
ily small without creating any self-intersections. However, if S has non-empty
boundary and [v(y)] vanishes in H|(S,0S ; Z) then the isotopy may require en-
larging the surface S.

Proor. Sliding the portions of v(y) that bound the empty polygon gives a smooth
isotopy that decreases its area as required. All that is required, then, is to correct
the isotopy by the flow of a symplectic vector field on S in order to ensure that
it sweeps zero area (so that it is induced by a Hamiltonian on the domain of the
immersion). If v(y) represents a non-zero class in H(S,dS;Z) then this can
be achieved exactly as in Lemma 2.10, by considering a simple closed curve o
with non-zero algebraic intersection number with v(y) and sliding around a thin
cylinder centred on . If [v(y)] vanishes in relative cohomology, then instead we
find a properly embedded arc with non-zero algebraic intersection number with
v(y) and slide along it; this may push v(y) outside of S and require us to enlarge
the surface.

LemMma 3.6. If y bounds an empty bigon, then 7y is quasi-isomorphic to a curve
v, with two fewer self-intersections, obtained by cancelling the bigon.
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Proor. The previous Lemma shows that we can deform y by a Hamiltonian
isotopy to decrease the area of the bigon to be arbitrarily small. Once the bigon
is sufficiently small, we can cancel the pair of self-intersections by a regular
homotopy that sweeps zero area, without creating any other intersections; the
result then follows from Lemma 2.12.

LemmMma 3.7. If y bounds an empty triangle, then vy is quasi-isomorphic to a curve
v" obtained by performing a triple point move.

Proor. The argument is the same as for bigons: Lemma 3.5 shows we can shrink
the triangle to have arbitrarily small area by an isotopy that sweeps zero area, and
once the triangle is sufficiently small we can perform the triple point move by a
regular homotopy that sweeps zero area. The result then follows from Lemma
2.12.

3.3. Analyticity of Floer cohomology. Let (X, w) be a symplectic manifold
and {Fp}pep a family of unobstructed Lagrangian submanifolds parametrized by
a smooth manifold B. (The prototypical situation in the literature would be that
B is a subset of a tropical SYZ base, and we will sometimes refer to the F), as
fibres.) Recall that ¢ — F), denotes a rank one Up-local system over Fj,.

Over a small disk by € P C B, the fibres F, are graphs of closed one-
forms a;, over Fy,; the Hamiltonian isotopy class of F}, depends only on the de
Rham cohomology class of the one-form ;. The space of choices (b,& — Fj)
is therefore naturally a domain centred on the base-point by = (0, 1) inside
(A = H'(Fpy; A*) = H'(Fpy; R) X H'(Fy,; Up), where k = tkg H'(Fy,; Z).
To be more explicit, fixing a basis ay, ..., ax for H,(Fp,; Z), we have A*-valued
co-ordinates zj, . ..,z given by zi(b,£) = ¢'®!“holg(a;). More intrinsically, to
every element y = )’ v;a; € H (F}; Z) corresponds a monomial

Ge=2 g = ¢ holg(y).

Consider a Lagrangian submanifold L C X transverse to the fibres F, over P.
Over P, L defines an unbranched cover of P, so the intersection points {L M F}
may be identified with L h F,. Fix a local section of the family {F}}, so that
for each fibre F, we can fix a smoothly varying base-point x € Fj. In F, fix
a (homotopy class of) path y, from x to %, for each x € L th Fj,. We fix a rank
one local system & — F), and an arbitrary identification &, = A; by parallel
transport along 7y,, this identifies £, = A for each intersection x € L N Fy,.

Now consider another point b € P. Assuming P is convex, over a path joining
b and by the path vy, sweeps a two-chain I',, yielding an area a,(b) = fr w.Bya
trick due to Fukaya (essentially the observation that taming is an open condition
on almost complex structures), a rigid holomorphic strip # with boundaries on
L and Fy, will deform, for P sufficiently small, to a rigid holomorphic strip u’
with boundaries on L and F,. By concatenating the boundary arcs of © with the
reference paths, we get a well-defined element [0u’] € H|(Fy; Z).
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Lemma 3.8. Suppose the arc of the boundary of u connects intersection points
x,y. We have )
qE(u )holé‘(au,) — qa).(b)fax(b) . qE(u)Zg?g ]

Proor. See [3].

/[70;4'1, whereas the
quantity g®® is constant, depending only on the reference point by. In particular,

under the rescaling

CF'(L,(¢ = Fp)) — CF*(L,(£ > Fp)), x> ¢*? . x=x

The key point is that this expression involves the monomial z

one finds that the Floer differential becomes analytic as a function of the co-
ordinates z; ¢; schematically,

WYy = ) #M(Iu)) - g,
[u]
The dependence on the choice of base-point by and of the homotopy classes of
the paths vy, are also analytic; the former changes the values a,(b) by some fixed
constant, rescaling x’ by a value which does not depend on z;, ¢, whilst the latter
rescales x” by a monomial.

COROLLARY 3.9. There is an affinoid neighbourhood P of by € (A*)* such that the
Floer cohomology groups HF*(L,(é — F)})) are the fibres of an analytic sheaf
over P.

The same argument would apply to a family of immersed Lagrangians
equipped with analytically varying bounding cochains.

Up to this point, we have assumed that the Lagrangian L is transverse to
all the fibres {F}},cp. To obtain a more global statement, given a family of
Lagrangians {F},cp one chooses a finite set of Hamiltonian perturbations L; of
L for which the corresponding caustics of the projections L; — B have empty
intersection. This finite set of Hamiltonian perturbations can be spanned by a
simplex of Hamiltonian perturbations, and there are (higher) continuation maps
on Floer cochains associated to the edges and higher-dimensional facets of this
simplex. These yield a module for a Cech complex of the corresponding covering
of B, and (for a sufficiently fine cover) gluing maps of the local analytic sheaves
over affinoids in B constructed previously. Summing up:

TueoreEM 3.10 (Abouzaid). Let {Fp}pep be a family of unobstructed Lagrangians
parametrized by an open B ¢ H'(Fy;R). There is an analytic dg-sheaf over
the annulus B x Uy ¢ H'(Fy; A*) with stalk quasi-isomorphic to CF*(L, (¢ —
Fp)). Furthermore, this association yields an A -functor from the tautologically
unobstructed Fukaya category of (X, w) into the dg-category of complexes of
sheaves over B X U,.
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Proor. See [4].

Remark 3.11. Suppose we fix a class a € H'(F,;R) and consider the corre-
sponding real one-parameter family of Lagrangians F) given by moving F, by
symplectomorphisms of flux t - a. Then for a test Lagrangian L, there is a dis-
crete set of values of t € R where the transversality condition L th F 2 fails.
Picking Hamiltonian perturbations, the Cech complex above amounts to a zig-
zag diagram of quasi-isomorphisms associated to neighbouring such intervals;
generically, these quasi-isomorphisms furthermore correspond to the simplest
birth-death bifurcations of Floer complexes, adding or subtracting an acyclic
subcomplex with two generators and a unique minimal area bigon.

3.4. Spherical objects. Let S be a surface which may be closed or have non-
empty boundary. Let ¥y C S be an unobstructed immersed curve and & —
domain(y) a local system. Equip S with a symplectic form w and compatible
complex structure j.

Lemma 3.12. If (&,y) defines a spherical object of F(S), then vy is regular
homotopic to a simple closed curve.

Proor. Equipping S with a hyperbolic metric, it is a classical fact that there
is a unique geodesic n in the homotopy class of y. In fact, performing the
homotopy by a suitable curve-shortening flow (see e.g. [23]), one finds that y is
regular homotopic to 7 among generically self-transverse unobstructed immersed
curves. We claim that (£, y) being spherical implies that the geodesic r is a simple
closed curve.

Recall that the Floer complex CF*((£,7y), (¢,7y)) splits into a direct sum of
complexes corresponding to the various lifts of y to the universal cover of S
which have non-trivial intersection with a fixed lift 9. (This is because Floer
generators which correspond to intersections between different pairs of lifts of y
cannot be connected by bigons.) The summand which corresponds to the trivial
homotopy class (i.e., intersections of ¥ with a small Hamiltonian perturbation of
itself) contributes H*(S'; End(¢)), which has rank at least two (considering the
identity endomorphism of &). Thus, all other summands must be acyclic.

If the geodesic n is multiply covered, then by homotoping y to n, then
translating along the underlying simple geodesic, and homotoping back, we find
that there is a regular homotopy of y to itself which sweeps zero area and turns
the chosen lift ¥ into a different lift. Hamiltonian isotopy invariance (cf. the proof
of Lemma 2.12) then implies that this pair of lifts also contributes non-trivially
to the Floer cohomology of (&, y) to itself, which contradicts the assumption that
(&,7) is spherical. Hence i cannot be multiply covered.
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Finally, observe that each lift of vy to the universal cover of S lies within
bounded distance of a lift of the geodesic n. If two lifts of n intersect each other
(necessarily at a unique point, since they are hyperbolic geodesics), then the
corresponding lifts of y also have algebraic intersection number equal to 1, and
hence they must contribute non-trivially to Floer cohomology, which contradicts
the assumption. Thus, the lifts of n to the universal cover of S are pairwise
disjoint, which implies that 77 is embedded.

Lemma 3.13. Let & — 7y be an indecomposable local system over a simple closed
curve y. The endomorphism ring H*(homg((£,7y), (¢,7))) = H*(y; End(£)) has
rank 2 if and only if ¢ has rank 1.

Proor. An indecomposable rank r local system ¢ is determined by its mon-
odromy A. The fibre A" is cyclic as a A[*']-module (where ¢ acts by A), gen-
erated by any vector, and can thus be identified with A[r*!]/(y(f)), where y is
the characteristic polynomial of the monodromy. Then H°(End(£)) contains the
maps A" — A" which commute with the monodromy, i.e. A[*!']-module maps.
Since module maps

AL ]/ (pat)) — AL/ (ea(t))

are determined by the image of 1, which can be any element of A[r*!]/(ya(t)) =
A’, we conclude that H(End(¢)) has rank r over A; the same is then true for H'
by considering Euler characteristic.

CoroLLARY 3.14. If (£,y) C S is an immersed curve with local system which
defines a spherical object X € F(S), and if [y] € H\(S; Z) is non-zero, then vy is
quasi-isomorphic to an embedded simple closed curve and & has rank one. (If S
has non-empty boundary and [y] vanishes in H,(S,0S ; Z) then we may need to
enlarge S.)

Proor. Being spherical implies that y is homotopic to a simple closed curve,
hence bounds an embedded bigon. By a sequence of triple point moves, we may
find an empty bigon bound by y, which we may then shrink by Hamiltonian
isotopy and cancel to obtain a new immersed curve 7y’ in the same quasi-
isomorphism class. By repeated applying Lemmas 3.6 and 3.7, we eventually
arrive at a simple closed curve. Finally, Lemma 3.13 implies that & must have
rank one.
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4. Geometrization on punctured surfaces

4.1. The wrapped Fukaya category of a non-compact surface. Let (S,dS)
be a symplectic surface with non-empty boundary; fix a finite subset A c 95
of boundary marked points (the “stops”) and a homotopy class of line field
n c TS. Associated to this data is a Z-graded partially wrapped Fukaya category
W(S, A, n). If one does not make a choice of line field, there is also a Z/2-graded
category W(S, A), where the Z/2-grading is given by orientation. When the set
A C 8§ of stops is empty, we will simply write W(S) or W(S, n).

If the line field 7 is orientable (i.e. lifts from a section of P(7'S) to the unit
sphere bundle of 7'S), there is a forgetful functor W(S, A, ) — W(S, A) which
forgets the grading structure. There are also localization functors W(S,A) —
W(S, A”) which forget some of the stops whenever A’ C A; in particular there
are “acceleration” functors W(S, A) — W(S) which are (by definition) surjective
on objects.

The objects of W(S, A) (resp. W(S, A, 7)) are (graded) unobstructed properly
immersed curves or arcs with boundary in S \ A, equipped with local systems.
While the construction is usually carried out in the exact setting, we work over
the Novikov field and allow non-exact objects into our category. Recall that
generators of the wrapped Floer complex arise not only from intersection points
but also from (positively oriented) boundary chords in dS \ A connecting the end
points of a pair of arcs. Fixing a Liouville structure on §, the structure maps of
the wrapped category count isolated solutions of Floer’s equation with a suitable
Hamiltonian perturbation in the Liouville completion of S. These counts are
weighted by the topological energy of the solutions and by holonomy terms. In
the case of arcs, the weights can be cancelled out by trivializing the local systems
and rescaling generators by their Floer action; it is only for non-exact objects that
Novikov coefficients are necessary. Note that the wrapped category only depends
on the Liouville completion of (S, A); in particular it is independent of the choice
of Liouville structure.

REMARK 4.1. As in the case of Fukaya categories of closed Riemann surfaces,
the structure maps of W(S, A) can be determined combinatorially in terms of
immersed polygons with convex corners. Indeed, solutions to Floer’s equation
which do not lie entirely in the cylindrical ends of the completion can be
reinterpreted as immersed polygons in S whose boundary lies partially on the
given Lagrangians and partially along chords in 0S \ A; and solutions which lie
entirely in the cylindrical ends only contribute a “classical” term to u*> which
concatenates two boundary chords with a common end point.
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4.2. Geometricity of twisted complexes. We will say that an object Y of
Tw" W(S, A) is geometric if it is quasi-isomorphic to a union of immersed arcs
or curves with local systems in S or its Liouville completion. The category
Tw W(S, A, 1) has a combinatorial model, due to [20], using which they prove
the remarkable:

TueoreMm 4.2 (Haiden, Katzarkov, Kontsevich). Let (X,0%, A) be a surface with
non-empty boundary and a (possibly empty) collection of boundary marked
points A C 0X. Let Y € TwWW(Z, A) be a 7./2-graded twisted complex. Then Y
is geometric.

We include a brief discussion of the proof, to illustrate why its ingredients do
not readily generalise to the case of closed surfaces treated in this paper, and to
clarify its applicability to the Z/2-graded case and to the non-exact setting.

Proor (Sketch). Suppose that A N C # 0 for each component C C 9%; the
general case will follow from this by localization. A “full formal arc system”
is a collection {a;} of disjoint embedded arcs with boundary in 0 \ A which
decompose X into a union of discs each containing exactly one point of A.
Any such system of arcs generates the category W(X,A). The A.-algebra
of endomorphisms of the collection of objects {a;} has a particularly simple
description: it is formal, and the only non-trivial products correspond to the
concatenation of boundary chords on each component of 0% \ A. This can be
described by a nilpotent quiver algebra, with vertices the arcs and arrows the
boundary chords connecting successive end points along each component of
0Z\ A.

Since the arcs a; generate the wrapped category, any object of Tw W(Z, A)
can be expressed as a twisted complex A = (@ V; ® a;, ) for some (Z or Z/2)
graded vector spaces V;. This twisted complex can be viewed as a representation
of a “net”, i.e. a collection of vector spaces which carry two filtrations, together
with prescribed isomorphisms between certain pieces of the associated gradeds.

To a component ¢ of X \ A, containing end points of the arcs a;,,...,a; in
that order, we associate the (Z or Z/2) graded vector space

Vei=Vildil®-- & V,ld],

where the shifts d, . .., d; reflect the gradings of the arcs near the relevant end
points. This carries two filtrations. One comes from the ordering of the arcs
along the boundary of X:

Vildilc Vyldil® Vylda] C--- C V..
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The other comes from the part of the differential of the twisted complex which
involves boundary chords lying along ¢, viewed as an endomorphism 9§, €
End(V,) which squares to zero, giving the filtration

im(6.) C ker(6.) C V..

In the latter filtration, d, induces isomorphisms V. /ker(é.) = im(6.), whereas in
the former, each V; appears twice in the associated gradeds (once for each end
point of the arc a;).

Because the language of nets is formulated for ungraded vector spaces, the
argument of [20, Section 4.4] actually splits the vector spaces V, according to
cohomological degree: in the Z-graded case, the indexing set for the net is
mo(0Z \ A) X Z, and one considers the collection of vector spaces Vg’ for all
¢ € mp(0X \ A) and d € Z (each equipped with the two filtrations described
above).

With this understood, a classification theorem generalising results of [26]
implies that any indecomposable representation of a net is pushed forward from
an indecomposable representation of a net of “height 17, i.e. one in which all the
filtrations have length 1. These correspond to twisted complexes “locally” built
from pieces that involve a single arc among the a;, and connecting differentials
that are isomorphisms between multiplicity vector spaces that are concentrated
in a single degree and correspond to a single boundary chord (not a linear
combination). Such twisted complexes look like either

le®ajl—>ij®ajz<— —)Vj,®de or

le ®aj, —>Vj2®aj2<— —>Vj[®aj,

where the vector spaces V, are all isomorphic up to grading shift, and the arrows
between V; ®a;, and V;, ®a;,, can point in either direction and each correspond
to a single boundary chord. Interpreting the mapping cone of a boundary chord
geometrically as a boundary connected sum surgery, these two kinds of twisted
complexes correspond respectively to immersed arcs and curves equipped with
local systems. (See [20]; see also [14] for an earlier classification of objects of
the derived category of a cycle of rational curves based on the same algebraic
formalism.)

Since we are working over the Novikov field, there is one more subtlety that
arises: when using boundary connected sum surgeries to build a geometric ob-
ject out of the second kind of indecomposable twisted complex, one arrives at
an immersed closed curve carrying a local system which is not necessarily uni-
tary. However, irreducibility implies that the holonomy has a single eigenvalue,
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whose valuation can be adjusted by modifying the boundary connected sum con-
struction by an isotopy that sweeps a suitable amount of flux. (The isotopy may
however require replacing £ with a larger domain inside the Liouville comple-
tion; as noted in Remark 2.9, for boundary-parallel curves this is unavoidable,
whereas for all other curves one can find enough space within X by applying the
trick of Lemma 2.8). After performing an isotopy to ensure that the eigenvalue
has valuation zero, a suitable choice of basis of the local system (e.g., reducing
to the Jordan normal form) ensures that the holonomy is a valuation-preserving
element of GL,(A). We then arrive at an immersed curve with a unitary local
system.

In [20] the classification theorem is stated for objects of the Z-graded
category (where gradings are defined with respect to any choice of line field
n). However, the argument above uses filtrations coming from the boundary
structure of the full formal arc system and from the differential of the twisted
complex, and not from the Z indexing degrees. The argument of [20, Section
4.4] carries over without modification to the Z/2-graded case simply by using
mo(0X \ A) X Z/2 instead of my(0X \ A) X Z as indexing set for the net and
reducing the second factor mod 2 in all the statements. This yields geometricity
for Z/2-graded twisted complexes. (In the special case of a once-punctured
torus, an explicit algorithm for producing the geometric replacement of a Z/2-
graded twisted complex guaranteed by Theorem 4.2 is given in [21].)

REMARK 4.3. Fix a grading structure on S and a full formal arc system A. The
category Twg(A) of graded twisted complexes over A is split-closed, since it
admits a stability condition by [20]; hence Twg.(A) = Tw’grr(fl). There is a
commuting diagram

Twgr(A) —— Tw"(A)
SH*(S)=——=SH*S)

where the top arrow collapses the 7Z-graded structure to its underlying 7./2-
grading and the vertical arrows are open-closed maps (these factor through the
localisation functors from partially to fully wrapped categories). Both vertical
maps hit the unit, by [18], so the image of Twg.(A) in TW"(A) is a split-
generating subcategory. Nonetheless, the only idempotents which are admitted
in Twg,.(A) are those of degree zero. Concretely, a simple closed curve which
separates a genus one subsurface of S containing no punctures cannot be
graded for any choice of line field, since the winding number of the line field
is necessarily non-zero by the Poincaré-Hopf theorem. Such a curve defines an
object of TW"(A) which does not lift to Twy,(A) = Tw,(A) for any choice of
grading structure.
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Theorem 4.2 shows that objects of Tw W(S) are geometric, but not that
objects of the split-closure Tw™ W(S) are geometric. For a line field n on §
we have a Z-graded full subcategory Tw W(S,n) € Tw W(S). The existence
of stability conditions on Tw W(S,n) (as constructed in [20]) implies that it is
split-closed. However, Remark 4.3 implies that one cannot reduce geometricity
of idempotent summands of Tw W(S) to geometricity of objects of Tw W(S, n),
since there are objects in the former which don’t lift to the latter for any choice
of n.

Section 4.4, following a strategy from [5, Appendix B], uses homological
mirror symmetry to prove that the 7Z/2-graded category Tw W(S) is split-closed
whenever § c (C*)? is a very affine curve in a maximally degenerating family.
The next section reviews the relevant mirror symmetry input, due to Heather Lee

[25].

4.3. Homological mirror symmetry for punctured surfaces. We consider a
finite subset A C Z? and a function p : A — R which is the restriction of a convex
piecewise-linear function p : Conv(A) — R. We assume that the maximal
domains of linearity of p are the cells of a “regular” polyhedral decomposition
P of Conv(A), i.e. one with vertex set A and for which every maximal cell is
congruent to a GL(2, Z)-image of the standard simplex. We consider a punctured

surface
S, = {Zc POz = } cC'xC*, t>0

acA

with its natural exact convex symplectic structure. Explicitly, we can take

Zdlogz, Adlogz;.

wr =

2 log(t)l2

The regularity hypothesis ensures that the genus and number of punctures of S,
are independent of the choice of p, and the wrapped Fukaya category W(S;, w;)
is independent of 7 > 0 up to quasi-isomorphism. Let

Log, : (C") — B2, (z1,22) > (log [z1], log [z2).

1
| Tog(1)]

As t — oo the images Log,(S;) Gromov-Hausdorff converge to the “tropical
amoeba”, the 1-dimensional polyhedral complex IT which is the singular locus
of the Legendre transform of the convex function p, defined by

Lp:R2—>R, & max {{a,&) —pla)|a € A}. 4)
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This is combinatorially the 1-skeleton of the dual cell complex of P. The regions
R ¢ R?\IT in the complement of the tropical curve IT are labelled by elements
of A, according to which term in (4) achieves the maximum. Let

Azp ={Em e R* xRIn > L&)}, )
let Z be the corresponding 3-dimensional toric variety, and W : Z — C the
function defined by the toric monomial (0, 0, 1), which vanishes to order 1 along
each component of W=!(0). The mirror to (S, w,) is the Landau-Ginzburg model
(Z, W), i.e. the symplectic geometry of S, is reflected in the singularities of the
toric divisor W=1(0) = Z,. For further discussion and context, see [6, Section
3]. In particular, we point out that the topology of Z depends on the choice
of polyhedral decomposition P, with different choices differing by flops. The
irreducible toric divisors of Z are labelled by the components R* ¢ R?\IT (whose
closures are their moment polytopes), and their intersections are determined by
the combinatorics of the tropical curve.

REMARK 4.4. By considering general elements of linear systems of curves in P
of degree d or in P' x P! of bidegree (a,b), one obtains punctured surfaces of
genus g with € punctures for pairs (g,€) of the form ((d — 1)(d — 2)/2,3d) and
((a — 1)(b — 1),2(a + b)). More generally, one can obtain punctured surfaces
for any (g,€) with 3 < € < 2g + 4 by considering the family of tropical plane
curves depicted in Figure 8. The upper bound € —3 < 2g + 1 on the number
of horizontal legs ensures that the two ‘north-east antlers’ of the curve don’t
intersect near infinity.

3_3{1

Figure 8. Tropical plane curves of genus g with ¢ punctures

For any scheme Z, we will write Perf(Z) for the dg-category of perfect com-
plexes over Z, which is the full subcategory of D” Coh(Z) of objects admitting
finite locally free resolutions. The dg-quotient of the latter by the former is the
derived category of singularities D,(Z). This is not in general split-closed and
its split-closure is denoted D, (Z). The main result of [25] asserts:
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THeOREM 4.5 (Heather Lee). There is an equivalence of 7./2-graded split-closed
C-linear triangulated categories

D™W(S ) = D"y(Zy).

Lee’s proof of this theorem involves writing both sides as limits over restric-
tions to certain simple pieces, and matching the two restriction diagrams in order
to conclude that their limits are equivalent. On one hand, the tropical curve I1
induces a decomposition of S, into pairs of pants (indexed by the vertices of II)
glued together along cylinders (corresponding to the bounded edges of II); on
the other hand, the Landau-Ginzburg model (Z, W) admits a matching decom-
position into toric affine charts (C3,z;zz3). In Section 5.3, we will revisit the
argument in order to apply analogous technology to a closed symplectic surface.
For now, we note the following consequence:

ProposITION 4.6. Let S; C S, be the union of the pairs of pants corresponding to
a given subset of the vertices of I1. Let Z' be the union of the corresponding affine
charts of Z, i.e the toric 3-fold obtained from Z by removing all the toric strata
whose closure does not contain any of the selected vertices, and Z;, = Z' N Z.
Then D™W(S ) = D7,(Z).

Proor. This follows immediately from Lee’s proof of Theorem 4.5 by consider-
ing only the parts of the restriction diagrams that correspond to the pairs of pants
and cylinders in S; on one hand, and to the affine charts of Z’ on the other hand.
The limits of these diagrams compute D"W(S7) and D%, (Z)) respectively, which
yields the result.

REMARK 4.7. Proposition 4.6 allows us to apply Lee’s result to punctured sur-
faces of arbitrary genus and with any number € > 3 punctures. For £ > 2g + 4
the graphs of Figure 8 are not entire tropical plane curves because two of the
legs would need to intersect each other outside of the depicted region of the
plane; however they describe subsurfaces S| of higher genus curves S, C (C*)?,
to which we can apply the Proposition. The mirror configuration Z|) is again a
union of smooth toric divisors of Z', as depicted in Figure 8; the only difference
with the previous setting is that one of the components of Z (corresponding to
the upper-right region of the figure) now arises as the complement of a toric
divisor (e.g. a P! with negative normal bundle) inside a compact component of
Zy, this does not have any incidence on the properties of the derived category of
singularities, and the results below apply without modification to these examples.
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Lee’s proof furthermore matches certain specific objects on the two sides of
the mirror.

Given any irreducible component Zg C Zy, and a line bundle £, — Z(‘)‘, the
push-forward of £, from Zj to Z, defines an object of D, (Zy), which by abuse
of notation we also denote by £,.

ProposiTioN 4.8. The equivalence of Theorem 4.5 matches the sheaves L, with
properly embedded arcs or simple closed curves in S, hence with objects in the
image of TwW(S,) — Tw" W(S,).

Proor (Sketch). This follows from the proof of Theorem 4.5 as given in [25].
Specifically, £, is matched with an arc or curve which lies on the portion of
S whose projection under Log, collapses, as t — oo, to the boundary of the
corresponding region R ¢ R?\IT. The specific arc or curve is determined up
to Hamiltonian isotopy, and hence quasi-isomorphism in W(S,), by its winding
over each of the cylindrical regions of S, which collapse to finite edges of dR?,
and by a normalization condition; the winding numbers are determined explicitly
by the degrees of the restriction of £, to the corresponding projective lines in Zj
(see [25, Section 3.1]). The details of the correspondence will not matter in the
sequel. (The discussion in [25] concerns specifically those objects £, which
arise from powers of the polarization determined by the polytope Az, but the
construction easily extends to general line bundles.)

4.4. Split-closure. Following a strategy from [5], this section will prove that
the categories Tw W(S) and D,,(Zy) appearing in Theorem 4.5 are in fact already
idempotent complete, i.e. split-closed. For a scheme Z, we write K;(Z) for
K (Perf(2)).

ProposITION 4.9. D,,(Z) is idempotent complete if and only if K_(Z) = 0.
Proor. This is [5, Proposition B.1].
Lemma 4.10. Let W : Z — C be as after (5). Then D,(Zy) is split-closed.

Proor. Recall W : Z — C is a toric monomial morphism on a toric 3-fold Z with
central fibre Z; a union of (not necessarily compact) toric surfaces. Let I' C Z,
denote the one-dimensional subscheme of singular points of Zy, and let Zj — Z
be the normalisation and I = T" Xz, Z C Z. Concretely, Z is the disjoint union
of the toric surfaces appearing in Zy, and I is the union of their toric boundaries.
There is an exact sequence

Ko(Z)) ® Ko(T') = Ko(I'") = K_1(Zp) — K_1(Z)) ® K_;(I') —» K_{(I")

(cf. the proof of [5, Proposition B.2], which is itself inspired by [41]). In our
case, Z is a union of smooth surfaces, so K_(Z)) = 0. We claim that
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1. the map K_;(I') — K_;(I"") is an isomorphism;
2. the map Ko(Z)) & Ko(I') — Ko(I”) is surjective.

By [41, Lemma 2.3], for the curves I and I (whose irreducible components
are all P"’s and A!’s) the K_;-group is Z”'® where b, (o) denotes the first Betti
number of the curve. Suppose S, has genus g. Then b (I') = g = b (I"”), and the
natural map I” — T identifies the corresponding cycles of P!’s, which implies
the first statement.

For the second statement, recall that I is the disjoint union of the toric
boundaries I'¥ = I" N Z7 of the components of Z;. For any non-compact
component Z5 C Zy, the map Ko(Zj) — Ko(I'") is surjective. There are
g compact components of Zy, on each of which the corresponding map has
rank two cokernel. This is essentially a cohomological computation, since the
relevant Kj-groups for rational curves and toric surfaces are given by ranks of
cohomology. By classical toric geometry, there is an exact sequence

H*(Z8) — HXT*) - Z* - 0,

where the second map sends each component of I'* to the primitive normal vector
of the corresponding facet of the moment polytope. The cokernel of the first map
is therefore generated by any two irreducible toric divisors whose corresponding
normal vectors form a basis of Z?: for instance, by the Delzant condition, any
two irreducible toric divisors which meet in one point.

Given this, an easy inductive argument shows that the total map from Ko(Z))®
Ko@) to Ko(IT") @ Ky(I'?) is surjective. Namely, pick an ordering of the
components of Z such that, for each compact component Z§ C Zy, there exist
two components of I whose normal vectors generate 7> and which arise as
intersections of Z7 with two other components of Z, which appear before it in
the chosen orderlng (For example, order the components by scanning R? \ TI
from top to bottom: then the edges meeting at a top-most vertex of a compact
component have the requisite property.) We then show that the map is surjective
onto each summand Ky(I'“) by induction on a: for non-compact components the
map Ko(Z5) — Ko(I') is surjective, and for compact components our assumption
yields two generators of Ky(I') whose images, after quotienting by the previously
encountered summands of Ko(I"), span the cokernel of Ko(Z{) — Ko(I'“). This
implies surjectivity.

Lemma 4.11. The sheaves L, of Proposition 4.8 generate D ,(Zy).

Proor. For each irreducible component Z“ of Zy, line bundles over the toric sur-
face Zj generate its derived category D” Coh(Z) [12, Corollary 4.8], so their
images under inclusion generate the full subcategory DZ(, Coh(Z) of complexes
whose cohomology is supported on the component Z{. Consrderlng all compo-
nents, these sheaves taken together generate D” Coh(Zo) the result follows.
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CoRoLLARY 4.12. Let S be a surface with £ > 3 punctures. Then the category of
Z.]2-graded twisted complexes Tw W(S) is split-closed.

Proor. The hypotheses imply that S can be realised as a hypersurface in (C*)?
defined by a Laurent polynomial as in the setting of Theorem 4.5 and Remark
4.4, or as a subsurface as in Proposition 4.6 and Remark 4.7. Lemma 4.10 (which
applies equally well to the examples of Remark 4.7) shows that Theorem 4.5 in
fact gives an equivalence Tw" W(S) =~ D,(Zy). Furthermore, the right-hand side
is generated (and not just split-generated) by objects which lie in Tw W(S), by
Proposition 4.8 and Lemma 4.11. It follows that Tw W(S') is split-closed.

This incidentally shows that, for such a surface S, the category D"W(S) has
finite rank Grothendieck group; the corresponding result is false for a closed
elliptic curve.

CoroLLARY 4.13. Let S be a surface of genus g with € > 3 punctures. Any
irreducible object X € W(S)P¢" with finite-dimensional endomorphism ring is
quasi-isomorphic to a union of immersed closed curves with finite rank local
system.

Proor. By Corollary 4.12, X is quasi-isomorphic to a twisted complex. The ge-
ometricity result, Theorem 4.2, then says that X is quasi-isomorphic to the direct
sum of some immersed arcs and immersed closed curves with finite rank local
systems. However, non-compact arcs have infinite-dimensional endomorphisms
in the wrapped category, so cannot appear.

COROLLARY 4.14. Let S be a surface with at least one puncture. If X € D"F(S) is
a spherical object such that there exists an object Y € W(S) with yHom(X, Y) #
0, then X is quasi-isomorphic to a simple closed curve with rank one local
system.

Proor. For surfaces with ¢ > 3 punctures, this follows directly from Corollary
4.13 and Corollary 3.14. (The homological assumption on X implies that the
geometric replacement obtained by Corollary 4.13 represents a non-zero class in
H\(S;Z).)

If S has fewer than three punctures, we reduce to the previous case by
considering the surface S* obtained by attaching a 4-punctured sphere P to S
along an annular neighborhood A of a puncture, S* = § Uy P. There is a
fully faithful inclusion functor F(§) — F(S*) which comes from viewing S
as a subsurface of S* and observing that none of the holomorphic polygons
contributing to the A.-operations can escape into S* \ S (due to the open
mapping principle). This extends to a fully faithful functor F(S)P¢" — F(S )P,
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and we can view X as a spherical object of the latter category. The inclusion
into S* also preserves the property that X has non-zero yHom pairing with
some other object: if Y is an arc with an end in the annulus A, we extend it
in an arbitrary way across P to obtain an arc in S*. Since S* has at least 3
punctures, we conclude that X is quasi-isomorphic to a simple closed curve y in
S* with a rank one local system &. Given any properly embedded arc 7 contained
in §*\' S (e.g. connecting two punctures of P), the vanishing of the wrapped
Floer cohomology HW*(X, n7) implies that the geometric intersection number of
v with 7 is zero; this in turn implies that 7y can be isotoped away from S* \ S.
Alternatively, Lemma 5.10 below (applied to the object (y,&) € F(S*) and the
waist curve of the annulus A) implies that vy is isotopic to a simple closed curve
in the completion of S. Either way, we conclude that X is quasi-isomorphic to
(7, in D5 (S).

RemMArk 4.15. The homological assumption in Corollary 4.14 is in fact equiv-
alent to requiring that the geometric replacement given by Corollary 4.13 rep-
resents a non-zero class in Hi(S;Z), as needed to apply Corollary 3.14; the
stronger assumption that some object of F(S') has non-zero yHom pairing with
X would amount to non-vanishing in Hi(S, 0S ;7). These conditions are direct
analogues of the Chern character condition that appears in Theorem 1.1 for
closed surfaces; we have chosen this formulation in order to avoid a discussion
of Chern characters and Mukai pairings for open surfaces, which would require
another digression into partially wrapped Fukaya categories.

To extend this result to closed surfaces, we will use equivariant Floer theory
and restriction functors to subsurfaces to prove that a spherical object on a closed
surface in fact comes from some open subsurface.

5. Restriction to open subsurfaces

The first three subsections below review material from [25], which is subse-
quently applied in our setting.

5.1. Dipping Hamiltonians. Let X be a surface (closed or with punctures) and
o C X a simple closed curve. (Given a finite union of disjoint curves o ; one can
consider the corresponding Hamiltonians Hy which dip near each; in an abuse of
notation we will continue to write A for the union of annular neighbourhoods
of the o, and refer to A as an annulus.) Let o € A C X be an annular
neighbourhood of o. Following [25], we consider a sequence of functions

Hk:E—>]R
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which are small perturbations of the constant (say zero) function on £\A but
“dip” inside the annulus. We work in co-ordinates (r,6) € (-2,2) x S! = A such
that the symplectic form is w = cdr A df for some constant ¢ > 0, and define
H(r,0) = c fi(r) where

—ka(r+2)? -2<r<-1
fir) =kar? =2km -1<r<1
—ka(r—2?% 1<r<?2

The time-1 Hamiltonian flow of Hj lifted to the universal cover (-2,2) X R of
the annulus A is then given by

(r,0 - 2kr.(r+2)) -2<r<-1
Gu (1, 0) =3 (r, 6 + 2km.r) -1<r<1
(r,0=2kn.(r-2)) 1<r<?2

Since f; = k.fi, the time-1 flow ¢11‘lk of H; is exactly the time-k flow of H,
and indeed there is a well-defined time-f flow @311 for non-integer times ¢t which
interpolates between the time-1 flows of the Hy. If y C A is an arc {6 = constant}
crossing the annulus, the time-1 Hamiltonian flow of Hj applied to vy yields an
arc which wraps k times clockwise around A, then 2k times anticlockwise, and
then k times clockwise again. (Note that clockwise corresponds to negative Reeb
flow and anticlockwise to positive Reeb flow.) It will be important later to divide

A=A, UA,,

into the inner region A;, = (—1, 1)xS ! in which the wrapping is by positive Reeb
flow, and the outer region A,,; = ((=2,—-1) LI (1,2)) x S' in which the wrapping
is negative.
For a pair of Lagrangians L,L’ C (X,w), and a Hamiltonian H : X — R,
denote by
CF*(L,L';H) := CF*(¢},(L), L")

given by flowing L by the time-1 flow of H; the group is generated by time-1
chords of H from L to L', or equivalently by intersections of ¢}_1(L) and L’. For a
given finite collection of Lagrangians, a generic small perturbation of H (which
we shall suppress from the notation) will make all such chords non-degenerate.
In the setting at hand, given a pair of distinct arcs yp,y; € £ which both cross
the annulus A, the set of intersections ¢11L1k (y0) Ny, will grow in size with k, as
more and more intersections appear in the “wrapping” regions.
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LemmA 5.1. There is n(yy,y1) > 0 with the following property: for any integer
w > n(yo, y1), any point p € ¢11L1,-(7°) Ny, belongs to a unique smooth arc

[w,00) > X, 1 pt) € by, (Yo) N 11 (6)

of transverse intersections between the time t > w flow by H| of vy and 7.
Proor. See [25, Section 3.5, properties (P1,2)].

Lemma 5.1 means that, once any pair of arcs has been sufficiently wrapped,
their intersection points persist (and remain transverse) for all further time, even
though new intersections keep being created (at non-integer times). By using
a cascade model for continuation maps of Floer complexes, as in [29, Section
10e], in which one counts exceptional holomorphic discs and flow-trees for
isolated times (J;, H;) in a one-parameter family of almost complex structures
and Hamiltonians, Lee infers:

Lemma 5.2. For N > n > n(yy,y1), the continuation map

CF*(y0,v1: H,) = CF*(y0,v1: Hy)

maps each generator p to the summand generated by the intersection point which
lies on the smooth arc p(t) of (6).

Similarly, because of the non-existence of exceptional holomorphic discs on
a Riemann surface, a cascade model for higher continuation maps shows that
continuation-type products

CF* (Yk-1, Vs H) ® - - - ® CF* (yo, y1; Hy) = CF* (0, yi; Hy)[1 — k]

with £ > 2 inputs vanish whenever N > kn > n(yy,..., ;) is sufficiently
large. This leads to a well-defined As-inclusion functor CF*(yg,y1; H,) —
CF*(yo,v1; Hy), for N > n sufficiently large, which has no higher-order (non-
linear) terms. It is simplest to formalise this by passing to telescope models for
wrapped Floer complexes.

5.2. Telescope models and A .-ideals. The telescope complex for exact man-
ifolds comes from [7], and a detailed exposition in the monotone case (under
geometric hypotheses which also apply in the case of a closed surface) is given in
[27]. We will incorporate an action-rescaling of generators of Floer complexes,
so we briefly review the set-up; for simplicity we suppress local systems, which
are discussed in [27, Section 3.17].

Let X be closed or convex at infinity, and fix a pair of Lagrangian branes
L;,L; € W(X), which might be compact or cylindrical at infinity. If outside a
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compact set (X, w) = (0X X [1,00),d(r - )) for a contact form a € Q'(9X) and
co-ordinate r € [1, o0), we will fix a Hamiltonian H with H(y, r) = r, and which
has no integer-length chords from L; to L;. The telescope model for the wrapped
Floer complex is then

[e9)

CW (L, L)) = EB CF*(L;, Lj;wH)Iq] (7)

w=1

where q is a formal variable of degree —1 satisfying q> = 0, equipped with the
differential

'+ qy) = (=DMox + (=D)M(qoy + Ky - y) ®)

where d denotes the usual Floer boundary operator, and where & denotes the
Floer continuation map

The part of this complex which does not involve q is the direct sum of Floer
complexes CF*(L;, L;; wH), with the usual Floer differential. For a d-cocycle y,
qy serves to identify y and Ky in cohomology, as expected in the cohomology
direct limit

HW*(L;,L;) = li_n}HF*(L,-,Lj;wH)

Letu : R x [0,1] — X be a non-constant isolated (modulo R-translation)
solution of Floer’s equation d,u + J(0;u —w Xg) = 0, with Lagrangian boundary
conditions u(-,0) € L; and u(-,1) € L;, and asymptotic conditions u — x,y as
§ — —oo, +00 respectively, where x, y are chords of Xy. Usually the differential d
counts isolated such solutions u : § — X weighted by their “topological energy”
Eip(u) = 0 € R, defined by:

Eop(u) = fu*w —dw (wH)dt) = fu*a) + wH(x) — wH(y),
s

s
which is also equal to the geometric energy

1
Egeot) = 5 f ldu — wXy ® dt|l* ds A dt.
N

(There is also an orientation sign, which we will not discuss: for comprehensive
treatments see [7, 2].) Similarly the continuation map & counts isolated solutions
to the corresponding equation where J and wH (in fact, in our case just w)
depend on the parameter s (so there is no R-reparametrization), again weighted
by topological energy (which now provides an upper bound on the geometric
energy, up to an additive constant given by the minimum of the Hamiltonian).
Similar remarks apply to the counts of isolated curves contributing to the rest of
the A -structure, cf. [27, Section 3.11-15].
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REMARK 5.3. Floer’s equation 0u+J(0;u—w Xg) = 0formaps u : Rx[0,1] - X
with boundary on L; and L; can be recast in terms of pseudo-holomorphic
curves with boundary on ¢3VH(Li) and Lj, by considering (s, ) = ¢:V}1’(u(s, 1)).
Continuation maps are then naturally defined via pseudo-holomorphic curves
with moving boundary conditions, or (under suitable conditions), as mentioned
in the previous section, cascades of honest pseudo-holomorphic curves. The
appropriate notion of topological energy is then obtained by transcribing the

above definition through the dictionary between the two viewpoints.

Specialise now to the case where X = X is a surface and we have functions
H, = w - H for a Hamiltonian which dips in some collection of annuli, as
in the previous section. For a given collection of Lagrangians y;, Lemma
5.2 asserts that the continuation maps in the telescope complex (7), (8) are
eventually diagonal inclusions of based vector spaces. To make them inclusions
of subcomplexes, for a Hamiltonian H,-chord x € A lying in the cylinder at
radial parameter r € (-2, 2), introduce the action values

Aw(x) = Hy(r) = r- H,(r)

(i.e. the intercept of the tangent line to the graph of the dipping function at r with
the vertical axis).

Lemma 5.4. Consider the rescaled bases of Floer complexes CF*(y;,vi; H,y,) in
which the chords x inside the cylindrical regions A are rescaled by their action
A, (x). Then for N sufficiently large, the continuation maps K are inclusions for
w > N.

Proor. Given a perturbed holomorphic polygon u : § — X with input chords
X x’j" with weights w, ... ,w’j” and output chord x°* with weight w**, and
supposing the image u(S) is contained in a single connected component of A,
then

J
Etop(u) = Ajpou (xout) - Z -Aw;:” (xjn)
i=1
The Floer solution u contributes to the usual continuation map with weight
gFr®, which means that it takes rescaled generators to rescaled generators.

The key property of dipping Hamiltonians, explained in [25, Section 3.8],
is that they lead to a “localisation” result for holomorphic polygons, which
precludes non-trivial Floer products from crossing the inner region A;, € A of
the annulus in which one wraps. To state this precisely, denote by S the surface
obtained from X \ A;, by reattaching a copy of the corresponding annular region
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A;, to each end (see Definition 5.6 below): S is a (possibly disconnected) surface
with boundary, and there is a natural surjective map S — X which is two-to-one
over A;, and one-to-one outside of A;,.

Fix yp,...,yx € Z which intersect the boundary of A;, minimally; equiva-
lently, we require that the preimages of y; in § do not contain any trivial arcs
connecting 05 to itself. Assume moreover that, if y; is parallel to the annulus A;,
(i.e., isotopic to a curve contained in A;,), then it is actually contained in A;,. Also
fix a collection of Floer generators py, ..., pr—1 wWith p; € CF*(y;,¥i+1; Hy). By
Lemma 5.1, there are unique corresponding generators «(p;) € CF*(y;, yi+1; Hy)
for any N > n, once 7 is sufficiently large.

ProposiTiON 5.5. Fix a collection of Floer generators {py, ..., px-1} as above.

1. For N > n sufficiently large, every rigid perturbed holomorphic polygon
in Z with inputs k(p;) € CF*(y;, Yi+1; Hy) lifts to a perturbed holomorphic
polygon inside (a single component of ) S.

2. For N > n sufficiently large, if a rigid perturbed holomorphic polygon in
X with inputs k(p;) € CF*(y;, yir1; Hy) is not entirely contained in A;, (for
example if at least one p; lies outside of A;,) then its output also lies in the
complement of A,

Proor. These follow respectively from [25, Lemma 3.7], which states that rigid
perturbed holomorphic polygons cannot cross the inner annular region A;,, and
[25, Lemma 3.5], which states that if part of the disc lies outside of A;, then so
does the output. Lee states and proves these results for a specific collection of
objects of F(Z) (and [25, Lemma 3.5] is stated under the stronger assumption
that one input lies outside of A;,), but the same arguments apply verbatim to our
setting, as we now explain.

The proof of [25, Lemma 3.5] considers a rigid holomorphic polygon whose
output lies in A;,, and shows by contradiction that it must be entirely contained in
A;, using a two-step argument. Lee first shows (“Case 17 of the proof in [25]) that
the boundary of the polygon cannot backtrack in A\A;,; thus, if the polygon is not
entirely contained in A;,, some part of it must lie outside of A. Our assumptions
on the y; ensure that, inside A \ A;,, they are locally graphs r = f(6), just like the
curves considered in [25]; this (and the ordering on the slopes of these graphs
imposed by the negative wrapping) is what prevents the backtracking. Next,
Lee argues (“Case 2” of the proof) that the portion of the polygon which lies
outside of A determines the width of the interval(s) along which it intersects 0A,
and as the amount of negative wrapping in A \ A;, increases, the width of the
corresponding interval(s) along which the polygon intersects 0A;, decreases and
eventually becomes negative, preventing it from entering A;, altogether. Our
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assumption that all y; intersect dA;, minimally ensures that no portion of disc
crossing into A can look like a strip with both of its boundaries on the same vy;;
this in turn ensures that negative wrapping does indeed decrease the available
width at the boundary of A;,. Moreover, excluding curves which are parallel to
the annulus but lie outside of A;, ensures that the width of the intersection of the
polygon with dA is completely determined by the collection of input generators
in X \ A. (By contrast, polygons with corners at fixed generators on an annulus-
parallel curve outside A;, can enter the annulus with an arbitrarily large width,
as the boundary of the polygon could wrap around the annulus-parallel curve
arbitrarily many times.)

The proof of [25, Lemma 3.7] uses similar considerations to show that a rigid
holomorphic polygon cannot cross completely through A;,. First, Lee observes
that, when the 7y; are locally given by graphs r = f(0), due the ordering of the
slopes imposed by the positive wrapping inside A;,, any input contained in A,
forces the boundary of the polygon to backtrack, which prevents it from crossing
from one end of A;, to the other. This remains true if we allow curves {r = ry}
contained in A;,, as the local convexity property of rigid holomorphic polygons
ensures that if part of the boundary of the polygon lies on such a curve then it
must backtrack. The rest of the argument is then similar to the proof of [25,
Lemma 3.5]: if a polygon crosses A;,, then regardless of whether A;, contains
the output, its width at the center of A;, is determined by the inputs on one side
of A;, or on the other, and is not affected by the wrapping, while the available
width at one of the two boundaries of A;, decreases with the amount of wrapping
and eventually becomes negative.

5.3. Lee restriction functors. Fix a finite set y,, ..., 7y, of split-generators of
F(X) each of which meets o minimally, and none of which is parallel to o (unless
it is o itself). The category F(Z) embeds into the category of modules over the
A-algebra @; ;CF*(y;,v;; Hy) for any fixed k, and hence into modules over the
telescope algebra @; ;CW*(y;,y)).

Fix an annular neighbourhood oo C A C X of a simple closed curve; as in the
previous section we regard o = {0} x S! ¢ (=2,2) x S! = A as divided into three
sub-annuli, the outer of which comprise A,,, and the inner of which is labelled
Ay As above, we construct a surface S by reattaching a copy of A;, to each end
of 2\ A;:

DEFINITION 5.6.

o [f o is separating, we view X as a union of two subsurfaces with non-
empty boundary which overlap in the central “positive wrapping” region
Ain C A, ie. the subannulus (—1,2) x S' lies inside one subsurface and
(=2,1) x S! lies inside the other. Write S = Siefi US rigns for the disjoint
union of these subsurfaces.
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o [fo is non-separating, we define S to be a surface with two boundary com-
ponents, neighborhoods of which are respectively modelled on (-2,1) X
S' c Aand (-1,2) x S' C A. Thus, S is not strictly a subsurface of X,
but there is an obvious map S — X which is two-to-one over the central
subannulus A;, C A.

Given any finite collection of disjoint simple closed curves in £ and annular
neighbourhoods of those curves, there are associated open surfaces given by
cutting along the annuli in a similar manner. For our purposes, it is sufficient
to focus on the case of a single annulus.

Figure 9. Restriction to subsurfaces

Note that the Hamiltonians H,, considered previously induce the “standard”
positive wrapping at the ends of S and A;,, hence are appropriate for defining
their wrapped categories.

Lemma 5.7. Let A C X be a single annulus. There is an A -restriction functor
Qx5 : F(X) — W(S), and a pair of restriction functors d)ée;zth/] right . W(S) —
W(A;,) coming from the inclusions of A;, into the two ends of S.

Proor. It suffices to construct the functors on a finite set of split-generators 7y;;
recall that we do not allow any of these to be parallel to the annulus (but see
Example 5.9 below for a description of the functor on annulus-parallel curves).
We take telescope models for the respective morphism groups (even for the
compact surface X) and note that, for any given set of inputs, replacing the
telescope complex by a quasi-isomorphic truncation allows us to only consider
arbitrarily large wrapping Hamiltonians.
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Proposition 5.5 implies that the generators which lie outside of A;, form
an ideal for the A-operations in either £ or S, and that quotienting the Floer
complex by this ideal recovers the wrapped Floer complex inside A;, and its
As-operations. Thus the quotient maps

* * left/righ * *
Dy 4, 1 CWi(yiy)) > CW; (vi.yy) and @S CWE(yiyp) = CW5 (i),
where the subscripts denote the surfaces in which we compute Floer cohomol-
ogy, define restriction A -functors with no higher order terms.

Next, we consider the pullback map

Oy : CWi(yi,v) = CWs(vinv))

mapping each Floer generator to its preimage under the map S — X if it lies
outside of A;,, or to the sum of its two preimages if it lies in A;,. Proposition 5.5
implies that this map is compatible with the A, -operations (again after restricting
to sufficiently large Hamiltonians), and defines a A,-functor with no higher order
terms, identifying the wrapped Floer complex in X with the sub-algebra of the
wrapped Floer complex in S consisting of elements in which pairs of generators
in the two copies of A;, C S appear with the same coefficients.

COROLLARY 5.8. F(X)P" is the pullback in the diagram of restriction functors
Tw" F(E) —— TW" W(§) —= Tw" W(A;»).

Proor. This follows directly from Lemma 5.7. After truncating the telescope
complexes to only consider Floer complexes CF*(y;, y;; H,) where the wrapping
n is sufficiently large, CW{(y;,y;) is exactly the subcomplex of CW¢ (y;,y;) of
elements which restrict compatibly under the two restrictions to A;, C S, i.e. the
equalizer of the diagram W(S) ——= W(4,;,) . This description is compatible
with the A -operations since the arrows are given by quotienting by an ideal.

ExampLE 5.9. Let a and b be two simple closed curves which cross an annulus
A, meeting once just outside the annulus, and differ from each other by a Dehn
twist parallel to the annulus (cf. the first part of Figure 10). We consider the

twisted complex X = a LN b, which is isomorphic to a simple closed curve
v' running parallel to the annulus, as can be seen by considering the Lagrange
surgery of a and b at p (the red curve in Figure 10). (This is the most natural
way in which an annulus-parallel curve can be replaced by a twisted complex
to which the machinery of Lee restriction functors can be applied). The Lee
deformation effects the change in the second part of Figure 10, which gives a
quasi-isomorphic model

PimaintPeyi+Ply
X >~ q ————
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Continuation « : p = Pmain + Peyl + Péyl

Figure 10. Continuation maps associated to dipping Hamiltonians

Indeed, the deformation creates two holomorphic strips contributing to 0(Pimain)
and the image of p under the continuation map is K(p) = Ppain + Peyl + P.. \
(up to a rescaling of the generators). Restricting a and b to the inner annulus
A, yields two isotopic arcs, and k(p) restricts 10 pey + p;yl, so Dy 4, (X) =
Cone(pey + p;yl) € TwW(A;,) is isomorphic to a simple closed curve vy, in the
Liouville completion of A;,. Just like the simple closed curve y' that represents
X in X, this curve may or may not actually lie inside A;,; in the latter case, the
difference with the naive restriction of y’ illustrates the need to exclude such
annulus-parallel curves in the construction of Lee restriction functors.

The curves a and b restrict (or rather lift) to arcs in the open surface S,
representing isomorphic objects of W(S). Denoting by piesy and pyigns, resp. p;eﬁ
and p;igm the two preimages of peyl, resp. p:,yl in the ends of the open surface S,
the twisted complex ®s 5 (X) is the mapping cone of puain + Plefi + p;eﬁ + Dright +
p;l.ght, which is isomorphic to the direct sum of two boundary-parallel simple
closed curves in the completion of S. (If vy’ lies inside A;, then these are the lifts
of v’ to S; otherwise one curve is the preimage of y' and the other one lies past
the boundary of S inside the other end of the completion). Further restriction
to either copy of A, yields the mapping cone of pey + p.., in TwW(A;,), as

’
cyl
expected.
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By contrast, if a and b did not run parallel to each other in ¥\ A, so that no
holomorphic strip connected pqin to O( p;yl) in the second part of Figure 10, then
k(p) would be pin + peyi, whose restriction to A;, is pey, a quasi-isomorphism
between the restrictions of a and b; ®s 4, (X) would then be acyclic. This is
as expected, since in that case the Lagrange surgery of a and b at p can be
pulled through A;, and away from it altogether. Meanwhile, the twisted complex
D5 5 (X) becomes the mapping cone of piain+ Piefi+ Prights Where piefs and pyig, are
the preimages of pcy in the ends of S, it can be checked that this is isomorphic
to a simple closed curve in £\ A;, C S, obtained from a and b by performing the
surgery in X and sliding the result through A;, and away from it.

5.4. Applications of restriction. We continue with the notation of the previous
subsection. Given a simple closed curve y C X, we consider an annulus A
with waist curve v, and the Lee restriction functors s s : F(X) — W(S), and
similarly (I)lse{;i "8 and Dy 4,

Lemma 5.10. Let Y € TwF(X). If HF*(Y,y) = 0 then Oz 5(Y) and Os 4, (Y) are
isomorphic to direct sums of immersed closed curves with local systems in the
completions of S and A;,.

Proor. As in Section 5.3, we consider the equalizer diagram

CW3(Y,y) —— CW;(Dy5(Y), Dys () == CW; (@4 (v), @ (),
and recall that the restriction to A;, is the quotient of CWg(Y,y) by the Au-
ideal spanned by the generators which lie outside of A;,. Since y C A;,, all
the generators of CWS(Y,y) lie in A;,, and Proposition 5.5 (2) ensures that the
bigons contributing to the Floer differential are also entirely contained in A;,.
Therefore, C ij (x4, (Y), Os 4, (y)) is isomorphic to CW (Y, y), hence acyclic.
It then follows from the equalizer diagram that CWg(®@s5(Y), @5 5(y)) is also
acyclic.

Next, we observe that @5 s (¥) = Yieft U Yright 1S the disjoint union of the two
boundary-parallel simple closed curves obtained by lifting y to the open surface
S. On the other hand, the restriction @5 5(Y) =~ I'y has a geometric replacement
I'y in the Liouville completion of S, which is a union of immersed arcs and
curves with local systems, by Theorem 4.2. The vanishing of HF”*(Y,y) implies
that CW*(I'y, Viert) and CW*(I'y, Yrignt) are acyclic.

We claim that I'y contains no arcs. Indeed, Assume that I'y contains an
immersed arc 7 which reaches the boundary component of S adjacent to yies. As
noted in Remark 2.7, the argument of Lemma 2.6 constructs an immersed arc 1’
which is unobstructedly regular homotopic and hence quasi-isomorphic to 77 and
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intersects s minimally, so that there are no bigons contributing to the Floer
differential on CF* (17, y1rt)). However, the acyclicity of CW*(I'y, yiesr) implies
that of CF*(1, yiett), since 717 is a direct summand in I'y. Therefore 77 N yier = 0,
and the arc i’ is entirely contained in the cylindrical region that lies beyond
Viee in the completion of S, hence trivial as an object of W(S). Arcs which
reach the other boundary component of S are similarly excluded by considering
CW*(Ty, Yright)-

It follows that the geometric replacement I'y € W(S) is a union of immersed
closed curves with local systems in the completion of S. Moreover, as noted at
the end of the proof of Theorem 4.2, it can be assumed that all non boundary-
parallel curves in I'y are strictly contained in the interior of S, or more precisely,
in the subsurface X \ A;, C S (see Remark 2.9); whereas the boundary-parallel
curves can be “straightened” to run parallel to y.

Next we apply the restriction functors (Dlef 7ight 1 Ty. The non boundary-
parallel summands are represented by curves in > \ A;,, and hence mapped to
zero. Meanwhile, the boundary-parallel curves which lie outside of A;, need to
be resolved by mapping cones as in Example 5.9 in order to apply the machinery
of Section 5.3; the upshot is that curves which are parallel to yief, (resp. yiign) are

mapped by chefr rtght

(resp. O ) to closed curves in the completion of A;,.
CoroLLARY 5.11. Let Y € TwIF(X). If HF*(Y,y) = O then Y is quasi-isomorphic

to a direct sum of immersed closed curves with local systems in X.

Proor. We start again from the geometric replacement I'y € W(S) of @y s(Y)
constructed in the proof of the previous Lemma, which is a direct sum of
immersed closed curves with local systems in the completion of S. Since

lef ! (Ty) = ""’m "(Ty) € W(Ai), the boundary-parallel summands of Ty are
the same” Curves ‘near the two boundaries of S .

Define ¥ € F(Z) to be the reduced projection of I'y from S to X, i.e. the direct
sum of the non-boundary-parallel summands of I'y (which by Remark 2.9 can be
assumed to lie in £ \ A;,), and for each pair of boundary-parallel summands of
I'y, a curve in £ which runs parallel to the annulus A and differs from the waist
curve vy by the same amount of symplectic area. (Recall that “parallel” means
“homotopic to a curve in A”: if vy is separating, achieving the desired amount of
symplectic area might require a non-embedded regular homotopy, cf. Lemmas
2.8 and 2.10). By construction, the restriction @5 ¢ (¥) (defined by first resolving
the annulus-parallel summands of ¥ as in Example 5.9) is isomorphic to T'y.
Thus, the two restriction diagrams

Oy (V) —= D5 4, (Y) and Dy 5 (V) =—= Dx4,, (V)
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involve quasi-isomorphic objects of W(S) and W(A;,) (namely, I'y and its
restriction to A;;). In order to conclude from Corollary 5.8 that Y and ¥ are
quasi-isomorphic in Tw JF(X), we need to verify that the restriction maps in the
two diagrams are also the same.

More precisely, @y s(Y) =~ I'y determines a Yoneda module over W(S),
whose pullback along @y s is a F(X)-module which we denote by Y. Similarly,
D5 4, (Y) € W(A;,) determines a Yoneda module over W(4;,), and we denote by
Yy, its pullback along ®s 4. The functors @/ "

S A, induce two F(X)-module
homomorphisms

in*®

gl Y ——= Y, 9)

and Corollary 5.8 states that the Yoneda module associated to Y is isomorphic to
the equalizer of this diagram in the category of J(X)-modules.

Assume for now that all annulus-parallel curves in I'y actually lie inside A;,
(near both ends of S). Then, using the correspondence between holomorphic
polygons in X and in § given by Proposition 5.5, the module Y5 € mod-F(X)
can be represented by a direct sum Y5 of curves with local systems in X, namely
the (total) projection of I'y under the map § — X. This differs from ¥ in that
Y5 contains two copies of each of the curves which lie in A;,. Meanwhile, Y A
is represented by the direct sum ¥;, of the curves contained in a single copy
of A;,. Since the non-boundary-parallel summands of I'y are orthogonal to the
curves in A;, (i.e., their Floer cohomology vanishes), the morphisms from ¥ to
Y;, which represent the module homomorphisms ¢lyef "right must be supported on
the summands which are parallel to A;,. For each annulus-parallel curve o C A;,
which appears as a summand of ¥, the restriction ®s (o) is a disjoint union
Oleft U Trigne Of the two preimages of o in the ends of §' (each of which appears
as a summand in 'y, and hence in ¥s). By considering the diagram

CW(Y, ) —— CW; Ty, et U Grigh) —=3 CW;, (@0, (V),0),  (10)

we find that ¢l;f " maps the summand o, of ¥ isomorphically to the summand

o of ¥;,, and vanishes on Oright; and vice-versa for g{);igh’. This implies in turn
that the equalizer of the diagram (9) is isomorphic to ¥.

When T'y contains annulus-parallel curves which lie outside of A;, the
argument is essentially the same, but now requires a detour via the construction
of Example 5.9 to show that the modules Y5 and Y;, are represented by the total
projection Y5 of I'y (containing two copies of each annulus-parallel curve) and
by ¥;, as in the previous case; and once again to analyze the restriction diagrams
(10) for each annulus-parallel summand o of .
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ReMARk 5.12. Instead of dealing with annulus-parallel curves which lie outside
of Ay, via Example 5.9, one might try to simply enlarge the annulus A;, inside
X in order to ensure that it contains all of the annulus-parallel curves whose
Floer cohomology with Y is nonzero. However, this is not always possible, as
the area of an immersed cylinder bound by a pair of annulus-parallel curves can
be greater than that of the whole surface %.

When Y is an idempotent summand rather than a twisted complex, a similar
result holds provided that Y pairs trivially with two simple closed curves:

LemMa 5.13. Let Y € TW" F(Z). Let y1,y> C T be two disjoint simple closed
curves whose homology classes are linearly independent, and denote by A1, A,
(disjoint) annular neighborhoods of vi,v,, and by S the surface obtained by
cutting T open along both annuli. If HF*(Y,y,) = HF*(Y,y2) = 0 then @z 5(Y)
and s 4, (Y) are isomorphic to direct sums of immersed closed curves with
local systems in the completions of S and A, jy.

Proor. The argument proceeds as in the proof of Lemma 5.10, considering two
annuli parallel to y; and y,. The assumption that y; and y, are homologically
independent ensures that cutting £ open along both annuli yields a connected
surface with four punctures, so that the existence of a geometric replacement I'y
for @y g(Y) is guaranteed by Corollary 4.13.

COROLLARY 5.14. Let Y € Tw" F(X). Suppose there are disjoint, homologically
independent simple closed curves y|,y, C X with HF(Y,y;) = 0. Then Y is
quasi-isomorphic to a direct sum of immersed closed curves with local systems
inZX.

Proor. This follows from Lemma 5.13 by the same argument as Corollary 5.11.

COROLLARY 5.15. Let X € D™F(X) be spherical with ch(X) # 0. If there are
two disjoint homologically independent simple closed curves vy, j = 1,2, with
HF*(X,y;) = 0, then X is quasi-isomorphic to an embedded simple closed curve
with a rank one local system.

Proor. The previous corollary gives a geometric replacement for X; since a
spherical object is indecomposable, the replacement consists of a single im-
mersed curve o with local system. The assumption that ch(X) € H(X;Z) is
non-zero implies that [o-] € H{(Z;Z) is non-zero. Corollary 3.14 then implies
that o is embedded and the local system has rank one.
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6. Group actions

6.1. Finite group actions on categories. Let G be a finite group. Following
[31, 33], we say G acts strictly on a strictly unital A.-category A if there is an
action of G on Ob A, and corresponding maps between morphism spaces which
strictly satisfy the relations of G and for which the A-operations are strictly
equivariant. An action of G on A induces one on the category A" of A-
modules over A, which is a strictly unital A, -category. Necessarily G will then
preserve the strict units.

A strictly equivariant object Y of A is one for which we have closed
morphisms

py(g) € hom) (g(Y),Y), pylec) = ey

satisfying
1 (py(8), & - py() = py(gh)

for all g,h € G. Any object Y € A which is fixed by G, meaning g(Y) = Y for
every g € G, defines a strictly equivariant object for each character y : G — K*
via pj(g) = x(g)ey.

In the case of A,-modules, a strictly equivariant structure on M € A"¢
is given by A,-homomorphisms p}w(g) € homOAmd(g(M),M) which generally
include higher order terms. The special case where the module homomorphisms
py,(g) are ordinary linear maps, with all higher order terms identically zero,
corresponds to the situation where M is equivariant in the naive sense, i.e., there
is a linear action of G on the vector spaces underlying M, with respect to which
the structure maps of M are equivariant.

A weakly equivariant object is one which satisfies the cohomological ana-
logue of strict equivariance, i.e. there are classes [ply(g)] € Homz( A)(g(Y), Y)
which satisfy

loy(eM] = [py(@]- (g - [pyWD,  [pylec)] = ey.

If Y and Y’ are both weakly equivariant, then H*(hom (Y, Y”")) becomes a G-
representation via a — [p;,(g)] (g-a)- [p;(g)]_l.

Lemma 6.1 (Seidel). Assume K has characteristic zero. If Y is a weakly equiv-
ariant object of A or AP¢', then the Yoneda module of Y is quasi-isomorphic to
a naively equivariant module.

Proor. This follows from [33, Propositions 14.5 & 14.7] (which in turn are
direct analogues of [31, Lemmas 8.2 & 8.3]; in particular they do not rely
on the problematic Lemma 13.7 in op. cit.). Proposition 14.5 is essentially
an obstruction theory calculation (see also [31, Section 8c]) showing that, if
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H'(G; Hom},‘(;l (Y,Y)) = 0 for r > 2, then a weakly equivariant structure can
be upgraded to a homotopy equivariant (also known as coherently equivariant)
structure. In our case, the cohomology H'(G; M) vanishes for r > 0 whenever
G is finite and M is a G-module in which |G| is invertible in M, in particular
for all modules in characteristic zero. Once this is done, Proposition 14.7 of
[33] constructs a naively equivariant A,,-module (see also [31, Section 8b]; the
rationality requirement which imposes an extra assumption on [31, Lemma 8.2]

is not relevant here).

6.2. Finite actions and coverings. Let G be a finite abelian group with dual
group G¥ = Hom(G, C*). Given a surface X, recall that H'(Z; C*) acts on the
Fukaya category F(Z) by tensoring by flat (Novikov-unitary) line bundles. Thus,
a homomorphism from G to H'(Z; C*) determines an action of G on the Fukaya
category JF(X), where each g € G acts by twisting by a local system % (with
8182 ~ 81 ® £82). The main example that we consider is the following:

LemMA 6.2. A non-zero class a € H'(Z; Z) defines a Z.] p-action on F(Z), for any
p=2

Proor. The action on objects is given by tensoring by flat unitary line bundles
with holonomy given by the class defined by a in Hom(rr;(£); Z/p). Choosing
the Floer perturbation data to be independent of local systems in the construction
of F(Z) ensures that this action is strict. (Note that, in general, there is a standard
trick to make a finite action strict on a quasi-isomorphic model of F(Z), by
passing to a category whose objects are pairs of an object of F(Z) and an element
of the given finite group, and choosing perturbation data independently for such
pairs. See e.g. [36, Appendix A] for a closely related case.)

A homomorphism from G to H'(Z;C*) is the same thing as an element of
H'(Z;GY), or a homomorphism u : 7;(X) — GV. Thus, it determines a finite
Galois covering & — X with deck group GV.

Given an immersed curve with a local system (£,y) € F(X), the action of
g € G twists & by the rank one local system (li , whose holonomy is (u([y]), g)-
Thus, if & has rank one then the G-action preserves the isomorphism class of
(¢,7) if and only if [y] € Kerp, i.e. if and only if v lifts to the covering £. The
set of G-equivariant structures on (£,7) is then a G¥-torsor, and so is the set of
lifts of (£,7) to Z. To be explicit, fix a base point in X, and a trivialization of the
G-family of local systems {£¢} at the base point. The choice of an arc connecting
v to the base point then determines on one hand, a trivialization of the collection
of local systems {{%} over v, and hence a G-equivariant structure on the object

(&,7) € F(X) induced by the isomorphisms & ® g“‘f; — &; and on the other hand,
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a lift % of y to £. Moving the base arc by a loop along which u takes the value
x € GV, we obtain another G- equivariant structure on (£, y), which we denote by
(&,v)Y, where the isomorphism & ®{| — ¢ is modified by x(g) € C*; and another
lift #¥ of y to ¥, which differs from ¥ by the deck transformation y.

Let {y;} be a finite collection of split-generators of F(X), whose homotopy
classes all lie in Keru. (One way to construct such 7y; is to choose simple
closed curves in £ which satisfy Abouzaid’s split-generation criterion for F(Z),
and project them down to X. Compatibility of the open-closed map with the
projection ¥ — X implies that the corresponding immersed curves in ¥ split-
generate F(X).) Fixing base arcs as above, we equip each y; with a preferred
(strict) G-equivariant structure, and a preferred lift ¥; to Z.

The chosen G-equivariant structures on y; equip the A-algebra

A= CFry)
i

with an action of G. Explicitly, g € G acts on each Floer generator p € y; N y;
by multiplication by x,(g), where y, € G" is the image under u of the loop
formed by connecting the intersection point p to the base point along the base
arcs for y; and y;. The G-equivariant part of the Floer complex, CF Slyi,y s
is then generated by those intersections for which y, = 1. Those correspond
exactly to the intersections between the chosen lifts of y; and y; to %; therefore
CF G(yi,yj) ~ CFs(¥;,%;). Varying the G-equivariant structures by y;,y; € G,
CF G()/f",)/;") is generated by those intersections for which y, = x;'x;, and
isomorphic to CF i()”/i‘/", 7: ’). These isomorphisms are compatible with the A,-

operations (if the Floer perturbation data are chosen consistently in X and £), and
give an isomorphism of A.-algebras

A= P cr@ .7 = P CFoul ). (1)
LJXisX LJXiX

Recall from [34, Ch. 4c] that the semidirect product A.-algebra A x G is
defined by considering the tensor product A ®x K[G] of A with the group ring
of G, with the operations

Uoo(Qa ® Gas - - a1 ® 81) = % (aas 8a * Qa-1,(8aga-1) * Ga—2s-- ) ® (8 - - - &1)-

Recalling that each y € G" determines an idempotent e, = IGI"' S x(g) g €
K[G], an easy calculation shows that the linear map ¢ : A — A x G which
takes a € CFG()/IY’,)/;’) CAtogpa =a® et € CF(yi,v)) ® et C AXG
defines an isomorphism of A-algebras. Summarizing, we have:

ProposiTioN 6.3 (Seidel [34, Ch. 4 & 8b]). A X G ~ A.
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An immersed curve with local system Y = (£,y) € F(X), with a G-equivariant
structure (i.e., a choice of isomorphisms ¢ ® qu — &), determines a module

Yey = EBl. CF(y;, Y) over the A -algebra A, which is G-equivariant in the naive
sense (i.e. G acts linearly on Y ,, and all the module maps are equivariant). A
naive G-equivariant structure on an A-module M equips M with the structure of
a module over A X G, with structure maps given by

um, ai®g4, . .. a1®g1) = (7" ... g7 )y (m, ag, garaa-1, (8aga-1)Ga-2s - - .)-

In the case of Y, this has a geometric interpretation in terms of the lift ¥ of ¥

to X:
Yem = P CFOGE. V) = D CFsG. 1)
LYi LXi
as modules over A x G ~ A.

Transcribing these statements in the language of modules over A,-categories,
rather than the endomorphism algebra of a given set of generators, a G-equivariant
structure (in the naive sense) on a module over F(Z) determines a lift to a module
over F(£), and for Yoneda modules of equivariant objects of F(X) this coincides
with the geometric lifting under the covering map £ — X.

ExampLE 6.4. Consider the action of G = Z/p on F(X) determined by a class
a € H'(X;Z) as in Lemma 6.2, and let (¢,y) € F(X) be an immersed curve with
a rank one local system.

1. If (a,ly]) = O, then (¢,y) is strictly equivariant for G, and its Yoneda
module Yz, is equivariant in the naive sense. A choice of equivariant
structure corresponds to a choice of lift of y to £, and the corresponding
lift of Y, to FE)m is then the Yoneda module for the chosen lift of

(&)

2. If{a,y]) = 1 (oris coprime with p), then the the Yoneda module of (¢,7) is
not equivariant, but its full orbit Y,y X G = @g G dg(ey) admits a unique

equivariant structure. The lift of this equivariant module to F (E)ymed s the
Yoneda module for the lift of (&,7y) to X (which consists of a single curve
covering 'y p-fold).

Generalising Example 6.4, we wish to prove that an object X € D"F(X)
with {(a, ch(X)) = 0 admits a G-equivariant structure. However, it is not obvious
why the purely homological hypothesis on X should force it to be even weakly
equivariant. To prove this we will embed the finite group action into a G,,-action,
where the homological condition will yield infinitesimal equivariance. General
machinery due to Seidel then implies weak G,,-equivariance, and a posteriori
G-equivariance.
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6.3. Categorical G,,-actions. Let A be a proper Z/2-graded A, category with
a strict G,,-action. There are several notions of a (,-action on a module
M € A™ Briefly, following [31] one says:

1. G, acts naively if it acts linearly on the underlying vector spaces of M,
with all the structure maps being equivariant.

2. G, acts strictly if there are higher order (in A) terms to the action, i.e. for
each g € G,, we have

Py = oy M® A > g" M}y € hom)),,.,(M, g" M)

satisfying unitality and cocycle conditions, and a rationality condition
that the maps pi,’d“ are coherently induced from a single map p'**! :

M e A? - K[G,,] ® M[-d].

3. G,y acts weakly if there are module homomorphisms p; as above, for which
the unitality and cocycle conditions hold at the cohomological level (in
HO ( ‘Amod))'

4. G, acts up to homotopy if there are higher order (in G,,) terms to the
action, i.e. we now have maps pf('gl_ € .homil‘m’m(M, gigs- &M,
which should again satisfy appropriate unitality, cocycle and rationality
conditions.

A naive action yields a strict action with no higher order terms (so p;’d“ =0

for d > 0), whilst a strict action on a module gives a naive action on the quasi-
isomorphic module M ® 4 A, so these are essentially equivalent notions.

Unless A admits a set of generators which are strictly fixed by G,,, the
notion of rationality is best formulated in the algebro-geometric language of [35,
Appendix A]. We will consider situations where G, acts freely on the objects of
A and strictly on morphisms. Concretely, in the case of Fukaya categories, this
is achieved by setting the objects to be pairs (L, g) where L is a Lagrangian brane
and g is an element of the group; the object (L, g), also denoted g(L), is obtained
from L by the action of g and equipped with Floer perturbation data which is
pulled back from that for L.

A K[G,,]-module is just a quasicoherent sheaf over K*, hence has stalks at
points g € K*. We will identify K[G,,]® with K[G?], and note there is a natural
morphism K[G,,] — K[G,,]®¢ dual to the total multiplication map GX¢ — G,,.
A rational G,,-action on A (with G,, acting freely on objects and strictly on
morphisms) is then, by definition, an A-category A, with the same objects as
A, in which
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1. the morphism groups homy(Xo, X;) are Z/2-graded projective K[G,,]-
modules, whose fibre at g € G,, is hom 4 (Xo, X;), := hom 4(g(Xo), X1); us-
ing strictness, hom 4 (g0(Xo), g1(X1)) = homy (Xo, X1) for all Xy, X; €
ob A and go, g1 € G;

gl_]go

2. the A..-operations define K[G]-module maps

: hom g (Xy-1, Xa) ®:- (Highom A(Xo, X1) = K[GX] K[% ]hom A(Xo, X)[2—d]

o

which satisfy appropriate associativity equations, and a unitality condition
(fiberwise, these are just the usual axioms for A to be an A-category);

3. for all Xy, X; € ob A and gg, g, € G,,, the K[G,,]-module

hom 4 (g0(Xo), g1(X1))

is the pullback of hom 4 (Xo, X1) under multiplication by gflgo, and the Ac-
operations on these modules strictly coincide under these identifications.

(A small difference between our exposition and [35, Appendix A] is that

Seidel takes objects of A to be pairs consisting of an object of A and an element
of G,,, i.e. the objects of A are G,,-orbits of objects of A; the additional objects in
our version of A contain no additional information, since their morphism spaces
and the A, -operations on those are completely determined by condition (3)).
We will consider the case where A is proper, i.e. the cohomology groups
H*(hom (Xo, X1)) are bounded K[G,,]-modules and finitely generated in each
degree; this implies properness of A.
Informally, an object X € A is homotopy G,,-equivariant if it is isomorphic
to all of its images g(X) for g € G,,, in a manner which is coherent up to higher
homotopy data. Formally, a (rational) homotopy equivariant structure on X is a
sequence
oy € KIGY] @k, hom (X, X), i>1

which, stalkwise, give elements

Py grner € hOML(gi - 21(X), X)

which satisfy the following associativity equations [35, Appendix]:

d ¢ ig i Z 1k i1 _
Z ’uﬂ(pX,gi ,,,,, iy +tig+1” ’pX,gil ,,,,, gl) + (=D Py, iseees@k+1 8seens81 0

d>1 1<hei
i 4-4ig=i

and the unitality condition [p)l(,e] = [ex] € H(hom, (X, X)).
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In this language, a weakly G,,-equivariant structure on X is the data of p}
which satisfies unitality, and for which there exists p% such that the first two
associativity equations hold, namely

1 .1 2,1 1 1 1,2
'ufl(pX,g) =0 and 'ufl(pX,gz’pX,gu) ~ PXgg +“A(pX,gz,g1) =0.

The machinery in [31, Section 8] upgrades weak equivariant structures to
homotopy equivariant structures using an obstruction theory argument, and turns
homotopy equivariant objects into naively equivariant modules. For applications,
the essential point is therefore to find criteria for the existence of weak actions.

6.4. Infinitesimal equivariance. Denoting by g the Lie algebra of G,,, we have
a short exact sequence of K[G,,]-modules

0-g" > K[G,/I?>K—0

where 7, is the maximal ideal at the point ¢ € G,,, and K = K[G,]/Z..
Tensoring this with the (projective, hence flat) module hom4 (X, X) and con-
sidering the resulting long exact sequence in cohomology, the image of [ex] €
H°(hom 4 (X, X)) under the connecting morphism yields an element

Def% € g ® H'(hom 4 (X, X)). (12)
If this vanishes then we say X is “infinitesimally equivariant”.

ProposITION 6.5. Suppose A is proper, has a rational G,,-action (in the sense
of the preceding section), and K has characteristic zero. If X is infinitesimally
equivariant and simple, i.e. H°(homy (X, X)) = K, then X admits a weakly
equivariant structure.

Proor. The proof follows along the same lines as Seidel’s argument for the
case K = C, which is stated as [35, Theorem 2.7 and Corollary A.12] for
A -categories with naive and rational C*-actions, respectively. Rationality of
the action and properness imply that the cohomology H°(hom 4 (X, X)) defines a
coherent sheaf over G,,, and infinitesimal equivariance equips that sheaf with an
algebraic connection. More precisely, a choice of primitive

defy € ¢" ®hom’ (X,X) for Def} =0¢g"®H'(homu(X,X))

equips the sheaf with a distinguished connection (cf. [35, Lemma A.3] and [31,
Section 7a]). In characteristic zero, any coherent sheaf admitting a connection is
locally free [10, Corollary 2.5.2.2], so the sheaf # = H’(hom (X, X)) is locally
free of rank one, i.e. a line bundle.

Over C, the construction in [31, Lemma 7.12] uses surjectivity of the expo-
nential map to modify the algebraic connection and trivialise the monodromy. A
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covariant constant section taking the value [ex] at e € G,, then provides a G,,-
family of cohomological isomorphisms which obey the group law, and hence
defines a weak G,,-action (which can be lifted to a homotopy G,,-action using a
general obstruction theory argument).

Following [33, Remark 14.22], we instead argue as follows. The total space
of the line bundle # carries an action of an algebraic group G which fits into an

extension
l>AutX) -6G6-G, —»1

where the subgroup Aut(X) = H°hom (X, X)* acts by multiplication on the
fibres , = H” hom(gX, X), and the quotient G,, acts on the base by multipli-
cation.

Since X is simple, Aut(X) = G,,. Over any perfect (e.g. characteristic
zero) field, the group of self-extensions Ext!(G,n, G,,) = 0, cf. for instance [13,
Chapter 5]. Therefore G = G,, x G,,, the extension splits, and the action of G,
on itself by multiplication admits a lift to an action of G,, on the total space of
¥ . The orbit of [ex] € F, then provides the desired G,,-family of cohomological
isomorphisms.

6.5. Gy-actions from the Picard group. We now apply the machinery of
rational G,,-actions to the setting of Fukaya categories of surfaces. We first state
the result for a closed surface X of genus g > 2, which is our main focus.

PROPOSITION 6.6. A choice of class a € H'(X; Z) defines a rational G,,-action on
F(X), for which F(Z) is proper in the sense of Section 6.3.

Proor. Choose a closed differential form o € Q!(Z;R) representing a, and let
V e I'(TZ) be the symplectic vector field w-dual to a. Consider the actions of
s € R and of A € U, on Lagrangian branes in X given by

o the symplectomorphisms ¢° associated to the time s flow of V, with flux
s - a, and

e twisting by the line bundle £, — X which is topologically trivial and has
connection d + A - @ and hence holonomy exp(4 - @).

Using the fact that Ly(a) = 0, one can check that the actions of R and
Uy strictly commute, and define an action of G,, on the set of Lagrangian
submanifolds with local systems, where ¢°A € G,, acts by ¢° o (R&)).

We now enlarge the Fukaya category, following [29, Section 10b], to allow
pairs (L, g) with L a brane and g € G,,, where the perturbation data for (L, g) is
the g-pullback of that for L. Then G,, acts strictly on Lagrangian branes, via A-
functors with no higher order terms. The ideas of Section 3.3, cf. [32] and [24],
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and in particular Theorem 3.10 imply that the morphism groups CF*(g(L), L")
form analytic sheaves of complexes over G,,. We will explain below, using ideas
from Section 5, that these morphism groups can in fact arranged to be the stalks
of (infinite rank but cohomologically proper) projective K[G,,]-modules. The
fact that the A, -operations are compatible with the group operation follows from
strictness of the action.

The reason why the projective K[G,,]-modules homgs)(L, L") typically have
infinite rank, is that the Floer complexes CF*(g(L), L") have unbounded rank,
since deforming L by an increasingly large amount of flux may create unbound-
edly many new intersections with L’. These new intersections come in cancelling
pairs, and because X has genus at least two, only finitely many such pairs of in-
tersections ever contribute to the Floer cohomology HF*(g(L), L"), with the rest
belonging to summands which remain acyclic for all g. Still, in order to define
the chain-level A, -structure it is simpler to work with the whole Floer complex.
In our setting, there is a direct geometric approach to turning the Floer complexes
CF*(g(L), L") into projective (in fact, free) K[G,,]-modules.

Namely, represent the Poincaré dual to a (or some multiple of it, if a is not a
primitive element of H'(Z;Z)) by a simple closed curve o, and pick the 1-form
a and vector field V to be supported in an annular neighbourhood o C A C %,
which we identify with (=2,2) x S! as in Section 5.3, with « pulled back from
(=2,2) so that V is everywhere parallel to the S !-factor. As in Section 5.3, only
consider objects of F(X) which are not parallel to the annulus A and intersect its
boundary minimally (annulus-parallel curves get replaced by twisted complexes
as in Example 5.9). Then the Lee perturbations commute with the G,,-action,
and the various properties of the Floer complexes CF*(L,L"; wH) for large w
carry over to CF*(g(L),L";wH) as long as w is sufficiently large compared to
the valuation of g € G,,. Because the continuation maps CF*(g(L), L'; wH) —
CF*(g(L),L’; (w + 1)H) for sufficiently large w are chain-level inclusions which
define strict A,,-homomorphisms with no higher order terms, the telescope mod-
els for CW*(g(L), L") = 1i_r>nC F*(g(L), L’ ; wH) can be replaced with naive lim-
its: define hom(g(L), L") to be the union of the increasing sequence of com-
plexes CF*(g(L), L’ ;wH) forw = N,N + 1,... starting from sufficiently large
N > val(g), identifying each with a subcomplex of the next by inclusion. Equiv-
alently, declare the generators of hom(g(L), L") to be the arcs of intersections
given by Lemma 5.1, with A.-operations given by counts of perturbed holomor-
phic discs for any value of w which is sufficiently large relative to the given inputs
and the valuation of g, corrected by action rescalings as in Lemma 5.4. There is
an obvious identification between generators for varying values of g, and the fact
that the A.-operations vary algebraically with g € G,, is a direct consequence of
Lemma 3.8; thus the Floer complexes constructed in this manner naturally define
projective K[G,,]-modules underlying a rational G,,-action.
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Even though the K[G,,]-modules homg (L, L") constructed in this manner
are not finitely generated, the cohomology H* homgx)(L, L") is a finitely gener-
ated K[G,,]-module, because all but finitely many of the generators created upon
wrapping come in pairs which are connected by a single bigon contributing to
the Floer differential, hence lie in acyclic summands of the chain-level K[G,,]-
module. Here we use crucially the fact that X is not a (closed) torus. We conclude
that J(Z) is proper.

REMARK 6.7. Proposition 6.6 also holds for a surface S of genus > 1 with
non-empty boundary, under the additional assumption that the restriction of
a € H'(S;7Z) to S vanishes. This ensures that the class a can be represented by
a one-form supported in an annular neighborhood of a simple closed curve, and
the argument then proceeds exactly as in the case of closed surfaces. Moreover,
the construction applies equally well to the wrapped Fukaya category, and gives
a rational G,,-action on W(S') (however W(S) is not proper).

EXAMPLE 6.8. Suppose y C X is a simple closed curve, and a € H'(Z; 7).
Then it is clear from the definition of the G,-action that the class Def?, €
6" ® HF'(y,y) ~ H'(y;K) is aly, or more precisely, the homomorphism from
g = K to HF'(y,y) given by multiplication by aly. Thus, vy is infinitesimally
equivariant if and only if {(a,y) = 0, as expected.

The rational G,,-action on F(X) immediately extends to twisted complexes
and to the idempotent completion F(X)P*"; the properness of I (X) implies that of
g(z)per‘

LemMmA 6.9. Let X € F(X)P°" be a spherical object with ch(X) # 0, and
a € H'(Z;Z). Then X is infinitesimally equivariant with respect to the action
of Proposition 6.6 if and only if {a, ch(X)) = 0.

Proor. The deformation classes Defg, X € ob F(X) are induced by a Hochschild
cohomology class Def € g"®@HH'(F(X), F(X)), which measures the infinitesimal
action of G,, on morphisms [35]. (Since g¥ ~ K, we can think of this as a single
Hochschild cohomology class, and henceforth we drop g¥ from the notation).
Recall that the closed-open map CO : H'(Z;A) — HH'(F(E),F (X)) is an
isomorphism. Thus, the fact that Defg = ay, for all simple closed curves implies
that Def = CO(a).

The Yoneda product makes Hochschild cohomology a unital algebra, over
which the cap product endows the Hochschild homology HH.(F(Z), F (X)) with
a module structure. It is well-known to experts that the closed-open map is a
ring homomorphism, and that the open-closed map OC : HH.(F(X), F (X)) —
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H**'(Z; A) ~ H,_,(Z; A) is a homomorphism of H*(Z; A)-modules (see e.g. [17],
[27]). With this understood, we can view Defg( € H' hom(X, X) as a Hochschild
cycle, and the corresponding class [Def())(] € HH{(F(X), F (X)) can be expressed
as Def N [ex] = CO(a) N [ex], which implies that

OC([Defg)(]) = OC(CO(a) N [ex]) = an OC([ex]) = a N ch(X) € Hy(Z; A).

Since the open-closed map is an isomorphism, we conclude that [Def$] e
HH{(F(X), F(X)) vanishes if and only if {(a,ch(X)) = 0. In order to reach the
same conclusion for Def?( € H'hom(X, X), it remains to verify that the map
H'hom(X,X) — HH(F(Z),F(X)) is an isomorphism. Since X is spherical,
both sides have rank one, and it is enough to show that the map does not vanish
identically; since ch(X) # O this follows from the existence of classes a for which
{a,ch(X)) # 0.

We note that the assumption that ch(X) # 0 can be removed by using the
Calabi-Yau structure on F(X); more generally the statement is expected to hold
for all indecomposable objects of F(X)7".

We also remark that a similar criterion for infinitesimal equivariance can be
formulated for spherical objects on a surface with boundary, using inclusion into
a larger closed surface to reduce to Lemma 6.9.

7. Conclusions

7.1. Spherical objects revisited. We can now conclude the proof of Theorem
1.1.

CoroLLARY 7.1. Let X € F(X)P°" be spherical, with ch(X) # 0. Suppose there
is a class a € H'(Z;Z) with the property that {a,ch(X)) = 0. Then for each p,
X is quasi-isomorphic to an object of F(X)’*" which admits a naive equivariant
structure for the 7/ p-action of Lemma 6.2 and lifts to the degree p covering
3 — X as an object X € FEyrer.

Proor. By Lemma 6.9, the hypothesis {(a, ch(X)) = 0 implies that X is infinitesi-
mally equivariant for the G,,-action associated to a by Proposition 6.6. Proposi-
tion 6.5 then shows that X is weakly G,,-equivariant in the sense of Section 6.3.
Restricting to the finite subgroup of p-th roots of unity, we find that X is weakly
7./ p-equivariant with respect to the action of Lemma 6.2, and so by Lemma 6.1
its Yoneda module is quasi-isomorphic to a naively equivariant module. One
can then appeal to the results of Section 6.2 and reinterpret this naively Z/p-
equivariant F(Z)-module as a module over F(X).

Since J(X) is proper, the Yoneda module of X is proper, and so are the
equivariant module and its lift; the homological smoothness of F(£) then implies
that the lifted module is perfect, hence can be represented by an object X €
F(E)Per. Finally, projecting X back to X yields a naively equivariant object of
F(Z)P¢" which is quasi-isomorphic to X.
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We now show that certain objects are supported on subsurfaces of £, in the
following sense.

QOROLLARY 7.2. If X € F(X)Pr l;s spherical, with ch(X) # 0, we can ]jnd a cover
2 — X and a lift X of X to X and a simple closed curve vy C X for which
HF*(X,y)=0

Proor. Pick a class a € H'(Z; Z) with (a, ch(X)) = 0. By the previous Corollary,
X is G = 7/ p-equivariant for the action of Lemma 6.2, and can be lifted to the
degree p covering £ — X, giving an object X € F(E)7*’.

Let 6 C X be any simple closed curve such that {(a, [6]) = O: then ¢ lifts to a
simple closed curve & in £, and by the results of Section 6.2 we have

HF*(X,6) = @ HF*(X, ), (13)
xeGY

where we recall that the objects 6, y € GV are the p lifts of 6 to £. Then for
sufficiently large p (p > rank HF"(X, 6)) some summand on the RHS vanishes,
giving a simple closed curve y = 0¥ ¢ X with HF*(X,y) =0

Lemma 7.3. In the situation of Corollary 7.2, one can choose £ so that the~re are
two disjoint homologically independent simple closed curves y|,y, C X with
HF*(X,y) =0

Proor. We proceed as in the proof of Corollary 7.2. Since the genus of X is at
least two, we can find two simple closed curves 6, ¢ in £ which have geometric
intersection number one and both pair trivially with a. The p lifts of & to &
are disjoint simple closed curves, and each of them intersects precisely one of
the p lifts of &’, so their homology classes are linearly independent in H;(Z; Z).
The result now follows by arguing as in the previous Corollary and taking p
sufficiently large to force the vanishing of at least two of the Floer cohomology
groups HF*(X, 6).

CoroLLARY 7.4 (=Theorem 1.1). A spherical object X € D"F(X) with non-zero
Chern character is quasi-isomorphic to a simple closed curve equipped with a
rank one local system.

Proor. By Lemma 7.3, we can find an action of G = Z/p and a finite covering
$ — I for which X is G-equivariant and lifts to an object X € FE)y»er, and
two disjoint, homologically independent simple closed curves y;,y, C £ with
HF*(X, v;) = 0. We now check that Xis spherical and ch(X) is non-zero.
Recalling that the Fukaya category of £ gives a model for the G-equivariant
Fukaya category of X (cf. Section 6.2), HF*(X,X) is isomorphic to the G-
invariant summand of HF*(X, X) ~ H*(S'; K). General properties of equivariant
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objects imply that the unit ey is G-invariant, so HF O(f(, )?) has rank one, and
Poincaré duality (or vanishing of the skew-symmetric pairing yHom(X, X))
implies that HF (X, X) also has rank one. Hence X is spherical. Meanwhile, the
assumption that ch(X) € H (XZ;Z) is non-zero means that there exists a simple
closed curve 7 such that yHom(X,n) # 0. Denoting by 7 the total preimage of
1 in £ (which may consist of one or more simple closed curves), we find that
XHom(X ,1) = yHom(X, n7) # 0, so ch(X) is a non-zero element of H;(X; Z).

Corollary 5.15 now implies that X is quasi-isomorphic to a simple closed
curve (3, &) with rank one local system in F(Z). The last step is to descend
back from £ to . The projection of & to X is a closed (a priori immersed)
curve o in X, whose homology class satisfies {a, [c"]) = 0, and the local system
& descends to a rank one local system & on o. As noted in Section 6.2, the
object (£,0) € F(X) admits p distinct G-equivariant structures, and one of
these corresponds to the lift (£,6) € F(X). A quasi-isomorphism between X
and (£, &) then descends to a G-equivariant quasi-isomorphism between X and
(¢,0) (i.e., a quasi-isomorphism which lies in the G-invariant part of the Floer
complex); from which it follows that X and (&, 0) are also quasi-isomorphic
(non-equivariantly) in F(X)?*". Corollary 3.14 then implies that o is quasi-
isomorphic to an embedded simple closed curve.

REMARK 7.5. The exotic spherical object of Figure 4 lifts to an embedded simple
closed curve on a double cover of the surface, so the ability to descend from X
back to  above is again making essential use of the homological hypothesis on
X.

7.2. A Floer-theoretic Schmutz graph. The “Schmutz graph”, introduced
in [28], has vertices non-separating simple closed curves up to isotopy, and
two such are joined by an edge exactly when they have geometric intersection
number one. The main theorem of op. cit. asserts that the group of simplicial
automorphisms of the Schmutz graph is the extended mapping class group (of
both orientation-preserving and reversing automorphisms) for a surface of genus
g 2 3, and the quotient of the mapping class group by the hyperelliptic involution
twhen g = 2.

We now introduce a Floer-theoretic analogue. By Theorem 1.1, spherical
objects of D"F(X) with non-zero Chern character correspond to homologically
essential simple closed curves with rank one local systems. Moreover, the
simple closed curves underlying two spherical objects X;, X, have geometric
intersection number one if and only if the rank of HF*(X, X;) is equal to 1,
by Corollary 2.11. We introduce an equivalence relation on the set of spherical
objects by declaring that X ~ X’ if and only if they have Floer cohomology rank
one with the same set of spherical objects:

X~X <« (forall spherical ¥, (k HF*(X,Y) =1 © tk HF*(X",Y)=1).
(14)
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Lemma 7.6. Two spherical objects X, X' € D"F(X) with non-zero Chern charac-
ters are equivalent if and only if the simple closed curves y,y’ underlying X, X’
are isotopic.

Proor. Using Corollary 2.11, X =~ X’ if and only if y,y’ have geometric
intersection number one with the exact same set of simple closed curves. It
is a general fact of surface topology that this can only happen when vy, y’ are
isotopic. For example, if y and y’ were not isotopic, then the Schmutz graph
would admit an automorphism which exchanges the vertices corresponding to y
and " while preserving every other vertex; this cannot be induced by an element
of the extended mapping class group.

Since our equivalence relation on spherical objects is clearly preserved
by auto-equivalences of the Fukaya category, Lemma 7.6 implies that auto-
equivalences act on the set of isotopy classes of non-separating simple closed
curves. This remains true for surfaces with boundary, by the same argument;
cf. Remark 7.8. (However, spherical objects supported on boundary-parallel
curves can be permuted arbitrarily by auto-equivalences of the compact Fukaya
category; auto-equivalences of the wrapped Fukaya category are better-behaved.)

On closed surfaces, the machinery of [32] actually allows us to obtain a
stronger result: recalling that every homologically essential spherical object of
F(Z) comes in a G,,-family, any auto-equivalence must act on such objects in a
way that maps G,,-families to G,,-families. Since we will not need this result,
we only sketch the argument.

Proor (Sketch). Given a spherical object X € F(X) with ch(X) # O (hence
primitive in H,(Z; Z) as a consequence of Theorem 1.1), and a class a € H'(Z; Z)
with {(a, ch(X)) = 1, the rational G,,-action of Proposition 6.6 yields an object
of F(X) representing the G,,-orbit of X, which in turn determines an object X
of the category F}"" of perfect families of F(X)-modules over the base K* [32,
Section 1f]. Example 6.8 and the proof of Lemma 6.9 show that this family
of modules follows a deformation field [y] € HH 1(?]1”5,5211[@ ® ?H’;ir) which is
constant over the base K* and given fibrewise by CO(a) € HH'(F(Z), F(T)).
Now, an autoequivalence G of F(X) induces a functor §7*" on Fi%’, and 57 (X)
is a perfect family of modules which follows the deformation field [y'] = G.([y]),
which is constant over the base and given fibrewise by G.(CO(a)) [32, Section
li]. Since the closed-open map is an isomorphism, there exists a’ € H'(Z; A)
such that G.(CO(a)) = CO(d’); in fact @’ € H'(Z;Z), because (', ch(G(Y))) =
{a,ch(Y)) € Z for all spherical objects Y. Repeat the above construction for the
spherical object X’ = G(X) and the G,,-action determined by the cohomology
class @', to build a perfect family of modules X’ € 37, which follows the
deformation field [y’]. The two families of modules §7¢"(X) and X’ agree over
the origin and both follow the deformation field [y'], so by [32, Proposition 1.21]
their fibres are quasi-isomorphic at every point of K*.
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The group of auto-equivalences Auteq(F (X)) contains a subgroup isomorphic
to H'(Z, A*), given by symplectic isotopies of arbitrary flux and tensoring by flat
line bundles. We expect that a further elaboration on the above argument implies
that this is a normal subgroup.

We now return to the proof of Corollary 1.2:

Proposrition 7.7 (=Corollary 1.2). There is a natural homomorphism
Auteq(D"F (X)) - I’y

which is split by the (non-canonical) homomorphism I'; — Auteq(D"F (X))
constructed in Section 2.6.

Proor. Define a graph Y(X) as follows:

e vertices are spherical objects X € F(X)”*" with non-zero Chern character,
modulo the equivalence relation (14);

e two distinct vertices X and X, are joined by an edge whenever HF (X1, X3)
has rank 1 (this is clearly invariant under the equivalence relation).

Theorem 1.1 and Lemma 7.6 imply that the vertices of the graph are in
bijection with isotopy classes of homologically essential simple closed curves
on X, while Corollary 2.11 shows that the edges correspond to pairs of curves
with geometric intersection number one. Thus, T(X) agrees with the Schmutz
graph from [28]. On the other hand, it is manifest that Auteq(F(X)’*") acts on
T(X) by simplicial automorphisms. Thus, we obtain a homomorphism from
Auteq(F(Z)P¢") to the extended mapping class group 1"; for g > 3, or to the
quotient I'; /{¢) when g = 2.

Since any autoequivalence preserves the pairing yHF(-,-), i.e. algebraic
intersection numbers of simple closed curves, its action on the set of isotopy
classes cannot be that of an orientation-reversing diffeomorphism. Therefore,
the homomorphism actually takes values in the ordinary (oriented) mapping
class group I', for g > 3, orin I';/{t) when g = 2. When g = 2, one can
consider the action of Auteq(F(Z;)?¢") on the graph T*(X) whose vertices are
spherical objects modulo a graded version of (14) which requires HF*(X,Y)
and HF*(X’,Y) to be in the same degree when they both have rank 1; i.e.,
we now consider isotopy classes of oriented simple closed curves. Since the
hyperelliptic involution reverses the orientation on all simple closed curves, this
allows one to lift the homomorphism from I";/{¢) to I';. The fact that the action
on the Floer-theoretic Schmutz graph is split by the construction of Section 2.6
is straightforward.
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ReMARk 7.8. The Schmutz graph can be defined analogously for isotopy classes
of non-separating simple closed curves on a punctured surface of genus g > 1
with n punctures. It is known [28] that its simplicial isometry group repro-
duces the extended mapping class group, modulo the hyperelliptic involution for
(g,n) € {(1,1),(1,2)}. Starting from here, and using the geometricity of spheri-
cal objects obtained in Corollary 4.14, one sees that the analogue of Proposition
7.7 holds for punctured surfaces, i.e. the autoequivalence group of the compact
Fukaya category determines (and surjects onto) the mapping class group.

8. An application to symplectic mapping class groups

In this final section, we prove Theorem 1.3 as an application of Corollary
1.2. The argument is a fairly straightforward adaption of ideas from [32, 38], but
involves somewhat different technology from that in the main body of the paper,
so we will be relatively brief. We also leave the realm of strictly unobstructed
Lagrangians; our main examples satisfy a weak monotonicity property, but we
will not labour foundational aspects of the Fukaya category.

8.1. Fukaya category summands. Let (M, w) be a closed symplectic man-
ifold. Define the preliminary category J,,(M) to be a curved Z,-graded linear
A-category over Ao which has objects oriented spin Lagrangian submanifolds
L c M equipped with finite-dimensional A>p-local systems ¢ — L. The mor-
phism groups, in the two most important cases, are given by

;oo ) C'(L;Hom(§,&) L=1L
homzan((L, &), (L&) = { rernr €y ® &y LhL (15)

where in the first case we take any fixed finite-dimensional chain-level model for
the classical cohomology of L with coefficients in the bundle Hom(¢, £). When
& = ¢ we take this chain-level model to be strictly unital, and denote the unit by
I(1¢ (or 1, if we suppress local systems from the notation). Floer theory defines
a curved A-structure {,ud}@o on Fp,.(M).

Let A € A.o. The Fukaya category F(M; 1) has objects pairs (L, @) where
L € Ob(F,.(M)), where a € homl, (n(Ls L) vanishes in hom, anL L) ®, C,

pr pr

and where « is a solution of the weakly unobstructed Maurer-Cartan equation

WO+ il @)+, ) +--=1-1, € homgpr(M)(L, L).
The morphism spaces in F(M; 1) are given by Floer cochains

homg(M;,l)(L, L/) = h()mg“pr(M)(L, L’) QA A
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and inherit a non-curved A.-structure obtained by all possible insertions of
Maurer-Cartan elements; thus, the differential in the Floer complex for (Lg, @)
and (L1, ap) is given by

1 1 2 2 3
/Jg(M;,i)(x) = /flgrpr(M)(x) + #3'“/”(11/[)(0'1’ X) + ﬂgfm(M)(xv ap) + /Jff"pr(M)(al’ ai, x)

+ #;}V(M)(a’l . X, @) + ﬂ;[,,(M)(x, @g, @) + -
(16)
The Floer differential squares to zero, i.e. 3(M; 1) has vanishing curvature, since
A -1y is central, because J,.(M) was assumed to be strictly unital. The mapping
class group moSymp(M) acts on F(M; A) for each 1 € A, separately.
The open-closed map OC : HH.(F(M;A),F(M; 1)) — QH*(M;A) takes
values in the generalized A-eigenspace of quantum multiplication by c¢(T M),
which is a subring

OH* (M), = {a € QH*(M) : (c;)(TM)— )" xa = 0 for some N € N} ¢ QH*(M).

The analogue of Abouzaid’s generation criterion in this setting states that, if
the restriction of the open-closed map to a full subcategory of F(M; 1)’ hits
an invertible element of QH*(M),, then the full subcategory split-generates
F(M; )P 27, Theorem 11.3].

8.2. Relative parallel transport. Let (X,w) be a symplectic manifold and
(Y1)sefo,17 @ smooth family of symplectic submanifolds of X.

Lemwma 8.1. There is a time-dependent symplectomorphism ®, : X — X with
Oy = id and ©(Yy) = Y;, well-defined up to isotopy through symplectomor-
phisms with the same property.

Proor. The existence is [11, Proposition 4]. For uniqueness up to isotopy, ob-
serve that two choices @, and @, differ by a time-dependent symplectomor-
phism p, = (Da} o @, , which preserves Y| setwise, i.e. a path based at the origin
in the group Symp(X, Yy) of symplectomorphisms preserving Y, setwise. The
path p;; can be deformed continuously to the constant path py, = id (e.g. setting
Pst = P1,s), and O, = Oy, 0 pg, gives an isotopy between O, and D ,.

Recall that a symplectic fibration X — B with fibre (X, w) is a smooth fibre
bundle with a globally closed 2-form Qx such that (X}, Qx|x,) = (X, w) for each
beB.

CoroLLARY 8.2. Given a symplectic fibration X — B with fibre X and a locally
trivial symplectic subfibration Y — X with fibre Y C X at a base-point b € B,
there is a relative monodromy representation

m1(B; b) — moSymp(X, Y)

into the mapping class group of the group of symplectomorphisms preserving Y
setwise.
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Proor. Fix a 1-dimensional submanifold y C B and trivialise the bundle X|, over
v by symplectic parallel transport. This brings us into the situation of Lemma
8.1, meaning that we have a one-parameter family of symplectic embeddings
(parametrized by a co-ordinate ¢ € y) of Y into a fixed (X, w). By differentiating
the relative Moser maps @, of Lemma 8.1, we obtain closed 1-forms a; € Q'(X)
for which the w-dual vector fields Z, flow the submanifolds Y; into one another.
If we subtract dt A da, from Qx, we obtain a new globally closed 2-form on X|,
with the correct fibrewise restriction and for which parallel transport preserves
the subfibration Y|,. We can apply the preceding construction to the 1-skeleton
of B to obtain relative parallel transport maps for loops generating my(B). The
uniqueness up to isotopy in Lemma 8.1 shows the construction descends to a
representation of m;(B).

Let w, denote the standard constant coeflicient Kdhler form on the four-
torus 7. Consider (2, X T, w @ wy). We fix a sufficiently small & > 0 and let
p : Z — Iy xT* denote the e-symplectic blow-up of £, x T* along the symplectic
submanifold C = X, x {0}. The exceptional divisor E = C x P! is canonically a
product; indeed Z is just the product £, X Bl,,,(T*), and carries a symplectic form
Q with cohomology class p*[w & wy] — € - E.

The cohomology of Z admits a splitting

H'(Z,7)=H (Ey x THZ) ® H (20, Z) - u
where u = —PD(E) has degree 2. Let {;} denote a basis for H Y(Z,7), and set

Q?rr = Q+6‘Zcij77i A1
i.j
for coefficients ¢;; € (0, 1). If 6 > 0 is sufficiently small then err is a symplectic
form on Z, because the symplectic condition is open and the c;; are bounded.

Lemma 8.3. If the coefficients c;; are linearly independent over Q, then every
symplectomorphism of (Z, Q¢ ) acts trivially on H*(Z).

irr

Proor. Assume that the ¢;; are rationally linearly independent. We will show that
any diffeomorphism of Z preserving the cohomology class [€;,,] acts trivially
on cohomology. As a ring, H*(Z) is generated by H'(Z) ~ H'(Z,) @ H'(T*)
and by the class u € H?*(Z). Note that m,(Z) is generated by a fibre F C E,
so any diffeomorphism preserves the class [F] € H(Z;7Z) and its intersection
Poincaré dual E € Hy(Z;Z). The action on H*(Z;R) of a diffeomorphism of Z
which fixes [err] has the eigenvalue 1 appearing with multiplicity at least two
(since u and [Qj.S .] are both preserved). However, the action on H*(Z)/{(u) is the
action on A%2(H f(Z)). Since the action on H' is through an integral matrix, the
coefficients of any eigenvector for the eigenvalue 1 must be linearly dependent
over Q. Therefore, preservation of [Q° ] implies that the diffeomorphism acts

r

trivially on H'(Z) and hence on H*(Z).
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The Torelli group I, < I'; is an infinitely generated free group, generated by
the Dehn twists on separating simple closed curves. The construction of relative
parallel transport applied to a family of blow-ups yields a representation

I’y = mSymp(Z, Q)

which depends on the same kinds of choice as in Section 2.6. Any element of
I'; acting non-trivially on cohomology cannot deform to a symplectomorphism
with respect to the perturbed symplectic structure err, by Lemma 8.3. A given
element of the Torelli group, however, will deform for ¢ sufficiently small.

CoroLLARY 8.4. Given N > 0, there is 6(N) > 0 such that I, — nySymp(Z, Q2)
deforms on a rank N free subgroup Fy < I, to Fy — mySymp(Z, Q?rr) for all
0 € (0,0(N)).

Proor. The graph of f € I, defines a Lagrangian submanifold I'(f) c (Z X
Z,Q@-Q). Since the cohomology classes of the perturbing forms 7; A n; restrict
trivially to I'(f), using that f*([n7]) = [n] for all n, if ¢ is sufficiently small there is
a Lagrangian isotopy of I'(f) to a submanifold Lagrangian with respect to err.
Since being graphical is an open condition, if ¢ is sufficiently small this is again
the graph of a symplectomorphism f"". Pick N separating simple closed curves
oj on Xy. Then the corresponding elements f,, admit common deformations
37 to symplectomorphisms of (Z, Q) if 6 > 0 is sufficiently small. (A priori
the size of ¢ depends on geometric bounds on the Dehn twists about o, hence
cannot be made uniform as N — 0.)

Subsequently we will show that the homomorphism Fy — mySymp(Z, err)
is faithful.

8.3. Unbounded rank. Let £ = Opi(~1) denote the &-blow-up of C* at the
origin, equipped with its toric Kédhler form in cohomology class € - u, where
u = —PD(E) is the negative of the Poincaré dual to the exceptional divisor (zero-
section). The Gromov invariant of E is non-trivial, and

QH"(L; A) = Alul/[{u(u + 4°))

Note that ¢; (T £) = u. Implanting the local model into the four-torus, one finds
thatif Y = Blpt(T“) with the natural Kdhler form p*wy + € - u, then

QH*(Y;A) = H'(T* AN)® A -u

and the first Chern class ¢;(Y) = u = —PD(E) acts, under quantum multiplica-
tion, nilpotently on all cohomology classes of positive degree in H*(T*; A) and
invertibly on the second summand.
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Lemma 8.5. F(Y; —¢°)P°" is semisimple and generated by an idempotent sum-
mand T of a Lagrangian torus T C Y.

Proor. £ contains a (monotone) Lagrangian torus 7 C Opi(—1), which is the
orbit of the torus action corresponding to the unique critical point of the toric
potential function W(x,y) = x + y + g ®xy. The torus T is weakly unobstructed,
defines an object of F(L; —¢®) whose Floer cohomology is semisimple in char-
acteristic zero, and splits into the direct sum of two idempotent summands 7%,
which are isomorphic up to shift [38, Section 4.4].

A neighborhood of the zero section in £ (large enough to contain 7) embeds
into a neighborhood of the exceptional divisor in ¥ = BI,(T*); since all
holomorphic discs bounded by T in ¥ must be contained inside the neighborhood
of the exceptional divisor, the Floer cohomology of the torus 7" in Y is exactly
as in £. Hence T also defines an object of F(Y; —¢®) with semisimple Floer
cohomology, which splits into two idempotent summands 7*. An explicit
calculation shows that the images of the two idempotents of HF(T,T) under
the open-closed map are +u = FPD(E); the generation criterion [27, Theorem
11.3] then implies that T split-generates F(Y; —g®)P¢".

ProposiTioN 8.6. There is a fully faithful functor F(£,) — F(Z, € ; )P*" whose
image split-generates F(Z, Q¢ ; )P’ for the eigenvalue A = —q~.

irr’

Proor (Sketch). For the product form Q on Z, there is a Kiinneth functor
associated to the A-tensor product F(Z; 1) ~ F(Z,)®F(Y; 1) and the semisimple
piece of the second factor afforded by Lemma 8.5. Note that T C Y survives
arbitrary small perturbations of the given Kéhler form p*ws + € - u on Y, in
the sense that it deforms as a Lagrangian to any sufficiently nearby symplectic
form, since the restriction map H*(Y) — HZ*(T) vanishes. Since its Floer
cohomology with respect to the initial symplectic form is semisimple, it must
remain semisimple after small deformation.

Choose the 1-forms 77; on Z = £, X Y so that that iy, ..., 4 are the pullbacks
of closed I-forms «i,...,a4 on X, representing a basis of H'(%,;7Z), and
ns,...,ng are the pullbacks of closed 1-forms on Y which vanish everywhere
in a neighborhood of the exceptional divisor (and in particular on the torus 7).

Then, for a fixed simple closed curve y C X,, the submanifold y X T is
Lagrangian not just for the product form Q, but also for Q?rr = Q+6 i cijniAnj.

The association

vy yxT*

is globally realised by an A -functor associated to a Lagrangian correspondence

G CZ; XZ =X, X (23 X Bl,(T")
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which fibres over the diagonal of ¥ X%, with fibre T c £ C Y. Note that Ay, X T
remains Lagrangian after perturbing the symplectic form on Z by 6 3;; ¢ijmi Anj,
and that on X, by ¢ Y;;cija; A @;. Since the correspondence is globally a
product, the local-to-global spectral sequence H*(X,; HF*(T,T)) —» HF*(G,G)
degenerates; therefore the correspondence G itself has an idempotent summand
G™ associated to a choice of idempotent for 7', compare to [32, Section 5.4]. This
yields the desired functor §* from F(Z,) (where we suppress from the notation
the fact that the symplectic form depends on 6) to F(Z, err; —g®)P¢". This functor
maps every object of F(X,) to its product with 7*; since we are in a product
situation and Endgy.—geyre-(T*) = A, the functor is fully faithful.

The fact that the image of the functor G* split-generates F(Z; —g®)?*" follows
from Ganatra’s automatic generation result [16], since HH*(F(X;), F (X)) =
H*(Z»; A) has the same rank as QH*(Z)_4 = u - H*(Z5; A), and J(X,) is ho-
mologically smooth. One can also proceed more directly: consider a collection
of curves y; € F(X,) which satisfy Abouzaid’s split-generation criterion, i.e. the
full subcategory with this set of objects has a Hochschild cycle & which maps to
the unit 1 € H*(X,; A) under the open-closed map. Then the Hochschild cycle
a* = G¥(a), formed by replacing every morphism which appears in @ with its
tensor product with 17+, maps to 1 ® u € QH*(Z; A) (using the fact that we
are locally in a product situation and OC(1y+) = u). Since u is invertible in
QH*(Z)_4, [27, Theorem 11.3] implies that the objects y; X T* = G*(y;) split-
generate F(Z; —¢®)P".

Together with Corollary 1.2, this proposition yields a natural map

Auteq(F(Z, Q0 ; —g°)P*") = Auteq(F(Z,)"*") — Iy,

irr?

which then induces a map

Auteqyy(F(Z, Q- > I

irr?

where the domain denotes those autoequivalences which act trivially on Hochschild
cohomology. We know that the closed-open map

H'(%) - u = QH'(Z)- — HH (F(Z,,; —¢°)"")

irr?

is an isomorphism, and the map

moSymp(Z, ) — Auteq(F(Z, Q0 _; —¢°)"*")

lands in the subgroup Auteqy by Lemma 8.3. Combining this with Corollary

8.4, we therefore obtain a map

Fy — moSymp(Z, Q0. ) — Auteqy;(F(Z, Q0 ; —¢°)"") — I, = F,

rr rr?
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which one can compose with the quotient map g : Fo, — Fy which kills all but
the finite set of chosen generators (twists in all other separating simple closed
curves). Chasing through the stages, the composite map is the natural inclusion
of a finite rank free subgroup of the infinitely generated free group, or the identity
after composition with g. It follows that mySymp(Z, err) surjects onto a free

group of rank N = N(8) which tends to infinity as 6 — 0. This completes the
proof of Theorem 1.3.
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