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Abstract

We prove that every spherical object in the derived Fukaya category of a closed surface of genus

at least two whose Chern character represents a non-zero Hochschild homology class is quasi-

isomorphic to a simple closed curve equipped with a rank one local system. (The homological

hypothesis is necessary.) This largely answers a question of Haiden, Katzarkov and Kontsevich.

It follows that there is a natural surjection from the autoequivalence group of the Fukaya category

to the mapping class group. The proofs appeal to and illustrate numerous recent developments:

quiver algebra models for wrapped categories, sheafifying the Fukaya category, equivariant Floer

theory for finite and continuous group actions, and homological mirror symmetry. An application

to high-dimensional symplectic mapping class groups is included.

2010 Mathematics Subject Classification: 53D37 (primary); 57K20 (secondary)

1. Introduction

The mapping class group Γg of a closed surface Σg arises naturally in different

contexts: in algebra as the outer automorphism group Out(π1 Σg), in topology

as the component group π0Diff+(Σg), in algebraic geometry as the orbifold

fundamental group πorb
1

(Mg) of the moduli space of curves. In Floer theory,

and mirror symmetry, a symplectic manifold Z appears through the Fukaya

category F(Z) and its derived category DπF(Z), a formal algebraic enlargement

of F(Z) introduced to have better homological-algebraic properties. The natural
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symmetry group of a surface in that context is the group of autoequivalences

Auteq(DπF(Σg)). This comes with a map Γg → Auteq(DπF(Σg)) (which depends

on additional choices), which has no obvious instrinsic categorical or Floer-

theoretic description; in many cases, we know of autoequivalences of Fukaya

categories which are not geometric [8]. This paper shows that the mapping class

group arises naturally from the Fukaya category.

Let (Σg, ω) denote a closed surface of genus g > 2, equipped with an area

form of area 1. Let F(Σg) denote the Fukaya category of Σg, which is a Z/2-

graded A∞-category, linear over the one-variable Novikov field Λ = C((qR)).

Objects of the category are immersed unobstructed closed curves, equipped with

a finite rank local system and auxiliary brane data (including a choice of spin

structure on the underlying curve). We will denote by (ξ, γ) the object associated

to an immersed closed curve γ : S 1 → Σg and local system ξ → S 1 on the

domain of γ.

We denote by DπF(Σg) = F(Σg)per the category of perfect modules over

F(Σg), equivalently the split-closure of twisted complexes, which is triangulated

in the classical sense; write ≃ for quasi-isomorphism in this category. The

composite of the Chern character and the open-closed map defines a class

ch(A) ∈ HH0(DπF(Σg),DπF(Σg)) � H1(Σg;Λ)

for any object A ∈ DπF(Σg). Recall that an object A ∈ DπF(Σg) is spherical if

H∗(homDπF(Σg)(A, A)) � H∗(S 1;Λ).

Lemma 2.19 shows that ch(X) is an integral class when X is spherical. Our

main result is the following geometricity theorem for spherical objects.

Theorem 1.1. If X ∈ DπF(Σg) is spherical and ch(X) is non-zero, then there is a

simple closed curve γ ⊂ Σg and a rank one local system ξ → γ with X ≃ (ξ, γ).

En route, we prove the corresponding result for surfaces with non-empty

boundary (Corollary 4.14). When g = 1, Theorem 1.1 is a consequence of

homological mirror symmetry for elliptic curves and Atiyah’s classification of

bundles on such curves. When g > 1, there are spherical objects with vanishing

Chern character which are not quasi-isomorphic to any simple closed curve with

local system, so the result is in some sense sharp; see Lemma 2.23. Theorem 1.1

largely answers [20, Problem 2].

Let Γ(Σg) denote the symplectic mapping class group of Σg. There is a

homomorphism Γ(Σg) → Auteq(DπF(Σg)) (this depends on choices, cf. Section

2.6).
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Corollary 1.2. There is a natural surjective homomorphism Auteq(DπF(Σg))→

Γ(Σg), which is split by the homomorphism Γ(Σg)→ Auteq(DπF(Σg)).

The same conclusion also holds for surfaces of genus > 1 with boundary, by

combining Corollary 4.14 with the argument of Proposition 7.7.

The fact that the homomorphism Γ(Σg) → Auteq(DπF(Σg)) splits has co-

homological implications; for instance, the autoequivalence group has infinite-

dimensional second bounded cohomology, and admits families of unbounded

quasimorphisms.

We conjecture that, for g > 2 (so the flux group is trivial), the kernel of the

natural map from autoequivalences to the mapping class group is generated by

tensoring by flat unitary line bundles and the actions of symplectomorphisms of

non-trivial flux, i.e. that

Auteq(DπF(Σg))
?
= H1(Σg;Λ∗) ⋊ Γ(Σg),

where the map Γ(Σg)→ Auteq(DπF(Σg)) is only well-defined up to the action of

H1(Σg;R). In Section 7.2 we outline an argument suggesting that the subgroup

H1(Σg;Λ∗) is normal, which is consistent with the speculation.

The proof of Theorem 1.1 is surprisingly involved, and breaks into the

following steps (the main text treats these in somewhat different order). Let

X ∈ DπF(Σg) be a spherical object.

1. The open-closed image ch(X) ∈ HH0(F(Σg)) = H1(Σg;Λ) defines an

integral class, i.e. lies in the image of H1(Σg;Z). Assume henceforth this

class is non-zero.

2. A non-zero integral class a ∈ H1(Σg;Z) defines a Gm-action on F(Σg).

3. If 〈a, ch(X)〉 = 0, then X defines a Gm-equivariant object, hence a Z/N-

equivariant object for any finite Z/N 6 Gm. The Z/N-equivariant Fukaya

category of Σg is the Fukaya category of an N-fold cover Σ̃ of Σg.

4. A choice of equivariant structure on X defines a lift X̂ of X to Σ̃, and

for large enough N, there are disjoint homologically independent simple

closed curves γ1, γ2 ⊂ Σ̃ with H∗(homF(Σ̃)(X̂, γi)) = 0.

5. There are annular neighbourhoods γi ⊂ Ai ⊂ Σ̃ for which X̂ lifts to define

a spherical object (which we still call) X̂ in the wrapped category W(C)per

of C = Σ̂\(A1 ∪ A2).

6. X̂ is represented by a strictly unobstructed immersed closed curve σ ⊂ C

equipped with a unitary local system.
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7. If it is not embedded, the immersed curve σ supporting X̂ bounds an

embedded bigon.

8. Bigons on σ may be “emptied” and then “cancelled”, so X̂ is quasi-

isomorphic to a simple closed curve with rank one local system in F(C).

9. X is quasi-isomorphic to a simple closed curve with rank one local system

in F(Σg).

Steps (2)-(4) rely on work of Seidel on equivariant Floer theory [31, 33],

and ideas of family Floer theory à la Abouzaid and Fukaya. Step (5) relies

on H. Lee’s restriction technology [25] for sheafifying wrapped categories of

surfaces. Step (6) appeals to the work of Haiden, Katzarkov and Kontsevich [20]

on quiver algebra models for wrapped categories of punctured surfaces, and to a

split-closure result for such wrapped categories which we infer from homological

mirror symmetry and a K-theoretic characterisation of split-closure for derived

categories of singularities due to Abouzaid, Auroux, Efimov, Katzarkov and

Orlov [5]. Step (7) invokes delicate classical results of Steinitz [40, 15] and

Hass and Scott [22] in surface topology. The “cancelling” move for bigons in

Step (8) uses the homological hypothesis from Step (1). Corollary 1.2 follows

by considering the action of autoequivalences of F(Σg) on a Floer-theoretic

“Schmutz graph” of non-separating curves [28].

As an application of Corollary 1.2, in Section 8 we prove:

Theorem 1.3. There is a smooth manifold Z with symplectic forms ωδ, δ ∈ (0, 1],

for which π0Symp(Z, ωδ) surjects to a free group of rank N(δ) where N(δ) → ∞

as δ→ 0.

Explicitly, Z is the product of Σ2 with the blow-up of the four-torus at a point,

but equipped with an irrational perturbation (of size δ) of the standard Kähler

form. The free group quotients arise from subgroups of the genus two Torelli

group. Gromov [19], Abreu-McDuff [9] and others showed that the topology

of the symplectomorphism group can vary rather wildly as one continuously

deforms the symplectic form, but this seems to be the first example in which a

fixed degree homotopy group is known to have unbounded rank.

Notation: Throughout the paper, surfaces are connected, and (immersed) curves

are assumed to be homotopically non-trivial unless explicitly stated otherwise.

2. The Fukaya category of a surface

This section collects background on Floer theory and the Fukaya category for

a two-dimensional surface. A reader wanting a more comprehensive treatment

might consult [29, 30] for A∞-algebra and the general construction of the Fukaya

category, and [1, 5, 25] for related discussions of Fukaya categories of surfaces

(note some of the latter references do not take the split-closure).
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2.1. Background. Fix a coefficient field k. Let K = Λk denote the single-

variable Novikov field, with formal variable q, of formal series
∑

i aiq
ti with

ai ∈ k, ti ∈ R and lim ti = +∞. The valuation map

val : Λ→ R ∪ {∞}, val(0) = +∞

associates to a non-zero element of Λ its smallest q-power. The subring Λ>0 =

val−1[0,∞] comprises series with ti > 0 for every i, and there is a homomor-

phism

η : Λ>0 → k

which extracts the constant coefficient. The kernel of this homomorphism is

denoted Λ>0. The unitary subgroup UΛ = val−1(0) is the subgroup of elements

a +
∑

ti>0 aiq
ti where a ∈ k∗ is non-zero. The field ΛC is algebraically closed of

characteristic zero.

A non-unital A∞-category A over the field K comprises: a set of objects

ObA; for each X0, X1 ∈ ObA a Z/2-graded K-vector space homA(X0, X1); and

K-linear composition maps, for k > 1,

µk
A

: homA(Xk−1, Xk) ⊗ · · · ⊗ homA(X0, X1) −→ homA(X0, Xk)[2 − k]

(here [ j] denotes downward shift by j ∈ Z/2, and all degrees are mod 2 degrees;

we write 2 − k rather than −k since Z-graded categories may be more familiar).

The maps {µk} satisfy a hierarchy of quadratic equations
∑

m,n

(−1)znµk−m+1
A

(ak, . . . , an+m+1, µA(an+m, . . . , an+1), an . . . , a1) = 0

with zn =
∑n

j=1 |a j| − n and where the sum runs over all possible compositions:

1 6 m 6 k, 0 6 n 6 k − m. If the characteristic of K is not equal to 2, the signs

in the A∞-associativity equations depend on the mod 2 degrees of generators,

and the existence of a Z/2-grading on A is essential.

We denote by Twπ(A) = Aper the idempotent completion of the category

of twisted complexes Tw(A) [29]. If the smallest split-closed triangulated A∞-

category containing a subcategory A′ ⊂ A is Aper, then we will say that A′

split-generates A.

In a curved A∞-category each object A comes with a curvature µ0 ∈ homev
A

(A, A),

where homev
A

denotes the subgroup of morphisms of even degree; the quadratic

associativity relations are modified to take account of µ0. In general the resulting

sums could a priori be infinite, so some geometric conditions are required to en-

sure convergence. The following result controls the curvature of mapping cones

on non-closed morphisms.
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Lemma 2.1. If A is a curved A∞-category and X1

f
−→ X2 is a mapping cone in

Tw(A) between objects Xi with µ0(Xi) = 0, then

µ0
A

(X1

f
−→ X2) = µ1

A
( f ).

Proof. Standard.

The Hochschild cohomology HH∗(A,A) = Hom(A−mod−A)(idA, idA) of

an (uncurved) A∞-category is the endomorphisms of the diagonal bimodule.

Hochschild cohomology of an A∞-category is invariant under passing to the

derived category, so we will not distinguish notationally between HH∗(A,A)

and HH∗(DπA,DπA).

We say that an A∞-category A is homologically smooth if the diagonal

bimodule is perfect (split-generated by Yoneda bimodules), and proper1 if it is

cohomologically finite.

2.2. Immersed curves. Let Σ be a closed oriented surface of genus g(Σ) = g >

2 equipped with an area form ω of unit total area,
∫

Σ
ω = 1.

The Fukaya category F(Σ) has objects which are called Lagrangian branes,

and which comprise an immersed curve ι : S 1 → Σ with the following properties

and additional data. First note that if γ = ι(S 1) is immersed, it may bound

“teardrop discs”, i.e. images of holomorphic discs with a unique boundary

puncture where the puncture is mapped to a self-intersection point of γ. Let

µ0(γ) ∈ CF0(γ, γ) be the algebraic sum of all such discs, which is the obstruction

term in the self-Floer complex. We insist:

• ι(S 1) = γ is unobstructed2, meaning that µ0(γ) ∈ CF0(γ, γ) vanishes;

• all self-intersections of γ are transverse;

• the domain S 1 is equipped with a flat unitary local system of Λ-vector

spaces;

• γ is equipped with a spin structure.

1 Some authors call this ‘locally proper’, and say A is proper if it also admits a compact generator.
2 An ‘unobstructed’ Lagrangian is usually defined to be a pair (L, b) where b ∈ CF∗(L, L;Λ>0)

solves the A∞-Maurer Cartan equation
∑

k>0 µ
k(b, . . . , b) = 0. Unobstructedness for us is the

special case in which b = 0 is a Maurer-Cartan solution, which is all that we will require.



Fukaya categories of surfaces, spherical objects, and mapping class groups 7

Unitarity of the local system means that the monodromy takes values in the

subgroup of valuation-preserving elements of GL(n,Λ), i.e., square matrices

with entries in Λ>0 and such that, after discarding positive powers of q, the

constant terms form an invertible matrix.

Note that the first condition is that µ0(γ) vanishes identically (i.e. at each

self-intersection point). We could equally well insist that objects of F(Σ) are

tautologically unobstructed in the sense of bounding no teardrop discs; in fact

the two conditions are equivalent:

Lemma 2.2. If γ is a homotopically non-trivial immersed curve, then the follow-

ing are equivalent: (1) µ0(γ) = 0; (2) γ does not bound any teardrop discs; (3) γ

lifts to a properly embedded arc in the universal cover of Σ.

Proof. Since γ is homotopically non-trivial, it lifts to a properly immersed arc γ̃

in the universal cover Σ̃. Teardrop discs bounded by γ lift to teardrop discs in Σ̃

with boundary on γ̃; thus (3) implies (2), and (2) implies (1).

Conversely, assume that γ̃ is not embedded, and let a ∈ Σ̃ be any self-

intersection of γ̃. If the arc γ̃a consisting of the portion of γ̃ which connects

a to itself is not embedded, then there exists another “nested” self-intersection

b such that the arc γ̃b connecting b to itself is a strict subset of γ̃a. Considering

b instead of a, and repeating the process if needed, we can assume that γ̃a is

embedded in Σ̃; the portion Da of Σ̃ enclosed by γ̃a is then an embedded teardrop

disc with a corner at a.

The teardrop Da may be either locally convex or locally concave near its

corner, meaning it occupies either 1 or 3 of the quadrants delimited by the

two branches of γ̃ intersecting at a. Recall that only locally convex teardrops

contribute to µ0(γ). We claim that, if Da has a locally concave corner at a, then

there are smaller embedded teardrop discs contained inside it. Indeed, in the

locally concave case, the portions of γ̃ just before and after the arc γ̃a lie inside

Da. Continuing along γ̃ until it exits Da (which must eventually happen since γ̃

is properly immersed), we find another self-intersection b lying on the boundary

of Da, such that the arc γ̃b connecting b to itself is entirely contained in Da (and

is not the entire boundary of Da). If γ̃b is not embedded, then we replace b by a

nested self-intersection as above; this allows us to assume that γ̃b is embedded,

while still ensuring that γ̃b is entirely contained in Da. The region of Σ̃ bounded

by γ̃b then gives a new embedded teardrop disc Db which is strictly contained in

Da.

Repeating the process, we conclude that if γ̃ is not embedded then it must

bound an embedded teardrop disc with a locally convex corner. The generator

of CF0(γ, γ) corresponding to this self-intersection must then have a non-zero

coefficient in µ0(γ), since there are no other teardrops with the same corner.

Thus, if µ0(γ) = 0 then γ̃ must be embedded.
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Remark 2.3. Regular homotopies of immersed curves do not preserve the ab-

sence of teardrops or the vanishing of µ0. For instance, pushing an embedded

arc sideways then back through itself to create a pair of self-intersections gives

rise to a teardrop (and a bigon). Thus, in the arguments below we will take care

to only consider regular homotopies which preserve unobstructedness.

Remark 2.4. On a two-dimensional surface, rigid J-holomorphic discs with pair-

wise distinct boundary conditions are immersed polygons with convex corners,

which are purely combinatorial. One can set up the Fukaya category either via

moving Lagrangian boundary conditions and honest J-holomorphic curves or

via (the more usual approach with) Hamiltonian perturbation terms in the Floer

equation. See [30] for an implementation.

Remark 2.5. The results of this section apply, mutatis mutandis, to the case

of a surface S with non-empty boundary. The main difference is that it is

sometimes necessary to consider immersed curves which live in the (infinite area)

completion of S , rather than in S itself. We will pay careful attention to this issue

when it arises in the sequel.

2.3. Isotopies and twists. For each a ∈ H1(Σ;R) there is a symplectomor-

phism φa with flux a, and one can move Lagrangian submanifolds by such sym-

plectomorphisms. This obviously preserves unobstructedness, since it preserves

all teardrop discs and their areas. There is a more general statement for isotopies

not induced by global symplectomorphisms.

Two curves on a surface meet minimally if they meet transversely in their

geometric intersection number of points.

Lemma 2.6. Let γ ⊂ Σ be an immersed curve and σ a simple closed curve. One

can isotope γ by a regular homotopy so as to meet σ minimally. Moreover, the

regular homotopy can be chosen to preserve the unobstructedness of γ.

Proof. Suppose the intersection is not minimal, so there is a not necessarily

embedded bigon bound by σ ∪ γ. Pull back σ to the domain of such a bigon;

changing the choice of bigon to one that is “innermost” if necessary, we can

assume that there is a bigon H which does not meet σ in its interior. The

boundary of this bigon therefore contains a proper subset of γ, since the boundary

arc of the bigon lying along γ connects two intersections in γ ∩ σ which are

consecutive as read along γ. (Note that the σ-edge of this bigon might loop fully

around σ even with the bigon being innermost; see Figure 1.) Now push the arc

of γ lying along H across H, to decrease the total intersection number of γ and

σ. This can be iterated to reduce to a minimal situation.
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σ

γ

q p p′ q′

Figure 1. σ and γ bound four bigons in T 2; the boundaries of the innermost bigons (those not
meeting σ in their interior: above p− p′ and below q− q′) loop slightly more than once around σ.

By Lemma 2.2, γ is unobstructed if and only if its lift γ̃ to the universal

cover of Σ is embedded. Lifting to Σ̃ the bigon H along which we slide γ in

the above argument, we obtain a bigon H̃ with boundary on γ̃ and on a lift σ̃ of

σ, whose interior is moreover disjoint from all lifts of σ. If the interior of H̃ is

disjoint from γ̃ then sliding γ across H preserves unobstructedness. Otherwise,

by pulling back γ̃ to the domain of the bigon H̃ (which yields a disjoint collection

of embedded arcs, since γ̃ is embedded) and changing the choice of bigon to one

that is innermost, we obtain a bigon with boundary on γ̃ ∪ σ̃ whose interior is

disjoint from γ̃ and from all lifts of σ. Projecting back to Σ and sliding across

this bigon decreases the intersection number without affecting unobstructedness.

Remark 2.7. This argument also gives the following generalization of Lemma

2.6: let S be a compact surface with boundary, σ a simple closed curve, and

γ either an immersed curve or an immersed arc with ends in ∂S . Then one

can isotope γ by a regular homotopy so as to meet σ minimally, in a way that

preserves the absence of teardrops with boundary on γ.

Lemma 2.8. For any immersed curve γ ⊂ Σ with µ0(γ) = 0, and a ∈ R, there

is a regular isotopy γt of γ through (generically) immersed unobstructed curves

which sweeps area a.

Proof. Pick a non-separating simple closed curve σ which meets γ minimally

and with non-zero geometric intersection number. Such a curve can be obtained

from Lemma 2.6. (The construction of σ in that Lemma involves an isotopy

of γ which might now have non-trivial flux, but the conclusion of the current

Lemma for the modified curve would then yield the same result for the initial one,

just with a different base-point to the one-parameter family). One obtains γt by
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sliding a portion of γ along σ, introducing a cancelling pair of self-intersections

each time γ is being pushed across itself. The resulting curves bound no

teardrops other than those bound by γ. Indeed, in the universal cover, we can

choose lifts of γ and σ which meet exactly once, by the minimal intersection

assumption; and then the family γt which slides alongσ bounds no new teardrops

since its lift to the universal cover acquires no new self-intersections.

Remark 2.9. Let γ be an unobstructed immersed curve in a compact surface with

boundary S . If γ is not boundary-parallel (i.e., it cannot be homotoped to a curve

contained in a collar neighborhood of ∂S ), then there exists a simple closed

curve which has non-zero geometric intersection number with γ, and the above

argument shows that there are unobstructed regular isotopies of γ in S which

sweep arbitrary area a ∈ R. On the other hand, if γ is boundary-parallel then

the total area between γ and ∂S is finite, and any regular homotopy sweeping

more than this amount of area must introduce a teardrop.

Lemma 2.10. Let γ ⊂ Σ be an embedded simple closed curve. If γ is non-

separating, then there are embedded simple closed curves γt smoothly isotopic

to γ and obtained by an isotopy of flux t, for every t ∈ R.

Proof. Fix a simple closed curve σ with non-zero algebraic intersection number

with γ, and fix a small embedded cylinder centred on σ. Let σ± be disjoint

embedded curves in this cylinder which bound a subcylinder of area ε > 0. The

curve

(τσ+ ◦ τ
−1
σ−)(γ)

is then smoothly isotopic to γ but differs from it by a flux of area ε times the

algebraic intersection number. Since it is the image of γ under a diffeomorphism,

it is obviously embedded. By varying ε and iterating the map τσ+ ◦ τ
−1
σ−

or its

inverse, one obtains embedded curves differing from γ by arbitrary real values

of flux.

The analogue of Lemma 2.10 does not hold for separating simple closed

curves; in that case, if one tries to move γ by an isotopy sweeping a flux larger

than the area of a subsurface bound by γ, one may have to introduce self-

intersections, cf. Figure 4 below.

For embedded curves, isotopies that sweep zero area are induced by Hamilto-

nian diffeomorphisms, and the invariance of Floer theory is classical. We record

the following consequence (and note that the result also holds for surfaces with

boundary):
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Corollary 2.11. Let γ1, γ2 be two embedded simple closed curves with non-zero

algebraic intersection number, and let X1, X2 be the objects of F(Σ) obtained

by equipping γ1, γ2 with rank one local systems. Then the rank of the Floer

cohomology group HF∗(X1, X2) is equal to the geometric intersection number of

γ1 and γ2.

Proof. Move γ2 by an isotopy in order to obtain a simple closed curve γ′
2

which

intersects γ1 minimally, so that there are no bigons bound by γ1∪γ
′
2
. The isotopy

from γ2 to γ′
2

may sweep a non-zero amount of flux, but this can be remedied

by sliding γ′
2

along γ1: applying the construction in the proof of Lemma 2.10 to

γ′
2
, taking σ = γ1, yields γ′′

2
which is Hamiltonian isotopic to γ2 and intersects

γ1 minimally. Replacing X2 by the quasi-isomorphic object X′′
2

given by γ′′
2

with

the appropriate local system, we find that the Floer complex CF∗(X1, X
′′
2

) has

rank equal to the geometric intersection number and vanishing Floer differential.

Invariance of Floer cohomology under isotopies that sweep zero area holds

more generally for immersed curves, even when we allow the areas of the regions

bounded by the curve to vary, or if we allow isotopies through a curve that does

not self-intersect transversely, creating or cancelling self-intersections. We note

that such regular homotopies are still induced by a (time-dependent) Hamiltonian

on the domain of the immersion, and thus we will abusively refer to them as

Hamiltonian isotopies. The following is closely related to [1, Proposition 4.1].

Lemma 2.12. If unobstructed immersed curves γ0 and γ1 are regular homotopic

through (generically self-transverse) unobstructed immersed curves by an iso-

topy that sweeps zero area (and which identifies their S pin structures and local

systems), then γ0 and γ1 define quasi-isomorphic objects of F(Σ).

Proof. By concatenation, this follows from the result for C1-small isotopies

sweeping zero area. When γ0 and γ1 are C1-close to each other, there exists

a small time-independent Morse function H on the domain of the immersion

whose Hamiltonian vector field generates the isotopy. Each critical point of H

gives rise to an intersection of γ0 and γ1; considering separately the maxima and

minima, we let

p =
∑

pi∈min(H)

qH(pi) pi ∈ CF0(γ0, γ1) and p′ =
∑

p j∈max(H)

q−H(p j) p j ∈ CF0(γ1, γ0).

When γ0 and γ1 are embedded, a classical argument considering the bigons

that connect the consecutive minima and maxima of H shows that µ1(p) = 0,

µ1(p′) = 0, i.e. p and p′ are Floer cocycles, and µ2(p′, p) = idγ0
, µ2(p, p′) = idγ1

,

i.e. p and p′ provide an explicit isomorphism between γ0 and γ1. When γ0 and γ1
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are immersed, there are additional generators of CF(γ0, γ1) and CF(γ1, γ0) near

the self-intersections. However, by considering lifts of γ0 and γ1 to the universal

cover (which are embedded by our assumption of unobstructedness), we find that

the lifts of holomorphic polygons which contribute to µ1(p), µ1(p′), µ2(p′, p) and

µ2(p, p′) cannot involve the generators coming from the self-intersections, and

the outcome of the calculation is exactly the same as in the embedded case.

Any simple closed curve σ ⊂ Σ has an associated Dehn twist τσ. The identity

id and τσ both define A∞-equivalences of F(Σ), and viewed as functors, there is

a distinguished morphism Φσ : id → τσ in Homnu− f un(id, τσ) obtained from the

count of sections of a Lefschetz fibration over a disc with one interior critical

point and vanishing cycle σ.

Lemma 2.13. If σ is non-separating, then τσ determines σ up to Hamiltonian

isotopy. Ifσ is separating, then the pair (τσ,Φσ) determinesσ up to Hamiltonian

isotopy.

Proof. It is straightforward to see that τσ determines the smooth isotopy class

of σ. Deforming a simple closed curve σ by an isotopy that sweeps area α, the

Dehn twist τσ changes by a non-Hamiltonian isotopy whose flux is α · PD([σ]).

If [σ] , 0 the result follows.

If [σ] = 0, then σ separates Σ into two subsurfaces. Pick a simple closed

curve γ whose geometric intersection number with σ is two, and let γ′ be a

simple closed curve which is Hamiltonian isotopic to τσ(γ) and intersects γ and

σ minimally, as in Figure 2.

γ

σ

γ′

a b

p

r
p′

Figure 2. Dehn twisting about a separating curve

By the work of Seidel [29], there is an exact triangle in F(Σ) taking the form

CF(σ, γ) ⊗ σ
e

// γ
f

// γ′
ff
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where e is a tautological evaluation map, which can be written in terms of the

generators p, r of CF(σ, γ) as e = (p, r) : σ ⊕ σ[1] → γ, and f ∈ CF0(γ, τσ(γ))

is given by the natural transformation Φσ. Since σ ⊕ σ[1] is not isomorphic to

γ ⊕ γ′[1], the morphism f is a non-zero linear combination of the generators

a, b of CF0(γ, γ′), and determined uniquely up to scaling by the property that

µ2( f , p) = µ2( f , r) = 0.

Denoting by A and B the symplectic areas of the two shaded triangles on

Figure 2, we find that µ2(a, p) = ±qA p′ and µ2(b, p) = ∓qB p′, so the vanishing

of µ2( f , p) implies that f is proportional to qBa+qAb. (As expected, µ2( f , r) then

vanishes as well: since γ′ is Hamiltonian isotopic to τσ(γ), the areas of the two

triangles contributing to µ2( f , r) differ by the same amount B − A).

Keeping γ and γ′ fixed, when σ moves by an isotopy of flux α (without

creating new intersections) the quantity B − A changes by α, so that the class

[ f ] = Φσ(γ) ∈ HF0(γ, τσ(γ)) must change as well. This implies that Φσ detects

the Hamiltonian isotopy class of σ.

An object Y ∈ F(Σ)per is spherical if H∗(homFper (Y,Y)) = H∗(S 1;Λ). A

spherical object Y has an associated twist functor TY .

Lemma 2.14. Let Y,Y ′ be spherical objects on a surface S . Suppose the twist

functors TY and TY ′ are quasi-isomorphic. If Y is a homologically non-trivial

simple closed curve, then Y and Y ′ are quasi-isomorphic in Twπ F(S ).

Proof. Write T for TY ≃ TY ′ . Let δ be a simple closed curve with geometric

intersection number 1 with Y . The group HF(δ,T (δ)) has rank one, so up to

quasi-isomorphism there are only two distinct mapping cones

Y ≃ {δ
x
−→ T (δ)} and δ ⊕ T (δ)[1] ≃ {δ

0
−→ T (δ)}.

Since the functor T = TY ′ is a cone over an evaluation functor which has image

in the subcategory with objects V ⊗ Y ′ for graded vector spaces V , one of these

mapping cones is isomorphic to direct sums of copies of Y ′. The sum δ⊕T (δ)[1]

is a sum of two non-isomorphic indecomposables, so by the Krull-Schmidt

property cannot be a sum of copies of a single indecomposable Y ′. Therefore

Y is isomorphic to a direct sum of copies of Y ′, and indecomposability of Y

implies Y ≃ Y ′ as required.

2.4. Generation. Consider an A2g-chain of 2g curves {ζi}16i62g on Σ, as de-

picted in Figure 3 when g = 2.

Proposition 2.15. The curves ζi split-generate F(Σ).
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✣✢
✤✜

✣✢
✤✜

ζ1

ζ2

ζ3

ζ4

Figure 3. Split-generating curves for F(Σ2)

Proof. This is a consequence of [38, Proposition 3.8], a variant of [30, Lemma

6.4]. Briefly, if u =
∏2g

i=1
τi, the Dehn twists τi in the curves ζi satisfy the positive

relation u4g+2 = 1 ∈ Γg. The square of this relation defines a Lefschetz fibration

X → P1 with fibre Σ, with 2g(8g + 4) critical fibres, and for which every section

of the fibration has square 6 −2.

Let δ ∈ F(Σ) be an arbitrary curve (equipped with a local system, which we

suppress from the notation). There are exact triangles associated to the Dehn

twists τi, on the cohomological category H(F(Σ)) taking the form

HF(δ, φ(δ))
p

// HF(δ, τi ◦ φ(δ)) // HF(δ, ζi) ⊗ HF(ζi, φ(δ))
kk

for a subword φ =
∏

j<i τ j of the monodromy. This triangle is induced from

an exact triangle in F(Σ) of the form

φ(δ)
p

// τi ◦ φ(δ)) // V ⊗ ζigg

where V = HF(ζi, φ(δ)) is a Z/2-graded vector space and the arrow p is

multiplication by the section count Φτi
. Concatenating such triangles for all the

twists in u8g+4 yields

δ
p̂
−→ u8g+4(δ) � δ (1)

The morphism p̂ counts sections of X → P1, and there are no holomorphic such

for generic almost complex structure, since all sections have square 6 −2 and

live in moduli spaces of virtual dimension < 0. Therefore the arrow p̂ vanishes,

and δ is exhibited as a summand in a triangle whose third entry is a twisted

complex on the vanishing cycles ζi.

Corollary 2.16. The closed-open map H∗(Σ;Λ) → HH∗(F(Σ),F(Σ)) is an

isomorphism; similarly for the open-closed map HH∗(F(Σ),F(Σ))→ H∗(Σ;Λ).

Proof. This is a special case of [38, Corollary 3.11], where the required hypothe-

ses are obtained from Proposition 2.15.
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Corollary 2.17. Given a simple closed curveσ ⊂ Σ, there are curves {ξ1, . . . , ξ2g}

which are split-generators for F(Σ) and which meet σ minimally.

Proof. Up to automorphism, there are only finitely many possibilities for σ, so

the result follows by inspection of the pattern of curves in Figure 3.

The same methods that underlie Corollary 2.16 also show:

Lemma 2.18. If Σ is a closed surface, then F(Σ)per is homologically smooth and

proper.

Proof (Sketch). Properness is immediate since the objects are closed Lagrangians.

Smoothness follows from the fact that one can resolve the diagonal on Σ × Σ

by product Lagrangians, which follows for instance from the argument of [38,

Section 3.4]. (An alternative is to use that F(Σ)per is equivalent to a category of

matrix factorizations of an isolated hypersurface singularity, and such categories

are always smooth and proper3.)

2.5. Mukai pairing. Let A be a proper (i.e. cohomologically finite) A∞-

category, linear over K. The Chern character is a map

ch : K0(A)→ HH0(A),

whilst the Mukai pairing is a graded bilinear pairing

〈•, •〉 : HH∗(A) ⊗ HH∗(A)→ K.

These were introduced by Shklyarov in the case of dg-categories [37]; since

any A∞ category is quasi-equivalent to a dg-category, their definitions and basic

properties extend to the A∞-setting. Shklyarov proved that

〈ch(X), ch(Y)〉 = −χ(X,Y). (2)

In the case of F(Σ), these notions are quite explicit, using the open-closed

map to identify HH0(F(Σ)) with H1(Σ;Λ). If γ is an unobstructed immersed

curve (equipped with a rank one local system), the absence of non-constant

holomorphic discs with boundary on γ implies that the image of ch(γ) = [idγ] ∈

HH0(F(Σ)) under the open-closed map is exactly [γ] ∈ H1(Σ;Z) ⊂ H1(Σ;Λ).

Comparing (2) with the classical identity χHF(γ, γ′) = −[γ] · [γ′], we find that

the Mukai pairing is simply the intersection pairing on H1(Σ;Λ).

3 Also in the stronger sense of admitting a compact generator.
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Lemma 2.19. Let X ∈ F(Σ)per. Then ch(X) ∈ H1(Σ;Λ) represents an integral

class, i.e. ch(X) ∈ image{H1(Σ;Z)→ H1(Σ;Λ)}.

Proof. By (2), 〈ch(X), ch(γ)〉 = −χHF(X, γ) ∈ Z for any simple closed curve

γ ⊂ Σ. As noted above, under the open-closed map ch(γ) maps to [γ] ∈ H1(Σ;Z).

It follows that ch(X) has integral pairing with all of H1(Σ;Z), which is only

possible if the class is integral.

Corollary 2.20. Let X ∈ F(Σ)per be spherical. There is a non-zero class

a ∈ H1(Σ;Z) with 〈a, ch(X)〉 = 0.

Proof. Evident from Lemma 2.19.

2.6. Balancing. There is a natural map

Symp(Σ)→ nu-fun(F(Σ),F(Σ))

which takes any Hamiltonian symplectomorphism to an equivalence which is

quasi-isomorphic to the identity4. This yields a map Symp(Σ)/Ham(Σ) →

Auteq(DπF(Σ)), where the domain is viewed as a discrete group. For a surface

of genus > 2,

Symp(Σ)/Ham(Σ) = H1(Σ;R) ⋊ Γ(Σ)

by Moser’s theorem and the vanishing of the flux group. To build a homomor-

phism Γg → Auteq(DπF(Σg)) requires some additional choice. Suppose g > 2,

and fix a primitive θ for the pullback of ωΣ to the unit tangent bundle S (TΣ). For

any simple closed curve σ ⊂ Σ, a choice of orientation of σ defines a canonical

lift σ ⊂ S (TΣ), and we then have a real number tσ =
∫

σ
θ. Say σ is balanced if

tσ = 0, and define a balanced symplectomorphism f : Σ → Σ to be one which

takes balanced curves to balanced curves, i.e. for which t f (σ) = tσ for every

oriented simple closed curve σ ⊂ Σ.

Lemma 2.21. {Balanced symplectomorphisms}/Ham(Σ) ≃ Γg.

Proof. See [30].

It follows that the choice of θ defines a map

Γg → Auteq(DπF(Σg)). (3)

Given two primitives θ, θ′ for p∗ωΣ, with p : S (TΣ)→ Σ, one obtains a class

[θ − θ′] ∈ H1(S (TΣ);R). Note that, since χ(Σ) , 0, the pullback p∗ induces

an isomorphism on first cohomology, so we can think of [θ − θ′] as an element

of H1(Σ;R). Changing θ to θ′ conjugates the image of (3) by the action of this

element of H1(Σ;R).

4 The notation nu-fun follows [29]; the Fukaya category admits cohomological but not strict units,

and the functors are therefore not strictly unital; they are however cohomologically unital.
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Remark 2.22. The analogous construction for punctured surfaces may be more

familiar to the reader: the choice of an exact symplectic structure on a punctured

surface S (i.e. a primitive θ for the symplectic form itself, rather than its lift to

the unit tangent bundle) determines a homomorphism from the mapping class

group of S to Auteq(DπF(S )) by considering exact symplectomorphisms of S ,

i.e. those which take exact curves to exact curves, up to Hamiltonian isotopy.

2.7. Cautionary examples. Despite its generally elementary character, there

are some surprises in Floer theory for curves on surfaces.

C

A

Figure 4. An exotic spherical object when C > A

Lemma 2.23. There are spherical objects in F(Σ) which are not quasi-isomorphic

to any simple closed curve with local system.

Proof (Sketch). See Figure 4, which shows an immersed curve obtained by

pushing a separating simple closed curve through itself to create a single bigon.

The region labelled C contributes to a non-trivial Floer differential, so this

immersed curve is spherical. However, the hypothesis that the area C > A

implies that one cannot deform the curve to be embedded through an isotopy

which has trivial flux: the end result would have to separate Σ into two regions,

one of area A − C < 0. It is not hard to see that, if this immersed curve was

quasi-isomorphic to a simple closed curve, that curve would have to be in the

same homotopy class, and then consideration of Lemma 2.13 would show that

the natural transformation from the identity to the associated twist functor would

involve a different linear combination of Floer generators.

Lemma 2.24. There is an immersed curve S 1 → Σ with rank one local system

which admits non-trivial idempotents.
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Proof. Take an immersed curve γ which is homotopic to the double cover of a
simple closed curveσ. Then a rank one local system on γ defines an object quasi-
isomorphic to a rank two local system ξ on σ, and rank one sub-local-systems of
ξ define idempotents.

Lemma 2.25. Let p be a transverse intersection point of curves γ, γ′ such that p
is a Floer cocycle in CF∗(γ, γ′). The immersed curve resulting from surgery at

p need not be quasi-isomorphic to the mapping cone γ
p
−→ γ′.

r2 p r1

γ

γ′

r2 r1
σ

Figure 5. The mapping cone is not the surgery

Proof. Consider Figure 5, where in the first image the Floer complex CF∗(γ, γ′)
has

dr1 = qα1 · p, dr2 = −qα2 · p

with α1, α2 the areas of the bigons; we assume there are no holomorphic strips
other than those in the picture. Then p is an exact Floer cocycle, so

Cone(p) ≃ γ[1] ⊕ γ′.

In this case, the Lagrange surgery σ at p is quasi-isomorphic to the cone on
qα1 r1 viewed as a (closed) morphism in the reverse direction, from γ′ to γ (or
equivalently, qα2 r2, which is cohomologous). However, there are also examples
where the Lagrange surgery at an exact Floer cocycle between a pair of simple
closed curves γ, γ′ yields an immersed curve σ which lies outside of their
triangulated envelope (Figure 6). In all these examples, the surgered curve σ
remains cobordant to γ ∪ γ′, but the Lagrangian cobordism between them is
obstructed, and the cobordism only yields an exact triangle after deforming σ
by a suitable bounding cochain (which amounts geometrically to smoothing
a self-intersection of σ, to obtain a curve in a different homotopy class – in
fact, homotopic to γ ∪ γ′ rather than σ). This is a purely one-dimensional
phenomenon – for instance, in higher dimensions, there would be no rigid strip
passing through the neck region after surgery, in contrast to the visible strip in
the right image of Figure 5.

Remark 2.26. In the situation of Lemma 2.25, if γ ∪ γ′ bounds no (immersed)
bigons, then the mapping cone and the surgery do agree, cf. [1, Section 5].
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γ γ′

p

r

σ

r

Figure 6. The mapping cone differs from the surgery by a bounding cochain

3. Immersed curves and bigons

3.1. Bigons. In this section, S denotes a compact surface which may have

empty or non-empty boundary. Let γ ⊂ S be an unobstructed immersed curve,

which we always assume has only transversal self-intersections. An embedded

bigon with boundary on γ is a map u : D → S from the closed disc to S which

takes ±1 ∈ ∂D to self-intersection points of γ, which takes the boundary ∂D\{±1}

to γ, and which is an embedding D → S . Note that there will in general be

arcs of γ which meet the interior of the bigon. If there are no such arcs, so

γ ∩ u(D) = u(∂D), then we say the bigon is empty.

Lemma 3.1. An immersed curve γ ⊂ S bounds at most finitely many embedded

bigons.

Proof. For a given pair of intersection points, there are only finitely many

possible boundary arcs in γ between them. A pair of arcs which cuts out a disc

in S defines a unique bigon.

Lemma 3.2 (Hass, Scott). Let γ ⊂ Σ be an immersed closed curve which does

not bound any teardrops. If γ is homotopic to a simple closed curve, but is not

embedded, then γ bounds an embedded bigon.

Proof. This is proved in [22].

Hass and Scott show by examples that one can not in general assume that

γ bounds an empty bigon. We introduce a combinatorial move on immersed

curves:

• The triple-point move changes a configuration of three intersecting arcs

which cut out a small downwards-pointing triangle to one defining a small

upwards-pointing triangle, cf. Figure 7.
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Figure 7. The triple-point move

Lemma 3.3. The triple-point move preserves the total number of self-intersections

of γ, and does not increase the total number of embedded bigons on γ.

Proof. Evident.

Lemma 3.4 (Steinitz). If γ bounds an embedded bigon, then after a finite se-

quence of triple-point moves, γ bounds an empty bigon.

Proof. This is proved in [39, 40], see also [15].

3.2. Removing bigons. Let v : γ → S be an immersion with [v (γ)] ∈

H1(S ;Z) a non-zero class.

Lemma 3.5. If v (γ) bounds an empty embedded polygon, then there is a Hamil-

tonian isotopy of v (γ) which decreases the area of this polygon to be arbitrar-

ily small without creating any self-intersections. However, if S has non-empty

boundary and [v (γ)] vanishes in H1(S , ∂S ;Z) then the isotopy may require en-

larging the surface S .

Proof. Sliding the portions of v (γ) that bound the empty polygon gives a smooth

isotopy that decreases its area as required. All that is required, then, is to correct

the isotopy by the flow of a symplectic vector field on S in order to ensure that

it sweeps zero area (so that it is induced by a Hamiltonian on the domain of the

immersion). If v (γ) represents a non-zero class in H1(S , ∂S ;Z) then this can

be achieved exactly as in Lemma 2.10, by considering a simple closed curve σ

with non-zero algebraic intersection number with v (γ) and sliding around a thin

cylinder centred on σ. If [v (γ)] vanishes in relative cohomology, then instead we

find a properly embedded arc with non-zero algebraic intersection number with

v (γ) and slide along it; this may push v (γ) outside of S and require us to enlarge

the surface.

Lemma 3.6. If γ bounds an empty bigon, then γ is quasi-isomorphic to a curve

γ′, with two fewer self-intersections, obtained by cancelling the bigon.
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Proof. The previous Lemma shows that we can deform γ by a Hamiltonian

isotopy to decrease the area of the bigon to be arbitrarily small. Once the bigon

is sufficiently small, we can cancel the pair of self-intersections by a regular

homotopy that sweeps zero area, without creating any other intersections; the

result then follows from Lemma 2.12.

Lemma 3.7. If γ bounds an empty triangle, then γ is quasi-isomorphic to a curve

γ′ obtained by performing a triple point move.

Proof. The argument is the same as for bigons: Lemma 3.5 shows we can shrink

the triangle to have arbitrarily small area by an isotopy that sweeps zero area, and

once the triangle is sufficiently small we can perform the triple point move by a

regular homotopy that sweeps zero area. The result then follows from Lemma

2.12.

3.3. Analyticity of Floer cohomology. Let (X, ω) be a symplectic manifold

and {Fb}b∈B a family of unobstructed Lagrangian submanifolds parametrized by

a smooth manifold B. (The prototypical situation in the literature would be that

B is a subset of a tropical SYZ base, and we will sometimes refer to the Fb as

fibres.) Recall that ξ → Fb denotes a rank one UΛ-local system over Fb.

Over a small disk b0 ∈ P ⊂ B, the fibres Fb are graphs of closed one-

forms αb over Fb0
; the Hamiltonian isotopy class of Fb depends only on the de

Rham cohomology class of the one-form αb. The space of choices (b, ξ → Fb)

is therefore naturally a domain centred on the base-point b0 = (0, 1) inside

(Λ∗)k = H1(Fb0
;Λ∗) = H1(Fb0

;R) × H1(Fb0
; UΛ), where k = rkZ H1(Fb0

;Z).

To be more explicit, fixing a basis a1, . . . , ak for H1(Fb0
;Z), we have Λ∗-valued

co-ordinates z1, . . . , zk given by zi(b, ξ) = q[αb]·ai holξ(ai). More intrinsically, to

every element γ =
∑

γiai ∈ H1(Fb;Z) corresponds a monomial

z
γ

b,ξ
= z
γ1

1
. . . z

γk

k
= q[αb]·γ holξ(γ).

Consider a Lagrangian submanifold L ⊂ X transverse to the fibres Fb over P.

Over P, L defines an unbranched cover of P, so the intersection points {L ⋔ Fb}

may be identified with L ⋔ Fb0
. Fix a local section of the family {Fb}, so that

for each fibre Fb we can fix a smoothly varying base-point ⋆ ∈ Fb. In Fb0
, fix

a (homotopy class of) path γx from x to ⋆, for each x ∈ L ⋔ Fb0
. We fix a rank

one local system ξ → Fb0
and an arbitrary identification ξ⋆ � Λ; by parallel

transport along γx, this identifies ξx � Λ for each intersection x ∈ L ∩ Fb0
.

Now consider another point b ∈ P. Assuming P is convex, over a path joining

b and b0 the path γx sweeps a two-chain Γx, yielding an area ax(b) =
∫

Γx
ω. By a

trick due to Fukaya (essentially the observation that taming is an open condition

on almost complex structures), a rigid holomorphic strip u with boundaries on

L and Fb0
will deform, for P sufficiently small, to a rigid holomorphic strip u′

with boundaries on L and Fb. By concatenating the boundary arcs of u′ with the

reference paths, we get a well-defined element [∂u′] ∈ H1(Fb;Z).
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Lemma 3.8. Suppose the arc of the boundary of u connects intersection points

x, y. We have

qE(u′)holξ(∂u
′) = qay(b)−ax(b) · qE(u)z

[∂u′]

b,ξ
.

Proof. See [3].

The key point is that this expression involves the monomial z
[∂u′]

b,ξ
, whereas the

quantity qE(u) is constant, depending only on the reference point b0. In particular,

under the rescaling

CF∗(L, (ξ → Fb0
)) −→ CF∗(L, (ξ → Fb)), x 7→ qax(b) · x = x′

one finds that the Floer differential becomes analytic as a function of the co-

ordinates zb,ξ; schematically,

〈µ1(x′), y′〉 =
∑

[u]

#M([u]) · qE([u])z
[∂u]

b,ξ
.

The dependence on the choice of base-point b0 and of the homotopy classes of

the paths γx are also analytic; the former changes the values ax(b) by some fixed

constant, rescaling x′ by a value which does not depend on zb,ξ, whilst the latter

rescales x′ by a monomial.

Corollary 3.9. There is an affinoid neighbourhood P of b0 ∈ (Λ∗)k such that the

Floer cohomology groups HF∗(L, (ξ → Fb)) are the fibres of an analytic sheaf

over P.

The same argument would apply to a family of immersed Lagrangians

equipped with analytically varying bounding cochains.

Up to this point, we have assumed that the Lagrangian L is transverse to

all the fibres {Fb}b∈P. To obtain a more global statement, given a family of

Lagrangians {Fb}b∈B one chooses a finite set of Hamiltonian perturbations Li of

L for which the corresponding caustics of the projections Li → B have empty

intersection. This finite set of Hamiltonian perturbations can be spanned by a

simplex of Hamiltonian perturbations, and there are (higher) continuation maps

on Floer cochains associated to the edges and higher-dimensional facets of this

simplex. These yield a module for a Cech complex of the corresponding covering

of B, and (for a sufficiently fine cover) gluing maps of the local analytic sheaves

over affinoids in B constructed previously. Summing up:

Theorem 3.10 (Abouzaid). Let {Fb}b∈B be a family of unobstructed Lagrangians

parametrized by an open B ⊂ H1(Fb;R). There is an analytic dg-sheaf over

the annulus B × UΛ ⊂ H1(Fb;Λ∗) with stalk quasi-isomorphic to CF∗(L, (ξ →

Fb)). Furthermore, this association yields an A∞-functor from the tautologically

unobstructed Fukaya category of (X, ω) into the dg-category of complexes of

sheaves over B × UΛ.
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Proof. See [4].

Remark 3.11. Suppose we fix a class a ∈ H1(Fb;R) and consider the corre-

sponding real one-parameter family of Lagrangians F t
b

given by moving Fb by

symplectomorphisms of flux t · a. Then for a test Lagrangian L, there is a dis-

crete set of values of t ∈ R where the transversality condition L ⋔ F t
b

fails.

Picking Hamiltonian perturbations, the Cech complex above amounts to a zig-

zag diagram of quasi-isomorphisms associated to neighbouring such intervals;

generically, these quasi-isomorphisms furthermore correspond to the simplest

birth-death bifurcations of Floer complexes, adding or subtracting an acyclic

subcomplex with two generators and a unique minimal area bigon.

3.4. Spherical objects. Let S be a surface which may be closed or have non-

empty boundary. Let γ ⊂ S be an unobstructed immersed curve and ξ →

domain(γ) a local system. Equip S with a symplectic form ω and compatible

complex structure j.

Lemma 3.12. If (ξ, γ) defines a spherical object of F(S ), then γ is regular

homotopic to a simple closed curve.

Proof. Equipping S with a hyperbolic metric, it is a classical fact that there

is a unique geodesic η in the homotopy class of γ. In fact, performing the

homotopy by a suitable curve-shortening flow (see e.g. [23]), one finds that γ is

regular homotopic to η among generically self-transverse unobstructed immersed

curves. We claim that (ξ, γ) being spherical implies that the geodesic η is a simple

closed curve.

Recall that the Floer complex CF∗((ξ, γ), (ξ, γ)) splits into a direct sum of

complexes corresponding to the various lifts of γ to the universal cover of S

which have non-trivial intersection with a fixed lift γ̃. (This is because Floer

generators which correspond to intersections between different pairs of lifts of γ

cannot be connected by bigons.) The summand which corresponds to the trivial

homotopy class (i.e., intersections of γ̃ with a small Hamiltonian perturbation of

itself) contributes H∗(S 1; End(ξ)), which has rank at least two (considering the

identity endomorphism of ξ). Thus, all other summands must be acyclic.

If the geodesic η is multiply covered, then by homotoping γ to η, then

translating along the underlying simple geodesic, and homotoping back, we find

that there is a regular homotopy of γ to itself which sweeps zero area and turns

the chosen lift γ̃ into a different lift. Hamiltonian isotopy invariance (cf. the proof

of Lemma 2.12) then implies that this pair of lifts also contributes non-trivially

to the Floer cohomology of (ξ, γ) to itself, which contradicts the assumption that

(ξ, γ) is spherical. Hence η cannot be multiply covered.
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Finally, observe that each lift of γ to the universal cover of S lies within

bounded distance of a lift of the geodesic η. If two lifts of η intersect each other

(necessarily at a unique point, since they are hyperbolic geodesics), then the

corresponding lifts of γ also have algebraic intersection number equal to 1, and

hence they must contribute non-trivially to Floer cohomology, which contradicts

the assumption. Thus, the lifts of η to the universal cover of S are pairwise

disjoint, which implies that η is embedded.

Lemma 3.13. Let ξ → γ be an indecomposable local system over a simple closed

curve γ. The endomorphism ring H∗(homF((ξ, γ), (ξ, γ))) = H∗(γ; End(ξ)) has

rank 2 if and only if ξ has rank 1.

Proof. An indecomposable rank r local system ξ is determined by its mon-

odromy A. The fibre Λr is cyclic as a Λ[t±1]-module (where t acts by A), gen-

erated by any vector, and can thus be identified with Λ[t±1]/〈χA(t)〉, where χA is

the characteristic polynomial of the monodromy. Then H0(End(ξ)) contains the

maps Λr → Λr which commute with the monodromy, i.e. Λ[t±1]-module maps.

Since module maps

Λ[t±1]/(χA(t)) −→ Λ[t±1]/(χA(t))

are determined by the image of 1, which can be any element of Λ[t±1]/(χA(t)) ≃

Λr, we conclude that H0(End(ξ)) has rank r over Λ; the same is then true for H1

by considering Euler characteristic.

Corollary 3.14. If (ξ, γ) ⊂ S is an immersed curve with local system which

defines a spherical object X ∈ F(S ), and if [γ] ∈ H1(S ;Z) is non-zero, then γ is

quasi-isomorphic to an embedded simple closed curve and ξ has rank one. (If S

has non-empty boundary and [γ] vanishes in H1(S , ∂S ;Z) then we may need to

enlarge S .)

Proof. Being spherical implies that γ is homotopic to a simple closed curve,

hence bounds an embedded bigon. By a sequence of triple point moves, we may

find an empty bigon bound by γ, which we may then shrink by Hamiltonian

isotopy and cancel to obtain a new immersed curve γ′ in the same quasi-

isomorphism class. By repeated applying Lemmas 3.6 and 3.7, we eventually

arrive at a simple closed curve. Finally, Lemma 3.13 implies that ξ must have

rank one.
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4. Geometrization on punctured surfaces

4.1. The wrapped Fukaya category of a non-compact surface. Let (S , ∂S )

be a symplectic surface with non-empty boundary; fix a finite subset Λ ⊂ ∂S

of boundary marked points (the “stops”) and a homotopy class of line field

η ⊂ TS . Associated to this data is a Z-graded partially wrapped Fukaya category

W(S ,Λ, η). If one does not make a choice of line field, there is also a Z/2-graded

category W(S ,Λ), where the Z/2-grading is given by orientation. When the set

Λ ⊂ ∂S of stops is empty, we will simply write W(S ) or W(S , η).

If the line field η is orientable (i.e. lifts from a section of P(TS ) to the unit

sphere bundle of TS ), there is a forgetful functor W(S ,Λ, η) → W(S ,Λ) which

forgets the grading structure. There are also localization functors W(S ,Λ) →

W(S ,Λ′) which forget some of the stops whenever Λ′ ⊂ Λ; in particular there

are “acceleration” functors W(S ,Λ)→W(S ) which are (by definition) surjective

on objects.

The objects of W(S ,Λ) (resp. W(S ,Λ, η)) are (graded) unobstructed properly

immersed curves or arcs with boundary in ∂S \ Λ, equipped with local systems.

While the construction is usually carried out in the exact setting, we work over

the Novikov field and allow non-exact objects into our category. Recall that

generators of the wrapped Floer complex arise not only from intersection points

but also from (positively oriented) boundary chords in ∂S \Λ connecting the end

points of a pair of arcs. Fixing a Liouville structure on S , the structure maps of

the wrapped category count isolated solutions of Floer’s equation with a suitable

Hamiltonian perturbation in the Liouville completion of S . These counts are

weighted by the topological energy of the solutions and by holonomy terms. In

the case of arcs, the weights can be cancelled out by trivializing the local systems

and rescaling generators by their Floer action; it is only for non-exact objects that

Novikov coefficients are necessary. Note that the wrapped category only depends

on the Liouville completion of (S ,Λ); in particular it is independent of the choice

of Liouville structure.

Remark 4.1. As in the case of Fukaya categories of closed Riemann surfaces,

the structure maps of W(S ,Λ) can be determined combinatorially in terms of

immersed polygons with convex corners. Indeed, solutions to Floer’s equation

which do not lie entirely in the cylindrical ends of the completion can be

reinterpreted as immersed polygons in S whose boundary lies partially on the

given Lagrangians and partially along chords in ∂S \Λ; and solutions which lie

entirely in the cylindrical ends only contribute a “classical” term to µ2 which

concatenates two boundary chords with a common end point.
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4.2. Geometricity of twisted complexes. We will say that an object Y of

TwπW(S ,Λ) is geometric if it is quasi-isomorphic to a union of immersed arcs

or curves with local systems in S or its Liouville completion. The category

TwW(S ,Λ, η) has a combinatorial model, due to [20], using which they prove

the remarkable:

Theorem 4.2 (Haiden, Katzarkov, Kontsevich). Let (Σ, ∂Σ,Λ) be a surface with

non-empty boundary and a (possibly empty) collection of boundary marked

points Λ ⊂ ∂Σ. Let Y ∈ TwW(Σ,Λ) be a Z/2-graded twisted complex. Then Y

is geometric.

We include a brief discussion of the proof, to illustrate why its ingredients do

not readily generalise to the case of closed surfaces treated in this paper, and to

clarify its applicability to the Z/2-graded case and to the non-exact setting.

Proof (Sketch). Suppose that Λ ∩ C , ∅ for each component C ⊂ ∂Σ; the

general case will follow from this by localization. A “full formal arc system”

is a collection {ai} of disjoint embedded arcs with boundary in ∂Σ \ Λ which

decompose Σ into a union of discs each containing exactly one point of Λ.

Any such system of arcs generates the category W(Σ,Λ). The A∞-algebra

of endomorphisms of the collection of objects {ai} has a particularly simple

description: it is formal, and the only non-trivial products correspond to the

concatenation of boundary chords on each component of ∂Σ \ Λ. This can be

described by a nilpotent quiver algebra, with vertices the arcs and arrows the

boundary chords connecting successive end points along each component of

∂Σ \ Λ.

Since the arcs ai generate the wrapped category, any object of TwW(Σ,Λ)

can be expressed as a twisted complex A = (
⊕

Vi ⊗ ai, δ) for some (Z or Z/2)

graded vector spaces Vi. This twisted complex can be viewed as a representation

of a “net”, i.e. a collection of vector spaces which carry two filtrations, together

with prescribed isomorphisms between certain pieces of the associated gradeds.

To a component c of ∂Σ \ Λ, containing end points of the arcs ai1 , . . . , aik in

that order, we associate the (Z or Z/2) graded vector space

Vc := Vi1 [d1] ⊕ · · · ⊕ Vik [dk],

where the shifts d1, . . . , dk reflect the gradings of the arcs near the relevant end

points. This carries two filtrations. One comes from the ordering of the arcs

along the boundary of Σ:

Vi1 [d1] ⊂ Vi1 [d1] ⊕ Vi2 [d2] ⊂ · · · ⊂ Vc.
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The other comes from the part of the differential of the twisted complex which

involves boundary chords lying along c, viewed as an endomorphism δc ∈

End(Vc) which squares to zero, giving the filtration

im(δc) ⊂ ker(δc) ⊂ Vc.

In the latter filtration, δc induces isomorphisms Vc/ker(δc) ≃ im(δc), whereas in

the former, each Vi appears twice in the associated gradeds (once for each end

point of the arc ai).

Because the language of nets is formulated for ungraded vector spaces, the

argument of [20, Section 4.4] actually splits the vector spaces Vc according to

cohomological degree: in the Z-graded case, the indexing set for the net is

π0(∂Σ \ Λ) × Z, and one considers the collection of vector spaces Vd
c for all

c ∈ π0(∂Σ \ Λ) and d ∈ Z (each equipped with the two filtrations described

above).

With this understood, a classification theorem generalising results of [26]

implies that any indecomposable representation of a net is pushed forward from

an indecomposable representation of a net of “height 1”, i.e. one in which all the

filtrations have length 1. These correspond to twisted complexes “locally” built

from pieces that involve a single arc among the ai, and connecting differentials

that are isomorphisms between multiplicity vector spaces that are concentrated

in a single degree and correspond to a single boundary chord (not a linear

combination). Such twisted complexes look like either

V j1 ⊗ a j1
// V j2 ⊗ a j2 . . .oo // V jℓ ⊗ a jℓ or

V j1 ⊗ a j1
//

44
V j2 ⊗ a j2 . . .oo // V jℓ ⊗ a jℓ

where the vector spaces V ji are all isomorphic up to grading shift, and the arrows

between V ji⊗a ji and V ji+1
⊗a ji+1

can point in either direction and each correspond

to a single boundary chord. Interpreting the mapping cone of a boundary chord

geometrically as a boundary connected sum surgery, these two kinds of twisted

complexes correspond respectively to immersed arcs and curves equipped with

local systems. (See [20]; see also [14] for an earlier classification of objects of

the derived category of a cycle of rational curves based on the same algebraic

formalism.)

Since we are working over the Novikov field, there is one more subtlety that

arises: when using boundary connected sum surgeries to build a geometric ob-

ject out of the second kind of indecomposable twisted complex, one arrives at

an immersed closed curve carrying a local system which is not necessarily uni-

tary. However, irreducibility implies that the holonomy has a single eigenvalue,
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whose valuation can be adjusted by modifying the boundary connected sum con-

struction by an isotopy that sweeps a suitable amount of flux. (The isotopy may

however require replacing Σ with a larger domain inside the Liouville comple-

tion; as noted in Remark 2.9, for boundary-parallel curves this is unavoidable,

whereas for all other curves one can find enough space within Σ by applying the

trick of Lemma 2.8). After performing an isotopy to ensure that the eigenvalue

has valuation zero, a suitable choice of basis of the local system (e.g., reducing

to the Jordan normal form) ensures that the holonomy is a valuation-preserving

element of GLn(Λ). We then arrive at an immersed curve with a unitary local

system.

In [20] the classification theorem is stated for objects of the Z-graded

category (where gradings are defined with respect to any choice of line field

η). However, the argument above uses filtrations coming from the boundary

structure of the full formal arc system and from the differential of the twisted

complex, and not from the Z indexing degrees. The argument of [20, Section

4.4] carries over without modification to the Z/2-graded case simply by using

π0(∂Σ \ Λ) × Z/2 instead of π0(∂Σ \ Λ) × Z as indexing set for the net and

reducing the second factor mod 2 in all the statements. This yields geometricity

for Z/2-graded twisted complexes. (In the special case of a once-punctured

torus, an explicit algorithm for producing the geometric replacement of a Z/2-

graded twisted complex guaranteed by Theorem 4.2 is given in [21].)

Remark 4.3. Fix a grading structure on S and a full formal arc system A. The

category Twgr(A) of graded twisted complexes over A is split-closed, since it

admits a stability condition by [20]; hence Twgr(A) = Twπgr(A). There is a

commuting diagram

Twgr(A) //

��

Twπ(A)

��

S H∗(S ) S H∗(S )

where the top arrow collapses the Z-graded structure to its underlying Z/2-

grading and the vertical arrows are open-closed maps (these factor through the

localisation functors from partially to fully wrapped categories). Both vertical

maps hit the unit, by [18], so the image of Twgr(A) in Twπ(A) is a split-

generating subcategory. Nonetheless, the only idempotents which are admitted

in Twgr(A) are those of degree zero. Concretely, a simple closed curve which

separates a genus one subsurface of S containing no punctures cannot be

graded for any choice of line field, since the winding number of the line field

is necessarily non-zero by the Poincaré-Hopf theorem. Such a curve defines an

object of Twπ(A) which does not lift to Twπgr(A) = Twgr(A) for any choice of

grading structure.
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Theorem 4.2 shows that objects of TwW(S ) are geometric, but not that

objects of the split-closure TwπW(S ) are geometric. For a line field η on S

we have a Z-graded full subcategory TwW(S , η) ⊂ TwW(S ). The existence

of stability conditions on TwW(S , η) (as constructed in [20]) implies that it is

split-closed. However, Remark 4.3 implies that one cannot reduce geometricity

of idempotent summands of TwW(S ) to geometricity of objects of TwW(S , η),

since there are objects in the former which don’t lift to the latter for any choice

of η.

Section 4.4, following a strategy from [5, Appendix B], uses homological

mirror symmetry to prove that the Z/2-graded category TwW(S ) is split-closed

whenever S ⊂ (C∗)2 is a very affine curve in a maximally degenerating family.

The next section reviews the relevant mirror symmetry input, due to Heather Lee

[25].

4.3. Homological mirror symmetry for punctured surfaces. We consider a

finite subset A ⊂ Z2 and a function ρ : A→ R which is the restriction of a convex

piecewise-linear function ρ̄ : Conv(A) → R. We assume that the maximal

domains of linearity of ρ̄ are the cells of a “regular” polyhedral decomposition

P of Conv(A), i.e. one with vertex set A and for which every maximal cell is

congruent to a GL(2,Z)-image of the standard simplex. We consider a punctured

surface

S t =















∑

a∈A

cat−ρ(a)za = 0















⊂ C∗ × C∗, t ≫ 0

with its natural exact convex symplectic structure. Explicitly, we can take

ωt =
i

2| log(t)|2

2
∑

j=1

d log z j ∧ d log z̄ j.

The regularity hypothesis ensures that the genus and number of punctures of S t

are independent of the choice of ρ, and the wrapped Fukaya category W(S t, ωt)

is independent of t ≫ 0 up to quasi-isomorphism. Let

Logt : (C∗)2 → R2, (z1, z2) 7→
1

| log(t)|
(log |z1|, log |z2|).

As t → ∞ the images Logt(S t) Gromov-Hausdorff converge to the “tropical

amoeba”, the 1-dimensional polyhedral complex Π which is the singular locus

of the Legendre transform of the convex function ρ, defined by

Lρ : R2 → R, ξ 7→ max {〈a, ξ〉 − ρ(a) | a ∈ A} . (4)



Denis Auroux and Ivan Smith 30

This is combinatorially the 1-skeleton of the dual cell complex of P. The regions
Ra ⊂ R2\Π in the complement of the tropical curve Π are labelled by elements
of A, according to which term in (4) achieves the maximum. Let

∆Z,ρ =
{

(ξ, η) ∈ R2 × R | η > Lρ(ξ)
}

, (5)

let Z be the corresponding 3-dimensional toric variety, and W : Z → C the
function defined by the toric monomial (0, 0, 1), which vanishes to order 1 along
each component of W−1(0). The mirror to (S t, ωt) is the Landau-Ginzburg model
(Z,W), i.e. the symplectic geometry of S t is reflected in the singularities of the
toric divisor W−1(0) = Z0. For further discussion and context, see [6, Section
3]. In particular, we point out that the topology of Z depends on the choice
of polyhedral decomposition P, with different choices differing by flops. The
irreducible toric divisors of Z are labelled by the components Ra ⊂ R2\Π (whose

closures are their moment polytopes), and their intersections are determined by
the combinatorics of the tropical curve.

Remark 4.4. By considering general elements of linear systems of curves in P2

of degree d or in P1 × P1 of bidegree (a, b), one obtains punctured surfaces of

genus g with ℓ punctures for pairs (g, ℓ) of the form ((d − 1)(d − 2)/2, 3d) and

((a − 1)(b − 1), 2(a + b)). More generally, one can obtain punctured surfaces

for any (g, ℓ) with 3 6 ℓ 6 2g + 4 by considering the family of tropical plane

curves depicted in Figure 8. The upper bound ℓ − 3 6 2g + 1 on the number

of horizontal legs ensures that the two ‘north-east antlers’ of the curve don’t

intersect near infinity.

g

ℓ − 3

Figure 8. Tropical plane curves of genus g with ℓ punctures

For any scheme Z, we will write Perf(Z) for the dg-category of perfect com-
plexes over Z, which is the full subcategory of Db Coh(Z) of objects admitting

finite locally free resolutions. The dg-quotient of the latter by the former is the
derived category of singularities Dsg(Z). This is not in general split-closed and
its split-closure is denoted Dπsg(Z). The main result of [25] asserts:
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Theorem 4.5 (Heather Lee). There is an equivalence of Z/2-graded split-closed

C-linear triangulated categories

DπW(S t) ≃ Dπsg(Z0).

Lee’s proof of this theorem involves writing both sides as limits over restric-

tions to certain simple pieces, and matching the two restriction diagrams in order

to conclude that their limits are equivalent. On one hand, the tropical curve Π

induces a decomposition of S t into pairs of pants (indexed by the vertices of Π)

glued together along cylinders (corresponding to the bounded edges of Π); on

the other hand, the Landau-Ginzburg model (Z,W) admits a matching decom-

position into toric affine charts (C3, z1z2z3). In Section 5.3, we will revisit the

argument in order to apply analogous technology to a closed symplectic surface.

For now, we note the following consequence:

Proposition 4.6. Let S ′t ⊂ S t be the union of the pairs of pants corresponding to

a given subset of the vertices ofΠ. Let Z′ be the union of the corresponding affine

charts of Z, i.e the toric 3-fold obtained from Z by removing all the toric strata

whose closure does not contain any of the selected vertices, and Z′
0
= Z′ ∩ Z0.

Then DπW(S ′t ) ≃ Dπsg(Z′
0
).

Proof. This follows immediately from Lee’s proof of Theorem 4.5 by consider-

ing only the parts of the restriction diagrams that correspond to the pairs of pants

and cylinders in S ′t on one hand, and to the affine charts of Z′ on the other hand.

The limits of these diagrams compute DπW(S ′t ) and Dπsg(Z′
0
) respectively, which

yields the result.

Remark 4.7. Proposition 4.6 allows us to apply Lee’s result to punctured sur-

faces of arbitrary genus and with any number ℓ > 3 punctures. For ℓ > 2g + 4

the graphs of Figure 8 are not entire tropical plane curves because two of the

legs would need to intersect each other outside of the depicted region of the

plane; however they describe subsurfaces S ′t of higher genus curves S t ⊂ (C∗)2,

to which we can apply the Proposition. The mirror configuration Z′
0

is again a

union of smooth toric divisors of Z′, as depicted in Figure 8; the only difference

with the previous setting is that one of the components of Z′
0

(corresponding to

the upper-right region of the figure) now arises as the complement of a toric

divisor (e.g. a P1 with negative normal bundle) inside a compact component of

Z0; this does not have any incidence on the properties of the derived category of

singularities, and the results below apply without modification to these examples.
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Lee’s proof furthermore matches certain specific objects on the two sides of

the mirror.

Given any irreducible component Za
0
⊂ Z0, and a line bundle La → Za

0
, the

push-forward of La from Za
0

to Z0 defines an object of Dsg(Z0), which by abuse

of notation we also denote by La.

Proposition 4.8. The equivalence of Theorem 4.5 matches the sheaves La with

properly embedded arcs or simple closed curves in S t, hence with objects in the

image of TwW(S t)→ TwπW(S t).

Proof (Sketch). This follows from the proof of Theorem 4.5 as given in [25].

Specifically, La is matched with an arc or curve which lies on the portion of

S t whose projection under Logt collapses, as t → ∞, to the boundary of the

corresponding region Ra ⊂ R2\Π. The specific arc or curve is determined up

to Hamiltonian isotopy, and hence quasi-isomorphism in W(S t), by its winding

over each of the cylindrical regions of S t which collapse to finite edges of ∂Ra,

and by a normalization condition; the winding numbers are determined explicitly

by the degrees of the restriction of La to the corresponding projective lines in Za
0

(see [25, Section 3.1]). The details of the correspondence will not matter in the

sequel. (The discussion in [25] concerns specifically those objects La which

arise from powers of the polarization determined by the polytope ∆Z,ρ, but the

construction easily extends to general line bundles.)

4.4. Split-closure. Following a strategy from [5], this section will prove that

the categories TwW(S ) and Dsg(Z0) appearing in Theorem 4.5 are in fact already

idempotent complete, i.e. split-closed. For a scheme Z, we write K j(Z) for

K j(Perf(Z)).

Proposition 4.9. Dsg(Z) is idempotent complete if and only if K−1(Z) = 0.

Proof. This is [5, Proposition B.1].

Lemma 4.10. Let W : Z → C be as after (5). Then Dsg(Z0) is split-closed.

Proof. Recall W : Z → C is a toric monomial morphism on a toric 3-fold Z with

central fibre Z0 a union of (not necessarily compact) toric surfaces. Let Γ ⊂ Z0

denote the one-dimensional subscheme of singular points of Z0, and let Z′
0
→ Z0

be the normalisation and Γ′ = Γ ×Z0
Z′

0
⊂ Z′

0
. Concretely, Z′

0
is the disjoint union

of the toric surfaces appearing in Z0, and Γ′ is the union of their toric boundaries.

There is an exact sequence

K0(Z′0) ⊕ K0(Γ)→ K0(Γ′)→ K−1(Z0)→ K−1(Z′0) ⊕ K−1(Γ)→ K−1(Γ′)

(cf. the proof of [5, Proposition B.2], which is itself inspired by [41]). In our

case, Z′
0

is a union of smooth surfaces, so K−1(Z′
0
) = 0. We claim that
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1. the map K−1(Γ)→ K−1(Γ′) is an isomorphism;

2. the map K0(Z′
0
) ⊕ K0(Γ)→ K0(Γ′) is surjective.

By [41, Lemma 2.3], for the curves Γ and Γ′ (whose irreducible components

are all P1’s and A1’s) the K−1-group is Zb1(•) where b1(•) denotes the first Betti

number of the curve. Suppose S t has genus g. Then b1(Γ) = g = b1(Γ′), and the

natural map Γ′ → Γ identifies the corresponding cycles of P1’s, which implies

the first statement.

For the second statement, recall that Γ′ is the disjoint union of the toric

boundaries Γa = Γ′ ∩ Za
0

of the components of Z0. For any non-compact

component Za
0
⊂ Z0, the map K0(Za

0
) → K0(Γa) is surjective. There are

g compact components of Z0, on each of which the corresponding map has

rank two cokernel. This is essentially a cohomological computation, since the

relevant K0-groups for rational curves and toric surfaces are given by ranks of

cohomology. By classical toric geometry, there is an exact sequence

H2(Za
0)→ H2(Γa)→ Z2 → 0,

where the second map sends each component of Γa to the primitive normal vector

of the corresponding facet of the moment polytope. The cokernel of the first map

is therefore generated by any two irreducible toric divisors whose corresponding

normal vectors form a basis of Z2: for instance, by the Delzant condition, any

two irreducible toric divisors which meet in one point.

Given this, an easy inductive argument shows that the total map from K0(Z′
0
)⊕

K0(Γ) to K0(Γ′) =
⊕

a
K0(Γa) is surjective. Namely, pick an ordering of the

components of Z0 such that, for each compact component Za
0
⊂ Z0, there exist

two components of Γa whose normal vectors generate Z2 and which arise as

intersections of Za
0

with two other components of Z0 which appear before it in

the chosen ordering. (For example, order the components by scanning R2 \ Π

from top to bottom: then the edges meeting at a top-most vertex of a compact

component have the requisite property.) We then show that the map is surjective

onto each summand K0(Γa) by induction on a: for non-compact components the

map K0(Za
0
)→ K0(Γa) is surjective, and for compact components our assumption

yields two generators of K0(Γ) whose images, after quotienting by the previously

encountered summands of K0(Γ′), span the cokernel of K0(Za
0
) → K0(Γa). This

implies surjectivity.

Lemma 4.11. The sheaves La of Proposition 4.8 generate Dsg(Z0).

Proof. For each irreducible component Za
0

of Z0, line bundles over the toric sur-

face Za
0

generate its derived category Db Coh(Za
0
) [12, Corollary 4.8], so their

images under inclusion generate the full subcategory Db
Za

0

Coh(Z0) of complexes

whose cohomology is supported on the component Za
0
. Considering all compo-

nents, these sheaves taken together generate Db Coh(Z0); the result follows.
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Corollary 4.12. Let S be a surface with ℓ > 3 punctures. Then the category of

Z/2-graded twisted complexes TwW(S ) is split-closed.

Proof. The hypotheses imply that S can be realised as a hypersurface in (C∗)2

defined by a Laurent polynomial as in the setting of Theorem 4.5 and Remark

4.4, or as a subsurface as in Proposition 4.6 and Remark 4.7. Lemma 4.10 (which

applies equally well to the examples of Remark 4.7) shows that Theorem 4.5 in

fact gives an equivalence TwπW(S ) ≃ Dsg(Z0). Furthermore, the right-hand side

is generated (and not just split-generated) by objects which lie in TwW(S ), by

Proposition 4.8 and Lemma 4.11. It follows that TwW(S ) is split-closed.

This incidentally shows that, for such a surface S , the category DπW(S ) has

finite rank Grothendieck group; the corresponding result is false for a closed

elliptic curve.

Corollary 4.13. Let S be a surface of genus g with ℓ > 3 punctures. Any

irreducible object X ∈ W(S )per with finite-dimensional endomorphism ring is

quasi-isomorphic to a union of immersed closed curves with finite rank local

system.

Proof. By Corollary 4.12, X is quasi-isomorphic to a twisted complex. The ge-

ometricity result, Theorem 4.2, then says that X is quasi-isomorphic to the direct

sum of some immersed arcs and immersed closed curves with finite rank local

systems. However, non-compact arcs have infinite-dimensional endomorphisms

in the wrapped category, so cannot appear.

Corollary 4.14. Let S be a surface with at least one puncture. If X ∈ DπF(S ) is

a spherical object such that there exists an object Y ∈W(S ) with χHom(X,Y) ,

0, then X is quasi-isomorphic to a simple closed curve with rank one local

system.

Proof. For surfaces with ℓ > 3 punctures, this follows directly from Corollary

4.13 and Corollary 3.14. (The homological assumption on X implies that the

geometric replacement obtained by Corollary 4.13 represents a non-zero class in

H1(S ;Z).)

If S has fewer than three punctures, we reduce to the previous case by

considering the surface S + obtained by attaching a 4-punctured sphere P to S

along an annular neighborhood A of a puncture, S + = S ∪A P. There is a

fully faithful inclusion functor F(S ) → F(S +) which comes from viewing S

as a subsurface of S + and observing that none of the holomorphic polygons

contributing to the A∞-operations can escape into S + \ S (due to the open

mapping principle). This extends to a fully faithful functor F(S )per → F(S +)per,
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and we can view X as a spherical object of the latter category. The inclusion

into S + also preserves the property that X has non-zero χHom pairing with

some other object: if Y is an arc with an end in the annulus A, we extend it

in an arbitrary way across P to obtain an arc in S +. Since S + has at least 3

punctures, we conclude that X is quasi-isomorphic to a simple closed curve γ in

S + with a rank one local system ξ. Given any properly embedded arc η contained

in S + \ S (e.g. connecting two punctures of P), the vanishing of the wrapped

Floer cohomology HW∗(X, η) implies that the geometric intersection number of

γ with η is zero; this in turn implies that γ can be isotoped away from S + \ S .

Alternatively, Lemma 5.10 below (applied to the object (γ, ξ) ∈ F(S +) and the

waist curve of the annulus A) implies that γ is isotopic to a simple closed curve

in the completion of S . Either way, we conclude that X is quasi-isomorphic to

(γ, ξ) in DπF(S ).

Remark 4.15. The homological assumption in Corollary 4.14 is in fact equiv-

alent to requiring that the geometric replacement given by Corollary 4.13 rep-

resents a non-zero class in H1(S ;Z), as needed to apply Corollary 3.14; the

stronger assumption that some object of F(S ) has non-zero χHom pairing with

X would amount to non-vanishing in H1(S , ∂S ;Z). These conditions are direct

analogues of the Chern character condition that appears in Theorem 1.1 for

closed surfaces; we have chosen this formulation in order to avoid a discussion

of Chern characters and Mukai pairings for open surfaces, which would require

another digression into partially wrapped Fukaya categories.

To extend this result to closed surfaces, we will use equivariant Floer theory

and restriction functors to subsurfaces to prove that a spherical object on a closed

surface in fact comes from some open subsurface.

5. Restriction to open subsurfaces

The first three subsections below review material from [25], which is subse-

quently applied in our setting.

5.1. Dipping Hamiltonians. Let Σ be a surface (closed or with punctures) and

σ ⊂ Σ a simple closed curve. (Given a finite union of disjoint curves σ j one can

consider the corresponding Hamiltonians Hk which dip near each; in an abuse of

notation we will continue to write A for the union of annular neighbourhoods

of the σ j, and refer to A as an annulus.) Let σ ⊂ A ⊂ Σ be an annular

neighbourhood of σ. Following [25], we consider a sequence of functions

Hk : Σ→ R
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which are small perturbations of the constant (say zero) function on Σ\A but

“dip” inside the annulus. We work in co-ordinates (r, θ) ∈ (−2, 2) × S 1 = A such

that the symplectic form is ω = c dr ∧ dθ for some constant c > 0, and define

Hk(r, θ) = c fk(r) where

fk(r) =



























−k.π(r + 2)2 −2 < r < −1

k.πr2 − 2k.π −1 6 r 6 1

−k.π(r − 2)2 1 < r < 2

The time-1 Hamiltonian flow of Hk lifted to the universal cover (−2, 2) × R of

the annulus A is then given by

φHk
(r, θ) =



























(r, θ − 2kπ.(r + 2)) −2 < r < −1

(r, θ + 2kπ.r) −1 6 r 6 1

(r, θ − 2kπ.(r − 2)) 1 < r < 2

Since fk = k. f1, the time-1 flow φ1
Hk

of Hk is exactly the time-k flow of H1,

and indeed there is a well-defined time-t flow Φt
H1

for non-integer times t which

interpolates between the time-1 flows of the Hk. If γ ⊂ A is an arc {θ = constant}

crossing the annulus, the time-1 Hamiltonian flow of Hk applied to γ yields an

arc which wraps k times clockwise around A, then 2k times anticlockwise, and

then k times clockwise again. (Note that clockwise corresponds to negative Reeb

flow and anticlockwise to positive Reeb flow.) It will be important later to divide

A = Ain ∪ Aout

into the inner region Ain = (−1, 1)×S 1 in which the wrapping is by positive Reeb

flow, and the outer region Aout = ((−2,−1) ⊔ (1, 2)) × S 1 in which the wrapping

is negative.

For a pair of Lagrangians L, L′ ⊂ (X, ω), and a Hamiltonian H : X → R,

denote by

CF∗(L, L′; H) := CF∗(φ1
H(L), L′)

given by flowing L by the time-1 flow of H; the group is generated by time-1

chords of H from L to L′, or equivalently by intersections of φ1
H

(L) and L′. For a

given finite collection of Lagrangians, a generic small perturbation of H (which

we shall suppress from the notation) will make all such chords non-degenerate.

In the setting at hand, given a pair of distinct arcs γ0, γ1 ⊂ Σ which both cross

the annulus A, the set of intersections φ1
Hk

(γ0) ∩ γ1 will grow in size with k, as

more and more intersections appear in the “wrapping” regions.
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Lemma 5.1. There is n(γ0, γ1) > 0 with the following property: for any integer

w > n(γ0, γ1), any point p ∈ φ1
Hw

(γ0) ∩ γ1 belongs to a unique smooth arc

[w,∞)→ Σ, t 7→ p(t) ∈ φ1
Ht

(γ0) ∩ γ1 (6)

of transverse intersections between the time t > w flow by H1 of γ0 and γ1.

Proof. See [25, Section 3.5, properties (P1,2)].

Lemma 5.1 means that, once any pair of arcs has been sufficiently wrapped,

their intersection points persist (and remain transverse) for all further time, even

though new intersections keep being created (at non-integer times). By using

a cascade model for continuation maps of Floer complexes, as in [29, Section

10e], in which one counts exceptional holomorphic discs and flow-trees for

isolated times (Jt,Ht) in a one-parameter family of almost complex structures

and Hamiltonians, Lee infers:

Lemma 5.2. For N > n > n(γ0, γ1), the continuation map

CF∗(γ0, γ1; Hn)→ CF∗(γ0, γ1; HN)

maps each generator p to the summand generated by the intersection point which

lies on the smooth arc p(t) of (6).

Similarly, because of the non-existence of exceptional holomorphic discs on

a Riemann surface, a cascade model for higher continuation maps shows that

continuation-type products

CF∗(γk−1, γk; Hn) ⊗ · · · ⊗CF∗(γ0, γ1; Hn)→ CF∗(γ0, γk; HN)[1 − k]

with k > 2 inputs vanish whenever N > kn > n(γ0, . . . , γk) is sufficiently

large. This leads to a well-defined A∞-inclusion functor CF∗(γ0, γ1; Hn) ֒→

CF∗(γ0, γ1; HN), for N > n sufficiently large, which has no higher-order (non-

linear) terms. It is simplest to formalise this by passing to telescope models for

wrapped Floer complexes.

5.2. Telescope models and A
∞

-ideals. The telescope complex for exact man-

ifolds comes from [7], and a detailed exposition in the monotone case (under

geometric hypotheses which also apply in the case of a closed surface) is given in

[27]. We will incorporate an action-rescaling of generators of Floer complexes,

so we briefly review the set-up; for simplicity we suppress local systems, which

are discussed in [27, Section 3.17].

Let X be closed or convex at infinity, and fix a pair of Lagrangian branes

Li, L j ∈ W(X), which might be compact or cylindrical at infinity. If outside a
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compact set (X, ω) � (∂X × [1,∞), d(r · α)) for a contact form α ∈ Ω1(∂X) and

co-ordinate r ∈ [1,∞), we will fix a Hamiltonian H with H(y, r) = r, and which

has no integer-length chords from Li to L j. The telescope model for the wrapped

Floer complex is then

CW∗(Li, L j) =

∞
⊕

w=1

CF∗(Li, L j; wH)[q] (7)

where q is a formal variable of degree −1 satisfying q2 = 0, equipped with the

differential

µ1(x + qy) = (−1)|x|dx + (−1)|y|(qdy + Ky − y) (8)

where d denotes the usual Floer boundary operator, and where K denotes the

Floer continuation map

K : CF∗(Li, L j; wH)→ CF∗(Li, L j; (w + 1)H).

The part of this complex which does not involve q is the direct sum of Floer

complexes CF∗(Li, L j; wH), with the usual Floer differential. For a d-cocycle y,

qy serves to identify y and Ky in cohomology, as expected in the cohomology

direct limit

HW∗(Li, L j) = lim
−−→

HF∗(Li, L j; wH)

Let u : R × [0, 1] → X be a non-constant isolated (modulo R-translation)

solution of Floer’s equation ∂su + J(∂tu −w XH) = 0, with Lagrangian boundary

conditions u(·, 0) ∈ Li and u(·, 1) ∈ L j, and asymptotic conditions u → x, y as

s→ −∞,+∞ respectively, where x, y are chords of XH . Usually the differential d

counts isolated such solutions u : S → X weighted by their “topological energy”

Etop(u) > 0 ∈ R, defined by:

Etop(u) =

∫

S

u∗ω − d(u∗(wH) dt) =

∫

S

u∗ω + wH(x) − wH(y),

which is also equal to the geometric energy

Egeo(u) =
1

2

∫

S

‖du − wXH ⊗ dt‖2 ds ∧ dt.

(There is also an orientation sign, which we will not discuss: for comprehensive

treatments see [7, 2].) Similarly the continuation map K counts isolated solutions

to the corresponding equation where J and wH (in fact, in our case just w)

depend on the parameter s (so there is no R-reparametrization), again weighted

by topological energy (which now provides an upper bound on the geometric

energy, up to an additive constant given by the minimum of the Hamiltonian).

Similar remarks apply to the counts of isolated curves contributing to the rest of

the A∞-structure, cf. [27, Section 3.11–15].
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Remark 5.3. Floer’s equation ∂su+J(∂tu−w XH) = 0 for maps u : R×[0, 1]→ X

with boundary on Li and L j can be recast in terms of pseudo-holomorphic

curves with boundary on φ1
wH

(Li) and L j, by considering ũ(s, t) = φ1−t
wH

(u(s, t)).

Continuation maps are then naturally defined via pseudo-holomorphic curves

with moving boundary conditions, or (under suitable conditions), as mentioned

in the previous section, cascades of honest pseudo-holomorphic curves. The

appropriate notion of topological energy is then obtained by transcribing the

above definition through the dictionary between the two viewpoints.

Specialise now to the case where X = Σ is a surface and we have functions

Hw = w · H for a Hamiltonian which dips in some collection of annuli, as

in the previous section. For a given collection of Lagrangians γ j, Lemma

5.2 asserts that the continuation maps in the telescope complex (7), (8) are

eventually diagonal inclusions of based vector spaces. To make them inclusions

of subcomplexes, for a Hamiltonian Hw-chord x ⊂ A lying in the cylinder at

radial parameter r ∈ (−2, 2), introduce the action values

Aw(x) = Hw(r) − r · H′w(r)

(i.e. the intercept of the tangent line to the graph of the dipping function at r with

the vertical axis).

Lemma 5.4. Consider the rescaled bases of Floer complexes CF∗(γ j, γk; Hw) in

which the chords x inside the cylindrical regions A are rescaled by their action

Aw(x). Then for N sufficiently large, the continuation maps K are inclusions for

w > N.

Proof. Given a perturbed holomorphic polygon u : S → Σ with input chords

xin
1
, . . . , xin

j
with weights win

1
, . . . ,win

j
and output chord xout with weight wout, and

supposing the image u(S ) is contained in a single connected component of A,

then

Etop(u) = Awout (xout) −

j
∑

i=1

Awin
i
(xin

i ).

The Floer solution u contributes to the usual continuation map with weight

qEtop(u), which means that it takes rescaled generators to rescaled generators.

The key property of dipping Hamiltonians, explained in [25, Section 3.8],

is that they lead to a “localisation” result for holomorphic polygons, which

precludes non-trivial Floer products from crossing the inner region Ain ⊂ A of

the annulus in which one wraps. To state this precisely, denote by S the surface

obtained from Σ \ Ain by reattaching a copy of the corresponding annular region
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Ain to each end (see Definition 5.6 below): S is a (possibly disconnected) surface

with boundary, and there is a natural surjective map S → Σ which is two-to-one

over Ain and one-to-one outside of Ain.

Fix γ0, . . . , γk ⊂ Σ which intersect the boundary of Ain minimally; equiva-

lently, we require that the preimages of γi in S do not contain any trivial arcs

connecting ∂S to itself. Assume moreover that, if γi is parallel to the annulus Ain

(i.e., isotopic to a curve contained in Ain), then it is actually contained in Ain. Also

fix a collection of Floer generators p0, . . . , pk−1 with pi ∈ CF∗(γi, γi+1; Hn). By

Lemma 5.1, there are unique corresponding generators κ(pi) ∈ CF∗(γi, γi+1; HN)

for any N > n, once n is sufficiently large.

Proposition 5.5. Fix a collection of Floer generators {p0, . . . , pk−1} as above.

1. For N > n sufficiently large, every rigid perturbed holomorphic polygon

in Σ with inputs κ(pi) ∈ CF∗(γi, γi+1; HN) lifts to a perturbed holomorphic

polygon inside (a single component of ) S .

2. For N > n sufficiently large, if a rigid perturbed holomorphic polygon in

Σ with inputs κ(pi) ∈ CF∗(γi, γi+1; HN) is not entirely contained in Ain (for

example if at least one pi lies outside of Ain) then its output also lies in the

complement of Ain.

Proof. These follow respectively from [25, Lemma 3.7], which states that rigid

perturbed holomorphic polygons cannot cross the inner annular region Ain, and

[25, Lemma 3.5], which states that if part of the disc lies outside of Ain then so

does the output. Lee states and proves these results for a specific collection of

objects of F(Σ) (and [25, Lemma 3.5] is stated under the stronger assumption

that one input lies outside of Ain), but the same arguments apply verbatim to our

setting, as we now explain.

The proof of [25, Lemma 3.5] considers a rigid holomorphic polygon whose

output lies in Ain, and shows by contradiction that it must be entirely contained in

Ain using a two-step argument. Lee first shows (“Case 1” of the proof in [25]) that

the boundary of the polygon cannot backtrack in A\Ain; thus, if the polygon is not

entirely contained in Ain, some part of it must lie outside of A. Our assumptions

on the γi ensure that, inside A \ Ain, they are locally graphs r = f (θ), just like the

curves considered in [25]; this (and the ordering on the slopes of these graphs

imposed by the negative wrapping) is what prevents the backtracking. Next,

Lee argues (“Case 2” of the proof) that the portion of the polygon which lies

outside of A determines the width of the interval(s) along which it intersects ∂A,

and as the amount of negative wrapping in A \ Ain increases, the width of the

corresponding interval(s) along which the polygon intersects ∂Ain decreases and

eventually becomes negative, preventing it from entering Ain altogether. Our
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assumption that all γi intersect ∂Ain minimally ensures that no portion of disc

crossing into A can look like a strip with both of its boundaries on the same γi;

this in turn ensures that negative wrapping does indeed decrease the available

width at the boundary of Ain. Moreover, excluding curves which are parallel to

the annulus but lie outside of Ain ensures that the width of the intersection of the

polygon with ∂A is completely determined by the collection of input generators

in Σ \ A. (By contrast, polygons with corners at fixed generators on an annulus-

parallel curve outside Ain can enter the annulus with an arbitrarily large width,

as the boundary of the polygon could wrap around the annulus-parallel curve

arbitrarily many times.)

The proof of [25, Lemma 3.7] uses similar considerations to show that a rigid

holomorphic polygon cannot cross completely through Ain. First, Lee observes

that, when the γi are locally given by graphs r = f (θ), due the ordering of the

slopes imposed by the positive wrapping inside Ain, any input contained in Ain

forces the boundary of the polygon to backtrack, which prevents it from crossing

from one end of Ain to the other. This remains true if we allow curves {r = r0}

contained in Ain, as the local convexity property of rigid holomorphic polygons

ensures that if part of the boundary of the polygon lies on such a curve then it

must backtrack. The rest of the argument is then similar to the proof of [25,

Lemma 3.5]: if a polygon crosses Ain, then regardless of whether Ain contains

the output, its width at the center of Ain is determined by the inputs on one side

of Ain or on the other, and is not affected by the wrapping, while the available

width at one of the two boundaries of Ain decreases with the amount of wrapping

and eventually becomes negative.

5.3. Lee restriction functors. Fix a finite set γ1, . . . , γℓ of split-generators of

F(Σ) each of which meetsσminimally, and none of which is parallel toσ (unless

it is σ itself). The category F(Σ) embeds into the category of modules over the

A∞-algebra ⊕i, jCF∗(γi, γ j; Hk) for any fixed k, and hence into modules over the

telescope algebra ⊕i, jCW∗(γi, γ j).

Fix an annular neighbourhood σ ⊂ A ⊂ Σ of a simple closed curve; as in the

previous section we regard σ = {0} × S 1 ⊂ (−2, 2)× S 1 = A as divided into three

sub-annuli, the outer of which comprise Aout and the inner of which is labelled

Ain. As above, we construct a surface S by reattaching a copy of Ain to each end

of Σ \ Ain:

Definition 5.6.

• If σ is separating, we view Σ as a union of two subsurfaces with non-

empty boundary which overlap in the central “positive wrapping” region

Ain ⊂ A, i.e. the subannulus (−1, 2) × S 1 lies inside one subsurface and

(−2, 1) × S 1 lies inside the other. Write S = S le f t ⊔ S right for the disjoint

union of these subsurfaces.
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• If σ is non-separating, we define S to be a surface with two boundary com-

ponents, neighborhoods of which are respectively modelled on (−2, 1) ×

S 1 ⊂ A and (−1, 2) × S 1 ⊂ A. Thus, S is not strictly a subsurface of Σ,

but there is an obvious map S → Σ which is two-to-one over the central

subannulus Ain ⊂ A.

Given any finite collection of disjoint simple closed curves in Σ and annular

neighbourhoods of those curves, there are associated open surfaces given by

cutting along the annuli in a similar manner. For our purposes, it is sufficient

to focus on the case of a single annulus.

S le f t
S right

Ain

Figure 9. Restriction to subsurfaces

Note that the Hamiltonians Hw considered previously induce the “standard”

positive wrapping at the ends of S and Ain, hence are appropriate for defining

their wrapped categories.

Lemma 5.7. Let A ⊂ Σ be a single annulus. There is an A∞-restriction functor

ΦΣ,S : F(Σ) → W(S ), and a pair of restriction functors Φ
le f t/right

S ,Ain
: W(S ) →

W(Ain) coming from the inclusions of Ain into the two ends of S .

Proof. It suffices to construct the functors on a finite set of split-generators γi;

recall that we do not allow any of these to be parallel to the annulus (but see

Example 5.9 below for a description of the functor on annulus-parallel curves).

We take telescope models for the respective morphism groups (even for the

compact surface Σ) and note that, for any given set of inputs, replacing the

telescope complex by a quasi-isomorphic truncation allows us to only consider

arbitrarily large wrapping Hamiltonians.



Fukaya categories of surfaces, spherical objects, and mapping class groups 43

Proposition 5.5 implies that the generators which lie outside of Ain form

an ideal for the A∞-operations in either Σ or S , and that quotienting the Floer

complex by this ideal recovers the wrapped Floer complex inside Ain and its

A∞-operations. Thus the quotient maps

ΦΣ,Ain
: CW∗Σ(γi, γ j)→ CW∗Ain

(γi, γ j) and Φ
le f t/right

S ,Ain
: CW∗S (γi, γ j)→ CW∗Ain

(γi, γ j),

where the subscripts denote the surfaces in which we compute Floer cohomol-

ogy, define restriction A∞-functors with no higher order terms.

Next, we consider the pullback map

ΦΣ,S : CW∗Σ(γi, γ j)→ CW∗S (γi, γ j)

mapping each Floer generator to its preimage under the map S → Σ if it lies

outside of Ain, or to the sum of its two preimages if it lies in Ain. Proposition 5.5

implies that this map is compatible with the A∞-operations (again after restricting

to sufficiently large Hamiltonians), and defines a A∞-functor with no higher order

terms, identifying the wrapped Floer complex in Σ with the sub-algebra of the

wrapped Floer complex in S consisting of elements in which pairs of generators

in the two copies of Ain ⊂ S appear with the same coefficients.

Corollary 5.8. F(Σ)per is the pullback in the diagram of restriction functors

Twπ F(Σ) // TwπW(S ) //
//
TwπW(Ain).

Proof. This follows directly from Lemma 5.7. After truncating the telescope

complexes to only consider Floer complexes CF∗(γi, γ j; Hn) where the wrapping

n is sufficiently large, CW∗
Σ
(γi, γ j) is exactly the subcomplex of CW∗

S
(γi, γ j) of

elements which restrict compatibly under the two restrictions to Ain ⊂ S , i.e. the

equalizer of the diagram W(S ) //
//
W(Ain) . This description is compatible

with the A∞-operations since the arrows are given by quotienting by an ideal.

Example 5.9. Let a and b be two simple closed curves which cross an annulus

A, meeting once just outside the annulus, and differ from each other by a Dehn

twist parallel to the annulus (cf. the first part of Figure 10). We consider the

twisted complex X = a
p
−−−→ b, which is isomorphic to a simple closed curve

γ′ running parallel to the annulus, as can be seen by considering the Lagrange

surgery of a and b at p (the red curve in Figure 10). (This is the most natural

way in which an annulus-parallel curve can be replaced by a twisted complex

to which the machinery of Lee restriction functors can be applied). The Lee

deformation effects the change in the second part of Figure 10, which gives a

quasi-isomorphic model

X ≃ a
pmain+pcyl+p′

cyl

−−−−−−−−−−→ b.
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p

b

a

Surgery X = Cone(a
p
−→ b)

b

φH(a)

pmain ∂(pcyl)
pcyl

Continuation κ : p 7→ pmain + pcyl + p′
cyl

p′
cyl

∂(p′
cyl

)

Figure 10. Continuation maps associated to dipping Hamiltonians

Indeed, the deformation creates two holomorphic strips contributing to ∂(pmain),

and the image of p under the continuation map is κ(p) = pmain + pcyl + p′
cyl

(up to a rescaling of the generators). Restricting a and b to the inner annulus

Ain yields two isotopic arcs, and κ(p) restricts to pcyl + p′
cyl

, so ΦΣ,Ain
(X) =

Cone(pcyl + p′
cyl

) ∈ TwW(Ain) is isomorphic to a simple closed curve γ′
in

in the

Liouville completion of Ain. Just like the simple closed curve γ′ that represents

X in Σ, this curve may or may not actually lie inside Ain; in the latter case, the

difference with the naive restriction of γ′ illustrates the need to exclude such

annulus-parallel curves in the construction of Lee restriction functors.

The curves a and b restrict (or rather lift) to arcs in the open surface S ,

representing isomorphic objects of W(S ). Denoting by pleft and pright, resp. p′
left

and p′
right

the two preimages of pcyl, resp. p′
cyl

in the ends of the open surface S ,

the twisted complex ΦΣ,S (X) is the mapping cone of pmain + pleft + p′
left
+ pright +

p′
right

, which is isomorphic to the direct sum of two boundary-parallel simple

closed curves in the completion of S . (If γ′ lies inside Ain then these are the lifts

of γ′ to S ; otherwise one curve is the preimage of γ′ and the other one lies past

the boundary of S inside the other end of the completion). Further restriction

to either copy of Ain yields the mapping cone of pcyl + p′
cyl

in TwW(Ain), as

expected.
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By contrast, if a and b did not run parallel to each other in Σ \ A, so that no

holomorphic strip connected pmain to ∂(p′
cyl

) in the second part of Figure 10, then

κ(p) would be pmain + pcyl, whose restriction to Ain is pcyl, a quasi-isomorphism

between the restrictions of a and b; ΦΣ,Ain
(X) would then be acyclic. This is

as expected, since in that case the Lagrange surgery of a and b at p can be

pulled through Ain and away from it altogether. Meanwhile, the twisted complex

ΦΣ,S (X) becomes the mapping cone of pmain+pleft+pright, where pleft and pright are

the preimages of pcyl in the ends of S ; it can be checked that this is isomorphic

to a simple closed curve in Σ \ Ain ⊂ S , obtained from a and b by performing the

surgery in Σ and sliding the result through Ain and away from it.

5.4. Applications of restriction. We continue with the notation of the previous

subsection. Given a simple closed curve γ ⊂ Σ, we consider an annulus A

with waist curve γ, and the Lee restriction functors ΦΣ,S : F(Σ) → W(S ), and

similarly Φ
le f t/right

S ,Ain
and ΦΣ,Ain

.

Lemma 5.10. Let Y ∈ TwF(Σ). If HF∗(Y, γ) = 0 then ΦΣ,S (Y) and ΦΣ,Ain
(Y) are

isomorphic to direct sums of immersed closed curves with local systems in the

completions of S and Ain.

Proof. As in Section 5.3, we consider the equalizer diagram

CW∗
Σ
(Y, γ) // CW∗

S
(ΦΣ,S (Y),ΦΣ,S (γ)) //

//
CW∗

Ain
(Φ

le f t/right

S ,Ain
(Y),Φ

le f t/right

S ,Ain
(γ)),

and recall that the restriction to Ain is the quotient of CW∗
Σ
(Y, γ) by the A∞-

ideal spanned by the generators which lie outside of Ain. Since γ ⊂ Ain, all

the generators of CW∗
Σ
(Y, γ) lie in Ain, and Proposition 5.5 (2) ensures that the

bigons contributing to the Floer differential are also entirely contained in Ain.

Therefore, CW∗
Ain

(ΦΣ,Ain
(Y),ΦΣ,Ain

(γ)) is isomorphic to CW∗
Σ
(Y, γ), hence acyclic.

It then follows from the equalizer diagram that CW∗
S

(ΦΣ,S (Y),ΦΣ,S (γ)) is also

acyclic.

Next, we observe that ΦΣ,S (γ) ≃ γleft ∪ γright is the disjoint union of the two

boundary-parallel simple closed curves obtained by lifting γ to the open surface

S . On the other hand, the restriction ΦΣ,S (Y) ≃ ΓY has a geometric replacement

ΓY in the Liouville completion of S , which is a union of immersed arcs and

curves with local systems, by Theorem 4.2. The vanishing of HF∗(Y, γ) implies

that CW∗(ΓY , γleft) and CW∗(ΓY , γright) are acyclic.

We claim that ΓY contains no arcs. Indeed, Assume that ΓY contains an

immersed arc η which reaches the boundary component of S adjacent to γleft. As

noted in Remark 2.7, the argument of Lemma 2.6 constructs an immersed arc η′

which is unobstructedly regular homotopic and hence quasi-isomorphic to η and
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intersects γleft minimally, so that there are no bigons contributing to the Floer

differential on CF∗(η′, γleft). However, the acyclicity of CW∗(ΓY , γleft) implies

that of CF∗(η, γleft), since η is a direct summand in ΓY . Therefore η′ ∩ γleft = ∅,

and the arc η′ is entirely contained in the cylindrical region that lies beyond

γleft in the completion of S , hence trivial as an object of W(S ). Arcs which

reach the other boundary component of S are similarly excluded by considering

CW∗(ΓY , γright).

It follows that the geometric replacement ΓY ∈W(S ) is a union of immersed

closed curves with local systems in the completion of S . Moreover, as noted at

the end of the proof of Theorem 4.2, it can be assumed that all non boundary-

parallel curves in ΓY are strictly contained in the interior of S , or more precisely,

in the subsurface Σ \ Ain ⊂ S (see Remark 2.9); whereas the boundary-parallel

curves can be “straightened” to run parallel to γ.

Next we apply the restriction functors Φ
le f t/right

S ,Ain
to ΓY . The non boundary-

parallel summands are represented by curves in Σ \ Ain, and hence mapped to

zero. Meanwhile, the boundary-parallel curves which lie outside of Ain need to

be resolved by mapping cones as in Example 5.9 in order to apply the machinery

of Section 5.3; the upshot is that curves which are parallel to γleft (resp. γright) are

mapped by Φ
le f t

S ,Ain
(resp. Φ

right

S ,Ain
) to closed curves in the completion of Ain.

Corollary 5.11. Let Y ∈ TwF(Σ). If HF∗(Y, γ) = 0 then Y is quasi-isomorphic

to a direct sum of immersed closed curves with local systems in Σ.

Proof. We start again from the geometric replacement ΓY ∈ W(S ) of ΦΣ,S (Y)

constructed in the proof of the previous Lemma, which is a direct sum of

immersed closed curves with local systems in the completion of S . Since

Φ
le f t

S ,Ain
(ΓY ) ≃ Φ

right

S ,Ain
(ΓY ) ∈ W(Ain), the boundary-parallel summands of ΓY are

“the same” curves near the two boundaries of S .

Define Ŷ ∈ F(Σ) to be the reduced projection of ΓY from S to Σ, i.e. the direct

sum of the non-boundary-parallel summands of ΓY (which by Remark 2.9 can be

assumed to lie in Σ \ Ain), and for each pair of boundary-parallel summands of

ΓY , a curve in Σ which runs parallel to the annulus A and differs from the waist

curve γ by the same amount of symplectic area. (Recall that “parallel” means

“homotopic to a curve in A”: if γ is separating, achieving the desired amount of

symplectic area might require a non-embedded regular homotopy, cf. Lemmas

2.8 and 2.10). By construction, the restriction ΦΣ,S (Ŷ) (defined by first resolving

the annulus-parallel summands of Ŷ as in Example 5.9) is isomorphic to ΓY .

Thus, the two restriction diagrams

ΦΣ,S (Y) //
//
ΦΣ,Ain

(Y) and ΦΣ,S (Ŷ) //
//
ΦΣ,Ain

(Ŷ)
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involve quasi-isomorphic objects of W(S ) and W(Ain) (namely, ΓY and its

restriction to Ain). In order to conclude from Corollary 5.8 that Y and Ŷ are

quasi-isomorphic in TwF(Σ), we need to verify that the restriction maps in the

two diagrams are also the same.

More precisely, ΦΣ,S (Y) ≃ ΓY determines a Yoneda module over W(S ),

whose pullback along ΦΣ,S is a F(Σ)-module which we denote by YS . Similarly,

ΦΣ,Ain
(Y) ∈W(Ain) determines a Yoneda module over W(Ain), and we denote by

YAin
its pullback along ΦΣ,Ain

. The functors Φ
le f t/right

S ,Ain
induce two F(Σ)-module

homomorphisms

φ
le f t/right

Y
: YS //

//
YAin
, (9)

and Corollary 5.8 states that the Yoneda module associated to Y is isomorphic to

the equalizer of this diagram in the category of F(Σ)-modules.

Assume for now that all annulus-parallel curves in ΓY actually lie inside Ain

(near both ends of S ). Then, using the correspondence between holomorphic

polygons in Σ and in S given by Proposition 5.5, the module YS ∈ mod-F(Σ)

can be represented by a direct sum ỸS of curves with local systems in Σ, namely

the (total) projection of ΓY under the map S → Σ. This differs from Ŷ in that

ỸS contains two copies of each of the curves which lie in Ain. Meanwhile, YAin

is represented by the direct sum Ỹin of the curves contained in a single copy

of Ain. Since the non-boundary-parallel summands of ΓY are orthogonal to the

curves in Ain (i.e., their Floer cohomology vanishes), the morphisms from ỸS to

Ỹin which represent the module homomorphisms φ
le f t/right

Y
must be supported on

the summands which are parallel to Ain. For each annulus-parallel curve σ ⊂ Ain

which appears as a summand of Ŷ , the restriction ΦΣ,S (σ) is a disjoint union

σleft ∪ σright of the two preimages of σ in the ends of S (each of which appears

as a summand in ΓY , and hence in ỸS ). By considering the diagram

CW∗
Σ
(Y, σ) // CW∗

S
(ΓY , σleft ∪ σright) //

//
CW∗

Ain
(ΦΣ,Ain

(Y), σ), (10)

we find that φ
le f t

Y
maps the summand σleft of ỸS isomorphically to the summand

σ of Ỹin, and vanishes on σright; and vice-versa for φ
right

Y
. This implies in turn

that the equalizer of the diagram (9) is isomorphic to Ŷ .

When ΓY contains annulus-parallel curves which lie outside of Ain, the

argument is essentially the same, but now requires a detour via the construction

of Example 5.9 to show that the modules YS and Yin are represented by the total

projection ỸS of ΓY (containing two copies of each annulus-parallel curve) and

by Ỹin as in the previous case; and once again to analyze the restriction diagrams

(10) for each annulus-parallel summand σ of Ŷ .
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Remark 5.12. Instead of dealing with annulus-parallel curves which lie outside

of Ain via Example 5.9, one might try to simply enlarge the annulus Ain inside

Σ in order to ensure that it contains all of the annulus-parallel curves whose

Floer cohomology with Y is nonzero. However, this is not always possible, as

the area of an immersed cylinder bound by a pair of annulus-parallel curves can

be greater than that of the whole surface Σ.

When Y is an idempotent summand rather than a twisted complex, a similar

result holds provided that Y pairs trivially with two simple closed curves:

Lemma 5.13. Let Y ∈ Twπ F(Σ). Let γ1, γ2 ⊂ Σ be two disjoint simple closed

curves whose homology classes are linearly independent, and denote by A1, A2

(disjoint) annular neighborhoods of γ1, γ2, and by S the surface obtained by

cutting Σ open along both annuli. If HF∗(Y, γ1) = HF∗(Y, γ2) = 0 then ΦΣ,S (Y)

and ΦΣ,Ai,in
(Y) are isomorphic to direct sums of immersed closed curves with

local systems in the completions of S and Ai,in.

Proof. The argument proceeds as in the proof of Lemma 5.10, considering two

annuli parallel to γ1 and γ2. The assumption that γ1 and γ2 are homologically

independent ensures that cutting Σ open along both annuli yields a connected

surface with four punctures, so that the existence of a geometric replacement ΓY

for ΦΣ,S (Y) is guaranteed by Corollary 4.13.

Corollary 5.14. Let Y ∈ Twπ F(Σ). Suppose there are disjoint, homologically

independent simple closed curves γ1, γ2 ⊂ Σ with HF(Y, γi) = 0. Then Y is

quasi-isomorphic to a direct sum of immersed closed curves with local systems

in Σ.

Proof. This follows from Lemma 5.13 by the same argument as Corollary 5.11.

Corollary 5.15. Let X ∈ DπF(Σ) be spherical with ch(X) , 0. If there are

two disjoint homologically independent simple closed curves γ j, j = 1, 2, with

HF∗(X, γ j) = 0, then X is quasi-isomorphic to an embedded simple closed curve

with a rank one local system.

Proof. The previous corollary gives a geometric replacement for X; since a

spherical object is indecomposable, the replacement consists of a single im-

mersed curve σ with local system. The assumption that ch(X) ∈ H1(Σ;Z) is

non-zero implies that [σ] ∈ H1(Σ;Z) is non-zero. Corollary 3.14 then implies

that σ is embedded and the local system has rank one.
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6. Group actions

6.1. Finite group actions on categories. Let G be a finite group. Following

[31, 33], we say G acts strictly on a strictly unital A∞-category A if there is an

action of G on ObA, and corresponding maps between morphism spaces which

strictly satisfy the relations of G and for which the A∞-operations are strictly

equivariant. An action of G on A induces one on the category Amod of A∞-

modules over A, which is a strictly unital A∞-category. Necessarily G will then

preserve the strict units.

A strictly equivariant object Y of A is one for which we have closed

morphisms

ρ1
Y (g) ∈ hom0

A
(g(Y),Y), ρ1

Y (eG) = eY

satisfying

µ2
A

(ρ1
Y (g), g · ρ1

Y (h)) = ρ1
Y (gh)

for all g, h ∈ G. Any object Y ∈ A which is fixed by G, meaning g(Y) = Y for

every g ∈ G, defines a strictly equivariant object for each character χ : G → K∗

via ρ1
Y
(g) = χ(g)eY .

In the case of A∞-modules, a strictly equivariant structure on M ∈ Amod

is given by A∞-homomorphisms ρ1
M

(g) ∈ hom0
Amod (g(M),M) which generally

include higher order terms. The special case where the module homomorphisms

ρ1
M

(g) are ordinary linear maps, with all higher order terms identically zero,

corresponds to the situation where M is equivariant in the naive sense, i.e., there

is a linear action of G on the vector spaces underlying M, with respect to which

the structure maps of M are equivariant.

A weakly equivariant object is one which satisfies the cohomological ana-

logue of strict equivariance, i.e. there are classes [ρ1
Y
(g)] ∈ Hom0

H(A)
(g(Y),Y)

which satisfy

[ρ1
Y (gh)] = [ρ1

Y (g)] · (g · [ρ1
Y (h)]), [ρ1

Y (eG)] = eY .

If Y and Y ′ are both weakly equivariant, then H∗(homA(Y,Y ′)) becomes a G-

representation via a 7→ [ρ1
Y ′

(g)] · (g · a) · [ρ1
Y
(g)]−1.

Lemma 6.1 (Seidel). Assume K has characteristic zero. If Y is a weakly equiv-

ariant object of A or Aper, then the Yoneda module of Y is quasi-isomorphic to

a naively equivariant module.

Proof. This follows from [33, Propositions 14.5 & 14.7] (which in turn are

direct analogues of [31, Lemmas 8.2 & 8.3]; in particular they do not rely

on the problematic Lemma 13.7 in op. cit.). Proposition 14.5 is essentially

an obstruction theory calculation (see also [31, Section 8c]) showing that, if
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Hr(G; Hom1−r
H(A)(Y,Y)) = 0 for r > 2, then a weakly equivariant structure can

be upgraded to a homotopy equivariant (also known as coherently equivariant)

structure. In our case, the cohomology Hr(G; M) vanishes for r > 0 whenever

G is finite and M is a G-module in which |G| is invertible in M, in particular

for all modules in characteristic zero. Once this is done, Proposition 14.7 of

[33] constructs a naively equivariant A∞-module (see also [31, Section 8b]; the

rationality requirement which imposes an extra assumption on [31, Lemma 8.2]

is not relevant here).

6.2. Finite actions and coverings. Let G be a finite abelian group with dual

group G∨ = Hom(G,C∗). Given a surface Σ, recall that H1(Σ;C∗) acts on the

Fukaya category F(Σ) by tensoring by flat (Novikov-unitary) line bundles. Thus,

a homomorphism from G to H1(Σ;C∗) determines an action of G on the Fukaya

category F(Σ), where each g ∈ G acts by twisting by a local system ζg (with

ζg1g2 ≃ ζg1 ⊗ ζg2 ). The main example that we consider is the following:

Lemma 6.2. A non-zero class a ∈ H1(Σ;Z) defines a Z/p-action on F(Σ), for any

p > 2.

Proof. The action on objects is given by tensoring by flat unitary line bundles

with holonomy given by the class defined by a in Hom(π1(Σ);Z/p). Choosing

the Floer perturbation data to be independent of local systems in the construction

of F(Σ) ensures that this action is strict. (Note that, in general, there is a standard

trick to make a finite action strict on a quasi-isomorphic model of F(Σ), by

passing to a category whose objects are pairs of an object of F(Σ) and an element

of the given finite group, and choosing perturbation data independently for such

pairs. See e.g. [36, Appendix A] for a closely related case.)

A homomorphism from G to H1(Σ;C∗) is the same thing as an element of

H1(Σ; G∨), or a homomorphism µ : π1(Σ) → G∨. Thus, it determines a finite

Galois covering Σ̃→ Σ with deck group G∨.

Given an immersed curve with a local system (ξ, γ) ∈ F(Σ), the action of

g ∈ G twists ξ by the rank one local system ζ
g

|γ
, whose holonomy is 〈µ([γ]), g〉.

Thus, if ξ has rank one then the G-action preserves the isomorphism class of

(ξ, γ) if and only if [γ] ∈ Ker µ, i.e. if and only if γ lifts to the covering Σ̃. The

set of G-equivariant structures on (ξ, γ) is then a G∨-torsor, and so is the set of

lifts of (ξ, γ) to Σ̃. To be explicit, fix a base point in Σ, and a trivialization of the

G-family of local systems {ζg} at the base point. The choice of an arc connecting

γ to the base point then determines on one hand, a trivialization of the collection

of local systems {ζg} over γ, and hence a G-equivariant structure on the object

(ξ, γ) ∈ F(Σ) induced by the isomorphisms ξ ⊗ ζ
g

|γ

∼
→ ξ; and on the other hand,
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a lift γ̃ of γ to Σ̃. Moving the base arc by a loop along which µ takes the value

χ ∈ G∨, we obtain another G-equivariant structure on (ξ, γ), which we denote by

(ξ, γ)χ, where the isomorphism ξ⊗ζ
g

|γ

∼
→ ξ is modified by χ(g) ∈ C∗; and another

lift γ̃χ of γ to Σ̃, which differs from γ̃ by the deck transformation χ.

Let {γi} be a finite collection of split-generators of F(Σ), whose homotopy

classes all lie in Ker µ. (One way to construct such γi is to choose simple

closed curves in Σ̃ which satisfy Abouzaid’s split-generation criterion for F(Σ̃),

and project them down to Σ. Compatibility of the open-closed map with the

projection Σ̃ → Σ implies that the corresponding immersed curves in Σ split-

generate F(Σ).) Fixing base arcs as above, we equip each γi with a preferred

(strict) G-equivariant structure, and a preferred lift γ̃i to Σ̃.

The chosen G-equivariant structures on γi equip the A∞-algebra

A =
⊕

i, j

CF(γi, γ j)

with an action of G. Explicitly, g ∈ G acts on each Floer generator p ∈ γi ∩ γ j

by multiplication by χp(g), where χp ∈ G∨ is the image under µ of the loop

formed by connecting the intersection point p to the base point along the base

arcs for γi and γ j. The G-equivariant part of the Floer complex, CFG(γi, γ j),

is then generated by those intersections for which χp = 1. Those correspond

exactly to the intersections between the chosen lifts of γi and γ j to Σ̃; therefore

CFG(γi, γ j) ≃ CFΣ̃(γ̃i, γ̃ j). Varying the G-equivariant structures by χi, χ j ∈ G∨,

CFG(γ
χi

i
, γ
χ j

j
) is generated by those intersections for which χp = χ

−1
i
χ j, and

isomorphic to CFΣ̃(γ̃
χi

i
, γ̃
χ j

j
). These isomorphisms are compatible with the A∞-

operations (if the Floer perturbation data are chosen consistently in Σ and Σ̃), and

give an isomorphism of A∞-algebras

Ã =
⊕

i, j,χi,χ j

CFΣ̃(γ̃
χi

i
, γ̃
χ j

j
) ≃
⊕

i, j,χi,χ j

CFG(γ
χi

i
, γ
χ j

j
). (11)

Recall from [34, Ch. 4c] that the semidirect product A∞-algebra A ⋊ G is

defined by considering the tensor product A ⊗K K[G] of A with the group ring

of G, with the operations

µd
A⋊G(ad ⊗ gd, . . . , a1 ⊗ g1) = µd

A(ad, gd · ad−1, (gdgd−1) · ad−2, . . . ) ⊗ (gd . . . g1).

Recalling that each χ ∈ G∨ determines an idempotent eχ = |G|
−1
∑

χ(g) g ∈

K[G], an easy calculation shows that the linear map ϕ : Ã → A ⋊ G which

takes a ∈ CFG(γ
χi

i
, γ
χ j

j
) ⊂ Ã to ϕ(a) = a ⊗ eχ−1

i
∈ CF(γi, γ j) ⊗ eχ−1

i
⊂ A ⋊ G

defines an isomorphism of A∞-algebras. Summarizing, we have:

Proposition 6.3 (Seidel [34, Ch. 4 & 8b]). A⋊ G ≃ Ã.
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An immersed curve with local system Y = (ξ, γ) ∈ F(Σ), with a G-equivariant

structure (i.e., a choice of isomorphisms ξ ⊗ ζ
g

|γ

∼
→ ξ), determines a module

Y(ξ,γ) =
⊕

i
CF(γi,Y) over the A∞-algebraA, which is G-equivariant in the naive

sense (i.e. G acts linearly on Y(ξ,γ) and all the module maps are equivariant). A

naive G-equivariant structure on anA-module M equips M with the structure of

a module overA⋊ G, with structure maps given by

µd+1(m, ad⊗gd, . . . , a1⊗g1) = (g−1
1 . . . g

−1
d )·µd+1(m, ad, gd·ad−1, (gdgd−1)·ad−2, . . . ).

In the case of Y(ξ,γ), this has a geometric interpretation in terms of the lift Ỹ of Y

to Σ̃:

Y(ξ,γ) ≃
⊕

i,χi

CFG(γ
χi

i
,Y) ≃

⊕

i,χi

CFΣ̃(γ̃
χi

i
, Ỹ)

as modules overA⋊ G ≃ Ã.

Transcribing these statements in the language of modules over A∞-categories,

rather than the endomorphism algebra of a given set of generators, a G-equivariant

structure (in the naive sense) on a module over F(Σ) determines a lift to a module

over F(Σ̃), and for Yoneda modules of equivariant objects of F(Σ) this coincides

with the geometric lifting under the covering map Σ̃→ Σ.

Example 6.4. Consider the action of G = Z/p on F(Σ) determined by a class

a ∈ H1(Σ;Z) as in Lemma 6.2, and let (ξ, γ) ∈ F(Σ) be an immersed curve with

a rank one local system.

1. If 〈a, [γ]〉 = 0, then (ξ, γ) is strictly equivariant for G, and its Yoneda

module Y(ξ,γ) is equivariant in the naive sense. A choice of equivariant

structure corresponds to a choice of lift of γ to Σ̃, and the corresponding

lift of Y(ξ,γ) to F(Σ̃)mod is then the Yoneda module for the chosen lift of

(ξ, γ).

2. If 〈a, [γ]〉 = 1 (or is coprime with p), then the the Yoneda module of (ξ, γ) is

not equivariant, but its full orbit Y(ξ,γ) ⋊G =
⊕

g∈G
Yg(ξ,γ) admits a unique

equivariant structure. The lift of this equivariant module to F(Σ̃)mod is the

Yoneda module for the lift of (ξ, γ) to Σ̃ (which consists of a single curve

covering γ p-fold).

Generalising Example 6.4, we wish to prove that an object X ∈ DπF(Σ)

with 〈a, ch(X)〉 = 0 admits a G-equivariant structure. However, it is not obvious

why the purely homological hypothesis on X should force it to be even weakly

equivariant. To prove this we will embed the finite group action into a Gm-action,

where the homological condition will yield infinitesimal equivariance. General

machinery due to Seidel then implies weak Gm-equivariance, and a posteriori

G-equivariance.
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6.3. Categorical Gm-actions. Let A be a proper Z/2-graded A∞ category with

a strict Gm-action. There are several notions of a Gm-action on a module

M ∈ Amod. Briefly, following [31] one says:

1. Gm acts naively if it acts linearly on the underlying vector spaces of M,

with all the structure maps being equivariant.

2. Gm acts strictly if there are higher order (in A) terms to the action, i.e. for

each g ∈ Gm we have

ρ1
g = {ρ

1,d+1
g : M ⊗Ad → g∗M}d>0 ∈ hom0

Amod (M, g∗M)

satisfying unitality and cocycle conditions, and a rationality condition

that the maps ρ1,d+1
g are coherently induced from a single map ρ1,d+1 :

M ⊗Ad → K[Gm] ⊗ M[−d].

3. Gm acts weakly if there are module homomorphisms ρ1
g as above, for which

the unitality and cocycle conditions hold at the cohomological level (in

H0(Amod)).

4. Gm acts up to homotopy if there are higher order (in Gm) terms to the

action, i.e. we now have maps ρi
(gi,...,g1)

∈ hom1−r
Amod (M, g∗

1
g∗

2
· · · g∗

i
M),

which should again satisfy appropriate unitality, cocycle and rationality

conditions.

A naive action yields a strict action with no higher order terms (so ρ1,d+1
g = 0

for d > 0), whilst a strict action on a module gives a naive action on the quasi-

isomorphic module M ⊗A A, so these are essentially equivalent notions.

Unless A admits a set of generators which are strictly fixed by Gm, the

notion of rationality is best formulated in the algebro-geometric language of [35,

Appendix A]. We will consider situations where Gm acts freely on the objects of

A and strictly on morphisms. Concretely, in the case of Fukaya categories, this

is achieved by setting the objects to be pairs (L, g) where L is a Lagrangian brane

and g is an element of the group; the object (L, g), also denoted g(L), is obtained

from L by the action of g and equipped with Floer perturbation data which is

pulled back from that for L.

A K[Gm]-module is just a quasicoherent sheaf over K∗, hence has stalks at

points g ∈ K∗. We will identify K[Gm]⊗d with K[G×d
m ], and note there is a natural

morphism K[Gm] → K[Gm]⊗d dual to the total multiplication map G×d
m → Gm.

A rational Gm-action on A (with Gm acting freely on objects and strictly on

morphisms) is then, by definition, an A∞-category A, with the same objects as

A, in which
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1. the morphism groups homA(X0, X1) are Z/2-graded projective K[Gm]-

modules, whose fibre at g ∈ Gm is homA(X0, X1)g := homA(g(X0), X1); us-

ing strictness, homA(g0(X0), g1(X1)) = homA(X0, X1)g−1
1

g0
for all X0, X1 ∈

obA and g0, g1 ∈ Gm;

2. the A∞-operations define K[G×d
m ]-module maps

µd
A

: homA(Xd−1, Xd)⊗
K

· · · ⊗
K

homA(X0, X1)→ K[G×d
m ] ⊗

K[Gm]
homA(X0, Xd)[2−d]

which satisfy appropriate associativity equations, and a unitality condition

(fiberwise, these are just the usual axioms for A to be an A∞-category);

3. for all X0, X1 ∈ obA and g0, g1 ∈ Gm, the K[Gm]-module

homA(g0(X0), g1(X1))

is the pullback of homA(X0, X1) under multiplication by g−1
1

g0, and the A∞-

operations on these modules strictly coincide under these identifications.

(A small difference between our exposition and [35, Appendix A] is that

Seidel takes objects of A to be pairs consisting of an object of A and an element

of Gm, i.e. the objects of A are Gm-orbits of objects of A; the additional objects in

our version of A contain no additional information, since their morphism spaces

and the A∞-operations on those are completely determined by condition (3)).

We will consider the case where A is proper, i.e. the cohomology groups

H∗(homA(X0, X1)) are bounded K[Gm]-modules and finitely generated in each

degree; this implies properness of A.

Informally, an object X ∈ A is homotopy Gm-equivariant if it is isomorphic

to all of its images g(X) for g ∈ Gm, in a manner which is coherent up to higher

homotopy data. Formally, a (rational) homotopy equivariant structure on X is a

sequence

ρi
X ∈ K[G×i

m ] ⊗K[Gm] hom1−i
A

(X, X), i > 1

which, stalkwise, give elements

ρi
X,gi,...,g1

∈ hom1−i
A

(gi · · · g1(X), X)

which satisfy the following associativity equations [35, Appendix]:
∑

d>1
i1+···+id=i

µd
A

(ρ
id
X,gi,...,gi1+···+id−1+1

, . . . , ρ
i1
X,gi1

,...,g1
) +
∑

16k<i

(−1)kρi−1
X,gi,...,gk+1gk ,...,g1

= 0

and the unitality condition [ρ1
X,e

] = [eX] ∈ H0(homA(X, X)).
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In this language, a weakly Gm-equivariant structure on X is the data of ρ1
X

which satisfies unitality, and for which there exists ρ2
X

such that the first two

associativity equations hold, namely

µ1
A

(ρ1
X,g) = 0 and µ2

A
(ρ1

X,g2
, ρ1

X,g1
) − ρ1

X,g2g1
+ µ1

A
(ρ2

X,g2,g1
) = 0.

The machinery in [31, Section 8] upgrades weak equivariant structures to

homotopy equivariant structures using an obstruction theory argument, and turns

homotopy equivariant objects into naively equivariant modules. For applications,

the essential point is therefore to find criteria for the existence of weak actions.

6.4. Infinitesimal equivariance. Denoting by g the Lie algebra of Gm, we have

a short exact sequence of K[Gm]-modules

0→ g∨ → K[Gm]/I2
e → K→ 0

where Ie is the maximal ideal at the point e ∈ Gm, and K = K[Gm]/Ie.

Tensoring this with the (projective, hence flat) module homA(X, X) and con-

sidering the resulting long exact sequence in cohomology, the image of [eX] ∈

H0(homA(X, X)) under the connecting morphism yields an element

Def0
X ∈ g

∨ ⊗ H1(homA(X, X)). (12)

If this vanishes then we say X is “infinitesimally equivariant”.

Proposition 6.5. Suppose A is proper, has a rational Gm-action (in the sense

of the preceding section), and K has characteristic zero. If X is infinitesimally

equivariant and simple, i.e. H0(homA(X, X)) = K, then X admits a weakly

equivariant structure.

Proof. The proof follows along the same lines as Seidel’s argument for the

case K = C, which is stated as [35, Theorem 2.7 and Corollary A.12] for

A∞-categories with naive and rational C∗-actions, respectively. Rationality of

the action and properness imply that the cohomology H0(homA(X, X)) defines a

coherent sheaf over Gm, and infinitesimal equivariance equips that sheaf with an

algebraic connection. More precisely, a choice of primitive

de f 0
X ∈ g

∨ ⊗ hom0
A

(X, X) for Def0
X = 0 ∈ g∨ ⊗ H1(homA(X, X))

equips the sheaf with a distinguished connection (cf. [35, Lemma A.3] and [31,

Section 7a]). In characteristic zero, any coherent sheaf admitting a connection is

locally free [10, Corollary 2.5.2.2], so the sheaf F = H0(homA(X, X)) is locally

free of rank one, i.e. a line bundle.

Over C, the construction in [31, Lemma 7.12] uses surjectivity of the expo-

nential map to modify the algebraic connection and trivialise the monodromy. A
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covariant constant section taking the value [eX] at e ∈ Gm then provides a Gm-

family of cohomological isomorphisms which obey the group law, and hence

defines a weak Gm-action (which can be lifted to a homotopy Gm-action using a

general obstruction theory argument).

Following [33, Remark 14.22], we instead argue as follows. The total space

of the line bundle F carries an action of an algebraic group G which fits into an

extension

1→ Aut(X)→ G → Gm → 1

where the subgroup Aut(X) = H0 homA(X, X)∗ acts by multiplication on the

fibres Fg = H0 homA(gX, X), and the quotient Gm acts on the base by multipli-

cation.

Since X is simple, Aut(X) = Gm. Over any perfect (e.g. characteristic

zero) field, the group of self-extensions Ext1(Gm,Gm) = 0, cf. for instance [13,

Chapter 5]. Therefore G � Gm × Gm, the extension splits, and the action of Gm

on itself by multiplication admits a lift to an action of Gm on the total space of

F . The orbit of [eX] ∈ Fe then provides the desired Gm-family of cohomological

isomorphisms.

6.5. Gm-actions from the Picard group. We now apply the machinery of

rational Gm-actions to the setting of Fukaya categories of surfaces. We first state

the result for a closed surface Σ of genus g > 2, which is our main focus.

Proposition 6.6. A choice of class a ∈ H1(Σ;Z) defines a rational Gm-action on

F(Σ), for which F(Σ) is proper in the sense of Section 6.3.

Proof. Choose a closed differential form α ∈ Ω1(Σ;R) representing a, and let

V ∈ Γ(TΣ) be the symplectic vector field ω-dual to α. Consider the actions of

s ∈ R and of λ ∈ UΛ on Lagrangian branes in Σ given by

• the symplectomorphisms φs associated to the time s flow of V , with flux

s · a, and

• twisting by the line bundle ξλ → Σ which is topologically trivial and has

connection d + λ · α and hence holonomy exp(λ · α).

Using the fact that LV (α) = 0, one can check that the actions of R and

UΛ strictly commute, and define an action of Gm on the set of Lagrangian

submanifolds with local systems, where qsλ ∈ Gm acts by φs ◦ (⊗ξλ).

We now enlarge the Fukaya category, following [29, Section 10b], to allow

pairs (L, g) with L a brane and g ∈ Gm, where the perturbation data for (L, g) is

the g-pullback of that for L. Then Gm acts strictly on Lagrangian branes, via A∞-

functors with no higher order terms. The ideas of Section 3.3, cf. [32] and [24],
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and in particular Theorem 3.10 imply that the morphism groups CF∗(g(L), L′)

form analytic sheaves of complexes over Gm. We will explain below, using ideas

from Section 5, that these morphism groups can in fact arranged to be the stalks

of (infinite rank but cohomologically proper) projective K[Gm]-modules. The

fact that the A∞-operations are compatible with the group operation follows from

strictness of the action.

The reason why the projective K[Gm]-modules homF(Σ)(L, L
′) typically have

infinite rank, is that the Floer complexes CF∗(g(L), L′) have unbounded rank,

since deforming L by an increasingly large amount of flux may create unbound-

edly many new intersections with L′. These new intersections come in cancelling

pairs, and because Σ has genus at least two, only finitely many such pairs of in-

tersections ever contribute to the Floer cohomology HF∗(g(L), L′), with the rest

belonging to summands which remain acyclic for all g. Still, in order to define

the chain-level A∞-structure it is simpler to work with the whole Floer complex.

In our setting, there is a direct geometric approach to turning the Floer complexes

CF∗(g(L), L′) into projective (in fact, free) K[Gm]-modules.

Namely, represent the Poincaré dual to a (or some multiple of it, if a is not a

primitive element of H1(Σ;Z)) by a simple closed curve σ, and pick the 1-form

α and vector field V to be supported in an annular neighbourhood σ ⊂ A ⊂ Σ,

which we identify with (−2, 2) × S 1 as in Section 5.3, with α pulled back from

(−2, 2) so that V is everywhere parallel to the S 1-factor. As in Section 5.3, only

consider objects of F(Σ) which are not parallel to the annulus A and intersect its

boundary minimally (annulus-parallel curves get replaced by twisted complexes

as in Example 5.9). Then the Lee perturbations commute with the Gm-action,

and the various properties of the Floer complexes CF∗(L, L′; wH) for large w

carry over to CF∗(g(L), L′; wH) as long as w is sufficiently large compared to

the valuation of g ∈ Gm. Because the continuation maps CF∗(g(L), L′; wH) →

CF∗(g(L), L′; (w + 1)H) for sufficiently large w are chain-level inclusions which

define strict A∞-homomorphisms with no higher order terms, the telescope mod-

els for CW∗(g(L), L′) = lim
−−→

CF∗(g(L), L′; wH) can be replaced with naive lim-

its: define hom(g(L), L′) to be the union of the increasing sequence of com-

plexes CF∗(g(L), L′; wH) for w = N,N + 1, . . . starting from sufficiently large

N ≫ val(g), identifying each with a subcomplex of the next by inclusion. Equiv-

alently, declare the generators of hom(g(L), L′) to be the arcs of intersections

given by Lemma 5.1, with A∞-operations given by counts of perturbed holomor-

phic discs for any value of w which is sufficiently large relative to the given inputs

and the valuation of g, corrected by action rescalings as in Lemma 5.4. There is

an obvious identification between generators for varying values of g, and the fact

that the A∞-operations vary algebraically with g ∈ Gm is a direct consequence of

Lemma 3.8; thus the Floer complexes constructed in this manner naturally define

projective K[Gm]-modules underlying a rational Gm-action.



Denis Auroux and Ivan Smith 58

Even though the K[Gm]-modules homF(Σ)(L, L
′) constructed in this manner

are not finitely generated, the cohomology H∗ homF(Σ)(L, L
′) is a finitely gener-

ated K[Gm]-module, because all but finitely many of the generators created upon

wrapping come in pairs which are connected by a single bigon contributing to

the Floer differential, hence lie in acyclic summands of the chain-level K[Gm]-

module. Here we use crucially the fact that Σ is not a (closed) torus. We conclude

that F(Σ) is proper.

Remark 6.7. Proposition 6.6 also holds for a surface S of genus > 1 with

non-empty boundary, under the additional assumption that the restriction of

a ∈ H1(S ;Z) to ∂S vanishes. This ensures that the class a can be represented by

a one-form supported in an annular neighborhood of a simple closed curve, and

the argument then proceeds exactly as in the case of closed surfaces. Moreover,

the construction applies equally well to the wrapped Fukaya category, and gives

a rational Gm-action on W(S ) (however W(S ) is not proper).

Example 6.8. Suppose γ ⊂ Σ is a simple closed curve, and a ∈ H1(Σ;Z).

Then it is clear from the definition of the Gm-action that the class Def0
γ ∈

g∨ ⊗ HF1(γ, γ) ≃ H1(γ;K) is a|γ, or more precisely, the homomorphism from

g ≃ K to HF1(γ, γ) given by multiplication by a|γ. Thus, γ is infinitesimally

equivariant if and only if 〈a, γ〉 = 0, as expected.

The rational Gm-action on F(Σ) immediately extends to twisted complexes

and to the idempotent completion F(Σ)per; the properness of F(Σ) implies that of

F(Σ)per.

Lemma 6.9. Let X ∈ F(Σ)per be a spherical object with ch(X) , 0, and

a ∈ H1(Σ;Z). Then X is infinitesimally equivariant with respect to the action

of Proposition 6.6 if and only if 〈a, ch(X)〉 = 0.

Proof. The deformation classes Def0
X , X ∈ obF(Σ) are induced by a Hochschild

cohomology class Def ∈ g∨⊗HH1(F(Σ),F(Σ)), which measures the infinitesimal

action of Gm on morphisms [35]. (Since g∨ ≃ K, we can think of this as a single

Hochschild cohomology class, and henceforth we drop g∨ from the notation).

Recall that the closed-open map CO : H1(Σ;Λ) → HH1(F(Σ),F(Σ)) is an

isomorphism. Thus, the fact that Def0
γ = a|γ for all simple closed curves implies

that Def = CO(a).

The Yoneda product makes Hochschild cohomology a unital algebra, over

which the cap product endows the Hochschild homology HH∗(F(Σ),F(Σ)) with

a module structure. It is well-known to experts that the closed-open map is a

ring homomorphism, and that the open-closed map OC : HH∗(F(Σ),F(Σ)) →
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H∗+1(Σ;Λ) ≃ H1−∗(Σ;Λ) is a homomorphism of H∗(Σ;Λ)-modules (see e.g. [17],
[27]). With this understood, we can view Def0

X ∈ H1 hom(X, X) as a Hochschild
cycle, and the corresponding class [Def0

X] ∈ HH1(F(Σ),F(Σ)) can be expressed
as Def ∩ [eX] = CO(a) ∩ [eX], which implies that

OC([Def0
X]) = OC(CO(a) ∩ [eX]) = a ∩ OC([eX]) = a ∩ ch(X) ∈ H0(Σ;Λ).

Since the open-closed map is an isomorphism, we conclude that [Def0
X] ∈

HH1(F(Σ),F(Σ)) vanishes if and only if 〈a, ch(X)〉 = 0. In order to reach the
same conclusion for Def0

X ∈ H1 hom(X, X), it remains to verify that the map
H1 hom(X, X) → HH1(F(Σ),F(Σ)) is an isomorphism. Since X is spherical,
both sides have rank one, and it is enough to show that the map does not vanish
identically; since ch(X) , 0 this follows from the existence of classes a for which
〈a, ch(X)〉 , 0.

We note that the assumption that ch(X) , 0 can be removed by using the
Calabi-Yau structure on F(Σ); more generally the statement is expected to hold
for all indecomposable objects of F(Σ)per.

We also remark that a similar criterion for infinitesimal equivariance can be
formulated for spherical objects on a surface with boundary, using inclusion into
a larger closed surface to reduce to Lemma 6.9.

7. Conclusions

7.1. Spherical objects revisited. We can now conclude the proof of Theorem
1.1.

Corollary 7.1. Let X ∈ F(Σ)per be spherical, with ch(X) , 0. Suppose there

is a class a ∈ H1(Σ;Z) with the property that 〈a, ch(X)〉 = 0. Then for each p,

X is quasi-isomorphic to an object of F(Σ)per which admits a naive equivariant

structure for the Z/p-action of Lemma 6.2 and lifts to the degree p covering

Σ̃→ Σ as an object X̂ ∈ F(Σ̃)per.

Proof. By Lemma 6.9, the hypothesis 〈a, ch(X)〉 = 0 implies that X is infinitesi-
mally equivariant for the Gm-action associated to a by Proposition 6.6. Proposi-
tion 6.5 then shows that X is weakly Gm-equivariant in the sense of Section 6.3.
Restricting to the finite subgroup of p-th roots of unity, we find that X is weakly
Z/p-equivariant with respect to the action of Lemma 6.2, and so by Lemma 6.1
its Yoneda module is quasi-isomorphic to a naively equivariant module. One
can then appeal to the results of Section 6.2 and reinterpret this naively Z/p-
equivariant F(Σ)-module as a module over F(Σ̃).

Since F(Σ) is proper, the Yoneda module of X is proper, and so are the
equivariant module and its lift; the homological smoothness of F(Σ̃) then implies
that the lifted module is perfect, hence can be represented by an object X̂ ∈

F(Σ̃)per. Finally, projecting X̂ back to Σ yields a naively equivariant object of
F(Σ)per which is quasi-isomorphic to X.
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We now show that certain objects are supported on subsurfaces of Σ̃, in the

following sense.

Corollary 7.2. If X ∈ F(Σ)per is spherical, with ch(X) , 0, we can find a cover

Σ̃ → Σ and a lift X̂ of X to Σ̃ and a simple closed curve γ ⊂ Σ̃ for which

HF∗(X̂, γ) = 0.

Proof. Pick a class a ∈ H1(Σ;Z) with 〈a, ch(X)〉 = 0. By the previous Corollary,

X is G = Z/p-equivariant for the action of Lemma 6.2, and can be lifted to the

degree p covering Σ̃→ Σ, giving an object X̂ ∈ F(Σ̃)per.

Let δ ⊂ Σ be any simple closed curve such that 〈a, [δ]〉 = 0: then δ lifts to a

simple closed curve δ̂ in Σ̃, and by the results of Section 6.2 we have

HF∗(X, δ) =
⊕

χ∈G∨
HF∗(X̂, δ̂χ), (13)

where we recall that the objects δ̂χ, χ ∈ G∨ are the p lifts of δ to Σ̃. Then for

sufficiently large p (p > rank HF∗(X, δ)) some summand on the RHS vanishes,

giving a simple closed curve γ = δ̂χ ⊂ Σ̃ with HF∗(X̂, γ) = 0.

Lemma 7.3. In the situation of Corollary 7.2, one can choose Σ̃ so that there are

two disjoint homologically independent simple closed curves γ1, γ2 ⊂ Σ̃ with

HF∗(X̂, γi) = 0.

Proof. We proceed as in the proof of Corollary 7.2. Since the genus of Σ is at

least two, we can find two simple closed curves δ, δ′ in Σ which have geometric

intersection number one and both pair trivially with a. The p lifts of δ to Σ̃

are disjoint simple closed curves, and each of them intersects precisely one of

the p lifts of δ′, so their homology classes are linearly independent in H1(Σ̃;Z).

The result now follows by arguing as in the previous Corollary and taking p

sufficiently large to force the vanishing of at least two of the Floer cohomology

groups HF∗(X̂, δ̂χ).

Corollary 7.4 (=Theorem 1.1). A spherical object X ∈ DπF(Σ) with non-zero

Chern character is quasi-isomorphic to a simple closed curve equipped with a

rank one local system.

Proof. By Lemma 7.3, we can find an action of G = Z/p and a finite covering

Σ̃ → Σ for which X is G-equivariant and lifts to an object X̂ ∈ F(Σ̃)per, and

two disjoint, homologically independent simple closed curves γ1, γ2 ⊂ Σ̃ with

HF∗(X̂, γi) = 0. We now check that X̂ is spherical and ch(X̂) is non-zero.

Recalling that the Fukaya category of Σ̃ gives a model for the G-equivariant

Fukaya category of Σ (cf. Section 6.2), HF∗(X̂, X̂) is isomorphic to the G-

invariant summand of HF∗(X, X) ≃ H∗(S 1;K). General properties of equivariant
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objects imply that the unit eX is G-invariant, so HF0(X̂, X̂) has rank one, and

Poincaré duality (or vanishing of the skew-symmetric pairing χHom(X̂, X̂))

implies that HF1(X̂, X̂) also has rank one. Hence X̂ is spherical. Meanwhile, the

assumption that ch(X) ∈ H1(Σ;Z) is non-zero means that there exists a simple

closed curve η such that χHom(X, η) , 0. Denoting by η̂ the total preimage of

η in Σ̃ (which may consist of one or more simple closed curves), we find that

χHom(X̂, η̂) = χHom(X, η) , 0, so ch(X̂) is a non-zero element of H1(Σ̃;Z).

Corollary 5.15 now implies that X̂ is quasi-isomorphic to a simple closed

curve (ξ̂, σ̂) with rank one local system in F(Σ̃). The last step is to descend

back from Σ̃ to Σ. The projection of σ̂ to Σ is a closed (a priori immersed)

curve σ in Σ, whose homology class satisfies 〈a, [σ]〉 = 0, and the local system

ξ̂ descends to a rank one local system ξ on σ. As noted in Section 6.2, the

object (ξ, σ) ∈ F(Σ) admits p distinct G-equivariant structures, and one of

these corresponds to the lift (ξ̂, σ̂) ∈ F(Σ̃). A quasi-isomorphism between X̂

and (ξ̂, σ̂) then descends to a G-equivariant quasi-isomorphism between X and

(ξ, σ) (i.e., a quasi-isomorphism which lies in the G-invariant part of the Floer

complex); from which it follows that X and (ξ, σ) are also quasi-isomorphic

(non-equivariantly) in F(Σ)per. Corollary 3.14 then implies that σ is quasi-

isomorphic to an embedded simple closed curve.

Remark 7.5. The exotic spherical object of Figure 4 lifts to an embedded simple

closed curve on a double cover of the surface, so the ability to descend from Σ̃

back to Σ above is again making essential use of the homological hypothesis on

X.

7.2. A Floer-theoretic Schmutz graph. The “Schmutz graph”, introduced

in [28], has vertices non-separating simple closed curves up to isotopy, and

two such are joined by an edge exactly when they have geometric intersection

number one. The main theorem of op. cit. asserts that the group of simplicial

automorphisms of the Schmutz graph is the extended mapping class group (of

both orientation-preserving and reversing automorphisms) for a surface of genus

g > 3, and the quotient of the mapping class group by the hyperelliptic involution

ι when g = 2.

We now introduce a Floer-theoretic analogue. By Theorem 1.1, spherical

objects of DπF(Σ) with non-zero Chern character correspond to homologically

essential simple closed curves with rank one local systems. Moreover, the

simple closed curves underlying two spherical objects X1, X2 have geometric

intersection number one if and only if the rank of HF∗(X1, X2) is equal to 1,

by Corollary 2.11. We introduce an equivalence relation on the set of spherical

objects by declaring that X ∼ X′ if and only if they have Floer cohomology rank

one with the same set of spherical objects:

X ∼ X′ ⇐⇒
(

for all spherical Y, rk HF∗(X,Y) = 1⇔ rk HF∗(X′,Y) = 1
)

.

(14)
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Lemma 7.6. Two spherical objects X, X′ ∈ DπF(Σ) with non-zero Chern charac-

ters are equivalent if and only if the simple closed curves γ, γ′ underlying X, X′

are isotopic.

Proof. Using Corollary 2.11, X ≃ X′ if and only if γ, γ′ have geometric
intersection number one with the exact same set of simple closed curves. It
is a general fact of surface topology that this can only happen when γ, γ′ are
isotopic. For example, if γ and γ′ were not isotopic, then the Schmutz graph
would admit an automorphism which exchanges the vertices corresponding to γ
and γ′ while preserving every other vertex; this cannot be induced by an element
of the extended mapping class group.

Since our equivalence relation on spherical objects is clearly preserved
by auto-equivalences of the Fukaya category, Lemma 7.6 implies that auto-
equivalences act on the set of isotopy classes of non-separating simple closed
curves. This remains true for surfaces with boundary, by the same argument;
cf. Remark 7.8. (However, spherical objects supported on boundary-parallel
curves can be permuted arbitrarily by auto-equivalences of the compact Fukaya
category; auto-equivalences of the wrapped Fukaya category are better-behaved.)

On closed surfaces, the machinery of [32] actually allows us to obtain a
stronger result: recalling that every homologically essential spherical object of
F(Σ) comes in a Gm-family, any auto-equivalence must act on such objects in a
way that maps Gm-families to Gm-families. Since we will not need this result,
we only sketch the argument.

Proof (Sketch). Given a spherical object X ∈ F(Σ) with ch(X) , 0 (hence
primitive in H1(Σ;Z) as a consequence of Theorem 1.1), and a class a ∈ H1(Σ;Z)
with 〈a, ch(X)〉 = 1, the rational Gm-action of Proposition 6.6 yields an object
of F(Σ) representing the Gm-orbit of X, which in turn determines an object X
of the category F

per

K∗
of perfect families of F(Σ)-modules over the base K∗ [32,

Section 1f]. Example 6.8 and the proof of Lemma 6.9 show that this family
of modules follows a deformation field [γ] ∈ HH1(F

per

K∗
,Ω1

K∗
⊗ F

per

K∗
) which is

constant over the base K∗ and given fibrewise by CO(a) ∈ HH1(F(Σ),F(Σ)).
Now, an autoequivalence G of F(Σ) induces a functor Gper on F

per

K∗
, and Gper(X)

is a perfect family of modules which follows the deformation field [γ′] = G∗([γ]),
which is constant over the base and given fibrewise by G∗(CO(a)) [32, Section
1i]. Since the closed-open map is an isomorphism, there exists a′ ∈ H1(Σ;Λ)
such that G∗(CO(a)) = CO(a′); in fact a′ ∈ H1(Σ;Z), because 〈a′, ch(G(Y))〉 =
〈a, ch(Y)〉 ∈ Z for all spherical objects Y . Repeat the above construction for the
spherical object X′ = G(X) and the Gm-action determined by the cohomology
class a′, to build a perfect family of modules X′ ∈ F

per

K∗
, which follows the

deformation field [γ′]. The two families of modules Gper(X) and X′ agree over
the origin and both follow the deformation field [γ′], so by [32, Proposition 1.21]
their fibres are quasi-isomorphic at every point of K∗.
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The group of auto-equivalences Auteq(F(Σ)) contains a subgroup isomorphic

to H1(Σ,Λ∗), given by symplectic isotopies of arbitrary flux and tensoring by flat

line bundles. We expect that a further elaboration on the above argument implies

that this is a normal subgroup.

We now return to the proof of Corollary 1.2:

Proposition 7.7 (=Corollary 1.2). There is a natural homomorphism

Auteq(DπF(Σ))→ Γg

which is split by the (non-canonical) homomorphism Γg → Auteq(DπF(Σ))

constructed in Section 2.6.

Proof. Define a graph Υ(Σ) as follows:

• vertices are spherical objects X ∈ F(Σ)per with non-zero Chern character,

modulo the equivalence relation (14);

• two distinct vertices X1 and X2 are joined by an edge whenever HF(X1, X2)

has rank 1 (this is clearly invariant under the equivalence relation).

Theorem 1.1 and Lemma 7.6 imply that the vertices of the graph are in

bijection with isotopy classes of homologically essential simple closed curves

on Σ, while Corollary 2.11 shows that the edges correspond to pairs of curves

with geometric intersection number one. Thus, Υ(Σ) agrees with the Schmutz

graph from [28]. On the other hand, it is manifest that Auteq(F(Σ)per) acts on

Υ(Σ) by simplicial automorphisms. Thus, we obtain a homomorphism from

Auteq(F(Σ)per) to the extended mapping class group Γ±g for g > 3, or to the

quotient Γ±
2
/〈ι〉 when g = 2.

Since any autoequivalence preserves the pairing χHF(·, ·), i.e. algebraic

intersection numbers of simple closed curves, its action on the set of isotopy

classes cannot be that of an orientation-reversing diffeomorphism. Therefore,

the homomorphism actually takes values in the ordinary (oriented) mapping

class group Γg for g > 3, or in Γ2/〈ι〉 when g = 2. When g = 2, one can

consider the action of Auteq(F(Σ2)per) on the graph Υ+(Σ) whose vertices are

spherical objects modulo a graded version of (14) which requires HF∗(X,Y)

and HF∗(X′,Y) to be in the same degree when they both have rank 1; i.e.,

we now consider isotopy classes of oriented simple closed curves. Since the

hyperelliptic involution reverses the orientation on all simple closed curves, this

allows one to lift the homomorphism from Γ2/〈ι〉 to Γ2. The fact that the action

on the Floer-theoretic Schmutz graph is split by the construction of Section 2.6

is straightforward.
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Remark 7.8. The Schmutz graph can be defined analogously for isotopy classes

of non-separating simple closed curves on a punctured surface of genus g > 1

with n punctures. It is known [28] that its simplicial isometry group repro-

duces the extended mapping class group, modulo the hyperelliptic involution for

(g, n) ∈ {(1, 1), (1, 2)}. Starting from here, and using the geometricity of spheri-

cal objects obtained in Corollary 4.14, one sees that the analogue of Proposition

7.7 holds for punctured surfaces, i.e. the autoequivalence group of the compact

Fukaya category determines (and surjects onto) the mapping class group.

8. An application to symplectic mapping class groups

In this final section, we prove Theorem 1.3 as an application of Corollary

1.2. The argument is a fairly straightforward adaption of ideas from [32, 38], but

involves somewhat different technology from that in the main body of the paper,

so we will be relatively brief. We also leave the realm of strictly unobstructed

Lagrangians; our main examples satisfy a weak monotonicity property, but we

will not labour foundational aspects of the Fukaya category.

8.1. Fukaya category summands. Let (M, ω) be a closed symplectic man-

ifold. Define the preliminary category Fpr(M) to be a curved Z2-graded linear

A∞-category over Λ>0 which has objects oriented spin Lagrangian submanifolds

L ⊂ M equipped with finite-dimensional Λ>0-local systems ξ → L. The mor-

phism groups, in the two most important cases, are given by

homFpr(M)((L, ξ), (L
′, ξ′)) =















C∗(L; Hom(ξ, ξ′)) L = L′

⊕x∈L∩L′ξ
∨
x ⊗ ξ

′
x L ⋔ L′

(15)

where in the first case we take any fixed finite-dimensional chain-level model for

the classical cohomology of L with coefficients in the bundle Hom(ξ, ξ′). When

ξ = ξ′ we take this chain-level model to be strictly unital, and denote the unit by

1(L,ξ) (or 1L if we suppress local systems from the notation). Floer theory defines

a curved A∞-structure {µd}d>0 on Fpr(M).

Let λ ∈ Λ>0. The Fukaya category F(M; λ) has objects pairs (L, α) where

L ∈ Ob(Fpr(M)), where α ∈ hom1
Fpr(M)

(L, L) vanishes in hom1
Fpr(M)

(L, L) ⊗Λ0
C,

and where α is a solution of the weakly unobstructed Maurer-Cartan equation

µ0 + µ1(α) + µ2(α, α) + · · · = λ · 1L ∈ hom0
Fpr(M)(L, L).

The morphism spaces in F(M; λ) are given by Floer cochains

homF(M;λ)(L, L
′) = homFpr(M)(L, L

′) ⊗Λ0
Λ
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and inherit a non-curved A∞-structure obtained by all possible insertions of

Maurer-Cartan elements; thus, the differential in the Floer complex for (L0, α0)

and (L1, α1) is given by

µ1
F(M;λ)(x) = µ1

Fpr(M)(x) + µ2
Fpr(M)(α1, x) + µ2

Fpr(M)(x, α0) + µ3
Fpr(M)(α1, α1, x)

+ µ3
Fpr(M)(α1, x, α0) + µ3

Fpr(M)(x, α0, α0) + · · ·

(16)

The Floer differential squares to zero, i.e. F(M; λ) has vanishing curvature, since

λ · 1L is central, because Fpr(M) was assumed to be strictly unital. The mapping

class group π0Symp(M) acts on F(M; λ) for each λ ∈ Λ>0 separately.

The open-closed map OC : HH∗(F(M; λ),F(M; λ)) → QH∗(M;Λ) takes

values in the generalized λ-eigenspace of quantum multiplication by c1(T M),

which is a subring

QH∗(M)λ = {a ∈ QH∗(M) : (c1(T M)−λ)N ∗a = 0 for some N ∈ N} ⊂ QH∗(M).

The analogue of Abouzaid’s generation criterion in this setting states that, if

the restriction of the open-closed map to a full subcategory of F(M; λ)per hits

an invertible element of QH∗(M)λ, then the full subcategory split-generates

F(M; λ)per [27, Theorem 11.3].

8.2. Relative parallel transport. Let (X, ω) be a symplectic manifold and

(Yt)t∈[0,1] a smooth family of symplectic submanifolds of X.

Lemma 8.1. There is a time-dependent symplectomorphism Φt : X → X with

Φ0 = id and Φt(Y0) = Yt, well-defined up to isotopy through symplectomor-

phisms with the same property.

Proof. The existence is [11, Proposition 4]. For uniqueness up to isotopy, ob-

serve that two choices Φ0,t and Φ1,t differ by a time-dependent symplectomor-

phism ρ1,t = Φ
−1
0,t
◦Φ1,t which preserves Y0 setwise, i.e. a path based at the origin

in the group Symp(X,Y0) of symplectomorphisms preserving Y0 setwise. The

path ρ1,t can be deformed continuously to the constant path ρ0,t ≡ id (e.g. setting

ρs,t = ρ1,st), and Φs,t = Φ0,t ◦ ρs,t gives an isotopy between Φ0,t and Φ1,t.

Recall that a symplectic fibration X → B with fibre (X, ω) is a smooth fibre

bundle with a globally closed 2-form ΩX such that (Xb,ΩX|Xb
) � (X, ω) for each

b ∈ B.

Corollary 8.2. Given a symplectic fibration X → B with fibre X and a locally

trivial symplectic subfibration Y ֒→ X with fibre Y ⊂ X at a base-point b ∈ B,

there is a relative monodromy representation

π1(B; b) −→ π0Symp(X,Y)

into the mapping class group of the group of symplectomorphisms preserving Y

setwise.
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Proof. Fix a 1-dimensional submanifold γ ⊂ B and trivialise the bundle X|γ over

γ by symplectic parallel transport. This brings us into the situation of Lemma

8.1, meaning that we have a one-parameter family of symplectic embeddings

(parametrized by a co-ordinate t ∈ γ) of Y into a fixed (X, ω). By differentiating

the relative Moser maps Φt of Lemma 8.1, we obtain closed 1-forms at ∈ Ω
1(X)

for which the ω-dual vector fields Zt flow the submanifolds Yt into one another.

If we subtract dt ∧ dat from ΩX, we obtain a new globally closed 2-form on X|γ
with the correct fibrewise restriction and for which parallel transport preserves

the subfibration Y|γ. We can apply the preceding construction to the 1-skeleton

of B to obtain relative parallel transport maps for loops generating π1(B). The

uniqueness up to isotopy in Lemma 8.1 shows the construction descends to a

representation of π1(B).

Let ωst denote the standard constant coefficient Kähler form on the four-

torus T 4. Consider (Σ2 × T 4, ω ⊕ ωst). We fix a sufficiently small ε > 0 and let

p : Z → Σ2×T 4 denote the ε-symplectic blow-up of Σ2×T 4 along the symplectic

submanifold C = Σ2 × {0}. The exceptional divisor E = C × P1 is canonically a

product; indeed Z is just the product Σ2×Blpt(T
4), and carries a symplectic form

Ω with cohomology class p∗[ω ⊕ ωst] − ε · E.

The cohomology of Z admits a splitting

H∗(Z;Z) = H∗(Σ2 × T 4;Z) ⊕ H∗(Σ2;Z) · u

where u = −PD(E) has degree 2. Let {η j} denote a basis for H1(Z;Z), and set

Ωδirr = Ω + δ ·
∑

i. j

ci jηi ∧ η j

for coefficients ci j ∈ (0, 1). If δ > 0 is sufficiently small then Ωδ
irr

is a symplectic

form on Z, because the symplectic condition is open and the ci j are bounded.

Lemma 8.3. If the coefficients ci j are linearly independent over Q, then every

symplectomorphism of (Z,Ωδ
irr

) acts trivially on H∗(Z).

Proof. Assume that the ci j are rationally linearly independent. We will show that

any diffeomorphism of Z preserving the cohomology class [Ωirr] acts trivially

on cohomology. As a ring, H∗(Z) is generated by H1(Z) ≃ H1(Σ2) ⊕ H1(T 4)

and by the class u ∈ H2(Z). Note that π2(Z) is generated by a fibre F ⊂ E,

so any diffeomorphism preserves the class [F] ∈ H2(Z;Z) and its intersection

Poincaré dual E ∈ H4(Z;Z). The action on H2(Z;R) of a diffeomorphism of Z

which fixes [Ωδ
irr

] has the eigenvalue 1 appearing with multiplicity at least two

(since u and [Ωδ
irr

] are both preserved). However, the action on H2(Z)/〈u〉 is the

action on Λ2(H1(Z)). Since the action on H1 is through an integral matrix, the

coefficients of any eigenvector for the eigenvalue 1 must be linearly dependent

over Q. Therefore, preservation of [Ωδ
irr

] implies that the diffeomorphism acts

trivially on H1(Z) and hence on H∗(Z).
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The Torelli group I2 6 Γ2 is an infinitely generated free group, generated by

the Dehn twists on separating simple closed curves. The construction of relative

parallel transport applied to a family of blow-ups yields a representation

Γ2 → π0Symp(Z,Ω)

which depends on the same kinds of choice as in Section 2.6. Any element of

Γ2 acting non-trivially on cohomology cannot deform to a symplectomorphism

with respect to the perturbed symplectic structure Ωδ
irr

, by Lemma 8.3. A given

element of the Torelli group, however, will deform for δ sufficiently small.

Corollary 8.4. Given N > 0, there is δ(N) > 0 such that I2 → π0Symp(Z,Ω)

deforms on a rank N free subgroup FN 6 I2 to FN → π0Symp(Z,Ωδ
irr

) for all

δ ∈ (0, δ(N)).

Proof. The graph of f ∈ I2 defines a Lagrangian submanifold Γ( f ) ⊂ (Z ×

Z,Ω⊕−Ω). Since the cohomology classes of the perturbing forms ηi∧η j restrict

trivially to Γ( f ), using that f ∗([η]) = [η] for all η, if δ is sufficiently small there is

a Lagrangian isotopy of Γ( f ) to a submanifold Lagrangian with respect to Ωδ
irr

.

Since being graphical is an open condition, if δ is sufficiently small this is again

the graph of a symplectomorphism f irr. Pick N separating simple closed curves

σ j on Σ2. Then the corresponding elements fσ j
admit common deformations

f irr
σ j

to symplectomorphisms of (Z,Ωδ
irr

) if δ > 0 is sufficiently small. (A priori

the size of δ depends on geometric bounds on the Dehn twists about σ j, hence

cannot be made uniform as N → ∞.)

Subsequently we will show that the homomorphism FN → π0Symp(Z,Ωδ
irr

)

is faithful.

8.3. Unbounded rank. Let L = OP1 (−1) denote the ε-blow-up of C2 at the

origin, equipped with its toric Kähler form in cohomology class ε · u, where

u = −PD(E) is the negative of the Poincaré dual to the exceptional divisor (zero-

section). The Gromov invariant of E is non-trivial, and

QH∗(L;Λ) = Λ[u]/〈u(u + qε)〉

Note that c1(TL) = u. Implanting the local model into the four-torus, one finds

that if Y = Blpt(T
4) with the natural Kähler form p∗ωst + ε · u, then

QH∗(Y;Λ) � H∗(T 4;Λ) ⊕ Λ · u

and the first Chern class c1(Y) = u = −PD(E) acts, under quantum multiplica-

tion, nilpotently on all cohomology classes of positive degree in H∗(T 4;Λ) and

invertibly on the second summand.
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Lemma 8.5. F(Y;−qε)per is semisimple and generated by an idempotent sum-

mand T+ of a Lagrangian torus T ⊂ Y.

Proof. L contains a (monotone) Lagrangian torus T ⊂ OP1 (−1), which is the

orbit of the torus action corresponding to the unique critical point of the toric

potential function W(x, y) = x + y + q−εxy. The torus T is weakly unobstructed,

defines an object of F(L;−qε) whose Floer cohomology is semisimple in char-

acteristic zero, and splits into the direct sum of two idempotent summands T±,

which are isomorphic up to shift [38, Section 4.4].

A neighborhood of the zero section in L (large enough to contain T ) embeds

into a neighborhood of the exceptional divisor in Y = Blpt(T
4); since all

holomorphic discs bounded by T in Y must be contained inside the neighborhood

of the exceptional divisor, the Floer cohomology of the torus T in Y is exactly

as in L. Hence T also defines an object of F(Y;−qε) with semisimple Floer

cohomology, which splits into two idempotent summands T±. An explicit

calculation shows that the images of the two idempotents of HF(T,T ) under

the open-closed map are ±u = ∓PD(E); the generation criterion [27, Theorem

11.3] then implies that T split-generates F(Y;−qε)per.

Proposition 8.6. There is a fully faithful functor F(Σ2)→ F(Z,Ωδ
irr

; λ)per whose

image split-generates F(Z,Ωδ
irr

; λ)per for the eigenvalue λ = −qǫ .

Proof (Sketch). For the product form Ω on Z, there is a Künneth functor

associated to the A∞-tensor product F(Z; λ) ≃ F(Σ2)⊗F(Y; λ) and the semisimple

piece of the second factor afforded by Lemma 8.5. Note that T ⊂ Y survives

arbitrary small perturbations of the given Kähler form p∗ωst + ε · u on Y , in

the sense that it deforms as a Lagrangian to any sufficiently nearby symplectic

form, since the restriction map H2(Y) → H2(T ) vanishes. Since its Floer

cohomology with respect to the initial symplectic form is semisimple, it must

remain semisimple after small deformation.

Choose the 1-forms ηi on Z = Σ2 × Y so that that η1, . . . , η4 are the pullbacks

of closed 1-forms α1, . . . , α4 on Σ2 representing a basis of H1(Σ2;Z), and

η5, . . . , η8 are the pullbacks of closed 1-forms on Y which vanish everywhere

in a neighborhood of the exceptional divisor (and in particular on the torus T ).

Then, for a fixed simple closed curve γ ⊂ Σ2, the submanifold γ × T is

Lagrangian not just for the product formΩ, but also forΩδ
irr
= Ω+δ

∑

i j ci jηi∧η j.

The association

γ 7→ γ × T+

is globally realised by an A∞-functor associated to a Lagrangian correspondence

G ⊂ Σ−2 × Z = Σ−2 × (Σ2 × Blpt(T
4))
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which fibres over the diagonal of Σ−
2
×Σ2 with fibre T ⊂ L ⊂ Y . Note that ∆Σ2

×T

remains Lagrangian after perturbing the symplectic form on Z by δ
∑

i j ci jηi∧η j,

and that on Σ2 by δ
∑

i j ci jαi ∧ α j. Since the correspondence is globally a

product, the local-to-global spectral sequence H∗(Σ2; HF∗(T,T )) → HF∗(G,G)

degenerates; therefore the correspondence G itself has an idempotent summand

G+ associated to a choice of idempotent for T , compare to [32, Section 5.4]. This

yields the desired functor G+ from F(Σ2) (where we suppress from the notation

the fact that the symplectic form depends on δ) to F(Z,Ωδ
irr

;−qε)per. This functor

maps every object of F(Σ2) to its product with T+; since we are in a product

situation and EndF(Y;−qε)per (T+) = Λ, the functor is fully faithful.

The fact that the image of the functor G+ split-generates F(Z;−qε)per follows

from Ganatra’s automatic generation result [16], since HH∗(F(Σ2),F(Σ2)) ≃

H∗(Σ2;Λ) has the same rank as QH∗(Z)−qε ≃ u · H∗(Σ2;Λ), and F(Σ2) is ho-

mologically smooth. One can also proceed more directly: consider a collection

of curves γi ∈ F(Σ2) which satisfy Abouzaid’s split-generation criterion, i.e. the

full subcategory with this set of objects has a Hochschild cycle α which maps to

the unit 1 ∈ H∗(Σ2;Λ) under the open-closed map. Then the Hochschild cycle

α+ = G+∗ (α), formed by replacing every morphism which appears in α with its

tensor product with 1T+ , maps to 1 ⊗ u ∈ QH∗(Z;Λ) (using the fact that we

are locally in a product situation and OC(1T+) = u). Since u is invertible in

QH∗(Z)−qε , [27, Theorem 11.3] implies that the objects γi × T+ = G+(γi) split-

generate F(Z;−qε)per.

Together with Corollary 1.2, this proposition yields a natural map

Auteq(F(Z,Ωδirr;−qε)per) � Auteq(F(Σ2)per)→ Γ2,

which then induces a map

AuteqHH(F(Z,Ωδirr;−qε)per)→ I2

where the domain denotes those autoequivalences which act trivially on Hochschild

cohomology. We know that the closed-open map

H∗(Σ2) · u = QH∗(Z)−qε → HH∗(F(Z,Ωδirr;−qε)per)

is an isomorphism, and the map

π0Symp(Z,Ωδirr)→ Auteq(F(Z,Ωδirr;−qε)per)

lands in the subgroup AuteqHH by Lemma 8.3. Combining this with Corollary

8.4, we therefore obtain a map

FN → π0Symp(Z,Ωδirr)→ AuteqHH(F(Z,Ωδirr;−qε)per)→ I2 � F∞
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which one can compose with the quotient map q : F∞ → FN which kills all but

the finite set of chosen generators (twists in all other separating simple closed

curves). Chasing through the stages, the composite map is the natural inclusion

of a finite rank free subgroup of the infinitely generated free group, or the identity

after composition with q. It follows that π0Symp(Z,Ωδ
irr

) surjects onto a free

group of rank N = N(δ) which tends to infinity as δ → 0. This completes the

proof of Theorem 1.3.
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Études Sci. 123 (2016), 199–282. MR 3502098

[7] Mohammed Abouzaid and Paul Seidel, An open string analogue of Viterbo functoriality,

Geom. Topol. 14 (2010), no. 2, 627–718. MR 2602848

[8] Mohammed Abouzaid and Ivan Smith, Exact Lagrangians in plumbings, Geom. Funct.

Anal. 22 (2012), no. 4, 785–831. MR 2984118

[9] Miguel Abreu and Dusa McDuff, Topology of symplectomorphism groups of rational ruled

surfaces, J. Amer. Math. Soc. 13 (2000), no. 4, 971–1009. MR 1775741



Fukaya categories of surfaces, spherical objects, and mapping class groups 71
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